1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Intel Core SoC Power Management Controller Driver
4 *
5 * Copyright (c) 2016, Intel Corporation.
6 * All Rights Reserved.
7 *
8 * Authors: Rajneesh Bhardwaj <rajneesh.bhardwaj@intel.com>
9 * Vishwanath Somayaji <vishwanath.somayaji@intel.com>
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/bitfield.h>
15 #include <linux/debugfs.h>
16 #include <linux/delay.h>
17 #include <linux/dmi.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/pci.h>
21 #include <linux/slab.h>
22 #include <linux/suspend.h>
23
24 #include <asm/cpu_device_id.h>
25 #include <asm/intel-family.h>
26 #include <asm/msr.h>
27 #include <asm/tsc.h>
28
29 #include "core.h"
30
31 /* Maximum number of modes supported by platfoms that has low power mode capability */
32 const char *pmc_lpm_modes[] = {
33 "S0i2.0",
34 "S0i2.1",
35 "S0i2.2",
36 "S0i3.0",
37 "S0i3.1",
38 "S0i3.2",
39 "S0i3.3",
40 "S0i3.4",
41 NULL
42 };
43
44 /* PKGC MSRs are common across Intel Core SoCs */
45 const struct pmc_bit_map msr_map[] = {
46 {"Package C2", MSR_PKG_C2_RESIDENCY},
47 {"Package C3", MSR_PKG_C3_RESIDENCY},
48 {"Package C6", MSR_PKG_C6_RESIDENCY},
49 {"Package C7", MSR_PKG_C7_RESIDENCY},
50 {"Package C8", MSR_PKG_C8_RESIDENCY},
51 {"Package C9", MSR_PKG_C9_RESIDENCY},
52 {"Package C10", MSR_PKG_C10_RESIDENCY},
53 {}
54 };
55
pmc_core_reg_read(struct pmc * pmc,int reg_offset)56 static inline u32 pmc_core_reg_read(struct pmc *pmc, int reg_offset)
57 {
58 return readl(pmc->regbase + reg_offset);
59 }
60
pmc_core_reg_write(struct pmc * pmc,int reg_offset,u32 val)61 static inline void pmc_core_reg_write(struct pmc *pmc, int reg_offset,
62 u32 val)
63 {
64 writel(val, pmc->regbase + reg_offset);
65 }
66
pmc_core_adjust_slp_s0_step(struct pmc * pmc,u32 value)67 static inline u64 pmc_core_adjust_slp_s0_step(struct pmc *pmc, u32 value)
68 {
69 /*
70 * ADL PCH does not have the SLP_S0 counter and LPM Residency counters are
71 * used as a workaround which uses 30.5 usec tick. All other client
72 * programs have the legacy SLP_S0 residency counter that is using the 122
73 * usec tick.
74 */
75 const int lpm_adj_x2 = pmc->map->lpm_res_counter_step_x2;
76
77 if (pmc->map == &adl_reg_map)
78 return (u64)value * GET_X2_COUNTER((u64)lpm_adj_x2);
79 else
80 return (u64)value * pmc->map->slp_s0_res_counter_step;
81 }
82
set_etr3(struct pmc_dev * pmcdev)83 static int set_etr3(struct pmc_dev *pmcdev)
84 {
85 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
86 const struct pmc_reg_map *map = pmc->map;
87 u32 reg;
88 int err;
89
90 if (!map->etr3_offset)
91 return -EOPNOTSUPP;
92
93 mutex_lock(&pmcdev->lock);
94
95 /* check if CF9 is locked */
96 reg = pmc_core_reg_read(pmc, map->etr3_offset);
97 if (reg & ETR3_CF9LOCK) {
98 err = -EACCES;
99 goto out_unlock;
100 }
101
102 /* write CF9 global reset bit */
103 reg |= ETR3_CF9GR;
104 pmc_core_reg_write(pmc, map->etr3_offset, reg);
105
106 reg = pmc_core_reg_read(pmc, map->etr3_offset);
107 if (!(reg & ETR3_CF9GR)) {
108 err = -EIO;
109 goto out_unlock;
110 }
111
112 err = 0;
113
114 out_unlock:
115 mutex_unlock(&pmcdev->lock);
116 return err;
117 }
etr3_is_visible(struct kobject * kobj,struct attribute * attr,int idx)118 static umode_t etr3_is_visible(struct kobject *kobj,
119 struct attribute *attr,
120 int idx)
121 {
122 struct device *dev = kobj_to_dev(kobj);
123 struct pmc_dev *pmcdev = dev_get_drvdata(dev);
124 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
125 const struct pmc_reg_map *map = pmc->map;
126 u32 reg;
127
128 mutex_lock(&pmcdev->lock);
129 reg = pmc_core_reg_read(pmc, map->etr3_offset);
130 mutex_unlock(&pmcdev->lock);
131
132 return reg & ETR3_CF9LOCK ? attr->mode & (SYSFS_PREALLOC | 0444) : attr->mode;
133 }
134
etr3_show(struct device * dev,struct device_attribute * attr,char * buf)135 static ssize_t etr3_show(struct device *dev,
136 struct device_attribute *attr, char *buf)
137 {
138 struct pmc_dev *pmcdev = dev_get_drvdata(dev);
139 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
140 const struct pmc_reg_map *map = pmc->map;
141 u32 reg;
142
143 if (!map->etr3_offset)
144 return -EOPNOTSUPP;
145
146 mutex_lock(&pmcdev->lock);
147
148 reg = pmc_core_reg_read(pmc, map->etr3_offset);
149 reg &= ETR3_CF9GR | ETR3_CF9LOCK;
150
151 mutex_unlock(&pmcdev->lock);
152
153 return sysfs_emit(buf, "0x%08x", reg);
154 }
155
etr3_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)156 static ssize_t etr3_store(struct device *dev,
157 struct device_attribute *attr,
158 const char *buf, size_t len)
159 {
160 struct pmc_dev *pmcdev = dev_get_drvdata(dev);
161 int err;
162 u32 reg;
163
164 err = kstrtouint(buf, 16, ®);
165 if (err)
166 return err;
167
168 /* allow only CF9 writes */
169 if (reg != ETR3_CF9GR)
170 return -EINVAL;
171
172 err = set_etr3(pmcdev);
173 if (err)
174 return err;
175
176 return len;
177 }
178 static DEVICE_ATTR_RW(etr3);
179
180 static struct attribute *pmc_attrs[] = {
181 &dev_attr_etr3.attr,
182 NULL
183 };
184
185 static const struct attribute_group pmc_attr_group = {
186 .attrs = pmc_attrs,
187 .is_visible = etr3_is_visible,
188 };
189
190 static const struct attribute_group *pmc_dev_groups[] = {
191 &pmc_attr_group,
192 NULL
193 };
194
pmc_core_dev_state_get(void * data,u64 * val)195 static int pmc_core_dev_state_get(void *data, u64 *val)
196 {
197 struct pmc *pmc = data;
198 const struct pmc_reg_map *map = pmc->map;
199 u32 value;
200
201 value = pmc_core_reg_read(pmc, map->slp_s0_offset);
202 *val = pmc_core_adjust_slp_s0_step(pmc, value);
203
204 return 0;
205 }
206
207 DEFINE_DEBUGFS_ATTRIBUTE(pmc_core_dev_state, pmc_core_dev_state_get, NULL, "%llu\n");
208
pmc_core_check_read_lock_bit(struct pmc * pmc)209 static int pmc_core_check_read_lock_bit(struct pmc *pmc)
210 {
211 u32 value;
212
213 value = pmc_core_reg_read(pmc, pmc->map->pm_cfg_offset);
214 return value & BIT(pmc->map->pm_read_disable_bit);
215 }
216
pmc_core_slps0_display(struct pmc * pmc,struct device * dev,struct seq_file * s)217 static void pmc_core_slps0_display(struct pmc *pmc, struct device *dev,
218 struct seq_file *s)
219 {
220 const struct pmc_bit_map **maps = pmc->map->slps0_dbg_maps;
221 const struct pmc_bit_map *map;
222 int offset = pmc->map->slps0_dbg_offset;
223 u32 data;
224
225 while (*maps) {
226 map = *maps;
227 data = pmc_core_reg_read(pmc, offset);
228 offset += 4;
229 while (map->name) {
230 if (dev)
231 dev_info(dev, "SLP_S0_DBG: %-32s\tState: %s\n",
232 map->name,
233 data & map->bit_mask ? "Yes" : "No");
234 if (s)
235 seq_printf(s, "SLP_S0_DBG: %-32s\tState: %s\n",
236 map->name,
237 data & map->bit_mask ? "Yes" : "No");
238 ++map;
239 }
240 ++maps;
241 }
242 }
243
pmc_core_lpm_get_arr_size(const struct pmc_bit_map ** maps)244 static int pmc_core_lpm_get_arr_size(const struct pmc_bit_map **maps)
245 {
246 int idx;
247
248 for (idx = 0; maps[idx]; idx++)
249 ;/* Nothing */
250
251 return idx;
252 }
253
pmc_core_lpm_display(struct pmc * pmc,struct device * dev,struct seq_file * s,u32 offset,int pmc_index,const char * str,const struct pmc_bit_map ** maps)254 static void pmc_core_lpm_display(struct pmc *pmc, struct device *dev,
255 struct seq_file *s, u32 offset, int pmc_index,
256 const char *str,
257 const struct pmc_bit_map **maps)
258 {
259 int index, idx, len = 32, bit_mask, arr_size;
260 u32 *lpm_regs;
261
262 arr_size = pmc_core_lpm_get_arr_size(maps);
263 lpm_regs = kmalloc_array(arr_size, sizeof(*lpm_regs), GFP_KERNEL);
264 if (!lpm_regs)
265 return;
266
267 for (index = 0; index < arr_size; index++) {
268 lpm_regs[index] = pmc_core_reg_read(pmc, offset);
269 offset += 4;
270 }
271
272 for (idx = 0; idx < arr_size; idx++) {
273 if (dev)
274 dev_info(dev, "\nPMC%d:LPM_%s_%d:\t0x%x\n", pmc_index, str, idx,
275 lpm_regs[idx]);
276 if (s)
277 seq_printf(s, "\nPMC%d:LPM_%s_%d:\t0x%x\n", pmc_index, str, idx,
278 lpm_regs[idx]);
279 for (index = 0; maps[idx][index].name && index < len; index++) {
280 bit_mask = maps[idx][index].bit_mask;
281 if (dev)
282 dev_info(dev, "PMC%d:%-30s %-30d\n", pmc_index,
283 maps[idx][index].name,
284 lpm_regs[idx] & bit_mask ? 1 : 0);
285 if (s)
286 seq_printf(s, "PMC%d:%-30s %-30d\n", pmc_index,
287 maps[idx][index].name,
288 lpm_regs[idx] & bit_mask ? 1 : 0);
289 }
290 }
291
292 kfree(lpm_regs);
293 }
294
295 static bool slps0_dbg_latch;
296
pmc_core_reg_read_byte(struct pmc * pmc,int offset)297 static inline u8 pmc_core_reg_read_byte(struct pmc *pmc, int offset)
298 {
299 return readb(pmc->regbase + offset);
300 }
301
pmc_core_display_map(struct seq_file * s,int index,int idx,int ip,int pmc_index,u8 pf_reg,const struct pmc_bit_map ** pf_map)302 static void pmc_core_display_map(struct seq_file *s, int index, int idx, int ip,
303 int pmc_index, u8 pf_reg, const struct pmc_bit_map **pf_map)
304 {
305 seq_printf(s, "PMC%d:PCH IP: %-2d - %-32s\tState: %s\n",
306 pmc_index, ip, pf_map[idx][index].name,
307 pf_map[idx][index].bit_mask & pf_reg ? "Off" : "On");
308 }
309
pmc_core_ppfear_show(struct seq_file * s,void * unused)310 static int pmc_core_ppfear_show(struct seq_file *s, void *unused)
311 {
312 struct pmc_dev *pmcdev = s->private;
313 int i;
314
315 for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
316 struct pmc *pmc = pmcdev->pmcs[i];
317 const struct pmc_bit_map **maps;
318 u8 pf_regs[PPFEAR_MAX_NUM_ENTRIES];
319 int index, iter, idx, ip = 0;
320
321 if (!pmc)
322 continue;
323
324 maps = pmc->map->pfear_sts;
325 iter = pmc->map->ppfear0_offset;
326
327 for (index = 0; index < pmc->map->ppfear_buckets &&
328 index < PPFEAR_MAX_NUM_ENTRIES; index++, iter++)
329 pf_regs[index] = pmc_core_reg_read_byte(pmc, iter);
330
331 for (idx = 0; maps[idx]; idx++) {
332 for (index = 0; maps[idx][index].name &&
333 index < pmc->map->ppfear_buckets * 8; ip++, index++)
334 pmc_core_display_map(s, index, idx, ip, i,
335 pf_regs[index / 8], maps);
336 }
337 }
338
339 return 0;
340 }
341 DEFINE_SHOW_ATTRIBUTE(pmc_core_ppfear);
342
343 /* This function should return link status, 0 means ready */
pmc_core_mtpmc_link_status(struct pmc * pmc)344 static int pmc_core_mtpmc_link_status(struct pmc *pmc)
345 {
346 u32 value;
347
348 value = pmc_core_reg_read(pmc, SPT_PMC_PM_STS_OFFSET);
349 return value & BIT(SPT_PMC_MSG_FULL_STS_BIT);
350 }
351
pmc_core_send_msg(struct pmc * pmc,u32 * addr_xram)352 static int pmc_core_send_msg(struct pmc *pmc, u32 *addr_xram)
353 {
354 u32 dest;
355 int timeout;
356
357 for (timeout = NUM_RETRIES; timeout > 0; timeout--) {
358 if (pmc_core_mtpmc_link_status(pmc) == 0)
359 break;
360 msleep(5);
361 }
362
363 if (timeout <= 0 && pmc_core_mtpmc_link_status(pmc))
364 return -EBUSY;
365
366 dest = (*addr_xram & MTPMC_MASK) | (1U << 1);
367 pmc_core_reg_write(pmc, SPT_PMC_MTPMC_OFFSET, dest);
368 return 0;
369 }
370
pmc_core_mphy_pg_show(struct seq_file * s,void * unused)371 static int pmc_core_mphy_pg_show(struct seq_file *s, void *unused)
372 {
373 struct pmc_dev *pmcdev = s->private;
374 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
375 const struct pmc_bit_map *map = pmc->map->mphy_sts;
376 u32 mphy_core_reg_low, mphy_core_reg_high;
377 u32 val_low, val_high;
378 int index, err = 0;
379
380 if (pmcdev->pmc_xram_read_bit) {
381 seq_puts(s, "Access denied: please disable PMC_READ_DISABLE setting in BIOS.");
382 return 0;
383 }
384
385 mphy_core_reg_low = (SPT_PMC_MPHY_CORE_STS_0 << 16);
386 mphy_core_reg_high = (SPT_PMC_MPHY_CORE_STS_1 << 16);
387
388 mutex_lock(&pmcdev->lock);
389
390 if (pmc_core_send_msg(pmc, &mphy_core_reg_low) != 0) {
391 err = -EBUSY;
392 goto out_unlock;
393 }
394
395 msleep(10);
396 val_low = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET);
397
398 if (pmc_core_send_msg(pmc, &mphy_core_reg_high) != 0) {
399 err = -EBUSY;
400 goto out_unlock;
401 }
402
403 msleep(10);
404 val_high = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET);
405
406 for (index = 0; index < 8 && map[index].name; index++) {
407 seq_printf(s, "%-32s\tState: %s\n",
408 map[index].name,
409 map[index].bit_mask & val_low ? "Not power gated" :
410 "Power gated");
411 }
412
413 for (index = 8; map[index].name; index++) {
414 seq_printf(s, "%-32s\tState: %s\n",
415 map[index].name,
416 map[index].bit_mask & val_high ? "Not power gated" :
417 "Power gated");
418 }
419
420 out_unlock:
421 mutex_unlock(&pmcdev->lock);
422 return err;
423 }
424 DEFINE_SHOW_ATTRIBUTE(pmc_core_mphy_pg);
425
pmc_core_pll_show(struct seq_file * s,void * unused)426 static int pmc_core_pll_show(struct seq_file *s, void *unused)
427 {
428 struct pmc_dev *pmcdev = s->private;
429 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
430 const struct pmc_bit_map *map = pmc->map->pll_sts;
431 u32 mphy_common_reg, val;
432 int index, err = 0;
433
434 if (pmcdev->pmc_xram_read_bit) {
435 seq_puts(s, "Access denied: please disable PMC_READ_DISABLE setting in BIOS.");
436 return 0;
437 }
438
439 mphy_common_reg = (SPT_PMC_MPHY_COM_STS_0 << 16);
440 mutex_lock(&pmcdev->lock);
441
442 if (pmc_core_send_msg(pmc, &mphy_common_reg) != 0) {
443 err = -EBUSY;
444 goto out_unlock;
445 }
446
447 /* Observed PMC HW response latency for MTPMC-MFPMC is ~10 ms */
448 msleep(10);
449 val = pmc_core_reg_read(pmc, SPT_PMC_MFPMC_OFFSET);
450
451 for (index = 0; map[index].name ; index++) {
452 seq_printf(s, "%-32s\tState: %s\n",
453 map[index].name,
454 map[index].bit_mask & val ? "Active" : "Idle");
455 }
456
457 out_unlock:
458 mutex_unlock(&pmcdev->lock);
459 return err;
460 }
461 DEFINE_SHOW_ATTRIBUTE(pmc_core_pll);
462
pmc_core_send_ltr_ignore(struct pmc_dev * pmcdev,u32 value)463 int pmc_core_send_ltr_ignore(struct pmc_dev *pmcdev, u32 value)
464 {
465 struct pmc *pmc;
466 const struct pmc_reg_map *map;
467 u32 reg;
468 int pmc_index, ltr_index;
469
470 ltr_index = value;
471 /* For platforms with multiple pmcs, ltr index value given by user
472 * is based on the contiguous indexes from ltr_show output.
473 * pmc index and ltr index needs to be calculated from it.
474 */
475 for (pmc_index = 0; pmc_index < ARRAY_SIZE(pmcdev->pmcs) && ltr_index > 0; pmc_index++) {
476 pmc = pmcdev->pmcs[pmc_index];
477
478 if (!pmc)
479 continue;
480
481 map = pmc->map;
482 if (ltr_index <= map->ltr_ignore_max)
483 break;
484
485 /* Along with IP names, ltr_show map includes CURRENT_PLATFORM
486 * and AGGREGATED_SYSTEM values per PMC. Take these two index
487 * values into account in ltr_index calculation. Also, to start
488 * ltr index from zero for next pmc, subtract it by 1.
489 */
490 ltr_index = ltr_index - (map->ltr_ignore_max + 2) - 1;
491 }
492
493 if (pmc_index >= ARRAY_SIZE(pmcdev->pmcs) || ltr_index < 0)
494 return -EINVAL;
495
496 pr_debug("ltr_ignore for pmc%d: ltr_index:%d\n", pmc_index, ltr_index);
497
498 mutex_lock(&pmcdev->lock);
499
500 reg = pmc_core_reg_read(pmc, map->ltr_ignore_offset);
501 reg |= BIT(ltr_index);
502 pmc_core_reg_write(pmc, map->ltr_ignore_offset, reg);
503
504 mutex_unlock(&pmcdev->lock);
505
506 return 0;
507 }
508
pmc_core_ltr_ignore_write(struct file * file,const char __user * userbuf,size_t count,loff_t * ppos)509 static ssize_t pmc_core_ltr_ignore_write(struct file *file,
510 const char __user *userbuf,
511 size_t count, loff_t *ppos)
512 {
513 struct seq_file *s = file->private_data;
514 struct pmc_dev *pmcdev = s->private;
515 u32 buf_size, value;
516 int err;
517
518 buf_size = min_t(u32, count, 64);
519
520 err = kstrtou32_from_user(userbuf, buf_size, 10, &value);
521 if (err)
522 return err;
523
524 err = pmc_core_send_ltr_ignore(pmcdev, value);
525
526 return err == 0 ? count : err;
527 }
528
pmc_core_ltr_ignore_show(struct seq_file * s,void * unused)529 static int pmc_core_ltr_ignore_show(struct seq_file *s, void *unused)
530 {
531 return 0;
532 }
533
pmc_core_ltr_ignore_open(struct inode * inode,struct file * file)534 static int pmc_core_ltr_ignore_open(struct inode *inode, struct file *file)
535 {
536 return single_open(file, pmc_core_ltr_ignore_show, inode->i_private);
537 }
538
539 static const struct file_operations pmc_core_ltr_ignore_ops = {
540 .open = pmc_core_ltr_ignore_open,
541 .read = seq_read,
542 .write = pmc_core_ltr_ignore_write,
543 .llseek = seq_lseek,
544 .release = single_release,
545 };
546
pmc_core_slps0_dbg_latch(struct pmc_dev * pmcdev,bool reset)547 static void pmc_core_slps0_dbg_latch(struct pmc_dev *pmcdev, bool reset)
548 {
549 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
550 const struct pmc_reg_map *map = pmc->map;
551 u32 fd;
552
553 mutex_lock(&pmcdev->lock);
554
555 if (!reset && !slps0_dbg_latch)
556 goto out_unlock;
557
558 fd = pmc_core_reg_read(pmc, map->slps0_dbg_offset);
559 if (reset)
560 fd &= ~CNP_PMC_LATCH_SLPS0_EVENTS;
561 else
562 fd |= CNP_PMC_LATCH_SLPS0_EVENTS;
563 pmc_core_reg_write(pmc, map->slps0_dbg_offset, fd);
564
565 slps0_dbg_latch = false;
566
567 out_unlock:
568 mutex_unlock(&pmcdev->lock);
569 }
570
pmc_core_slps0_dbg_show(struct seq_file * s,void * unused)571 static int pmc_core_slps0_dbg_show(struct seq_file *s, void *unused)
572 {
573 struct pmc_dev *pmcdev = s->private;
574
575 pmc_core_slps0_dbg_latch(pmcdev, false);
576 pmc_core_slps0_display(pmcdev->pmcs[PMC_IDX_MAIN], NULL, s);
577 pmc_core_slps0_dbg_latch(pmcdev, true);
578
579 return 0;
580 }
581 DEFINE_SHOW_ATTRIBUTE(pmc_core_slps0_dbg);
582
convert_ltr_scale(u32 val)583 static u32 convert_ltr_scale(u32 val)
584 {
585 /*
586 * As per PCIE specification supporting document
587 * ECN_LatencyTolnReporting_14Aug08.pdf the Latency
588 * Tolerance Reporting data payload is encoded in a
589 * 3 bit scale and 10 bit value fields. Values are
590 * multiplied by the indicated scale to yield an absolute time
591 * value, expressible in a range from 1 nanosecond to
592 * 2^25*(2^10-1) = 34,326,183,936 nanoseconds.
593 *
594 * scale encoding is as follows:
595 *
596 * ----------------------------------------------
597 * |scale factor | Multiplier (ns) |
598 * ----------------------------------------------
599 * | 0 | 1 |
600 * | 1 | 32 |
601 * | 2 | 1024 |
602 * | 3 | 32768 |
603 * | 4 | 1048576 |
604 * | 5 | 33554432 |
605 * | 6 | Invalid |
606 * | 7 | Invalid |
607 * ----------------------------------------------
608 */
609 if (val > 5) {
610 pr_warn("Invalid LTR scale factor.\n");
611 return 0;
612 }
613
614 return 1U << (5 * val);
615 }
616
pmc_core_ltr_show(struct seq_file * s,void * unused)617 static int pmc_core_ltr_show(struct seq_file *s, void *unused)
618 {
619 struct pmc_dev *pmcdev = s->private;
620 u64 decoded_snoop_ltr, decoded_non_snoop_ltr;
621 u32 ltr_raw_data, scale, val;
622 u16 snoop_ltr, nonsnoop_ltr;
623 int i, index, ltr_index = 0;
624
625 for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
626 struct pmc *pmc = pmcdev->pmcs[i];
627 const struct pmc_bit_map *map;
628
629 if (!pmc)
630 continue;
631
632 map = pmc->map->ltr_show_sts;
633 for (index = 0; map[index].name; index++) {
634 decoded_snoop_ltr = decoded_non_snoop_ltr = 0;
635 ltr_raw_data = pmc_core_reg_read(pmc,
636 map[index].bit_mask);
637 snoop_ltr = ltr_raw_data & ~MTPMC_MASK;
638 nonsnoop_ltr = (ltr_raw_data >> 0x10) & ~MTPMC_MASK;
639
640 if (FIELD_GET(LTR_REQ_NONSNOOP, ltr_raw_data)) {
641 scale = FIELD_GET(LTR_DECODED_SCALE, nonsnoop_ltr);
642 val = FIELD_GET(LTR_DECODED_VAL, nonsnoop_ltr);
643 decoded_non_snoop_ltr = val * convert_ltr_scale(scale);
644 }
645 if (FIELD_GET(LTR_REQ_SNOOP, ltr_raw_data)) {
646 scale = FIELD_GET(LTR_DECODED_SCALE, snoop_ltr);
647 val = FIELD_GET(LTR_DECODED_VAL, snoop_ltr);
648 decoded_snoop_ltr = val * convert_ltr_scale(scale);
649 }
650
651 seq_printf(s, "%d\tPMC%d:%-32s\tLTR: RAW: 0x%-16x\tNon-Snoop(ns): %-16llu\tSnoop(ns): %-16llu\n",
652 ltr_index, i, map[index].name, ltr_raw_data,
653 decoded_non_snoop_ltr,
654 decoded_snoop_ltr);
655 ltr_index++;
656 }
657 }
658 return 0;
659 }
660 DEFINE_SHOW_ATTRIBUTE(pmc_core_ltr);
661
adjust_lpm_residency(struct pmc * pmc,u32 offset,const int lpm_adj_x2)662 static inline u64 adjust_lpm_residency(struct pmc *pmc, u32 offset,
663 const int lpm_adj_x2)
664 {
665 u64 lpm_res = pmc_core_reg_read(pmc, offset);
666
667 return GET_X2_COUNTER((u64)lpm_adj_x2 * lpm_res);
668 }
669
pmc_core_substate_res_show(struct seq_file * s,void * unused)670 static int pmc_core_substate_res_show(struct seq_file *s, void *unused)
671 {
672 struct pmc_dev *pmcdev = s->private;
673 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
674 const int lpm_adj_x2 = pmc->map->lpm_res_counter_step_x2;
675 u32 offset = pmc->map->lpm_residency_offset;
676 int i, mode;
677
678 seq_printf(s, "%-10s %-15s\n", "Substate", "Residency");
679
680 pmc_for_each_mode(i, mode, pmcdev) {
681 seq_printf(s, "%-10s %-15llu\n", pmc_lpm_modes[mode],
682 adjust_lpm_residency(pmc, offset + (4 * mode), lpm_adj_x2));
683 }
684
685 return 0;
686 }
687 DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_res);
688
pmc_core_substate_sts_regs_show(struct seq_file * s,void * unused)689 static int pmc_core_substate_sts_regs_show(struct seq_file *s, void *unused)
690 {
691 struct pmc_dev *pmcdev = s->private;
692 int i;
693
694 for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
695 struct pmc *pmc = pmcdev->pmcs[i];
696 const struct pmc_bit_map **maps;
697 u32 offset;
698
699 if (!pmc)
700 continue;
701 maps = pmc->map->lpm_sts;
702 offset = pmc->map->lpm_status_offset;
703 pmc_core_lpm_display(pmc, NULL, s, offset, i, "STATUS", maps);
704 }
705
706 return 0;
707 }
708 DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_sts_regs);
709
pmc_core_substate_l_sts_regs_show(struct seq_file * s,void * unused)710 static int pmc_core_substate_l_sts_regs_show(struct seq_file *s, void *unused)
711 {
712 struct pmc_dev *pmcdev = s->private;
713 int i;
714
715 for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
716 struct pmc *pmc = pmcdev->pmcs[i];
717 const struct pmc_bit_map **maps;
718 u32 offset;
719
720 if (!pmc)
721 continue;
722 maps = pmc->map->lpm_sts;
723 offset = pmc->map->lpm_live_status_offset;
724 pmc_core_lpm_display(pmc, NULL, s, offset, i, "LIVE_STATUS", maps);
725 }
726
727 return 0;
728 }
729 DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_l_sts_regs);
730
pmc_core_substate_req_header_show(struct seq_file * s)731 static void pmc_core_substate_req_header_show(struct seq_file *s)
732 {
733 struct pmc_dev *pmcdev = s->private;
734 int i, mode;
735
736 seq_printf(s, "%30s |", "Element");
737 pmc_for_each_mode(i, mode, pmcdev)
738 seq_printf(s, " %9s |", pmc_lpm_modes[mode]);
739
740 seq_printf(s, " %9s |\n", "Status");
741 }
742
pmc_core_substate_req_regs_show(struct seq_file * s,void * unused)743 static int pmc_core_substate_req_regs_show(struct seq_file *s, void *unused)
744 {
745 struct pmc_dev *pmcdev = s->private;
746 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
747 const struct pmc_bit_map **maps = pmc->map->lpm_sts;
748 const struct pmc_bit_map *map;
749 const int num_maps = pmc->map->lpm_num_maps;
750 u32 sts_offset = pmc->map->lpm_status_offset;
751 u32 *lpm_req_regs = pmc->lpm_req_regs;
752 int mp;
753
754 /* Display the header */
755 pmc_core_substate_req_header_show(s);
756
757 /* Loop over maps */
758 for (mp = 0; mp < num_maps; mp++) {
759 u32 req_mask = 0;
760 u32 lpm_status;
761 int mode, idx, i, len = 32;
762
763 /*
764 * Capture the requirements and create a mask so that we only
765 * show an element if it's required for at least one of the
766 * enabled low power modes
767 */
768 pmc_for_each_mode(idx, mode, pmcdev)
769 req_mask |= lpm_req_regs[mp + (mode * num_maps)];
770
771 /* Get the last latched status for this map */
772 lpm_status = pmc_core_reg_read(pmc, sts_offset + (mp * 4));
773
774 /* Loop over elements in this map */
775 map = maps[mp];
776 for (i = 0; map[i].name && i < len; i++) {
777 u32 bit_mask = map[i].bit_mask;
778
779 if (!(bit_mask & req_mask))
780 /*
781 * Not required for any enabled states
782 * so don't display
783 */
784 continue;
785
786 /* Display the element name in the first column */
787 seq_printf(s, "%30s |", map[i].name);
788
789 /* Loop over the enabled states and display if required */
790 pmc_for_each_mode(idx, mode, pmcdev) {
791 if (lpm_req_regs[mp + (mode * num_maps)] & bit_mask)
792 seq_printf(s, " %9s |",
793 "Required");
794 else
795 seq_printf(s, " %9s |", " ");
796 }
797
798 /* In Status column, show the last captured state of this agent */
799 if (lpm_status & bit_mask)
800 seq_printf(s, " %9s |", "Yes");
801 else
802 seq_printf(s, " %9s |", " ");
803
804 seq_puts(s, "\n");
805 }
806 }
807
808 return 0;
809 }
810 DEFINE_SHOW_ATTRIBUTE(pmc_core_substate_req_regs);
811
pmc_core_lpm_latch_mode_show(struct seq_file * s,void * unused)812 static int pmc_core_lpm_latch_mode_show(struct seq_file *s, void *unused)
813 {
814 struct pmc_dev *pmcdev = s->private;
815 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
816 bool c10;
817 u32 reg;
818 int idx, mode;
819
820 reg = pmc_core_reg_read(pmc, pmc->map->lpm_sts_latch_en_offset);
821 if (reg & LPM_STS_LATCH_MODE) {
822 seq_puts(s, "c10");
823 c10 = false;
824 } else {
825 seq_puts(s, "[c10]");
826 c10 = true;
827 }
828
829 pmc_for_each_mode(idx, mode, pmcdev) {
830 if ((BIT(mode) & reg) && !c10)
831 seq_printf(s, " [%s]", pmc_lpm_modes[mode]);
832 else
833 seq_printf(s, " %s", pmc_lpm_modes[mode]);
834 }
835
836 seq_puts(s, " clear\n");
837
838 return 0;
839 }
840
pmc_core_lpm_latch_mode_write(struct file * file,const char __user * userbuf,size_t count,loff_t * ppos)841 static ssize_t pmc_core_lpm_latch_mode_write(struct file *file,
842 const char __user *userbuf,
843 size_t count, loff_t *ppos)
844 {
845 struct seq_file *s = file->private_data;
846 struct pmc_dev *pmcdev = s->private;
847 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
848 bool clear = false, c10 = false;
849 unsigned char buf[8];
850 int idx, m, mode;
851 u32 reg;
852
853 if (count > sizeof(buf) - 1)
854 return -EINVAL;
855 if (copy_from_user(buf, userbuf, count))
856 return -EFAULT;
857 buf[count] = '\0';
858
859 /*
860 * Allowed strings are:
861 * Any enabled substate, e.g. 'S0i2.0'
862 * 'c10'
863 * 'clear'
864 */
865 mode = sysfs_match_string(pmc_lpm_modes, buf);
866
867 /* Check string matches enabled mode */
868 pmc_for_each_mode(idx, m, pmcdev)
869 if (mode == m)
870 break;
871
872 if (mode != m || mode < 0) {
873 if (sysfs_streq(buf, "clear"))
874 clear = true;
875 else if (sysfs_streq(buf, "c10"))
876 c10 = true;
877 else
878 return -EINVAL;
879 }
880
881 if (clear) {
882 mutex_lock(&pmcdev->lock);
883
884 reg = pmc_core_reg_read(pmc, pmc->map->etr3_offset);
885 reg |= ETR3_CLEAR_LPM_EVENTS;
886 pmc_core_reg_write(pmc, pmc->map->etr3_offset, reg);
887
888 mutex_unlock(&pmcdev->lock);
889
890 return count;
891 }
892
893 if (c10) {
894 mutex_lock(&pmcdev->lock);
895
896 reg = pmc_core_reg_read(pmc, pmc->map->lpm_sts_latch_en_offset);
897 reg &= ~LPM_STS_LATCH_MODE;
898 pmc_core_reg_write(pmc, pmc->map->lpm_sts_latch_en_offset, reg);
899
900 mutex_unlock(&pmcdev->lock);
901
902 return count;
903 }
904
905 /*
906 * For LPM mode latching we set the latch enable bit and selected mode
907 * and clear everything else.
908 */
909 reg = LPM_STS_LATCH_MODE | BIT(mode);
910 mutex_lock(&pmcdev->lock);
911 pmc_core_reg_write(pmc, pmc->map->lpm_sts_latch_en_offset, reg);
912 mutex_unlock(&pmcdev->lock);
913
914 return count;
915 }
916 DEFINE_PMC_CORE_ATTR_WRITE(pmc_core_lpm_latch_mode);
917
pmc_core_pkgc_show(struct seq_file * s,void * unused)918 static int pmc_core_pkgc_show(struct seq_file *s, void *unused)
919 {
920 struct pmc *pmc = s->private;
921 const struct pmc_bit_map *map = pmc->map->msr_sts;
922 u64 pcstate_count;
923 int index;
924
925 for (index = 0; map[index].name ; index++) {
926 if (rdmsrl_safe(map[index].bit_mask, &pcstate_count))
927 continue;
928
929 pcstate_count *= 1000;
930 do_div(pcstate_count, tsc_khz);
931 seq_printf(s, "%-8s : %llu\n", map[index].name,
932 pcstate_count);
933 }
934
935 return 0;
936 }
937 DEFINE_SHOW_ATTRIBUTE(pmc_core_pkgc);
938
pmc_core_pri_verify(u32 lpm_pri,u8 * mode_order)939 static bool pmc_core_pri_verify(u32 lpm_pri, u8 *mode_order)
940 {
941 int i, j;
942
943 if (!lpm_pri)
944 return false;
945 /*
946 * Each byte contains the priority level for 2 modes (7:4 and 3:0).
947 * In a 32 bit register this allows for describing 8 modes. Store the
948 * levels and look for values out of range.
949 */
950 for (i = 0; i < 8; i++) {
951 int level = lpm_pri & GENMASK(3, 0);
952
953 if (level >= LPM_MAX_NUM_MODES)
954 return false;
955
956 mode_order[i] = level;
957 lpm_pri >>= 4;
958 }
959
960 /* Check that we have unique values */
961 for (i = 0; i < LPM_MAX_NUM_MODES - 1; i++)
962 for (j = i + 1; j < LPM_MAX_NUM_MODES; j++)
963 if (mode_order[i] == mode_order[j])
964 return false;
965
966 return true;
967 }
968
pmc_core_get_low_power_modes(struct platform_device * pdev)969 static void pmc_core_get_low_power_modes(struct platform_device *pdev)
970 {
971 struct pmc_dev *pmcdev = platform_get_drvdata(pdev);
972 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
973 u8 pri_order[LPM_MAX_NUM_MODES] = LPM_DEFAULT_PRI;
974 u8 mode_order[LPM_MAX_NUM_MODES];
975 u32 lpm_pri;
976 u32 lpm_en;
977 int mode, i, p;
978
979 /* Use LPM Maps to indicate support for substates */
980 if (!pmc->map->lpm_num_maps)
981 return;
982
983 lpm_en = pmc_core_reg_read(pmc, pmc->map->lpm_en_offset);
984 /* For MTL, BIT 31 is not an lpm mode but a enable bit.
985 * Lower byte is enough to cover the number of lpm modes for all
986 * platforms and hence mask the upper 3 bytes.
987 */
988 pmcdev->num_lpm_modes = hweight32(lpm_en & 0xFF);
989
990 /* Read 32 bit LPM_PRI register */
991 lpm_pri = pmc_core_reg_read(pmc, pmc->map->lpm_priority_offset);
992
993
994 /*
995 * If lpm_pri value passes verification, then override the default
996 * modes here. Otherwise stick with the default.
997 */
998 if (pmc_core_pri_verify(lpm_pri, mode_order))
999 /* Get list of modes in priority order */
1000 for (mode = 0; mode < LPM_MAX_NUM_MODES; mode++)
1001 pri_order[mode_order[mode]] = mode;
1002 else
1003 dev_warn(&pdev->dev, "Assuming a default substate order for this platform\n");
1004
1005 /*
1006 * Loop through all modes from lowest to highest priority,
1007 * and capture all enabled modes in order
1008 */
1009 i = 0;
1010 for (p = LPM_MAX_NUM_MODES - 1; p >= 0; p--) {
1011 int mode = pri_order[p];
1012
1013 if (!(BIT(mode) & lpm_en))
1014 continue;
1015
1016 pmcdev->lpm_en_modes[i++] = mode;
1017 }
1018 }
1019
get_primary_reg_base(struct pmc * pmc)1020 int get_primary_reg_base(struct pmc *pmc)
1021 {
1022 u64 slp_s0_addr;
1023
1024 if (lpit_read_residency_count_address(&slp_s0_addr)) {
1025 pmc->base_addr = PMC_BASE_ADDR_DEFAULT;
1026
1027 if (page_is_ram(PHYS_PFN(pmc->base_addr)))
1028 return -ENODEV;
1029 } else {
1030 pmc->base_addr = slp_s0_addr - pmc->map->slp_s0_offset;
1031 }
1032
1033 pmc->regbase = ioremap(pmc->base_addr, pmc->map->regmap_length);
1034 if (!pmc->regbase)
1035 return -ENOMEM;
1036 return 0;
1037 }
1038
pmc_core_dbgfs_unregister(struct pmc_dev * pmcdev)1039 static void pmc_core_dbgfs_unregister(struct pmc_dev *pmcdev)
1040 {
1041 debugfs_remove_recursive(pmcdev->dbgfs_dir);
1042 }
1043
pmc_core_dbgfs_register(struct pmc_dev * pmcdev)1044 static void pmc_core_dbgfs_register(struct pmc_dev *pmcdev)
1045 {
1046 struct pmc *primary_pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1047 struct dentry *dir;
1048
1049 dir = debugfs_create_dir("pmc_core", NULL);
1050 pmcdev->dbgfs_dir = dir;
1051
1052 debugfs_create_file("slp_s0_residency_usec", 0444, dir, primary_pmc,
1053 &pmc_core_dev_state);
1054
1055 if (primary_pmc->map->pfear_sts)
1056 debugfs_create_file("pch_ip_power_gating_status", 0444, dir,
1057 pmcdev, &pmc_core_ppfear_fops);
1058
1059 debugfs_create_file("ltr_ignore", 0644, dir, pmcdev,
1060 &pmc_core_ltr_ignore_ops);
1061
1062 debugfs_create_file("ltr_show", 0444, dir, pmcdev, &pmc_core_ltr_fops);
1063
1064 debugfs_create_file("package_cstate_show", 0444, dir, primary_pmc,
1065 &pmc_core_pkgc_fops);
1066
1067 if (primary_pmc->map->pll_sts)
1068 debugfs_create_file("pll_status", 0444, dir, pmcdev,
1069 &pmc_core_pll_fops);
1070
1071 if (primary_pmc->map->mphy_sts)
1072 debugfs_create_file("mphy_core_lanes_power_gating_status",
1073 0444, dir, pmcdev,
1074 &pmc_core_mphy_pg_fops);
1075
1076 if (primary_pmc->map->slps0_dbg_maps) {
1077 debugfs_create_file("slp_s0_debug_status", 0444,
1078 dir, pmcdev,
1079 &pmc_core_slps0_dbg_fops);
1080
1081 debugfs_create_bool("slp_s0_dbg_latch", 0644,
1082 dir, &slps0_dbg_latch);
1083 }
1084
1085 if (primary_pmc->map->lpm_en_offset) {
1086 debugfs_create_file("substate_residencies", 0444,
1087 pmcdev->dbgfs_dir, pmcdev,
1088 &pmc_core_substate_res_fops);
1089 }
1090
1091 if (primary_pmc->map->lpm_status_offset) {
1092 debugfs_create_file("substate_status_registers", 0444,
1093 pmcdev->dbgfs_dir, pmcdev,
1094 &pmc_core_substate_sts_regs_fops);
1095 debugfs_create_file("substate_live_status_registers", 0444,
1096 pmcdev->dbgfs_dir, pmcdev,
1097 &pmc_core_substate_l_sts_regs_fops);
1098 debugfs_create_file("lpm_latch_mode", 0644,
1099 pmcdev->dbgfs_dir, pmcdev,
1100 &pmc_core_lpm_latch_mode_fops);
1101 }
1102
1103 if (primary_pmc->lpm_req_regs) {
1104 debugfs_create_file("substate_requirements", 0444,
1105 pmcdev->dbgfs_dir, pmcdev,
1106 &pmc_core_substate_req_regs_fops);
1107 }
1108 }
1109
1110 static const struct x86_cpu_id intel_pmc_core_ids[] = {
1111 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L, spt_core_init),
1112 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE, spt_core_init),
1113 X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L, spt_core_init),
1114 X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE, spt_core_init),
1115 X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L, cnp_core_init),
1116 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, icl_core_init),
1117 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI, icl_core_init),
1118 X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE, cnp_core_init),
1119 X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L, cnp_core_init),
1120 X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L, tgl_core_init),
1121 X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE, tgl_core_init),
1122 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT, tgl_core_init),
1123 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L, icl_core_init),
1124 X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE, tgl_core_init),
1125 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, tgl_core_init),
1126 X86_MATCH_INTEL_FAM6_MODEL(ATOM_GRACEMONT, tgl_core_init),
1127 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE, adl_core_init),
1128 X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_P, tgl_core_init),
1129 X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE, adl_core_init),
1130 X86_MATCH_INTEL_FAM6_MODEL(RAPTORLAKE_S, adl_core_init),
1131 X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE_L, mtl_core_init),
1132 {}
1133 };
1134
1135 MODULE_DEVICE_TABLE(x86cpu, intel_pmc_core_ids);
1136
1137 static const struct pci_device_id pmc_pci_ids[] = {
1138 { PCI_VDEVICE(INTEL, SPT_PMC_PCI_DEVICE_ID) },
1139 { }
1140 };
1141
1142 /*
1143 * This quirk can be used on those platforms where
1144 * the platform BIOS enforces 24Mhz crystal to shutdown
1145 * before PMC can assert SLP_S0#.
1146 */
1147 static bool xtal_ignore;
quirk_xtal_ignore(const struct dmi_system_id * id)1148 static int quirk_xtal_ignore(const struct dmi_system_id *id)
1149 {
1150 xtal_ignore = true;
1151 return 0;
1152 }
1153
pmc_core_xtal_ignore(struct pmc * pmc)1154 static void pmc_core_xtal_ignore(struct pmc *pmc)
1155 {
1156 u32 value;
1157
1158 value = pmc_core_reg_read(pmc, pmc->map->pm_vric1_offset);
1159 /* 24MHz Crystal Shutdown Qualification Disable */
1160 value |= SPT_PMC_VRIC1_XTALSDQDIS;
1161 /* Low Voltage Mode Enable */
1162 value &= ~SPT_PMC_VRIC1_SLPS0LVEN;
1163 pmc_core_reg_write(pmc, pmc->map->pm_vric1_offset, value);
1164 }
1165
1166 static const struct dmi_system_id pmc_core_dmi_table[] = {
1167 {
1168 .callback = quirk_xtal_ignore,
1169 .ident = "HP Elite x2 1013 G3",
1170 .matches = {
1171 DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1172 DMI_MATCH(DMI_PRODUCT_NAME, "HP Elite x2 1013 G3"),
1173 },
1174 },
1175 {}
1176 };
1177
pmc_core_do_dmi_quirks(struct pmc * pmc)1178 static void pmc_core_do_dmi_quirks(struct pmc *pmc)
1179 {
1180 dmi_check_system(pmc_core_dmi_table);
1181
1182 if (xtal_ignore)
1183 pmc_core_xtal_ignore(pmc);
1184 }
1185
pmc_core_clean_structure(struct platform_device * pdev)1186 static void pmc_core_clean_structure(struct platform_device *pdev)
1187 {
1188 struct pmc_dev *pmcdev = platform_get_drvdata(pdev);
1189 int i;
1190
1191 for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
1192 struct pmc *pmc = pmcdev->pmcs[i];
1193
1194 if (pmc)
1195 iounmap(pmc->regbase);
1196 }
1197
1198 if (pmcdev->ssram_pcidev) {
1199 pci_dev_put(pmcdev->ssram_pcidev);
1200 pci_disable_device(pmcdev->ssram_pcidev);
1201 }
1202 platform_set_drvdata(pdev, NULL);
1203 mutex_destroy(&pmcdev->lock);
1204 }
1205
pmc_core_probe(struct platform_device * pdev)1206 static int pmc_core_probe(struct platform_device *pdev)
1207 {
1208 static bool device_initialized;
1209 struct pmc_dev *pmcdev;
1210 const struct x86_cpu_id *cpu_id;
1211 int (*core_init)(struct pmc_dev *pmcdev);
1212 struct pmc *primary_pmc;
1213 int ret;
1214
1215 if (device_initialized)
1216 return -ENODEV;
1217
1218 pmcdev = devm_kzalloc(&pdev->dev, sizeof(*pmcdev), GFP_KERNEL);
1219 if (!pmcdev)
1220 return -ENOMEM;
1221
1222 platform_set_drvdata(pdev, pmcdev);
1223 pmcdev->pdev = pdev;
1224
1225 cpu_id = x86_match_cpu(intel_pmc_core_ids);
1226 if (!cpu_id)
1227 return -ENODEV;
1228
1229 core_init = (int (*)(struct pmc_dev *))cpu_id->driver_data;
1230
1231 /* Primary PMC */
1232 primary_pmc = devm_kzalloc(&pdev->dev, sizeof(*primary_pmc), GFP_KERNEL);
1233 if (!primary_pmc)
1234 return -ENOMEM;
1235 pmcdev->pmcs[PMC_IDX_MAIN] = primary_pmc;
1236
1237 /*
1238 * Coffee Lake has CPU ID of Kaby Lake and Cannon Lake PCH. So here
1239 * Sunrisepoint PCH regmap can't be used. Use Cannon Lake PCH regmap
1240 * in this case.
1241 */
1242 if (core_init == spt_core_init && !pci_dev_present(pmc_pci_ids))
1243 core_init = cnp_core_init;
1244
1245 mutex_init(&pmcdev->lock);
1246 ret = core_init(pmcdev);
1247 if (ret) {
1248 pmc_core_clean_structure(pdev);
1249 return ret;
1250 }
1251
1252 pmcdev->pmc_xram_read_bit = pmc_core_check_read_lock_bit(primary_pmc);
1253 pmc_core_get_low_power_modes(pdev);
1254 pmc_core_do_dmi_quirks(primary_pmc);
1255
1256 pmc_core_dbgfs_register(pmcdev);
1257 pm_report_max_hw_sleep(FIELD_MAX(SLP_S0_RES_COUNTER_MASK) *
1258 pmc_core_adjust_slp_s0_step(primary_pmc, 1));
1259
1260 device_initialized = true;
1261 dev_info(&pdev->dev, " initialized\n");
1262
1263 return 0;
1264 }
1265
pmc_core_remove(struct platform_device * pdev)1266 static void pmc_core_remove(struct platform_device *pdev)
1267 {
1268 struct pmc_dev *pmcdev = platform_get_drvdata(pdev);
1269 pmc_core_dbgfs_unregister(pmcdev);
1270 pmc_core_clean_structure(pdev);
1271 }
1272
1273 static bool warn_on_s0ix_failures;
1274 module_param(warn_on_s0ix_failures, bool, 0644);
1275 MODULE_PARM_DESC(warn_on_s0ix_failures, "Check and warn for S0ix failures");
1276
pmc_core_suspend(struct device * dev)1277 static __maybe_unused int pmc_core_suspend(struct device *dev)
1278 {
1279 struct pmc_dev *pmcdev = dev_get_drvdata(dev);
1280 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1281
1282 /* Check if the syspend will actually use S0ix */
1283 if (pm_suspend_via_firmware())
1284 return 0;
1285
1286 /* Save PC10 residency for checking later */
1287 if (rdmsrl_safe(MSR_PKG_C10_RESIDENCY, &pmcdev->pc10_counter))
1288 return -EIO;
1289
1290 /* Save S0ix residency for checking later */
1291 if (pmc_core_dev_state_get(pmc, &pmcdev->s0ix_counter))
1292 return -EIO;
1293
1294 return 0;
1295 }
1296
pmc_core_is_pc10_failed(struct pmc_dev * pmcdev)1297 static inline bool pmc_core_is_pc10_failed(struct pmc_dev *pmcdev)
1298 {
1299 u64 pc10_counter;
1300
1301 if (rdmsrl_safe(MSR_PKG_C10_RESIDENCY, &pc10_counter))
1302 return false;
1303
1304 if (pc10_counter == pmcdev->pc10_counter)
1305 return true;
1306
1307 return false;
1308 }
1309
pmc_core_is_s0ix_failed(struct pmc_dev * pmcdev)1310 static inline bool pmc_core_is_s0ix_failed(struct pmc_dev *pmcdev)
1311 {
1312 u64 s0ix_counter;
1313
1314 if (pmc_core_dev_state_get(pmcdev->pmcs[PMC_IDX_MAIN], &s0ix_counter))
1315 return false;
1316
1317 pm_report_hw_sleep_time((u32)(s0ix_counter - pmcdev->s0ix_counter));
1318
1319 if (s0ix_counter == pmcdev->s0ix_counter)
1320 return true;
1321
1322 return false;
1323 }
1324
pmc_core_resume_common(struct pmc_dev * pmcdev)1325 int pmc_core_resume_common(struct pmc_dev *pmcdev)
1326 {
1327 struct device *dev = &pmcdev->pdev->dev;
1328 struct pmc *pmc = pmcdev->pmcs[PMC_IDX_MAIN];
1329 const struct pmc_bit_map **maps = pmc->map->lpm_sts;
1330 int offset = pmc->map->lpm_status_offset;
1331 int i;
1332
1333 /* Check if the syspend used S0ix */
1334 if (pm_suspend_via_firmware())
1335 return 0;
1336
1337 if (!pmc_core_is_s0ix_failed(pmcdev))
1338 return 0;
1339
1340 if (!warn_on_s0ix_failures)
1341 return 0;
1342
1343 if (pmc_core_is_pc10_failed(pmcdev)) {
1344 /* S0ix failed because of PC10 entry failure */
1345 dev_info(dev, "CPU did not enter PC10!!! (PC10 cnt=0x%llx)\n",
1346 pmcdev->pc10_counter);
1347 return 0;
1348 }
1349
1350 /* The real interesting case - S0ix failed - lets ask PMC why. */
1351 dev_warn(dev, "CPU did not enter SLP_S0!!! (S0ix cnt=%llu)\n",
1352 pmcdev->s0ix_counter);
1353
1354 if (pmc->map->slps0_dbg_maps)
1355 pmc_core_slps0_display(pmc, dev, NULL);
1356
1357 for (i = 0; i < ARRAY_SIZE(pmcdev->pmcs); ++i) {
1358 struct pmc *pmc = pmcdev->pmcs[i];
1359
1360 if (!pmc)
1361 continue;
1362 if (pmc->map->lpm_sts)
1363 pmc_core_lpm_display(pmc, dev, NULL, offset, i, "STATUS", maps);
1364 }
1365
1366 return 0;
1367 }
1368
pmc_core_resume(struct device * dev)1369 static __maybe_unused int pmc_core_resume(struct device *dev)
1370 {
1371 struct pmc_dev *pmcdev = dev_get_drvdata(dev);
1372
1373 if (pmcdev->resume)
1374 return pmcdev->resume(pmcdev);
1375
1376 return pmc_core_resume_common(pmcdev);
1377 }
1378
1379 static const struct dev_pm_ops pmc_core_pm_ops = {
1380 SET_LATE_SYSTEM_SLEEP_PM_OPS(pmc_core_suspend, pmc_core_resume)
1381 };
1382
1383 static const struct acpi_device_id pmc_core_acpi_ids[] = {
1384 {"INT33A1", 0}, /* _HID for Intel Power Engine, _CID PNP0D80*/
1385 { }
1386 };
1387 MODULE_DEVICE_TABLE(acpi, pmc_core_acpi_ids);
1388
1389 static struct platform_driver pmc_core_driver = {
1390 .driver = {
1391 .name = "intel_pmc_core",
1392 .acpi_match_table = ACPI_PTR(pmc_core_acpi_ids),
1393 .pm = &pmc_core_pm_ops,
1394 .dev_groups = pmc_dev_groups,
1395 },
1396 .probe = pmc_core_probe,
1397 .remove_new = pmc_core_remove,
1398 };
1399
1400 module_platform_driver(pmc_core_driver);
1401
1402 MODULE_LICENSE("GPL v2");
1403 MODULE_DESCRIPTION("Intel PMC Core Driver");
1404