1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes: Pedro Roque : Retransmit queue handled by TCP.
24 * : Fragmentation on mtu decrease
25 * : Segment collapse on retransmit
26 * : AF independence
27 *
28 * Linus Torvalds : send_delayed_ack
29 * David S. Miller : Charge memory using the right skb
30 * during syn/ack processing.
31 * David S. Miller : Output engine completely rewritten.
32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
33 * Cacophonix Gaul : draft-minshall-nagle-01
34 * J Hadi Salim : ECN support
35 *
36 */
37
38 #define pr_fmt(fmt) "TCP: " fmt
39
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47
48 #include <trace/events/tcp.h>
49
50 /* Refresh clocks of a TCP socket,
51 * ensuring monotically increasing values.
52 */
tcp_mstamp_refresh(struct tcp_sock * tp)53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 u64 val = tcp_clock_ns();
56
57 tp->tcp_clock_cache = val;
58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 int push_one, gfp_t gfp);
63
64 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 struct inet_connection_sock *icsk = inet_csk(sk);
68 struct tcp_sock *tp = tcp_sk(sk);
69 unsigned int prior_packets = tp->packets_out;
70
71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72
73 __skb_unlink(skb, &sk->sk_write_queue);
74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75
76 if (tp->highest_sack == NULL)
77 tp->highest_sack = skb;
78
79 tp->packets_out += tcp_skb_pcount(skb);
80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 tcp_rearm_rto(sk);
82
83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 tcp_skb_pcount(skb));
85 tcp_check_space(sk);
86 }
87
88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
89 * window scaling factor due to loss of precision.
90 * If window has been shrunk, what should we make? It is not clear at all.
91 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
92 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
93 * invalid. OK, let's make this for now:
94 */
tcp_acceptable_seq(const struct sock * sk)95 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96 {
97 const struct tcp_sock *tp = tcp_sk(sk);
98
99 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
100 (tp->rx_opt.wscale_ok &&
101 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
102 return tp->snd_nxt;
103 else
104 return tcp_wnd_end(tp);
105 }
106
107 /* Calculate mss to advertise in SYN segment.
108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109 *
110 * 1. It is independent of path mtu.
111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113 * attached devices, because some buggy hosts are confused by
114 * large MSS.
115 * 4. We do not make 3, we advertise MSS, calculated from first
116 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
117 * This may be overridden via information stored in routing table.
118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119 * probably even Jumbo".
120 */
tcp_advertise_mss(struct sock * sk)121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 struct tcp_sock *tp = tcp_sk(sk);
124 const struct dst_entry *dst = __sk_dst_get(sk);
125 int mss = tp->advmss;
126
127 if (dst) {
128 unsigned int metric = dst_metric_advmss(dst);
129
130 if (metric < mss) {
131 mss = metric;
132 tp->advmss = mss;
133 }
134 }
135
136 return (__u16)mss;
137 }
138
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140 * This is the first part of cwnd validation mechanism.
141 */
tcp_cwnd_restart(struct sock * sk,s32 delta)142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 {
144 struct tcp_sock *tp = tcp_sk(sk);
145 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 u32 cwnd = tcp_snd_cwnd(tp);
147
148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149
150 tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 restart_cwnd = min(restart_cwnd, cwnd);
152
153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 cwnd >>= 1;
155 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
156 tp->snd_cwnd_stamp = tcp_jiffies32;
157 tp->snd_cwnd_used = 0;
158 }
159
160 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 struct sock *sk)
163 {
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 const u32 now = tcp_jiffies32;
166
167 if (tcp_packets_in_flight(tp) == 0)
168 tcp_ca_event(sk, CA_EVENT_TX_START);
169
170 tp->lsndtime = now;
171
172 /* If it is a reply for ato after last received
173 * packet, enter pingpong mode.
174 */
175 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 inet_csk_enter_pingpong_mode(sk);
177 }
178
179 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,u32 rcv_nxt)180 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
181 {
182 struct tcp_sock *tp = tcp_sk(sk);
183
184 if (unlikely(tp->compressed_ack)) {
185 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
186 tp->compressed_ack);
187 tp->compressed_ack = 0;
188 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
189 __sock_put(sk);
190 }
191
192 if (unlikely(rcv_nxt != tp->rcv_nxt))
193 return; /* Special ACK sent by DCTCP to reflect ECN */
194 tcp_dec_quickack_mode(sk);
195 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
196 }
197
198 /* Determine a window scaling and initial window to offer.
199 * Based on the assumption that the given amount of space
200 * will be offered. Store the results in the tp structure.
201 * NOTE: for smooth operation initial space offering should
202 * be a multiple of mss if possible. We assume here that mss >= 1.
203 * This MUST be enforced by all callers.
204 */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)205 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
206 __u32 *rcv_wnd, __u32 *window_clamp,
207 int wscale_ok, __u8 *rcv_wscale,
208 __u32 init_rcv_wnd)
209 {
210 unsigned int space = (__space < 0 ? 0 : __space);
211
212 /* If no clamp set the clamp to the max possible scaled window */
213 if (*window_clamp == 0)
214 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
215 space = min(*window_clamp, space);
216
217 /* Quantize space offering to a multiple of mss if possible. */
218 if (space > mss)
219 space = rounddown(space, mss);
220
221 /* NOTE: offering an initial window larger than 32767
222 * will break some buggy TCP stacks. If the admin tells us
223 * it is likely we could be speaking with such a buggy stack
224 * we will truncate our initial window offering to 32K-1
225 * unless the remote has sent us a window scaling option,
226 * which we interpret as a sign the remote TCP is not
227 * misinterpreting the window field as a signed quantity.
228 */
229 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
230 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
231 else
232 (*rcv_wnd) = min_t(u32, space, U16_MAX);
233
234 if (init_rcv_wnd)
235 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
236
237 *rcv_wscale = 0;
238 if (wscale_ok) {
239 /* Set window scaling on max possible window */
240 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
241 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
242 space = min_t(u32, space, *window_clamp);
243 *rcv_wscale = clamp_t(int, ilog2(space) - 15,
244 0, TCP_MAX_WSCALE);
245 }
246 /* Set the clamp no higher than max representable value */
247 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
248 }
249 EXPORT_SYMBOL(tcp_select_initial_window);
250
251 /* Chose a new window to advertise, update state in tcp_sock for the
252 * socket, and return result with RFC1323 scaling applied. The return
253 * value can be stuffed directly into th->window for an outgoing
254 * frame.
255 */
tcp_select_window(struct sock * sk)256 static u16 tcp_select_window(struct sock *sk)
257 {
258 struct tcp_sock *tp = tcp_sk(sk);
259 struct net *net = sock_net(sk);
260 u32 old_win = tp->rcv_wnd;
261 u32 cur_win, new_win;
262
263 /* Make the window 0 if we failed to queue the data because we
264 * are out of memory. The window is temporary, so we don't store
265 * it on the socket.
266 */
267 if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM))
268 return 0;
269
270 cur_win = tcp_receive_window(tp);
271 new_win = __tcp_select_window(sk);
272 if (new_win < cur_win) {
273 /* Danger Will Robinson!
274 * Don't update rcv_wup/rcv_wnd here or else
275 * we will not be able to advertise a zero
276 * window in time. --DaveM
277 *
278 * Relax Will Robinson.
279 */
280 if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
281 /* Never shrink the offered window */
282 if (new_win == 0)
283 NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
284 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
285 }
286 }
287
288 tp->rcv_wnd = new_win;
289 tp->rcv_wup = tp->rcv_nxt;
290
291 /* Make sure we do not exceed the maximum possible
292 * scaled window.
293 */
294 if (!tp->rx_opt.rcv_wscale &&
295 READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
296 new_win = min(new_win, MAX_TCP_WINDOW);
297 else
298 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
299
300 /* RFC1323 scaling applied */
301 new_win >>= tp->rx_opt.rcv_wscale;
302
303 /* If we advertise zero window, disable fast path. */
304 if (new_win == 0) {
305 tp->pred_flags = 0;
306 if (old_win)
307 NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
308 } else if (old_win == 0) {
309 NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
310 }
311
312 return new_win;
313 }
314
315 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)316 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
317 {
318 const struct tcp_sock *tp = tcp_sk(sk);
319
320 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
321 if (!(tp->ecn_flags & TCP_ECN_OK))
322 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
323 else if (tcp_ca_needs_ecn(sk) ||
324 tcp_bpf_ca_needs_ecn(sk))
325 INET_ECN_xmit(sk);
326 }
327
328 /* Packet ECN state for a SYN. */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)329 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
330 {
331 struct tcp_sock *tp = tcp_sk(sk);
332 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
333 bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
334 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
335
336 if (!use_ecn) {
337 const struct dst_entry *dst = __sk_dst_get(sk);
338
339 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
340 use_ecn = true;
341 }
342
343 tp->ecn_flags = 0;
344
345 if (use_ecn) {
346 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
347 tp->ecn_flags = TCP_ECN_OK;
348 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
349 INET_ECN_xmit(sk);
350 }
351 }
352
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)353 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
354 {
355 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
356 /* tp->ecn_flags are cleared at a later point in time when
357 * SYN ACK is ultimatively being received.
358 */
359 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
360 }
361
362 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)363 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
364 {
365 if (inet_rsk(req)->ecn_ok)
366 th->ece = 1;
367 }
368
369 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
370 * be sent.
371 */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)372 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
373 struct tcphdr *th, int tcp_header_len)
374 {
375 struct tcp_sock *tp = tcp_sk(sk);
376
377 if (tp->ecn_flags & TCP_ECN_OK) {
378 /* Not-retransmitted data segment: set ECT and inject CWR. */
379 if (skb->len != tcp_header_len &&
380 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
381 INET_ECN_xmit(sk);
382 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
383 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
384 th->cwr = 1;
385 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
386 }
387 } else if (!tcp_ca_needs_ecn(sk)) {
388 /* ACK or retransmitted segment: clear ECT|CE */
389 INET_ECN_dontxmit(sk);
390 }
391 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
392 th->ece = 1;
393 }
394 }
395
396 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
397 * auto increment end seqno.
398 */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)399 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
400 {
401 skb->ip_summed = CHECKSUM_PARTIAL;
402
403 TCP_SKB_CB(skb)->tcp_flags = flags;
404
405 tcp_skb_pcount_set(skb, 1);
406
407 TCP_SKB_CB(skb)->seq = seq;
408 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
409 seq++;
410 TCP_SKB_CB(skb)->end_seq = seq;
411 }
412
tcp_urg_mode(const struct tcp_sock * tp)413 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
414 {
415 return tp->snd_una != tp->snd_up;
416 }
417
418 #define OPTION_SACK_ADVERTISE BIT(0)
419 #define OPTION_TS BIT(1)
420 #define OPTION_MD5 BIT(2)
421 #define OPTION_WSCALE BIT(3)
422 #define OPTION_FAST_OPEN_COOKIE BIT(8)
423 #define OPTION_SMC BIT(9)
424 #define OPTION_MPTCP BIT(10)
425
smc_options_write(__be32 * ptr,u16 * options)426 static void smc_options_write(__be32 *ptr, u16 *options)
427 {
428 #if IS_ENABLED(CONFIG_SMC)
429 if (static_branch_unlikely(&tcp_have_smc)) {
430 if (unlikely(OPTION_SMC & *options)) {
431 *ptr++ = htonl((TCPOPT_NOP << 24) |
432 (TCPOPT_NOP << 16) |
433 (TCPOPT_EXP << 8) |
434 (TCPOLEN_EXP_SMC_BASE));
435 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
436 }
437 }
438 #endif
439 }
440
441 struct tcp_out_options {
442 u16 options; /* bit field of OPTION_* */
443 u16 mss; /* 0 to disable */
444 u8 ws; /* window scale, 0 to disable */
445 u8 num_sack_blocks; /* number of SACK blocks to include */
446 u8 hash_size; /* bytes in hash_location */
447 u8 bpf_opt_len; /* length of BPF hdr option */
448 __u8 *hash_location; /* temporary pointer, overloaded */
449 __u32 tsval, tsecr; /* need to include OPTION_TS */
450 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
451 struct mptcp_out_options mptcp;
452 };
453
mptcp_options_write(struct tcphdr * th,__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)454 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
455 struct tcp_sock *tp,
456 struct tcp_out_options *opts)
457 {
458 #if IS_ENABLED(CONFIG_MPTCP)
459 if (unlikely(OPTION_MPTCP & opts->options))
460 mptcp_write_options(th, ptr, tp, &opts->mptcp);
461 #endif
462 }
463
464 #ifdef CONFIG_CGROUP_BPF
bpf_skops_write_hdr_opt_arg0(struct sk_buff * skb,enum tcp_synack_type synack_type)465 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
466 enum tcp_synack_type synack_type)
467 {
468 if (unlikely(!skb))
469 return BPF_WRITE_HDR_TCP_CURRENT_MSS;
470
471 if (unlikely(synack_type == TCP_SYNACK_COOKIE))
472 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
473
474 return 0;
475 }
476
477 /* req, syn_skb and synack_type are used when writing synack */
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)478 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
479 struct request_sock *req,
480 struct sk_buff *syn_skb,
481 enum tcp_synack_type synack_type,
482 struct tcp_out_options *opts,
483 unsigned int *remaining)
484 {
485 struct bpf_sock_ops_kern sock_ops;
486 int err;
487
488 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
489 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
490 !*remaining)
491 return;
492
493 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
494
495 /* init sock_ops */
496 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
497
498 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
499
500 if (req) {
501 /* The listen "sk" cannot be passed here because
502 * it is not locked. It would not make too much
503 * sense to do bpf_setsockopt(listen_sk) based
504 * on individual connection request also.
505 *
506 * Thus, "req" is passed here and the cgroup-bpf-progs
507 * of the listen "sk" will be run.
508 *
509 * "req" is also used here for fastopen even the "sk" here is
510 * a fullsock "child" sk. It is to keep the behavior
511 * consistent between fastopen and non-fastopen on
512 * the bpf programming side.
513 */
514 sock_ops.sk = (struct sock *)req;
515 sock_ops.syn_skb = syn_skb;
516 } else {
517 sock_owned_by_me(sk);
518
519 sock_ops.is_fullsock = 1;
520 sock_ops.sk = sk;
521 }
522
523 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
524 sock_ops.remaining_opt_len = *remaining;
525 /* tcp_current_mss() does not pass a skb */
526 if (skb)
527 bpf_skops_init_skb(&sock_ops, skb, 0);
528
529 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
530
531 if (err || sock_ops.remaining_opt_len == *remaining)
532 return;
533
534 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
535 /* round up to 4 bytes */
536 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
537
538 *remaining -= opts->bpf_opt_len;
539 }
540
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)541 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
542 struct request_sock *req,
543 struct sk_buff *syn_skb,
544 enum tcp_synack_type synack_type,
545 struct tcp_out_options *opts)
546 {
547 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
548 struct bpf_sock_ops_kern sock_ops;
549 int err;
550
551 if (likely(!max_opt_len))
552 return;
553
554 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
555
556 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
557
558 if (req) {
559 sock_ops.sk = (struct sock *)req;
560 sock_ops.syn_skb = syn_skb;
561 } else {
562 sock_owned_by_me(sk);
563
564 sock_ops.is_fullsock = 1;
565 sock_ops.sk = sk;
566 }
567
568 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
569 sock_ops.remaining_opt_len = max_opt_len;
570 first_opt_off = tcp_hdrlen(skb) - max_opt_len;
571 bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
572
573 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
574
575 if (err)
576 nr_written = 0;
577 else
578 nr_written = max_opt_len - sock_ops.remaining_opt_len;
579
580 if (nr_written < max_opt_len)
581 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
582 max_opt_len - nr_written);
583 }
584 #else
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)585 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
586 struct request_sock *req,
587 struct sk_buff *syn_skb,
588 enum tcp_synack_type synack_type,
589 struct tcp_out_options *opts,
590 unsigned int *remaining)
591 {
592 }
593
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)594 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
595 struct request_sock *req,
596 struct sk_buff *syn_skb,
597 enum tcp_synack_type synack_type,
598 struct tcp_out_options *opts)
599 {
600 }
601 #endif
602
603 /* Write previously computed TCP options to the packet.
604 *
605 * Beware: Something in the Internet is very sensitive to the ordering of
606 * TCP options, we learned this through the hard way, so be careful here.
607 * Luckily we can at least blame others for their non-compliance but from
608 * inter-operability perspective it seems that we're somewhat stuck with
609 * the ordering which we have been using if we want to keep working with
610 * those broken things (not that it currently hurts anybody as there isn't
611 * particular reason why the ordering would need to be changed).
612 *
613 * At least SACK_PERM as the first option is known to lead to a disaster
614 * (but it may well be that other scenarios fail similarly).
615 */
tcp_options_write(struct tcphdr * th,struct tcp_sock * tp,struct tcp_out_options * opts)616 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
617 struct tcp_out_options *opts)
618 {
619 __be32 *ptr = (__be32 *)(th + 1);
620 u16 options = opts->options; /* mungable copy */
621
622 if (unlikely(OPTION_MD5 & options)) {
623 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
624 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
625 /* overload cookie hash location */
626 opts->hash_location = (__u8 *)ptr;
627 ptr += 4;
628 }
629
630 if (unlikely(opts->mss)) {
631 *ptr++ = htonl((TCPOPT_MSS << 24) |
632 (TCPOLEN_MSS << 16) |
633 opts->mss);
634 }
635
636 if (likely(OPTION_TS & options)) {
637 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
638 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
639 (TCPOLEN_SACK_PERM << 16) |
640 (TCPOPT_TIMESTAMP << 8) |
641 TCPOLEN_TIMESTAMP);
642 options &= ~OPTION_SACK_ADVERTISE;
643 } else {
644 *ptr++ = htonl((TCPOPT_NOP << 24) |
645 (TCPOPT_NOP << 16) |
646 (TCPOPT_TIMESTAMP << 8) |
647 TCPOLEN_TIMESTAMP);
648 }
649 *ptr++ = htonl(opts->tsval);
650 *ptr++ = htonl(opts->tsecr);
651 }
652
653 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
654 *ptr++ = htonl((TCPOPT_NOP << 24) |
655 (TCPOPT_NOP << 16) |
656 (TCPOPT_SACK_PERM << 8) |
657 TCPOLEN_SACK_PERM);
658 }
659
660 if (unlikely(OPTION_WSCALE & options)) {
661 *ptr++ = htonl((TCPOPT_NOP << 24) |
662 (TCPOPT_WINDOW << 16) |
663 (TCPOLEN_WINDOW << 8) |
664 opts->ws);
665 }
666
667 if (unlikely(opts->num_sack_blocks)) {
668 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
669 tp->duplicate_sack : tp->selective_acks;
670 int this_sack;
671
672 *ptr++ = htonl((TCPOPT_NOP << 24) |
673 (TCPOPT_NOP << 16) |
674 (TCPOPT_SACK << 8) |
675 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
676 TCPOLEN_SACK_PERBLOCK)));
677
678 for (this_sack = 0; this_sack < opts->num_sack_blocks;
679 ++this_sack) {
680 *ptr++ = htonl(sp[this_sack].start_seq);
681 *ptr++ = htonl(sp[this_sack].end_seq);
682 }
683
684 tp->rx_opt.dsack = 0;
685 }
686
687 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
688 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
689 u8 *p = (u8 *)ptr;
690 u32 len; /* Fast Open option length */
691
692 if (foc->exp) {
693 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
694 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
695 TCPOPT_FASTOPEN_MAGIC);
696 p += TCPOLEN_EXP_FASTOPEN_BASE;
697 } else {
698 len = TCPOLEN_FASTOPEN_BASE + foc->len;
699 *p++ = TCPOPT_FASTOPEN;
700 *p++ = len;
701 }
702
703 memcpy(p, foc->val, foc->len);
704 if ((len & 3) == 2) {
705 p[foc->len] = TCPOPT_NOP;
706 p[foc->len + 1] = TCPOPT_NOP;
707 }
708 ptr += (len + 3) >> 2;
709 }
710
711 smc_options_write(ptr, &options);
712
713 mptcp_options_write(th, ptr, tp, opts);
714 }
715
smc_set_option(const struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)716 static void smc_set_option(const struct tcp_sock *tp,
717 struct tcp_out_options *opts,
718 unsigned int *remaining)
719 {
720 #if IS_ENABLED(CONFIG_SMC)
721 if (static_branch_unlikely(&tcp_have_smc)) {
722 if (tp->syn_smc) {
723 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
724 opts->options |= OPTION_SMC;
725 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
726 }
727 }
728 }
729 #endif
730 }
731
smc_set_option_cond(const struct tcp_sock * tp,const struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)732 static void smc_set_option_cond(const struct tcp_sock *tp,
733 const struct inet_request_sock *ireq,
734 struct tcp_out_options *opts,
735 unsigned int *remaining)
736 {
737 #if IS_ENABLED(CONFIG_SMC)
738 if (static_branch_unlikely(&tcp_have_smc)) {
739 if (tp->syn_smc && ireq->smc_ok) {
740 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
741 opts->options |= OPTION_SMC;
742 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
743 }
744 }
745 }
746 #endif
747 }
748
mptcp_set_option_cond(const struct request_sock * req,struct tcp_out_options * opts,unsigned int * remaining)749 static void mptcp_set_option_cond(const struct request_sock *req,
750 struct tcp_out_options *opts,
751 unsigned int *remaining)
752 {
753 if (rsk_is_mptcp(req)) {
754 unsigned int size;
755
756 if (mptcp_synack_options(req, &size, &opts->mptcp)) {
757 if (*remaining >= size) {
758 opts->options |= OPTION_MPTCP;
759 *remaining -= size;
760 }
761 }
762 }
763 }
764
765 /* Compute TCP options for SYN packets. This is not the final
766 * network wire format yet.
767 */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)768 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
769 struct tcp_out_options *opts,
770 struct tcp_md5sig_key **md5)
771 {
772 struct tcp_sock *tp = tcp_sk(sk);
773 unsigned int remaining = MAX_TCP_OPTION_SPACE;
774 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
775
776 *md5 = NULL;
777 #ifdef CONFIG_TCP_MD5SIG
778 if (static_branch_unlikely(&tcp_md5_needed.key) &&
779 rcu_access_pointer(tp->md5sig_info)) {
780 *md5 = tp->af_specific->md5_lookup(sk, sk);
781 if (*md5) {
782 opts->options |= OPTION_MD5;
783 remaining -= TCPOLEN_MD5SIG_ALIGNED;
784 }
785 }
786 #endif
787
788 /* We always get an MSS option. The option bytes which will be seen in
789 * normal data packets should timestamps be used, must be in the MSS
790 * advertised. But we subtract them from tp->mss_cache so that
791 * calculations in tcp_sendmsg are simpler etc. So account for this
792 * fact here if necessary. If we don't do this correctly, as a
793 * receiver we won't recognize data packets as being full sized when we
794 * should, and thus we won't abide by the delayed ACK rules correctly.
795 * SACKs don't matter, we never delay an ACK when we have any of those
796 * going out. */
797 opts->mss = tcp_advertise_mss(sk);
798 remaining -= TCPOLEN_MSS_ALIGNED;
799
800 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) {
801 opts->options |= OPTION_TS;
802 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
803 opts->tsecr = tp->rx_opt.ts_recent;
804 remaining -= TCPOLEN_TSTAMP_ALIGNED;
805 }
806 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
807 opts->ws = tp->rx_opt.rcv_wscale;
808 opts->options |= OPTION_WSCALE;
809 remaining -= TCPOLEN_WSCALE_ALIGNED;
810 }
811 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
812 opts->options |= OPTION_SACK_ADVERTISE;
813 if (unlikely(!(OPTION_TS & opts->options)))
814 remaining -= TCPOLEN_SACKPERM_ALIGNED;
815 }
816
817 if (fastopen && fastopen->cookie.len >= 0) {
818 u32 need = fastopen->cookie.len;
819
820 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
821 TCPOLEN_FASTOPEN_BASE;
822 need = (need + 3) & ~3U; /* Align to 32 bits */
823 if (remaining >= need) {
824 opts->options |= OPTION_FAST_OPEN_COOKIE;
825 opts->fastopen_cookie = &fastopen->cookie;
826 remaining -= need;
827 tp->syn_fastopen = 1;
828 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
829 }
830 }
831
832 smc_set_option(tp, opts, &remaining);
833
834 if (sk_is_mptcp(sk)) {
835 unsigned int size;
836
837 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
838 opts->options |= OPTION_MPTCP;
839 remaining -= size;
840 }
841 }
842
843 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
844
845 return MAX_TCP_OPTION_SPACE - remaining;
846 }
847
848 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_md5sig_key * md5,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)849 static unsigned int tcp_synack_options(const struct sock *sk,
850 struct request_sock *req,
851 unsigned int mss, struct sk_buff *skb,
852 struct tcp_out_options *opts,
853 const struct tcp_md5sig_key *md5,
854 struct tcp_fastopen_cookie *foc,
855 enum tcp_synack_type synack_type,
856 struct sk_buff *syn_skb)
857 {
858 struct inet_request_sock *ireq = inet_rsk(req);
859 unsigned int remaining = MAX_TCP_OPTION_SPACE;
860
861 #ifdef CONFIG_TCP_MD5SIG
862 if (md5) {
863 opts->options |= OPTION_MD5;
864 remaining -= TCPOLEN_MD5SIG_ALIGNED;
865
866 /* We can't fit any SACK blocks in a packet with MD5 + TS
867 * options. There was discussion about disabling SACK
868 * rather than TS in order to fit in better with old,
869 * buggy kernels, but that was deemed to be unnecessary.
870 */
871 if (synack_type != TCP_SYNACK_COOKIE)
872 ireq->tstamp_ok &= !ireq->sack_ok;
873 }
874 #endif
875
876 /* We always send an MSS option. */
877 opts->mss = mss;
878 remaining -= TCPOLEN_MSS_ALIGNED;
879
880 if (likely(ireq->wscale_ok)) {
881 opts->ws = ireq->rcv_wscale;
882 opts->options |= OPTION_WSCALE;
883 remaining -= TCPOLEN_WSCALE_ALIGNED;
884 }
885 if (likely(ireq->tstamp_ok)) {
886 opts->options |= OPTION_TS;
887 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
888 opts->tsecr = READ_ONCE(req->ts_recent);
889 remaining -= TCPOLEN_TSTAMP_ALIGNED;
890 }
891 if (likely(ireq->sack_ok)) {
892 opts->options |= OPTION_SACK_ADVERTISE;
893 if (unlikely(!ireq->tstamp_ok))
894 remaining -= TCPOLEN_SACKPERM_ALIGNED;
895 }
896 if (foc != NULL && foc->len >= 0) {
897 u32 need = foc->len;
898
899 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
900 TCPOLEN_FASTOPEN_BASE;
901 need = (need + 3) & ~3U; /* Align to 32 bits */
902 if (remaining >= need) {
903 opts->options |= OPTION_FAST_OPEN_COOKIE;
904 opts->fastopen_cookie = foc;
905 remaining -= need;
906 }
907 }
908
909 mptcp_set_option_cond(req, opts, &remaining);
910
911 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
912
913 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
914 synack_type, opts, &remaining);
915
916 return MAX_TCP_OPTION_SPACE - remaining;
917 }
918
919 /* Compute TCP options for ESTABLISHED sockets. This is not the
920 * final wire format yet.
921 */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)922 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
923 struct tcp_out_options *opts,
924 struct tcp_md5sig_key **md5)
925 {
926 struct tcp_sock *tp = tcp_sk(sk);
927 unsigned int size = 0;
928 unsigned int eff_sacks;
929
930 opts->options = 0;
931
932 *md5 = NULL;
933 #ifdef CONFIG_TCP_MD5SIG
934 if (static_branch_unlikely(&tcp_md5_needed.key) &&
935 rcu_access_pointer(tp->md5sig_info)) {
936 *md5 = tp->af_specific->md5_lookup(sk, sk);
937 if (*md5) {
938 opts->options |= OPTION_MD5;
939 size += TCPOLEN_MD5SIG_ALIGNED;
940 }
941 }
942 #endif
943
944 if (likely(tp->rx_opt.tstamp_ok)) {
945 opts->options |= OPTION_TS;
946 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
947 opts->tsecr = tp->rx_opt.ts_recent;
948 size += TCPOLEN_TSTAMP_ALIGNED;
949 }
950
951 /* MPTCP options have precedence over SACK for the limited TCP
952 * option space because a MPTCP connection would be forced to
953 * fall back to regular TCP if a required multipath option is
954 * missing. SACK still gets a chance to use whatever space is
955 * left.
956 */
957 if (sk_is_mptcp(sk)) {
958 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
959 unsigned int opt_size = 0;
960
961 if (mptcp_established_options(sk, skb, &opt_size, remaining,
962 &opts->mptcp)) {
963 opts->options |= OPTION_MPTCP;
964 size += opt_size;
965 }
966 }
967
968 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
969 if (unlikely(eff_sacks)) {
970 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
971 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
972 TCPOLEN_SACK_PERBLOCK))
973 return size;
974
975 opts->num_sack_blocks =
976 min_t(unsigned int, eff_sacks,
977 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
978 TCPOLEN_SACK_PERBLOCK);
979
980 size += TCPOLEN_SACK_BASE_ALIGNED +
981 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
982 }
983
984 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
985 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
986 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
987
988 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
989
990 size = MAX_TCP_OPTION_SPACE - remaining;
991 }
992
993 return size;
994 }
995
996
997 /* TCP SMALL QUEUES (TSQ)
998 *
999 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1000 * to reduce RTT and bufferbloat.
1001 * We do this using a special skb destructor (tcp_wfree).
1002 *
1003 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1004 * needs to be reallocated in a driver.
1005 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1006 *
1007 * Since transmit from skb destructor is forbidden, we use a tasklet
1008 * to process all sockets that eventually need to send more skbs.
1009 * We use one tasklet per cpu, with its own queue of sockets.
1010 */
1011 struct tsq_tasklet {
1012 struct tasklet_struct tasklet;
1013 struct list_head head; /* queue of tcp sockets */
1014 };
1015 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1016
tcp_tsq_write(struct sock * sk)1017 static void tcp_tsq_write(struct sock *sk)
1018 {
1019 if ((1 << sk->sk_state) &
1020 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1021 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
1022 struct tcp_sock *tp = tcp_sk(sk);
1023
1024 if (tp->lost_out > tp->retrans_out &&
1025 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1026 tcp_mstamp_refresh(tp);
1027 tcp_xmit_retransmit_queue(sk);
1028 }
1029
1030 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1031 0, GFP_ATOMIC);
1032 }
1033 }
1034
tcp_tsq_handler(struct sock * sk)1035 static void tcp_tsq_handler(struct sock *sk)
1036 {
1037 bh_lock_sock(sk);
1038 if (!sock_owned_by_user(sk))
1039 tcp_tsq_write(sk);
1040 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1041 sock_hold(sk);
1042 bh_unlock_sock(sk);
1043 }
1044 /*
1045 * One tasklet per cpu tries to send more skbs.
1046 * We run in tasklet context but need to disable irqs when
1047 * transferring tsq->head because tcp_wfree() might
1048 * interrupt us (non NAPI drivers)
1049 */
tcp_tasklet_func(struct tasklet_struct * t)1050 static void tcp_tasklet_func(struct tasklet_struct *t)
1051 {
1052 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet);
1053 LIST_HEAD(list);
1054 unsigned long flags;
1055 struct list_head *q, *n;
1056 struct tcp_sock *tp;
1057 struct sock *sk;
1058
1059 local_irq_save(flags);
1060 list_splice_init(&tsq->head, &list);
1061 local_irq_restore(flags);
1062
1063 list_for_each_safe(q, n, &list) {
1064 tp = list_entry(q, struct tcp_sock, tsq_node);
1065 list_del(&tp->tsq_node);
1066
1067 sk = (struct sock *)tp;
1068 smp_mb__before_atomic();
1069 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1070
1071 tcp_tsq_handler(sk);
1072 sk_free(sk);
1073 }
1074 }
1075
1076 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
1077 TCPF_WRITE_TIMER_DEFERRED | \
1078 TCPF_DELACK_TIMER_DEFERRED | \
1079 TCPF_MTU_REDUCED_DEFERRED)
1080 /**
1081 * tcp_release_cb - tcp release_sock() callback
1082 * @sk: socket
1083 *
1084 * called from release_sock() to perform protocol dependent
1085 * actions before socket release.
1086 */
tcp_release_cb(struct sock * sk)1087 void tcp_release_cb(struct sock *sk)
1088 {
1089 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1090 unsigned long nflags;
1091
1092 /* perform an atomic operation only if at least one flag is set */
1093 do {
1094 if (!(flags & TCP_DEFERRED_ALL))
1095 return;
1096 nflags = flags & ~TCP_DEFERRED_ALL;
1097 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1098
1099 if (flags & TCPF_TSQ_DEFERRED) {
1100 tcp_tsq_write(sk);
1101 __sock_put(sk);
1102 }
1103 /* Here begins the tricky part :
1104 * We are called from release_sock() with :
1105 * 1) BH disabled
1106 * 2) sk_lock.slock spinlock held
1107 * 3) socket owned by us (sk->sk_lock.owned == 1)
1108 *
1109 * But following code is meant to be called from BH handlers,
1110 * so we should keep BH disabled, but early release socket ownership
1111 */
1112 sock_release_ownership(sk);
1113
1114 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1115 tcp_write_timer_handler(sk);
1116 __sock_put(sk);
1117 }
1118 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1119 tcp_delack_timer_handler(sk);
1120 __sock_put(sk);
1121 }
1122 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1123 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1124 __sock_put(sk);
1125 }
1126 }
1127 EXPORT_SYMBOL(tcp_release_cb);
1128
tcp_tasklet_init(void)1129 void __init tcp_tasklet_init(void)
1130 {
1131 int i;
1132
1133 for_each_possible_cpu(i) {
1134 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1135
1136 INIT_LIST_HEAD(&tsq->head);
1137 tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1138 }
1139 }
1140
1141 /*
1142 * Write buffer destructor automatically called from kfree_skb.
1143 * We can't xmit new skbs from this context, as we might already
1144 * hold qdisc lock.
1145 */
tcp_wfree(struct sk_buff * skb)1146 void tcp_wfree(struct sk_buff *skb)
1147 {
1148 struct sock *sk = skb->sk;
1149 struct tcp_sock *tp = tcp_sk(sk);
1150 unsigned long flags, nval, oval;
1151 struct tsq_tasklet *tsq;
1152 bool empty;
1153
1154 /* Keep one reference on sk_wmem_alloc.
1155 * Will be released by sk_free() from here or tcp_tasklet_func()
1156 */
1157 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1158
1159 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
1160 * Wait until our queues (qdisc + devices) are drained.
1161 * This gives :
1162 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1163 * - chance for incoming ACK (processed by another cpu maybe)
1164 * to migrate this flow (skb->ooo_okay will be eventually set)
1165 */
1166 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1167 goto out;
1168
1169 oval = smp_load_acquire(&sk->sk_tsq_flags);
1170 do {
1171 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1172 goto out;
1173
1174 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1175 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1176
1177 /* queue this socket to tasklet queue */
1178 local_irq_save(flags);
1179 tsq = this_cpu_ptr(&tsq_tasklet);
1180 empty = list_empty(&tsq->head);
1181 list_add(&tp->tsq_node, &tsq->head);
1182 if (empty)
1183 tasklet_schedule(&tsq->tasklet);
1184 local_irq_restore(flags);
1185 return;
1186 out:
1187 sk_free(sk);
1188 }
1189
1190 /* Note: Called under soft irq.
1191 * We can call TCP stack right away, unless socket is owned by user.
1192 */
tcp_pace_kick(struct hrtimer * timer)1193 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1194 {
1195 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1196 struct sock *sk = (struct sock *)tp;
1197
1198 tcp_tsq_handler(sk);
1199 sock_put(sk);
1200
1201 return HRTIMER_NORESTART;
1202 }
1203
tcp_update_skb_after_send(struct sock * sk,struct sk_buff * skb,u64 prior_wstamp)1204 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1205 u64 prior_wstamp)
1206 {
1207 struct tcp_sock *tp = tcp_sk(sk);
1208
1209 if (sk->sk_pacing_status != SK_PACING_NONE) {
1210 unsigned long rate = sk->sk_pacing_rate;
1211
1212 /* Original sch_fq does not pace first 10 MSS
1213 * Note that tp->data_segs_out overflows after 2^32 packets,
1214 * this is a minor annoyance.
1215 */
1216 if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1217 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1218 u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1219
1220 /* take into account OS jitter */
1221 len_ns -= min_t(u64, len_ns / 2, credit);
1222 tp->tcp_wstamp_ns += len_ns;
1223 }
1224 }
1225 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1226 }
1227
1228 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1229 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1230 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1231
1232 /* This routine actually transmits TCP packets queued in by
1233 * tcp_do_sendmsg(). This is used by both the initial
1234 * transmission and possible later retransmissions.
1235 * All SKB's seen here are completely headerless. It is our
1236 * job to build the TCP header, and pass the packet down to
1237 * IP so it can do the same plus pass the packet off to the
1238 * device.
1239 *
1240 * We are working here with either a clone of the original
1241 * SKB, or a fresh unique copy made by the retransmit engine.
1242 */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1243 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1244 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1245 {
1246 const struct inet_connection_sock *icsk = inet_csk(sk);
1247 struct inet_sock *inet;
1248 struct tcp_sock *tp;
1249 struct tcp_skb_cb *tcb;
1250 struct tcp_out_options opts;
1251 unsigned int tcp_options_size, tcp_header_size;
1252 struct sk_buff *oskb = NULL;
1253 struct tcp_md5sig_key *md5;
1254 struct tcphdr *th;
1255 u64 prior_wstamp;
1256 int err;
1257
1258 BUG_ON(!skb || !tcp_skb_pcount(skb));
1259 tp = tcp_sk(sk);
1260 prior_wstamp = tp->tcp_wstamp_ns;
1261 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1262 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1263 if (clone_it) {
1264 oskb = skb;
1265
1266 tcp_skb_tsorted_save(oskb) {
1267 if (unlikely(skb_cloned(oskb)))
1268 skb = pskb_copy(oskb, gfp_mask);
1269 else
1270 skb = skb_clone(oskb, gfp_mask);
1271 } tcp_skb_tsorted_restore(oskb);
1272
1273 if (unlikely(!skb))
1274 return -ENOBUFS;
1275 /* retransmit skbs might have a non zero value in skb->dev
1276 * because skb->dev is aliased with skb->rbnode.rb_left
1277 */
1278 skb->dev = NULL;
1279 }
1280
1281 inet = inet_sk(sk);
1282 tcb = TCP_SKB_CB(skb);
1283 memset(&opts, 0, sizeof(opts));
1284
1285 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1286 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1287 } else {
1288 tcp_options_size = tcp_established_options(sk, skb, &opts,
1289 &md5);
1290 /* Force a PSH flag on all (GSO) packets to expedite GRO flush
1291 * at receiver : This slightly improve GRO performance.
1292 * Note that we do not force the PSH flag for non GSO packets,
1293 * because they might be sent under high congestion events,
1294 * and in this case it is better to delay the delivery of 1-MSS
1295 * packets and thus the corresponding ACK packet that would
1296 * release the following packet.
1297 */
1298 if (tcp_skb_pcount(skb) > 1)
1299 tcb->tcp_flags |= TCPHDR_PSH;
1300 }
1301 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1302
1303 /* We set skb->ooo_okay to one if this packet can select
1304 * a different TX queue than prior packets of this flow,
1305 * to avoid self inflicted reorders.
1306 * The 'other' queue decision is based on current cpu number
1307 * if XPS is enabled, or sk->sk_txhash otherwise.
1308 * We can switch to another (and better) queue if:
1309 * 1) No packet with payload is in qdisc/device queues.
1310 * Delays in TX completion can defeat the test
1311 * even if packets were already sent.
1312 * 2) Or rtx queue is empty.
1313 * This mitigates above case if ACK packets for
1314 * all prior packets were already processed.
1315 */
1316 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1317 tcp_rtx_queue_empty(sk);
1318
1319 /* If we had to use memory reserve to allocate this skb,
1320 * this might cause drops if packet is looped back :
1321 * Other socket might not have SOCK_MEMALLOC.
1322 * Packets not looped back do not care about pfmemalloc.
1323 */
1324 skb->pfmemalloc = 0;
1325
1326 skb_push(skb, tcp_header_size);
1327 skb_reset_transport_header(skb);
1328
1329 skb_orphan(skb);
1330 skb->sk = sk;
1331 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1332 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1333
1334 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1335
1336 /* Build TCP header and checksum it. */
1337 th = (struct tcphdr *)skb->data;
1338 th->source = inet->inet_sport;
1339 th->dest = inet->inet_dport;
1340 th->seq = htonl(tcb->seq);
1341 th->ack_seq = htonl(rcv_nxt);
1342 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1343 tcb->tcp_flags);
1344
1345 th->check = 0;
1346 th->urg_ptr = 0;
1347
1348 /* The urg_mode check is necessary during a below snd_una win probe */
1349 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1350 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1351 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1352 th->urg = 1;
1353 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1354 th->urg_ptr = htons(0xFFFF);
1355 th->urg = 1;
1356 }
1357 }
1358
1359 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1360 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1361 th->window = htons(tcp_select_window(sk));
1362 tcp_ecn_send(sk, skb, th, tcp_header_size);
1363 } else {
1364 /* RFC1323: The window in SYN & SYN/ACK segments
1365 * is never scaled.
1366 */
1367 th->window = htons(min(tp->rcv_wnd, 65535U));
1368 }
1369
1370 tcp_options_write(th, tp, &opts);
1371
1372 #ifdef CONFIG_TCP_MD5SIG
1373 /* Calculate the MD5 hash, as we have all we need now */
1374 if (md5) {
1375 sk_gso_disable(sk);
1376 tp->af_specific->calc_md5_hash(opts.hash_location,
1377 md5, sk, skb);
1378 }
1379 #endif
1380
1381 /* BPF prog is the last one writing header option */
1382 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1383
1384 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1385 tcp_v6_send_check, tcp_v4_send_check,
1386 sk, skb);
1387
1388 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1389 tcp_event_ack_sent(sk, rcv_nxt);
1390
1391 if (skb->len != tcp_header_size) {
1392 tcp_event_data_sent(tp, sk);
1393 tp->data_segs_out += tcp_skb_pcount(skb);
1394 tp->bytes_sent += skb->len - tcp_header_size;
1395 }
1396
1397 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1398 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1399 tcp_skb_pcount(skb));
1400
1401 tp->segs_out += tcp_skb_pcount(skb);
1402 skb_set_hash_from_sk(skb, sk);
1403 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1404 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1405 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1406
1407 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1408
1409 /* Cleanup our debris for IP stacks */
1410 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1411 sizeof(struct inet6_skb_parm)));
1412
1413 tcp_add_tx_delay(skb, tp);
1414
1415 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1416 inet6_csk_xmit, ip_queue_xmit,
1417 sk, skb, &inet->cork.fl);
1418
1419 if (unlikely(err > 0)) {
1420 tcp_enter_cwr(sk);
1421 err = net_xmit_eval(err);
1422 }
1423 if (!err && oskb) {
1424 tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1425 tcp_rate_skb_sent(sk, oskb);
1426 }
1427 return err;
1428 }
1429
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1430 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1431 gfp_t gfp_mask)
1432 {
1433 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1434 tcp_sk(sk)->rcv_nxt);
1435 }
1436
1437 /* This routine just queues the buffer for sending.
1438 *
1439 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1440 * otherwise socket can stall.
1441 */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1442 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1443 {
1444 struct tcp_sock *tp = tcp_sk(sk);
1445
1446 /* Advance write_seq and place onto the write_queue. */
1447 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1448 __skb_header_release(skb);
1449 tcp_add_write_queue_tail(sk, skb);
1450 sk_wmem_queued_add(sk, skb->truesize);
1451 sk_mem_charge(sk, skb->truesize);
1452 }
1453
1454 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1455 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1456 {
1457 if (skb->len <= mss_now) {
1458 /* Avoid the costly divide in the normal
1459 * non-TSO case.
1460 */
1461 tcp_skb_pcount_set(skb, 1);
1462 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1463 } else {
1464 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1465 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1466 }
1467 }
1468
1469 /* Pcount in the middle of the write queue got changed, we need to do various
1470 * tweaks to fix counters
1471 */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1472 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1473 {
1474 struct tcp_sock *tp = tcp_sk(sk);
1475
1476 tp->packets_out -= decr;
1477
1478 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1479 tp->sacked_out -= decr;
1480 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1481 tp->retrans_out -= decr;
1482 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1483 tp->lost_out -= decr;
1484
1485 /* Reno case is special. Sigh... */
1486 if (tcp_is_reno(tp) && decr > 0)
1487 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1488
1489 if (tp->lost_skb_hint &&
1490 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1491 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1492 tp->lost_cnt_hint -= decr;
1493
1494 tcp_verify_left_out(tp);
1495 }
1496
tcp_has_tx_tstamp(const struct sk_buff * skb)1497 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1498 {
1499 return TCP_SKB_CB(skb)->txstamp_ack ||
1500 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1501 }
1502
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1503 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1504 {
1505 struct skb_shared_info *shinfo = skb_shinfo(skb);
1506
1507 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1508 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1509 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1510 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1511
1512 shinfo->tx_flags &= ~tsflags;
1513 shinfo2->tx_flags |= tsflags;
1514 swap(shinfo->tskey, shinfo2->tskey);
1515 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1516 TCP_SKB_CB(skb)->txstamp_ack = 0;
1517 }
1518 }
1519
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1520 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1521 {
1522 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1523 TCP_SKB_CB(skb)->eor = 0;
1524 }
1525
1526 /* Insert buff after skb on the write or rtx queue of sk. */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1527 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1528 struct sk_buff *buff,
1529 struct sock *sk,
1530 enum tcp_queue tcp_queue)
1531 {
1532 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1533 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1534 else
1535 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1536 }
1537
1538 /* Function to create two new TCP segments. Shrinks the given segment
1539 * to the specified size and appends a new segment with the rest of the
1540 * packet to the list. This won't be called frequently, I hope.
1541 * Remember, these are still headerless SKBs at this point.
1542 */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1543 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1544 struct sk_buff *skb, u32 len,
1545 unsigned int mss_now, gfp_t gfp)
1546 {
1547 struct tcp_sock *tp = tcp_sk(sk);
1548 struct sk_buff *buff;
1549 int old_factor;
1550 long limit;
1551 int nlen;
1552 u8 flags;
1553
1554 if (WARN_ON(len > skb->len))
1555 return -EINVAL;
1556
1557 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1558
1559 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1560 * We need some allowance to not penalize applications setting small
1561 * SO_SNDBUF values.
1562 * Also allow first and last skb in retransmit queue to be split.
1563 */
1564 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1565 if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1566 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1567 skb != tcp_rtx_queue_head(sk) &&
1568 skb != tcp_rtx_queue_tail(sk))) {
1569 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1570 return -ENOMEM;
1571 }
1572
1573 if (skb_unclone_keeptruesize(skb, gfp))
1574 return -ENOMEM;
1575
1576 /* Get a new skb... force flag on. */
1577 buff = tcp_stream_alloc_skb(sk, gfp, true);
1578 if (!buff)
1579 return -ENOMEM; /* We'll just try again later. */
1580 skb_copy_decrypted(buff, skb);
1581 mptcp_skb_ext_copy(buff, skb);
1582
1583 sk_wmem_queued_add(sk, buff->truesize);
1584 sk_mem_charge(sk, buff->truesize);
1585 nlen = skb->len - len;
1586 buff->truesize += nlen;
1587 skb->truesize -= nlen;
1588
1589 /* Correct the sequence numbers. */
1590 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1591 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1592 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1593
1594 /* PSH and FIN should only be set in the second packet. */
1595 flags = TCP_SKB_CB(skb)->tcp_flags;
1596 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1597 TCP_SKB_CB(buff)->tcp_flags = flags;
1598 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1599 tcp_skb_fragment_eor(skb, buff);
1600
1601 skb_split(skb, buff, len);
1602
1603 skb_set_delivery_time(buff, skb->tstamp, true);
1604 tcp_fragment_tstamp(skb, buff);
1605
1606 old_factor = tcp_skb_pcount(skb);
1607
1608 /* Fix up tso_factor for both original and new SKB. */
1609 tcp_set_skb_tso_segs(skb, mss_now);
1610 tcp_set_skb_tso_segs(buff, mss_now);
1611
1612 /* Update delivered info for the new segment */
1613 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1614
1615 /* If this packet has been sent out already, we must
1616 * adjust the various packet counters.
1617 */
1618 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1619 int diff = old_factor - tcp_skb_pcount(skb) -
1620 tcp_skb_pcount(buff);
1621
1622 if (diff)
1623 tcp_adjust_pcount(sk, skb, diff);
1624 }
1625
1626 /* Link BUFF into the send queue. */
1627 __skb_header_release(buff);
1628 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1629 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1630 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1631
1632 return 0;
1633 }
1634
1635 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1636 * data is not copied, but immediately discarded.
1637 */
__pskb_trim_head(struct sk_buff * skb,int len)1638 static int __pskb_trim_head(struct sk_buff *skb, int len)
1639 {
1640 struct skb_shared_info *shinfo;
1641 int i, k, eat;
1642
1643 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1644 eat = len;
1645 k = 0;
1646 shinfo = skb_shinfo(skb);
1647 for (i = 0; i < shinfo->nr_frags; i++) {
1648 int size = skb_frag_size(&shinfo->frags[i]);
1649
1650 if (size <= eat) {
1651 skb_frag_unref(skb, i);
1652 eat -= size;
1653 } else {
1654 shinfo->frags[k] = shinfo->frags[i];
1655 if (eat) {
1656 skb_frag_off_add(&shinfo->frags[k], eat);
1657 skb_frag_size_sub(&shinfo->frags[k], eat);
1658 eat = 0;
1659 }
1660 k++;
1661 }
1662 }
1663 shinfo->nr_frags = k;
1664
1665 skb->data_len -= len;
1666 skb->len = skb->data_len;
1667 return len;
1668 }
1669
1670 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1671 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1672 {
1673 u32 delta_truesize;
1674
1675 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1676 return -ENOMEM;
1677
1678 delta_truesize = __pskb_trim_head(skb, len);
1679
1680 TCP_SKB_CB(skb)->seq += len;
1681
1682 skb->truesize -= delta_truesize;
1683 sk_wmem_queued_add(sk, -delta_truesize);
1684 if (!skb_zcopy_pure(skb))
1685 sk_mem_uncharge(sk, delta_truesize);
1686
1687 /* Any change of skb->len requires recalculation of tso factor. */
1688 if (tcp_skb_pcount(skb) > 1)
1689 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1690
1691 return 0;
1692 }
1693
1694 /* Calculate MSS not accounting any TCP options. */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1695 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1696 {
1697 const struct tcp_sock *tp = tcp_sk(sk);
1698 const struct inet_connection_sock *icsk = inet_csk(sk);
1699 int mss_now;
1700
1701 /* Calculate base mss without TCP options:
1702 It is MMS_S - sizeof(tcphdr) of rfc1122
1703 */
1704 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1705
1706 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1707 if (icsk->icsk_af_ops->net_frag_header_len) {
1708 const struct dst_entry *dst = __sk_dst_get(sk);
1709
1710 if (dst && dst_allfrag(dst))
1711 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1712 }
1713
1714 /* Clamp it (mss_clamp does not include tcp options) */
1715 if (mss_now > tp->rx_opt.mss_clamp)
1716 mss_now = tp->rx_opt.mss_clamp;
1717
1718 /* Now subtract optional transport overhead */
1719 mss_now -= icsk->icsk_ext_hdr_len;
1720
1721 /* Then reserve room for full set of TCP options and 8 bytes of data */
1722 mss_now = max(mss_now,
1723 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1724 return mss_now;
1725 }
1726
1727 /* Calculate MSS. Not accounting for SACKs here. */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1728 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1729 {
1730 /* Subtract TCP options size, not including SACKs */
1731 return __tcp_mtu_to_mss(sk, pmtu) -
1732 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1733 }
1734 EXPORT_SYMBOL(tcp_mtu_to_mss);
1735
1736 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1737 int tcp_mss_to_mtu(struct sock *sk, int mss)
1738 {
1739 const struct tcp_sock *tp = tcp_sk(sk);
1740 const struct inet_connection_sock *icsk = inet_csk(sk);
1741 int mtu;
1742
1743 mtu = mss +
1744 tp->tcp_header_len +
1745 icsk->icsk_ext_hdr_len +
1746 icsk->icsk_af_ops->net_header_len;
1747
1748 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1749 if (icsk->icsk_af_ops->net_frag_header_len) {
1750 const struct dst_entry *dst = __sk_dst_get(sk);
1751
1752 if (dst && dst_allfrag(dst))
1753 mtu += icsk->icsk_af_ops->net_frag_header_len;
1754 }
1755 return mtu;
1756 }
1757 EXPORT_SYMBOL(tcp_mss_to_mtu);
1758
1759 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1760 void tcp_mtup_init(struct sock *sk)
1761 {
1762 struct tcp_sock *tp = tcp_sk(sk);
1763 struct inet_connection_sock *icsk = inet_csk(sk);
1764 struct net *net = sock_net(sk);
1765
1766 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1767 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1768 icsk->icsk_af_ops->net_header_len;
1769 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1770 icsk->icsk_mtup.probe_size = 0;
1771 if (icsk->icsk_mtup.enabled)
1772 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1773 }
1774 EXPORT_SYMBOL(tcp_mtup_init);
1775
1776 /* This function synchronize snd mss to current pmtu/exthdr set.
1777
1778 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1779 for TCP options, but includes only bare TCP header.
1780
1781 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1782 It is minimum of user_mss and mss received with SYN.
1783 It also does not include TCP options.
1784
1785 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1786
1787 tp->mss_cache is current effective sending mss, including
1788 all tcp options except for SACKs. It is evaluated,
1789 taking into account current pmtu, but never exceeds
1790 tp->rx_opt.mss_clamp.
1791
1792 NOTE1. rfc1122 clearly states that advertised MSS
1793 DOES NOT include either tcp or ip options.
1794
1795 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1796 are READ ONLY outside this function. --ANK (980731)
1797 */
tcp_sync_mss(struct sock * sk,u32 pmtu)1798 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1799 {
1800 struct tcp_sock *tp = tcp_sk(sk);
1801 struct inet_connection_sock *icsk = inet_csk(sk);
1802 int mss_now;
1803
1804 if (icsk->icsk_mtup.search_high > pmtu)
1805 icsk->icsk_mtup.search_high = pmtu;
1806
1807 mss_now = tcp_mtu_to_mss(sk, pmtu);
1808 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1809
1810 /* And store cached results */
1811 icsk->icsk_pmtu_cookie = pmtu;
1812 if (icsk->icsk_mtup.enabled)
1813 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1814 tp->mss_cache = mss_now;
1815
1816 return mss_now;
1817 }
1818 EXPORT_SYMBOL(tcp_sync_mss);
1819
1820 /* Compute the current effective MSS, taking SACKs and IP options,
1821 * and even PMTU discovery events into account.
1822 */
tcp_current_mss(struct sock * sk)1823 unsigned int tcp_current_mss(struct sock *sk)
1824 {
1825 const struct tcp_sock *tp = tcp_sk(sk);
1826 const struct dst_entry *dst = __sk_dst_get(sk);
1827 u32 mss_now;
1828 unsigned int header_len;
1829 struct tcp_out_options opts;
1830 struct tcp_md5sig_key *md5;
1831
1832 mss_now = tp->mss_cache;
1833
1834 if (dst) {
1835 u32 mtu = dst_mtu(dst);
1836 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1837 mss_now = tcp_sync_mss(sk, mtu);
1838 }
1839
1840 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1841 sizeof(struct tcphdr);
1842 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1843 * some common options. If this is an odd packet (because we have SACK
1844 * blocks etc) then our calculated header_len will be different, and
1845 * we have to adjust mss_now correspondingly */
1846 if (header_len != tp->tcp_header_len) {
1847 int delta = (int) header_len - tp->tcp_header_len;
1848 mss_now -= delta;
1849 }
1850
1851 return mss_now;
1852 }
1853
1854 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1855 * As additional protections, we do not touch cwnd in retransmission phases,
1856 * and if application hit its sndbuf limit recently.
1857 */
tcp_cwnd_application_limited(struct sock * sk)1858 static void tcp_cwnd_application_limited(struct sock *sk)
1859 {
1860 struct tcp_sock *tp = tcp_sk(sk);
1861
1862 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1863 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1864 /* Limited by application or receiver window. */
1865 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1866 u32 win_used = max(tp->snd_cwnd_used, init_win);
1867 if (win_used < tcp_snd_cwnd(tp)) {
1868 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1869 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1870 }
1871 tp->snd_cwnd_used = 0;
1872 }
1873 tp->snd_cwnd_stamp = tcp_jiffies32;
1874 }
1875
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1876 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1877 {
1878 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1879 struct tcp_sock *tp = tcp_sk(sk);
1880
1881 /* Track the strongest available signal of the degree to which the cwnd
1882 * is fully utilized. If cwnd-limited then remember that fact for the
1883 * current window. If not cwnd-limited then track the maximum number of
1884 * outstanding packets in the current window. (If cwnd-limited then we
1885 * chose to not update tp->max_packets_out to avoid an extra else
1886 * clause with no functional impact.)
1887 */
1888 if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1889 is_cwnd_limited ||
1890 (!tp->is_cwnd_limited &&
1891 tp->packets_out > tp->max_packets_out)) {
1892 tp->is_cwnd_limited = is_cwnd_limited;
1893 tp->max_packets_out = tp->packets_out;
1894 tp->cwnd_usage_seq = tp->snd_nxt;
1895 }
1896
1897 if (tcp_is_cwnd_limited(sk)) {
1898 /* Network is feed fully. */
1899 tp->snd_cwnd_used = 0;
1900 tp->snd_cwnd_stamp = tcp_jiffies32;
1901 } else {
1902 /* Network starves. */
1903 if (tp->packets_out > tp->snd_cwnd_used)
1904 tp->snd_cwnd_used = tp->packets_out;
1905
1906 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1907 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1908 !ca_ops->cong_control)
1909 tcp_cwnd_application_limited(sk);
1910
1911 /* The following conditions together indicate the starvation
1912 * is caused by insufficient sender buffer:
1913 * 1) just sent some data (see tcp_write_xmit)
1914 * 2) not cwnd limited (this else condition)
1915 * 3) no more data to send (tcp_write_queue_empty())
1916 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1917 */
1918 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1919 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1920 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1921 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1922 }
1923 }
1924
1925 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1926 static bool tcp_minshall_check(const struct tcp_sock *tp)
1927 {
1928 return after(tp->snd_sml, tp->snd_una) &&
1929 !after(tp->snd_sml, tp->snd_nxt);
1930 }
1931
1932 /* Update snd_sml if this skb is under mss
1933 * Note that a TSO packet might end with a sub-mss segment
1934 * The test is really :
1935 * if ((skb->len % mss) != 0)
1936 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1937 * But we can avoid doing the divide again given we already have
1938 * skb_pcount = skb->len / mss_now
1939 */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1940 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1941 const struct sk_buff *skb)
1942 {
1943 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1944 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1945 }
1946
1947 /* Return false, if packet can be sent now without violation Nagle's rules:
1948 * 1. It is full sized. (provided by caller in %partial bool)
1949 * 2. Or it contains FIN. (already checked by caller)
1950 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1951 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1952 * With Minshall's modification: all sent small packets are ACKed.
1953 */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1954 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1955 int nonagle)
1956 {
1957 return partial &&
1958 ((nonagle & TCP_NAGLE_CORK) ||
1959 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1960 }
1961
1962 /* Return how many segs we'd like on a TSO packet,
1963 * depending on current pacing rate, and how close the peer is.
1964 *
1965 * Rationale is:
1966 * - For close peers, we rather send bigger packets to reduce
1967 * cpu costs, because occasional losses will be repaired fast.
1968 * - For long distance/rtt flows, we would like to get ACK clocking
1969 * with 1 ACK per ms.
1970 *
1971 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
1972 * in bigger TSO bursts. We we cut the RTT-based allowance in half
1973 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
1974 * is below 1500 bytes after 6 * ~500 usec = 3ms.
1975 */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)1976 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1977 int min_tso_segs)
1978 {
1979 unsigned long bytes;
1980 u32 r;
1981
1982 bytes = sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift);
1983
1984 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
1985 if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
1986 bytes += sk->sk_gso_max_size >> r;
1987
1988 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
1989
1990 return max_t(u32, bytes / mss_now, min_tso_segs);
1991 }
1992
1993 /* Return the number of segments we want in the skb we are transmitting.
1994 * See if congestion control module wants to decide; otherwise, autosize.
1995 */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)1996 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1997 {
1998 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1999 u32 min_tso, tso_segs;
2000
2001 min_tso = ca_ops->min_tso_segs ?
2002 ca_ops->min_tso_segs(sk) :
2003 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2004
2005 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2006 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2007 }
2008
2009 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)2010 static unsigned int tcp_mss_split_point(const struct sock *sk,
2011 const struct sk_buff *skb,
2012 unsigned int mss_now,
2013 unsigned int max_segs,
2014 int nonagle)
2015 {
2016 const struct tcp_sock *tp = tcp_sk(sk);
2017 u32 partial, needed, window, max_len;
2018
2019 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2020 max_len = mss_now * max_segs;
2021
2022 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2023 return max_len;
2024
2025 needed = min(skb->len, window);
2026
2027 if (max_len <= needed)
2028 return max_len;
2029
2030 partial = needed % mss_now;
2031 /* If last segment is not a full MSS, check if Nagle rules allow us
2032 * to include this last segment in this skb.
2033 * Otherwise, we'll split the skb at last MSS boundary
2034 */
2035 if (tcp_nagle_check(partial != 0, tp, nonagle))
2036 return needed - partial;
2037
2038 return needed;
2039 }
2040
2041 /* Can at least one segment of SKB be sent right now, according to the
2042 * congestion window rules? If so, return how many segments are allowed.
2043 */
tcp_cwnd_test(const struct tcp_sock * tp,const struct sk_buff * skb)2044 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2045 const struct sk_buff *skb)
2046 {
2047 u32 in_flight, cwnd, halfcwnd;
2048
2049 /* Don't be strict about the congestion window for the final FIN. */
2050 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2051 tcp_skb_pcount(skb) == 1)
2052 return 1;
2053
2054 in_flight = tcp_packets_in_flight(tp);
2055 cwnd = tcp_snd_cwnd(tp);
2056 if (in_flight >= cwnd)
2057 return 0;
2058
2059 /* For better scheduling, ensure we have at least
2060 * 2 GSO packets in flight.
2061 */
2062 halfcwnd = max(cwnd >> 1, 1U);
2063 return min(halfcwnd, cwnd - in_flight);
2064 }
2065
2066 /* Initialize TSO state of a skb.
2067 * This must be invoked the first time we consider transmitting
2068 * SKB onto the wire.
2069 */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)2070 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2071 {
2072 int tso_segs = tcp_skb_pcount(skb);
2073
2074 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2075 tcp_set_skb_tso_segs(skb, mss_now);
2076 tso_segs = tcp_skb_pcount(skb);
2077 }
2078 return tso_segs;
2079 }
2080
2081
2082 /* Return true if the Nagle test allows this packet to be
2083 * sent now.
2084 */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)2085 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2086 unsigned int cur_mss, int nonagle)
2087 {
2088 /* Nagle rule does not apply to frames, which sit in the middle of the
2089 * write_queue (they have no chances to get new data).
2090 *
2091 * This is implemented in the callers, where they modify the 'nonagle'
2092 * argument based upon the location of SKB in the send queue.
2093 */
2094 if (nonagle & TCP_NAGLE_PUSH)
2095 return true;
2096
2097 /* Don't use the nagle rule for urgent data (or for the final FIN). */
2098 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2099 return true;
2100
2101 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2102 return true;
2103
2104 return false;
2105 }
2106
2107 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)2108 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2109 const struct sk_buff *skb,
2110 unsigned int cur_mss)
2111 {
2112 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2113
2114 if (skb->len > cur_mss)
2115 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2116
2117 return !after(end_seq, tcp_wnd_end(tp));
2118 }
2119
2120 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2121 * which is put after SKB on the list. It is very much like
2122 * tcp_fragment() except that it may make several kinds of assumptions
2123 * in order to speed up the splitting operation. In particular, we
2124 * know that all the data is in scatter-gather pages, and that the
2125 * packet has never been sent out before (and thus is not cloned).
2126 */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)2127 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2128 unsigned int mss_now, gfp_t gfp)
2129 {
2130 int nlen = skb->len - len;
2131 struct sk_buff *buff;
2132 u8 flags;
2133
2134 /* All of a TSO frame must be composed of paged data. */
2135 DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2136
2137 buff = tcp_stream_alloc_skb(sk, gfp, true);
2138 if (unlikely(!buff))
2139 return -ENOMEM;
2140 skb_copy_decrypted(buff, skb);
2141 mptcp_skb_ext_copy(buff, skb);
2142
2143 sk_wmem_queued_add(sk, buff->truesize);
2144 sk_mem_charge(sk, buff->truesize);
2145 buff->truesize += nlen;
2146 skb->truesize -= nlen;
2147
2148 /* Correct the sequence numbers. */
2149 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2150 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2151 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2152
2153 /* PSH and FIN should only be set in the second packet. */
2154 flags = TCP_SKB_CB(skb)->tcp_flags;
2155 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2156 TCP_SKB_CB(buff)->tcp_flags = flags;
2157
2158 tcp_skb_fragment_eor(skb, buff);
2159
2160 skb_split(skb, buff, len);
2161 tcp_fragment_tstamp(skb, buff);
2162
2163 /* Fix up tso_factor for both original and new SKB. */
2164 tcp_set_skb_tso_segs(skb, mss_now);
2165 tcp_set_skb_tso_segs(buff, mss_now);
2166
2167 /* Link BUFF into the send queue. */
2168 __skb_header_release(buff);
2169 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2170
2171 return 0;
2172 }
2173
2174 /* Try to defer sending, if possible, in order to minimize the amount
2175 * of TSO splitting we do. View it as a kind of TSO Nagle test.
2176 *
2177 * This algorithm is from John Heffner.
2178 */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)2179 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2180 bool *is_cwnd_limited,
2181 bool *is_rwnd_limited,
2182 u32 max_segs)
2183 {
2184 const struct inet_connection_sock *icsk = inet_csk(sk);
2185 u32 send_win, cong_win, limit, in_flight;
2186 struct tcp_sock *tp = tcp_sk(sk);
2187 struct sk_buff *head;
2188 int win_divisor;
2189 s64 delta;
2190
2191 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2192 goto send_now;
2193
2194 /* Avoid bursty behavior by allowing defer
2195 * only if the last write was recent (1 ms).
2196 * Note that tp->tcp_wstamp_ns can be in the future if we have
2197 * packets waiting in a qdisc or device for EDT delivery.
2198 */
2199 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2200 if (delta > 0)
2201 goto send_now;
2202
2203 in_flight = tcp_packets_in_flight(tp);
2204
2205 BUG_ON(tcp_skb_pcount(skb) <= 1);
2206 BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2207
2208 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2209
2210 /* From in_flight test above, we know that cwnd > in_flight. */
2211 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2212
2213 limit = min(send_win, cong_win);
2214
2215 /* If a full-sized TSO skb can be sent, do it. */
2216 if (limit >= max_segs * tp->mss_cache)
2217 goto send_now;
2218
2219 /* Middle in queue won't get any more data, full sendable already? */
2220 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2221 goto send_now;
2222
2223 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2224 if (win_divisor) {
2225 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2226
2227 /* If at least some fraction of a window is available,
2228 * just use it.
2229 */
2230 chunk /= win_divisor;
2231 if (limit >= chunk)
2232 goto send_now;
2233 } else {
2234 /* Different approach, try not to defer past a single
2235 * ACK. Receiver should ACK every other full sized
2236 * frame, so if we have space for more than 3 frames
2237 * then send now.
2238 */
2239 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2240 goto send_now;
2241 }
2242
2243 /* TODO : use tsorted_sent_queue ? */
2244 head = tcp_rtx_queue_head(sk);
2245 if (!head)
2246 goto send_now;
2247 delta = tp->tcp_clock_cache - head->tstamp;
2248 /* If next ACK is likely to come too late (half srtt), do not defer */
2249 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2250 goto send_now;
2251
2252 /* Ok, it looks like it is advisable to defer.
2253 * Three cases are tracked :
2254 * 1) We are cwnd-limited
2255 * 2) We are rwnd-limited
2256 * 3) We are application limited.
2257 */
2258 if (cong_win < send_win) {
2259 if (cong_win <= skb->len) {
2260 *is_cwnd_limited = true;
2261 return true;
2262 }
2263 } else {
2264 if (send_win <= skb->len) {
2265 *is_rwnd_limited = true;
2266 return true;
2267 }
2268 }
2269
2270 /* If this packet won't get more data, do not wait. */
2271 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2272 TCP_SKB_CB(skb)->eor)
2273 goto send_now;
2274
2275 return true;
2276
2277 send_now:
2278 return false;
2279 }
2280
tcp_mtu_check_reprobe(struct sock * sk)2281 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2282 {
2283 struct inet_connection_sock *icsk = inet_csk(sk);
2284 struct tcp_sock *tp = tcp_sk(sk);
2285 struct net *net = sock_net(sk);
2286 u32 interval;
2287 s32 delta;
2288
2289 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2290 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2291 if (unlikely(delta >= interval * HZ)) {
2292 int mss = tcp_current_mss(sk);
2293
2294 /* Update current search range */
2295 icsk->icsk_mtup.probe_size = 0;
2296 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2297 sizeof(struct tcphdr) +
2298 icsk->icsk_af_ops->net_header_len;
2299 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2300
2301 /* Update probe time stamp */
2302 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2303 }
2304 }
2305
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2306 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2307 {
2308 struct sk_buff *skb, *next;
2309
2310 skb = tcp_send_head(sk);
2311 tcp_for_write_queue_from_safe(skb, next, sk) {
2312 if (len <= skb->len)
2313 break;
2314
2315 if (unlikely(TCP_SKB_CB(skb)->eor) ||
2316 tcp_has_tx_tstamp(skb) ||
2317 !skb_pure_zcopy_same(skb, next))
2318 return false;
2319
2320 len -= skb->len;
2321 }
2322
2323 return true;
2324 }
2325
tcp_clone_payload(struct sock * sk,struct sk_buff * to,int probe_size)2326 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2327 int probe_size)
2328 {
2329 skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2330 int i, todo, len = 0, nr_frags = 0;
2331 const struct sk_buff *skb;
2332
2333 if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2334 return -ENOMEM;
2335
2336 skb_queue_walk(&sk->sk_write_queue, skb) {
2337 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2338
2339 if (skb_headlen(skb))
2340 return -EINVAL;
2341
2342 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2343 if (len >= probe_size)
2344 goto commit;
2345 todo = min_t(int, skb_frag_size(fragfrom),
2346 probe_size - len);
2347 len += todo;
2348 if (lastfrag &&
2349 skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2350 skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2351 skb_frag_size(lastfrag)) {
2352 skb_frag_size_add(lastfrag, todo);
2353 continue;
2354 }
2355 if (unlikely(nr_frags == MAX_SKB_FRAGS))
2356 return -E2BIG;
2357 skb_frag_page_copy(fragto, fragfrom);
2358 skb_frag_off_copy(fragto, fragfrom);
2359 skb_frag_size_set(fragto, todo);
2360 nr_frags++;
2361 lastfrag = fragto++;
2362 }
2363 }
2364 commit:
2365 WARN_ON_ONCE(len != probe_size);
2366 for (i = 0; i < nr_frags; i++)
2367 skb_frag_ref(to, i);
2368
2369 skb_shinfo(to)->nr_frags = nr_frags;
2370 to->truesize += probe_size;
2371 to->len += probe_size;
2372 to->data_len += probe_size;
2373 __skb_header_release(to);
2374 return 0;
2375 }
2376
2377 /* Create a new MTU probe if we are ready.
2378 * MTU probe is regularly attempting to increase the path MTU by
2379 * deliberately sending larger packets. This discovers routing
2380 * changes resulting in larger path MTUs.
2381 *
2382 * Returns 0 if we should wait to probe (no cwnd available),
2383 * 1 if a probe was sent,
2384 * -1 otherwise
2385 */
tcp_mtu_probe(struct sock * sk)2386 static int tcp_mtu_probe(struct sock *sk)
2387 {
2388 struct inet_connection_sock *icsk = inet_csk(sk);
2389 struct tcp_sock *tp = tcp_sk(sk);
2390 struct sk_buff *skb, *nskb, *next;
2391 struct net *net = sock_net(sk);
2392 int probe_size;
2393 int size_needed;
2394 int copy, len;
2395 int mss_now;
2396 int interval;
2397
2398 /* Not currently probing/verifying,
2399 * not in recovery,
2400 * have enough cwnd, and
2401 * not SACKing (the variable headers throw things off)
2402 */
2403 if (likely(!icsk->icsk_mtup.enabled ||
2404 icsk->icsk_mtup.probe_size ||
2405 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2406 tcp_snd_cwnd(tp) < 11 ||
2407 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2408 return -1;
2409
2410 /* Use binary search for probe_size between tcp_mss_base,
2411 * and current mss_clamp. if (search_high - search_low)
2412 * smaller than a threshold, backoff from probing.
2413 */
2414 mss_now = tcp_current_mss(sk);
2415 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2416 icsk->icsk_mtup.search_low) >> 1);
2417 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2418 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2419 /* When misfortune happens, we are reprobing actively,
2420 * and then reprobe timer has expired. We stick with current
2421 * probing process by not resetting search range to its orignal.
2422 */
2423 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2424 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2425 /* Check whether enough time has elaplased for
2426 * another round of probing.
2427 */
2428 tcp_mtu_check_reprobe(sk);
2429 return -1;
2430 }
2431
2432 /* Have enough data in the send queue to probe? */
2433 if (tp->write_seq - tp->snd_nxt < size_needed)
2434 return -1;
2435
2436 if (tp->snd_wnd < size_needed)
2437 return -1;
2438 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2439 return 0;
2440
2441 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2442 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2443 if (!tcp_packets_in_flight(tp))
2444 return -1;
2445 else
2446 return 0;
2447 }
2448
2449 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2450 return -1;
2451
2452 /* We're allowed to probe. Build it now. */
2453 nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2454 if (!nskb)
2455 return -1;
2456
2457 /* build the payload, and be prepared to abort if this fails. */
2458 if (tcp_clone_payload(sk, nskb, probe_size)) {
2459 tcp_skb_tsorted_anchor_cleanup(nskb);
2460 consume_skb(nskb);
2461 return -1;
2462 }
2463 sk_wmem_queued_add(sk, nskb->truesize);
2464 sk_mem_charge(sk, nskb->truesize);
2465
2466 skb = tcp_send_head(sk);
2467 skb_copy_decrypted(nskb, skb);
2468 mptcp_skb_ext_copy(nskb, skb);
2469
2470 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2471 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2472 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2473
2474 tcp_insert_write_queue_before(nskb, skb, sk);
2475 tcp_highest_sack_replace(sk, skb, nskb);
2476
2477 len = 0;
2478 tcp_for_write_queue_from_safe(skb, next, sk) {
2479 copy = min_t(int, skb->len, probe_size - len);
2480
2481 if (skb->len <= copy) {
2482 /* We've eaten all the data from this skb.
2483 * Throw it away. */
2484 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2485 /* If this is the last SKB we copy and eor is set
2486 * we need to propagate it to the new skb.
2487 */
2488 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2489 tcp_skb_collapse_tstamp(nskb, skb);
2490 tcp_unlink_write_queue(skb, sk);
2491 tcp_wmem_free_skb(sk, skb);
2492 } else {
2493 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2494 ~(TCPHDR_FIN|TCPHDR_PSH);
2495 __pskb_trim_head(skb, copy);
2496 tcp_set_skb_tso_segs(skb, mss_now);
2497 TCP_SKB_CB(skb)->seq += copy;
2498 }
2499
2500 len += copy;
2501
2502 if (len >= probe_size)
2503 break;
2504 }
2505 tcp_init_tso_segs(nskb, nskb->len);
2506
2507 /* We're ready to send. If this fails, the probe will
2508 * be resegmented into mss-sized pieces by tcp_write_xmit().
2509 */
2510 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2511 /* Decrement cwnd here because we are sending
2512 * effectively two packets. */
2513 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2514 tcp_event_new_data_sent(sk, nskb);
2515
2516 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2517 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2518 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2519
2520 return 1;
2521 }
2522
2523 return -1;
2524 }
2525
tcp_pacing_check(struct sock * sk)2526 static bool tcp_pacing_check(struct sock *sk)
2527 {
2528 struct tcp_sock *tp = tcp_sk(sk);
2529
2530 if (!tcp_needs_internal_pacing(sk))
2531 return false;
2532
2533 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2534 return false;
2535
2536 if (!hrtimer_is_queued(&tp->pacing_timer)) {
2537 hrtimer_start(&tp->pacing_timer,
2538 ns_to_ktime(tp->tcp_wstamp_ns),
2539 HRTIMER_MODE_ABS_PINNED_SOFT);
2540 sock_hold(sk);
2541 }
2542 return true;
2543 }
2544
tcp_rtx_queue_empty_or_single_skb(const struct sock * sk)2545 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2546 {
2547 const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2548
2549 /* No skb in the rtx queue. */
2550 if (!node)
2551 return true;
2552
2553 /* Only one skb in rtx queue. */
2554 return !node->rb_left && !node->rb_right;
2555 }
2556
2557 /* TCP Small Queues :
2558 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2559 * (These limits are doubled for retransmits)
2560 * This allows for :
2561 * - better RTT estimation and ACK scheduling
2562 * - faster recovery
2563 * - high rates
2564 * Alas, some drivers / subsystems require a fair amount
2565 * of queued bytes to ensure line rate.
2566 * One example is wifi aggregation (802.11 AMPDU)
2567 */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2568 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2569 unsigned int factor)
2570 {
2571 unsigned long limit;
2572
2573 limit = max_t(unsigned long,
2574 2 * skb->truesize,
2575 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2576 if (sk->sk_pacing_status == SK_PACING_NONE)
2577 limit = min_t(unsigned long, limit,
2578 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2579 limit <<= factor;
2580
2581 if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2582 tcp_sk(sk)->tcp_tx_delay) {
2583 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2584
2585 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2586 * approximate our needs assuming an ~100% skb->truesize overhead.
2587 * USEC_PER_SEC is approximated by 2^20.
2588 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2589 */
2590 extra_bytes >>= (20 - 1);
2591 limit += extra_bytes;
2592 }
2593 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2594 /* Always send skb if rtx queue is empty or has one skb.
2595 * No need to wait for TX completion to call us back,
2596 * after softirq/tasklet schedule.
2597 * This helps when TX completions are delayed too much.
2598 */
2599 if (tcp_rtx_queue_empty_or_single_skb(sk))
2600 return false;
2601
2602 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2603 /* It is possible TX completion already happened
2604 * before we set TSQ_THROTTLED, so we must
2605 * test again the condition.
2606 */
2607 smp_mb__after_atomic();
2608 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2609 return true;
2610 }
2611 return false;
2612 }
2613
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2614 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2615 {
2616 const u32 now = tcp_jiffies32;
2617 enum tcp_chrono old = tp->chrono_type;
2618
2619 if (old > TCP_CHRONO_UNSPEC)
2620 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2621 tp->chrono_start = now;
2622 tp->chrono_type = new;
2623 }
2624
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2625 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2626 {
2627 struct tcp_sock *tp = tcp_sk(sk);
2628
2629 /* If there are multiple conditions worthy of tracking in a
2630 * chronograph then the highest priority enum takes precedence
2631 * over the other conditions. So that if something "more interesting"
2632 * starts happening, stop the previous chrono and start a new one.
2633 */
2634 if (type > tp->chrono_type)
2635 tcp_chrono_set(tp, type);
2636 }
2637
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2638 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2639 {
2640 struct tcp_sock *tp = tcp_sk(sk);
2641
2642
2643 /* There are multiple conditions worthy of tracking in a
2644 * chronograph, so that the highest priority enum takes
2645 * precedence over the other conditions (see tcp_chrono_start).
2646 * If a condition stops, we only stop chrono tracking if
2647 * it's the "most interesting" or current chrono we are
2648 * tracking and starts busy chrono if we have pending data.
2649 */
2650 if (tcp_rtx_and_write_queues_empty(sk))
2651 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2652 else if (type == tp->chrono_type)
2653 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2654 }
2655
2656 /* This routine writes packets to the network. It advances the
2657 * send_head. This happens as incoming acks open up the remote
2658 * window for us.
2659 *
2660 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2661 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2662 * account rare use of URG, this is not a big flaw.
2663 *
2664 * Send at most one packet when push_one > 0. Temporarily ignore
2665 * cwnd limit to force at most one packet out when push_one == 2.
2666
2667 * Returns true, if no segments are in flight and we have queued segments,
2668 * but cannot send anything now because of SWS or another problem.
2669 */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2670 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2671 int push_one, gfp_t gfp)
2672 {
2673 struct tcp_sock *tp = tcp_sk(sk);
2674 struct sk_buff *skb;
2675 unsigned int tso_segs, sent_pkts;
2676 int cwnd_quota;
2677 int result;
2678 bool is_cwnd_limited = false, is_rwnd_limited = false;
2679 u32 max_segs;
2680
2681 sent_pkts = 0;
2682
2683 tcp_mstamp_refresh(tp);
2684 if (!push_one) {
2685 /* Do MTU probing. */
2686 result = tcp_mtu_probe(sk);
2687 if (!result) {
2688 return false;
2689 } else if (result > 0) {
2690 sent_pkts = 1;
2691 }
2692 }
2693
2694 max_segs = tcp_tso_segs(sk, mss_now);
2695 while ((skb = tcp_send_head(sk))) {
2696 unsigned int limit;
2697
2698 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2699 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2700 tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2701 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2702 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2703 tcp_init_tso_segs(skb, mss_now);
2704 goto repair; /* Skip network transmission */
2705 }
2706
2707 if (tcp_pacing_check(sk))
2708 break;
2709
2710 tso_segs = tcp_init_tso_segs(skb, mss_now);
2711 BUG_ON(!tso_segs);
2712
2713 cwnd_quota = tcp_cwnd_test(tp, skb);
2714 if (!cwnd_quota) {
2715 if (push_one == 2)
2716 /* Force out a loss probe pkt. */
2717 cwnd_quota = 1;
2718 else
2719 break;
2720 }
2721
2722 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2723 is_rwnd_limited = true;
2724 break;
2725 }
2726
2727 if (tso_segs == 1) {
2728 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2729 (tcp_skb_is_last(sk, skb) ?
2730 nonagle : TCP_NAGLE_PUSH))))
2731 break;
2732 } else {
2733 if (!push_one &&
2734 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2735 &is_rwnd_limited, max_segs))
2736 break;
2737 }
2738
2739 limit = mss_now;
2740 if (tso_segs > 1 && !tcp_urg_mode(tp))
2741 limit = tcp_mss_split_point(sk, skb, mss_now,
2742 min_t(unsigned int,
2743 cwnd_quota,
2744 max_segs),
2745 nonagle);
2746
2747 if (skb->len > limit &&
2748 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2749 break;
2750
2751 if (tcp_small_queue_check(sk, skb, 0))
2752 break;
2753
2754 /* Argh, we hit an empty skb(), presumably a thread
2755 * is sleeping in sendmsg()/sk_stream_wait_memory().
2756 * We do not want to send a pure-ack packet and have
2757 * a strange looking rtx queue with empty packet(s).
2758 */
2759 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2760 break;
2761
2762 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2763 break;
2764
2765 repair:
2766 /* Advance the send_head. This one is sent out.
2767 * This call will increment packets_out.
2768 */
2769 tcp_event_new_data_sent(sk, skb);
2770
2771 tcp_minshall_update(tp, mss_now, skb);
2772 sent_pkts += tcp_skb_pcount(skb);
2773
2774 if (push_one)
2775 break;
2776 }
2777
2778 if (is_rwnd_limited)
2779 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2780 else
2781 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2782
2783 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2784 if (likely(sent_pkts || is_cwnd_limited))
2785 tcp_cwnd_validate(sk, is_cwnd_limited);
2786
2787 if (likely(sent_pkts)) {
2788 if (tcp_in_cwnd_reduction(sk))
2789 tp->prr_out += sent_pkts;
2790
2791 /* Send one loss probe per tail loss episode. */
2792 if (push_one != 2)
2793 tcp_schedule_loss_probe(sk, false);
2794 return false;
2795 }
2796 return !tp->packets_out && !tcp_write_queue_empty(sk);
2797 }
2798
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)2799 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2800 {
2801 struct inet_connection_sock *icsk = inet_csk(sk);
2802 struct tcp_sock *tp = tcp_sk(sk);
2803 u32 timeout, timeout_us, rto_delta_us;
2804 int early_retrans;
2805
2806 /* Don't do any loss probe on a Fast Open connection before 3WHS
2807 * finishes.
2808 */
2809 if (rcu_access_pointer(tp->fastopen_rsk))
2810 return false;
2811
2812 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2813 /* Schedule a loss probe in 2*RTT for SACK capable connections
2814 * not in loss recovery, that are either limited by cwnd or application.
2815 */
2816 if ((early_retrans != 3 && early_retrans != 4) ||
2817 !tp->packets_out || !tcp_is_sack(tp) ||
2818 (icsk->icsk_ca_state != TCP_CA_Open &&
2819 icsk->icsk_ca_state != TCP_CA_CWR))
2820 return false;
2821
2822 /* Probe timeout is 2*rtt. Add minimum RTO to account
2823 * for delayed ack when there's one outstanding packet. If no RTT
2824 * sample is available then probe after TCP_TIMEOUT_INIT.
2825 */
2826 if (tp->srtt_us) {
2827 timeout_us = tp->srtt_us >> 2;
2828 if (tp->packets_out == 1)
2829 timeout_us += tcp_rto_min_us(sk);
2830 else
2831 timeout_us += TCP_TIMEOUT_MIN_US;
2832 timeout = usecs_to_jiffies(timeout_us);
2833 } else {
2834 timeout = TCP_TIMEOUT_INIT;
2835 }
2836
2837 /* If the RTO formula yields an earlier time, then use that time. */
2838 rto_delta_us = advancing_rto ?
2839 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2840 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2841 if (rto_delta_us > 0)
2842 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2843
2844 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2845 return true;
2846 }
2847
2848 /* Thanks to skb fast clones, we can detect if a prior transmit of
2849 * a packet is still in a qdisc or driver queue.
2850 * In this case, there is very little point doing a retransmit !
2851 */
skb_still_in_host_queue(struct sock * sk,const struct sk_buff * skb)2852 static bool skb_still_in_host_queue(struct sock *sk,
2853 const struct sk_buff *skb)
2854 {
2855 if (unlikely(skb_fclone_busy(sk, skb))) {
2856 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2857 smp_mb__after_atomic();
2858 if (skb_fclone_busy(sk, skb)) {
2859 NET_INC_STATS(sock_net(sk),
2860 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2861 return true;
2862 }
2863 }
2864 return false;
2865 }
2866
2867 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2868 * retransmit the last segment.
2869 */
tcp_send_loss_probe(struct sock * sk)2870 void tcp_send_loss_probe(struct sock *sk)
2871 {
2872 struct tcp_sock *tp = tcp_sk(sk);
2873 struct sk_buff *skb;
2874 int pcount;
2875 int mss = tcp_current_mss(sk);
2876
2877 /* At most one outstanding TLP */
2878 if (tp->tlp_high_seq)
2879 goto rearm_timer;
2880
2881 tp->tlp_retrans = 0;
2882 skb = tcp_send_head(sk);
2883 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2884 pcount = tp->packets_out;
2885 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2886 if (tp->packets_out > pcount)
2887 goto probe_sent;
2888 goto rearm_timer;
2889 }
2890 skb = skb_rb_last(&sk->tcp_rtx_queue);
2891 if (unlikely(!skb)) {
2892 WARN_ONCE(tp->packets_out,
2893 "invalid inflight: %u state %u cwnd %u mss %d\n",
2894 tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2895 inet_csk(sk)->icsk_pending = 0;
2896 return;
2897 }
2898
2899 if (skb_still_in_host_queue(sk, skb))
2900 goto rearm_timer;
2901
2902 pcount = tcp_skb_pcount(skb);
2903 if (WARN_ON(!pcount))
2904 goto rearm_timer;
2905
2906 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2907 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2908 (pcount - 1) * mss, mss,
2909 GFP_ATOMIC)))
2910 goto rearm_timer;
2911 skb = skb_rb_next(skb);
2912 }
2913
2914 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2915 goto rearm_timer;
2916
2917 if (__tcp_retransmit_skb(sk, skb, 1))
2918 goto rearm_timer;
2919
2920 tp->tlp_retrans = 1;
2921
2922 probe_sent:
2923 /* Record snd_nxt for loss detection. */
2924 tp->tlp_high_seq = tp->snd_nxt;
2925
2926 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2927 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2928 inet_csk(sk)->icsk_pending = 0;
2929 rearm_timer:
2930 tcp_rearm_rto(sk);
2931 }
2932
2933 /* Push out any pending frames which were held back due to
2934 * TCP_CORK or attempt at coalescing tiny packets.
2935 * The socket must be locked by the caller.
2936 */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)2937 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2938 int nonagle)
2939 {
2940 /* If we are closed, the bytes will have to remain here.
2941 * In time closedown will finish, we empty the write queue and
2942 * all will be happy.
2943 */
2944 if (unlikely(sk->sk_state == TCP_CLOSE))
2945 return;
2946
2947 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2948 sk_gfp_mask(sk, GFP_ATOMIC)))
2949 tcp_check_probe_timer(sk);
2950 }
2951
2952 /* Send _single_ skb sitting at the send head. This function requires
2953 * true push pending frames to setup probe timer etc.
2954 */
tcp_push_one(struct sock * sk,unsigned int mss_now)2955 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2956 {
2957 struct sk_buff *skb = tcp_send_head(sk);
2958
2959 BUG_ON(!skb || skb->len < mss_now);
2960
2961 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2962 }
2963
2964 /* This function returns the amount that we can raise the
2965 * usable window based on the following constraints
2966 *
2967 * 1. The window can never be shrunk once it is offered (RFC 793)
2968 * 2. We limit memory per socket
2969 *
2970 * RFC 1122:
2971 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2972 * RECV.NEXT + RCV.WIN fixed until:
2973 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2974 *
2975 * i.e. don't raise the right edge of the window until you can raise
2976 * it at least MSS bytes.
2977 *
2978 * Unfortunately, the recommended algorithm breaks header prediction,
2979 * since header prediction assumes th->window stays fixed.
2980 *
2981 * Strictly speaking, keeping th->window fixed violates the receiver
2982 * side SWS prevention criteria. The problem is that under this rule
2983 * a stream of single byte packets will cause the right side of the
2984 * window to always advance by a single byte.
2985 *
2986 * Of course, if the sender implements sender side SWS prevention
2987 * then this will not be a problem.
2988 *
2989 * BSD seems to make the following compromise:
2990 *
2991 * If the free space is less than the 1/4 of the maximum
2992 * space available and the free space is less than 1/2 mss,
2993 * then set the window to 0.
2994 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2995 * Otherwise, just prevent the window from shrinking
2996 * and from being larger than the largest representable value.
2997 *
2998 * This prevents incremental opening of the window in the regime
2999 * where TCP is limited by the speed of the reader side taking
3000 * data out of the TCP receive queue. It does nothing about
3001 * those cases where the window is constrained on the sender side
3002 * because the pipeline is full.
3003 *
3004 * BSD also seems to "accidentally" limit itself to windows that are a
3005 * multiple of MSS, at least until the free space gets quite small.
3006 * This would appear to be a side effect of the mbuf implementation.
3007 * Combining these two algorithms results in the observed behavior
3008 * of having a fixed window size at almost all times.
3009 *
3010 * Below we obtain similar behavior by forcing the offered window to
3011 * a multiple of the mss when it is feasible to do so.
3012 *
3013 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3014 * Regular options like TIMESTAMP are taken into account.
3015 */
__tcp_select_window(struct sock * sk)3016 u32 __tcp_select_window(struct sock *sk)
3017 {
3018 struct inet_connection_sock *icsk = inet_csk(sk);
3019 struct tcp_sock *tp = tcp_sk(sk);
3020 struct net *net = sock_net(sk);
3021 /* MSS for the peer's data. Previous versions used mss_clamp
3022 * here. I don't know if the value based on our guesses
3023 * of peer's MSS is better for the performance. It's more correct
3024 * but may be worse for the performance because of rcv_mss
3025 * fluctuations. --SAW 1998/11/1
3026 */
3027 int mss = icsk->icsk_ack.rcv_mss;
3028 int free_space = tcp_space(sk);
3029 int allowed_space = tcp_full_space(sk);
3030 int full_space, window;
3031
3032 if (sk_is_mptcp(sk))
3033 mptcp_space(sk, &free_space, &allowed_space);
3034
3035 full_space = min_t(int, tp->window_clamp, allowed_space);
3036
3037 if (unlikely(mss > full_space)) {
3038 mss = full_space;
3039 if (mss <= 0)
3040 return 0;
3041 }
3042
3043 /* Only allow window shrink if the sysctl is enabled and we have
3044 * a non-zero scaling factor in effect.
3045 */
3046 if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3047 goto shrink_window_allowed;
3048
3049 /* do not allow window to shrink */
3050
3051 if (free_space < (full_space >> 1)) {
3052 icsk->icsk_ack.quick = 0;
3053
3054 if (tcp_under_memory_pressure(sk))
3055 tcp_adjust_rcv_ssthresh(sk);
3056
3057 /* free_space might become our new window, make sure we don't
3058 * increase it due to wscale.
3059 */
3060 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3061
3062 /* if free space is less than mss estimate, or is below 1/16th
3063 * of the maximum allowed, try to move to zero-window, else
3064 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3065 * new incoming data is dropped due to memory limits.
3066 * With large window, mss test triggers way too late in order
3067 * to announce zero window in time before rmem limit kicks in.
3068 */
3069 if (free_space < (allowed_space >> 4) || free_space < mss)
3070 return 0;
3071 }
3072
3073 if (free_space > tp->rcv_ssthresh)
3074 free_space = tp->rcv_ssthresh;
3075
3076 /* Don't do rounding if we are using window scaling, since the
3077 * scaled window will not line up with the MSS boundary anyway.
3078 */
3079 if (tp->rx_opt.rcv_wscale) {
3080 window = free_space;
3081
3082 /* Advertise enough space so that it won't get scaled away.
3083 * Import case: prevent zero window announcement if
3084 * 1<<rcv_wscale > mss.
3085 */
3086 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3087 } else {
3088 window = tp->rcv_wnd;
3089 /* Get the largest window that is a nice multiple of mss.
3090 * Window clamp already applied above.
3091 * If our current window offering is within 1 mss of the
3092 * free space we just keep it. This prevents the divide
3093 * and multiply from happening most of the time.
3094 * We also don't do any window rounding when the free space
3095 * is too small.
3096 */
3097 if (window <= free_space - mss || window > free_space)
3098 window = rounddown(free_space, mss);
3099 else if (mss == full_space &&
3100 free_space > window + (full_space >> 1))
3101 window = free_space;
3102 }
3103
3104 return window;
3105
3106 shrink_window_allowed:
3107 /* new window should always be an exact multiple of scaling factor */
3108 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3109
3110 if (free_space < (full_space >> 1)) {
3111 icsk->icsk_ack.quick = 0;
3112
3113 if (tcp_under_memory_pressure(sk))
3114 tcp_adjust_rcv_ssthresh(sk);
3115
3116 /* if free space is too low, return a zero window */
3117 if (free_space < (allowed_space >> 4) || free_space < mss ||
3118 free_space < (1 << tp->rx_opt.rcv_wscale))
3119 return 0;
3120 }
3121
3122 if (free_space > tp->rcv_ssthresh) {
3123 free_space = tp->rcv_ssthresh;
3124 /* new window should always be an exact multiple of scaling factor
3125 *
3126 * For this case, we ALIGN "up" (increase free_space) because
3127 * we know free_space is not zero here, it has been reduced from
3128 * the memory-based limit, and rcv_ssthresh is not a hard limit
3129 * (unlike sk_rcvbuf).
3130 */
3131 free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3132 }
3133
3134 return free_space;
3135 }
3136
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)3137 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3138 const struct sk_buff *next_skb)
3139 {
3140 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3141 const struct skb_shared_info *next_shinfo =
3142 skb_shinfo(next_skb);
3143 struct skb_shared_info *shinfo = skb_shinfo(skb);
3144
3145 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3146 shinfo->tskey = next_shinfo->tskey;
3147 TCP_SKB_CB(skb)->txstamp_ack |=
3148 TCP_SKB_CB(next_skb)->txstamp_ack;
3149 }
3150 }
3151
3152 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)3153 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3154 {
3155 struct tcp_sock *tp = tcp_sk(sk);
3156 struct sk_buff *next_skb = skb_rb_next(skb);
3157 int next_skb_size;
3158
3159 next_skb_size = next_skb->len;
3160
3161 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3162
3163 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3164 return false;
3165
3166 tcp_highest_sack_replace(sk, next_skb, skb);
3167
3168 /* Update sequence range on original skb. */
3169 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3170
3171 /* Merge over control information. This moves PSH/FIN etc. over */
3172 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3173
3174 /* All done, get rid of second SKB and account for it so
3175 * packet counting does not break.
3176 */
3177 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3178 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3179
3180 /* changed transmit queue under us so clear hints */
3181 tcp_clear_retrans_hints_partial(tp);
3182 if (next_skb == tp->retransmit_skb_hint)
3183 tp->retransmit_skb_hint = skb;
3184
3185 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3186
3187 tcp_skb_collapse_tstamp(skb, next_skb);
3188
3189 tcp_rtx_queue_unlink_and_free(next_skb, sk);
3190 return true;
3191 }
3192
3193 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)3194 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3195 {
3196 if (tcp_skb_pcount(skb) > 1)
3197 return false;
3198 if (skb_cloned(skb))
3199 return false;
3200 /* Some heuristics for collapsing over SACK'd could be invented */
3201 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3202 return false;
3203
3204 return true;
3205 }
3206
3207 /* Collapse packets in the retransmit queue to make to create
3208 * less packets on the wire. This is only done on retransmission.
3209 */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)3210 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3211 int space)
3212 {
3213 struct tcp_sock *tp = tcp_sk(sk);
3214 struct sk_buff *skb = to, *tmp;
3215 bool first = true;
3216
3217 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3218 return;
3219 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3220 return;
3221
3222 skb_rbtree_walk_from_safe(skb, tmp) {
3223 if (!tcp_can_collapse(sk, skb))
3224 break;
3225
3226 if (!tcp_skb_can_collapse(to, skb))
3227 break;
3228
3229 space -= skb->len;
3230
3231 if (first) {
3232 first = false;
3233 continue;
3234 }
3235
3236 if (space < 0)
3237 break;
3238
3239 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3240 break;
3241
3242 if (!tcp_collapse_retrans(sk, to))
3243 break;
3244 }
3245 }
3246
3247 /* This retransmits one SKB. Policy decisions and retransmit queue
3248 * state updates are done by the caller. Returns non-zero if an
3249 * error occurred which prevented the send.
3250 */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3251 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3252 {
3253 struct inet_connection_sock *icsk = inet_csk(sk);
3254 struct tcp_sock *tp = tcp_sk(sk);
3255 unsigned int cur_mss;
3256 int diff, len, err;
3257 int avail_wnd;
3258
3259 /* Inconclusive MTU probe */
3260 if (icsk->icsk_mtup.probe_size)
3261 icsk->icsk_mtup.probe_size = 0;
3262
3263 if (skb_still_in_host_queue(sk, skb))
3264 return -EBUSY;
3265
3266 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3267 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3268 WARN_ON_ONCE(1);
3269 return -EINVAL;
3270 }
3271 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3272 return -ENOMEM;
3273 }
3274
3275 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3276 return -EHOSTUNREACH; /* Routing failure or similar. */
3277
3278 cur_mss = tcp_current_mss(sk);
3279 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3280
3281 /* If receiver has shrunk his window, and skb is out of
3282 * new window, do not retransmit it. The exception is the
3283 * case, when window is shrunk to zero. In this case
3284 * our retransmit of one segment serves as a zero window probe.
3285 */
3286 if (avail_wnd <= 0) {
3287 if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3288 return -EAGAIN;
3289 avail_wnd = cur_mss;
3290 }
3291
3292 len = cur_mss * segs;
3293 if (len > avail_wnd) {
3294 len = rounddown(avail_wnd, cur_mss);
3295 if (!len)
3296 len = avail_wnd;
3297 }
3298 if (skb->len > len) {
3299 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3300 cur_mss, GFP_ATOMIC))
3301 return -ENOMEM; /* We'll try again later. */
3302 } else {
3303 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3304 return -ENOMEM;
3305
3306 diff = tcp_skb_pcount(skb);
3307 tcp_set_skb_tso_segs(skb, cur_mss);
3308 diff -= tcp_skb_pcount(skb);
3309 if (diff)
3310 tcp_adjust_pcount(sk, skb, diff);
3311 avail_wnd = min_t(int, avail_wnd, cur_mss);
3312 if (skb->len < avail_wnd)
3313 tcp_retrans_try_collapse(sk, skb, avail_wnd);
3314 }
3315
3316 /* RFC3168, section 6.1.1.1. ECN fallback */
3317 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3318 tcp_ecn_clear_syn(sk, skb);
3319
3320 /* Update global and local TCP statistics. */
3321 segs = tcp_skb_pcount(skb);
3322 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3323 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3324 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3325 tp->total_retrans += segs;
3326 tp->bytes_retrans += skb->len;
3327
3328 /* make sure skb->data is aligned on arches that require it
3329 * and check if ack-trimming & collapsing extended the headroom
3330 * beyond what csum_start can cover.
3331 */
3332 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3333 skb_headroom(skb) >= 0xFFFF)) {
3334 struct sk_buff *nskb;
3335
3336 tcp_skb_tsorted_save(skb) {
3337 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3338 if (nskb) {
3339 nskb->dev = NULL;
3340 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3341 } else {
3342 err = -ENOBUFS;
3343 }
3344 } tcp_skb_tsorted_restore(skb);
3345
3346 if (!err) {
3347 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3348 tcp_rate_skb_sent(sk, skb);
3349 }
3350 } else {
3351 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3352 }
3353
3354 /* To avoid taking spuriously low RTT samples based on a timestamp
3355 * for a transmit that never happened, always mark EVER_RETRANS
3356 */
3357 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3358
3359 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3360 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3361 TCP_SKB_CB(skb)->seq, segs, err);
3362
3363 if (likely(!err)) {
3364 trace_tcp_retransmit_skb(sk, skb);
3365 } else if (err != -EBUSY) {
3366 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3367 }
3368 return err;
3369 }
3370
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3371 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3372 {
3373 struct tcp_sock *tp = tcp_sk(sk);
3374 int err = __tcp_retransmit_skb(sk, skb, segs);
3375
3376 if (err == 0) {
3377 #if FASTRETRANS_DEBUG > 0
3378 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3379 net_dbg_ratelimited("retrans_out leaked\n");
3380 }
3381 #endif
3382 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3383 tp->retrans_out += tcp_skb_pcount(skb);
3384 }
3385
3386 /* Save stamp of the first (attempted) retransmit. */
3387 if (!tp->retrans_stamp)
3388 tp->retrans_stamp = tcp_skb_timestamp(skb);
3389
3390 if (tp->undo_retrans < 0)
3391 tp->undo_retrans = 0;
3392 tp->undo_retrans += tcp_skb_pcount(skb);
3393 return err;
3394 }
3395
3396 /* This gets called after a retransmit timeout, and the initially
3397 * retransmitted data is acknowledged. It tries to continue
3398 * resending the rest of the retransmit queue, until either
3399 * we've sent it all or the congestion window limit is reached.
3400 */
tcp_xmit_retransmit_queue(struct sock * sk)3401 void tcp_xmit_retransmit_queue(struct sock *sk)
3402 {
3403 const struct inet_connection_sock *icsk = inet_csk(sk);
3404 struct sk_buff *skb, *rtx_head, *hole = NULL;
3405 struct tcp_sock *tp = tcp_sk(sk);
3406 bool rearm_timer = false;
3407 u32 max_segs;
3408 int mib_idx;
3409
3410 if (!tp->packets_out)
3411 return;
3412
3413 rtx_head = tcp_rtx_queue_head(sk);
3414 skb = tp->retransmit_skb_hint ?: rtx_head;
3415 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3416 skb_rbtree_walk_from(skb) {
3417 __u8 sacked;
3418 int segs;
3419
3420 if (tcp_pacing_check(sk))
3421 break;
3422
3423 /* we could do better than to assign each time */
3424 if (!hole)
3425 tp->retransmit_skb_hint = skb;
3426
3427 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3428 if (segs <= 0)
3429 break;
3430 sacked = TCP_SKB_CB(skb)->sacked;
3431 /* In case tcp_shift_skb_data() have aggregated large skbs,
3432 * we need to make sure not sending too bigs TSO packets
3433 */
3434 segs = min_t(int, segs, max_segs);
3435
3436 if (tp->retrans_out >= tp->lost_out) {
3437 break;
3438 } else if (!(sacked & TCPCB_LOST)) {
3439 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3440 hole = skb;
3441 continue;
3442
3443 } else {
3444 if (icsk->icsk_ca_state != TCP_CA_Loss)
3445 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3446 else
3447 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3448 }
3449
3450 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3451 continue;
3452
3453 if (tcp_small_queue_check(sk, skb, 1))
3454 break;
3455
3456 if (tcp_retransmit_skb(sk, skb, segs))
3457 break;
3458
3459 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3460
3461 if (tcp_in_cwnd_reduction(sk))
3462 tp->prr_out += tcp_skb_pcount(skb);
3463
3464 if (skb == rtx_head &&
3465 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3466 rearm_timer = true;
3467
3468 }
3469 if (rearm_timer)
3470 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3471 inet_csk(sk)->icsk_rto,
3472 TCP_RTO_MAX);
3473 }
3474
3475 /* We allow to exceed memory limits for FIN packets to expedite
3476 * connection tear down and (memory) recovery.
3477 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3478 * or even be forced to close flow without any FIN.
3479 * In general, we want to allow one skb per socket to avoid hangs
3480 * with edge trigger epoll()
3481 */
sk_forced_mem_schedule(struct sock * sk,int size)3482 void sk_forced_mem_schedule(struct sock *sk, int size)
3483 {
3484 int delta, amt;
3485
3486 delta = size - sk->sk_forward_alloc;
3487 if (delta <= 0)
3488 return;
3489 amt = sk_mem_pages(delta);
3490 sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3491 sk_memory_allocated_add(sk, amt);
3492
3493 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3494 mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3495 gfp_memcg_charge() | __GFP_NOFAIL);
3496 }
3497
3498 /* Send a FIN. The caller locks the socket for us.
3499 * We should try to send a FIN packet really hard, but eventually give up.
3500 */
tcp_send_fin(struct sock * sk)3501 void tcp_send_fin(struct sock *sk)
3502 {
3503 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3504 struct tcp_sock *tp = tcp_sk(sk);
3505
3506 /* Optimization, tack on the FIN if we have one skb in write queue and
3507 * this skb was not yet sent, or we are under memory pressure.
3508 * Note: in the latter case, FIN packet will be sent after a timeout,
3509 * as TCP stack thinks it has already been transmitted.
3510 */
3511 tskb = tail;
3512 if (!tskb && tcp_under_memory_pressure(sk))
3513 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3514
3515 if (tskb) {
3516 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3517 TCP_SKB_CB(tskb)->end_seq++;
3518 tp->write_seq++;
3519 if (!tail) {
3520 /* This means tskb was already sent.
3521 * Pretend we included the FIN on previous transmit.
3522 * We need to set tp->snd_nxt to the value it would have
3523 * if FIN had been sent. This is because retransmit path
3524 * does not change tp->snd_nxt.
3525 */
3526 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3527 return;
3528 }
3529 } else {
3530 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3531 if (unlikely(!skb))
3532 return;
3533
3534 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3535 skb_reserve(skb, MAX_TCP_HEADER);
3536 sk_forced_mem_schedule(sk, skb->truesize);
3537 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3538 tcp_init_nondata_skb(skb, tp->write_seq,
3539 TCPHDR_ACK | TCPHDR_FIN);
3540 tcp_queue_skb(sk, skb);
3541 }
3542 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3543 }
3544
3545 /* We get here when a process closes a file descriptor (either due to
3546 * an explicit close() or as a byproduct of exit()'ing) and there
3547 * was unread data in the receive queue. This behavior is recommended
3548 * by RFC 2525, section 2.17. -DaveM
3549 */
tcp_send_active_reset(struct sock * sk,gfp_t priority)3550 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3551 {
3552 struct sk_buff *skb;
3553
3554 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3555
3556 /* NOTE: No TCP options attached and we never retransmit this. */
3557 skb = alloc_skb(MAX_TCP_HEADER, priority);
3558 if (!skb) {
3559 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3560 return;
3561 }
3562
3563 /* Reserve space for headers and prepare control bits. */
3564 skb_reserve(skb, MAX_TCP_HEADER);
3565 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3566 TCPHDR_ACK | TCPHDR_RST);
3567 tcp_mstamp_refresh(tcp_sk(sk));
3568 /* Send it off. */
3569 if (tcp_transmit_skb(sk, skb, 0, priority))
3570 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3571
3572 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3573 * skb here is different to the troublesome skb, so use NULL
3574 */
3575 trace_tcp_send_reset(sk, NULL);
3576 }
3577
3578 /* Send a crossed SYN-ACK during socket establishment.
3579 * WARNING: This routine must only be called when we have already sent
3580 * a SYN packet that crossed the incoming SYN that caused this routine
3581 * to get called. If this assumption fails then the initial rcv_wnd
3582 * and rcv_wscale values will not be correct.
3583 */
tcp_send_synack(struct sock * sk)3584 int tcp_send_synack(struct sock *sk)
3585 {
3586 struct sk_buff *skb;
3587
3588 skb = tcp_rtx_queue_head(sk);
3589 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3590 pr_err("%s: wrong queue state\n", __func__);
3591 return -EFAULT;
3592 }
3593 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3594 if (skb_cloned(skb)) {
3595 struct sk_buff *nskb;
3596
3597 tcp_skb_tsorted_save(skb) {
3598 nskb = skb_copy(skb, GFP_ATOMIC);
3599 } tcp_skb_tsorted_restore(skb);
3600 if (!nskb)
3601 return -ENOMEM;
3602 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3603 tcp_highest_sack_replace(sk, skb, nskb);
3604 tcp_rtx_queue_unlink_and_free(skb, sk);
3605 __skb_header_release(nskb);
3606 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3607 sk_wmem_queued_add(sk, nskb->truesize);
3608 sk_mem_charge(sk, nskb->truesize);
3609 skb = nskb;
3610 }
3611
3612 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3613 tcp_ecn_send_synack(sk, skb);
3614 }
3615 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3616 }
3617
3618 /**
3619 * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3620 * @sk: listener socket
3621 * @dst: dst entry attached to the SYNACK. It is consumed and caller
3622 * should not use it again.
3623 * @req: request_sock pointer
3624 * @foc: cookie for tcp fast open
3625 * @synack_type: Type of synack to prepare
3626 * @syn_skb: SYN packet just received. It could be NULL for rtx case.
3627 */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)3628 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3629 struct request_sock *req,
3630 struct tcp_fastopen_cookie *foc,
3631 enum tcp_synack_type synack_type,
3632 struct sk_buff *syn_skb)
3633 {
3634 struct inet_request_sock *ireq = inet_rsk(req);
3635 const struct tcp_sock *tp = tcp_sk(sk);
3636 struct tcp_md5sig_key *md5 = NULL;
3637 struct tcp_out_options opts;
3638 struct sk_buff *skb;
3639 int tcp_header_size;
3640 struct tcphdr *th;
3641 int mss;
3642 u64 now;
3643
3644 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3645 if (unlikely(!skb)) {
3646 dst_release(dst);
3647 return NULL;
3648 }
3649 /* Reserve space for headers. */
3650 skb_reserve(skb, MAX_TCP_HEADER);
3651
3652 switch (synack_type) {
3653 case TCP_SYNACK_NORMAL:
3654 skb_set_owner_w(skb, req_to_sk(req));
3655 break;
3656 case TCP_SYNACK_COOKIE:
3657 /* Under synflood, we do not attach skb to a socket,
3658 * to avoid false sharing.
3659 */
3660 break;
3661 case TCP_SYNACK_FASTOPEN:
3662 /* sk is a const pointer, because we want to express multiple
3663 * cpu might call us concurrently.
3664 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3665 */
3666 skb_set_owner_w(skb, (struct sock *)sk);
3667 break;
3668 }
3669 skb_dst_set(skb, dst);
3670
3671 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3672
3673 memset(&opts, 0, sizeof(opts));
3674 now = tcp_clock_ns();
3675 #ifdef CONFIG_SYN_COOKIES
3676 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3677 skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3678 true);
3679 else
3680 #endif
3681 {
3682 skb_set_delivery_time(skb, now, true);
3683 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3684 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3685 }
3686
3687 #ifdef CONFIG_TCP_MD5SIG
3688 rcu_read_lock();
3689 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3690 #endif
3691 skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3692 /* bpf program will be interested in the tcp_flags */
3693 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3694 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3695 foc, synack_type,
3696 syn_skb) + sizeof(*th);
3697
3698 skb_push(skb, tcp_header_size);
3699 skb_reset_transport_header(skb);
3700
3701 th = (struct tcphdr *)skb->data;
3702 memset(th, 0, sizeof(struct tcphdr));
3703 th->syn = 1;
3704 th->ack = 1;
3705 tcp_ecn_make_synack(req, th);
3706 th->source = htons(ireq->ir_num);
3707 th->dest = ireq->ir_rmt_port;
3708 skb->mark = ireq->ir_mark;
3709 skb->ip_summed = CHECKSUM_PARTIAL;
3710 th->seq = htonl(tcp_rsk(req)->snt_isn);
3711 /* XXX data is queued and acked as is. No buffer/window check */
3712 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3713
3714 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3715 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3716 tcp_options_write(th, NULL, &opts);
3717 th->doff = (tcp_header_size >> 2);
3718 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3719
3720 #ifdef CONFIG_TCP_MD5SIG
3721 /* Okay, we have all we need - do the md5 hash if needed */
3722 if (md5)
3723 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3724 md5, req_to_sk(req), skb);
3725 rcu_read_unlock();
3726 #endif
3727
3728 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3729 synack_type, &opts);
3730
3731 skb_set_delivery_time(skb, now, true);
3732 tcp_add_tx_delay(skb, tp);
3733
3734 return skb;
3735 }
3736 EXPORT_SYMBOL(tcp_make_synack);
3737
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3738 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3739 {
3740 struct inet_connection_sock *icsk = inet_csk(sk);
3741 const struct tcp_congestion_ops *ca;
3742 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3743
3744 if (ca_key == TCP_CA_UNSPEC)
3745 return;
3746
3747 rcu_read_lock();
3748 ca = tcp_ca_find_key(ca_key);
3749 if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3750 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3751 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3752 icsk->icsk_ca_ops = ca;
3753 }
3754 rcu_read_unlock();
3755 }
3756
3757 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3758 static void tcp_connect_init(struct sock *sk)
3759 {
3760 const struct dst_entry *dst = __sk_dst_get(sk);
3761 struct tcp_sock *tp = tcp_sk(sk);
3762 __u8 rcv_wscale;
3763 u32 rcv_wnd;
3764
3765 /* We'll fix this up when we get a response from the other end.
3766 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3767 */
3768 tp->tcp_header_len = sizeof(struct tcphdr);
3769 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3770 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3771
3772 /* If user gave his TCP_MAXSEG, record it to clamp */
3773 if (tp->rx_opt.user_mss)
3774 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3775 tp->max_window = 0;
3776 tcp_mtup_init(sk);
3777 tcp_sync_mss(sk, dst_mtu(dst));
3778
3779 tcp_ca_dst_init(sk, dst);
3780
3781 if (!tp->window_clamp)
3782 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3783 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3784
3785 tcp_initialize_rcv_mss(sk);
3786
3787 /* limit the window selection if the user enforce a smaller rx buffer */
3788 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3789 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3790 tp->window_clamp = tcp_full_space(sk);
3791
3792 rcv_wnd = tcp_rwnd_init_bpf(sk);
3793 if (rcv_wnd == 0)
3794 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3795
3796 tcp_select_initial_window(sk, tcp_full_space(sk),
3797 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3798 &tp->rcv_wnd,
3799 &tp->window_clamp,
3800 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3801 &rcv_wscale,
3802 rcv_wnd);
3803
3804 tp->rx_opt.rcv_wscale = rcv_wscale;
3805 tp->rcv_ssthresh = tp->rcv_wnd;
3806
3807 WRITE_ONCE(sk->sk_err, 0);
3808 sock_reset_flag(sk, SOCK_DONE);
3809 tp->snd_wnd = 0;
3810 tcp_init_wl(tp, 0);
3811 tcp_write_queue_purge(sk);
3812 tp->snd_una = tp->write_seq;
3813 tp->snd_sml = tp->write_seq;
3814 tp->snd_up = tp->write_seq;
3815 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3816
3817 if (likely(!tp->repair))
3818 tp->rcv_nxt = 0;
3819 else
3820 tp->rcv_tstamp = tcp_jiffies32;
3821 tp->rcv_wup = tp->rcv_nxt;
3822 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3823
3824 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3825 inet_csk(sk)->icsk_retransmits = 0;
3826 tcp_clear_retrans(tp);
3827 }
3828
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3829 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3830 {
3831 struct tcp_sock *tp = tcp_sk(sk);
3832 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3833
3834 tcb->end_seq += skb->len;
3835 __skb_header_release(skb);
3836 sk_wmem_queued_add(sk, skb->truesize);
3837 sk_mem_charge(sk, skb->truesize);
3838 WRITE_ONCE(tp->write_seq, tcb->end_seq);
3839 tp->packets_out += tcp_skb_pcount(skb);
3840 }
3841
3842 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3843 * queue a data-only packet after the regular SYN, such that regular SYNs
3844 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3845 * only the SYN sequence, the data are retransmitted in the first ACK.
3846 * If cookie is not cached or other error occurs, falls back to send a
3847 * regular SYN with Fast Open cookie request option.
3848 */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3849 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3850 {
3851 struct inet_connection_sock *icsk = inet_csk(sk);
3852 struct tcp_sock *tp = tcp_sk(sk);
3853 struct tcp_fastopen_request *fo = tp->fastopen_req;
3854 struct page_frag *pfrag = sk_page_frag(sk);
3855 struct sk_buff *syn_data;
3856 int space, err = 0;
3857
3858 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3859 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3860 goto fallback;
3861
3862 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3863 * user-MSS. Reserve maximum option space for middleboxes that add
3864 * private TCP options. The cost is reduced data space in SYN :(
3865 */
3866 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3867 /* Sync mss_cache after updating the mss_clamp */
3868 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3869
3870 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3871 MAX_TCP_OPTION_SPACE;
3872
3873 space = min_t(size_t, space, fo->size);
3874
3875 if (space &&
3876 !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
3877 pfrag, sk->sk_allocation))
3878 goto fallback;
3879 syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
3880 if (!syn_data)
3881 goto fallback;
3882 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3883 if (space) {
3884 space = min_t(size_t, space, pfrag->size - pfrag->offset);
3885 space = tcp_wmem_schedule(sk, space);
3886 }
3887 if (space) {
3888 space = copy_page_from_iter(pfrag->page, pfrag->offset,
3889 space, &fo->data->msg_iter);
3890 if (unlikely(!space)) {
3891 tcp_skb_tsorted_anchor_cleanup(syn_data);
3892 kfree_skb(syn_data);
3893 goto fallback;
3894 }
3895 skb_fill_page_desc(syn_data, 0, pfrag->page,
3896 pfrag->offset, space);
3897 page_ref_inc(pfrag->page);
3898 pfrag->offset += space;
3899 skb_len_add(syn_data, space);
3900 skb_zcopy_set(syn_data, fo->uarg, NULL);
3901 }
3902 /* No more data pending in inet_wait_for_connect() */
3903 if (space == fo->size)
3904 fo->data = NULL;
3905 fo->copied = space;
3906
3907 tcp_connect_queue_skb(sk, syn_data);
3908 if (syn_data->len)
3909 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3910
3911 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3912
3913 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3914
3915 /* Now full SYN+DATA was cloned and sent (or not),
3916 * remove the SYN from the original skb (syn_data)
3917 * we keep in write queue in case of a retransmit, as we
3918 * also have the SYN packet (with no data) in the same queue.
3919 */
3920 TCP_SKB_CB(syn_data)->seq++;
3921 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3922 if (!err) {
3923 tp->syn_data = (fo->copied > 0);
3924 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3925 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3926 goto done;
3927 }
3928
3929 /* data was not sent, put it in write_queue */
3930 __skb_queue_tail(&sk->sk_write_queue, syn_data);
3931 tp->packets_out -= tcp_skb_pcount(syn_data);
3932
3933 fallback:
3934 /* Send a regular SYN with Fast Open cookie request option */
3935 if (fo->cookie.len > 0)
3936 fo->cookie.len = 0;
3937 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3938 if (err)
3939 tp->syn_fastopen = 0;
3940 done:
3941 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3942 return err;
3943 }
3944
3945 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)3946 int tcp_connect(struct sock *sk)
3947 {
3948 struct tcp_sock *tp = tcp_sk(sk);
3949 struct sk_buff *buff;
3950 int err;
3951
3952 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3953
3954 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3955 return -EHOSTUNREACH; /* Routing failure or similar. */
3956
3957 tcp_connect_init(sk);
3958
3959 if (unlikely(tp->repair)) {
3960 tcp_finish_connect(sk, NULL);
3961 return 0;
3962 }
3963
3964 buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
3965 if (unlikely(!buff))
3966 return -ENOBUFS;
3967
3968 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3969 tcp_mstamp_refresh(tp);
3970 tp->retrans_stamp = tcp_time_stamp(tp);
3971 tcp_connect_queue_skb(sk, buff);
3972 tcp_ecn_send_syn(sk, buff);
3973 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3974
3975 /* Send off SYN; include data in Fast Open. */
3976 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3977 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3978 if (err == -ECONNREFUSED)
3979 return err;
3980
3981 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3982 * in order to make this packet get counted in tcpOutSegs.
3983 */
3984 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3985 tp->pushed_seq = tp->write_seq;
3986 buff = tcp_send_head(sk);
3987 if (unlikely(buff)) {
3988 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3989 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3990 }
3991 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3992
3993 /* Timer for repeating the SYN until an answer. */
3994 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3995 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3996 return 0;
3997 }
3998 EXPORT_SYMBOL(tcp_connect);
3999
4000 /* Send out a delayed ack, the caller does the policy checking
4001 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
4002 * for details.
4003 */
tcp_send_delayed_ack(struct sock * sk)4004 void tcp_send_delayed_ack(struct sock *sk)
4005 {
4006 struct inet_connection_sock *icsk = inet_csk(sk);
4007 int ato = icsk->icsk_ack.ato;
4008 unsigned long timeout;
4009
4010 if (ato > TCP_DELACK_MIN) {
4011 const struct tcp_sock *tp = tcp_sk(sk);
4012 int max_ato = HZ / 2;
4013
4014 if (inet_csk_in_pingpong_mode(sk) ||
4015 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4016 max_ato = TCP_DELACK_MAX;
4017
4018 /* Slow path, intersegment interval is "high". */
4019
4020 /* If some rtt estimate is known, use it to bound delayed ack.
4021 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4022 * directly.
4023 */
4024 if (tp->srtt_us) {
4025 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4026 TCP_DELACK_MIN);
4027
4028 if (rtt < max_ato)
4029 max_ato = rtt;
4030 }
4031
4032 ato = min(ato, max_ato);
4033 }
4034
4035 ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max);
4036
4037 /* Stay within the limit we were given */
4038 timeout = jiffies + ato;
4039
4040 /* Use new timeout only if there wasn't a older one earlier. */
4041 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4042 /* If delack timer is about to expire, send ACK now. */
4043 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
4044 tcp_send_ack(sk);
4045 return;
4046 }
4047
4048 if (!time_before(timeout, icsk->icsk_ack.timeout))
4049 timeout = icsk->icsk_ack.timeout;
4050 }
4051 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
4052 icsk->icsk_ack.timeout = timeout;
4053 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4054 }
4055
4056 /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt)4057 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
4058 {
4059 struct sk_buff *buff;
4060
4061 /* If we have been reset, we may not send again. */
4062 if (sk->sk_state == TCP_CLOSE)
4063 return;
4064
4065 /* We are not putting this on the write queue, so
4066 * tcp_transmit_skb() will set the ownership to this
4067 * sock.
4068 */
4069 buff = alloc_skb(MAX_TCP_HEADER,
4070 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4071 if (unlikely(!buff)) {
4072 struct inet_connection_sock *icsk = inet_csk(sk);
4073 unsigned long delay;
4074
4075 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4076 if (delay < TCP_RTO_MAX)
4077 icsk->icsk_ack.retry++;
4078 inet_csk_schedule_ack(sk);
4079 icsk->icsk_ack.ato = TCP_ATO_MIN;
4080 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
4081 return;
4082 }
4083
4084 /* Reserve space for headers and prepare control bits. */
4085 skb_reserve(buff, MAX_TCP_HEADER);
4086 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
4087
4088 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
4089 * too much.
4090 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4091 */
4092 skb_set_tcp_pure_ack(buff);
4093
4094 /* Send it off, this clears delayed acks for us. */
4095 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4096 }
4097 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4098
tcp_send_ack(struct sock * sk)4099 void tcp_send_ack(struct sock *sk)
4100 {
4101 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4102 }
4103
4104 /* This routine sends a packet with an out of date sequence
4105 * number. It assumes the other end will try to ack it.
4106 *
4107 * Question: what should we make while urgent mode?
4108 * 4.4BSD forces sending single byte of data. We cannot send
4109 * out of window data, because we have SND.NXT==SND.MAX...
4110 *
4111 * Current solution: to send TWO zero-length segments in urgent mode:
4112 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4113 * out-of-date with SND.UNA-1 to probe window.
4114 */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)4115 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4116 {
4117 struct tcp_sock *tp = tcp_sk(sk);
4118 struct sk_buff *skb;
4119
4120 /* We don't queue it, tcp_transmit_skb() sets ownership. */
4121 skb = alloc_skb(MAX_TCP_HEADER,
4122 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4123 if (!skb)
4124 return -1;
4125
4126 /* Reserve space for headers and set control bits. */
4127 skb_reserve(skb, MAX_TCP_HEADER);
4128 /* Use a previous sequence. This should cause the other
4129 * end to send an ack. Don't queue or clone SKB, just
4130 * send it.
4131 */
4132 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4133 NET_INC_STATS(sock_net(sk), mib);
4134 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4135 }
4136
4137 /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)4138 void tcp_send_window_probe(struct sock *sk)
4139 {
4140 if (sk->sk_state == TCP_ESTABLISHED) {
4141 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4142 tcp_mstamp_refresh(tcp_sk(sk));
4143 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4144 }
4145 }
4146
4147 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)4148 int tcp_write_wakeup(struct sock *sk, int mib)
4149 {
4150 struct tcp_sock *tp = tcp_sk(sk);
4151 struct sk_buff *skb;
4152
4153 if (sk->sk_state == TCP_CLOSE)
4154 return -1;
4155
4156 skb = tcp_send_head(sk);
4157 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4158 int err;
4159 unsigned int mss = tcp_current_mss(sk);
4160 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4161
4162 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4163 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4164
4165 /* We are probing the opening of a window
4166 * but the window size is != 0
4167 * must have been a result SWS avoidance ( sender )
4168 */
4169 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4170 skb->len > mss) {
4171 seg_size = min(seg_size, mss);
4172 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4173 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4174 skb, seg_size, mss, GFP_ATOMIC))
4175 return -1;
4176 } else if (!tcp_skb_pcount(skb))
4177 tcp_set_skb_tso_segs(skb, mss);
4178
4179 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4180 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4181 if (!err)
4182 tcp_event_new_data_sent(sk, skb);
4183 return err;
4184 } else {
4185 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4186 tcp_xmit_probe_skb(sk, 1, mib);
4187 return tcp_xmit_probe_skb(sk, 0, mib);
4188 }
4189 }
4190
4191 /* A window probe timeout has occurred. If window is not closed send
4192 * a partial packet else a zero probe.
4193 */
tcp_send_probe0(struct sock * sk)4194 void tcp_send_probe0(struct sock *sk)
4195 {
4196 struct inet_connection_sock *icsk = inet_csk(sk);
4197 struct tcp_sock *tp = tcp_sk(sk);
4198 struct net *net = sock_net(sk);
4199 unsigned long timeout;
4200 int err;
4201
4202 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4203
4204 if (tp->packets_out || tcp_write_queue_empty(sk)) {
4205 /* Cancel probe timer, if it is not required. */
4206 icsk->icsk_probes_out = 0;
4207 icsk->icsk_backoff = 0;
4208 icsk->icsk_probes_tstamp = 0;
4209 return;
4210 }
4211
4212 icsk->icsk_probes_out++;
4213 if (err <= 0) {
4214 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4215 icsk->icsk_backoff++;
4216 timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4217 } else {
4218 /* If packet was not sent due to local congestion,
4219 * Let senders fight for local resources conservatively.
4220 */
4221 timeout = TCP_RESOURCE_PROBE_INTERVAL;
4222 }
4223
4224 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4225 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4226 }
4227
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)4228 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4229 {
4230 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4231 struct flowi fl;
4232 int res;
4233
4234 /* Paired with WRITE_ONCE() in sock_setsockopt() */
4235 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4236 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4237 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4238 NULL);
4239 if (!res) {
4240 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4241 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4242 if (unlikely(tcp_passive_fastopen(sk))) {
4243 /* sk has const attribute because listeners are lockless.
4244 * However in this case, we are dealing with a passive fastopen
4245 * socket thus we can change total_retrans value.
4246 */
4247 tcp_sk_rw(sk)->total_retrans++;
4248 }
4249 trace_tcp_retransmit_synack(sk, req);
4250 }
4251 return res;
4252 }
4253 EXPORT_SYMBOL(tcp_rtx_synack);
4254