1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright 2004-2011 Red Hat, Inc.
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/fs.h>
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
16 
17 #include "incore.h"
18 #include "glock.h"
19 #include "glops.h"
20 #include "recovery.h"
21 #include "util.h"
22 #include "sys.h"
23 #include "trace_gfs2.h"
24 
25 /**
26  * gfs2_update_stats - Update time based stats
27  * @s: The stats to update (local or global)
28  * @index: The index inside @s
29  * @sample: New data to include
30  */
gfs2_update_stats(struct gfs2_lkstats * s,unsigned index,s64 sample)31 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
32 				     s64 sample)
33 {
34 	/*
35 	 * @delta is the difference between the current rtt sample and the
36 	 * running average srtt. We add 1/8 of that to the srtt in order to
37 	 * update the current srtt estimate. The variance estimate is a bit
38 	 * more complicated. We subtract the current variance estimate from
39 	 * the abs value of the @delta and add 1/4 of that to the running
40 	 * total.  That's equivalent to 3/4 of the current variance
41 	 * estimate plus 1/4 of the abs of @delta.
42 	 *
43 	 * Note that the index points at the array entry containing the
44 	 * smoothed mean value, and the variance is always in the following
45 	 * entry
46 	 *
47 	 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
48 	 * All times are in units of integer nanoseconds. Unlike the TCP/IP
49 	 * case, they are not scaled fixed point.
50 	 */
51 
52 	s64 delta = sample - s->stats[index];
53 	s->stats[index] += (delta >> 3);
54 	index++;
55 	s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
56 }
57 
58 /**
59  * gfs2_update_reply_times - Update locking statistics
60  * @gl: The glock to update
61  *
62  * This assumes that gl->gl_dstamp has been set earlier.
63  *
64  * The rtt (lock round trip time) is an estimate of the time
65  * taken to perform a dlm lock request. We update it on each
66  * reply from the dlm.
67  *
68  * The blocking flag is set on the glock for all dlm requests
69  * which may potentially block due to lock requests from other nodes.
70  * DLM requests where the current lock state is exclusive, the
71  * requested state is null (or unlocked) or where the TRY or
72  * TRY_1CB flags are set are classified as non-blocking. All
73  * other DLM requests are counted as (potentially) blocking.
74  */
gfs2_update_reply_times(struct gfs2_glock * gl)75 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
76 {
77 	struct gfs2_pcpu_lkstats *lks;
78 	const unsigned gltype = gl->gl_name.ln_type;
79 	unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
80 			 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
81 	s64 rtt;
82 
83 	preempt_disable();
84 	rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
85 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
86 	gfs2_update_stats(&gl->gl_stats, index, rtt);		/* Local */
87 	gfs2_update_stats(&lks->lkstats[gltype], index, rtt);	/* Global */
88 	preempt_enable();
89 
90 	trace_gfs2_glock_lock_time(gl, rtt);
91 }
92 
93 /**
94  * gfs2_update_request_times - Update locking statistics
95  * @gl: The glock to update
96  *
97  * The irt (lock inter-request times) measures the average time
98  * between requests to the dlm. It is updated immediately before
99  * each dlm call.
100  */
101 
gfs2_update_request_times(struct gfs2_glock * gl)102 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
103 {
104 	struct gfs2_pcpu_lkstats *lks;
105 	const unsigned gltype = gl->gl_name.ln_type;
106 	ktime_t dstamp;
107 	s64 irt;
108 
109 	preempt_disable();
110 	dstamp = gl->gl_dstamp;
111 	gl->gl_dstamp = ktime_get_real();
112 	irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
113 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
114 	gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);		/* Local */
115 	gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);	/* Global */
116 	preempt_enable();
117 }
118 
gdlm_ast(void * arg)119 static void gdlm_ast(void *arg)
120 {
121 	struct gfs2_glock *gl = arg;
122 	unsigned ret = gl->gl_state;
123 
124 	gfs2_update_reply_times(gl);
125 	BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
126 
127 	if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
128 		memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
129 
130 	switch (gl->gl_lksb.sb_status) {
131 	case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
132 		if (gl->gl_ops->go_free)
133 			gl->gl_ops->go_free(gl);
134 		gfs2_glock_free(gl);
135 		return;
136 	case -DLM_ECANCEL: /* Cancel while getting lock */
137 		ret |= LM_OUT_CANCELED;
138 		goto out;
139 	case -EAGAIN: /* Try lock fails */
140 	case -EDEADLK: /* Deadlock detected */
141 		goto out;
142 	case -ETIMEDOUT: /* Canceled due to timeout */
143 		ret |= LM_OUT_ERROR;
144 		goto out;
145 	case 0: /* Success */
146 		break;
147 	default: /* Something unexpected */
148 		BUG();
149 	}
150 
151 	ret = gl->gl_req;
152 	if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
153 		if (gl->gl_req == LM_ST_SHARED)
154 			ret = LM_ST_DEFERRED;
155 		else if (gl->gl_req == LM_ST_DEFERRED)
156 			ret = LM_ST_SHARED;
157 		else
158 			BUG();
159 	}
160 
161 	set_bit(GLF_INITIAL, &gl->gl_flags);
162 	gfs2_glock_complete(gl, ret);
163 	return;
164 out:
165 	if (!test_bit(GLF_INITIAL, &gl->gl_flags))
166 		gl->gl_lksb.sb_lkid = 0;
167 	gfs2_glock_complete(gl, ret);
168 }
169 
gdlm_bast(void * arg,int mode)170 static void gdlm_bast(void *arg, int mode)
171 {
172 	struct gfs2_glock *gl = arg;
173 
174 	switch (mode) {
175 	case DLM_LOCK_EX:
176 		gfs2_glock_cb(gl, LM_ST_UNLOCKED);
177 		break;
178 	case DLM_LOCK_CW:
179 		gfs2_glock_cb(gl, LM_ST_DEFERRED);
180 		break;
181 	case DLM_LOCK_PR:
182 		gfs2_glock_cb(gl, LM_ST_SHARED);
183 		break;
184 	default:
185 		fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
186 		BUG();
187 	}
188 }
189 
190 /* convert gfs lock-state to dlm lock-mode */
191 
make_mode(struct gfs2_sbd * sdp,const unsigned int lmstate)192 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
193 {
194 	switch (lmstate) {
195 	case LM_ST_UNLOCKED:
196 		return DLM_LOCK_NL;
197 	case LM_ST_EXCLUSIVE:
198 		return DLM_LOCK_EX;
199 	case LM_ST_DEFERRED:
200 		return DLM_LOCK_CW;
201 	case LM_ST_SHARED:
202 		return DLM_LOCK_PR;
203 	}
204 	fs_err(sdp, "unknown LM state %d\n", lmstate);
205 	BUG();
206 	return -1;
207 }
208 
make_flags(struct gfs2_glock * gl,const unsigned int gfs_flags,const int req)209 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
210 		      const int req)
211 {
212 	u32 lkf = 0;
213 
214 	if (gl->gl_lksb.sb_lvbptr)
215 		lkf |= DLM_LKF_VALBLK;
216 
217 	if (gfs_flags & LM_FLAG_TRY)
218 		lkf |= DLM_LKF_NOQUEUE;
219 
220 	if (gfs_flags & LM_FLAG_TRY_1CB) {
221 		lkf |= DLM_LKF_NOQUEUE;
222 		lkf |= DLM_LKF_NOQUEUEBAST;
223 	}
224 
225 	if (gfs_flags & LM_FLAG_ANY) {
226 		if (req == DLM_LOCK_PR)
227 			lkf |= DLM_LKF_ALTCW;
228 		else if (req == DLM_LOCK_CW)
229 			lkf |= DLM_LKF_ALTPR;
230 		else
231 			BUG();
232 	}
233 
234 	if (gl->gl_lksb.sb_lkid != 0) {
235 		lkf |= DLM_LKF_CONVERT;
236 		if (test_bit(GLF_BLOCKING, &gl->gl_flags))
237 			lkf |= DLM_LKF_QUECVT;
238 	}
239 
240 	return lkf;
241 }
242 
gfs2_reverse_hex(char * c,u64 value)243 static void gfs2_reverse_hex(char *c, u64 value)
244 {
245 	*c = '0';
246 	while (value) {
247 		*c-- = hex_asc[value & 0x0f];
248 		value >>= 4;
249 	}
250 }
251 
gdlm_lock(struct gfs2_glock * gl,unsigned int req_state,unsigned int flags)252 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
253 		     unsigned int flags)
254 {
255 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
256 	int req;
257 	u32 lkf;
258 	char strname[GDLM_STRNAME_BYTES] = "";
259 	int error;
260 
261 	req = make_mode(gl->gl_name.ln_sbd, req_state);
262 	lkf = make_flags(gl, flags, req);
263 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
264 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
265 	if (gl->gl_lksb.sb_lkid) {
266 		gfs2_update_request_times(gl);
267 	} else {
268 		memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
269 		strname[GDLM_STRNAME_BYTES - 1] = '\0';
270 		gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
271 		gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
272 		gl->gl_dstamp = ktime_get_real();
273 	}
274 	/*
275 	 * Submit the actual lock request.
276 	 */
277 
278 again:
279 	error = dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
280 			GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
281 	if (error == -EBUSY) {
282 		msleep(20);
283 		goto again;
284 	}
285 	return error;
286 }
287 
gdlm_put_lock(struct gfs2_glock * gl)288 static void gdlm_put_lock(struct gfs2_glock *gl)
289 {
290 	struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
291 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
292 	int error;
293 
294 	if (gl->gl_lksb.sb_lkid == 0)
295 		goto out_free;
296 
297 	clear_bit(GLF_BLOCKING, &gl->gl_flags);
298 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
299 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
300 	gfs2_update_request_times(gl);
301 
302 	/* don't want to call dlm if we've unmounted the lock protocol */
303 	if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
304 		goto out_free;
305 	/* don't want to skip dlm_unlock writing the lvb when lock has one */
306 
307 	if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
308 	    !gl->gl_lksb.sb_lvbptr)
309 		goto out_free;
310 
311 again:
312 	error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
313 			   NULL, gl);
314 	if (error == -EBUSY) {
315 		msleep(20);
316 		goto again;
317 	}
318 
319 	if (error) {
320 		fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
321 		       gl->gl_name.ln_type,
322 		       (unsigned long long)gl->gl_name.ln_number, error);
323 	}
324 	return;
325 
326 out_free:
327 	gfs2_glock_free(gl);
328 }
329 
gdlm_cancel(struct gfs2_glock * gl)330 static void gdlm_cancel(struct gfs2_glock *gl)
331 {
332 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
333 	dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
334 }
335 
336 /*
337  * dlm/gfs2 recovery coordination using dlm_recover callbacks
338  *
339  *  0. gfs2 checks for another cluster node withdraw, needing journal replay
340  *  1. dlm_controld sees lockspace members change
341  *  2. dlm_controld blocks dlm-kernel locking activity
342  *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
343  *  4. dlm_controld starts and finishes its own user level recovery
344  *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
345  *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
346  *  7. dlm_recoverd does its own lock recovery
347  *  8. dlm_recoverd unblocks dlm-kernel locking activity
348  *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
349  * 10. gfs2_control updates control_lock lvb with new generation and jid bits
350  * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
351  * 12. gfs2_recover dequeues and recovers journals of failed nodes
352  * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
353  * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
354  * 15. gfs2_control unblocks normal locking when all journals are recovered
355  *
356  * - failures during recovery
357  *
358  * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
359  * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
360  * recovering for a prior failure.  gfs2_control needs a way to detect
361  * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
362  * the recover_block and recover_start values.
363  *
364  * recover_done() provides a new lockspace generation number each time it
365  * is called (step 9).  This generation number is saved as recover_start.
366  * When recover_prep() is called, it sets BLOCK_LOCKS and sets
367  * recover_block = recover_start.  So, while recover_block is equal to
368  * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
369  * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
370  *
371  * - more specific gfs2 steps in sequence above
372  *
373  *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
374  *  6. recover_slot records any failed jids (maybe none)
375  *  9. recover_done sets recover_start = new generation number
376  * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
377  * 12. gfs2_recover does journal recoveries for failed jids identified above
378  * 14. gfs2_control clears control_lock lvb bits for recovered jids
379  * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
380  *     again) then do nothing, otherwise if recover_start > recover_block
381  *     then clear BLOCK_LOCKS.
382  *
383  * - parallel recovery steps across all nodes
384  *
385  * All nodes attempt to update the control_lock lvb with the new generation
386  * number and jid bits, but only the first to get the control_lock EX will
387  * do so; others will see that it's already done (lvb already contains new
388  * generation number.)
389  *
390  * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
391  * . All nodes attempt to set control_lock lvb gen + bits for the new gen
392  * . One node gets control_lock first and writes the lvb, others see it's done
393  * . All nodes attempt to recover jids for which they see control_lock bits set
394  * . One node succeeds for a jid, and that one clears the jid bit in the lvb
395  * . All nodes will eventually see all lvb bits clear and unblock locks
396  *
397  * - is there a problem with clearing an lvb bit that should be set
398  *   and missing a journal recovery?
399  *
400  * 1. jid fails
401  * 2. lvb bit set for step 1
402  * 3. jid recovered for step 1
403  * 4. jid taken again (new mount)
404  * 5. jid fails (for step 4)
405  * 6. lvb bit set for step 5 (will already be set)
406  * 7. lvb bit cleared for step 3
407  *
408  * This is not a problem because the failure in step 5 does not
409  * require recovery, because the mount in step 4 could not have
410  * progressed far enough to unblock locks and access the fs.  The
411  * control_mount() function waits for all recoveries to be complete
412  * for the latest lockspace generation before ever unblocking locks
413  * and returning.  The mount in step 4 waits until the recovery in
414  * step 1 is done.
415  *
416  * - special case of first mounter: first node to mount the fs
417  *
418  * The first node to mount a gfs2 fs needs to check all the journals
419  * and recover any that need recovery before other nodes are allowed
420  * to mount the fs.  (Others may begin mounting, but they must wait
421  * for the first mounter to be done before taking locks on the fs
422  * or accessing the fs.)  This has two parts:
423  *
424  * 1. The mounted_lock tells a node it's the first to mount the fs.
425  * Each node holds the mounted_lock in PR while it's mounted.
426  * Each node tries to acquire the mounted_lock in EX when it mounts.
427  * If a node is granted the mounted_lock EX it means there are no
428  * other mounted nodes (no PR locks exist), and it is the first mounter.
429  * The mounted_lock is demoted to PR when first recovery is done, so
430  * others will fail to get an EX lock, but will get a PR lock.
431  *
432  * 2. The control_lock blocks others in control_mount() while the first
433  * mounter is doing first mount recovery of all journals.
434  * A mounting node needs to acquire control_lock in EX mode before
435  * it can proceed.  The first mounter holds control_lock in EX while doing
436  * the first mount recovery, blocking mounts from other nodes, then demotes
437  * control_lock to NL when it's done (others_may_mount/first_done),
438  * allowing other nodes to continue mounting.
439  *
440  * first mounter:
441  * control_lock EX/NOQUEUE success
442  * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
443  * set first=1
444  * do first mounter recovery
445  * mounted_lock EX->PR
446  * control_lock EX->NL, write lvb generation
447  *
448  * other mounter:
449  * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
450  * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
451  * mounted_lock PR/NOQUEUE success
452  * read lvb generation
453  * control_lock EX->NL
454  * set first=0
455  *
456  * - mount during recovery
457  *
458  * If a node mounts while others are doing recovery (not first mounter),
459  * the mounting node will get its initial recover_done() callback without
460  * having seen any previous failures/callbacks.
461  *
462  * It must wait for all recoveries preceding its mount to be finished
463  * before it unblocks locks.  It does this by repeating the "other mounter"
464  * steps above until the lvb generation number is >= its mount generation
465  * number (from initial recover_done) and all lvb bits are clear.
466  *
467  * - control_lock lvb format
468  *
469  * 4 bytes generation number: the latest dlm lockspace generation number
470  * from recover_done callback.  Indicates the jid bitmap has been updated
471  * to reflect all slot failures through that generation.
472  * 4 bytes unused.
473  * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
474  * that jid N needs recovery.
475  */
476 
477 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
478 
control_lvb_read(struct lm_lockstruct * ls,uint32_t * lvb_gen,char * lvb_bits)479 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
480 			     char *lvb_bits)
481 {
482 	__le32 gen;
483 	memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
484 	memcpy(&gen, lvb_bits, sizeof(__le32));
485 	*lvb_gen = le32_to_cpu(gen);
486 }
487 
control_lvb_write(struct lm_lockstruct * ls,uint32_t lvb_gen,char * lvb_bits)488 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
489 			      char *lvb_bits)
490 {
491 	__le32 gen;
492 	memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
493 	gen = cpu_to_le32(lvb_gen);
494 	memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
495 }
496 
all_jid_bits_clear(char * lvb)497 static int all_jid_bits_clear(char *lvb)
498 {
499 	return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
500 			GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
501 }
502 
sync_wait_cb(void * arg)503 static void sync_wait_cb(void *arg)
504 {
505 	struct lm_lockstruct *ls = arg;
506 	complete(&ls->ls_sync_wait);
507 }
508 
sync_unlock(struct gfs2_sbd * sdp,struct dlm_lksb * lksb,char * name)509 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
510 {
511 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
512 	int error;
513 
514 	error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
515 	if (error) {
516 		fs_err(sdp, "%s lkid %x error %d\n",
517 		       name, lksb->sb_lkid, error);
518 		return error;
519 	}
520 
521 	wait_for_completion(&ls->ls_sync_wait);
522 
523 	if (lksb->sb_status != -DLM_EUNLOCK) {
524 		fs_err(sdp, "%s lkid %x status %d\n",
525 		       name, lksb->sb_lkid, lksb->sb_status);
526 		return -1;
527 	}
528 	return 0;
529 }
530 
sync_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags,unsigned int num,struct dlm_lksb * lksb,char * name)531 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
532 		     unsigned int num, struct dlm_lksb *lksb, char *name)
533 {
534 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
535 	char strname[GDLM_STRNAME_BYTES];
536 	int error, status;
537 
538 	memset(strname, 0, GDLM_STRNAME_BYTES);
539 	snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
540 
541 	error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
542 			 strname, GDLM_STRNAME_BYTES - 1,
543 			 0, sync_wait_cb, ls, NULL);
544 	if (error) {
545 		fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
546 		       name, lksb->sb_lkid, flags, mode, error);
547 		return error;
548 	}
549 
550 	wait_for_completion(&ls->ls_sync_wait);
551 
552 	status = lksb->sb_status;
553 
554 	if (status && status != -EAGAIN) {
555 		fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
556 		       name, lksb->sb_lkid, flags, mode, status);
557 	}
558 
559 	return status;
560 }
561 
mounted_unlock(struct gfs2_sbd * sdp)562 static int mounted_unlock(struct gfs2_sbd *sdp)
563 {
564 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
565 	return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
566 }
567 
mounted_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)568 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
569 {
570 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
571 	return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
572 			 &ls->ls_mounted_lksb, "mounted_lock");
573 }
574 
control_unlock(struct gfs2_sbd * sdp)575 static int control_unlock(struct gfs2_sbd *sdp)
576 {
577 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
578 	return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
579 }
580 
control_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)581 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
582 {
583 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
584 	return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
585 			 &ls->ls_control_lksb, "control_lock");
586 }
587 
588 /**
589  * remote_withdraw - react to a node withdrawing from the file system
590  * @sdp: The superblock
591  */
remote_withdraw(struct gfs2_sbd * sdp)592 static void remote_withdraw(struct gfs2_sbd *sdp)
593 {
594 	struct gfs2_jdesc *jd;
595 	int ret = 0, count = 0;
596 
597 	list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
598 		if (jd->jd_jid == sdp->sd_lockstruct.ls_jid)
599 			continue;
600 		ret = gfs2_recover_journal(jd, true);
601 		if (ret)
602 			break;
603 		count++;
604 	}
605 
606 	/* Now drop the additional reference we acquired */
607 	fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret);
608 }
609 
gfs2_control_func(struct work_struct * work)610 static void gfs2_control_func(struct work_struct *work)
611 {
612 	struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
613 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
614 	uint32_t block_gen, start_gen, lvb_gen, flags;
615 	int recover_set = 0;
616 	int write_lvb = 0;
617 	int recover_size;
618 	int i, error;
619 
620 	/* First check for other nodes that may have done a withdraw. */
621 	if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) {
622 		remote_withdraw(sdp);
623 		clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags);
624 		return;
625 	}
626 
627 	spin_lock(&ls->ls_recover_spin);
628 	/*
629 	 * No MOUNT_DONE means we're still mounting; control_mount()
630 	 * will set this flag, after which this thread will take over
631 	 * all further clearing of BLOCK_LOCKS.
632 	 *
633 	 * FIRST_MOUNT means this node is doing first mounter recovery,
634 	 * for which recovery control is handled by
635 	 * control_mount()/control_first_done(), not this thread.
636 	 */
637 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
638 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
639 		spin_unlock(&ls->ls_recover_spin);
640 		return;
641 	}
642 	block_gen = ls->ls_recover_block;
643 	start_gen = ls->ls_recover_start;
644 	spin_unlock(&ls->ls_recover_spin);
645 
646 	/*
647 	 * Equal block_gen and start_gen implies we are between
648 	 * recover_prep and recover_done callbacks, which means
649 	 * dlm recovery is in progress and dlm locking is blocked.
650 	 * There's no point trying to do any work until recover_done.
651 	 */
652 
653 	if (block_gen == start_gen)
654 		return;
655 
656 	/*
657 	 * Propagate recover_submit[] and recover_result[] to lvb:
658 	 * dlm_recoverd adds to recover_submit[] jids needing recovery
659 	 * gfs2_recover adds to recover_result[] journal recovery results
660 	 *
661 	 * set lvb bit for jids in recover_submit[] if the lvb has not
662 	 * yet been updated for the generation of the failure
663 	 *
664 	 * clear lvb bit for jids in recover_result[] if the result of
665 	 * the journal recovery is SUCCESS
666 	 */
667 
668 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
669 	if (error) {
670 		fs_err(sdp, "control lock EX error %d\n", error);
671 		return;
672 	}
673 
674 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
675 
676 	spin_lock(&ls->ls_recover_spin);
677 	if (block_gen != ls->ls_recover_block ||
678 	    start_gen != ls->ls_recover_start) {
679 		fs_info(sdp, "recover generation %u block1 %u %u\n",
680 			start_gen, block_gen, ls->ls_recover_block);
681 		spin_unlock(&ls->ls_recover_spin);
682 		control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
683 		return;
684 	}
685 
686 	recover_size = ls->ls_recover_size;
687 
688 	if (lvb_gen <= start_gen) {
689 		/*
690 		 * Clear lvb bits for jids we've successfully recovered.
691 		 * Because all nodes attempt to recover failed journals,
692 		 * a journal can be recovered multiple times successfully
693 		 * in succession.  Only the first will really do recovery,
694 		 * the others find it clean, but still report a successful
695 		 * recovery.  So, another node may have already recovered
696 		 * the jid and cleared the lvb bit for it.
697 		 */
698 		for (i = 0; i < recover_size; i++) {
699 			if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
700 				continue;
701 
702 			ls->ls_recover_result[i] = 0;
703 
704 			if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
705 				continue;
706 
707 			__clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
708 			write_lvb = 1;
709 		}
710 	}
711 
712 	if (lvb_gen == start_gen) {
713 		/*
714 		 * Failed slots before start_gen are already set in lvb.
715 		 */
716 		for (i = 0; i < recover_size; i++) {
717 			if (!ls->ls_recover_submit[i])
718 				continue;
719 			if (ls->ls_recover_submit[i] < lvb_gen)
720 				ls->ls_recover_submit[i] = 0;
721 		}
722 	} else if (lvb_gen < start_gen) {
723 		/*
724 		 * Failed slots before start_gen are not yet set in lvb.
725 		 */
726 		for (i = 0; i < recover_size; i++) {
727 			if (!ls->ls_recover_submit[i])
728 				continue;
729 			if (ls->ls_recover_submit[i] < start_gen) {
730 				ls->ls_recover_submit[i] = 0;
731 				__set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
732 			}
733 		}
734 		/* even if there are no bits to set, we need to write the
735 		   latest generation to the lvb */
736 		write_lvb = 1;
737 	} else {
738 		/*
739 		 * we should be getting a recover_done() for lvb_gen soon
740 		 */
741 	}
742 	spin_unlock(&ls->ls_recover_spin);
743 
744 	if (write_lvb) {
745 		control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
746 		flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
747 	} else {
748 		flags = DLM_LKF_CONVERT;
749 	}
750 
751 	error = control_lock(sdp, DLM_LOCK_NL, flags);
752 	if (error) {
753 		fs_err(sdp, "control lock NL error %d\n", error);
754 		return;
755 	}
756 
757 	/*
758 	 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
759 	 * and clear a jid bit in the lvb if the recovery is a success.
760 	 * Eventually all journals will be recovered, all jid bits will
761 	 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
762 	 */
763 
764 	for (i = 0; i < recover_size; i++) {
765 		if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
766 			fs_info(sdp, "recover generation %u jid %d\n",
767 				start_gen, i);
768 			gfs2_recover_set(sdp, i);
769 			recover_set++;
770 		}
771 	}
772 	if (recover_set)
773 		return;
774 
775 	/*
776 	 * No more jid bits set in lvb, all recovery is done, unblock locks
777 	 * (unless a new recover_prep callback has occured blocking locks
778 	 * again while working above)
779 	 */
780 
781 	spin_lock(&ls->ls_recover_spin);
782 	if (ls->ls_recover_block == block_gen &&
783 	    ls->ls_recover_start == start_gen) {
784 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
785 		spin_unlock(&ls->ls_recover_spin);
786 		fs_info(sdp, "recover generation %u done\n", start_gen);
787 		gfs2_glock_thaw(sdp);
788 	} else {
789 		fs_info(sdp, "recover generation %u block2 %u %u\n",
790 			start_gen, block_gen, ls->ls_recover_block);
791 		spin_unlock(&ls->ls_recover_spin);
792 	}
793 }
794 
control_mount(struct gfs2_sbd * sdp)795 static int control_mount(struct gfs2_sbd *sdp)
796 {
797 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
798 	uint32_t start_gen, block_gen, mount_gen, lvb_gen;
799 	int mounted_mode;
800 	int retries = 0;
801 	int error;
802 
803 	memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
804 	memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
805 	memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
806 	ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
807 	init_completion(&ls->ls_sync_wait);
808 
809 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
810 
811 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
812 	if (error) {
813 		fs_err(sdp, "control_mount control_lock NL error %d\n", error);
814 		return error;
815 	}
816 
817 	error = mounted_lock(sdp, DLM_LOCK_NL, 0);
818 	if (error) {
819 		fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
820 		control_unlock(sdp);
821 		return error;
822 	}
823 	mounted_mode = DLM_LOCK_NL;
824 
825 restart:
826 	if (retries++ && signal_pending(current)) {
827 		error = -EINTR;
828 		goto fail;
829 	}
830 
831 	/*
832 	 * We always start with both locks in NL. control_lock is
833 	 * demoted to NL below so we don't need to do it here.
834 	 */
835 
836 	if (mounted_mode != DLM_LOCK_NL) {
837 		error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
838 		if (error)
839 			goto fail;
840 		mounted_mode = DLM_LOCK_NL;
841 	}
842 
843 	/*
844 	 * Other nodes need to do some work in dlm recovery and gfs2_control
845 	 * before the recover_done and control_lock will be ready for us below.
846 	 * A delay here is not required but often avoids having to retry.
847 	 */
848 
849 	msleep_interruptible(500);
850 
851 	/*
852 	 * Acquire control_lock in EX and mounted_lock in either EX or PR.
853 	 * control_lock lvb keeps track of any pending journal recoveries.
854 	 * mounted_lock indicates if any other nodes have the fs mounted.
855 	 */
856 
857 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
858 	if (error == -EAGAIN) {
859 		goto restart;
860 	} else if (error) {
861 		fs_err(sdp, "control_mount control_lock EX error %d\n", error);
862 		goto fail;
863 	}
864 
865 	/**
866 	 * If we're a spectator, we don't want to take the lock in EX because
867 	 * we cannot do the first-mount responsibility it implies: recovery.
868 	 */
869 	if (sdp->sd_args.ar_spectator)
870 		goto locks_done;
871 
872 	error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
873 	if (!error) {
874 		mounted_mode = DLM_LOCK_EX;
875 		goto locks_done;
876 	} else if (error != -EAGAIN) {
877 		fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
878 		goto fail;
879 	}
880 
881 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
882 	if (!error) {
883 		mounted_mode = DLM_LOCK_PR;
884 		goto locks_done;
885 	} else {
886 		/* not even -EAGAIN should happen here */
887 		fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
888 		goto fail;
889 	}
890 
891 locks_done:
892 	/*
893 	 * If we got both locks above in EX, then we're the first mounter.
894 	 * If not, then we need to wait for the control_lock lvb to be
895 	 * updated by other mounted nodes to reflect our mount generation.
896 	 *
897 	 * In simple first mounter cases, first mounter will see zero lvb_gen,
898 	 * but in cases where all existing nodes leave/fail before mounting
899 	 * nodes finish control_mount, then all nodes will be mounting and
900 	 * lvb_gen will be non-zero.
901 	 */
902 
903 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
904 
905 	if (lvb_gen == 0xFFFFFFFF) {
906 		/* special value to force mount attempts to fail */
907 		fs_err(sdp, "control_mount control_lock disabled\n");
908 		error = -EINVAL;
909 		goto fail;
910 	}
911 
912 	if (mounted_mode == DLM_LOCK_EX) {
913 		/* first mounter, keep both EX while doing first recovery */
914 		spin_lock(&ls->ls_recover_spin);
915 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
916 		set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
917 		set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
918 		spin_unlock(&ls->ls_recover_spin);
919 		fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
920 		return 0;
921 	}
922 
923 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
924 	if (error)
925 		goto fail;
926 
927 	/*
928 	 * We are not first mounter, now we need to wait for the control_lock
929 	 * lvb generation to be >= the generation from our first recover_done
930 	 * and all lvb bits to be clear (no pending journal recoveries.)
931 	 */
932 
933 	if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
934 		/* journals need recovery, wait until all are clear */
935 		fs_info(sdp, "control_mount wait for journal recovery\n");
936 		goto restart;
937 	}
938 
939 	spin_lock(&ls->ls_recover_spin);
940 	block_gen = ls->ls_recover_block;
941 	start_gen = ls->ls_recover_start;
942 	mount_gen = ls->ls_recover_mount;
943 
944 	if (lvb_gen < mount_gen) {
945 		/* wait for mounted nodes to update control_lock lvb to our
946 		   generation, which might include new recovery bits set */
947 		if (sdp->sd_args.ar_spectator) {
948 			fs_info(sdp, "Recovery is required. Waiting for a "
949 				"non-spectator to mount.\n");
950 			msleep_interruptible(1000);
951 		} else {
952 			fs_info(sdp, "control_mount wait1 block %u start %u "
953 				"mount %u lvb %u flags %lx\n", block_gen,
954 				start_gen, mount_gen, lvb_gen,
955 				ls->ls_recover_flags);
956 		}
957 		spin_unlock(&ls->ls_recover_spin);
958 		goto restart;
959 	}
960 
961 	if (lvb_gen != start_gen) {
962 		/* wait for mounted nodes to update control_lock lvb to the
963 		   latest recovery generation */
964 		fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
965 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
966 			lvb_gen, ls->ls_recover_flags);
967 		spin_unlock(&ls->ls_recover_spin);
968 		goto restart;
969 	}
970 
971 	if (block_gen == start_gen) {
972 		/* dlm recovery in progress, wait for it to finish */
973 		fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
974 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
975 			lvb_gen, ls->ls_recover_flags);
976 		spin_unlock(&ls->ls_recover_spin);
977 		goto restart;
978 	}
979 
980 	clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
981 	set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
982 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
983 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
984 	spin_unlock(&ls->ls_recover_spin);
985 	return 0;
986 
987 fail:
988 	mounted_unlock(sdp);
989 	control_unlock(sdp);
990 	return error;
991 }
992 
control_first_done(struct gfs2_sbd * sdp)993 static int control_first_done(struct gfs2_sbd *sdp)
994 {
995 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
996 	uint32_t start_gen, block_gen;
997 	int error;
998 
999 restart:
1000 	spin_lock(&ls->ls_recover_spin);
1001 	start_gen = ls->ls_recover_start;
1002 	block_gen = ls->ls_recover_block;
1003 
1004 	if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
1005 	    !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1006 	    !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1007 		/* sanity check, should not happen */
1008 		fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
1009 		       start_gen, block_gen, ls->ls_recover_flags);
1010 		spin_unlock(&ls->ls_recover_spin);
1011 		control_unlock(sdp);
1012 		return -1;
1013 	}
1014 
1015 	if (start_gen == block_gen) {
1016 		/*
1017 		 * Wait for the end of a dlm recovery cycle to switch from
1018 		 * first mounter recovery.  We can ignore any recover_slot
1019 		 * callbacks between the recover_prep and next recover_done
1020 		 * because we are still the first mounter and any failed nodes
1021 		 * have not fully mounted, so they don't need recovery.
1022 		 */
1023 		spin_unlock(&ls->ls_recover_spin);
1024 		fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
1025 
1026 		wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
1027 			    TASK_UNINTERRUPTIBLE);
1028 		goto restart;
1029 	}
1030 
1031 	clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1032 	set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
1033 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1034 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1035 	spin_unlock(&ls->ls_recover_spin);
1036 
1037 	memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
1038 	control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
1039 
1040 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1041 	if (error)
1042 		fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1043 
1044 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1045 	if (error)
1046 		fs_err(sdp, "control_first_done control NL error %d\n", error);
1047 
1048 	return error;
1049 }
1050 
1051 /*
1052  * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1053  * to accommodate the largest slot number.  (NB dlm slot numbers start at 1,
1054  * gfs2 jids start at 0, so jid = slot - 1)
1055  */
1056 
1057 #define RECOVER_SIZE_INC 16
1058 
set_recover_size(struct gfs2_sbd * sdp,struct dlm_slot * slots,int num_slots)1059 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1060 			    int num_slots)
1061 {
1062 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1063 	uint32_t *submit = NULL;
1064 	uint32_t *result = NULL;
1065 	uint32_t old_size, new_size;
1066 	int i, max_jid;
1067 
1068 	if (!ls->ls_lvb_bits) {
1069 		ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1070 		if (!ls->ls_lvb_bits)
1071 			return -ENOMEM;
1072 	}
1073 
1074 	max_jid = 0;
1075 	for (i = 0; i < num_slots; i++) {
1076 		if (max_jid < slots[i].slot - 1)
1077 			max_jid = slots[i].slot - 1;
1078 	}
1079 
1080 	old_size = ls->ls_recover_size;
1081 	new_size = old_size;
1082 	while (new_size < max_jid + 1)
1083 		new_size += RECOVER_SIZE_INC;
1084 	if (new_size == old_size)
1085 		return 0;
1086 
1087 	submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1088 	result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1089 	if (!submit || !result) {
1090 		kfree(submit);
1091 		kfree(result);
1092 		return -ENOMEM;
1093 	}
1094 
1095 	spin_lock(&ls->ls_recover_spin);
1096 	memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1097 	memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1098 	kfree(ls->ls_recover_submit);
1099 	kfree(ls->ls_recover_result);
1100 	ls->ls_recover_submit = submit;
1101 	ls->ls_recover_result = result;
1102 	ls->ls_recover_size = new_size;
1103 	spin_unlock(&ls->ls_recover_spin);
1104 	return 0;
1105 }
1106 
free_recover_size(struct lm_lockstruct * ls)1107 static void free_recover_size(struct lm_lockstruct *ls)
1108 {
1109 	kfree(ls->ls_lvb_bits);
1110 	kfree(ls->ls_recover_submit);
1111 	kfree(ls->ls_recover_result);
1112 	ls->ls_recover_submit = NULL;
1113 	ls->ls_recover_result = NULL;
1114 	ls->ls_recover_size = 0;
1115 	ls->ls_lvb_bits = NULL;
1116 }
1117 
1118 /* dlm calls before it does lock recovery */
1119 
gdlm_recover_prep(void * arg)1120 static void gdlm_recover_prep(void *arg)
1121 {
1122 	struct gfs2_sbd *sdp = arg;
1123 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1124 
1125 	if (gfs2_withdrawn(sdp)) {
1126 		fs_err(sdp, "recover_prep ignored due to withdraw.\n");
1127 		return;
1128 	}
1129 	spin_lock(&ls->ls_recover_spin);
1130 	ls->ls_recover_block = ls->ls_recover_start;
1131 	set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1132 
1133 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1134 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1135 		spin_unlock(&ls->ls_recover_spin);
1136 		return;
1137 	}
1138 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1139 	spin_unlock(&ls->ls_recover_spin);
1140 }
1141 
1142 /* dlm calls after recover_prep has been completed on all lockspace members;
1143    identifies slot/jid of failed member */
1144 
gdlm_recover_slot(void * arg,struct dlm_slot * slot)1145 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1146 {
1147 	struct gfs2_sbd *sdp = arg;
1148 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1149 	int jid = slot->slot - 1;
1150 
1151 	if (gfs2_withdrawn(sdp)) {
1152 		fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n",
1153 		       jid);
1154 		return;
1155 	}
1156 	spin_lock(&ls->ls_recover_spin);
1157 	if (ls->ls_recover_size < jid + 1) {
1158 		fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1159 		       jid, ls->ls_recover_block, ls->ls_recover_size);
1160 		spin_unlock(&ls->ls_recover_spin);
1161 		return;
1162 	}
1163 
1164 	if (ls->ls_recover_submit[jid]) {
1165 		fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1166 			jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1167 	}
1168 	ls->ls_recover_submit[jid] = ls->ls_recover_block;
1169 	spin_unlock(&ls->ls_recover_spin);
1170 }
1171 
1172 /* dlm calls after recover_slot and after it completes lock recovery */
1173 
gdlm_recover_done(void * arg,struct dlm_slot * slots,int num_slots,int our_slot,uint32_t generation)1174 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1175 			      int our_slot, uint32_t generation)
1176 {
1177 	struct gfs2_sbd *sdp = arg;
1178 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1179 
1180 	if (gfs2_withdrawn(sdp)) {
1181 		fs_err(sdp, "recover_done ignored due to withdraw.\n");
1182 		return;
1183 	}
1184 	/* ensure the ls jid arrays are large enough */
1185 	set_recover_size(sdp, slots, num_slots);
1186 
1187 	spin_lock(&ls->ls_recover_spin);
1188 	ls->ls_recover_start = generation;
1189 
1190 	if (!ls->ls_recover_mount) {
1191 		ls->ls_recover_mount = generation;
1192 		ls->ls_jid = our_slot - 1;
1193 	}
1194 
1195 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1196 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1197 
1198 	clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1199 	smp_mb__after_atomic();
1200 	wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1201 	spin_unlock(&ls->ls_recover_spin);
1202 }
1203 
1204 /* gfs2_recover thread has a journal recovery result */
1205 
gdlm_recovery_result(struct gfs2_sbd * sdp,unsigned int jid,unsigned int result)1206 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1207 				 unsigned int result)
1208 {
1209 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1210 
1211 	if (gfs2_withdrawn(sdp)) {
1212 		fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n",
1213 		       jid);
1214 		return;
1215 	}
1216 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1217 		return;
1218 
1219 	/* don't care about the recovery of own journal during mount */
1220 	if (jid == ls->ls_jid)
1221 		return;
1222 
1223 	spin_lock(&ls->ls_recover_spin);
1224 	if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1225 		spin_unlock(&ls->ls_recover_spin);
1226 		return;
1227 	}
1228 	if (ls->ls_recover_size < jid + 1) {
1229 		fs_err(sdp, "recovery_result jid %d short size %d\n",
1230 		       jid, ls->ls_recover_size);
1231 		spin_unlock(&ls->ls_recover_spin);
1232 		return;
1233 	}
1234 
1235 	fs_info(sdp, "recover jid %d result %s\n", jid,
1236 		result == LM_RD_GAVEUP ? "busy" : "success");
1237 
1238 	ls->ls_recover_result[jid] = result;
1239 
1240 	/* GAVEUP means another node is recovering the journal; delay our
1241 	   next attempt to recover it, to give the other node a chance to
1242 	   finish before trying again */
1243 
1244 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1245 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1246 				   result == LM_RD_GAVEUP ? HZ : 0);
1247 	spin_unlock(&ls->ls_recover_spin);
1248 }
1249 
1250 static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1251 	.recover_prep = gdlm_recover_prep,
1252 	.recover_slot = gdlm_recover_slot,
1253 	.recover_done = gdlm_recover_done,
1254 };
1255 
gdlm_mount(struct gfs2_sbd * sdp,const char * table)1256 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1257 {
1258 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1259 	char cluster[GFS2_LOCKNAME_LEN];
1260 	const char *fsname;
1261 	uint32_t flags;
1262 	int error, ops_result;
1263 
1264 	/*
1265 	 * initialize everything
1266 	 */
1267 
1268 	INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1269 	spin_lock_init(&ls->ls_recover_spin);
1270 	ls->ls_recover_flags = 0;
1271 	ls->ls_recover_mount = 0;
1272 	ls->ls_recover_start = 0;
1273 	ls->ls_recover_block = 0;
1274 	ls->ls_recover_size = 0;
1275 	ls->ls_recover_submit = NULL;
1276 	ls->ls_recover_result = NULL;
1277 	ls->ls_lvb_bits = NULL;
1278 
1279 	error = set_recover_size(sdp, NULL, 0);
1280 	if (error)
1281 		goto fail;
1282 
1283 	/*
1284 	 * prepare dlm_new_lockspace args
1285 	 */
1286 
1287 	fsname = strchr(table, ':');
1288 	if (!fsname) {
1289 		fs_info(sdp, "no fsname found\n");
1290 		error = -EINVAL;
1291 		goto fail_free;
1292 	}
1293 	memset(cluster, 0, sizeof(cluster));
1294 	memcpy(cluster, table, strlen(table) - strlen(fsname));
1295 	fsname++;
1296 
1297 	flags = DLM_LSFL_NEWEXCL;
1298 
1299 	/*
1300 	 * create/join lockspace
1301 	 */
1302 
1303 	error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1304 				  &gdlm_lockspace_ops, sdp, &ops_result,
1305 				  &ls->ls_dlm);
1306 	if (error) {
1307 		fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1308 		goto fail_free;
1309 	}
1310 
1311 	if (ops_result < 0) {
1312 		/*
1313 		 * dlm does not support ops callbacks,
1314 		 * old dlm_controld/gfs_controld are used, try without ops.
1315 		 */
1316 		fs_info(sdp, "dlm lockspace ops not used\n");
1317 		free_recover_size(ls);
1318 		set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1319 		return 0;
1320 	}
1321 
1322 	if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1323 		fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1324 		error = -EINVAL;
1325 		goto fail_release;
1326 	}
1327 
1328 	/*
1329 	 * control_mount() uses control_lock to determine first mounter,
1330 	 * and for later mounts, waits for any recoveries to be cleared.
1331 	 */
1332 
1333 	error = control_mount(sdp);
1334 	if (error) {
1335 		fs_err(sdp, "mount control error %d\n", error);
1336 		goto fail_release;
1337 	}
1338 
1339 	ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1340 	clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1341 	smp_mb__after_atomic();
1342 	wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1343 	return 0;
1344 
1345 fail_release:
1346 	dlm_release_lockspace(ls->ls_dlm, 2);
1347 fail_free:
1348 	free_recover_size(ls);
1349 fail:
1350 	return error;
1351 }
1352 
gdlm_first_done(struct gfs2_sbd * sdp)1353 static void gdlm_first_done(struct gfs2_sbd *sdp)
1354 {
1355 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1356 	int error;
1357 
1358 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1359 		return;
1360 
1361 	error = control_first_done(sdp);
1362 	if (error)
1363 		fs_err(sdp, "mount first_done error %d\n", error);
1364 }
1365 
gdlm_unmount(struct gfs2_sbd * sdp)1366 static void gdlm_unmount(struct gfs2_sbd *sdp)
1367 {
1368 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1369 
1370 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1371 		goto release;
1372 
1373 	/* wait for gfs2_control_wq to be done with this mount */
1374 
1375 	spin_lock(&ls->ls_recover_spin);
1376 	set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1377 	spin_unlock(&ls->ls_recover_spin);
1378 	flush_delayed_work(&sdp->sd_control_work);
1379 
1380 	/* mounted_lock and control_lock will be purged in dlm recovery */
1381 release:
1382 	if (ls->ls_dlm) {
1383 		dlm_release_lockspace(ls->ls_dlm, 2);
1384 		ls->ls_dlm = NULL;
1385 	}
1386 
1387 	free_recover_size(ls);
1388 }
1389 
1390 static const match_table_t dlm_tokens = {
1391 	{ Opt_jid, "jid=%d"},
1392 	{ Opt_id, "id=%d"},
1393 	{ Opt_first, "first=%d"},
1394 	{ Opt_nodir, "nodir=%d"},
1395 	{ Opt_err, NULL },
1396 };
1397 
1398 const struct lm_lockops gfs2_dlm_ops = {
1399 	.lm_proto_name = "lock_dlm",
1400 	.lm_mount = gdlm_mount,
1401 	.lm_first_done = gdlm_first_done,
1402 	.lm_recovery_result = gdlm_recovery_result,
1403 	.lm_unmount = gdlm_unmount,
1404 	.lm_put_lock = gdlm_put_lock,
1405 	.lm_lock = gdlm_lock,
1406 	.lm_cancel = gdlm_cancel,
1407 	.lm_tokens = &dlm_tokens,
1408 };
1409 
1410