1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 /* ethtool support for e1000 */
5
6 #include <linux/netdevice.h>
7 #include <linux/interrupt.h>
8 #include <linux/ethtool.h>
9 #include <linux/pci.h>
10 #include <linux/slab.h>
11 #include <linux/delay.h>
12 #include <linux/vmalloc.h>
13 #include <linux/pm_runtime.h>
14
15 #include "e1000.h"
16
17 enum { NETDEV_STATS, E1000_STATS };
18
19 struct e1000_stats {
20 char stat_string[ETH_GSTRING_LEN];
21 int type;
22 int sizeof_stat;
23 int stat_offset;
24 };
25
26 static const char e1000e_priv_flags_strings[][ETH_GSTRING_LEN] = {
27 #define E1000E_PRIV_FLAGS_S0IX_ENABLED BIT(0)
28 "s0ix-enabled",
29 };
30
31 #define E1000E_PRIV_FLAGS_STR_LEN ARRAY_SIZE(e1000e_priv_flags_strings)
32
33 #define E1000_STAT(str, m) { \
34 .stat_string = str, \
35 .type = E1000_STATS, \
36 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
37 .stat_offset = offsetof(struct e1000_adapter, m) }
38 #define E1000_NETDEV_STAT(str, m) { \
39 .stat_string = str, \
40 .type = NETDEV_STATS, \
41 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
42 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
43
44 static const struct e1000_stats e1000_gstrings_stats[] = {
45 E1000_STAT("rx_packets", stats.gprc),
46 E1000_STAT("tx_packets", stats.gptc),
47 E1000_STAT("rx_bytes", stats.gorc),
48 E1000_STAT("tx_bytes", stats.gotc),
49 E1000_STAT("rx_broadcast", stats.bprc),
50 E1000_STAT("tx_broadcast", stats.bptc),
51 E1000_STAT("rx_multicast", stats.mprc),
52 E1000_STAT("tx_multicast", stats.mptc),
53 E1000_NETDEV_STAT("rx_errors", rx_errors),
54 E1000_NETDEV_STAT("tx_errors", tx_errors),
55 E1000_NETDEV_STAT("tx_dropped", tx_dropped),
56 E1000_STAT("multicast", stats.mprc),
57 E1000_STAT("collisions", stats.colc),
58 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
59 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
60 E1000_STAT("rx_crc_errors", stats.crcerrs),
61 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
62 E1000_STAT("rx_no_buffer_count", stats.rnbc),
63 E1000_STAT("rx_missed_errors", stats.mpc),
64 E1000_STAT("tx_aborted_errors", stats.ecol),
65 E1000_STAT("tx_carrier_errors", stats.tncrs),
66 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
67 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
68 E1000_STAT("tx_window_errors", stats.latecol),
69 E1000_STAT("tx_abort_late_coll", stats.latecol),
70 E1000_STAT("tx_deferred_ok", stats.dc),
71 E1000_STAT("tx_single_coll_ok", stats.scc),
72 E1000_STAT("tx_multi_coll_ok", stats.mcc),
73 E1000_STAT("tx_timeout_count", tx_timeout_count),
74 E1000_STAT("tx_restart_queue", restart_queue),
75 E1000_STAT("rx_long_length_errors", stats.roc),
76 E1000_STAT("rx_short_length_errors", stats.ruc),
77 E1000_STAT("rx_align_errors", stats.algnerrc),
78 E1000_STAT("tx_tcp_seg_good", stats.tsctc),
79 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
80 E1000_STAT("rx_flow_control_xon", stats.xonrxc),
81 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
82 E1000_STAT("tx_flow_control_xon", stats.xontxc),
83 E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
84 E1000_STAT("rx_csum_offload_good", hw_csum_good),
85 E1000_STAT("rx_csum_offload_errors", hw_csum_err),
86 E1000_STAT("rx_header_split", rx_hdr_split),
87 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
88 E1000_STAT("tx_smbus", stats.mgptc),
89 E1000_STAT("rx_smbus", stats.mgprc),
90 E1000_STAT("dropped_smbus", stats.mgpdc),
91 E1000_STAT("rx_dma_failed", rx_dma_failed),
92 E1000_STAT("tx_dma_failed", tx_dma_failed),
93 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
94 E1000_STAT("uncorr_ecc_errors", uncorr_errors),
95 E1000_STAT("corr_ecc_errors", corr_errors),
96 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
97 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
98 };
99
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103 "Register test (offline)", "Eeprom test (offline)",
104 "Interrupt test (offline)", "Loopback test (offline)",
105 "Link test (on/offline)"
106 };
107
108 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
109
e1000_get_link_ksettings(struct net_device * netdev,struct ethtool_link_ksettings * cmd)110 static int e1000_get_link_ksettings(struct net_device *netdev,
111 struct ethtool_link_ksettings *cmd)
112 {
113 u32 speed, supported, advertising, lp_advertising, lpa_t;
114 struct e1000_adapter *adapter = netdev_priv(netdev);
115 struct e1000_hw *hw = &adapter->hw;
116
117 if (hw->phy.media_type == e1000_media_type_copper) {
118 supported = (SUPPORTED_10baseT_Half |
119 SUPPORTED_10baseT_Full |
120 SUPPORTED_100baseT_Half |
121 SUPPORTED_100baseT_Full |
122 SUPPORTED_1000baseT_Full |
123 SUPPORTED_Asym_Pause |
124 SUPPORTED_Autoneg |
125 SUPPORTED_Pause |
126 SUPPORTED_TP);
127 if (hw->phy.type == e1000_phy_ife)
128 supported &= ~SUPPORTED_1000baseT_Full;
129 advertising = ADVERTISED_TP;
130
131 if (hw->mac.autoneg == 1) {
132 advertising |= ADVERTISED_Autoneg;
133 /* the e1000 autoneg seems to match ethtool nicely */
134 advertising |= hw->phy.autoneg_advertised;
135 }
136
137 cmd->base.port = PORT_TP;
138 cmd->base.phy_address = hw->phy.addr;
139 } else {
140 supported = (SUPPORTED_1000baseT_Full |
141 SUPPORTED_FIBRE |
142 SUPPORTED_Autoneg);
143
144 advertising = (ADVERTISED_1000baseT_Full |
145 ADVERTISED_FIBRE |
146 ADVERTISED_Autoneg);
147
148 cmd->base.port = PORT_FIBRE;
149 }
150
151 speed = SPEED_UNKNOWN;
152 cmd->base.duplex = DUPLEX_UNKNOWN;
153
154 if (netif_running(netdev)) {
155 if (netif_carrier_ok(netdev)) {
156 speed = adapter->link_speed;
157 cmd->base.duplex = adapter->link_duplex - 1;
158 }
159 } else if (!pm_runtime_suspended(netdev->dev.parent)) {
160 u32 status = er32(STATUS);
161
162 if (status & E1000_STATUS_LU) {
163 if (status & E1000_STATUS_SPEED_1000)
164 speed = SPEED_1000;
165 else if (status & E1000_STATUS_SPEED_100)
166 speed = SPEED_100;
167 else
168 speed = SPEED_10;
169
170 if (status & E1000_STATUS_FD)
171 cmd->base.duplex = DUPLEX_FULL;
172 else
173 cmd->base.duplex = DUPLEX_HALF;
174 }
175 }
176
177 cmd->base.speed = speed;
178 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
179 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
180
181 /* MDI-X => 2; MDI =>1; Invalid =>0 */
182 if ((hw->phy.media_type == e1000_media_type_copper) &&
183 netif_carrier_ok(netdev))
184 cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
185 ETH_TP_MDI_X : ETH_TP_MDI;
186 else
187 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
188
189 if (hw->phy.mdix == AUTO_ALL_MODES)
190 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
191 else
192 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
193
194 if (hw->phy.media_type != e1000_media_type_copper)
195 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
196
197 lpa_t = mii_stat1000_to_ethtool_lpa_t(adapter->phy_regs.stat1000);
198 lp_advertising = lpa_t |
199 mii_lpa_to_ethtool_lpa_t(adapter->phy_regs.lpa);
200
201 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
202 supported);
203 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
204 advertising);
205 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.lp_advertising,
206 lp_advertising);
207
208 return 0;
209 }
210
e1000_set_spd_dplx(struct e1000_adapter * adapter,u32 spd,u8 dplx)211 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
212 {
213 struct e1000_mac_info *mac = &adapter->hw.mac;
214
215 mac->autoneg = 0;
216
217 /* Make sure dplx is at most 1 bit and lsb of speed is not set
218 * for the switch() below to work
219 */
220 if ((spd & 1) || (dplx & ~1))
221 goto err_inval;
222
223 /* Fiber NICs only allow 1000 gbps Full duplex */
224 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
225 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
226 goto err_inval;
227 }
228
229 switch (spd + dplx) {
230 case SPEED_10 + DUPLEX_HALF:
231 mac->forced_speed_duplex = ADVERTISE_10_HALF;
232 break;
233 case SPEED_10 + DUPLEX_FULL:
234 mac->forced_speed_duplex = ADVERTISE_10_FULL;
235 break;
236 case SPEED_100 + DUPLEX_HALF:
237 mac->forced_speed_duplex = ADVERTISE_100_HALF;
238 break;
239 case SPEED_100 + DUPLEX_FULL:
240 mac->forced_speed_duplex = ADVERTISE_100_FULL;
241 break;
242 case SPEED_1000 + DUPLEX_FULL:
243 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
244 mac->autoneg = 1;
245 adapter->hw.phy.autoneg_advertised =
246 ADVERTISE_1000_FULL;
247 } else {
248 mac->forced_speed_duplex = ADVERTISE_1000_FULL;
249 }
250 break;
251 case SPEED_1000 + DUPLEX_HALF: /* not supported */
252 default:
253 goto err_inval;
254 }
255
256 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
257 adapter->hw.phy.mdix = AUTO_ALL_MODES;
258
259 return 0;
260
261 err_inval:
262 e_err("Unsupported Speed/Duplex configuration\n");
263 return -EINVAL;
264 }
265
e1000_set_link_ksettings(struct net_device * netdev,const struct ethtool_link_ksettings * cmd)266 static int e1000_set_link_ksettings(struct net_device *netdev,
267 const struct ethtool_link_ksettings *cmd)
268 {
269 struct e1000_adapter *adapter = netdev_priv(netdev);
270 struct e1000_hw *hw = &adapter->hw;
271 int ret_val = 0;
272 u32 advertising;
273
274 ethtool_convert_link_mode_to_legacy_u32(&advertising,
275 cmd->link_modes.advertising);
276
277 pm_runtime_get_sync(netdev->dev.parent);
278
279 /* When SoL/IDER sessions are active, autoneg/speed/duplex
280 * cannot be changed
281 */
282 if (hw->phy.ops.check_reset_block &&
283 hw->phy.ops.check_reset_block(hw)) {
284 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
285 ret_val = -EINVAL;
286 goto out;
287 }
288
289 /* MDI setting is only allowed when autoneg enabled because
290 * some hardware doesn't allow MDI setting when speed or
291 * duplex is forced.
292 */
293 if (cmd->base.eth_tp_mdix_ctrl) {
294 if (hw->phy.media_type != e1000_media_type_copper) {
295 ret_val = -EOPNOTSUPP;
296 goto out;
297 }
298
299 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
300 (cmd->base.autoneg != AUTONEG_ENABLE)) {
301 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
302 ret_val = -EINVAL;
303 goto out;
304 }
305 }
306
307 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
308 usleep_range(1000, 2000);
309
310 if (cmd->base.autoneg == AUTONEG_ENABLE) {
311 hw->mac.autoneg = 1;
312 if (hw->phy.media_type == e1000_media_type_fiber)
313 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
314 ADVERTISED_FIBRE | ADVERTISED_Autoneg;
315 else
316 hw->phy.autoneg_advertised = advertising |
317 ADVERTISED_TP | ADVERTISED_Autoneg;
318 advertising = hw->phy.autoneg_advertised;
319 if (adapter->fc_autoneg)
320 hw->fc.requested_mode = e1000_fc_default;
321 } else {
322 u32 speed = cmd->base.speed;
323 /* calling this overrides forced MDI setting */
324 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
325 ret_val = -EINVAL;
326 goto out;
327 }
328 }
329
330 /* MDI-X => 2; MDI => 1; Auto => 3 */
331 if (cmd->base.eth_tp_mdix_ctrl) {
332 /* fix up the value for auto (3 => 0) as zero is mapped
333 * internally to auto
334 */
335 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
336 hw->phy.mdix = AUTO_ALL_MODES;
337 else
338 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
339 }
340
341 /* reset the link */
342 if (netif_running(adapter->netdev)) {
343 e1000e_down(adapter, true);
344 e1000e_up(adapter);
345 } else {
346 e1000e_reset(adapter);
347 }
348
349 out:
350 pm_runtime_put_sync(netdev->dev.parent);
351 clear_bit(__E1000_RESETTING, &adapter->state);
352 return ret_val;
353 }
354
e1000_get_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)355 static void e1000_get_pauseparam(struct net_device *netdev,
356 struct ethtool_pauseparam *pause)
357 {
358 struct e1000_adapter *adapter = netdev_priv(netdev);
359 struct e1000_hw *hw = &adapter->hw;
360
361 pause->autoneg =
362 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
363
364 if (hw->fc.current_mode == e1000_fc_rx_pause) {
365 pause->rx_pause = 1;
366 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
367 pause->tx_pause = 1;
368 } else if (hw->fc.current_mode == e1000_fc_full) {
369 pause->rx_pause = 1;
370 pause->tx_pause = 1;
371 }
372 }
373
e1000_set_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)374 static int e1000_set_pauseparam(struct net_device *netdev,
375 struct ethtool_pauseparam *pause)
376 {
377 struct e1000_adapter *adapter = netdev_priv(netdev);
378 struct e1000_hw *hw = &adapter->hw;
379 int retval = 0;
380
381 adapter->fc_autoneg = pause->autoneg;
382
383 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
384 usleep_range(1000, 2000);
385
386 pm_runtime_get_sync(netdev->dev.parent);
387
388 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
389 hw->fc.requested_mode = e1000_fc_default;
390 if (netif_running(adapter->netdev)) {
391 e1000e_down(adapter, true);
392 e1000e_up(adapter);
393 } else {
394 e1000e_reset(adapter);
395 }
396 } else {
397 if (pause->rx_pause && pause->tx_pause)
398 hw->fc.requested_mode = e1000_fc_full;
399 else if (pause->rx_pause && !pause->tx_pause)
400 hw->fc.requested_mode = e1000_fc_rx_pause;
401 else if (!pause->rx_pause && pause->tx_pause)
402 hw->fc.requested_mode = e1000_fc_tx_pause;
403 else if (!pause->rx_pause && !pause->tx_pause)
404 hw->fc.requested_mode = e1000_fc_none;
405
406 hw->fc.current_mode = hw->fc.requested_mode;
407
408 if (hw->phy.media_type == e1000_media_type_fiber) {
409 retval = hw->mac.ops.setup_link(hw);
410 /* implicit goto out */
411 } else {
412 retval = e1000e_force_mac_fc(hw);
413 if (retval)
414 goto out;
415 e1000e_set_fc_watermarks(hw);
416 }
417 }
418
419 out:
420 pm_runtime_put_sync(netdev->dev.parent);
421 clear_bit(__E1000_RESETTING, &adapter->state);
422 return retval;
423 }
424
e1000_get_msglevel(struct net_device * netdev)425 static u32 e1000_get_msglevel(struct net_device *netdev)
426 {
427 struct e1000_adapter *adapter = netdev_priv(netdev);
428 return adapter->msg_enable;
429 }
430
e1000_set_msglevel(struct net_device * netdev,u32 data)431 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
432 {
433 struct e1000_adapter *adapter = netdev_priv(netdev);
434 adapter->msg_enable = data;
435 }
436
e1000_get_regs_len(struct net_device __always_unused * netdev)437 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
438 {
439 #define E1000_REGS_LEN 32 /* overestimate */
440 return E1000_REGS_LEN * sizeof(u32);
441 }
442
e1000_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)443 static void e1000_get_regs(struct net_device *netdev,
444 struct ethtool_regs *regs, void *p)
445 {
446 struct e1000_adapter *adapter = netdev_priv(netdev);
447 struct e1000_hw *hw = &adapter->hw;
448 u32 *regs_buff = p;
449 u16 phy_data;
450
451 pm_runtime_get_sync(netdev->dev.parent);
452
453 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
454
455 regs->version = (1u << 24) |
456 (adapter->pdev->revision << 16) |
457 adapter->pdev->device;
458
459 regs_buff[0] = er32(CTRL);
460 regs_buff[1] = er32(STATUS);
461
462 regs_buff[2] = er32(RCTL);
463 regs_buff[3] = er32(RDLEN(0));
464 regs_buff[4] = er32(RDH(0));
465 regs_buff[5] = er32(RDT(0));
466 regs_buff[6] = er32(RDTR);
467
468 regs_buff[7] = er32(TCTL);
469 regs_buff[8] = er32(TDLEN(0));
470 regs_buff[9] = er32(TDH(0));
471 regs_buff[10] = er32(TDT(0));
472 regs_buff[11] = er32(TIDV);
473
474 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
475
476 /* ethtool doesn't use anything past this point, so all this
477 * code is likely legacy junk for apps that may or may not exist
478 */
479 if (hw->phy.type == e1000_phy_m88) {
480 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
481 regs_buff[13] = (u32)phy_data; /* cable length */
482 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
483 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
484 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
485 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
486 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
487 regs_buff[18] = regs_buff[13]; /* cable polarity */
488 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
489 regs_buff[20] = regs_buff[17]; /* polarity correction */
490 /* phy receive errors */
491 regs_buff[22] = adapter->phy_stats.receive_errors;
492 regs_buff[23] = regs_buff[13]; /* mdix mode */
493 }
494 regs_buff[21] = 0; /* was idle_errors */
495 e1e_rphy(hw, MII_STAT1000, &phy_data);
496 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
497 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
498
499 pm_runtime_put_sync(netdev->dev.parent);
500 }
501
e1000_get_eeprom_len(struct net_device * netdev)502 static int e1000_get_eeprom_len(struct net_device *netdev)
503 {
504 struct e1000_adapter *adapter = netdev_priv(netdev);
505 return adapter->hw.nvm.word_size * 2;
506 }
507
e1000_get_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)508 static int e1000_get_eeprom(struct net_device *netdev,
509 struct ethtool_eeprom *eeprom, u8 *bytes)
510 {
511 struct e1000_adapter *adapter = netdev_priv(netdev);
512 struct e1000_hw *hw = &adapter->hw;
513 u16 *eeprom_buff;
514 int first_word;
515 int last_word;
516 int ret_val = 0;
517 u16 i;
518
519 if (eeprom->len == 0)
520 return -EINVAL;
521
522 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
523
524 first_word = eeprom->offset >> 1;
525 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
526
527 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
528 GFP_KERNEL);
529 if (!eeprom_buff)
530 return -ENOMEM;
531
532 pm_runtime_get_sync(netdev->dev.parent);
533
534 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
535 ret_val = e1000_read_nvm(hw, first_word,
536 last_word - first_word + 1,
537 eeprom_buff);
538 } else {
539 for (i = 0; i < last_word - first_word + 1; i++) {
540 ret_val = e1000_read_nvm(hw, first_word + i, 1,
541 &eeprom_buff[i]);
542 if (ret_val)
543 break;
544 }
545 }
546
547 pm_runtime_put_sync(netdev->dev.parent);
548
549 if (ret_val) {
550 /* a read error occurred, throw away the result */
551 memset(eeprom_buff, 0xff, sizeof(u16) *
552 (last_word - first_word + 1));
553 } else {
554 /* Device's eeprom is always little-endian, word addressable */
555 for (i = 0; i < last_word - first_word + 1; i++)
556 le16_to_cpus(&eeprom_buff[i]);
557 }
558
559 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
560 kfree(eeprom_buff);
561
562 return ret_val;
563 }
564
e1000_set_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)565 static int e1000_set_eeprom(struct net_device *netdev,
566 struct ethtool_eeprom *eeprom, u8 *bytes)
567 {
568 struct e1000_adapter *adapter = netdev_priv(netdev);
569 struct e1000_hw *hw = &adapter->hw;
570 u16 *eeprom_buff;
571 void *ptr;
572 int max_len;
573 int first_word;
574 int last_word;
575 int ret_val = 0;
576 u16 i;
577
578 if (eeprom->len == 0)
579 return -EOPNOTSUPP;
580
581 if (eeprom->magic !=
582 (adapter->pdev->vendor | (adapter->pdev->device << 16)))
583 return -EFAULT;
584
585 if (adapter->flags & FLAG_READ_ONLY_NVM)
586 return -EINVAL;
587
588 max_len = hw->nvm.word_size * 2;
589
590 first_word = eeprom->offset >> 1;
591 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
592 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
593 if (!eeprom_buff)
594 return -ENOMEM;
595
596 ptr = (void *)eeprom_buff;
597
598 pm_runtime_get_sync(netdev->dev.parent);
599
600 if (eeprom->offset & 1) {
601 /* need read/modify/write of first changed EEPROM word */
602 /* only the second byte of the word is being modified */
603 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
604 ptr++;
605 }
606 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
607 /* need read/modify/write of last changed EEPROM word */
608 /* only the first byte of the word is being modified */
609 ret_val = e1000_read_nvm(hw, last_word, 1,
610 &eeprom_buff[last_word - first_word]);
611
612 if (ret_val)
613 goto out;
614
615 /* Device's eeprom is always little-endian, word addressable */
616 for (i = 0; i < last_word - first_word + 1; i++)
617 le16_to_cpus(&eeprom_buff[i]);
618
619 memcpy(ptr, bytes, eeprom->len);
620
621 for (i = 0; i < last_word - first_word + 1; i++)
622 cpu_to_le16s(&eeprom_buff[i]);
623
624 ret_val = e1000_write_nvm(hw, first_word,
625 last_word - first_word + 1, eeprom_buff);
626
627 if (ret_val)
628 goto out;
629
630 /* Update the checksum over the first part of the EEPROM if needed
631 * and flush shadow RAM for applicable controllers
632 */
633 if ((first_word <= NVM_CHECKSUM_REG) ||
634 (hw->mac.type == e1000_82583) ||
635 (hw->mac.type == e1000_82574) ||
636 (hw->mac.type == e1000_82573))
637 ret_val = e1000e_update_nvm_checksum(hw);
638
639 out:
640 pm_runtime_put_sync(netdev->dev.parent);
641 kfree(eeprom_buff);
642 return ret_val;
643 }
644
e1000_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)645 static void e1000_get_drvinfo(struct net_device *netdev,
646 struct ethtool_drvinfo *drvinfo)
647 {
648 struct e1000_adapter *adapter = netdev_priv(netdev);
649
650 strscpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
651
652 /* EEPROM image version # is reported as firmware version # for
653 * PCI-E controllers
654 */
655 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
656 "%d.%d-%d",
657 (adapter->eeprom_vers & 0xF000) >> 12,
658 (adapter->eeprom_vers & 0x0FF0) >> 4,
659 (adapter->eeprom_vers & 0x000F));
660
661 strscpy(drvinfo->bus_info, pci_name(adapter->pdev),
662 sizeof(drvinfo->bus_info));
663 }
664
e1000_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)665 static void e1000_get_ringparam(struct net_device *netdev,
666 struct ethtool_ringparam *ring,
667 struct kernel_ethtool_ringparam *kernel_ring,
668 struct netlink_ext_ack *extack)
669 {
670 struct e1000_adapter *adapter = netdev_priv(netdev);
671
672 ring->rx_max_pending = E1000_MAX_RXD;
673 ring->tx_max_pending = E1000_MAX_TXD;
674 ring->rx_pending = adapter->rx_ring_count;
675 ring->tx_pending = adapter->tx_ring_count;
676 }
677
e1000_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)678 static int e1000_set_ringparam(struct net_device *netdev,
679 struct ethtool_ringparam *ring,
680 struct kernel_ethtool_ringparam *kernel_ring,
681 struct netlink_ext_ack *extack)
682 {
683 struct e1000_adapter *adapter = netdev_priv(netdev);
684 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
685 int err = 0, size = sizeof(struct e1000_ring);
686 bool set_tx = false, set_rx = false;
687 u16 new_rx_count, new_tx_count;
688
689 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
690 return -EINVAL;
691
692 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
693 E1000_MAX_RXD);
694 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
695
696 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
697 E1000_MAX_TXD);
698 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
699
700 if ((new_tx_count == adapter->tx_ring_count) &&
701 (new_rx_count == adapter->rx_ring_count))
702 /* nothing to do */
703 return 0;
704
705 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
706 usleep_range(1000, 2000);
707
708 if (!netif_running(adapter->netdev)) {
709 /* Set counts now and allocate resources during open() */
710 adapter->tx_ring->count = new_tx_count;
711 adapter->rx_ring->count = new_rx_count;
712 adapter->tx_ring_count = new_tx_count;
713 adapter->rx_ring_count = new_rx_count;
714 goto clear_reset;
715 }
716
717 set_tx = (new_tx_count != adapter->tx_ring_count);
718 set_rx = (new_rx_count != adapter->rx_ring_count);
719
720 /* Allocate temporary storage for ring updates */
721 if (set_tx) {
722 temp_tx = vmalloc(size);
723 if (!temp_tx) {
724 err = -ENOMEM;
725 goto free_temp;
726 }
727 }
728 if (set_rx) {
729 temp_rx = vmalloc(size);
730 if (!temp_rx) {
731 err = -ENOMEM;
732 goto free_temp;
733 }
734 }
735
736 pm_runtime_get_sync(netdev->dev.parent);
737
738 e1000e_down(adapter, true);
739
740 /* We can't just free everything and then setup again, because the
741 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
742 * structs. First, attempt to allocate new resources...
743 */
744 if (set_tx) {
745 memcpy(temp_tx, adapter->tx_ring, size);
746 temp_tx->count = new_tx_count;
747 err = e1000e_setup_tx_resources(temp_tx);
748 if (err)
749 goto err_setup;
750 }
751 if (set_rx) {
752 memcpy(temp_rx, adapter->rx_ring, size);
753 temp_rx->count = new_rx_count;
754 err = e1000e_setup_rx_resources(temp_rx);
755 if (err)
756 goto err_setup_rx;
757 }
758
759 /* ...then free the old resources and copy back any new ring data */
760 if (set_tx) {
761 e1000e_free_tx_resources(adapter->tx_ring);
762 memcpy(adapter->tx_ring, temp_tx, size);
763 adapter->tx_ring_count = new_tx_count;
764 }
765 if (set_rx) {
766 e1000e_free_rx_resources(adapter->rx_ring);
767 memcpy(adapter->rx_ring, temp_rx, size);
768 adapter->rx_ring_count = new_rx_count;
769 }
770
771 err_setup_rx:
772 if (err && set_tx)
773 e1000e_free_tx_resources(temp_tx);
774 err_setup:
775 e1000e_up(adapter);
776 pm_runtime_put_sync(netdev->dev.parent);
777 free_temp:
778 vfree(temp_tx);
779 vfree(temp_rx);
780 clear_reset:
781 clear_bit(__E1000_RESETTING, &adapter->state);
782 return err;
783 }
784
reg_pattern_test(struct e1000_adapter * adapter,u64 * data,int reg,int offset,u32 mask,u32 write)785 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
786 int reg, int offset, u32 mask, u32 write)
787 {
788 u32 pat, val;
789 static const u32 test[] = {
790 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
791 };
792 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
793 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
794 (test[pat] & write));
795 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
796 if (val != (test[pat] & write & mask)) {
797 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
798 reg + (offset << 2), val,
799 (test[pat] & write & mask));
800 *data = reg;
801 return true;
802 }
803 }
804 return false;
805 }
806
reg_set_and_check(struct e1000_adapter * adapter,u64 * data,int reg,u32 mask,u32 write)807 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
808 int reg, u32 mask, u32 write)
809 {
810 u32 val;
811
812 __ew32(&adapter->hw, reg, write & mask);
813 val = __er32(&adapter->hw, reg);
814 if ((write & mask) != (val & mask)) {
815 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
816 reg, (val & mask), (write & mask));
817 *data = reg;
818 return true;
819 }
820 return false;
821 }
822
823 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
824 do { \
825 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
826 return 1; \
827 } while (0)
828 #define REG_PATTERN_TEST(reg, mask, write) \
829 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
830
831 #define REG_SET_AND_CHECK(reg, mask, write) \
832 do { \
833 if (reg_set_and_check(adapter, data, reg, mask, write)) \
834 return 1; \
835 } while (0)
836
e1000_reg_test(struct e1000_adapter * adapter,u64 * data)837 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
838 {
839 struct e1000_hw *hw = &adapter->hw;
840 struct e1000_mac_info *mac = &adapter->hw.mac;
841 u32 value;
842 u32 before;
843 u32 after;
844 u32 i;
845 u32 toggle;
846 u32 mask;
847 u32 wlock_mac = 0;
848
849 /* The status register is Read Only, so a write should fail.
850 * Some bits that get toggled are ignored. There are several bits
851 * on newer hardware that are r/w.
852 */
853 switch (mac->type) {
854 case e1000_82571:
855 case e1000_82572:
856 case e1000_80003es2lan:
857 toggle = 0x7FFFF3FF;
858 break;
859 default:
860 toggle = 0x7FFFF033;
861 break;
862 }
863
864 before = er32(STATUS);
865 value = (er32(STATUS) & toggle);
866 ew32(STATUS, toggle);
867 after = er32(STATUS) & toggle;
868 if (value != after) {
869 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
870 after, value);
871 *data = 1;
872 return 1;
873 }
874 /* restore previous status */
875 ew32(STATUS, before);
876
877 if (!(adapter->flags & FLAG_IS_ICH)) {
878 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
879 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
880 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
881 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
882 }
883
884 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
885 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
886 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
887 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
888 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
889 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
890 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
891 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
892 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
893 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
894
895 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
896
897 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
898 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
899 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
900
901 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
902 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
903 if (!(adapter->flags & FLAG_IS_ICH))
904 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
905 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
906 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
907 mask = 0x8003FFFF;
908 switch (mac->type) {
909 case e1000_ich10lan:
910 case e1000_pchlan:
911 case e1000_pch2lan:
912 case e1000_pch_lpt:
913 case e1000_pch_spt:
914 case e1000_pch_cnp:
915 case e1000_pch_tgp:
916 case e1000_pch_adp:
917 case e1000_pch_mtp:
918 case e1000_pch_lnp:
919 case e1000_pch_ptp:
920 case e1000_pch_nvp:
921 mask |= BIT(18);
922 break;
923 default:
924 break;
925 }
926
927 if (mac->type >= e1000_pch_lpt)
928 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
929 E1000_FWSM_WLOCK_MAC_SHIFT;
930
931 for (i = 0; i < mac->rar_entry_count; i++) {
932 if (mac->type >= e1000_pch_lpt) {
933 /* Cannot test write-protected SHRAL[n] registers */
934 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
935 continue;
936
937 /* SHRAH[9] different than the others */
938 if (i == 10)
939 mask |= BIT(30);
940 else
941 mask &= ~BIT(30);
942 }
943 if (mac->type == e1000_pch2lan) {
944 /* SHRAH[0,1,2] different than previous */
945 if (i == 1)
946 mask &= 0xFFF4FFFF;
947 /* SHRAH[3] different than SHRAH[0,1,2] */
948 if (i == 4)
949 mask |= BIT(30);
950 /* RAR[1-6] owned by management engine - skipping */
951 if (i > 0)
952 i += 6;
953 }
954
955 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
956 0xFFFFFFFF);
957 /* reset index to actual value */
958 if ((mac->type == e1000_pch2lan) && (i > 6))
959 i -= 6;
960 }
961
962 for (i = 0; i < mac->mta_reg_count; i++)
963 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
964
965 *data = 0;
966
967 return 0;
968 }
969
e1000_eeprom_test(struct e1000_adapter * adapter,u64 * data)970 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
971 {
972 u16 temp;
973 u16 checksum = 0;
974 u16 i;
975
976 *data = 0;
977 /* Read and add up the contents of the EEPROM */
978 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
979 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
980 *data = 1;
981 return *data;
982 }
983 checksum += temp;
984 }
985
986 /* If Checksum is not Correct return error else test passed */
987 if ((checksum != (u16)NVM_SUM) && !(*data))
988 *data = 2;
989
990 return *data;
991 }
992
e1000_test_intr(int __always_unused irq,void * data)993 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
994 {
995 struct net_device *netdev = (struct net_device *)data;
996 struct e1000_adapter *adapter = netdev_priv(netdev);
997 struct e1000_hw *hw = &adapter->hw;
998
999 adapter->test_icr |= er32(ICR);
1000
1001 return IRQ_HANDLED;
1002 }
1003
e1000_intr_test(struct e1000_adapter * adapter,u64 * data)1004 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
1005 {
1006 struct net_device *netdev = adapter->netdev;
1007 struct e1000_hw *hw = &adapter->hw;
1008 u32 mask;
1009 u32 shared_int = 1;
1010 u32 irq = adapter->pdev->irq;
1011 int i;
1012 int ret_val = 0;
1013 int int_mode = E1000E_INT_MODE_LEGACY;
1014
1015 *data = 0;
1016
1017 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
1018 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
1019 int_mode = adapter->int_mode;
1020 e1000e_reset_interrupt_capability(adapter);
1021 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1022 e1000e_set_interrupt_capability(adapter);
1023 }
1024 /* Hook up test interrupt handler just for this test */
1025 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1026 netdev)) {
1027 shared_int = 0;
1028 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1029 netdev)) {
1030 *data = 1;
1031 ret_val = -1;
1032 goto out;
1033 }
1034 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1035
1036 /* Disable all the interrupts */
1037 ew32(IMC, 0xFFFFFFFF);
1038 e1e_flush();
1039 usleep_range(10000, 11000);
1040
1041 /* Test each interrupt */
1042 for (i = 0; i < 10; i++) {
1043 /* Interrupt to test */
1044 mask = BIT(i);
1045
1046 if (adapter->flags & FLAG_IS_ICH) {
1047 switch (mask) {
1048 case E1000_ICR_RXSEQ:
1049 continue;
1050 case 0x00000100:
1051 if (adapter->hw.mac.type == e1000_ich8lan ||
1052 adapter->hw.mac.type == e1000_ich9lan)
1053 continue;
1054 break;
1055 default:
1056 break;
1057 }
1058 }
1059
1060 if (!shared_int) {
1061 /* Disable the interrupt to be reported in
1062 * the cause register and then force the same
1063 * interrupt and see if one gets posted. If
1064 * an interrupt was posted to the bus, the
1065 * test failed.
1066 */
1067 adapter->test_icr = 0;
1068 ew32(IMC, mask);
1069 ew32(ICS, mask);
1070 e1e_flush();
1071 usleep_range(10000, 11000);
1072
1073 if (adapter->test_icr & mask) {
1074 *data = 3;
1075 break;
1076 }
1077 }
1078
1079 /* Enable the interrupt to be reported in
1080 * the cause register and then force the same
1081 * interrupt and see if one gets posted. If
1082 * an interrupt was not posted to the bus, the
1083 * test failed.
1084 */
1085 adapter->test_icr = 0;
1086 ew32(IMS, mask);
1087 ew32(ICS, mask);
1088 e1e_flush();
1089 usleep_range(10000, 11000);
1090
1091 if (!(adapter->test_icr & mask)) {
1092 *data = 4;
1093 break;
1094 }
1095
1096 if (!shared_int) {
1097 /* Disable the other interrupts to be reported in
1098 * the cause register and then force the other
1099 * interrupts and see if any get posted. If
1100 * an interrupt was posted to the bus, the
1101 * test failed.
1102 */
1103 adapter->test_icr = 0;
1104 ew32(IMC, ~mask & 0x00007FFF);
1105 ew32(ICS, ~mask & 0x00007FFF);
1106 e1e_flush();
1107 usleep_range(10000, 11000);
1108
1109 if (adapter->test_icr) {
1110 *data = 5;
1111 break;
1112 }
1113 }
1114 }
1115
1116 /* Disable all the interrupts */
1117 ew32(IMC, 0xFFFFFFFF);
1118 e1e_flush();
1119 usleep_range(10000, 11000);
1120
1121 /* Unhook test interrupt handler */
1122 free_irq(irq, netdev);
1123
1124 out:
1125 if (int_mode == E1000E_INT_MODE_MSIX) {
1126 e1000e_reset_interrupt_capability(adapter);
1127 adapter->int_mode = int_mode;
1128 e1000e_set_interrupt_capability(adapter);
1129 }
1130
1131 return ret_val;
1132 }
1133
e1000_free_desc_rings(struct e1000_adapter * adapter)1134 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1135 {
1136 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1137 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1138 struct pci_dev *pdev = adapter->pdev;
1139 struct e1000_buffer *buffer_info;
1140 int i;
1141
1142 if (tx_ring->desc && tx_ring->buffer_info) {
1143 for (i = 0; i < tx_ring->count; i++) {
1144 buffer_info = &tx_ring->buffer_info[i];
1145
1146 if (buffer_info->dma)
1147 dma_unmap_single(&pdev->dev,
1148 buffer_info->dma,
1149 buffer_info->length,
1150 DMA_TO_DEVICE);
1151 dev_kfree_skb(buffer_info->skb);
1152 }
1153 }
1154
1155 if (rx_ring->desc && rx_ring->buffer_info) {
1156 for (i = 0; i < rx_ring->count; i++) {
1157 buffer_info = &rx_ring->buffer_info[i];
1158
1159 if (buffer_info->dma)
1160 dma_unmap_single(&pdev->dev,
1161 buffer_info->dma,
1162 2048, DMA_FROM_DEVICE);
1163 dev_kfree_skb(buffer_info->skb);
1164 }
1165 }
1166
1167 if (tx_ring->desc) {
1168 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1169 tx_ring->dma);
1170 tx_ring->desc = NULL;
1171 }
1172 if (rx_ring->desc) {
1173 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1174 rx_ring->dma);
1175 rx_ring->desc = NULL;
1176 }
1177
1178 kfree(tx_ring->buffer_info);
1179 tx_ring->buffer_info = NULL;
1180 kfree(rx_ring->buffer_info);
1181 rx_ring->buffer_info = NULL;
1182 }
1183
e1000_setup_desc_rings(struct e1000_adapter * adapter)1184 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1185 {
1186 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1187 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1188 struct pci_dev *pdev = adapter->pdev;
1189 struct e1000_hw *hw = &adapter->hw;
1190 u32 rctl;
1191 int i;
1192 int ret_val;
1193
1194 /* Setup Tx descriptor ring and Tx buffers */
1195
1196 if (!tx_ring->count)
1197 tx_ring->count = E1000_DEFAULT_TXD;
1198
1199 tx_ring->buffer_info = kcalloc(tx_ring->count,
1200 sizeof(struct e1000_buffer), GFP_KERNEL);
1201 if (!tx_ring->buffer_info) {
1202 ret_val = 1;
1203 goto err_nomem;
1204 }
1205
1206 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1207 tx_ring->size = ALIGN(tx_ring->size, 4096);
1208 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1209 &tx_ring->dma, GFP_KERNEL);
1210 if (!tx_ring->desc) {
1211 ret_val = 2;
1212 goto err_nomem;
1213 }
1214 tx_ring->next_to_use = 0;
1215 tx_ring->next_to_clean = 0;
1216
1217 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1218 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1219 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1220 ew32(TDH(0), 0);
1221 ew32(TDT(0), 0);
1222 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1223 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1224 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1225
1226 for (i = 0; i < tx_ring->count; i++) {
1227 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1228 struct sk_buff *skb;
1229 unsigned int skb_size = 1024;
1230
1231 skb = alloc_skb(skb_size, GFP_KERNEL);
1232 if (!skb) {
1233 ret_val = 3;
1234 goto err_nomem;
1235 }
1236 skb_put(skb, skb_size);
1237 tx_ring->buffer_info[i].skb = skb;
1238 tx_ring->buffer_info[i].length = skb->len;
1239 tx_ring->buffer_info[i].dma =
1240 dma_map_single(&pdev->dev, skb->data, skb->len,
1241 DMA_TO_DEVICE);
1242 if (dma_mapping_error(&pdev->dev,
1243 tx_ring->buffer_info[i].dma)) {
1244 ret_val = 4;
1245 goto err_nomem;
1246 }
1247 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1248 tx_desc->lower.data = cpu_to_le32(skb->len);
1249 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1250 E1000_TXD_CMD_IFCS |
1251 E1000_TXD_CMD_RS);
1252 tx_desc->upper.data = 0;
1253 }
1254
1255 /* Setup Rx descriptor ring and Rx buffers */
1256
1257 if (!rx_ring->count)
1258 rx_ring->count = E1000_DEFAULT_RXD;
1259
1260 rx_ring->buffer_info = kcalloc(rx_ring->count,
1261 sizeof(struct e1000_buffer), GFP_KERNEL);
1262 if (!rx_ring->buffer_info) {
1263 ret_val = 5;
1264 goto err_nomem;
1265 }
1266
1267 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1268 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1269 &rx_ring->dma, GFP_KERNEL);
1270 if (!rx_ring->desc) {
1271 ret_val = 6;
1272 goto err_nomem;
1273 }
1274 rx_ring->next_to_use = 0;
1275 rx_ring->next_to_clean = 0;
1276
1277 rctl = er32(RCTL);
1278 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1279 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1280 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1281 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1282 ew32(RDLEN(0), rx_ring->size);
1283 ew32(RDH(0), 0);
1284 ew32(RDT(0), 0);
1285 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1286 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1287 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1288 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1289 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1290 ew32(RCTL, rctl);
1291
1292 for (i = 0; i < rx_ring->count; i++) {
1293 union e1000_rx_desc_extended *rx_desc;
1294 struct sk_buff *skb;
1295
1296 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1297 if (!skb) {
1298 ret_val = 7;
1299 goto err_nomem;
1300 }
1301 skb_reserve(skb, NET_IP_ALIGN);
1302 rx_ring->buffer_info[i].skb = skb;
1303 rx_ring->buffer_info[i].dma =
1304 dma_map_single(&pdev->dev, skb->data, 2048,
1305 DMA_FROM_DEVICE);
1306 if (dma_mapping_error(&pdev->dev,
1307 rx_ring->buffer_info[i].dma)) {
1308 ret_val = 8;
1309 goto err_nomem;
1310 }
1311 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1312 rx_desc->read.buffer_addr =
1313 cpu_to_le64(rx_ring->buffer_info[i].dma);
1314 memset(skb->data, 0x00, skb->len);
1315 }
1316
1317 return 0;
1318
1319 err_nomem:
1320 e1000_free_desc_rings(adapter);
1321 return ret_val;
1322 }
1323
e1000_phy_disable_receiver(struct e1000_adapter * adapter)1324 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1325 {
1326 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1327 e1e_wphy(&adapter->hw, 29, 0x001F);
1328 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1329 e1e_wphy(&adapter->hw, 29, 0x001A);
1330 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1331 }
1332
e1000_integrated_phy_loopback(struct e1000_adapter * adapter)1333 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1334 {
1335 struct e1000_hw *hw = &adapter->hw;
1336 u32 ctrl_reg = 0;
1337 u16 phy_reg = 0;
1338 s32 ret_val = 0;
1339
1340 hw->mac.autoneg = 0;
1341
1342 if (hw->phy.type == e1000_phy_ife) {
1343 /* force 100, set loopback */
1344 e1e_wphy(hw, MII_BMCR, 0x6100);
1345
1346 /* Now set up the MAC to the same speed/duplex as the PHY. */
1347 ctrl_reg = er32(CTRL);
1348 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1349 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1350 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1351 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1352 E1000_CTRL_FD); /* Force Duplex to FULL */
1353
1354 ew32(CTRL, ctrl_reg);
1355 e1e_flush();
1356 usleep_range(500, 1000);
1357
1358 return 0;
1359 }
1360
1361 /* Specific PHY configuration for loopback */
1362 switch (hw->phy.type) {
1363 case e1000_phy_m88:
1364 /* Auto-MDI/MDIX Off */
1365 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1366 /* reset to update Auto-MDI/MDIX */
1367 e1e_wphy(hw, MII_BMCR, 0x9140);
1368 /* autoneg off */
1369 e1e_wphy(hw, MII_BMCR, 0x8140);
1370 break;
1371 case e1000_phy_gg82563:
1372 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1373 break;
1374 case e1000_phy_bm:
1375 /* Set Default MAC Interface speed to 1GB */
1376 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1377 phy_reg &= ~0x0007;
1378 phy_reg |= 0x006;
1379 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1380 /* Assert SW reset for above settings to take effect */
1381 hw->phy.ops.commit(hw);
1382 usleep_range(1000, 2000);
1383 /* Force Full Duplex */
1384 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1385 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1386 /* Set Link Up (in force link) */
1387 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1388 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1389 /* Force Link */
1390 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1391 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1392 /* Set Early Link Enable */
1393 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1394 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1395 break;
1396 case e1000_phy_82577:
1397 case e1000_phy_82578:
1398 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1399 ret_val = hw->phy.ops.acquire(hw);
1400 if (ret_val) {
1401 e_err("Cannot setup 1Gbps loopback.\n");
1402 return ret_val;
1403 }
1404 e1000_configure_k1_ich8lan(hw, false);
1405 hw->phy.ops.release(hw);
1406 break;
1407 case e1000_phy_82579:
1408 /* Disable PHY energy detect power down */
1409 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1410 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1411 /* Disable full chip energy detect */
1412 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1413 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1414 /* Enable loopback on the PHY */
1415 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1416 break;
1417 default:
1418 break;
1419 }
1420
1421 /* force 1000, set loopback */
1422 e1e_wphy(hw, MII_BMCR, 0x4140);
1423 msleep(250);
1424
1425 /* Now set up the MAC to the same speed/duplex as the PHY. */
1426 ctrl_reg = er32(CTRL);
1427 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1428 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1429 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1430 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1431 E1000_CTRL_FD); /* Force Duplex to FULL */
1432
1433 if (adapter->flags & FLAG_IS_ICH)
1434 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1435
1436 if (hw->phy.media_type == e1000_media_type_copper &&
1437 hw->phy.type == e1000_phy_m88) {
1438 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1439 } else {
1440 /* Set the ILOS bit on the fiber Nic if half duplex link is
1441 * detected.
1442 */
1443 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1444 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1445 }
1446
1447 ew32(CTRL, ctrl_reg);
1448
1449 /* Disable the receiver on the PHY so when a cable is plugged in, the
1450 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1451 */
1452 if (hw->phy.type == e1000_phy_m88)
1453 e1000_phy_disable_receiver(adapter);
1454
1455 usleep_range(500, 1000);
1456
1457 return 0;
1458 }
1459
e1000_set_82571_fiber_loopback(struct e1000_adapter * adapter)1460 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1461 {
1462 struct e1000_hw *hw = &adapter->hw;
1463 u32 ctrl = er32(CTRL);
1464 int link;
1465
1466 /* special requirements for 82571/82572 fiber adapters */
1467
1468 /* jump through hoops to make sure link is up because serdes
1469 * link is hardwired up
1470 */
1471 ctrl |= E1000_CTRL_SLU;
1472 ew32(CTRL, ctrl);
1473
1474 /* disable autoneg */
1475 ctrl = er32(TXCW);
1476 ctrl &= ~BIT(31);
1477 ew32(TXCW, ctrl);
1478
1479 link = (er32(STATUS) & E1000_STATUS_LU);
1480
1481 if (!link) {
1482 /* set invert loss of signal */
1483 ctrl = er32(CTRL);
1484 ctrl |= E1000_CTRL_ILOS;
1485 ew32(CTRL, ctrl);
1486 }
1487
1488 /* special write to serdes control register to enable SerDes analog
1489 * loopback
1490 */
1491 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1492 e1e_flush();
1493 usleep_range(10000, 11000);
1494
1495 return 0;
1496 }
1497
1498 /* only call this for fiber/serdes connections to es2lan */
e1000_set_es2lan_mac_loopback(struct e1000_adapter * adapter)1499 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1500 {
1501 struct e1000_hw *hw = &adapter->hw;
1502 u32 ctrlext = er32(CTRL_EXT);
1503 u32 ctrl = er32(CTRL);
1504
1505 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1506 * on mac_type 80003es2lan)
1507 */
1508 adapter->tx_fifo_head = ctrlext;
1509
1510 /* clear the serdes mode bits, putting the device into mac loopback */
1511 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1512 ew32(CTRL_EXT, ctrlext);
1513
1514 /* force speed to 1000/FD, link up */
1515 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1516 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1517 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1518 ew32(CTRL, ctrl);
1519
1520 /* set mac loopback */
1521 ctrl = er32(RCTL);
1522 ctrl |= E1000_RCTL_LBM_MAC;
1523 ew32(RCTL, ctrl);
1524
1525 /* set testing mode parameters (no need to reset later) */
1526 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1527 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1528 ew32(KMRNCTRLSTA,
1529 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1530
1531 return 0;
1532 }
1533
e1000_setup_loopback_test(struct e1000_adapter * adapter)1534 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1535 {
1536 struct e1000_hw *hw = &adapter->hw;
1537 u32 rctl, fext_nvm11, tarc0;
1538
1539 if (hw->mac.type >= e1000_pch_spt) {
1540 fext_nvm11 = er32(FEXTNVM11);
1541 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1542 ew32(FEXTNVM11, fext_nvm11);
1543 tarc0 = er32(TARC(0));
1544 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1545 tarc0 &= 0xcfffffff;
1546 /* set bit 29 (value of MULR requests is now 2) */
1547 tarc0 |= 0x20000000;
1548 ew32(TARC(0), tarc0);
1549 }
1550 if (hw->phy.media_type == e1000_media_type_fiber ||
1551 hw->phy.media_type == e1000_media_type_internal_serdes) {
1552 switch (hw->mac.type) {
1553 case e1000_80003es2lan:
1554 return e1000_set_es2lan_mac_loopback(adapter);
1555 case e1000_82571:
1556 case e1000_82572:
1557 return e1000_set_82571_fiber_loopback(adapter);
1558 default:
1559 rctl = er32(RCTL);
1560 rctl |= E1000_RCTL_LBM_TCVR;
1561 ew32(RCTL, rctl);
1562 return 0;
1563 }
1564 } else if (hw->phy.media_type == e1000_media_type_copper) {
1565 return e1000_integrated_phy_loopback(adapter);
1566 }
1567
1568 return 7;
1569 }
1570
e1000_loopback_cleanup(struct e1000_adapter * adapter)1571 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1572 {
1573 struct e1000_hw *hw = &adapter->hw;
1574 u32 rctl, fext_nvm11, tarc0;
1575 u16 phy_reg;
1576
1577 rctl = er32(RCTL);
1578 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1579 ew32(RCTL, rctl);
1580
1581 switch (hw->mac.type) {
1582 case e1000_pch_spt:
1583 case e1000_pch_cnp:
1584 case e1000_pch_tgp:
1585 case e1000_pch_adp:
1586 case e1000_pch_mtp:
1587 case e1000_pch_lnp:
1588 case e1000_pch_ptp:
1589 case e1000_pch_nvp:
1590 fext_nvm11 = er32(FEXTNVM11);
1591 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1592 ew32(FEXTNVM11, fext_nvm11);
1593 tarc0 = er32(TARC(0));
1594 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1595 /* set bit 29 (value of MULR requests is now 0) */
1596 tarc0 &= 0xcfffffff;
1597 ew32(TARC(0), tarc0);
1598 fallthrough;
1599 case e1000_80003es2lan:
1600 if (hw->phy.media_type == e1000_media_type_fiber ||
1601 hw->phy.media_type == e1000_media_type_internal_serdes) {
1602 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1603 ew32(CTRL_EXT, adapter->tx_fifo_head);
1604 adapter->tx_fifo_head = 0;
1605 }
1606 fallthrough;
1607 case e1000_82571:
1608 case e1000_82572:
1609 if (hw->phy.media_type == e1000_media_type_fiber ||
1610 hw->phy.media_type == e1000_media_type_internal_serdes) {
1611 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1612 e1e_flush();
1613 usleep_range(10000, 11000);
1614 break;
1615 }
1616 fallthrough;
1617 default:
1618 hw->mac.autoneg = 1;
1619 if (hw->phy.type == e1000_phy_gg82563)
1620 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1621 e1e_rphy(hw, MII_BMCR, &phy_reg);
1622 if (phy_reg & BMCR_LOOPBACK) {
1623 phy_reg &= ~BMCR_LOOPBACK;
1624 e1e_wphy(hw, MII_BMCR, phy_reg);
1625 if (hw->phy.ops.commit)
1626 hw->phy.ops.commit(hw);
1627 }
1628 break;
1629 }
1630 }
1631
e1000_create_lbtest_frame(struct sk_buff * skb,unsigned int frame_size)1632 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1633 unsigned int frame_size)
1634 {
1635 memset(skb->data, 0xFF, frame_size);
1636 frame_size &= ~1;
1637 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1638 skb->data[frame_size / 2 + 10] = 0xBE;
1639 skb->data[frame_size / 2 + 12] = 0xAF;
1640 }
1641
e1000_check_lbtest_frame(struct sk_buff * skb,unsigned int frame_size)1642 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1643 unsigned int frame_size)
1644 {
1645 frame_size &= ~1;
1646 if (*(skb->data + 3) == 0xFF)
1647 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1648 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1649 return 0;
1650 return 13;
1651 }
1652
e1000_run_loopback_test(struct e1000_adapter * adapter)1653 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1654 {
1655 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1656 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1657 struct pci_dev *pdev = adapter->pdev;
1658 struct e1000_hw *hw = &adapter->hw;
1659 struct e1000_buffer *buffer_info;
1660 int i, j, k, l;
1661 int lc;
1662 int good_cnt;
1663 int ret_val = 0;
1664 unsigned long time;
1665
1666 ew32(RDT(0), rx_ring->count - 1);
1667
1668 /* Calculate the loop count based on the largest descriptor ring
1669 * The idea is to wrap the largest ring a number of times using 64
1670 * send/receive pairs during each loop
1671 */
1672
1673 if (rx_ring->count <= tx_ring->count)
1674 lc = ((tx_ring->count / 64) * 2) + 1;
1675 else
1676 lc = ((rx_ring->count / 64) * 2) + 1;
1677
1678 k = 0;
1679 l = 0;
1680 /* loop count loop */
1681 for (j = 0; j <= lc; j++) {
1682 /* send the packets */
1683 for (i = 0; i < 64; i++) {
1684 buffer_info = &tx_ring->buffer_info[k];
1685
1686 e1000_create_lbtest_frame(buffer_info->skb, 1024);
1687 dma_sync_single_for_device(&pdev->dev,
1688 buffer_info->dma,
1689 buffer_info->length,
1690 DMA_TO_DEVICE);
1691 k++;
1692 if (k == tx_ring->count)
1693 k = 0;
1694 }
1695 ew32(TDT(0), k);
1696 e1e_flush();
1697 msleep(200);
1698 time = jiffies; /* set the start time for the receive */
1699 good_cnt = 0;
1700 /* receive the sent packets */
1701 do {
1702 buffer_info = &rx_ring->buffer_info[l];
1703
1704 dma_sync_single_for_cpu(&pdev->dev,
1705 buffer_info->dma, 2048,
1706 DMA_FROM_DEVICE);
1707
1708 ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1709 1024);
1710 if (!ret_val)
1711 good_cnt++;
1712 l++;
1713 if (l == rx_ring->count)
1714 l = 0;
1715 /* time + 20 msecs (200 msecs on 2.4) is more than
1716 * enough time to complete the receives, if it's
1717 * exceeded, break and error off
1718 */
1719 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1720 if (good_cnt != 64) {
1721 ret_val = 13; /* ret_val is the same as mis-compare */
1722 break;
1723 }
1724 if (time_after(jiffies, time + 20)) {
1725 ret_val = 14; /* error code for time out error */
1726 break;
1727 }
1728 }
1729 return ret_val;
1730 }
1731
e1000_loopback_test(struct e1000_adapter * adapter,u64 * data)1732 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1733 {
1734 struct e1000_hw *hw = &adapter->hw;
1735
1736 /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1737 if (hw->phy.ops.check_reset_block &&
1738 hw->phy.ops.check_reset_block(hw)) {
1739 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1740 *data = 0;
1741 goto out;
1742 }
1743
1744 *data = e1000_setup_desc_rings(adapter);
1745 if (*data)
1746 goto out;
1747
1748 *data = e1000_setup_loopback_test(adapter);
1749 if (*data)
1750 goto err_loopback;
1751
1752 *data = e1000_run_loopback_test(adapter);
1753 e1000_loopback_cleanup(adapter);
1754
1755 err_loopback:
1756 e1000_free_desc_rings(adapter);
1757 out:
1758 return *data;
1759 }
1760
e1000_link_test(struct e1000_adapter * adapter,u64 * data)1761 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1762 {
1763 struct e1000_hw *hw = &adapter->hw;
1764
1765 *data = 0;
1766 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1767 int i = 0;
1768
1769 hw->mac.serdes_has_link = false;
1770
1771 /* On some blade server designs, link establishment
1772 * could take as long as 2-3 minutes
1773 */
1774 do {
1775 hw->mac.ops.check_for_link(hw);
1776 if (hw->mac.serdes_has_link)
1777 return *data;
1778 msleep(20);
1779 } while (i++ < 3750);
1780
1781 *data = 1;
1782 } else {
1783 hw->mac.ops.check_for_link(hw);
1784 if (hw->mac.autoneg)
1785 /* On some Phy/switch combinations, link establishment
1786 * can take a few seconds more than expected.
1787 */
1788 msleep_interruptible(5000);
1789
1790 if (!(er32(STATUS) & E1000_STATUS_LU))
1791 *data = 1;
1792 }
1793 return *data;
1794 }
1795
e1000e_get_sset_count(struct net_device __always_unused * netdev,int sset)1796 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1797 int sset)
1798 {
1799 switch (sset) {
1800 case ETH_SS_TEST:
1801 return E1000_TEST_LEN;
1802 case ETH_SS_STATS:
1803 return E1000_STATS_LEN;
1804 case ETH_SS_PRIV_FLAGS:
1805 return E1000E_PRIV_FLAGS_STR_LEN;
1806 default:
1807 return -EOPNOTSUPP;
1808 }
1809 }
1810
e1000_diag_test(struct net_device * netdev,struct ethtool_test * eth_test,u64 * data)1811 static void e1000_diag_test(struct net_device *netdev,
1812 struct ethtool_test *eth_test, u64 *data)
1813 {
1814 struct e1000_adapter *adapter = netdev_priv(netdev);
1815 u16 autoneg_advertised;
1816 u8 forced_speed_duplex;
1817 u8 autoneg;
1818 bool if_running = netif_running(netdev);
1819
1820 pm_runtime_get_sync(netdev->dev.parent);
1821
1822 set_bit(__E1000_TESTING, &adapter->state);
1823
1824 if (!if_running) {
1825 /* Get control of and reset hardware */
1826 if (adapter->flags & FLAG_HAS_AMT)
1827 e1000e_get_hw_control(adapter);
1828
1829 e1000e_power_up_phy(adapter);
1830
1831 adapter->hw.phy.autoneg_wait_to_complete = 1;
1832 e1000e_reset(adapter);
1833 adapter->hw.phy.autoneg_wait_to_complete = 0;
1834 }
1835
1836 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1837 /* Offline tests */
1838
1839 /* save speed, duplex, autoneg settings */
1840 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1841 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1842 autoneg = adapter->hw.mac.autoneg;
1843
1844 e_info("offline testing starting\n");
1845
1846 if (if_running)
1847 /* indicate we're in test mode */
1848 e1000e_close(netdev);
1849
1850 if (e1000_reg_test(adapter, &data[0]))
1851 eth_test->flags |= ETH_TEST_FL_FAILED;
1852
1853 e1000e_reset(adapter);
1854 if (e1000_eeprom_test(adapter, &data[1]))
1855 eth_test->flags |= ETH_TEST_FL_FAILED;
1856
1857 e1000e_reset(adapter);
1858 if (e1000_intr_test(adapter, &data[2]))
1859 eth_test->flags |= ETH_TEST_FL_FAILED;
1860
1861 e1000e_reset(adapter);
1862 if (e1000_loopback_test(adapter, &data[3]))
1863 eth_test->flags |= ETH_TEST_FL_FAILED;
1864
1865 /* force this routine to wait until autoneg complete/timeout */
1866 adapter->hw.phy.autoneg_wait_to_complete = 1;
1867 e1000e_reset(adapter);
1868 adapter->hw.phy.autoneg_wait_to_complete = 0;
1869
1870 if (e1000_link_test(adapter, &data[4]))
1871 eth_test->flags |= ETH_TEST_FL_FAILED;
1872
1873 /* restore speed, duplex, autoneg settings */
1874 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1875 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1876 adapter->hw.mac.autoneg = autoneg;
1877 e1000e_reset(adapter);
1878
1879 clear_bit(__E1000_TESTING, &adapter->state);
1880 if (if_running)
1881 e1000e_open(netdev);
1882 } else {
1883 /* Online tests */
1884
1885 e_info("online testing starting\n");
1886
1887 /* register, eeprom, intr and loopback tests not run online */
1888 data[0] = 0;
1889 data[1] = 0;
1890 data[2] = 0;
1891 data[3] = 0;
1892
1893 if (e1000_link_test(adapter, &data[4]))
1894 eth_test->flags |= ETH_TEST_FL_FAILED;
1895
1896 clear_bit(__E1000_TESTING, &adapter->state);
1897 }
1898
1899 if (!if_running) {
1900 e1000e_reset(adapter);
1901
1902 if (adapter->flags & FLAG_HAS_AMT)
1903 e1000e_release_hw_control(adapter);
1904 }
1905
1906 msleep_interruptible(4 * 1000);
1907
1908 pm_runtime_put_sync(netdev->dev.parent);
1909 }
1910
e1000_get_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)1911 static void e1000_get_wol(struct net_device *netdev,
1912 struct ethtool_wolinfo *wol)
1913 {
1914 struct e1000_adapter *adapter = netdev_priv(netdev);
1915
1916 wol->supported = 0;
1917 wol->wolopts = 0;
1918
1919 if (!(adapter->flags & FLAG_HAS_WOL) ||
1920 !device_can_wakeup(&adapter->pdev->dev))
1921 return;
1922
1923 wol->supported = WAKE_UCAST | WAKE_MCAST |
1924 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1925
1926 /* apply any specific unsupported masks here */
1927 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1928 wol->supported &= ~WAKE_UCAST;
1929
1930 if (adapter->wol & E1000_WUFC_EX)
1931 e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1932 }
1933
1934 if (adapter->wol & E1000_WUFC_EX)
1935 wol->wolopts |= WAKE_UCAST;
1936 if (adapter->wol & E1000_WUFC_MC)
1937 wol->wolopts |= WAKE_MCAST;
1938 if (adapter->wol & E1000_WUFC_BC)
1939 wol->wolopts |= WAKE_BCAST;
1940 if (adapter->wol & E1000_WUFC_MAG)
1941 wol->wolopts |= WAKE_MAGIC;
1942 if (adapter->wol & E1000_WUFC_LNKC)
1943 wol->wolopts |= WAKE_PHY;
1944 }
1945
e1000_set_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)1946 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1947 {
1948 struct e1000_adapter *adapter = netdev_priv(netdev);
1949
1950 if (!(adapter->flags & FLAG_HAS_WOL) ||
1951 !device_can_wakeup(&adapter->pdev->dev) ||
1952 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1953 WAKE_MAGIC | WAKE_PHY)))
1954 return -EOPNOTSUPP;
1955
1956 /* these settings will always override what we currently have */
1957 adapter->wol = 0;
1958
1959 if (wol->wolopts & WAKE_UCAST)
1960 adapter->wol |= E1000_WUFC_EX;
1961 if (wol->wolopts & WAKE_MCAST)
1962 adapter->wol |= E1000_WUFC_MC;
1963 if (wol->wolopts & WAKE_BCAST)
1964 adapter->wol |= E1000_WUFC_BC;
1965 if (wol->wolopts & WAKE_MAGIC)
1966 adapter->wol |= E1000_WUFC_MAG;
1967 if (wol->wolopts & WAKE_PHY)
1968 adapter->wol |= E1000_WUFC_LNKC;
1969
1970 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1971
1972 return 0;
1973 }
1974
e1000_set_phys_id(struct net_device * netdev,enum ethtool_phys_id_state state)1975 static int e1000_set_phys_id(struct net_device *netdev,
1976 enum ethtool_phys_id_state state)
1977 {
1978 struct e1000_adapter *adapter = netdev_priv(netdev);
1979 struct e1000_hw *hw = &adapter->hw;
1980
1981 switch (state) {
1982 case ETHTOOL_ID_ACTIVE:
1983 pm_runtime_get_sync(netdev->dev.parent);
1984
1985 if (!hw->mac.ops.blink_led)
1986 return 2; /* cycle on/off twice per second */
1987
1988 hw->mac.ops.blink_led(hw);
1989 break;
1990
1991 case ETHTOOL_ID_INACTIVE:
1992 if (hw->phy.type == e1000_phy_ife)
1993 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1994 hw->mac.ops.led_off(hw);
1995 hw->mac.ops.cleanup_led(hw);
1996 pm_runtime_put_sync(netdev->dev.parent);
1997 break;
1998
1999 case ETHTOOL_ID_ON:
2000 hw->mac.ops.led_on(hw);
2001 break;
2002
2003 case ETHTOOL_ID_OFF:
2004 hw->mac.ops.led_off(hw);
2005 break;
2006 }
2007
2008 return 0;
2009 }
2010
e1000_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)2011 static int e1000_get_coalesce(struct net_device *netdev,
2012 struct ethtool_coalesce *ec,
2013 struct kernel_ethtool_coalesce *kernel_coal,
2014 struct netlink_ext_ack *extack)
2015 {
2016 struct e1000_adapter *adapter = netdev_priv(netdev);
2017
2018 if (adapter->itr_setting <= 4)
2019 ec->rx_coalesce_usecs = adapter->itr_setting;
2020 else
2021 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
2022
2023 return 0;
2024 }
2025
e1000_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)2026 static int e1000_set_coalesce(struct net_device *netdev,
2027 struct ethtool_coalesce *ec,
2028 struct kernel_ethtool_coalesce *kernel_coal,
2029 struct netlink_ext_ack *extack)
2030 {
2031 struct e1000_adapter *adapter = netdev_priv(netdev);
2032
2033 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2034 ((ec->rx_coalesce_usecs > 4) &&
2035 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2036 (ec->rx_coalesce_usecs == 2))
2037 return -EINVAL;
2038
2039 if (ec->rx_coalesce_usecs == 4) {
2040 adapter->itr_setting = 4;
2041 adapter->itr = adapter->itr_setting;
2042 } else if (ec->rx_coalesce_usecs <= 3) {
2043 adapter->itr = 20000;
2044 adapter->itr_setting = ec->rx_coalesce_usecs;
2045 } else {
2046 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2047 adapter->itr_setting = adapter->itr & ~3;
2048 }
2049
2050 pm_runtime_get_sync(netdev->dev.parent);
2051
2052 if (adapter->itr_setting != 0)
2053 e1000e_write_itr(adapter, adapter->itr);
2054 else
2055 e1000e_write_itr(adapter, 0);
2056
2057 pm_runtime_put_sync(netdev->dev.parent);
2058
2059 return 0;
2060 }
2061
e1000_nway_reset(struct net_device * netdev)2062 static int e1000_nway_reset(struct net_device *netdev)
2063 {
2064 struct e1000_adapter *adapter = netdev_priv(netdev);
2065
2066 if (!netif_running(netdev))
2067 return -EAGAIN;
2068
2069 if (!adapter->hw.mac.autoneg)
2070 return -EINVAL;
2071
2072 pm_runtime_get_sync(netdev->dev.parent);
2073 e1000e_reinit_locked(adapter);
2074 pm_runtime_put_sync(netdev->dev.parent);
2075
2076 return 0;
2077 }
2078
e1000_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats __always_unused * stats,u64 * data)2079 static void e1000_get_ethtool_stats(struct net_device *netdev,
2080 struct ethtool_stats __always_unused *stats,
2081 u64 *data)
2082 {
2083 struct e1000_adapter *adapter = netdev_priv(netdev);
2084 struct rtnl_link_stats64 net_stats;
2085 int i;
2086 char *p = NULL;
2087
2088 pm_runtime_get_sync(netdev->dev.parent);
2089
2090 dev_get_stats(netdev, &net_stats);
2091
2092 pm_runtime_put_sync(netdev->dev.parent);
2093
2094 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2095 switch (e1000_gstrings_stats[i].type) {
2096 case NETDEV_STATS:
2097 p = (char *)&net_stats +
2098 e1000_gstrings_stats[i].stat_offset;
2099 break;
2100 case E1000_STATS:
2101 p = (char *)adapter +
2102 e1000_gstrings_stats[i].stat_offset;
2103 break;
2104 default:
2105 data[i] = 0;
2106 continue;
2107 }
2108
2109 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2110 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2111 }
2112 }
2113
e1000_get_strings(struct net_device __always_unused * netdev,u32 stringset,u8 * data)2114 static void e1000_get_strings(struct net_device __always_unused *netdev,
2115 u32 stringset, u8 *data)
2116 {
2117 u8 *p = data;
2118 int i;
2119
2120 switch (stringset) {
2121 case ETH_SS_TEST:
2122 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2123 break;
2124 case ETH_SS_STATS:
2125 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2126 memcpy(p, e1000_gstrings_stats[i].stat_string,
2127 ETH_GSTRING_LEN);
2128 p += ETH_GSTRING_LEN;
2129 }
2130 break;
2131 case ETH_SS_PRIV_FLAGS:
2132 memcpy(data, e1000e_priv_flags_strings,
2133 E1000E_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2134 break;
2135 }
2136 }
2137
e1000_get_rxnfc(struct net_device * netdev,struct ethtool_rxnfc * info,u32 __always_unused * rule_locs)2138 static int e1000_get_rxnfc(struct net_device *netdev,
2139 struct ethtool_rxnfc *info,
2140 u32 __always_unused *rule_locs)
2141 {
2142 info->data = 0;
2143
2144 switch (info->cmd) {
2145 case ETHTOOL_GRXFH: {
2146 struct e1000_adapter *adapter = netdev_priv(netdev);
2147 struct e1000_hw *hw = &adapter->hw;
2148 u32 mrqc;
2149
2150 pm_runtime_get_sync(netdev->dev.parent);
2151 mrqc = er32(MRQC);
2152 pm_runtime_put_sync(netdev->dev.parent);
2153
2154 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2155 return 0;
2156
2157 switch (info->flow_type) {
2158 case TCP_V4_FLOW:
2159 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2160 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2161 fallthrough;
2162 case UDP_V4_FLOW:
2163 case SCTP_V4_FLOW:
2164 case AH_ESP_V4_FLOW:
2165 case IPV4_FLOW:
2166 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2167 info->data |= RXH_IP_SRC | RXH_IP_DST;
2168 break;
2169 case TCP_V6_FLOW:
2170 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2171 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2172 fallthrough;
2173 case UDP_V6_FLOW:
2174 case SCTP_V6_FLOW:
2175 case AH_ESP_V6_FLOW:
2176 case IPV6_FLOW:
2177 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2178 info->data |= RXH_IP_SRC | RXH_IP_DST;
2179 break;
2180 default:
2181 break;
2182 }
2183 return 0;
2184 }
2185 default:
2186 return -EOPNOTSUPP;
2187 }
2188 }
2189
e1000e_get_eee(struct net_device * netdev,struct ethtool_eee * edata)2190 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2191 {
2192 struct e1000_adapter *adapter = netdev_priv(netdev);
2193 struct e1000_hw *hw = &adapter->hw;
2194 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2195 u32 ret_val;
2196
2197 if (!(adapter->flags2 & FLAG2_HAS_EEE))
2198 return -EOPNOTSUPP;
2199
2200 switch (hw->phy.type) {
2201 case e1000_phy_82579:
2202 cap_addr = I82579_EEE_CAPABILITY;
2203 lpa_addr = I82579_EEE_LP_ABILITY;
2204 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2205 break;
2206 case e1000_phy_i217:
2207 cap_addr = I217_EEE_CAPABILITY;
2208 lpa_addr = I217_EEE_LP_ABILITY;
2209 pcs_stat_addr = I217_EEE_PCS_STATUS;
2210 break;
2211 default:
2212 return -EOPNOTSUPP;
2213 }
2214
2215 pm_runtime_get_sync(netdev->dev.parent);
2216
2217 ret_val = hw->phy.ops.acquire(hw);
2218 if (ret_val) {
2219 pm_runtime_put_sync(netdev->dev.parent);
2220 return -EBUSY;
2221 }
2222
2223 /* EEE Capability */
2224 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2225 if (ret_val)
2226 goto release;
2227 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2228
2229 /* EEE Advertised */
2230 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2231
2232 /* EEE Link Partner Advertised */
2233 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2234 if (ret_val)
2235 goto release;
2236 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2237
2238 /* EEE PCS Status */
2239 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2240 if (ret_val)
2241 goto release;
2242 if (hw->phy.type == e1000_phy_82579)
2243 phy_data <<= 8;
2244
2245 /* Result of the EEE auto negotiation - there is no register that
2246 * has the status of the EEE negotiation so do a best-guess based
2247 * on whether Tx or Rx LPI indications have been received.
2248 */
2249 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2250 edata->eee_active = true;
2251
2252 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2253 edata->tx_lpi_enabled = true;
2254 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2255
2256 release:
2257 hw->phy.ops.release(hw);
2258 if (ret_val)
2259 ret_val = -ENODATA;
2260
2261 pm_runtime_put_sync(netdev->dev.parent);
2262
2263 return ret_val;
2264 }
2265
e1000e_set_eee(struct net_device * netdev,struct ethtool_eee * edata)2266 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2267 {
2268 struct e1000_adapter *adapter = netdev_priv(netdev);
2269 struct e1000_hw *hw = &adapter->hw;
2270 struct ethtool_eee eee_curr;
2271 s32 ret_val;
2272
2273 ret_val = e1000e_get_eee(netdev, &eee_curr);
2274 if (ret_val)
2275 return ret_val;
2276
2277 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2278 e_err("Setting EEE tx-lpi is not supported\n");
2279 return -EINVAL;
2280 }
2281
2282 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2283 e_err("Setting EEE Tx LPI timer is not supported\n");
2284 return -EINVAL;
2285 }
2286
2287 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2288 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2289 return -EINVAL;
2290 }
2291
2292 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2293
2294 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2295
2296 pm_runtime_get_sync(netdev->dev.parent);
2297
2298 /* reset the link */
2299 if (netif_running(netdev))
2300 e1000e_reinit_locked(adapter);
2301 else
2302 e1000e_reset(adapter);
2303
2304 pm_runtime_put_sync(netdev->dev.parent);
2305
2306 return 0;
2307 }
2308
e1000e_get_ts_info(struct net_device * netdev,struct ethtool_ts_info * info)2309 static int e1000e_get_ts_info(struct net_device *netdev,
2310 struct ethtool_ts_info *info)
2311 {
2312 struct e1000_adapter *adapter = netdev_priv(netdev);
2313
2314 ethtool_op_get_ts_info(netdev, info);
2315
2316 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2317 return 0;
2318
2319 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2320 SOF_TIMESTAMPING_RX_HARDWARE |
2321 SOF_TIMESTAMPING_RAW_HARDWARE);
2322
2323 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2324
2325 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2326 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2327 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2328 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2329 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2330 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2331 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2332 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2333 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2334 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2335 BIT(HWTSTAMP_FILTER_ALL));
2336
2337 if (adapter->ptp_clock)
2338 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2339
2340 return 0;
2341 }
2342
e1000e_get_priv_flags(struct net_device * netdev)2343 static u32 e1000e_get_priv_flags(struct net_device *netdev)
2344 {
2345 struct e1000_adapter *adapter = netdev_priv(netdev);
2346 u32 priv_flags = 0;
2347
2348 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
2349 priv_flags |= E1000E_PRIV_FLAGS_S0IX_ENABLED;
2350
2351 return priv_flags;
2352 }
2353
e1000e_set_priv_flags(struct net_device * netdev,u32 priv_flags)2354 static int e1000e_set_priv_flags(struct net_device *netdev, u32 priv_flags)
2355 {
2356 struct e1000_adapter *adapter = netdev_priv(netdev);
2357 unsigned int flags2 = adapter->flags2;
2358
2359 flags2 &= ~FLAG2_ENABLE_S0IX_FLOWS;
2360 if (priv_flags & E1000E_PRIV_FLAGS_S0IX_ENABLED) {
2361 struct e1000_hw *hw = &adapter->hw;
2362
2363 if (hw->mac.type < e1000_pch_cnp)
2364 return -EINVAL;
2365 flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
2366 }
2367
2368 if (flags2 != adapter->flags2)
2369 adapter->flags2 = flags2;
2370
2371 return 0;
2372 }
2373
2374 static const struct ethtool_ops e1000_ethtool_ops = {
2375 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
2376 .get_drvinfo = e1000_get_drvinfo,
2377 .get_regs_len = e1000_get_regs_len,
2378 .get_regs = e1000_get_regs,
2379 .get_wol = e1000_get_wol,
2380 .set_wol = e1000_set_wol,
2381 .get_msglevel = e1000_get_msglevel,
2382 .set_msglevel = e1000_set_msglevel,
2383 .nway_reset = e1000_nway_reset,
2384 .get_link = ethtool_op_get_link,
2385 .get_eeprom_len = e1000_get_eeprom_len,
2386 .get_eeprom = e1000_get_eeprom,
2387 .set_eeprom = e1000_set_eeprom,
2388 .get_ringparam = e1000_get_ringparam,
2389 .set_ringparam = e1000_set_ringparam,
2390 .get_pauseparam = e1000_get_pauseparam,
2391 .set_pauseparam = e1000_set_pauseparam,
2392 .self_test = e1000_diag_test,
2393 .get_strings = e1000_get_strings,
2394 .set_phys_id = e1000_set_phys_id,
2395 .get_ethtool_stats = e1000_get_ethtool_stats,
2396 .get_sset_count = e1000e_get_sset_count,
2397 .get_coalesce = e1000_get_coalesce,
2398 .set_coalesce = e1000_set_coalesce,
2399 .get_rxnfc = e1000_get_rxnfc,
2400 .get_ts_info = e1000e_get_ts_info,
2401 .get_eee = e1000e_get_eee,
2402 .set_eee = e1000e_set_eee,
2403 .get_link_ksettings = e1000_get_link_ksettings,
2404 .set_link_ksettings = e1000_set_link_ksettings,
2405 .get_priv_flags = e1000e_get_priv_flags,
2406 .set_priv_flags = e1000e_set_priv_flags,
2407 };
2408
e1000e_set_ethtool_ops(struct net_device * netdev)2409 void e1000e_set_ethtool_ops(struct net_device *netdev)
2410 {
2411 netdev->ethtool_ops = &e1000_ethtool_ops;
2412 }
2413