1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright 2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26 
27 
28 
29 #include "dcn314_clk_mgr.h"
30 
31 #include "dccg.h"
32 #include "clk_mgr_internal.h"
33 
34 // For dce12_get_dp_ref_freq_khz
35 #include "dce100/dce_clk_mgr.h"
36 
37 // For dcn20_update_clocks_update_dpp_dto
38 #include "dcn20/dcn20_clk_mgr.h"
39 
40 
41 
42 #include "reg_helper.h"
43 #include "core_types.h"
44 #include "dm_helpers.h"
45 
46 /* TODO: remove this include once we ported over remaining clk mgr functions*/
47 #include "dcn30/dcn30_clk_mgr.h"
48 #include "dcn31/dcn31_clk_mgr.h"
49 
50 #include "dc_dmub_srv.h"
51 #include "link.h"
52 #include "dcn314_smu.h"
53 
54 
55 #include "logger_types.h"
56 #undef DC_LOGGER
57 #define DC_LOGGER \
58 	clk_mgr->base.base.ctx->logger
59 
60 
61 #define MAX_INSTANCE                                        7
62 #define MAX_SEGMENT                                         8
63 
64 struct IP_BASE_INSTANCE {
65 	unsigned int segment[MAX_SEGMENT];
66 };
67 
68 struct IP_BASE {
69 	struct IP_BASE_INSTANCE instance[MAX_INSTANCE];
70 };
71 
72 static const struct IP_BASE CLK_BASE = { { { { 0x00016C00, 0x02401800, 0, 0, 0, 0, 0, 0 } },
73 					{ { 0x00016E00, 0x02401C00, 0, 0, 0, 0, 0, 0 } },
74 					{ { 0x00017000, 0x02402000, 0, 0, 0, 0, 0, 0 } },
75 					{ { 0x00017200, 0x02402400, 0, 0, 0, 0, 0, 0 } },
76 					{ { 0x0001B000, 0x0242D800, 0, 0, 0, 0, 0, 0 } },
77 					{ { 0x0001B200, 0x0242DC00, 0, 0, 0, 0, 0, 0 } },
78 					{ { 0x0001B400, 0x0242E000, 0, 0, 0, 0, 0, 0 } } } };
79 
80 #define regCLK1_CLK_PLL_REQ			0x0237
81 #define regCLK1_CLK_PLL_REQ_BASE_IDX		0
82 
83 #define CLK1_CLK_PLL_REQ__FbMult_int__SHIFT	0x0
84 #define CLK1_CLK_PLL_REQ__PllSpineDiv__SHIFT	0xc
85 #define CLK1_CLK_PLL_REQ__FbMult_frac__SHIFT	0x10
86 #define CLK1_CLK_PLL_REQ__FbMult_int_MASK	0x000001FFL
87 #define CLK1_CLK_PLL_REQ__PllSpineDiv_MASK	0x0000F000L
88 #define CLK1_CLK_PLL_REQ__FbMult_frac_MASK	0xFFFF0000L
89 
90 #define REG(reg_name) \
91 	(CLK_BASE.instance[0].segment[reg ## reg_name ## _BASE_IDX] + reg ## reg_name)
92 
93 #define TO_CLK_MGR_DCN314(clk_mgr)\
94 	container_of(clk_mgr, struct clk_mgr_dcn314, base)
95 
dcn314_get_active_display_cnt_wa(struct dc * dc,struct dc_state * context)96 static int dcn314_get_active_display_cnt_wa(
97 		struct dc *dc,
98 		struct dc_state *context)
99 {
100 	int i, display_count;
101 	bool tmds_present = false;
102 
103 	display_count = 0;
104 	for (i = 0; i < context->stream_count; i++) {
105 		const struct dc_stream_state *stream = context->streams[i];
106 
107 		if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
108 				stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
109 				stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
110 			tmds_present = true;
111 
112 		/* Checking stream / link detection ensuring that PHY is active*/
113 		if (dc_is_dp_signal(stream->signal) && !stream->dpms_off)
114 			display_count++;
115 
116 	}
117 
118 	for (i = 0; i < dc->link_count; i++) {
119 		const struct dc_link *link = dc->links[i];
120 
121 		/* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
122 		if (link->link_enc && link->link_enc->funcs->is_dig_enabled &&
123 				link->link_enc->funcs->is_dig_enabled(link->link_enc))
124 			display_count++;
125 	}
126 
127 	/* WA for hang on HDMI after display off back on*/
128 	if (display_count == 0 && tmds_present)
129 		display_count = 1;
130 
131 	return display_count;
132 }
133 
dcn314_disable_otg_wa(struct clk_mgr * clk_mgr_base,struct dc_state * context,bool disable)134 static void dcn314_disable_otg_wa(struct clk_mgr *clk_mgr_base, struct dc_state *context, bool disable)
135 {
136 	struct dc *dc = clk_mgr_base->ctx->dc;
137 	int i;
138 
139 	for (i = 0; i < dc->res_pool->pipe_count; ++i) {
140 		struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
141 
142 		if (pipe->top_pipe || pipe->prev_odm_pipe)
143 			continue;
144 		if (pipe->stream && (pipe->stream->dpms_off || dc_is_virtual_signal(pipe->stream->signal))) {
145 			struct stream_encoder *stream_enc = pipe->stream_res.stream_enc;
146 
147 			if (disable) {
148 				if (stream_enc && stream_enc->funcs->disable_fifo)
149 					pipe->stream_res.stream_enc->funcs->disable_fifo(stream_enc);
150 
151 				pipe->stream_res.tg->funcs->immediate_disable_crtc(pipe->stream_res.tg);
152 				reset_sync_context_for_pipe(dc, context, i);
153 			} else {
154 				pipe->stream_res.tg->funcs->enable_crtc(pipe->stream_res.tg);
155 
156 				if (stream_enc && stream_enc->funcs->enable_fifo)
157 					pipe->stream_res.stream_enc->funcs->enable_fifo(stream_enc);
158 			}
159 		}
160 	}
161 }
162 
dcn314_update_clocks(struct clk_mgr * clk_mgr_base,struct dc_state * context,bool safe_to_lower)163 void dcn314_update_clocks(struct clk_mgr *clk_mgr_base,
164 			struct dc_state *context,
165 			bool safe_to_lower)
166 {
167 	union dmub_rb_cmd cmd;
168 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
169 	struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
170 	struct dc *dc = clk_mgr_base->ctx->dc;
171 	int display_count;
172 	bool update_dppclk = false;
173 	bool update_dispclk = false;
174 	bool dpp_clock_lowered = false;
175 
176 	if (dc->work_arounds.skip_clock_update)
177 		return;
178 
179 	/*
180 	 * if it is safe to lower, but we are already in the lower state, we don't have to do anything
181 	 * also if safe to lower is false, we just go in the higher state
182 	 */
183 	if (safe_to_lower) {
184 		if (new_clocks->zstate_support != DCN_ZSTATE_SUPPORT_DISALLOW &&
185 				new_clocks->zstate_support != clk_mgr_base->clks.zstate_support) {
186 			dcn314_smu_set_zstate_support(clk_mgr, new_clocks->zstate_support);
187 			dm_helpers_enable_periodic_detection(clk_mgr_base->ctx, true);
188 			clk_mgr_base->clks.zstate_support = new_clocks->zstate_support;
189 		}
190 
191 		if (clk_mgr_base->clks.dtbclk_en && !new_clocks->dtbclk_en) {
192 			dcn314_smu_set_dtbclk(clk_mgr, false);
193 			clk_mgr_base->clks.dtbclk_en = new_clocks->dtbclk_en;
194 		}
195 		/* check that we're not already in lower */
196 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
197 			display_count = dcn314_get_active_display_cnt_wa(dc, context);
198 			/* if we can go lower, go lower */
199 			if (display_count == 0) {
200 				union display_idle_optimization_u idle_info = { 0 };
201 				idle_info.idle_info.df_request_disabled = 1;
202 				idle_info.idle_info.phy_ref_clk_off = 1;
203 				idle_info.idle_info.s0i2_rdy = 1;
204 				dcn314_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
205 				/* update power state */
206 				clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
207 			}
208 		}
209 	} else {
210 		if (new_clocks->zstate_support == DCN_ZSTATE_SUPPORT_DISALLOW &&
211 				new_clocks->zstate_support != clk_mgr_base->clks.zstate_support) {
212 			dcn314_smu_set_zstate_support(clk_mgr, DCN_ZSTATE_SUPPORT_DISALLOW);
213 			dm_helpers_enable_periodic_detection(clk_mgr_base->ctx, false);
214 			clk_mgr_base->clks.zstate_support = new_clocks->zstate_support;
215 		}
216 
217 		if (!clk_mgr_base->clks.dtbclk_en && new_clocks->dtbclk_en) {
218 			dcn314_smu_set_dtbclk(clk_mgr, true);
219 			clk_mgr_base->clks.dtbclk_en = new_clocks->dtbclk_en;
220 		}
221 
222 		/* check that we're not already in D0 */
223 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
224 			union display_idle_optimization_u idle_info = { 0 };
225 
226 			dcn314_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
227 			/* update power state */
228 			clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
229 		}
230 	}
231 
232 	if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
233 		clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
234 		dcn314_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
235 	}
236 
237 	if (should_set_clock(safe_to_lower,
238 			new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
239 		clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
240 		dcn314_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
241 	}
242 
243 	// workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
244 	if (new_clocks->dppclk_khz < 100000)
245 		new_clocks->dppclk_khz = 100000;
246 
247 	if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) {
248 		if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz)
249 			dpp_clock_lowered = true;
250 		clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
251 		update_dppclk = true;
252 	}
253 
254 	if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
255 		dcn314_disable_otg_wa(clk_mgr_base, context, true);
256 
257 		clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
258 		dcn314_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
259 		dcn314_disable_otg_wa(clk_mgr_base, context, false);
260 
261 		update_dispclk = true;
262 	}
263 
264 	if (dpp_clock_lowered) {
265 		// increase per DPP DTO before lowering global dppclk
266 		dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
267 		dcn314_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
268 	} else {
269 		// increase global DPPCLK before lowering per DPP DTO
270 		if (update_dppclk || update_dispclk)
271 			dcn314_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
272 		// always update dtos unless clock is lowered and not safe to lower
273 		if (new_clocks->dppclk_khz >= dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz)
274 			dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
275 	}
276 
277 	// notify DMCUB of latest clocks
278 	memset(&cmd, 0, sizeof(cmd));
279 	cmd.notify_clocks.header.type = DMUB_CMD__CLK_MGR;
280 	cmd.notify_clocks.header.sub_type = DMUB_CMD__CLK_MGR_NOTIFY_CLOCKS;
281 	cmd.notify_clocks.clocks.dcfclk_khz = clk_mgr_base->clks.dcfclk_khz;
282 	cmd.notify_clocks.clocks.dcfclk_deep_sleep_khz =
283 		clk_mgr_base->clks.dcfclk_deep_sleep_khz;
284 	cmd.notify_clocks.clocks.dispclk_khz = clk_mgr_base->clks.dispclk_khz;
285 	cmd.notify_clocks.clocks.dppclk_khz = clk_mgr_base->clks.dppclk_khz;
286 
287 	dm_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
288 }
289 
get_vco_frequency_from_reg(struct clk_mgr_internal * clk_mgr)290 static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
291 {
292 	/* get FbMult value */
293 	struct fixed31_32 pll_req;
294 	unsigned int fbmult_frac_val = 0;
295 	unsigned int fbmult_int_val = 0;
296 
297 	/*
298 	 * Register value of fbmult is in 8.16 format, we are converting to 314.32
299 	 * to leverage the fix point operations available in driver
300 	 */
301 
302 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
303 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
304 
305 	pll_req = dc_fixpt_from_int(fbmult_int_val);
306 
307 	/*
308 	 * since fractional part is only 16 bit in register definition but is 32 bit
309 	 * in our fix point definiton, need to shift left by 16 to obtain correct value
310 	 */
311 	pll_req.value |= fbmult_frac_val << 16;
312 
313 	/* multiply by REFCLK period */
314 	pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
315 
316 	/* integer part is now VCO frequency in kHz */
317 	return dc_fixpt_floor(pll_req);
318 }
319 
dcn314_enable_pme_wa(struct clk_mgr * clk_mgr_base)320 static void dcn314_enable_pme_wa(struct clk_mgr *clk_mgr_base)
321 {
322 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
323 
324 	dcn314_smu_enable_pme_wa(clk_mgr);
325 }
326 
dcn314_are_clock_states_equal(struct dc_clocks * a,struct dc_clocks * b)327 bool dcn314_are_clock_states_equal(struct dc_clocks *a,
328 		struct dc_clocks *b)
329 {
330 	if (a->dispclk_khz != b->dispclk_khz)
331 		return false;
332 	else if (a->dppclk_khz != b->dppclk_khz)
333 		return false;
334 	else if (a->dcfclk_khz != b->dcfclk_khz)
335 		return false;
336 	else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
337 		return false;
338 	else if (a->zstate_support != b->zstate_support)
339 		return false;
340 	else if (a->dtbclk_en != b->dtbclk_en)
341 		return false;
342 
343 	return true;
344 }
345 
dcn314_dump_clk_registers(struct clk_state_registers_and_bypass * regs_and_bypass,struct clk_mgr * clk_mgr_base,struct clk_log_info * log_info)346 static void dcn314_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
347 		struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
348 {
349 	return;
350 }
351 
352 static struct clk_bw_params dcn314_bw_params = {
353 	.vram_type = Ddr4MemType,
354 	.num_channels = 1,
355 	.clk_table = {
356 		.num_entries = 4,
357 	},
358 
359 };
360 
361 static struct wm_table ddr5_wm_table = {
362 	.entries = {
363 		{
364 			.wm_inst = WM_A,
365 			.wm_type = WM_TYPE_PSTATE_CHG,
366 			.pstate_latency_us = 11.72,
367 			.sr_exit_time_us = 12.5,
368 			.sr_enter_plus_exit_time_us = 14.5,
369 			.valid = true,
370 		},
371 		{
372 			.wm_inst = WM_B,
373 			.wm_type = WM_TYPE_PSTATE_CHG,
374 			.pstate_latency_us = 11.72,
375 			.sr_exit_time_us = 12.5,
376 			.sr_enter_plus_exit_time_us = 14.5,
377 			.valid = true,
378 		},
379 		{
380 			.wm_inst = WM_C,
381 			.wm_type = WM_TYPE_PSTATE_CHG,
382 			.pstate_latency_us = 11.72,
383 			.sr_exit_time_us = 12.5,
384 			.sr_enter_plus_exit_time_us = 14.5,
385 			.valid = true,
386 		},
387 		{
388 			.wm_inst = WM_D,
389 			.wm_type = WM_TYPE_PSTATE_CHG,
390 			.pstate_latency_us = 11.72,
391 			.sr_exit_time_us = 12.5,
392 			.sr_enter_plus_exit_time_us = 14.5,
393 			.valid = true,
394 		},
395 	}
396 };
397 
398 static struct wm_table lpddr5_wm_table = {
399 	.entries = {
400 		{
401 			.wm_inst = WM_A,
402 			.wm_type = WM_TYPE_PSTATE_CHG,
403 			.pstate_latency_us = 11.65333,
404 			.sr_exit_time_us = 30.0,
405 			.sr_enter_plus_exit_time_us = 32.0,
406 			.valid = true,
407 		},
408 		{
409 			.wm_inst = WM_B,
410 			.wm_type = WM_TYPE_PSTATE_CHG,
411 			.pstate_latency_us = 11.65333,
412 			.sr_exit_time_us = 30.0,
413 			.sr_enter_plus_exit_time_us = 32.0,
414 			.valid = true,
415 		},
416 		{
417 			.wm_inst = WM_C,
418 			.wm_type = WM_TYPE_PSTATE_CHG,
419 			.pstate_latency_us = 11.65333,
420 			.sr_exit_time_us = 30.0,
421 			.sr_enter_plus_exit_time_us = 32.0,
422 			.valid = true,
423 		},
424 		{
425 			.wm_inst = WM_D,
426 			.wm_type = WM_TYPE_PSTATE_CHG,
427 			.pstate_latency_us = 11.65333,
428 			.sr_exit_time_us = 30.0,
429 			.sr_enter_plus_exit_time_us = 32.0,
430 			.valid = true,
431 		},
432 	}
433 };
434 
435 static DpmClocks314_t dummy_clocks;
436 
437 static struct dcn314_watermarks dummy_wms = { 0 };
438 
dcn314_build_watermark_ranges(struct clk_bw_params * bw_params,struct dcn314_watermarks * table)439 static void dcn314_build_watermark_ranges(struct clk_bw_params *bw_params, struct dcn314_watermarks *table)
440 {
441 	int i, num_valid_sets;
442 
443 	num_valid_sets = 0;
444 
445 	for (i = 0; i < WM_SET_COUNT; i++) {
446 		/* skip empty entries, the smu array has no holes*/
447 		if (!bw_params->wm_table.entries[i].valid)
448 			continue;
449 
450 		table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmSetting = bw_params->wm_table.entries[i].wm_inst;
451 		table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType = bw_params->wm_table.entries[i].wm_type;
452 		/* We will not select WM based on fclk, so leave it as unconstrained */
453 		table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
454 		table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
455 
456 		if (table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType == WM_TYPE_PSTATE_CHG) {
457 			if (i == 0)
458 				table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk = 0;
459 			else {
460 				/* add 1 to make it non-overlapping with next lvl */
461 				table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk =
462 						bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
463 			}
464 			table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxMclk =
465 					bw_params->clk_table.entries[i].dcfclk_mhz;
466 
467 		} else {
468 			/* unconstrained for memory retraining */
469 			table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
470 			table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
471 
472 			/* Modify previous watermark range to cover up to max */
473 			table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
474 		}
475 		num_valid_sets++;
476 	}
477 
478 	ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
479 
480 	/* modify the min and max to make sure we cover the whole range*/
481 	table->WatermarkRow[WM_DCFCLK][0].MinMclk = 0;
482 	table->WatermarkRow[WM_DCFCLK][0].MinClock = 0;
483 	table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxMclk = 0xFFFF;
484 	table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
485 
486 	/* This is for writeback only, does not matter currently as no writeback support*/
487 	table->WatermarkRow[WM_SOCCLK][0].WmSetting = WM_A;
488 	table->WatermarkRow[WM_SOCCLK][0].MinClock = 0;
489 	table->WatermarkRow[WM_SOCCLK][0].MaxClock = 0xFFFF;
490 	table->WatermarkRow[WM_SOCCLK][0].MinMclk = 0;
491 	table->WatermarkRow[WM_SOCCLK][0].MaxMclk = 0xFFFF;
492 }
493 
dcn314_notify_wm_ranges(struct clk_mgr * clk_mgr_base)494 static void dcn314_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
495 {
496 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
497 	struct clk_mgr_dcn314 *clk_mgr_dcn314 = TO_CLK_MGR_DCN314(clk_mgr);
498 	struct dcn314_watermarks *table = clk_mgr_dcn314->smu_wm_set.wm_set;
499 
500 	if (!clk_mgr->smu_ver)
501 		return;
502 
503 	if (!table || clk_mgr_dcn314->smu_wm_set.mc_address.quad_part == 0)
504 		return;
505 
506 	memset(table, 0, sizeof(*table));
507 
508 	dcn314_build_watermark_ranges(clk_mgr_base->bw_params, table);
509 
510 	dcn314_smu_set_dram_addr_high(clk_mgr,
511 			clk_mgr_dcn314->smu_wm_set.mc_address.high_part);
512 	dcn314_smu_set_dram_addr_low(clk_mgr,
513 			clk_mgr_dcn314->smu_wm_set.mc_address.low_part);
514 	dcn314_smu_transfer_wm_table_dram_2_smu(clk_mgr);
515 }
516 
dcn314_get_dpm_table_from_smu(struct clk_mgr_internal * clk_mgr,struct dcn314_smu_dpm_clks * smu_dpm_clks)517 static void dcn314_get_dpm_table_from_smu(struct clk_mgr_internal *clk_mgr,
518 		struct dcn314_smu_dpm_clks *smu_dpm_clks)
519 {
520 	DpmClocks314_t *table = smu_dpm_clks->dpm_clks;
521 
522 	if (!clk_mgr->smu_ver)
523 		return;
524 
525 	if (!table || smu_dpm_clks->mc_address.quad_part == 0)
526 		return;
527 
528 	memset(table, 0, sizeof(*table));
529 
530 	dcn314_smu_set_dram_addr_high(clk_mgr,
531 			smu_dpm_clks->mc_address.high_part);
532 	dcn314_smu_set_dram_addr_low(clk_mgr,
533 			smu_dpm_clks->mc_address.low_part);
534 	dcn314_smu_transfer_dpm_table_smu_2_dram(clk_mgr);
535 }
536 
is_valid_clock_value(uint32_t clock_value)537 static inline bool is_valid_clock_value(uint32_t clock_value)
538 {
539 	return clock_value > 1 && clock_value < 100000;
540 }
541 
convert_wck_ratio(uint8_t wck_ratio)542 static unsigned int convert_wck_ratio(uint8_t wck_ratio)
543 {
544 	switch (wck_ratio) {
545 	case WCK_RATIO_1_2:
546 		return 2;
547 
548 	case WCK_RATIO_1_4:
549 		return 4;
550 
551 	default:
552 		break;
553 	}
554 	return 1;
555 }
556 
find_max_clk_value(const uint32_t clocks[],uint32_t num_clocks)557 static uint32_t find_max_clk_value(const uint32_t clocks[], uint32_t num_clocks)
558 {
559 	uint32_t max = 0;
560 	int i;
561 
562 	for (i = 0; i < num_clocks; ++i) {
563 		if (clocks[i] > max)
564 			max = clocks[i];
565 	}
566 
567 	return max;
568 }
569 
dcn314_clk_mgr_helper_populate_bw_params(struct clk_mgr_internal * clk_mgr,struct integrated_info * bios_info,const DpmClocks314_t * clock_table)570 static void dcn314_clk_mgr_helper_populate_bw_params(struct clk_mgr_internal *clk_mgr,
571 						    struct integrated_info *bios_info,
572 						    const DpmClocks314_t *clock_table)
573 {
574 	struct clk_bw_params *bw_params = clk_mgr->base.bw_params;
575 	struct clk_limit_table_entry def_max = bw_params->clk_table.entries[bw_params->clk_table.num_entries - 1];
576 	uint32_t max_pstate = 0,  max_fclk = 0,  min_pstate = 0, max_dispclk = 0, max_dppclk = 0;
577 	int i;
578 
579 	/* Find highest valid fclk pstate */
580 	for (i = 0; i < clock_table->NumDfPstatesEnabled; i++) {
581 		if (is_valid_clock_value(clock_table->DfPstateTable[i].FClk) &&
582 		    clock_table->DfPstateTable[i].FClk > max_fclk) {
583 			max_fclk = clock_table->DfPstateTable[i].FClk;
584 			max_pstate = i;
585 		}
586 	}
587 
588 	/* We expect the table to contain at least one valid fclk entry. */
589 	ASSERT(is_valid_clock_value(max_fclk));
590 
591 	/* Dispclk and dppclk can be max at any voltage, same number of levels for both */
592 	if (clock_table->NumDispClkLevelsEnabled <= NUM_DISPCLK_DPM_LEVELS &&
593 	    clock_table->NumDispClkLevelsEnabled <= NUM_DPPCLK_DPM_LEVELS) {
594 		max_dispclk = find_max_clk_value(clock_table->DispClocks, clock_table->NumDispClkLevelsEnabled);
595 		max_dppclk = find_max_clk_value(clock_table->DppClocks, clock_table->NumDispClkLevelsEnabled);
596 	} else {
597 		/* Invalid number of entries in the table from PMFW. */
598 		ASSERT(0);
599 	}
600 
601 	/* Base the clock table on dcfclk, need at least one entry regardless of pmfw table */
602 	for (i = 0; i < clock_table->NumDcfClkLevelsEnabled; i++) {
603 		uint32_t min_fclk = clock_table->DfPstateTable[0].FClk;
604 		int j;
605 
606 		for (j = 1; j < clock_table->NumDfPstatesEnabled; j++) {
607 			if (is_valid_clock_value(clock_table->DfPstateTable[j].FClk) &&
608 			    clock_table->DfPstateTable[j].FClk < min_fclk &&
609 			    clock_table->DfPstateTable[j].Voltage <= clock_table->SocVoltage[i]) {
610 				min_fclk = clock_table->DfPstateTable[j].FClk;
611 				min_pstate = j;
612 			}
613 		}
614 
615 		/* First search defaults for the clocks we don't read using closest lower or equal default dcfclk */
616 		for (j = bw_params->clk_table.num_entries - 1; j > 0; j--)
617 			if (bw_params->clk_table.entries[j].dcfclk_mhz <= clock_table->DcfClocks[i])
618 				break;
619 
620 		bw_params->clk_table.entries[i].phyclk_mhz = bw_params->clk_table.entries[j].phyclk_mhz;
621 		bw_params->clk_table.entries[i].phyclk_d18_mhz = bw_params->clk_table.entries[j].phyclk_d18_mhz;
622 		bw_params->clk_table.entries[i].dtbclk_mhz = bw_params->clk_table.entries[j].dtbclk_mhz;
623 
624 		/* Now update clocks we do read */
625 		bw_params->clk_table.entries[i].fclk_mhz = min_fclk;
626 		bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[min_pstate].MemClk;
627 		bw_params->clk_table.entries[i].voltage = clock_table->DfPstateTable[min_pstate].Voltage;
628 		bw_params->clk_table.entries[i].dcfclk_mhz = clock_table->DcfClocks[i];
629 		bw_params->clk_table.entries[i].socclk_mhz = clock_table->SocClocks[i];
630 		bw_params->clk_table.entries[i].dispclk_mhz = max_dispclk;
631 		bw_params->clk_table.entries[i].dppclk_mhz = max_dppclk;
632 		bw_params->clk_table.entries[i].wck_ratio = convert_wck_ratio(
633 			clock_table->DfPstateTable[min_pstate].WckRatio);
634 	}
635 
636 	/* Make sure to include at least one entry at highest pstate */
637 	if (max_pstate != min_pstate || i == 0) {
638 		if (i > MAX_NUM_DPM_LVL - 1)
639 			i = MAX_NUM_DPM_LVL - 1;
640 
641 		bw_params->clk_table.entries[i].fclk_mhz = max_fclk;
642 		bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[max_pstate].MemClk;
643 		bw_params->clk_table.entries[i].voltage = clock_table->DfPstateTable[max_pstate].Voltage;
644 		bw_params->clk_table.entries[i].dcfclk_mhz = find_max_clk_value(clock_table->DcfClocks, NUM_DCFCLK_DPM_LEVELS);
645 		bw_params->clk_table.entries[i].socclk_mhz = find_max_clk_value(clock_table->SocClocks, NUM_SOCCLK_DPM_LEVELS);
646 		bw_params->clk_table.entries[i].dispclk_mhz = max_dispclk;
647 		bw_params->clk_table.entries[i].dppclk_mhz = max_dppclk;
648 		bw_params->clk_table.entries[i].wck_ratio = convert_wck_ratio(
649 			clock_table->DfPstateTable[max_pstate].WckRatio);
650 		i++;
651 	}
652 	bw_params->clk_table.num_entries = i--;
653 
654 	/* Make sure all highest clocks are included*/
655 	bw_params->clk_table.entries[i].socclk_mhz = find_max_clk_value(clock_table->SocClocks, NUM_SOCCLK_DPM_LEVELS);
656 	bw_params->clk_table.entries[i].dispclk_mhz = find_max_clk_value(clock_table->DispClocks, NUM_DISPCLK_DPM_LEVELS);
657 	bw_params->clk_table.entries[i].dppclk_mhz = find_max_clk_value(clock_table->DppClocks, NUM_DPPCLK_DPM_LEVELS);
658 	ASSERT(clock_table->DcfClocks[i] == find_max_clk_value(clock_table->DcfClocks, NUM_DCFCLK_DPM_LEVELS));
659 	bw_params->clk_table.entries[i].phyclk_mhz = def_max.phyclk_mhz;
660 	bw_params->clk_table.entries[i].phyclk_d18_mhz = def_max.phyclk_d18_mhz;
661 	bw_params->clk_table.entries[i].dtbclk_mhz = def_max.dtbclk_mhz;
662 
663 	/*
664 	 * Set any 0 clocks to max default setting. Not an issue for
665 	 * power since we aren't doing switching in such case anyway
666 	 */
667 	for (i = 0; i < bw_params->clk_table.num_entries; i++) {
668 		if (!bw_params->clk_table.entries[i].fclk_mhz) {
669 			bw_params->clk_table.entries[i].fclk_mhz = def_max.fclk_mhz;
670 			bw_params->clk_table.entries[i].memclk_mhz = def_max.memclk_mhz;
671 			bw_params->clk_table.entries[i].voltage = def_max.voltage;
672 		}
673 		if (!bw_params->clk_table.entries[i].dcfclk_mhz)
674 			bw_params->clk_table.entries[i].dcfclk_mhz = def_max.dcfclk_mhz;
675 		if (!bw_params->clk_table.entries[i].socclk_mhz)
676 			bw_params->clk_table.entries[i].socclk_mhz = def_max.socclk_mhz;
677 		if (!bw_params->clk_table.entries[i].dispclk_mhz)
678 			bw_params->clk_table.entries[i].dispclk_mhz = def_max.dispclk_mhz;
679 		if (!bw_params->clk_table.entries[i].dppclk_mhz)
680 			bw_params->clk_table.entries[i].dppclk_mhz = def_max.dppclk_mhz;
681 		if (!bw_params->clk_table.entries[i].phyclk_mhz)
682 			bw_params->clk_table.entries[i].phyclk_mhz = def_max.phyclk_mhz;
683 		if (!bw_params->clk_table.entries[i].phyclk_d18_mhz)
684 			bw_params->clk_table.entries[i].phyclk_d18_mhz = def_max.phyclk_d18_mhz;
685 		if (!bw_params->clk_table.entries[i].dtbclk_mhz)
686 			bw_params->clk_table.entries[i].dtbclk_mhz = def_max.dtbclk_mhz;
687 	}
688 	ASSERT(bw_params->clk_table.entries[i-1].dcfclk_mhz);
689 	bw_params->vram_type = bios_info->memory_type;
690 
691 	bw_params->dram_channel_width_bytes = bios_info->memory_type == 0x22 ? 8 : 4;
692 	bw_params->num_channels = bios_info->ma_channel_number ? bios_info->ma_channel_number : 4;
693 
694 	for (i = 0; i < WM_SET_COUNT; i++) {
695 		bw_params->wm_table.entries[i].wm_inst = i;
696 
697 		if (i >= bw_params->clk_table.num_entries) {
698 			bw_params->wm_table.entries[i].valid = false;
699 			continue;
700 		}
701 
702 		bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
703 		bw_params->wm_table.entries[i].valid = true;
704 	}
705 }
706 
707 static struct clk_mgr_funcs dcn314_funcs = {
708 	.get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
709 	.get_dtb_ref_clk_frequency = dcn31_get_dtb_ref_freq_khz,
710 	.update_clocks = dcn314_update_clocks,
711 	.init_clocks = dcn31_init_clocks,
712 	.enable_pme_wa = dcn314_enable_pme_wa,
713 	.are_clock_states_equal = dcn314_are_clock_states_equal,
714 	.notify_wm_ranges = dcn314_notify_wm_ranges
715 };
716 extern struct clk_mgr_funcs dcn3_fpga_funcs;
717 
dcn314_clk_mgr_construct(struct dc_context * ctx,struct clk_mgr_dcn314 * clk_mgr,struct pp_smu_funcs * pp_smu,struct dccg * dccg)718 void dcn314_clk_mgr_construct(
719 		struct dc_context *ctx,
720 		struct clk_mgr_dcn314 *clk_mgr,
721 		struct pp_smu_funcs *pp_smu,
722 		struct dccg *dccg)
723 {
724 	struct dcn314_smu_dpm_clks smu_dpm_clks = { 0 };
725 	struct clk_log_info log_info = {0};
726 
727 	clk_mgr->base.base.ctx = ctx;
728 	clk_mgr->base.base.funcs = &dcn314_funcs;
729 
730 	clk_mgr->base.pp_smu = pp_smu;
731 
732 	clk_mgr->base.dccg = dccg;
733 	clk_mgr->base.dfs_bypass_disp_clk = 0;
734 
735 	clk_mgr->base.dprefclk_ss_percentage = 0;
736 	clk_mgr->base.dprefclk_ss_divider = 1000;
737 	clk_mgr->base.ss_on_dprefclk = false;
738 	clk_mgr->base.dfs_ref_freq_khz = 48000;
739 
740 	clk_mgr->smu_wm_set.wm_set = (struct dcn314_watermarks *)dm_helpers_allocate_gpu_mem(
741 				clk_mgr->base.base.ctx,
742 				DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
743 				sizeof(struct dcn314_watermarks),
744 				&clk_mgr->smu_wm_set.mc_address.quad_part);
745 
746 	if (!clk_mgr->smu_wm_set.wm_set) {
747 		clk_mgr->smu_wm_set.wm_set = &dummy_wms;
748 		clk_mgr->smu_wm_set.mc_address.quad_part = 0;
749 	}
750 	ASSERT(clk_mgr->smu_wm_set.wm_set);
751 
752 	smu_dpm_clks.dpm_clks = (DpmClocks314_t *)dm_helpers_allocate_gpu_mem(
753 				clk_mgr->base.base.ctx,
754 				DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
755 				sizeof(DpmClocks314_t),
756 				&smu_dpm_clks.mc_address.quad_part);
757 
758 	if (smu_dpm_clks.dpm_clks == NULL) {
759 		smu_dpm_clks.dpm_clks = &dummy_clocks;
760 		smu_dpm_clks.mc_address.quad_part = 0;
761 	}
762 
763 	ASSERT(smu_dpm_clks.dpm_clks);
764 
765 	clk_mgr->base.smu_ver = dcn314_smu_get_smu_version(&clk_mgr->base);
766 
767 	if (clk_mgr->base.smu_ver)
768 		clk_mgr->base.smu_present = true;
769 
770 	/* TODO: Check we get what we expect during bringup */
771 	clk_mgr->base.base.dentist_vco_freq_khz = get_vco_frequency_from_reg(&clk_mgr->base);
772 
773 	if (ctx->dc_bios->integrated_info->memory_type == LpDdr5MemType)
774 		dcn314_bw_params.wm_table = lpddr5_wm_table;
775 	else
776 		dcn314_bw_params.wm_table = ddr5_wm_table;
777 
778 	/* Saved clocks configured at boot for debug purposes */
779 	dcn314_dump_clk_registers(&clk_mgr->base.base.boot_snapshot,
780 				  &clk_mgr->base.base, &log_info);
781 
782 	clk_mgr->base.base.dprefclk_khz = 600000;
783 	clk_mgr->base.base.clks.ref_dtbclk_khz = 600000;
784 	dce_clock_read_ss_info(&clk_mgr->base);
785 	/*if bios enabled SS, driver needs to adjust dtb clock, only enable with correct bios*/
786 
787 	clk_mgr->base.base.bw_params = &dcn314_bw_params;
788 
789 	if (clk_mgr->base.base.ctx->dc->debug.pstate_enabled) {
790 		int i;
791 
792 		dcn314_get_dpm_table_from_smu(&clk_mgr->base, &smu_dpm_clks);
793 		DC_LOG_SMU("NumDcfClkLevelsEnabled: %d\n"
794 				   "NumDispClkLevelsEnabled: %d\n"
795 				   "NumSocClkLevelsEnabled: %d\n"
796 				   "VcnClkLevelsEnabled: %d\n"
797 				   "NumDfPst atesEnabled: %d\n"
798 				   "MinGfxClk: %d\n"
799 				   "MaxGfxClk: %d\n",
800 				   smu_dpm_clks.dpm_clks->NumDcfClkLevelsEnabled,
801 				   smu_dpm_clks.dpm_clks->NumDispClkLevelsEnabled,
802 				   smu_dpm_clks.dpm_clks->NumSocClkLevelsEnabled,
803 				   smu_dpm_clks.dpm_clks->VcnClkLevelsEnabled,
804 				   smu_dpm_clks.dpm_clks->NumDfPstatesEnabled,
805 				   smu_dpm_clks.dpm_clks->MinGfxClk,
806 				   smu_dpm_clks.dpm_clks->MaxGfxClk);
807 		for (i = 0; i < smu_dpm_clks.dpm_clks->NumDcfClkLevelsEnabled; i++) {
808 			DC_LOG_SMU("smu_dpm_clks.dpm_clks->DcfClocks[%d] = %d\n",
809 					   i,
810 					   smu_dpm_clks.dpm_clks->DcfClocks[i]);
811 		}
812 		for (i = 0; i < smu_dpm_clks.dpm_clks->NumDispClkLevelsEnabled; i++) {
813 			DC_LOG_SMU("smu_dpm_clks.dpm_clks->DispClocks[%d] = %d\n",
814 					   i, smu_dpm_clks.dpm_clks->DispClocks[i]);
815 		}
816 		for (i = 0; i < smu_dpm_clks.dpm_clks->NumSocClkLevelsEnabled; i++) {
817 			DC_LOG_SMU("smu_dpm_clks.dpm_clks->SocClocks[%d] = %d\n",
818 					   i, smu_dpm_clks.dpm_clks->SocClocks[i]);
819 		}
820 		for (i = 0; i < NUM_SOC_VOLTAGE_LEVELS; i++)
821 			DC_LOG_SMU("smu_dpm_clks.dpm_clks->SocVoltage[%d] = %d\n",
822 					   i, smu_dpm_clks.dpm_clks->SocVoltage[i]);
823 
824 		for (i = 0; i < NUM_DF_PSTATE_LEVELS; i++) {
825 			DC_LOG_SMU("smu_dpm_clks.dpm_clks.DfPstateTable[%d].FClk = %d\n"
826 					   "smu_dpm_clks.dpm_clks->DfPstateTable[%d].MemClk= %d\n"
827 					   "smu_dpm_clks.dpm_clks->DfPstateTable[%d].Voltage = %d\n",
828 					   i, smu_dpm_clks.dpm_clks->DfPstateTable[i].FClk,
829 					   i, smu_dpm_clks.dpm_clks->DfPstateTable[i].MemClk,
830 					   i, smu_dpm_clks.dpm_clks->DfPstateTable[i].Voltage);
831 		}
832 
833 		if (ctx->dc_bios && ctx->dc_bios->integrated_info && ctx->dc->config.use_default_clock_table == false) {
834 			dcn314_clk_mgr_helper_populate_bw_params(
835 					&clk_mgr->base,
836 					ctx->dc_bios->integrated_info,
837 					smu_dpm_clks.dpm_clks);
838 		}
839 	}
840 
841 	if (smu_dpm_clks.dpm_clks && smu_dpm_clks.mc_address.quad_part != 0)
842 		dm_helpers_free_gpu_mem(clk_mgr->base.base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
843 				smu_dpm_clks.dpm_clks);
844 }
845 
dcn314_clk_mgr_destroy(struct clk_mgr_internal * clk_mgr_int)846 void dcn314_clk_mgr_destroy(struct clk_mgr_internal *clk_mgr_int)
847 {
848 	struct clk_mgr_dcn314 *clk_mgr = TO_CLK_MGR_DCN314(clk_mgr_int);
849 
850 	if (clk_mgr->smu_wm_set.wm_set && clk_mgr->smu_wm_set.mc_address.quad_part != 0)
851 		dm_helpers_free_gpu_mem(clk_mgr_int->base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
852 				clk_mgr->smu_wm_set.wm_set);
853 }
854