1 // SPDX-License-Identifier: GPL-2.0
2 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
3 * sungem.c: Sun GEM ethernet driver.
4 *
5 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6 *
7 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
8 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
9 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
10 *
11 * NAPI and NETPOLL support
12 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
13 *
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/fcntl.h>
22 #include <linux/interrupt.h>
23 #include <linux/ioport.h>
24 #include <linux/in.h>
25 #include <linux/sched.h>
26 #include <linux/string.h>
27 #include <linux/delay.h>
28 #include <linux/errno.h>
29 #include <linux/pci.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/mii.h>
35 #include <linux/ethtool.h>
36 #include <linux/crc32.h>
37 #include <linux/random.h>
38 #include <linux/workqueue.h>
39 #include <linux/if_vlan.h>
40 #include <linux/bitops.h>
41 #include <linux/mm.h>
42 #include <linux/gfp.h>
43 #include <linux/of.h>
44
45 #include <asm/io.h>
46 #include <asm/byteorder.h>
47 #include <linux/uaccess.h>
48 #include <asm/irq.h>
49
50 #ifdef CONFIG_SPARC
51 #include <asm/idprom.h>
52 #include <asm/prom.h>
53 #endif
54
55 #ifdef CONFIG_PPC_PMAC
56 #include <asm/machdep.h>
57 #include <asm/pmac_feature.h>
58 #endif
59
60 #include <linux/sungem_phy.h>
61 #include "sungem.h"
62
63 #define STRIP_FCS
64
65 #define DEFAULT_MSG (NETIF_MSG_DRV | \
66 NETIF_MSG_PROBE | \
67 NETIF_MSG_LINK)
68
69 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
70 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
71 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
72 SUPPORTED_Pause | SUPPORTED_Autoneg)
73
74 #define DRV_NAME "sungem"
75 #define DRV_VERSION "1.0"
76 #define DRV_AUTHOR "David S. Miller <davem@redhat.com>"
77
78 static char version[] =
79 DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
80
81 MODULE_AUTHOR(DRV_AUTHOR);
82 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
83 MODULE_LICENSE("GPL");
84
85 #define GEM_MODULE_NAME "gem"
86
87 static const struct pci_device_id gem_pci_tbl[] = {
88 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
89 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
90
91 /* These models only differ from the original GEM in
92 * that their tx/rx fifos are of a different size and
93 * they only support 10/100 speeds. -DaveM
94 *
95 * Apple's GMAC does support gigabit on machines with
96 * the BCM54xx PHYs. -BenH
97 */
98 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
99 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
100 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
101 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
102 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
103 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
104 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
105 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
106 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
107 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
108 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
109 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
110 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
111 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
112 {0, }
113 };
114
115 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
116
__sungem_phy_read(struct gem * gp,int phy_addr,int reg)117 static u16 __sungem_phy_read(struct gem *gp, int phy_addr, int reg)
118 {
119 u32 cmd;
120 int limit = 10000;
121
122 cmd = (1 << 30);
123 cmd |= (2 << 28);
124 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
125 cmd |= (reg << 18) & MIF_FRAME_REGAD;
126 cmd |= (MIF_FRAME_TAMSB);
127 writel(cmd, gp->regs + MIF_FRAME);
128
129 while (--limit) {
130 cmd = readl(gp->regs + MIF_FRAME);
131 if (cmd & MIF_FRAME_TALSB)
132 break;
133
134 udelay(10);
135 }
136
137 if (!limit)
138 cmd = 0xffff;
139
140 return cmd & MIF_FRAME_DATA;
141 }
142
_sungem_phy_read(struct net_device * dev,int mii_id,int reg)143 static inline int _sungem_phy_read(struct net_device *dev, int mii_id, int reg)
144 {
145 struct gem *gp = netdev_priv(dev);
146 return __sungem_phy_read(gp, mii_id, reg);
147 }
148
sungem_phy_read(struct gem * gp,int reg)149 static inline u16 sungem_phy_read(struct gem *gp, int reg)
150 {
151 return __sungem_phy_read(gp, gp->mii_phy_addr, reg);
152 }
153
__sungem_phy_write(struct gem * gp,int phy_addr,int reg,u16 val)154 static void __sungem_phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
155 {
156 u32 cmd;
157 int limit = 10000;
158
159 cmd = (1 << 30);
160 cmd |= (1 << 28);
161 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
162 cmd |= (reg << 18) & MIF_FRAME_REGAD;
163 cmd |= (MIF_FRAME_TAMSB);
164 cmd |= (val & MIF_FRAME_DATA);
165 writel(cmd, gp->regs + MIF_FRAME);
166
167 while (limit--) {
168 cmd = readl(gp->regs + MIF_FRAME);
169 if (cmd & MIF_FRAME_TALSB)
170 break;
171
172 udelay(10);
173 }
174 }
175
_sungem_phy_write(struct net_device * dev,int mii_id,int reg,int val)176 static inline void _sungem_phy_write(struct net_device *dev, int mii_id, int reg, int val)
177 {
178 struct gem *gp = netdev_priv(dev);
179 __sungem_phy_write(gp, mii_id, reg, val & 0xffff);
180 }
181
sungem_phy_write(struct gem * gp,int reg,u16 val)182 static inline void sungem_phy_write(struct gem *gp, int reg, u16 val)
183 {
184 __sungem_phy_write(gp, gp->mii_phy_addr, reg, val);
185 }
186
gem_enable_ints(struct gem * gp)187 static inline void gem_enable_ints(struct gem *gp)
188 {
189 /* Enable all interrupts but TXDONE */
190 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
191 }
192
gem_disable_ints(struct gem * gp)193 static inline void gem_disable_ints(struct gem *gp)
194 {
195 /* Disable all interrupts, including TXDONE */
196 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
197 (void)readl(gp->regs + GREG_IMASK); /* write posting */
198 }
199
gem_get_cell(struct gem * gp)200 static void gem_get_cell(struct gem *gp)
201 {
202 BUG_ON(gp->cell_enabled < 0);
203 gp->cell_enabled++;
204 #ifdef CONFIG_PPC_PMAC
205 if (gp->cell_enabled == 1) {
206 mb();
207 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
208 udelay(10);
209 }
210 #endif /* CONFIG_PPC_PMAC */
211 }
212
213 /* Turn off the chip's clock */
gem_put_cell(struct gem * gp)214 static void gem_put_cell(struct gem *gp)
215 {
216 BUG_ON(gp->cell_enabled <= 0);
217 gp->cell_enabled--;
218 #ifdef CONFIG_PPC_PMAC
219 if (gp->cell_enabled == 0) {
220 mb();
221 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
222 udelay(10);
223 }
224 #endif /* CONFIG_PPC_PMAC */
225 }
226
gem_netif_stop(struct gem * gp)227 static inline void gem_netif_stop(struct gem *gp)
228 {
229 netif_trans_update(gp->dev); /* prevent tx timeout */
230 napi_disable(&gp->napi);
231 netif_tx_disable(gp->dev);
232 }
233
gem_netif_start(struct gem * gp)234 static inline void gem_netif_start(struct gem *gp)
235 {
236 /* NOTE: unconditional netif_wake_queue is only
237 * appropriate so long as all callers are assured to
238 * have free tx slots.
239 */
240 netif_wake_queue(gp->dev);
241 napi_enable(&gp->napi);
242 }
243
gem_schedule_reset(struct gem * gp)244 static void gem_schedule_reset(struct gem *gp)
245 {
246 gp->reset_task_pending = 1;
247 schedule_work(&gp->reset_task);
248 }
249
gem_handle_mif_event(struct gem * gp,u32 reg_val,u32 changed_bits)250 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
251 {
252 if (netif_msg_intr(gp))
253 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
254 }
255
gem_pcs_interrupt(struct net_device * dev,struct gem * gp,u32 gem_status)256 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
257 {
258 u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
259 u32 pcs_miistat;
260
261 if (netif_msg_intr(gp))
262 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
263 gp->dev->name, pcs_istat);
264
265 if (!(pcs_istat & PCS_ISTAT_LSC)) {
266 netdev_err(dev, "PCS irq but no link status change???\n");
267 return 0;
268 }
269
270 /* The link status bit latches on zero, so you must
271 * read it twice in such a case to see a transition
272 * to the link being up.
273 */
274 pcs_miistat = readl(gp->regs + PCS_MIISTAT);
275 if (!(pcs_miistat & PCS_MIISTAT_LS))
276 pcs_miistat |=
277 (readl(gp->regs + PCS_MIISTAT) &
278 PCS_MIISTAT_LS);
279
280 if (pcs_miistat & PCS_MIISTAT_ANC) {
281 /* The remote-fault indication is only valid
282 * when autoneg has completed.
283 */
284 if (pcs_miistat & PCS_MIISTAT_RF)
285 netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
286 else
287 netdev_info(dev, "PCS AutoNEG complete\n");
288 }
289
290 if (pcs_miistat & PCS_MIISTAT_LS) {
291 netdev_info(dev, "PCS link is now up\n");
292 netif_carrier_on(gp->dev);
293 } else {
294 netdev_info(dev, "PCS link is now down\n");
295 netif_carrier_off(gp->dev);
296 /* If this happens and the link timer is not running,
297 * reset so we re-negotiate.
298 */
299 if (!timer_pending(&gp->link_timer))
300 return 1;
301 }
302
303 return 0;
304 }
305
gem_txmac_interrupt(struct net_device * dev,struct gem * gp,u32 gem_status)306 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
307 {
308 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
309
310 if (netif_msg_intr(gp))
311 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
312 gp->dev->name, txmac_stat);
313
314 /* Defer timer expiration is quite normal,
315 * don't even log the event.
316 */
317 if ((txmac_stat & MAC_TXSTAT_DTE) &&
318 !(txmac_stat & ~MAC_TXSTAT_DTE))
319 return 0;
320
321 if (txmac_stat & MAC_TXSTAT_URUN) {
322 netdev_err(dev, "TX MAC xmit underrun\n");
323 dev->stats.tx_fifo_errors++;
324 }
325
326 if (txmac_stat & MAC_TXSTAT_MPE) {
327 netdev_err(dev, "TX MAC max packet size error\n");
328 dev->stats.tx_errors++;
329 }
330
331 /* The rest are all cases of one of the 16-bit TX
332 * counters expiring.
333 */
334 if (txmac_stat & MAC_TXSTAT_NCE)
335 dev->stats.collisions += 0x10000;
336
337 if (txmac_stat & MAC_TXSTAT_ECE) {
338 dev->stats.tx_aborted_errors += 0x10000;
339 dev->stats.collisions += 0x10000;
340 }
341
342 if (txmac_stat & MAC_TXSTAT_LCE) {
343 dev->stats.tx_aborted_errors += 0x10000;
344 dev->stats.collisions += 0x10000;
345 }
346
347 /* We do not keep track of MAC_TXSTAT_FCE and
348 * MAC_TXSTAT_PCE events.
349 */
350 return 0;
351 }
352
353 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
354 * so we do the following.
355 *
356 * If any part of the reset goes wrong, we return 1 and that causes the
357 * whole chip to be reset.
358 */
gem_rxmac_reset(struct gem * gp)359 static int gem_rxmac_reset(struct gem *gp)
360 {
361 struct net_device *dev = gp->dev;
362 int limit, i;
363 u64 desc_dma;
364 u32 val;
365
366 /* First, reset & disable MAC RX. */
367 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
368 for (limit = 0; limit < 5000; limit++) {
369 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
370 break;
371 udelay(10);
372 }
373 if (limit == 5000) {
374 netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
375 return 1;
376 }
377
378 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
379 gp->regs + MAC_RXCFG);
380 for (limit = 0; limit < 5000; limit++) {
381 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
382 break;
383 udelay(10);
384 }
385 if (limit == 5000) {
386 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
387 return 1;
388 }
389
390 /* Second, disable RX DMA. */
391 writel(0, gp->regs + RXDMA_CFG);
392 for (limit = 0; limit < 5000; limit++) {
393 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
394 break;
395 udelay(10);
396 }
397 if (limit == 5000) {
398 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
399 return 1;
400 }
401
402 mdelay(5);
403
404 /* Execute RX reset command. */
405 writel(gp->swrst_base | GREG_SWRST_RXRST,
406 gp->regs + GREG_SWRST);
407 for (limit = 0; limit < 5000; limit++) {
408 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
409 break;
410 udelay(10);
411 }
412 if (limit == 5000) {
413 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
414 return 1;
415 }
416
417 /* Refresh the RX ring. */
418 for (i = 0; i < RX_RING_SIZE; i++) {
419 struct gem_rxd *rxd = &gp->init_block->rxd[i];
420
421 if (gp->rx_skbs[i] == NULL) {
422 netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
423 return 1;
424 }
425
426 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
427 }
428 gp->rx_new = gp->rx_old = 0;
429
430 /* Now we must reprogram the rest of RX unit. */
431 desc_dma = (u64) gp->gblock_dvma;
432 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
433 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
434 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
435 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
436 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
437 (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
438 writel(val, gp->regs + RXDMA_CFG);
439 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
440 writel(((5 & RXDMA_BLANK_IPKTS) |
441 ((8 << 12) & RXDMA_BLANK_ITIME)),
442 gp->regs + RXDMA_BLANK);
443 else
444 writel(((5 & RXDMA_BLANK_IPKTS) |
445 ((4 << 12) & RXDMA_BLANK_ITIME)),
446 gp->regs + RXDMA_BLANK);
447 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
448 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
449 writel(val, gp->regs + RXDMA_PTHRESH);
450 val = readl(gp->regs + RXDMA_CFG);
451 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
452 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
453 val = readl(gp->regs + MAC_RXCFG);
454 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
455
456 return 0;
457 }
458
gem_rxmac_interrupt(struct net_device * dev,struct gem * gp,u32 gem_status)459 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
460 {
461 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
462 int ret = 0;
463
464 if (netif_msg_intr(gp))
465 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
466 gp->dev->name, rxmac_stat);
467
468 if (rxmac_stat & MAC_RXSTAT_OFLW) {
469 u32 smac = readl(gp->regs + MAC_SMACHINE);
470
471 netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
472 dev->stats.rx_over_errors++;
473 dev->stats.rx_fifo_errors++;
474
475 ret = gem_rxmac_reset(gp);
476 }
477
478 if (rxmac_stat & MAC_RXSTAT_ACE)
479 dev->stats.rx_frame_errors += 0x10000;
480
481 if (rxmac_stat & MAC_RXSTAT_CCE)
482 dev->stats.rx_crc_errors += 0x10000;
483
484 if (rxmac_stat & MAC_RXSTAT_LCE)
485 dev->stats.rx_length_errors += 0x10000;
486
487 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
488 * events.
489 */
490 return ret;
491 }
492
gem_mac_interrupt(struct net_device * dev,struct gem * gp,u32 gem_status)493 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
494 {
495 u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
496
497 if (netif_msg_intr(gp))
498 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
499 gp->dev->name, mac_cstat);
500
501 /* This interrupt is just for pause frame and pause
502 * tracking. It is useful for diagnostics and debug
503 * but probably by default we will mask these events.
504 */
505 if (mac_cstat & MAC_CSTAT_PS)
506 gp->pause_entered++;
507
508 if (mac_cstat & MAC_CSTAT_PRCV)
509 gp->pause_last_time_recvd = (mac_cstat >> 16);
510
511 return 0;
512 }
513
gem_mif_interrupt(struct net_device * dev,struct gem * gp,u32 gem_status)514 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
515 {
516 u32 mif_status = readl(gp->regs + MIF_STATUS);
517 u32 reg_val, changed_bits;
518
519 reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
520 changed_bits = (mif_status & MIF_STATUS_STAT);
521
522 gem_handle_mif_event(gp, reg_val, changed_bits);
523
524 return 0;
525 }
526
gem_pci_interrupt(struct net_device * dev,struct gem * gp,u32 gem_status)527 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
528 {
529 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
530
531 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
532 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
533 netdev_err(dev, "PCI error [%04x]", pci_estat);
534
535 if (pci_estat & GREG_PCIESTAT_BADACK)
536 pr_cont(" <No ACK64# during ABS64 cycle>");
537 if (pci_estat & GREG_PCIESTAT_DTRTO)
538 pr_cont(" <Delayed transaction timeout>");
539 if (pci_estat & GREG_PCIESTAT_OTHER)
540 pr_cont(" <other>");
541 pr_cont("\n");
542 } else {
543 pci_estat |= GREG_PCIESTAT_OTHER;
544 netdev_err(dev, "PCI error\n");
545 }
546
547 if (pci_estat & GREG_PCIESTAT_OTHER) {
548 int pci_errs;
549
550 /* Interrogate PCI config space for the
551 * true cause.
552 */
553 pci_errs = pci_status_get_and_clear_errors(gp->pdev);
554 netdev_err(dev, "PCI status errors[%04x]\n", pci_errs);
555 if (pci_errs & PCI_STATUS_PARITY)
556 netdev_err(dev, "PCI parity error detected\n");
557 if (pci_errs & PCI_STATUS_SIG_TARGET_ABORT)
558 netdev_err(dev, "PCI target abort\n");
559 if (pci_errs & PCI_STATUS_REC_TARGET_ABORT)
560 netdev_err(dev, "PCI master acks target abort\n");
561 if (pci_errs & PCI_STATUS_REC_MASTER_ABORT)
562 netdev_err(dev, "PCI master abort\n");
563 if (pci_errs & PCI_STATUS_SIG_SYSTEM_ERROR)
564 netdev_err(dev, "PCI system error SERR#\n");
565 if (pci_errs & PCI_STATUS_DETECTED_PARITY)
566 netdev_err(dev, "PCI parity error\n");
567 }
568
569 /* For all PCI errors, we should reset the chip. */
570 return 1;
571 }
572
573 /* All non-normal interrupt conditions get serviced here.
574 * Returns non-zero if we should just exit the interrupt
575 * handler right now (ie. if we reset the card which invalidates
576 * all of the other original irq status bits).
577 */
gem_abnormal_irq(struct net_device * dev,struct gem * gp,u32 gem_status)578 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
579 {
580 if (gem_status & GREG_STAT_RXNOBUF) {
581 /* Frame arrived, no free RX buffers available. */
582 if (netif_msg_rx_err(gp))
583 printk(KERN_DEBUG "%s: no buffer for rx frame\n",
584 gp->dev->name);
585 dev->stats.rx_dropped++;
586 }
587
588 if (gem_status & GREG_STAT_RXTAGERR) {
589 /* corrupt RX tag framing */
590 if (netif_msg_rx_err(gp))
591 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
592 gp->dev->name);
593 dev->stats.rx_errors++;
594
595 return 1;
596 }
597
598 if (gem_status & GREG_STAT_PCS) {
599 if (gem_pcs_interrupt(dev, gp, gem_status))
600 return 1;
601 }
602
603 if (gem_status & GREG_STAT_TXMAC) {
604 if (gem_txmac_interrupt(dev, gp, gem_status))
605 return 1;
606 }
607
608 if (gem_status & GREG_STAT_RXMAC) {
609 if (gem_rxmac_interrupt(dev, gp, gem_status))
610 return 1;
611 }
612
613 if (gem_status & GREG_STAT_MAC) {
614 if (gem_mac_interrupt(dev, gp, gem_status))
615 return 1;
616 }
617
618 if (gem_status & GREG_STAT_MIF) {
619 if (gem_mif_interrupt(dev, gp, gem_status))
620 return 1;
621 }
622
623 if (gem_status & GREG_STAT_PCIERR) {
624 if (gem_pci_interrupt(dev, gp, gem_status))
625 return 1;
626 }
627
628 return 0;
629 }
630
gem_tx(struct net_device * dev,struct gem * gp,u32 gem_status)631 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
632 {
633 int entry, limit;
634
635 entry = gp->tx_old;
636 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
637 while (entry != limit) {
638 struct sk_buff *skb;
639 struct gem_txd *txd;
640 dma_addr_t dma_addr;
641 u32 dma_len;
642 int frag;
643
644 if (netif_msg_tx_done(gp))
645 printk(KERN_DEBUG "%s: tx done, slot %d\n",
646 gp->dev->name, entry);
647 skb = gp->tx_skbs[entry];
648 if (skb_shinfo(skb)->nr_frags) {
649 int last = entry + skb_shinfo(skb)->nr_frags;
650 int walk = entry;
651 int incomplete = 0;
652
653 last &= (TX_RING_SIZE - 1);
654 for (;;) {
655 walk = NEXT_TX(walk);
656 if (walk == limit)
657 incomplete = 1;
658 if (walk == last)
659 break;
660 }
661 if (incomplete)
662 break;
663 }
664 gp->tx_skbs[entry] = NULL;
665 dev->stats.tx_bytes += skb->len;
666
667 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
668 txd = &gp->init_block->txd[entry];
669
670 dma_addr = le64_to_cpu(txd->buffer);
671 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
672
673 dma_unmap_page(&gp->pdev->dev, dma_addr, dma_len,
674 DMA_TO_DEVICE);
675 entry = NEXT_TX(entry);
676 }
677
678 dev->stats.tx_packets++;
679 dev_consume_skb_any(skb);
680 }
681 gp->tx_old = entry;
682
683 /* Need to make the tx_old update visible to gem_start_xmit()
684 * before checking for netif_queue_stopped(). Without the
685 * memory barrier, there is a small possibility that gem_start_xmit()
686 * will miss it and cause the queue to be stopped forever.
687 */
688 smp_mb();
689
690 if (unlikely(netif_queue_stopped(dev) &&
691 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
692 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
693
694 __netif_tx_lock(txq, smp_processor_id());
695 if (netif_queue_stopped(dev) &&
696 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
697 netif_wake_queue(dev);
698 __netif_tx_unlock(txq);
699 }
700 }
701
gem_post_rxds(struct gem * gp,int limit)702 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
703 {
704 int cluster_start, curr, count, kick;
705
706 cluster_start = curr = (gp->rx_new & ~(4 - 1));
707 count = 0;
708 kick = -1;
709 dma_wmb();
710 while (curr != limit) {
711 curr = NEXT_RX(curr);
712 if (++count == 4) {
713 struct gem_rxd *rxd =
714 &gp->init_block->rxd[cluster_start];
715 for (;;) {
716 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
717 rxd++;
718 cluster_start = NEXT_RX(cluster_start);
719 if (cluster_start == curr)
720 break;
721 }
722 kick = curr;
723 count = 0;
724 }
725 }
726 if (kick >= 0) {
727 mb();
728 writel(kick, gp->regs + RXDMA_KICK);
729 }
730 }
731
732 #define ALIGNED_RX_SKB_ADDR(addr) \
733 ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
gem_alloc_skb(struct net_device * dev,int size,gfp_t gfp_flags)734 static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
735 gfp_t gfp_flags)
736 {
737 struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
738
739 if (likely(skb)) {
740 unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
741 skb_reserve(skb, offset);
742 }
743 return skb;
744 }
745
gem_rx(struct gem * gp,int work_to_do)746 static int gem_rx(struct gem *gp, int work_to_do)
747 {
748 struct net_device *dev = gp->dev;
749 int entry, drops, work_done = 0;
750 u32 done;
751
752 if (netif_msg_rx_status(gp))
753 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
754 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
755
756 entry = gp->rx_new;
757 drops = 0;
758 done = readl(gp->regs + RXDMA_DONE);
759 for (;;) {
760 struct gem_rxd *rxd = &gp->init_block->rxd[entry];
761 struct sk_buff *skb;
762 u64 status = le64_to_cpu(rxd->status_word);
763 dma_addr_t dma_addr;
764 int len;
765
766 if ((status & RXDCTRL_OWN) != 0)
767 break;
768
769 if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
770 break;
771
772 /* When writing back RX descriptor, GEM writes status
773 * then buffer address, possibly in separate transactions.
774 * If we don't wait for the chip to write both, we could
775 * post a new buffer to this descriptor then have GEM spam
776 * on the buffer address. We sync on the RX completion
777 * register to prevent this from happening.
778 */
779 if (entry == done) {
780 done = readl(gp->regs + RXDMA_DONE);
781 if (entry == done)
782 break;
783 }
784
785 /* We can now account for the work we're about to do */
786 work_done++;
787
788 skb = gp->rx_skbs[entry];
789
790 len = (status & RXDCTRL_BUFSZ) >> 16;
791 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
792 dev->stats.rx_errors++;
793 if (len < ETH_ZLEN)
794 dev->stats.rx_length_errors++;
795 if (len & RXDCTRL_BAD)
796 dev->stats.rx_crc_errors++;
797
798 /* We'll just return it to GEM. */
799 drop_it:
800 dev->stats.rx_dropped++;
801 goto next;
802 }
803
804 dma_addr = le64_to_cpu(rxd->buffer);
805 if (len > RX_COPY_THRESHOLD) {
806 struct sk_buff *new_skb;
807
808 new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
809 if (new_skb == NULL) {
810 drops++;
811 goto drop_it;
812 }
813 dma_unmap_page(&gp->pdev->dev, dma_addr,
814 RX_BUF_ALLOC_SIZE(gp), DMA_FROM_DEVICE);
815 gp->rx_skbs[entry] = new_skb;
816 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
817 rxd->buffer = cpu_to_le64(dma_map_page(&gp->pdev->dev,
818 virt_to_page(new_skb->data),
819 offset_in_page(new_skb->data),
820 RX_BUF_ALLOC_SIZE(gp),
821 DMA_FROM_DEVICE));
822 skb_reserve(new_skb, RX_OFFSET);
823
824 /* Trim the original skb for the netif. */
825 skb_trim(skb, len);
826 } else {
827 struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
828
829 if (copy_skb == NULL) {
830 drops++;
831 goto drop_it;
832 }
833
834 skb_reserve(copy_skb, 2);
835 skb_put(copy_skb, len);
836 dma_sync_single_for_cpu(&gp->pdev->dev, dma_addr, len,
837 DMA_FROM_DEVICE);
838 skb_copy_from_linear_data(skb, copy_skb->data, len);
839 dma_sync_single_for_device(&gp->pdev->dev, dma_addr,
840 len, DMA_FROM_DEVICE);
841
842 /* We'll reuse the original ring buffer. */
843 skb = copy_skb;
844 }
845
846 if (likely(dev->features & NETIF_F_RXCSUM)) {
847 __sum16 csum;
848
849 csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
850 skb->csum = csum_unfold(csum);
851 skb->ip_summed = CHECKSUM_COMPLETE;
852 }
853 skb->protocol = eth_type_trans(skb, gp->dev);
854
855 napi_gro_receive(&gp->napi, skb);
856
857 dev->stats.rx_packets++;
858 dev->stats.rx_bytes += len;
859
860 next:
861 entry = NEXT_RX(entry);
862 }
863
864 gem_post_rxds(gp, entry);
865
866 gp->rx_new = entry;
867
868 if (drops)
869 netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
870
871 return work_done;
872 }
873
gem_poll(struct napi_struct * napi,int budget)874 static int gem_poll(struct napi_struct *napi, int budget)
875 {
876 struct gem *gp = container_of(napi, struct gem, napi);
877 struct net_device *dev = gp->dev;
878 int work_done;
879
880 work_done = 0;
881 do {
882 /* Handle anomalies */
883 if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
884 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
885 int reset;
886
887 /* We run the abnormal interrupt handling code with
888 * the Tx lock. It only resets the Rx portion of the
889 * chip, but we need to guard it against DMA being
890 * restarted by the link poll timer
891 */
892 __netif_tx_lock(txq, smp_processor_id());
893 reset = gem_abnormal_irq(dev, gp, gp->status);
894 __netif_tx_unlock(txq);
895 if (reset) {
896 gem_schedule_reset(gp);
897 napi_complete(napi);
898 return work_done;
899 }
900 }
901
902 /* Run TX completion thread */
903 gem_tx(dev, gp, gp->status);
904
905 /* Run RX thread. We don't use any locking here,
906 * code willing to do bad things - like cleaning the
907 * rx ring - must call napi_disable(), which
908 * schedule_timeout()'s if polling is already disabled.
909 */
910 work_done += gem_rx(gp, budget - work_done);
911
912 if (work_done >= budget)
913 return work_done;
914
915 gp->status = readl(gp->regs + GREG_STAT);
916 } while (gp->status & GREG_STAT_NAPI);
917
918 napi_complete_done(napi, work_done);
919 gem_enable_ints(gp);
920
921 return work_done;
922 }
923
gem_interrupt(int irq,void * dev_id)924 static irqreturn_t gem_interrupt(int irq, void *dev_id)
925 {
926 struct net_device *dev = dev_id;
927 struct gem *gp = netdev_priv(dev);
928
929 if (napi_schedule_prep(&gp->napi)) {
930 u32 gem_status = readl(gp->regs + GREG_STAT);
931
932 if (unlikely(gem_status == 0)) {
933 napi_enable(&gp->napi);
934 return IRQ_NONE;
935 }
936 if (netif_msg_intr(gp))
937 printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
938 gp->dev->name, gem_status);
939
940 gp->status = gem_status;
941 gem_disable_ints(gp);
942 __napi_schedule(&gp->napi);
943 }
944
945 /* If polling was disabled at the time we received that
946 * interrupt, we may return IRQ_HANDLED here while we
947 * should return IRQ_NONE. No big deal...
948 */
949 return IRQ_HANDLED;
950 }
951
952 #ifdef CONFIG_NET_POLL_CONTROLLER
gem_poll_controller(struct net_device * dev)953 static void gem_poll_controller(struct net_device *dev)
954 {
955 struct gem *gp = netdev_priv(dev);
956
957 disable_irq(gp->pdev->irq);
958 gem_interrupt(gp->pdev->irq, dev);
959 enable_irq(gp->pdev->irq);
960 }
961 #endif
962
gem_tx_timeout(struct net_device * dev,unsigned int txqueue)963 static void gem_tx_timeout(struct net_device *dev, unsigned int txqueue)
964 {
965 struct gem *gp = netdev_priv(dev);
966
967 netdev_err(dev, "transmit timed out, resetting\n");
968
969 netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
970 readl(gp->regs + TXDMA_CFG),
971 readl(gp->regs + MAC_TXSTAT),
972 readl(gp->regs + MAC_TXCFG));
973 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
974 readl(gp->regs + RXDMA_CFG),
975 readl(gp->regs + MAC_RXSTAT),
976 readl(gp->regs + MAC_RXCFG));
977
978 gem_schedule_reset(gp);
979 }
980
gem_intme(int entry)981 static __inline__ int gem_intme(int entry)
982 {
983 /* Algorithm: IRQ every 1/2 of descriptors. */
984 if (!(entry & ((TX_RING_SIZE>>1)-1)))
985 return 1;
986
987 return 0;
988 }
989
gem_start_xmit(struct sk_buff * skb,struct net_device * dev)990 static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
991 struct net_device *dev)
992 {
993 struct gem *gp = netdev_priv(dev);
994 int entry;
995 u64 ctrl;
996
997 ctrl = 0;
998 if (skb->ip_summed == CHECKSUM_PARTIAL) {
999 const u64 csum_start_off = skb_checksum_start_offset(skb);
1000 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1001
1002 ctrl = (TXDCTRL_CENAB |
1003 (csum_start_off << 15) |
1004 (csum_stuff_off << 21));
1005 }
1006
1007 if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
1008 /* This is a hard error, log it. */
1009 if (!netif_queue_stopped(dev)) {
1010 netif_stop_queue(dev);
1011 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
1012 }
1013 return NETDEV_TX_BUSY;
1014 }
1015
1016 entry = gp->tx_new;
1017 gp->tx_skbs[entry] = skb;
1018
1019 if (skb_shinfo(skb)->nr_frags == 0) {
1020 struct gem_txd *txd = &gp->init_block->txd[entry];
1021 dma_addr_t mapping;
1022 u32 len;
1023
1024 len = skb->len;
1025 mapping = dma_map_page(&gp->pdev->dev,
1026 virt_to_page(skb->data),
1027 offset_in_page(skb->data),
1028 len, DMA_TO_DEVICE);
1029 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1030 if (gem_intme(entry))
1031 ctrl |= TXDCTRL_INTME;
1032 txd->buffer = cpu_to_le64(mapping);
1033 dma_wmb();
1034 txd->control_word = cpu_to_le64(ctrl);
1035 entry = NEXT_TX(entry);
1036 } else {
1037 struct gem_txd *txd;
1038 u32 first_len;
1039 u64 intme;
1040 dma_addr_t first_mapping;
1041 int frag, first_entry = entry;
1042
1043 intme = 0;
1044 if (gem_intme(entry))
1045 intme |= TXDCTRL_INTME;
1046
1047 /* We must give this initial chunk to the device last.
1048 * Otherwise we could race with the device.
1049 */
1050 first_len = skb_headlen(skb);
1051 first_mapping = dma_map_page(&gp->pdev->dev,
1052 virt_to_page(skb->data),
1053 offset_in_page(skb->data),
1054 first_len, DMA_TO_DEVICE);
1055 entry = NEXT_TX(entry);
1056
1057 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1058 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1059 u32 len;
1060 dma_addr_t mapping;
1061 u64 this_ctrl;
1062
1063 len = skb_frag_size(this_frag);
1064 mapping = skb_frag_dma_map(&gp->pdev->dev, this_frag,
1065 0, len, DMA_TO_DEVICE);
1066 this_ctrl = ctrl;
1067 if (frag == skb_shinfo(skb)->nr_frags - 1)
1068 this_ctrl |= TXDCTRL_EOF;
1069
1070 txd = &gp->init_block->txd[entry];
1071 txd->buffer = cpu_to_le64(mapping);
1072 dma_wmb();
1073 txd->control_word = cpu_to_le64(this_ctrl | len);
1074
1075 if (gem_intme(entry))
1076 intme |= TXDCTRL_INTME;
1077
1078 entry = NEXT_TX(entry);
1079 }
1080 txd = &gp->init_block->txd[first_entry];
1081 txd->buffer = cpu_to_le64(first_mapping);
1082 dma_wmb();
1083 txd->control_word =
1084 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1085 }
1086
1087 gp->tx_new = entry;
1088 if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
1089 netif_stop_queue(dev);
1090
1091 /* netif_stop_queue() must be done before checking
1092 * tx index in TX_BUFFS_AVAIL() below, because
1093 * in gem_tx(), we update tx_old before checking for
1094 * netif_queue_stopped().
1095 */
1096 smp_mb();
1097 if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
1098 netif_wake_queue(dev);
1099 }
1100 if (netif_msg_tx_queued(gp))
1101 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1102 dev->name, entry, skb->len);
1103 mb();
1104 writel(gp->tx_new, gp->regs + TXDMA_KICK);
1105
1106 return NETDEV_TX_OK;
1107 }
1108
gem_pcs_reset(struct gem * gp)1109 static void gem_pcs_reset(struct gem *gp)
1110 {
1111 int limit;
1112 u32 val;
1113
1114 /* Reset PCS unit. */
1115 val = readl(gp->regs + PCS_MIICTRL);
1116 val |= PCS_MIICTRL_RST;
1117 writel(val, gp->regs + PCS_MIICTRL);
1118
1119 limit = 32;
1120 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1121 udelay(100);
1122 if (limit-- <= 0)
1123 break;
1124 }
1125 if (limit < 0)
1126 netdev_warn(gp->dev, "PCS reset bit would not clear\n");
1127 }
1128
gem_pcs_reinit_adv(struct gem * gp)1129 static void gem_pcs_reinit_adv(struct gem *gp)
1130 {
1131 u32 val;
1132
1133 /* Make sure PCS is disabled while changing advertisement
1134 * configuration.
1135 */
1136 val = readl(gp->regs + PCS_CFG);
1137 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1138 writel(val, gp->regs + PCS_CFG);
1139
1140 /* Advertise all capabilities except asymmetric
1141 * pause.
1142 */
1143 val = readl(gp->regs + PCS_MIIADV);
1144 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1145 PCS_MIIADV_SP | PCS_MIIADV_AP);
1146 writel(val, gp->regs + PCS_MIIADV);
1147
1148 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1149 * and re-enable PCS.
1150 */
1151 val = readl(gp->regs + PCS_MIICTRL);
1152 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1153 val &= ~PCS_MIICTRL_WB;
1154 writel(val, gp->regs + PCS_MIICTRL);
1155
1156 val = readl(gp->regs + PCS_CFG);
1157 val |= PCS_CFG_ENABLE;
1158 writel(val, gp->regs + PCS_CFG);
1159
1160 /* Make sure serialink loopback is off. The meaning
1161 * of this bit is logically inverted based upon whether
1162 * you are in Serialink or SERDES mode.
1163 */
1164 val = readl(gp->regs + PCS_SCTRL);
1165 if (gp->phy_type == phy_serialink)
1166 val &= ~PCS_SCTRL_LOOP;
1167 else
1168 val |= PCS_SCTRL_LOOP;
1169 writel(val, gp->regs + PCS_SCTRL);
1170 }
1171
1172 #define STOP_TRIES 32
1173
gem_reset(struct gem * gp)1174 static void gem_reset(struct gem *gp)
1175 {
1176 int limit;
1177 u32 val;
1178
1179 /* Make sure we won't get any more interrupts */
1180 writel(0xffffffff, gp->regs + GREG_IMASK);
1181
1182 /* Reset the chip */
1183 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1184 gp->regs + GREG_SWRST);
1185
1186 limit = STOP_TRIES;
1187
1188 do {
1189 udelay(20);
1190 val = readl(gp->regs + GREG_SWRST);
1191 if (limit-- <= 0)
1192 break;
1193 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1194
1195 if (limit < 0)
1196 netdev_err(gp->dev, "SW reset is ghetto\n");
1197
1198 if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
1199 gem_pcs_reinit_adv(gp);
1200 }
1201
gem_start_dma(struct gem * gp)1202 static void gem_start_dma(struct gem *gp)
1203 {
1204 u32 val;
1205
1206 /* We are ready to rock, turn everything on. */
1207 val = readl(gp->regs + TXDMA_CFG);
1208 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1209 val = readl(gp->regs + RXDMA_CFG);
1210 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1211 val = readl(gp->regs + MAC_TXCFG);
1212 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1213 val = readl(gp->regs + MAC_RXCFG);
1214 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1215
1216 (void) readl(gp->regs + MAC_RXCFG);
1217 udelay(100);
1218
1219 gem_enable_ints(gp);
1220
1221 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1222 }
1223
1224 /* DMA won't be actually stopped before about 4ms tho ...
1225 */
gem_stop_dma(struct gem * gp)1226 static void gem_stop_dma(struct gem *gp)
1227 {
1228 u32 val;
1229
1230 /* We are done rocking, turn everything off. */
1231 val = readl(gp->regs + TXDMA_CFG);
1232 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1233 val = readl(gp->regs + RXDMA_CFG);
1234 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1235 val = readl(gp->regs + MAC_TXCFG);
1236 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1237 val = readl(gp->regs + MAC_RXCFG);
1238 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1239
1240 (void) readl(gp->regs + MAC_RXCFG);
1241
1242 /* Need to wait a bit ... done by the caller */
1243 }
1244
1245
1246 // XXX dbl check what that function should do when called on PCS PHY
gem_begin_auto_negotiation(struct gem * gp,const struct ethtool_link_ksettings * ep)1247 static void gem_begin_auto_negotiation(struct gem *gp,
1248 const struct ethtool_link_ksettings *ep)
1249 {
1250 u32 advertise, features;
1251 int autoneg;
1252 int speed;
1253 int duplex;
1254 u32 advertising;
1255
1256 if (ep)
1257 ethtool_convert_link_mode_to_legacy_u32(
1258 &advertising, ep->link_modes.advertising);
1259
1260 if (gp->phy_type != phy_mii_mdio0 &&
1261 gp->phy_type != phy_mii_mdio1)
1262 goto non_mii;
1263
1264 /* Setup advertise */
1265 if (found_mii_phy(gp))
1266 features = gp->phy_mii.def->features;
1267 else
1268 features = 0;
1269
1270 advertise = features & ADVERTISE_MASK;
1271 if (gp->phy_mii.advertising != 0)
1272 advertise &= gp->phy_mii.advertising;
1273
1274 autoneg = gp->want_autoneg;
1275 speed = gp->phy_mii.speed;
1276 duplex = gp->phy_mii.duplex;
1277
1278 /* Setup link parameters */
1279 if (!ep)
1280 goto start_aneg;
1281 if (ep->base.autoneg == AUTONEG_ENABLE) {
1282 advertise = advertising;
1283 autoneg = 1;
1284 } else {
1285 autoneg = 0;
1286 speed = ep->base.speed;
1287 duplex = ep->base.duplex;
1288 }
1289
1290 start_aneg:
1291 /* Sanitize settings based on PHY capabilities */
1292 if ((features & SUPPORTED_Autoneg) == 0)
1293 autoneg = 0;
1294 if (speed == SPEED_1000 &&
1295 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1296 speed = SPEED_100;
1297 if (speed == SPEED_100 &&
1298 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1299 speed = SPEED_10;
1300 if (duplex == DUPLEX_FULL &&
1301 !(features & (SUPPORTED_1000baseT_Full |
1302 SUPPORTED_100baseT_Full |
1303 SUPPORTED_10baseT_Full)))
1304 duplex = DUPLEX_HALF;
1305 if (speed == 0)
1306 speed = SPEED_10;
1307
1308 /* If we are asleep, we don't try to actually setup the PHY, we
1309 * just store the settings
1310 */
1311 if (!netif_device_present(gp->dev)) {
1312 gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1313 gp->phy_mii.speed = speed;
1314 gp->phy_mii.duplex = duplex;
1315 return;
1316 }
1317
1318 /* Configure PHY & start aneg */
1319 gp->want_autoneg = autoneg;
1320 if (autoneg) {
1321 if (found_mii_phy(gp))
1322 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1323 gp->lstate = link_aneg;
1324 } else {
1325 if (found_mii_phy(gp))
1326 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1327 gp->lstate = link_force_ok;
1328 }
1329
1330 non_mii:
1331 gp->timer_ticks = 0;
1332 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1333 }
1334
1335 /* A link-up condition has occurred, initialize and enable the
1336 * rest of the chip.
1337 */
gem_set_link_modes(struct gem * gp)1338 static int gem_set_link_modes(struct gem *gp)
1339 {
1340 struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
1341 int full_duplex, speed, pause;
1342 u32 val;
1343
1344 full_duplex = 0;
1345 speed = SPEED_10;
1346 pause = 0;
1347
1348 if (found_mii_phy(gp)) {
1349 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1350 return 1;
1351 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1352 speed = gp->phy_mii.speed;
1353 pause = gp->phy_mii.pause;
1354 } else if (gp->phy_type == phy_serialink ||
1355 gp->phy_type == phy_serdes) {
1356 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1357
1358 if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
1359 full_duplex = 1;
1360 speed = SPEED_1000;
1361 }
1362
1363 netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
1364 speed, (full_duplex ? "full" : "half"));
1365
1366
1367 /* We take the tx queue lock to avoid collisions between
1368 * this code, the tx path and the NAPI-driven error path
1369 */
1370 __netif_tx_lock(txq, smp_processor_id());
1371
1372 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1373 if (full_duplex) {
1374 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1375 } else {
1376 /* MAC_TXCFG_NBO must be zero. */
1377 }
1378 writel(val, gp->regs + MAC_TXCFG);
1379
1380 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1381 if (!full_duplex &&
1382 (gp->phy_type == phy_mii_mdio0 ||
1383 gp->phy_type == phy_mii_mdio1)) {
1384 val |= MAC_XIFCFG_DISE;
1385 } else if (full_duplex) {
1386 val |= MAC_XIFCFG_FLED;
1387 }
1388
1389 if (speed == SPEED_1000)
1390 val |= (MAC_XIFCFG_GMII);
1391
1392 writel(val, gp->regs + MAC_XIFCFG);
1393
1394 /* If gigabit and half-duplex, enable carrier extension
1395 * mode. Else, disable it.
1396 */
1397 if (speed == SPEED_1000 && !full_duplex) {
1398 val = readl(gp->regs + MAC_TXCFG);
1399 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1400
1401 val = readl(gp->regs + MAC_RXCFG);
1402 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1403 } else {
1404 val = readl(gp->regs + MAC_TXCFG);
1405 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1406
1407 val = readl(gp->regs + MAC_RXCFG);
1408 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1409 }
1410
1411 if (gp->phy_type == phy_serialink ||
1412 gp->phy_type == phy_serdes) {
1413 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1414
1415 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1416 pause = 1;
1417 }
1418
1419 if (!full_duplex)
1420 writel(512, gp->regs + MAC_STIME);
1421 else
1422 writel(64, gp->regs + MAC_STIME);
1423 val = readl(gp->regs + MAC_MCCFG);
1424 if (pause)
1425 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1426 else
1427 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1428 writel(val, gp->regs + MAC_MCCFG);
1429
1430 gem_start_dma(gp);
1431
1432 __netif_tx_unlock(txq);
1433
1434 if (netif_msg_link(gp)) {
1435 if (pause) {
1436 netdev_info(gp->dev,
1437 "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
1438 gp->rx_fifo_sz,
1439 gp->rx_pause_off,
1440 gp->rx_pause_on);
1441 } else {
1442 netdev_info(gp->dev, "Pause is disabled\n");
1443 }
1444 }
1445
1446 return 0;
1447 }
1448
gem_mdio_link_not_up(struct gem * gp)1449 static int gem_mdio_link_not_up(struct gem *gp)
1450 {
1451 switch (gp->lstate) {
1452 case link_force_ret:
1453 netif_info(gp, link, gp->dev,
1454 "Autoneg failed again, keeping forced mode\n");
1455 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1456 gp->last_forced_speed, DUPLEX_HALF);
1457 gp->timer_ticks = 5;
1458 gp->lstate = link_force_ok;
1459 return 0;
1460 case link_aneg:
1461 /* We try forced modes after a failed aneg only on PHYs that don't
1462 * have "magic_aneg" bit set, which means they internally do the
1463 * while forced-mode thingy. On these, we just restart aneg
1464 */
1465 if (gp->phy_mii.def->magic_aneg)
1466 return 1;
1467 netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
1468 /* Try forced modes. */
1469 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1470 DUPLEX_HALF);
1471 gp->timer_ticks = 5;
1472 gp->lstate = link_force_try;
1473 return 0;
1474 case link_force_try:
1475 /* Downgrade from 100 to 10 Mbps if necessary.
1476 * If already at 10Mbps, warn user about the
1477 * situation every 10 ticks.
1478 */
1479 if (gp->phy_mii.speed == SPEED_100) {
1480 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1481 DUPLEX_HALF);
1482 gp->timer_ticks = 5;
1483 netif_info(gp, link, gp->dev,
1484 "switching to forced 10bt\n");
1485 return 0;
1486 } else
1487 return 1;
1488 default:
1489 return 0;
1490 }
1491 }
1492
gem_link_timer(struct timer_list * t)1493 static void gem_link_timer(struct timer_list *t)
1494 {
1495 struct gem *gp = from_timer(gp, t, link_timer);
1496 struct net_device *dev = gp->dev;
1497 int restart_aneg = 0;
1498
1499 /* There's no point doing anything if we're going to be reset */
1500 if (gp->reset_task_pending)
1501 return;
1502
1503 if (gp->phy_type == phy_serialink ||
1504 gp->phy_type == phy_serdes) {
1505 u32 val = readl(gp->regs + PCS_MIISTAT);
1506
1507 if (!(val & PCS_MIISTAT_LS))
1508 val = readl(gp->regs + PCS_MIISTAT);
1509
1510 if ((val & PCS_MIISTAT_LS) != 0) {
1511 if (gp->lstate == link_up)
1512 goto restart;
1513
1514 gp->lstate = link_up;
1515 netif_carrier_on(dev);
1516 (void)gem_set_link_modes(gp);
1517 }
1518 goto restart;
1519 }
1520 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1521 /* Ok, here we got a link. If we had it due to a forced
1522 * fallback, and we were configured for autoneg, we do
1523 * retry a short autoneg pass. If you know your hub is
1524 * broken, use ethtool ;)
1525 */
1526 if (gp->lstate == link_force_try && gp->want_autoneg) {
1527 gp->lstate = link_force_ret;
1528 gp->last_forced_speed = gp->phy_mii.speed;
1529 gp->timer_ticks = 5;
1530 if (netif_msg_link(gp))
1531 netdev_info(dev,
1532 "Got link after fallback, retrying autoneg once...\n");
1533 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1534 } else if (gp->lstate != link_up) {
1535 gp->lstate = link_up;
1536 netif_carrier_on(dev);
1537 if (gem_set_link_modes(gp))
1538 restart_aneg = 1;
1539 }
1540 } else {
1541 /* If the link was previously up, we restart the
1542 * whole process
1543 */
1544 if (gp->lstate == link_up) {
1545 gp->lstate = link_down;
1546 netif_info(gp, link, dev, "Link down\n");
1547 netif_carrier_off(dev);
1548 gem_schedule_reset(gp);
1549 /* The reset task will restart the timer */
1550 return;
1551 } else if (++gp->timer_ticks > 10) {
1552 if (found_mii_phy(gp))
1553 restart_aneg = gem_mdio_link_not_up(gp);
1554 else
1555 restart_aneg = 1;
1556 }
1557 }
1558 if (restart_aneg) {
1559 gem_begin_auto_negotiation(gp, NULL);
1560 return;
1561 }
1562 restart:
1563 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1564 }
1565
gem_clean_rings(struct gem * gp)1566 static void gem_clean_rings(struct gem *gp)
1567 {
1568 struct gem_init_block *gb = gp->init_block;
1569 struct sk_buff *skb;
1570 int i;
1571 dma_addr_t dma_addr;
1572
1573 for (i = 0; i < RX_RING_SIZE; i++) {
1574 struct gem_rxd *rxd;
1575
1576 rxd = &gb->rxd[i];
1577 if (gp->rx_skbs[i] != NULL) {
1578 skb = gp->rx_skbs[i];
1579 dma_addr = le64_to_cpu(rxd->buffer);
1580 dma_unmap_page(&gp->pdev->dev, dma_addr,
1581 RX_BUF_ALLOC_SIZE(gp),
1582 DMA_FROM_DEVICE);
1583 dev_kfree_skb_any(skb);
1584 gp->rx_skbs[i] = NULL;
1585 }
1586 rxd->status_word = 0;
1587 dma_wmb();
1588 rxd->buffer = 0;
1589 }
1590
1591 for (i = 0; i < TX_RING_SIZE; i++) {
1592 if (gp->tx_skbs[i] != NULL) {
1593 struct gem_txd *txd;
1594 int frag;
1595
1596 skb = gp->tx_skbs[i];
1597 gp->tx_skbs[i] = NULL;
1598
1599 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1600 int ent = i & (TX_RING_SIZE - 1);
1601
1602 txd = &gb->txd[ent];
1603 dma_addr = le64_to_cpu(txd->buffer);
1604 dma_unmap_page(&gp->pdev->dev, dma_addr,
1605 le64_to_cpu(txd->control_word) &
1606 TXDCTRL_BUFSZ, DMA_TO_DEVICE);
1607
1608 if (frag != skb_shinfo(skb)->nr_frags)
1609 i++;
1610 }
1611 dev_kfree_skb_any(skb);
1612 }
1613 }
1614 }
1615
gem_init_rings(struct gem * gp)1616 static void gem_init_rings(struct gem *gp)
1617 {
1618 struct gem_init_block *gb = gp->init_block;
1619 struct net_device *dev = gp->dev;
1620 int i;
1621 dma_addr_t dma_addr;
1622
1623 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1624
1625 gem_clean_rings(gp);
1626
1627 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1628 (unsigned)VLAN_ETH_FRAME_LEN);
1629
1630 for (i = 0; i < RX_RING_SIZE; i++) {
1631 struct sk_buff *skb;
1632 struct gem_rxd *rxd = &gb->rxd[i];
1633
1634 skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
1635 if (!skb) {
1636 rxd->buffer = 0;
1637 rxd->status_word = 0;
1638 continue;
1639 }
1640
1641 gp->rx_skbs[i] = skb;
1642 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1643 dma_addr = dma_map_page(&gp->pdev->dev,
1644 virt_to_page(skb->data),
1645 offset_in_page(skb->data),
1646 RX_BUF_ALLOC_SIZE(gp),
1647 DMA_FROM_DEVICE);
1648 rxd->buffer = cpu_to_le64(dma_addr);
1649 dma_wmb();
1650 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1651 skb_reserve(skb, RX_OFFSET);
1652 }
1653
1654 for (i = 0; i < TX_RING_SIZE; i++) {
1655 struct gem_txd *txd = &gb->txd[i];
1656
1657 txd->control_word = 0;
1658 dma_wmb();
1659 txd->buffer = 0;
1660 }
1661 wmb();
1662 }
1663
1664 /* Init PHY interface and start link poll state machine */
gem_init_phy(struct gem * gp)1665 static void gem_init_phy(struct gem *gp)
1666 {
1667 u32 mifcfg;
1668
1669 /* Revert MIF CFG setting done on stop_phy */
1670 mifcfg = readl(gp->regs + MIF_CFG);
1671 mifcfg &= ~MIF_CFG_BBMODE;
1672 writel(mifcfg, gp->regs + MIF_CFG);
1673
1674 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1675 int i;
1676
1677 /* Those delays sucks, the HW seems to love them though, I'll
1678 * seriously consider breaking some locks here to be able
1679 * to schedule instead
1680 */
1681 for (i = 0; i < 3; i++) {
1682 #ifdef CONFIG_PPC_PMAC
1683 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1684 msleep(20);
1685 #endif
1686 /* Some PHYs used by apple have problem getting back to us,
1687 * we do an additional reset here
1688 */
1689 sungem_phy_write(gp, MII_BMCR, BMCR_RESET);
1690 msleep(20);
1691 if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
1692 break;
1693 if (i == 2)
1694 netdev_warn(gp->dev, "GMAC PHY not responding !\n");
1695 }
1696 }
1697
1698 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1699 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1700 u32 val;
1701
1702 /* Init datapath mode register. */
1703 if (gp->phy_type == phy_mii_mdio0 ||
1704 gp->phy_type == phy_mii_mdio1) {
1705 val = PCS_DMODE_MGM;
1706 } else if (gp->phy_type == phy_serialink) {
1707 val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1708 } else {
1709 val = PCS_DMODE_ESM;
1710 }
1711
1712 writel(val, gp->regs + PCS_DMODE);
1713 }
1714
1715 if (gp->phy_type == phy_mii_mdio0 ||
1716 gp->phy_type == phy_mii_mdio1) {
1717 /* Reset and detect MII PHY */
1718 sungem_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1719
1720 /* Init PHY */
1721 if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1722 gp->phy_mii.def->ops->init(&gp->phy_mii);
1723 } else {
1724 gem_pcs_reset(gp);
1725 gem_pcs_reinit_adv(gp);
1726 }
1727
1728 /* Default aneg parameters */
1729 gp->timer_ticks = 0;
1730 gp->lstate = link_down;
1731 netif_carrier_off(gp->dev);
1732
1733 /* Print things out */
1734 if (gp->phy_type == phy_mii_mdio0 ||
1735 gp->phy_type == phy_mii_mdio1)
1736 netdev_info(gp->dev, "Found %s PHY\n",
1737 gp->phy_mii.def ? gp->phy_mii.def->name : "no");
1738
1739 gem_begin_auto_negotiation(gp, NULL);
1740 }
1741
gem_init_dma(struct gem * gp)1742 static void gem_init_dma(struct gem *gp)
1743 {
1744 u64 desc_dma = (u64) gp->gblock_dvma;
1745 u32 val;
1746
1747 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1748 writel(val, gp->regs + TXDMA_CFG);
1749
1750 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1751 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1752 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1753
1754 writel(0, gp->regs + TXDMA_KICK);
1755
1756 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1757 (ETH_HLEN << 13) | RXDMA_CFG_FTHRESH_128);
1758 writel(val, gp->regs + RXDMA_CFG);
1759
1760 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1761 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1762
1763 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1764
1765 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1766 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1767 writel(val, gp->regs + RXDMA_PTHRESH);
1768
1769 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1770 writel(((5 & RXDMA_BLANK_IPKTS) |
1771 ((8 << 12) & RXDMA_BLANK_ITIME)),
1772 gp->regs + RXDMA_BLANK);
1773 else
1774 writel(((5 & RXDMA_BLANK_IPKTS) |
1775 ((4 << 12) & RXDMA_BLANK_ITIME)),
1776 gp->regs + RXDMA_BLANK);
1777 }
1778
gem_setup_multicast(struct gem * gp)1779 static u32 gem_setup_multicast(struct gem *gp)
1780 {
1781 u32 rxcfg = 0;
1782 int i;
1783
1784 if ((gp->dev->flags & IFF_ALLMULTI) ||
1785 (netdev_mc_count(gp->dev) > 256)) {
1786 for (i=0; i<16; i++)
1787 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1788 rxcfg |= MAC_RXCFG_HFE;
1789 } else if (gp->dev->flags & IFF_PROMISC) {
1790 rxcfg |= MAC_RXCFG_PROM;
1791 } else {
1792 u16 hash_table[16];
1793 u32 crc;
1794 struct netdev_hw_addr *ha;
1795 int i;
1796
1797 memset(hash_table, 0, sizeof(hash_table));
1798 netdev_for_each_mc_addr(ha, gp->dev) {
1799 crc = ether_crc_le(6, ha->addr);
1800 crc >>= 24;
1801 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1802 }
1803 for (i=0; i<16; i++)
1804 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1805 rxcfg |= MAC_RXCFG_HFE;
1806 }
1807
1808 return rxcfg;
1809 }
1810
gem_init_mac(struct gem * gp)1811 static void gem_init_mac(struct gem *gp)
1812 {
1813 const unsigned char *e = &gp->dev->dev_addr[0];
1814
1815 writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1816
1817 writel(0x00, gp->regs + MAC_IPG0);
1818 writel(0x08, gp->regs + MAC_IPG1);
1819 writel(0x04, gp->regs + MAC_IPG2);
1820 writel(0x40, gp->regs + MAC_STIME);
1821 writel(0x40, gp->regs + MAC_MINFSZ);
1822
1823 /* Ethernet payload + header + FCS + optional VLAN tag. */
1824 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1825
1826 writel(0x07, gp->regs + MAC_PASIZE);
1827 writel(0x04, gp->regs + MAC_JAMSIZE);
1828 writel(0x10, gp->regs + MAC_ATTLIM);
1829 writel(0x8808, gp->regs + MAC_MCTYPE);
1830
1831 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1832
1833 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1834 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1835 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1836
1837 writel(0, gp->regs + MAC_ADDR3);
1838 writel(0, gp->regs + MAC_ADDR4);
1839 writel(0, gp->regs + MAC_ADDR5);
1840
1841 writel(0x0001, gp->regs + MAC_ADDR6);
1842 writel(0xc200, gp->regs + MAC_ADDR7);
1843 writel(0x0180, gp->regs + MAC_ADDR8);
1844
1845 writel(0, gp->regs + MAC_AFILT0);
1846 writel(0, gp->regs + MAC_AFILT1);
1847 writel(0, gp->regs + MAC_AFILT2);
1848 writel(0, gp->regs + MAC_AF21MSK);
1849 writel(0, gp->regs + MAC_AF0MSK);
1850
1851 gp->mac_rx_cfg = gem_setup_multicast(gp);
1852 #ifdef STRIP_FCS
1853 gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1854 #endif
1855 writel(0, gp->regs + MAC_NCOLL);
1856 writel(0, gp->regs + MAC_FASUCC);
1857 writel(0, gp->regs + MAC_ECOLL);
1858 writel(0, gp->regs + MAC_LCOLL);
1859 writel(0, gp->regs + MAC_DTIMER);
1860 writel(0, gp->regs + MAC_PATMPS);
1861 writel(0, gp->regs + MAC_RFCTR);
1862 writel(0, gp->regs + MAC_LERR);
1863 writel(0, gp->regs + MAC_AERR);
1864 writel(0, gp->regs + MAC_FCSERR);
1865 writel(0, gp->regs + MAC_RXCVERR);
1866
1867 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1868 * them once a link is established.
1869 */
1870 writel(0, gp->regs + MAC_TXCFG);
1871 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1872 writel(0, gp->regs + MAC_MCCFG);
1873 writel(0, gp->regs + MAC_XIFCFG);
1874
1875 /* Setup MAC interrupts. We want to get all of the interesting
1876 * counter expiration events, but we do not want to hear about
1877 * normal rx/tx as the DMA engine tells us that.
1878 */
1879 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1880 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1881
1882 /* Don't enable even the PAUSE interrupts for now, we
1883 * make no use of those events other than to record them.
1884 */
1885 writel(0xffffffff, gp->regs + MAC_MCMASK);
1886
1887 /* Don't enable GEM's WOL in normal operations
1888 */
1889 if (gp->has_wol)
1890 writel(0, gp->regs + WOL_WAKECSR);
1891 }
1892
gem_init_pause_thresholds(struct gem * gp)1893 static void gem_init_pause_thresholds(struct gem *gp)
1894 {
1895 u32 cfg;
1896
1897 /* Calculate pause thresholds. Setting the OFF threshold to the
1898 * full RX fifo size effectively disables PAUSE generation which
1899 * is what we do for 10/100 only GEMs which have FIFOs too small
1900 * to make real gains from PAUSE.
1901 */
1902 if (gp->rx_fifo_sz <= (2 * 1024)) {
1903 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1904 } else {
1905 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1906 int off = (gp->rx_fifo_sz - (max_frame * 2));
1907 int on = off - max_frame;
1908
1909 gp->rx_pause_off = off;
1910 gp->rx_pause_on = on;
1911 }
1912
1913
1914 /* Configure the chip "burst" DMA mode & enable some
1915 * HW bug fixes on Apple version
1916 */
1917 cfg = 0;
1918 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1919 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1920 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1921 cfg |= GREG_CFG_IBURST;
1922 #endif
1923 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1924 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1925 writel(cfg, gp->regs + GREG_CFG);
1926
1927 /* If Infinite Burst didn't stick, then use different
1928 * thresholds (and Apple bug fixes don't exist)
1929 */
1930 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1931 cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1932 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1933 writel(cfg, gp->regs + GREG_CFG);
1934 }
1935 }
1936
gem_check_invariants(struct gem * gp)1937 static int gem_check_invariants(struct gem *gp)
1938 {
1939 struct pci_dev *pdev = gp->pdev;
1940 u32 mif_cfg;
1941
1942 /* On Apple's sungem, we can't rely on registers as the chip
1943 * was been powered down by the firmware. The PHY is looked
1944 * up later on.
1945 */
1946 if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1947 gp->phy_type = phy_mii_mdio0;
1948 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1949 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1950 gp->swrst_base = 0;
1951
1952 mif_cfg = readl(gp->regs + MIF_CFG);
1953 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
1954 mif_cfg |= MIF_CFG_MDI0;
1955 writel(mif_cfg, gp->regs + MIF_CFG);
1956 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
1957 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
1958
1959 /* We hard-code the PHY address so we can properly bring it out of
1960 * reset later on, we can't really probe it at this point, though
1961 * that isn't an issue.
1962 */
1963 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
1964 gp->mii_phy_addr = 1;
1965 else
1966 gp->mii_phy_addr = 0;
1967
1968 return 0;
1969 }
1970
1971 mif_cfg = readl(gp->regs + MIF_CFG);
1972
1973 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1974 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
1975 /* One of the MII PHYs _must_ be present
1976 * as this chip has no gigabit PHY.
1977 */
1978 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
1979 pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
1980 mif_cfg);
1981 return -1;
1982 }
1983 }
1984
1985 /* Determine initial PHY interface type guess. MDIO1 is the
1986 * external PHY and thus takes precedence over MDIO0.
1987 */
1988
1989 if (mif_cfg & MIF_CFG_MDI1) {
1990 gp->phy_type = phy_mii_mdio1;
1991 mif_cfg |= MIF_CFG_PSELECT;
1992 writel(mif_cfg, gp->regs + MIF_CFG);
1993 } else if (mif_cfg & MIF_CFG_MDI0) {
1994 gp->phy_type = phy_mii_mdio0;
1995 mif_cfg &= ~MIF_CFG_PSELECT;
1996 writel(mif_cfg, gp->regs + MIF_CFG);
1997 } else {
1998 #ifdef CONFIG_SPARC
1999 const char *p;
2000
2001 p = of_get_property(gp->of_node, "shared-pins", NULL);
2002 if (p && !strcmp(p, "serdes"))
2003 gp->phy_type = phy_serdes;
2004 else
2005 #endif
2006 gp->phy_type = phy_serialink;
2007 }
2008 if (gp->phy_type == phy_mii_mdio1 ||
2009 gp->phy_type == phy_mii_mdio0) {
2010 int i;
2011
2012 for (i = 0; i < 32; i++) {
2013 gp->mii_phy_addr = i;
2014 if (sungem_phy_read(gp, MII_BMCR) != 0xffff)
2015 break;
2016 }
2017 if (i == 32) {
2018 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2019 pr_err("RIO MII phy will not respond\n");
2020 return -1;
2021 }
2022 gp->phy_type = phy_serdes;
2023 }
2024 }
2025
2026 /* Fetch the FIFO configurations now too. */
2027 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2028 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2029
2030 if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2031 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2032 if (gp->tx_fifo_sz != (9 * 1024) ||
2033 gp->rx_fifo_sz != (20 * 1024)) {
2034 pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2035 gp->tx_fifo_sz, gp->rx_fifo_sz);
2036 return -1;
2037 }
2038 gp->swrst_base = 0;
2039 } else {
2040 if (gp->tx_fifo_sz != (2 * 1024) ||
2041 gp->rx_fifo_sz != (2 * 1024)) {
2042 pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2043 gp->tx_fifo_sz, gp->rx_fifo_sz);
2044 return -1;
2045 }
2046 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2047 }
2048 }
2049
2050 return 0;
2051 }
2052
gem_reinit_chip(struct gem * gp)2053 static void gem_reinit_chip(struct gem *gp)
2054 {
2055 /* Reset the chip */
2056 gem_reset(gp);
2057
2058 /* Make sure ints are disabled */
2059 gem_disable_ints(gp);
2060
2061 /* Allocate & setup ring buffers */
2062 gem_init_rings(gp);
2063
2064 /* Configure pause thresholds */
2065 gem_init_pause_thresholds(gp);
2066
2067 /* Init DMA & MAC engines */
2068 gem_init_dma(gp);
2069 gem_init_mac(gp);
2070 }
2071
2072
gem_stop_phy(struct gem * gp,int wol)2073 static void gem_stop_phy(struct gem *gp, int wol)
2074 {
2075 u32 mifcfg;
2076
2077 /* Let the chip settle down a bit, it seems that helps
2078 * for sleep mode on some models
2079 */
2080 msleep(10);
2081
2082 /* Make sure we aren't polling PHY status change. We
2083 * don't currently use that feature though
2084 */
2085 mifcfg = readl(gp->regs + MIF_CFG);
2086 mifcfg &= ~MIF_CFG_POLL;
2087 writel(mifcfg, gp->regs + MIF_CFG);
2088
2089 if (wol && gp->has_wol) {
2090 const unsigned char *e = &gp->dev->dev_addr[0];
2091 u32 csr;
2092
2093 /* Setup wake-on-lan for MAGIC packet */
2094 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2095 gp->regs + MAC_RXCFG);
2096 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2097 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2098 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2099
2100 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2101 csr = WOL_WAKECSR_ENABLE;
2102 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2103 csr |= WOL_WAKECSR_MII;
2104 writel(csr, gp->regs + WOL_WAKECSR);
2105 } else {
2106 writel(0, gp->regs + MAC_RXCFG);
2107 (void)readl(gp->regs + MAC_RXCFG);
2108 /* Machine sleep will die in strange ways if we
2109 * dont wait a bit here, looks like the chip takes
2110 * some time to really shut down
2111 */
2112 msleep(10);
2113 }
2114
2115 writel(0, gp->regs + MAC_TXCFG);
2116 writel(0, gp->regs + MAC_XIFCFG);
2117 writel(0, gp->regs + TXDMA_CFG);
2118 writel(0, gp->regs + RXDMA_CFG);
2119
2120 if (!wol) {
2121 gem_reset(gp);
2122 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2123 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2124
2125 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2126 gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2127
2128 /* According to Apple, we must set the MDIO pins to this begnign
2129 * state or we may 1) eat more current, 2) damage some PHYs
2130 */
2131 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2132 writel(0, gp->regs + MIF_BBCLK);
2133 writel(0, gp->regs + MIF_BBDATA);
2134 writel(0, gp->regs + MIF_BBOENAB);
2135 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2136 (void) readl(gp->regs + MAC_XIFCFG);
2137 }
2138 }
2139
gem_do_start(struct net_device * dev)2140 static int gem_do_start(struct net_device *dev)
2141 {
2142 struct gem *gp = netdev_priv(dev);
2143 int rc;
2144
2145 pci_set_master(gp->pdev);
2146
2147 /* Init & setup chip hardware */
2148 gem_reinit_chip(gp);
2149
2150 /* An interrupt might come in handy */
2151 rc = request_irq(gp->pdev->irq, gem_interrupt,
2152 IRQF_SHARED, dev->name, (void *)dev);
2153 if (rc) {
2154 netdev_err(dev, "failed to request irq !\n");
2155
2156 gem_reset(gp);
2157 gem_clean_rings(gp);
2158 gem_put_cell(gp);
2159 return rc;
2160 }
2161
2162 /* Mark us as attached again if we come from resume(), this has
2163 * no effect if we weren't detached and needs to be done now.
2164 */
2165 netif_device_attach(dev);
2166
2167 /* Restart NAPI & queues */
2168 gem_netif_start(gp);
2169
2170 /* Detect & init PHY, start autoneg etc... this will
2171 * eventually result in starting DMA operations when
2172 * the link is up
2173 */
2174 gem_init_phy(gp);
2175
2176 return 0;
2177 }
2178
gem_do_stop(struct net_device * dev,int wol)2179 static void gem_do_stop(struct net_device *dev, int wol)
2180 {
2181 struct gem *gp = netdev_priv(dev);
2182
2183 /* Stop NAPI and stop tx queue */
2184 gem_netif_stop(gp);
2185
2186 /* Make sure ints are disabled. We don't care about
2187 * synchronizing as NAPI is disabled, thus a stray
2188 * interrupt will do nothing bad (our irq handler
2189 * just schedules NAPI)
2190 */
2191 gem_disable_ints(gp);
2192
2193 /* Stop the link timer */
2194 del_timer_sync(&gp->link_timer);
2195
2196 /* We cannot cancel the reset task while holding the
2197 * rtnl lock, we'd get an A->B / B->A deadlock stituation
2198 * if we did. This is not an issue however as the reset
2199 * task is synchronized vs. us (rtnl_lock) and will do
2200 * nothing if the device is down or suspended. We do
2201 * still clear reset_task_pending to avoid a spurrious
2202 * reset later on in case we do resume before it gets
2203 * scheduled.
2204 */
2205 gp->reset_task_pending = 0;
2206
2207 /* If we are going to sleep with WOL */
2208 gem_stop_dma(gp);
2209 msleep(10);
2210 if (!wol)
2211 gem_reset(gp);
2212 msleep(10);
2213
2214 /* Get rid of rings */
2215 gem_clean_rings(gp);
2216
2217 /* No irq needed anymore */
2218 free_irq(gp->pdev->irq, (void *) dev);
2219
2220 /* Shut the PHY down eventually and setup WOL */
2221 gem_stop_phy(gp, wol);
2222 }
2223
gem_reset_task(struct work_struct * work)2224 static void gem_reset_task(struct work_struct *work)
2225 {
2226 struct gem *gp = container_of(work, struct gem, reset_task);
2227
2228 /* Lock out the network stack (essentially shield ourselves
2229 * against a racing open, close, control call, or suspend
2230 */
2231 rtnl_lock();
2232
2233 /* Skip the reset task if suspended or closed, or if it's
2234 * been cancelled by gem_do_stop (see comment there)
2235 */
2236 if (!netif_device_present(gp->dev) ||
2237 !netif_running(gp->dev) ||
2238 !gp->reset_task_pending) {
2239 rtnl_unlock();
2240 return;
2241 }
2242
2243 /* Stop the link timer */
2244 del_timer_sync(&gp->link_timer);
2245
2246 /* Stop NAPI and tx */
2247 gem_netif_stop(gp);
2248
2249 /* Reset the chip & rings */
2250 gem_reinit_chip(gp);
2251 if (gp->lstate == link_up)
2252 gem_set_link_modes(gp);
2253
2254 /* Restart NAPI and Tx */
2255 gem_netif_start(gp);
2256
2257 /* We are back ! */
2258 gp->reset_task_pending = 0;
2259
2260 /* If the link is not up, restart autoneg, else restart the
2261 * polling timer
2262 */
2263 if (gp->lstate != link_up)
2264 gem_begin_auto_negotiation(gp, NULL);
2265 else
2266 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
2267
2268 rtnl_unlock();
2269 }
2270
gem_open(struct net_device * dev)2271 static int gem_open(struct net_device *dev)
2272 {
2273 struct gem *gp = netdev_priv(dev);
2274 int rc;
2275
2276 /* We allow open while suspended, we just do nothing,
2277 * the chip will be initialized in resume()
2278 */
2279 if (netif_device_present(dev)) {
2280 /* Enable the cell */
2281 gem_get_cell(gp);
2282
2283 /* Make sure PCI access and bus master are enabled */
2284 rc = pci_enable_device(gp->pdev);
2285 if (rc) {
2286 netdev_err(dev, "Failed to enable chip on PCI bus !\n");
2287
2288 /* Put cell and forget it for now, it will be considered
2289 *as still asleep, a new sleep cycle may bring it back
2290 */
2291 gem_put_cell(gp);
2292 return -ENXIO;
2293 }
2294 return gem_do_start(dev);
2295 }
2296
2297 return 0;
2298 }
2299
gem_close(struct net_device * dev)2300 static int gem_close(struct net_device *dev)
2301 {
2302 struct gem *gp = netdev_priv(dev);
2303
2304 if (netif_device_present(dev)) {
2305 gem_do_stop(dev, 0);
2306
2307 /* Make sure bus master is disabled */
2308 pci_disable_device(gp->pdev);
2309
2310 /* Cell not needed neither if no WOL */
2311 if (!gp->asleep_wol)
2312 gem_put_cell(gp);
2313 }
2314 return 0;
2315 }
2316
gem_suspend(struct device * dev_d)2317 static int __maybe_unused gem_suspend(struct device *dev_d)
2318 {
2319 struct net_device *dev = dev_get_drvdata(dev_d);
2320 struct gem *gp = netdev_priv(dev);
2321
2322 /* Lock the network stack first to avoid racing with open/close,
2323 * reset task and setting calls
2324 */
2325 rtnl_lock();
2326
2327 /* Not running, mark ourselves non-present, no need for
2328 * a lock here
2329 */
2330 if (!netif_running(dev)) {
2331 netif_device_detach(dev);
2332 rtnl_unlock();
2333 return 0;
2334 }
2335 netdev_info(dev, "suspending, WakeOnLan %s\n",
2336 (gp->wake_on_lan && netif_running(dev)) ?
2337 "enabled" : "disabled");
2338
2339 /* Tell the network stack we're gone. gem_do_stop() below will
2340 * synchronize with TX, stop NAPI etc...
2341 */
2342 netif_device_detach(dev);
2343
2344 /* Switch off chip, remember WOL setting */
2345 gp->asleep_wol = !!gp->wake_on_lan;
2346 gem_do_stop(dev, gp->asleep_wol);
2347
2348 /* Cell not needed neither if no WOL */
2349 if (!gp->asleep_wol)
2350 gem_put_cell(gp);
2351
2352 /* Unlock the network stack */
2353 rtnl_unlock();
2354
2355 return 0;
2356 }
2357
gem_resume(struct device * dev_d)2358 static int __maybe_unused gem_resume(struct device *dev_d)
2359 {
2360 struct net_device *dev = dev_get_drvdata(dev_d);
2361 struct gem *gp = netdev_priv(dev);
2362
2363 /* See locking comment in gem_suspend */
2364 rtnl_lock();
2365
2366 /* Not running, mark ourselves present, no need for
2367 * a lock here
2368 */
2369 if (!netif_running(dev)) {
2370 netif_device_attach(dev);
2371 rtnl_unlock();
2372 return 0;
2373 }
2374
2375 /* Enable the cell */
2376 gem_get_cell(gp);
2377
2378 /* Restart chip. If that fails there isn't much we can do, we
2379 * leave things stopped.
2380 */
2381 gem_do_start(dev);
2382
2383 /* If we had WOL enabled, the cell clock was never turned off during
2384 * sleep, so we end up beeing unbalanced. Fix that here
2385 */
2386 if (gp->asleep_wol)
2387 gem_put_cell(gp);
2388
2389 /* Unlock the network stack */
2390 rtnl_unlock();
2391
2392 return 0;
2393 }
2394
gem_get_stats(struct net_device * dev)2395 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2396 {
2397 struct gem *gp = netdev_priv(dev);
2398
2399 /* I have seen this being called while the PM was in progress,
2400 * so we shield against this. Let's also not poke at registers
2401 * while the reset task is going on.
2402 *
2403 * TODO: Move stats collection elsewhere (link timer ?) and
2404 * make this a nop to avoid all those synchro issues
2405 */
2406 if (!netif_device_present(dev) || !netif_running(dev))
2407 goto bail;
2408
2409 /* Better safe than sorry... */
2410 if (WARN_ON(!gp->cell_enabled))
2411 goto bail;
2412
2413 dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2414 writel(0, gp->regs + MAC_FCSERR);
2415
2416 dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
2417 writel(0, gp->regs + MAC_AERR);
2418
2419 dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
2420 writel(0, gp->regs + MAC_LERR);
2421
2422 dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2423 dev->stats.collisions +=
2424 (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
2425 writel(0, gp->regs + MAC_ECOLL);
2426 writel(0, gp->regs + MAC_LCOLL);
2427 bail:
2428 return &dev->stats;
2429 }
2430
gem_set_mac_address(struct net_device * dev,void * addr)2431 static int gem_set_mac_address(struct net_device *dev, void *addr)
2432 {
2433 struct sockaddr *macaddr = (struct sockaddr *) addr;
2434 const unsigned char *e = &dev->dev_addr[0];
2435 struct gem *gp = netdev_priv(dev);
2436
2437 if (!is_valid_ether_addr(macaddr->sa_data))
2438 return -EADDRNOTAVAIL;
2439
2440 eth_hw_addr_set(dev, macaddr->sa_data);
2441
2442 /* We'll just catch it later when the device is up'd or resumed */
2443 if (!netif_running(dev) || !netif_device_present(dev))
2444 return 0;
2445
2446 /* Better safe than sorry... */
2447 if (WARN_ON(!gp->cell_enabled))
2448 return 0;
2449
2450 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2451 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2452 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2453
2454 return 0;
2455 }
2456
gem_set_multicast(struct net_device * dev)2457 static void gem_set_multicast(struct net_device *dev)
2458 {
2459 struct gem *gp = netdev_priv(dev);
2460 u32 rxcfg, rxcfg_new;
2461 int limit = 10000;
2462
2463 if (!netif_running(dev) || !netif_device_present(dev))
2464 return;
2465
2466 /* Better safe than sorry... */
2467 if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
2468 return;
2469
2470 rxcfg = readl(gp->regs + MAC_RXCFG);
2471 rxcfg_new = gem_setup_multicast(gp);
2472 #ifdef STRIP_FCS
2473 rxcfg_new |= MAC_RXCFG_SFCS;
2474 #endif
2475 gp->mac_rx_cfg = rxcfg_new;
2476
2477 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2478 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2479 if (!limit--)
2480 break;
2481 udelay(10);
2482 }
2483
2484 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2485 rxcfg |= rxcfg_new;
2486
2487 writel(rxcfg, gp->regs + MAC_RXCFG);
2488 }
2489
2490 /* Jumbo-grams don't seem to work :-( */
2491 #define GEM_MIN_MTU ETH_MIN_MTU
2492 #if 1
2493 #define GEM_MAX_MTU ETH_DATA_LEN
2494 #else
2495 #define GEM_MAX_MTU 9000
2496 #endif
2497
gem_change_mtu(struct net_device * dev,int new_mtu)2498 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2499 {
2500 struct gem *gp = netdev_priv(dev);
2501
2502 dev->mtu = new_mtu;
2503
2504 /* We'll just catch it later when the device is up'd or resumed */
2505 if (!netif_running(dev) || !netif_device_present(dev))
2506 return 0;
2507
2508 /* Better safe than sorry... */
2509 if (WARN_ON(!gp->cell_enabled))
2510 return 0;
2511
2512 gem_netif_stop(gp);
2513 gem_reinit_chip(gp);
2514 if (gp->lstate == link_up)
2515 gem_set_link_modes(gp);
2516 gem_netif_start(gp);
2517
2518 return 0;
2519 }
2520
gem_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)2521 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2522 {
2523 struct gem *gp = netdev_priv(dev);
2524
2525 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
2526 strscpy(info->version, DRV_VERSION, sizeof(info->version));
2527 strscpy(info->bus_info, pci_name(gp->pdev), sizeof(info->bus_info));
2528 }
2529
gem_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)2530 static int gem_get_link_ksettings(struct net_device *dev,
2531 struct ethtool_link_ksettings *cmd)
2532 {
2533 struct gem *gp = netdev_priv(dev);
2534 u32 supported, advertising;
2535
2536 if (gp->phy_type == phy_mii_mdio0 ||
2537 gp->phy_type == phy_mii_mdio1) {
2538 if (gp->phy_mii.def)
2539 supported = gp->phy_mii.def->features;
2540 else
2541 supported = (SUPPORTED_10baseT_Half |
2542 SUPPORTED_10baseT_Full);
2543
2544 /* XXX hardcoded stuff for now */
2545 cmd->base.port = PORT_MII;
2546 cmd->base.phy_address = 0; /* XXX fixed PHYAD */
2547
2548 /* Return current PHY settings */
2549 cmd->base.autoneg = gp->want_autoneg;
2550 cmd->base.speed = gp->phy_mii.speed;
2551 cmd->base.duplex = gp->phy_mii.duplex;
2552 advertising = gp->phy_mii.advertising;
2553
2554 /* If we started with a forced mode, we don't have a default
2555 * advertise set, we need to return something sensible so
2556 * userland can re-enable autoneg properly.
2557 */
2558 if (advertising == 0)
2559 advertising = supported;
2560 } else { // XXX PCS ?
2561 supported =
2562 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2563 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2564 SUPPORTED_Autoneg);
2565 advertising = supported;
2566 cmd->base.speed = 0;
2567 cmd->base.duplex = 0;
2568 cmd->base.port = 0;
2569 cmd->base.phy_address = 0;
2570 cmd->base.autoneg = 0;
2571
2572 /* serdes means usually a Fibre connector, with most fixed */
2573 if (gp->phy_type == phy_serdes) {
2574 cmd->base.port = PORT_FIBRE;
2575 supported = (SUPPORTED_1000baseT_Half |
2576 SUPPORTED_1000baseT_Full |
2577 SUPPORTED_FIBRE | SUPPORTED_Autoneg |
2578 SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2579 advertising = supported;
2580 if (gp->lstate == link_up)
2581 cmd->base.speed = SPEED_1000;
2582 cmd->base.duplex = DUPLEX_FULL;
2583 cmd->base.autoneg = 1;
2584 }
2585 }
2586
2587 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2588 supported);
2589 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
2590 advertising);
2591
2592 return 0;
2593 }
2594
gem_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)2595 static int gem_set_link_ksettings(struct net_device *dev,
2596 const struct ethtool_link_ksettings *cmd)
2597 {
2598 struct gem *gp = netdev_priv(dev);
2599 u32 speed = cmd->base.speed;
2600 u32 advertising;
2601
2602 ethtool_convert_link_mode_to_legacy_u32(&advertising,
2603 cmd->link_modes.advertising);
2604
2605 /* Verify the settings we care about. */
2606 if (cmd->base.autoneg != AUTONEG_ENABLE &&
2607 cmd->base.autoneg != AUTONEG_DISABLE)
2608 return -EINVAL;
2609
2610 if (cmd->base.autoneg == AUTONEG_ENABLE &&
2611 advertising == 0)
2612 return -EINVAL;
2613
2614 if (cmd->base.autoneg == AUTONEG_DISABLE &&
2615 ((speed != SPEED_1000 &&
2616 speed != SPEED_100 &&
2617 speed != SPEED_10) ||
2618 (cmd->base.duplex != DUPLEX_HALF &&
2619 cmd->base.duplex != DUPLEX_FULL)))
2620 return -EINVAL;
2621
2622 /* Apply settings and restart link process. */
2623 if (netif_device_present(gp->dev)) {
2624 del_timer_sync(&gp->link_timer);
2625 gem_begin_auto_negotiation(gp, cmd);
2626 }
2627
2628 return 0;
2629 }
2630
gem_nway_reset(struct net_device * dev)2631 static int gem_nway_reset(struct net_device *dev)
2632 {
2633 struct gem *gp = netdev_priv(dev);
2634
2635 if (!gp->want_autoneg)
2636 return -EINVAL;
2637
2638 /* Restart link process */
2639 if (netif_device_present(gp->dev)) {
2640 del_timer_sync(&gp->link_timer);
2641 gem_begin_auto_negotiation(gp, NULL);
2642 }
2643
2644 return 0;
2645 }
2646
gem_get_msglevel(struct net_device * dev)2647 static u32 gem_get_msglevel(struct net_device *dev)
2648 {
2649 struct gem *gp = netdev_priv(dev);
2650 return gp->msg_enable;
2651 }
2652
gem_set_msglevel(struct net_device * dev,u32 value)2653 static void gem_set_msglevel(struct net_device *dev, u32 value)
2654 {
2655 struct gem *gp = netdev_priv(dev);
2656 gp->msg_enable = value;
2657 }
2658
2659
2660 /* Add more when I understand how to program the chip */
2661 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2662
2663 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2664
gem_get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)2665 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2666 {
2667 struct gem *gp = netdev_priv(dev);
2668
2669 /* Add more when I understand how to program the chip */
2670 if (gp->has_wol) {
2671 wol->supported = WOL_SUPPORTED_MASK;
2672 wol->wolopts = gp->wake_on_lan;
2673 } else {
2674 wol->supported = 0;
2675 wol->wolopts = 0;
2676 }
2677 }
2678
gem_set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)2679 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2680 {
2681 struct gem *gp = netdev_priv(dev);
2682
2683 if (!gp->has_wol)
2684 return -EOPNOTSUPP;
2685 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2686 return 0;
2687 }
2688
2689 static const struct ethtool_ops gem_ethtool_ops = {
2690 .get_drvinfo = gem_get_drvinfo,
2691 .get_link = ethtool_op_get_link,
2692 .nway_reset = gem_nway_reset,
2693 .get_msglevel = gem_get_msglevel,
2694 .set_msglevel = gem_set_msglevel,
2695 .get_wol = gem_get_wol,
2696 .set_wol = gem_set_wol,
2697 .get_link_ksettings = gem_get_link_ksettings,
2698 .set_link_ksettings = gem_set_link_ksettings,
2699 };
2700
gem_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)2701 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2702 {
2703 struct gem *gp = netdev_priv(dev);
2704 struct mii_ioctl_data *data = if_mii(ifr);
2705 int rc = -EOPNOTSUPP;
2706
2707 /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
2708 * netif_device_present() is true and holds rtnl_lock for us
2709 * so we have nothing to worry about
2710 */
2711
2712 switch (cmd) {
2713 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2714 data->phy_id = gp->mii_phy_addr;
2715 fallthrough;
2716
2717 case SIOCGMIIREG: /* Read MII PHY register. */
2718 data->val_out = __sungem_phy_read(gp, data->phy_id & 0x1f,
2719 data->reg_num & 0x1f);
2720 rc = 0;
2721 break;
2722
2723 case SIOCSMIIREG: /* Write MII PHY register. */
2724 __sungem_phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2725 data->val_in);
2726 rc = 0;
2727 break;
2728 }
2729 return rc;
2730 }
2731
2732 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2733 /* Fetch MAC address from vital product data of PCI ROM. */
find_eth_addr_in_vpd(void __iomem * rom_base,int len,unsigned char * dev_addr)2734 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2735 {
2736 int this_offset;
2737
2738 for (this_offset = 0x20; this_offset < len; this_offset++) {
2739 void __iomem *p = rom_base + this_offset;
2740 int i;
2741
2742 if (readb(p + 0) != 0x90 ||
2743 readb(p + 1) != 0x00 ||
2744 readb(p + 2) != 0x09 ||
2745 readb(p + 3) != 0x4e ||
2746 readb(p + 4) != 0x41 ||
2747 readb(p + 5) != 0x06)
2748 continue;
2749
2750 this_offset += 6;
2751 p += 6;
2752
2753 for (i = 0; i < 6; i++)
2754 dev_addr[i] = readb(p + i);
2755 return 1;
2756 }
2757 return 0;
2758 }
2759
get_gem_mac_nonobp(struct pci_dev * pdev,unsigned char * dev_addr)2760 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2761 {
2762 size_t size;
2763 void __iomem *p = pci_map_rom(pdev, &size);
2764
2765 if (p) {
2766 int found;
2767
2768 found = readb(p) == 0x55 &&
2769 readb(p + 1) == 0xaa &&
2770 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2771 pci_unmap_rom(pdev, p);
2772 if (found)
2773 return;
2774 }
2775
2776 /* Sun MAC prefix then 3 random bytes. */
2777 dev_addr[0] = 0x08;
2778 dev_addr[1] = 0x00;
2779 dev_addr[2] = 0x20;
2780 get_random_bytes(dev_addr + 3, 3);
2781 }
2782 #endif /* not Sparc and not PPC */
2783
gem_get_device_address(struct gem * gp)2784 static int gem_get_device_address(struct gem *gp)
2785 {
2786 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2787 struct net_device *dev = gp->dev;
2788 const unsigned char *addr;
2789
2790 addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2791 if (addr == NULL) {
2792 #ifdef CONFIG_SPARC
2793 addr = idprom->id_ethaddr;
2794 #else
2795 printk("\n");
2796 pr_err("%s: can't get mac-address\n", dev->name);
2797 return -1;
2798 #endif
2799 }
2800 eth_hw_addr_set(dev, addr);
2801 #else
2802 u8 addr[ETH_ALEN];
2803
2804 get_gem_mac_nonobp(gp->pdev, addr);
2805 eth_hw_addr_set(gp->dev, addr);
2806 #endif
2807 return 0;
2808 }
2809
gem_remove_one(struct pci_dev * pdev)2810 static void gem_remove_one(struct pci_dev *pdev)
2811 {
2812 struct net_device *dev = pci_get_drvdata(pdev);
2813
2814 if (dev) {
2815 struct gem *gp = netdev_priv(dev);
2816
2817 unregister_netdev(dev);
2818
2819 /* Ensure reset task is truly gone */
2820 cancel_work_sync(&gp->reset_task);
2821
2822 /* Free resources */
2823 dma_free_coherent(&pdev->dev, sizeof(struct gem_init_block),
2824 gp->init_block, gp->gblock_dvma);
2825 iounmap(gp->regs);
2826 pci_release_regions(pdev);
2827 free_netdev(dev);
2828 }
2829 }
2830
2831 static const struct net_device_ops gem_netdev_ops = {
2832 .ndo_open = gem_open,
2833 .ndo_stop = gem_close,
2834 .ndo_start_xmit = gem_start_xmit,
2835 .ndo_get_stats = gem_get_stats,
2836 .ndo_set_rx_mode = gem_set_multicast,
2837 .ndo_eth_ioctl = gem_ioctl,
2838 .ndo_tx_timeout = gem_tx_timeout,
2839 .ndo_change_mtu = gem_change_mtu,
2840 .ndo_validate_addr = eth_validate_addr,
2841 .ndo_set_mac_address = gem_set_mac_address,
2842 #ifdef CONFIG_NET_POLL_CONTROLLER
2843 .ndo_poll_controller = gem_poll_controller,
2844 #endif
2845 };
2846
gem_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)2847 static int gem_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2848 {
2849 unsigned long gemreg_base, gemreg_len;
2850 struct net_device *dev;
2851 struct gem *gp;
2852 int err, pci_using_dac;
2853
2854 printk_once(KERN_INFO "%s", version);
2855
2856 /* Apple gmac note: during probe, the chip is powered up by
2857 * the arch code to allow the code below to work (and to let
2858 * the chip be probed on the config space. It won't stay powered
2859 * up until the interface is brought up however, so we can't rely
2860 * on register configuration done at this point.
2861 */
2862 err = pci_enable_device(pdev);
2863 if (err) {
2864 pr_err("Cannot enable MMIO operation, aborting\n");
2865 return err;
2866 }
2867 pci_set_master(pdev);
2868
2869 /* Configure DMA attributes. */
2870
2871 /* All of the GEM documentation states that 64-bit DMA addressing
2872 * is fully supported and should work just fine. However the
2873 * front end for RIO based GEMs is different and only supports
2874 * 32-bit addressing.
2875 *
2876 * For now we assume the various PPC GEMs are 32-bit only as well.
2877 */
2878 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2879 pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2880 !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
2881 pci_using_dac = 1;
2882 } else {
2883 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2884 if (err) {
2885 pr_err("No usable DMA configuration, aborting\n");
2886 goto err_disable_device;
2887 }
2888 pci_using_dac = 0;
2889 }
2890
2891 gemreg_base = pci_resource_start(pdev, 0);
2892 gemreg_len = pci_resource_len(pdev, 0);
2893
2894 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
2895 pr_err("Cannot find proper PCI device base address, aborting\n");
2896 err = -ENODEV;
2897 goto err_disable_device;
2898 }
2899
2900 dev = alloc_etherdev(sizeof(*gp));
2901 if (!dev) {
2902 err = -ENOMEM;
2903 goto err_disable_device;
2904 }
2905 SET_NETDEV_DEV(dev, &pdev->dev);
2906
2907 gp = netdev_priv(dev);
2908
2909 err = pci_request_regions(pdev, DRV_NAME);
2910 if (err) {
2911 pr_err("Cannot obtain PCI resources, aborting\n");
2912 goto err_out_free_netdev;
2913 }
2914
2915 gp->pdev = pdev;
2916 gp->dev = dev;
2917
2918 gp->msg_enable = DEFAULT_MSG;
2919
2920 timer_setup(&gp->link_timer, gem_link_timer, 0);
2921
2922 INIT_WORK(&gp->reset_task, gem_reset_task);
2923
2924 gp->lstate = link_down;
2925 gp->timer_ticks = 0;
2926 netif_carrier_off(dev);
2927
2928 gp->regs = ioremap(gemreg_base, gemreg_len);
2929 if (!gp->regs) {
2930 pr_err("Cannot map device registers, aborting\n");
2931 err = -EIO;
2932 goto err_out_free_res;
2933 }
2934
2935 /* On Apple, we want a reference to the Open Firmware device-tree
2936 * node. We use it for clock control.
2937 */
2938 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
2939 gp->of_node = pci_device_to_OF_node(pdev);
2940 #endif
2941
2942 /* Only Apple version supports WOL afaik */
2943 if (pdev->vendor == PCI_VENDOR_ID_APPLE)
2944 gp->has_wol = 1;
2945
2946 /* Make sure cell is enabled */
2947 gem_get_cell(gp);
2948
2949 /* Make sure everything is stopped and in init state */
2950 gem_reset(gp);
2951
2952 /* Fill up the mii_phy structure (even if we won't use it) */
2953 gp->phy_mii.dev = dev;
2954 gp->phy_mii.mdio_read = _sungem_phy_read;
2955 gp->phy_mii.mdio_write = _sungem_phy_write;
2956 #ifdef CONFIG_PPC_PMAC
2957 gp->phy_mii.platform_data = gp->of_node;
2958 #endif
2959 /* By default, we start with autoneg */
2960 gp->want_autoneg = 1;
2961
2962 /* Check fifo sizes, PHY type, etc... */
2963 if (gem_check_invariants(gp)) {
2964 err = -ENODEV;
2965 goto err_out_iounmap;
2966 }
2967
2968 /* It is guaranteed that the returned buffer will be at least
2969 * PAGE_SIZE aligned.
2970 */
2971 gp->init_block = dma_alloc_coherent(&pdev->dev, sizeof(struct gem_init_block),
2972 &gp->gblock_dvma, GFP_KERNEL);
2973 if (!gp->init_block) {
2974 pr_err("Cannot allocate init block, aborting\n");
2975 err = -ENOMEM;
2976 goto err_out_iounmap;
2977 }
2978
2979 err = gem_get_device_address(gp);
2980 if (err)
2981 goto err_out_free_consistent;
2982
2983 dev->netdev_ops = &gem_netdev_ops;
2984 netif_napi_add(dev, &gp->napi, gem_poll);
2985 dev->ethtool_ops = &gem_ethtool_ops;
2986 dev->watchdog_timeo = 5 * HZ;
2987 dev->dma = 0;
2988
2989 /* Set that now, in case PM kicks in now */
2990 pci_set_drvdata(pdev, dev);
2991
2992 /* We can do scatter/gather and HW checksum */
2993 dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
2994 dev->features = dev->hw_features;
2995 if (pci_using_dac)
2996 dev->features |= NETIF_F_HIGHDMA;
2997
2998 /* MTU range: 68 - 1500 (Jumbo mode is broken) */
2999 dev->min_mtu = GEM_MIN_MTU;
3000 dev->max_mtu = GEM_MAX_MTU;
3001
3002 /* Register with kernel */
3003 if (register_netdev(dev)) {
3004 pr_err("Cannot register net device, aborting\n");
3005 err = -ENOMEM;
3006 goto err_out_free_consistent;
3007 }
3008
3009 /* Undo the get_cell with appropriate locking (we could use
3010 * ndo_init/uninit but that would be even more clumsy imho)
3011 */
3012 rtnl_lock();
3013 gem_put_cell(gp);
3014 rtnl_unlock();
3015
3016 netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
3017 dev->dev_addr);
3018 return 0;
3019
3020 err_out_free_consistent:
3021 gem_remove_one(pdev);
3022 err_out_iounmap:
3023 gem_put_cell(gp);
3024 iounmap(gp->regs);
3025
3026 err_out_free_res:
3027 pci_release_regions(pdev);
3028
3029 err_out_free_netdev:
3030 free_netdev(dev);
3031 err_disable_device:
3032 pci_disable_device(pdev);
3033 return err;
3034
3035 }
3036
3037 static SIMPLE_DEV_PM_OPS(gem_pm_ops, gem_suspend, gem_resume);
3038
3039 static struct pci_driver gem_driver = {
3040 .name = GEM_MODULE_NAME,
3041 .id_table = gem_pci_tbl,
3042 .probe = gem_init_one,
3043 .remove = gem_remove_one,
3044 .driver.pm = &gem_pm_ops,
3045 };
3046
3047 module_pci_driver(gem_driver);
3048