1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/fs_parser.h>
38 #include <linux/bsearch.h>
39
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
44 #include <linux/fs.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
49
50 #include "rbd_types.h"
51
52 #define RBD_DEBUG /* Activate rbd_assert() calls */
53
54 /*
55 * Increment the given counter and return its updated value.
56 * If the counter is already 0 it will not be incremented.
57 * If the counter is already at its maximum value returns
58 * -EINVAL without updating it.
59 */
atomic_inc_return_safe(atomic_t * v)60 static int atomic_inc_return_safe(atomic_t *v)
61 {
62 unsigned int counter;
63
64 counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 if (counter <= (unsigned int)INT_MAX)
66 return (int)counter;
67
68 atomic_dec(v);
69
70 return -EINVAL;
71 }
72
73 /* Decrement the counter. Return the resulting value, or -EINVAL */
atomic_dec_return_safe(atomic_t * v)74 static int atomic_dec_return_safe(atomic_t *v)
75 {
76 int counter;
77
78 counter = atomic_dec_return(v);
79 if (counter >= 0)
80 return counter;
81
82 atomic_inc(v);
83
84 return -EINVAL;
85 }
86
87 #define RBD_DRV_NAME "rbd"
88
89 #define RBD_MINORS_PER_MAJOR 256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
91
92 #define RBD_MAX_PARENT_CHAIN_LEN 16
93
94 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
95 #define RBD_MAX_SNAP_NAME_LEN \
96 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
97
98 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
99
100 #define RBD_SNAP_HEAD_NAME "-"
101
102 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
103
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX 64
107
108 #define RBD_OBJ_PREFIX_LEN_MAX 64
109
110 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */
111 #define RBD_RETRY_DELAY msecs_to_jiffies(1000)
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING (1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2 (1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP (1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF (1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN (1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL (1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS (1ULL<<8)
123
124 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \
125 RBD_FEATURE_STRIPINGV2 | \
126 RBD_FEATURE_EXCLUSIVE_LOCK | \
127 RBD_FEATURE_OBJECT_MAP | \
128 RBD_FEATURE_FAST_DIFF | \
129 RBD_FEATURE_DEEP_FLATTEN | \
130 RBD_FEATURE_DATA_POOL | \
131 RBD_FEATURE_OPERATIONS)
132
133 /* Features supported by this (client software) implementation. */
134
135 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
136
137 /*
138 * An RBD device name will be "rbd#", where the "rbd" comes from
139 * RBD_DRV_NAME above, and # is a unique integer identifier.
140 */
141 #define DEV_NAME_LEN 32
142
143 /*
144 * block device image metadata (in-memory version)
145 */
146 struct rbd_image_header {
147 /* These six fields never change for a given rbd image */
148 char *object_prefix;
149 __u8 obj_order;
150 u64 stripe_unit;
151 u64 stripe_count;
152 s64 data_pool_id;
153 u64 features; /* Might be changeable someday? */
154
155 /* The remaining fields need to be updated occasionally */
156 u64 image_size;
157 struct ceph_snap_context *snapc;
158 char *snap_names; /* format 1 only */
159 u64 *snap_sizes; /* format 1 only */
160 };
161
162 /*
163 * An rbd image specification.
164 *
165 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166 * identify an image. Each rbd_dev structure includes a pointer to
167 * an rbd_spec structure that encapsulates this identity.
168 *
169 * Each of the id's in an rbd_spec has an associated name. For a
170 * user-mapped image, the names are supplied and the id's associated
171 * with them are looked up. For a layered image, a parent image is
172 * defined by the tuple, and the names are looked up.
173 *
174 * An rbd_dev structure contains a parent_spec pointer which is
175 * non-null if the image it represents is a child in a layered
176 * image. This pointer will refer to the rbd_spec structure used
177 * by the parent rbd_dev for its own identity (i.e., the structure
178 * is shared between the parent and child).
179 *
180 * Since these structures are populated once, during the discovery
181 * phase of image construction, they are effectively immutable so
182 * we make no effort to synchronize access to them.
183 *
184 * Note that code herein does not assume the image name is known (it
185 * could be a null pointer).
186 */
187 struct rbd_spec {
188 u64 pool_id;
189 const char *pool_name;
190 const char *pool_ns; /* NULL if default, never "" */
191
192 const char *image_id;
193 const char *image_name;
194
195 u64 snap_id;
196 const char *snap_name;
197
198 struct kref kref;
199 };
200
201 /*
202 * an instance of the client. multiple devices may share an rbd client.
203 */
204 struct rbd_client {
205 struct ceph_client *client;
206 struct kref kref;
207 struct list_head node;
208 };
209
210 struct pending_result {
211 int result; /* first nonzero result */
212 int num_pending;
213 };
214
215 struct rbd_img_request;
216
217 enum obj_request_type {
218 OBJ_REQUEST_NODATA = 1,
219 OBJ_REQUEST_BIO, /* pointer into provided bio (list) */
220 OBJ_REQUEST_BVECS, /* pointer into provided bio_vec array */
221 OBJ_REQUEST_OWN_BVECS, /* private bio_vec array, doesn't own pages */
222 };
223
224 enum obj_operation_type {
225 OBJ_OP_READ = 1,
226 OBJ_OP_WRITE,
227 OBJ_OP_DISCARD,
228 OBJ_OP_ZEROOUT,
229 };
230
231 #define RBD_OBJ_FLAG_DELETION (1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED (1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS (1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST (1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT (1U << 4)
236
237 enum rbd_obj_read_state {
238 RBD_OBJ_READ_START = 1,
239 RBD_OBJ_READ_OBJECT,
240 RBD_OBJ_READ_PARENT,
241 };
242
243 /*
244 * Writes go through the following state machine to deal with
245 * layering:
246 *
247 * . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
248 * . | .
249 * . v .
250 * . RBD_OBJ_WRITE_READ_FROM_PARENT. . . .
251 * . | . .
252 * . v v (deep-copyup .
253 * (image . RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC . not needed) .
254 * flattened) v | . .
255 * . v . .
256 * . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . . (copyup .
257 * | not needed) v
258 * v .
259 * done . . . . . . . . . . . . . . . . . .
260 * ^
261 * |
262 * RBD_OBJ_WRITE_FLAT
263 *
264 * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265 * assert_exists guard is needed or not (in some cases it's not needed
266 * even if there is a parent).
267 */
268 enum rbd_obj_write_state {
269 RBD_OBJ_WRITE_START = 1,
270 RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 RBD_OBJ_WRITE_OBJECT,
272 __RBD_OBJ_WRITE_COPYUP,
273 RBD_OBJ_WRITE_COPYUP,
274 RBD_OBJ_WRITE_POST_OBJECT_MAP,
275 };
276
277 enum rbd_obj_copyup_state {
278 RBD_OBJ_COPYUP_START = 1,
279 RBD_OBJ_COPYUP_READ_PARENT,
280 __RBD_OBJ_COPYUP_OBJECT_MAPS,
281 RBD_OBJ_COPYUP_OBJECT_MAPS,
282 __RBD_OBJ_COPYUP_WRITE_OBJECT,
283 RBD_OBJ_COPYUP_WRITE_OBJECT,
284 };
285
286 struct rbd_obj_request {
287 struct ceph_object_extent ex;
288 unsigned int flags; /* RBD_OBJ_FLAG_* */
289 union {
290 enum rbd_obj_read_state read_state; /* for reads */
291 enum rbd_obj_write_state write_state; /* for writes */
292 };
293
294 struct rbd_img_request *img_request;
295 struct ceph_file_extent *img_extents;
296 u32 num_img_extents;
297
298 union {
299 struct ceph_bio_iter bio_pos;
300 struct {
301 struct ceph_bvec_iter bvec_pos;
302 u32 bvec_count;
303 u32 bvec_idx;
304 };
305 };
306
307 enum rbd_obj_copyup_state copyup_state;
308 struct bio_vec *copyup_bvecs;
309 u32 copyup_bvec_count;
310
311 struct list_head osd_reqs; /* w/ r_private_item */
312
313 struct mutex state_mutex;
314 struct pending_result pending;
315 struct kref kref;
316 };
317
318 enum img_req_flags {
319 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
320 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
321 };
322
323 enum rbd_img_state {
324 RBD_IMG_START = 1,
325 RBD_IMG_EXCLUSIVE_LOCK,
326 __RBD_IMG_OBJECT_REQUESTS,
327 RBD_IMG_OBJECT_REQUESTS,
328 };
329
330 struct rbd_img_request {
331 struct rbd_device *rbd_dev;
332 enum obj_operation_type op_type;
333 enum obj_request_type data_type;
334 unsigned long flags;
335 enum rbd_img_state state;
336 union {
337 u64 snap_id; /* for reads */
338 struct ceph_snap_context *snapc; /* for writes */
339 };
340 struct rbd_obj_request *obj_request; /* obj req initiator */
341
342 struct list_head lock_item;
343 struct list_head object_extents; /* obj_req.ex structs */
344
345 struct mutex state_mutex;
346 struct pending_result pending;
347 struct work_struct work;
348 int work_result;
349 };
350
351 #define for_each_obj_request(ireq, oreq) \
352 list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
353 #define for_each_obj_request_safe(ireq, oreq, n) \
354 list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
355
356 enum rbd_watch_state {
357 RBD_WATCH_STATE_UNREGISTERED,
358 RBD_WATCH_STATE_REGISTERED,
359 RBD_WATCH_STATE_ERROR,
360 };
361
362 enum rbd_lock_state {
363 RBD_LOCK_STATE_UNLOCKED,
364 RBD_LOCK_STATE_LOCKED,
365 RBD_LOCK_STATE_RELEASING,
366 };
367
368 /* WatchNotify::ClientId */
369 struct rbd_client_id {
370 u64 gid;
371 u64 handle;
372 };
373
374 struct rbd_mapping {
375 u64 size;
376 };
377
378 /*
379 * a single device
380 */
381 struct rbd_device {
382 int dev_id; /* blkdev unique id */
383
384 int major; /* blkdev assigned major */
385 int minor;
386 struct gendisk *disk; /* blkdev's gendisk and rq */
387
388 u32 image_format; /* Either 1 or 2 */
389 struct rbd_client *rbd_client;
390
391 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
392
393 spinlock_t lock; /* queue, flags, open_count */
394
395 struct rbd_image_header header;
396 unsigned long flags; /* possibly lock protected */
397 struct rbd_spec *spec;
398 struct rbd_options *opts;
399 char *config_info; /* add{,_single_major} string */
400
401 struct ceph_object_id header_oid;
402 struct ceph_object_locator header_oloc;
403
404 struct ceph_file_layout layout; /* used for all rbd requests */
405
406 struct mutex watch_mutex;
407 enum rbd_watch_state watch_state;
408 struct ceph_osd_linger_request *watch_handle;
409 u64 watch_cookie;
410 struct delayed_work watch_dwork;
411
412 struct rw_semaphore lock_rwsem;
413 enum rbd_lock_state lock_state;
414 char lock_cookie[32];
415 struct rbd_client_id owner_cid;
416 struct work_struct acquired_lock_work;
417 struct work_struct released_lock_work;
418 struct delayed_work lock_dwork;
419 struct work_struct unlock_work;
420 spinlock_t lock_lists_lock;
421 struct list_head acquiring_list;
422 struct list_head running_list;
423 struct completion acquire_wait;
424 int acquire_err;
425 struct completion releasing_wait;
426
427 spinlock_t object_map_lock;
428 u8 *object_map;
429 u64 object_map_size; /* in objects */
430 u64 object_map_flags;
431
432 struct workqueue_struct *task_wq;
433
434 struct rbd_spec *parent_spec;
435 u64 parent_overlap;
436 atomic_t parent_ref;
437 struct rbd_device *parent;
438
439 /* Block layer tags. */
440 struct blk_mq_tag_set tag_set;
441
442 /* protects updating the header */
443 struct rw_semaphore header_rwsem;
444
445 struct rbd_mapping mapping;
446
447 struct list_head node;
448
449 /* sysfs related */
450 struct device dev;
451 unsigned long open_count; /* protected by lock */
452 };
453
454 /*
455 * Flag bits for rbd_dev->flags:
456 * - REMOVING (which is coupled with rbd_dev->open_count) is protected
457 * by rbd_dev->lock
458 */
459 enum rbd_dev_flags {
460 RBD_DEV_FLAG_EXISTS, /* rbd_dev_device_setup() ran */
461 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
462 RBD_DEV_FLAG_READONLY, /* -o ro or snapshot */
463 };
464
465 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
466
467 static LIST_HEAD(rbd_dev_list); /* devices */
468 static DEFINE_SPINLOCK(rbd_dev_list_lock);
469
470 static LIST_HEAD(rbd_client_list); /* clients */
471 static DEFINE_SPINLOCK(rbd_client_list_lock);
472
473 /* Slab caches for frequently-allocated structures */
474
475 static struct kmem_cache *rbd_img_request_cache;
476 static struct kmem_cache *rbd_obj_request_cache;
477
478 static int rbd_major;
479 static DEFINE_IDA(rbd_dev_id_ida);
480
481 static struct workqueue_struct *rbd_wq;
482
483 static struct ceph_snap_context rbd_empty_snapc = {
484 .nref = REFCOUNT_INIT(1),
485 };
486
487 /*
488 * single-major requires >= 0.75 version of userspace rbd utility.
489 */
490 static bool single_major = true;
491 module_param(single_major, bool, 0444);
492 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
493
494 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count);
495 static ssize_t remove_store(const struct bus_type *bus, const char *buf,
496 size_t count);
497 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
498 size_t count);
499 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
500 size_t count);
501 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
502
rbd_dev_id_to_minor(int dev_id)503 static int rbd_dev_id_to_minor(int dev_id)
504 {
505 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
506 }
507
minor_to_rbd_dev_id(int minor)508 static int minor_to_rbd_dev_id(int minor)
509 {
510 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
511 }
512
rbd_is_ro(struct rbd_device * rbd_dev)513 static bool rbd_is_ro(struct rbd_device *rbd_dev)
514 {
515 return test_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
516 }
517
rbd_is_snap(struct rbd_device * rbd_dev)518 static bool rbd_is_snap(struct rbd_device *rbd_dev)
519 {
520 return rbd_dev->spec->snap_id != CEPH_NOSNAP;
521 }
522
__rbd_is_lock_owner(struct rbd_device * rbd_dev)523 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
524 {
525 lockdep_assert_held(&rbd_dev->lock_rwsem);
526
527 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
528 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
529 }
530
rbd_is_lock_owner(struct rbd_device * rbd_dev)531 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
532 {
533 bool is_lock_owner;
534
535 down_read(&rbd_dev->lock_rwsem);
536 is_lock_owner = __rbd_is_lock_owner(rbd_dev);
537 up_read(&rbd_dev->lock_rwsem);
538 return is_lock_owner;
539 }
540
supported_features_show(const struct bus_type * bus,char * buf)541 static ssize_t supported_features_show(const struct bus_type *bus, char *buf)
542 {
543 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
544 }
545
546 static BUS_ATTR_WO(add);
547 static BUS_ATTR_WO(remove);
548 static BUS_ATTR_WO(add_single_major);
549 static BUS_ATTR_WO(remove_single_major);
550 static BUS_ATTR_RO(supported_features);
551
552 static struct attribute *rbd_bus_attrs[] = {
553 &bus_attr_add.attr,
554 &bus_attr_remove.attr,
555 &bus_attr_add_single_major.attr,
556 &bus_attr_remove_single_major.attr,
557 &bus_attr_supported_features.attr,
558 NULL,
559 };
560
rbd_bus_is_visible(struct kobject * kobj,struct attribute * attr,int index)561 static umode_t rbd_bus_is_visible(struct kobject *kobj,
562 struct attribute *attr, int index)
563 {
564 if (!single_major &&
565 (attr == &bus_attr_add_single_major.attr ||
566 attr == &bus_attr_remove_single_major.attr))
567 return 0;
568
569 return attr->mode;
570 }
571
572 static const struct attribute_group rbd_bus_group = {
573 .attrs = rbd_bus_attrs,
574 .is_visible = rbd_bus_is_visible,
575 };
576 __ATTRIBUTE_GROUPS(rbd_bus);
577
578 static struct bus_type rbd_bus_type = {
579 .name = "rbd",
580 .bus_groups = rbd_bus_groups,
581 };
582
rbd_root_dev_release(struct device * dev)583 static void rbd_root_dev_release(struct device *dev)
584 {
585 }
586
587 static struct device rbd_root_dev = {
588 .init_name = "rbd",
589 .release = rbd_root_dev_release,
590 };
591
592 static __printf(2, 3)
rbd_warn(struct rbd_device * rbd_dev,const char * fmt,...)593 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
594 {
595 struct va_format vaf;
596 va_list args;
597
598 va_start(args, fmt);
599 vaf.fmt = fmt;
600 vaf.va = &args;
601
602 if (!rbd_dev)
603 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
604 else if (rbd_dev->disk)
605 printk(KERN_WARNING "%s: %s: %pV\n",
606 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
607 else if (rbd_dev->spec && rbd_dev->spec->image_name)
608 printk(KERN_WARNING "%s: image %s: %pV\n",
609 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
610 else if (rbd_dev->spec && rbd_dev->spec->image_id)
611 printk(KERN_WARNING "%s: id %s: %pV\n",
612 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
613 else /* punt */
614 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
615 RBD_DRV_NAME, rbd_dev, &vaf);
616 va_end(args);
617 }
618
619 #ifdef RBD_DEBUG
620 #define rbd_assert(expr) \
621 if (unlikely(!(expr))) { \
622 printk(KERN_ERR "\nAssertion failure in %s() " \
623 "at line %d:\n\n" \
624 "\trbd_assert(%s);\n\n", \
625 __func__, __LINE__, #expr); \
626 BUG(); \
627 }
628 #else /* !RBD_DEBUG */
629 # define rbd_assert(expr) ((void) 0)
630 #endif /* !RBD_DEBUG */
631
632 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
633
634 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
635 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
636 struct rbd_image_header *header);
637 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
638 u64 snap_id);
639 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
640 u8 *order, u64 *snap_size);
641 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
642
643 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
644 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
645
646 /*
647 * Return true if nothing else is pending.
648 */
pending_result_dec(struct pending_result * pending,int * result)649 static bool pending_result_dec(struct pending_result *pending, int *result)
650 {
651 rbd_assert(pending->num_pending > 0);
652
653 if (*result && !pending->result)
654 pending->result = *result;
655 if (--pending->num_pending)
656 return false;
657
658 *result = pending->result;
659 return true;
660 }
661
rbd_open(struct gendisk * disk,blk_mode_t mode)662 static int rbd_open(struct gendisk *disk, blk_mode_t mode)
663 {
664 struct rbd_device *rbd_dev = disk->private_data;
665 bool removing = false;
666
667 spin_lock_irq(&rbd_dev->lock);
668 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
669 removing = true;
670 else
671 rbd_dev->open_count++;
672 spin_unlock_irq(&rbd_dev->lock);
673 if (removing)
674 return -ENOENT;
675
676 (void) get_device(&rbd_dev->dev);
677
678 return 0;
679 }
680
rbd_release(struct gendisk * disk)681 static void rbd_release(struct gendisk *disk)
682 {
683 struct rbd_device *rbd_dev = disk->private_data;
684 unsigned long open_count_before;
685
686 spin_lock_irq(&rbd_dev->lock);
687 open_count_before = rbd_dev->open_count--;
688 spin_unlock_irq(&rbd_dev->lock);
689 rbd_assert(open_count_before > 0);
690
691 put_device(&rbd_dev->dev);
692 }
693
694 static const struct block_device_operations rbd_bd_ops = {
695 .owner = THIS_MODULE,
696 .open = rbd_open,
697 .release = rbd_release,
698 };
699
700 /*
701 * Initialize an rbd client instance. Success or not, this function
702 * consumes ceph_opts. Caller holds client_mutex.
703 */
rbd_client_create(struct ceph_options * ceph_opts)704 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
705 {
706 struct rbd_client *rbdc;
707 int ret = -ENOMEM;
708
709 dout("%s:\n", __func__);
710 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
711 if (!rbdc)
712 goto out_opt;
713
714 kref_init(&rbdc->kref);
715 INIT_LIST_HEAD(&rbdc->node);
716
717 rbdc->client = ceph_create_client(ceph_opts, rbdc);
718 if (IS_ERR(rbdc->client))
719 goto out_rbdc;
720 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
721
722 ret = ceph_open_session(rbdc->client);
723 if (ret < 0)
724 goto out_client;
725
726 spin_lock(&rbd_client_list_lock);
727 list_add_tail(&rbdc->node, &rbd_client_list);
728 spin_unlock(&rbd_client_list_lock);
729
730 dout("%s: rbdc %p\n", __func__, rbdc);
731
732 return rbdc;
733 out_client:
734 ceph_destroy_client(rbdc->client);
735 out_rbdc:
736 kfree(rbdc);
737 out_opt:
738 if (ceph_opts)
739 ceph_destroy_options(ceph_opts);
740 dout("%s: error %d\n", __func__, ret);
741
742 return ERR_PTR(ret);
743 }
744
__rbd_get_client(struct rbd_client * rbdc)745 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
746 {
747 kref_get(&rbdc->kref);
748
749 return rbdc;
750 }
751
752 /*
753 * Find a ceph client with specific addr and configuration. If
754 * found, bump its reference count.
755 */
rbd_client_find(struct ceph_options * ceph_opts)756 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
757 {
758 struct rbd_client *rbdc = NULL, *iter;
759
760 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
761 return NULL;
762
763 spin_lock(&rbd_client_list_lock);
764 list_for_each_entry(iter, &rbd_client_list, node) {
765 if (!ceph_compare_options(ceph_opts, iter->client)) {
766 __rbd_get_client(iter);
767
768 rbdc = iter;
769 break;
770 }
771 }
772 spin_unlock(&rbd_client_list_lock);
773
774 return rbdc;
775 }
776
777 /*
778 * (Per device) rbd map options
779 */
780 enum {
781 Opt_queue_depth,
782 Opt_alloc_size,
783 Opt_lock_timeout,
784 /* int args above */
785 Opt_pool_ns,
786 Opt_compression_hint,
787 /* string args above */
788 Opt_read_only,
789 Opt_read_write,
790 Opt_lock_on_read,
791 Opt_exclusive,
792 Opt_notrim,
793 };
794
795 enum {
796 Opt_compression_hint_none,
797 Opt_compression_hint_compressible,
798 Opt_compression_hint_incompressible,
799 };
800
801 static const struct constant_table rbd_param_compression_hint[] = {
802 {"none", Opt_compression_hint_none},
803 {"compressible", Opt_compression_hint_compressible},
804 {"incompressible", Opt_compression_hint_incompressible},
805 {}
806 };
807
808 static const struct fs_parameter_spec rbd_parameters[] = {
809 fsparam_u32 ("alloc_size", Opt_alloc_size),
810 fsparam_enum ("compression_hint", Opt_compression_hint,
811 rbd_param_compression_hint),
812 fsparam_flag ("exclusive", Opt_exclusive),
813 fsparam_flag ("lock_on_read", Opt_lock_on_read),
814 fsparam_u32 ("lock_timeout", Opt_lock_timeout),
815 fsparam_flag ("notrim", Opt_notrim),
816 fsparam_string ("_pool_ns", Opt_pool_ns),
817 fsparam_u32 ("queue_depth", Opt_queue_depth),
818 fsparam_flag ("read_only", Opt_read_only),
819 fsparam_flag ("read_write", Opt_read_write),
820 fsparam_flag ("ro", Opt_read_only),
821 fsparam_flag ("rw", Opt_read_write),
822 {}
823 };
824
825 struct rbd_options {
826 int queue_depth;
827 int alloc_size;
828 unsigned long lock_timeout;
829 bool read_only;
830 bool lock_on_read;
831 bool exclusive;
832 bool trim;
833
834 u32 alloc_hint_flags; /* CEPH_OSD_OP_ALLOC_HINT_FLAG_* */
835 };
836
837 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_DEFAULT_RQ
838 #define RBD_ALLOC_SIZE_DEFAULT (64 * 1024)
839 #define RBD_LOCK_TIMEOUT_DEFAULT 0 /* no timeout */
840 #define RBD_READ_ONLY_DEFAULT false
841 #define RBD_LOCK_ON_READ_DEFAULT false
842 #define RBD_EXCLUSIVE_DEFAULT false
843 #define RBD_TRIM_DEFAULT true
844
845 struct rbd_parse_opts_ctx {
846 struct rbd_spec *spec;
847 struct ceph_options *copts;
848 struct rbd_options *opts;
849 };
850
obj_op_name(enum obj_operation_type op_type)851 static char* obj_op_name(enum obj_operation_type op_type)
852 {
853 switch (op_type) {
854 case OBJ_OP_READ:
855 return "read";
856 case OBJ_OP_WRITE:
857 return "write";
858 case OBJ_OP_DISCARD:
859 return "discard";
860 case OBJ_OP_ZEROOUT:
861 return "zeroout";
862 default:
863 return "???";
864 }
865 }
866
867 /*
868 * Destroy ceph client
869 *
870 * Caller must hold rbd_client_list_lock.
871 */
rbd_client_release(struct kref * kref)872 static void rbd_client_release(struct kref *kref)
873 {
874 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
875
876 dout("%s: rbdc %p\n", __func__, rbdc);
877 spin_lock(&rbd_client_list_lock);
878 list_del(&rbdc->node);
879 spin_unlock(&rbd_client_list_lock);
880
881 ceph_destroy_client(rbdc->client);
882 kfree(rbdc);
883 }
884
885 /*
886 * Drop reference to ceph client node. If it's not referenced anymore, release
887 * it.
888 */
rbd_put_client(struct rbd_client * rbdc)889 static void rbd_put_client(struct rbd_client *rbdc)
890 {
891 if (rbdc)
892 kref_put(&rbdc->kref, rbd_client_release);
893 }
894
895 /*
896 * Get a ceph client with specific addr and configuration, if one does
897 * not exist create it. Either way, ceph_opts is consumed by this
898 * function.
899 */
rbd_get_client(struct ceph_options * ceph_opts)900 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
901 {
902 struct rbd_client *rbdc;
903 int ret;
904
905 mutex_lock(&client_mutex);
906 rbdc = rbd_client_find(ceph_opts);
907 if (rbdc) {
908 ceph_destroy_options(ceph_opts);
909
910 /*
911 * Using an existing client. Make sure ->pg_pools is up to
912 * date before we look up the pool id in do_rbd_add().
913 */
914 ret = ceph_wait_for_latest_osdmap(rbdc->client,
915 rbdc->client->options->mount_timeout);
916 if (ret) {
917 rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
918 rbd_put_client(rbdc);
919 rbdc = ERR_PTR(ret);
920 }
921 } else {
922 rbdc = rbd_client_create(ceph_opts);
923 }
924 mutex_unlock(&client_mutex);
925
926 return rbdc;
927 }
928
rbd_image_format_valid(u32 image_format)929 static bool rbd_image_format_valid(u32 image_format)
930 {
931 return image_format == 1 || image_format == 2;
932 }
933
rbd_dev_ondisk_valid(struct rbd_image_header_ondisk * ondisk)934 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
935 {
936 size_t size;
937 u32 snap_count;
938
939 /* The header has to start with the magic rbd header text */
940 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
941 return false;
942
943 /* The bio layer requires at least sector-sized I/O */
944
945 if (ondisk->options.order < SECTOR_SHIFT)
946 return false;
947
948 /* If we use u64 in a few spots we may be able to loosen this */
949
950 if (ondisk->options.order > 8 * sizeof (int) - 1)
951 return false;
952
953 /*
954 * The size of a snapshot header has to fit in a size_t, and
955 * that limits the number of snapshots.
956 */
957 snap_count = le32_to_cpu(ondisk->snap_count);
958 size = SIZE_MAX - sizeof (struct ceph_snap_context);
959 if (snap_count > size / sizeof (__le64))
960 return false;
961
962 /*
963 * Not only that, but the size of the entire the snapshot
964 * header must also be representable in a size_t.
965 */
966 size -= snap_count * sizeof (__le64);
967 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
968 return false;
969
970 return true;
971 }
972
973 /*
974 * returns the size of an object in the image
975 */
rbd_obj_bytes(struct rbd_image_header * header)976 static u32 rbd_obj_bytes(struct rbd_image_header *header)
977 {
978 return 1U << header->obj_order;
979 }
980
rbd_init_layout(struct rbd_device * rbd_dev)981 static void rbd_init_layout(struct rbd_device *rbd_dev)
982 {
983 if (rbd_dev->header.stripe_unit == 0 ||
984 rbd_dev->header.stripe_count == 0) {
985 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
986 rbd_dev->header.stripe_count = 1;
987 }
988
989 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
990 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
991 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
992 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
993 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
994 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
995 }
996
rbd_image_header_cleanup(struct rbd_image_header * header)997 static void rbd_image_header_cleanup(struct rbd_image_header *header)
998 {
999 kfree(header->object_prefix);
1000 ceph_put_snap_context(header->snapc);
1001 kfree(header->snap_sizes);
1002 kfree(header->snap_names);
1003
1004 memset(header, 0, sizeof(*header));
1005 }
1006
1007 /*
1008 * Fill an rbd image header with information from the given format 1
1009 * on-disk header.
1010 */
rbd_header_from_disk(struct rbd_image_header * header,struct rbd_image_header_ondisk * ondisk,bool first_time)1011 static int rbd_header_from_disk(struct rbd_image_header *header,
1012 struct rbd_image_header_ondisk *ondisk,
1013 bool first_time)
1014 {
1015 struct ceph_snap_context *snapc;
1016 char *object_prefix = NULL;
1017 char *snap_names = NULL;
1018 u64 *snap_sizes = NULL;
1019 u32 snap_count;
1020 int ret = -ENOMEM;
1021 u32 i;
1022
1023 /* Allocate this now to avoid having to handle failure below */
1024
1025 if (first_time) {
1026 object_prefix = kstrndup(ondisk->object_prefix,
1027 sizeof(ondisk->object_prefix),
1028 GFP_KERNEL);
1029 if (!object_prefix)
1030 return -ENOMEM;
1031 }
1032
1033 /* Allocate the snapshot context and fill it in */
1034
1035 snap_count = le32_to_cpu(ondisk->snap_count);
1036 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1037 if (!snapc)
1038 goto out_err;
1039 snapc->seq = le64_to_cpu(ondisk->snap_seq);
1040 if (snap_count) {
1041 struct rbd_image_snap_ondisk *snaps;
1042 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1043
1044 /* We'll keep a copy of the snapshot names... */
1045
1046 if (snap_names_len > (u64)SIZE_MAX)
1047 goto out_2big;
1048 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1049 if (!snap_names)
1050 goto out_err;
1051
1052 /* ...as well as the array of their sizes. */
1053 snap_sizes = kmalloc_array(snap_count,
1054 sizeof(*header->snap_sizes),
1055 GFP_KERNEL);
1056 if (!snap_sizes)
1057 goto out_err;
1058
1059 /*
1060 * Copy the names, and fill in each snapshot's id
1061 * and size.
1062 *
1063 * Note that rbd_dev_v1_header_info() guarantees the
1064 * ondisk buffer we're working with has
1065 * snap_names_len bytes beyond the end of the
1066 * snapshot id array, this memcpy() is safe.
1067 */
1068 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1069 snaps = ondisk->snaps;
1070 for (i = 0; i < snap_count; i++) {
1071 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1072 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1073 }
1074 }
1075
1076 /* We won't fail any more, fill in the header */
1077
1078 if (first_time) {
1079 header->object_prefix = object_prefix;
1080 header->obj_order = ondisk->options.order;
1081 }
1082
1083 /* The remaining fields always get updated (when we refresh) */
1084
1085 header->image_size = le64_to_cpu(ondisk->image_size);
1086 header->snapc = snapc;
1087 header->snap_names = snap_names;
1088 header->snap_sizes = snap_sizes;
1089
1090 return 0;
1091 out_2big:
1092 ret = -EIO;
1093 out_err:
1094 kfree(snap_sizes);
1095 kfree(snap_names);
1096 ceph_put_snap_context(snapc);
1097 kfree(object_prefix);
1098
1099 return ret;
1100 }
1101
_rbd_dev_v1_snap_name(struct rbd_device * rbd_dev,u32 which)1102 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1103 {
1104 const char *snap_name;
1105
1106 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1107
1108 /* Skip over names until we find the one we are looking for */
1109
1110 snap_name = rbd_dev->header.snap_names;
1111 while (which--)
1112 snap_name += strlen(snap_name) + 1;
1113
1114 return kstrdup(snap_name, GFP_KERNEL);
1115 }
1116
1117 /*
1118 * Snapshot id comparison function for use with qsort()/bsearch().
1119 * Note that result is for snapshots in *descending* order.
1120 */
snapid_compare_reverse(const void * s1,const void * s2)1121 static int snapid_compare_reverse(const void *s1, const void *s2)
1122 {
1123 u64 snap_id1 = *(u64 *)s1;
1124 u64 snap_id2 = *(u64 *)s2;
1125
1126 if (snap_id1 < snap_id2)
1127 return 1;
1128 return snap_id1 == snap_id2 ? 0 : -1;
1129 }
1130
1131 /*
1132 * Search a snapshot context to see if the given snapshot id is
1133 * present.
1134 *
1135 * Returns the position of the snapshot id in the array if it's found,
1136 * or BAD_SNAP_INDEX otherwise.
1137 *
1138 * Note: The snapshot array is in kept sorted (by the osd) in
1139 * reverse order, highest snapshot id first.
1140 */
rbd_dev_snap_index(struct rbd_device * rbd_dev,u64 snap_id)1141 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1142 {
1143 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1144 u64 *found;
1145
1146 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1147 sizeof (snap_id), snapid_compare_reverse);
1148
1149 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1150 }
1151
rbd_dev_v1_snap_name(struct rbd_device * rbd_dev,u64 snap_id)1152 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1153 u64 snap_id)
1154 {
1155 u32 which;
1156 const char *snap_name;
1157
1158 which = rbd_dev_snap_index(rbd_dev, snap_id);
1159 if (which == BAD_SNAP_INDEX)
1160 return ERR_PTR(-ENOENT);
1161
1162 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1163 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1164 }
1165
rbd_snap_name(struct rbd_device * rbd_dev,u64 snap_id)1166 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1167 {
1168 if (snap_id == CEPH_NOSNAP)
1169 return RBD_SNAP_HEAD_NAME;
1170
1171 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1172 if (rbd_dev->image_format == 1)
1173 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1174
1175 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1176 }
1177
rbd_snap_size(struct rbd_device * rbd_dev,u64 snap_id,u64 * snap_size)1178 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1179 u64 *snap_size)
1180 {
1181 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1182 if (snap_id == CEPH_NOSNAP) {
1183 *snap_size = rbd_dev->header.image_size;
1184 } else if (rbd_dev->image_format == 1) {
1185 u32 which;
1186
1187 which = rbd_dev_snap_index(rbd_dev, snap_id);
1188 if (which == BAD_SNAP_INDEX)
1189 return -ENOENT;
1190
1191 *snap_size = rbd_dev->header.snap_sizes[which];
1192 } else {
1193 u64 size = 0;
1194 int ret;
1195
1196 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1197 if (ret)
1198 return ret;
1199
1200 *snap_size = size;
1201 }
1202 return 0;
1203 }
1204
rbd_dev_mapping_set(struct rbd_device * rbd_dev)1205 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1206 {
1207 u64 snap_id = rbd_dev->spec->snap_id;
1208 u64 size = 0;
1209 int ret;
1210
1211 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1212 if (ret)
1213 return ret;
1214
1215 rbd_dev->mapping.size = size;
1216 return 0;
1217 }
1218
rbd_dev_mapping_clear(struct rbd_device * rbd_dev)1219 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1220 {
1221 rbd_dev->mapping.size = 0;
1222 }
1223
zero_bios(struct ceph_bio_iter * bio_pos,u32 off,u32 bytes)1224 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1225 {
1226 struct ceph_bio_iter it = *bio_pos;
1227
1228 ceph_bio_iter_advance(&it, off);
1229 ceph_bio_iter_advance_step(&it, bytes, ({
1230 memzero_bvec(&bv);
1231 }));
1232 }
1233
zero_bvecs(struct ceph_bvec_iter * bvec_pos,u32 off,u32 bytes)1234 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1235 {
1236 struct ceph_bvec_iter it = *bvec_pos;
1237
1238 ceph_bvec_iter_advance(&it, off);
1239 ceph_bvec_iter_advance_step(&it, bytes, ({
1240 memzero_bvec(&bv);
1241 }));
1242 }
1243
1244 /*
1245 * Zero a range in @obj_req data buffer defined by a bio (list) or
1246 * (private) bio_vec array.
1247 *
1248 * @off is relative to the start of the data buffer.
1249 */
rbd_obj_zero_range(struct rbd_obj_request * obj_req,u32 off,u32 bytes)1250 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1251 u32 bytes)
1252 {
1253 dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1254
1255 switch (obj_req->img_request->data_type) {
1256 case OBJ_REQUEST_BIO:
1257 zero_bios(&obj_req->bio_pos, off, bytes);
1258 break;
1259 case OBJ_REQUEST_BVECS:
1260 case OBJ_REQUEST_OWN_BVECS:
1261 zero_bvecs(&obj_req->bvec_pos, off, bytes);
1262 break;
1263 default:
1264 BUG();
1265 }
1266 }
1267
1268 static void rbd_obj_request_destroy(struct kref *kref);
rbd_obj_request_put(struct rbd_obj_request * obj_request)1269 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1270 {
1271 rbd_assert(obj_request != NULL);
1272 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1273 kref_read(&obj_request->kref));
1274 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1275 }
1276
rbd_img_obj_request_add(struct rbd_img_request * img_request,struct rbd_obj_request * obj_request)1277 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1278 struct rbd_obj_request *obj_request)
1279 {
1280 rbd_assert(obj_request->img_request == NULL);
1281
1282 /* Image request now owns object's original reference */
1283 obj_request->img_request = img_request;
1284 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1285 }
1286
rbd_img_obj_request_del(struct rbd_img_request * img_request,struct rbd_obj_request * obj_request)1287 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1288 struct rbd_obj_request *obj_request)
1289 {
1290 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1291 list_del(&obj_request->ex.oe_item);
1292 rbd_assert(obj_request->img_request == img_request);
1293 rbd_obj_request_put(obj_request);
1294 }
1295
rbd_osd_submit(struct ceph_osd_request * osd_req)1296 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1297 {
1298 struct rbd_obj_request *obj_req = osd_req->r_priv;
1299
1300 dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1301 __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1302 obj_req->ex.oe_off, obj_req->ex.oe_len);
1303 ceph_osdc_start_request(osd_req->r_osdc, osd_req);
1304 }
1305
1306 /*
1307 * The default/initial value for all image request flags is 0. Each
1308 * is conditionally set to 1 at image request initialization time
1309 * and currently never change thereafter.
1310 */
img_request_layered_set(struct rbd_img_request * img_request)1311 static void img_request_layered_set(struct rbd_img_request *img_request)
1312 {
1313 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1314 }
1315
img_request_layered_test(struct rbd_img_request * img_request)1316 static bool img_request_layered_test(struct rbd_img_request *img_request)
1317 {
1318 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1319 }
1320
rbd_obj_is_entire(struct rbd_obj_request * obj_req)1321 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1322 {
1323 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1324
1325 return !obj_req->ex.oe_off &&
1326 obj_req->ex.oe_len == rbd_dev->layout.object_size;
1327 }
1328
rbd_obj_is_tail(struct rbd_obj_request * obj_req)1329 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1330 {
1331 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1332
1333 return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1334 rbd_dev->layout.object_size;
1335 }
1336
1337 /*
1338 * Must be called after rbd_obj_calc_img_extents().
1339 */
rbd_obj_set_copyup_enabled(struct rbd_obj_request * obj_req)1340 static void rbd_obj_set_copyup_enabled(struct rbd_obj_request *obj_req)
1341 {
1342 rbd_assert(obj_req->img_request->snapc);
1343
1344 if (obj_req->img_request->op_type == OBJ_OP_DISCARD) {
1345 dout("%s %p objno %llu discard\n", __func__, obj_req,
1346 obj_req->ex.oe_objno);
1347 return;
1348 }
1349
1350 if (!obj_req->num_img_extents) {
1351 dout("%s %p objno %llu not overlapping\n", __func__, obj_req,
1352 obj_req->ex.oe_objno);
1353 return;
1354 }
1355
1356 if (rbd_obj_is_entire(obj_req) &&
1357 !obj_req->img_request->snapc->num_snaps) {
1358 dout("%s %p objno %llu entire\n", __func__, obj_req,
1359 obj_req->ex.oe_objno);
1360 return;
1361 }
1362
1363 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
1364 }
1365
rbd_obj_img_extents_bytes(struct rbd_obj_request * obj_req)1366 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1367 {
1368 return ceph_file_extents_bytes(obj_req->img_extents,
1369 obj_req->num_img_extents);
1370 }
1371
rbd_img_is_write(struct rbd_img_request * img_req)1372 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1373 {
1374 switch (img_req->op_type) {
1375 case OBJ_OP_READ:
1376 return false;
1377 case OBJ_OP_WRITE:
1378 case OBJ_OP_DISCARD:
1379 case OBJ_OP_ZEROOUT:
1380 return true;
1381 default:
1382 BUG();
1383 }
1384 }
1385
rbd_osd_req_callback(struct ceph_osd_request * osd_req)1386 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1387 {
1388 struct rbd_obj_request *obj_req = osd_req->r_priv;
1389 int result;
1390
1391 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1392 osd_req->r_result, obj_req);
1393
1394 /*
1395 * Writes aren't allowed to return a data payload. In some
1396 * guarded write cases (e.g. stat + zero on an empty object)
1397 * a stat response makes it through, but we don't care.
1398 */
1399 if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1400 result = 0;
1401 else
1402 result = osd_req->r_result;
1403
1404 rbd_obj_handle_request(obj_req, result);
1405 }
1406
rbd_osd_format_read(struct ceph_osd_request * osd_req)1407 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1408 {
1409 struct rbd_obj_request *obj_request = osd_req->r_priv;
1410 struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1411 struct ceph_options *opt = rbd_dev->rbd_client->client->options;
1412
1413 osd_req->r_flags = CEPH_OSD_FLAG_READ | opt->read_from_replica;
1414 osd_req->r_snapid = obj_request->img_request->snap_id;
1415 }
1416
rbd_osd_format_write(struct ceph_osd_request * osd_req)1417 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1418 {
1419 struct rbd_obj_request *obj_request = osd_req->r_priv;
1420
1421 osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1422 ktime_get_real_ts64(&osd_req->r_mtime);
1423 osd_req->r_data_offset = obj_request->ex.oe_off;
1424 }
1425
1426 static struct ceph_osd_request *
__rbd_obj_add_osd_request(struct rbd_obj_request * obj_req,struct ceph_snap_context * snapc,int num_ops)1427 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1428 struct ceph_snap_context *snapc, int num_ops)
1429 {
1430 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1431 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1432 struct ceph_osd_request *req;
1433 const char *name_format = rbd_dev->image_format == 1 ?
1434 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1435 int ret;
1436
1437 req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1438 if (!req)
1439 return ERR_PTR(-ENOMEM);
1440
1441 list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1442 req->r_callback = rbd_osd_req_callback;
1443 req->r_priv = obj_req;
1444
1445 /*
1446 * Data objects may be stored in a separate pool, but always in
1447 * the same namespace in that pool as the header in its pool.
1448 */
1449 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1450 req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1451
1452 ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1453 rbd_dev->header.object_prefix,
1454 obj_req->ex.oe_objno);
1455 if (ret)
1456 return ERR_PTR(ret);
1457
1458 return req;
1459 }
1460
1461 static struct ceph_osd_request *
rbd_obj_add_osd_request(struct rbd_obj_request * obj_req,int num_ops)1462 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1463 {
1464 rbd_assert(obj_req->img_request->snapc);
1465 return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1466 num_ops);
1467 }
1468
rbd_obj_request_create(void)1469 static struct rbd_obj_request *rbd_obj_request_create(void)
1470 {
1471 struct rbd_obj_request *obj_request;
1472
1473 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1474 if (!obj_request)
1475 return NULL;
1476
1477 ceph_object_extent_init(&obj_request->ex);
1478 INIT_LIST_HEAD(&obj_request->osd_reqs);
1479 mutex_init(&obj_request->state_mutex);
1480 kref_init(&obj_request->kref);
1481
1482 dout("%s %p\n", __func__, obj_request);
1483 return obj_request;
1484 }
1485
rbd_obj_request_destroy(struct kref * kref)1486 static void rbd_obj_request_destroy(struct kref *kref)
1487 {
1488 struct rbd_obj_request *obj_request;
1489 struct ceph_osd_request *osd_req;
1490 u32 i;
1491
1492 obj_request = container_of(kref, struct rbd_obj_request, kref);
1493
1494 dout("%s: obj %p\n", __func__, obj_request);
1495
1496 while (!list_empty(&obj_request->osd_reqs)) {
1497 osd_req = list_first_entry(&obj_request->osd_reqs,
1498 struct ceph_osd_request, r_private_item);
1499 list_del_init(&osd_req->r_private_item);
1500 ceph_osdc_put_request(osd_req);
1501 }
1502
1503 switch (obj_request->img_request->data_type) {
1504 case OBJ_REQUEST_NODATA:
1505 case OBJ_REQUEST_BIO:
1506 case OBJ_REQUEST_BVECS:
1507 break; /* Nothing to do */
1508 case OBJ_REQUEST_OWN_BVECS:
1509 kfree(obj_request->bvec_pos.bvecs);
1510 break;
1511 default:
1512 BUG();
1513 }
1514
1515 kfree(obj_request->img_extents);
1516 if (obj_request->copyup_bvecs) {
1517 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1518 if (obj_request->copyup_bvecs[i].bv_page)
1519 __free_page(obj_request->copyup_bvecs[i].bv_page);
1520 }
1521 kfree(obj_request->copyup_bvecs);
1522 }
1523
1524 kmem_cache_free(rbd_obj_request_cache, obj_request);
1525 }
1526
1527 /* It's OK to call this for a device with no parent */
1528
1529 static void rbd_spec_put(struct rbd_spec *spec);
rbd_dev_unparent(struct rbd_device * rbd_dev)1530 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1531 {
1532 rbd_dev_remove_parent(rbd_dev);
1533 rbd_spec_put(rbd_dev->parent_spec);
1534 rbd_dev->parent_spec = NULL;
1535 rbd_dev->parent_overlap = 0;
1536 }
1537
1538 /*
1539 * Parent image reference counting is used to determine when an
1540 * image's parent fields can be safely torn down--after there are no
1541 * more in-flight requests to the parent image. When the last
1542 * reference is dropped, cleaning them up is safe.
1543 */
rbd_dev_parent_put(struct rbd_device * rbd_dev)1544 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1545 {
1546 int counter;
1547
1548 if (!rbd_dev->parent_spec)
1549 return;
1550
1551 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1552 if (counter > 0)
1553 return;
1554
1555 /* Last reference; clean up parent data structures */
1556
1557 if (!counter)
1558 rbd_dev_unparent(rbd_dev);
1559 else
1560 rbd_warn(rbd_dev, "parent reference underflow");
1561 }
1562
1563 /*
1564 * If an image has a non-zero parent overlap, get a reference to its
1565 * parent.
1566 *
1567 * Returns true if the rbd device has a parent with a non-zero
1568 * overlap and a reference for it was successfully taken, or
1569 * false otherwise.
1570 */
rbd_dev_parent_get(struct rbd_device * rbd_dev)1571 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1572 {
1573 int counter = 0;
1574
1575 if (!rbd_dev->parent_spec)
1576 return false;
1577
1578 if (rbd_dev->parent_overlap)
1579 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1580
1581 if (counter < 0)
1582 rbd_warn(rbd_dev, "parent reference overflow");
1583
1584 return counter > 0;
1585 }
1586
rbd_img_request_init(struct rbd_img_request * img_request,struct rbd_device * rbd_dev,enum obj_operation_type op_type)1587 static void rbd_img_request_init(struct rbd_img_request *img_request,
1588 struct rbd_device *rbd_dev,
1589 enum obj_operation_type op_type)
1590 {
1591 memset(img_request, 0, sizeof(*img_request));
1592
1593 img_request->rbd_dev = rbd_dev;
1594 img_request->op_type = op_type;
1595
1596 INIT_LIST_HEAD(&img_request->lock_item);
1597 INIT_LIST_HEAD(&img_request->object_extents);
1598 mutex_init(&img_request->state_mutex);
1599 }
1600
1601 /*
1602 * Only snap_id is captured here, for reads. For writes, snapshot
1603 * context is captured in rbd_img_object_requests() after exclusive
1604 * lock is ensured to be held.
1605 */
rbd_img_capture_header(struct rbd_img_request * img_req)1606 static void rbd_img_capture_header(struct rbd_img_request *img_req)
1607 {
1608 struct rbd_device *rbd_dev = img_req->rbd_dev;
1609
1610 lockdep_assert_held(&rbd_dev->header_rwsem);
1611
1612 if (!rbd_img_is_write(img_req))
1613 img_req->snap_id = rbd_dev->spec->snap_id;
1614
1615 if (rbd_dev_parent_get(rbd_dev))
1616 img_request_layered_set(img_req);
1617 }
1618
rbd_img_request_destroy(struct rbd_img_request * img_request)1619 static void rbd_img_request_destroy(struct rbd_img_request *img_request)
1620 {
1621 struct rbd_obj_request *obj_request;
1622 struct rbd_obj_request *next_obj_request;
1623
1624 dout("%s: img %p\n", __func__, img_request);
1625
1626 WARN_ON(!list_empty(&img_request->lock_item));
1627 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1628 rbd_img_obj_request_del(img_request, obj_request);
1629
1630 if (img_request_layered_test(img_request))
1631 rbd_dev_parent_put(img_request->rbd_dev);
1632
1633 if (rbd_img_is_write(img_request))
1634 ceph_put_snap_context(img_request->snapc);
1635
1636 if (test_bit(IMG_REQ_CHILD, &img_request->flags))
1637 kmem_cache_free(rbd_img_request_cache, img_request);
1638 }
1639
1640 #define BITS_PER_OBJ 2
1641 #define OBJS_PER_BYTE (BITS_PER_BYTE / BITS_PER_OBJ)
1642 #define OBJ_MASK ((1 << BITS_PER_OBJ) - 1)
1643
__rbd_object_map_index(struct rbd_device * rbd_dev,u64 objno,u64 * index,u8 * shift)1644 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1645 u64 *index, u8 *shift)
1646 {
1647 u32 off;
1648
1649 rbd_assert(objno < rbd_dev->object_map_size);
1650 *index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1651 *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1652 }
1653
__rbd_object_map_get(struct rbd_device * rbd_dev,u64 objno)1654 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1655 {
1656 u64 index;
1657 u8 shift;
1658
1659 lockdep_assert_held(&rbd_dev->object_map_lock);
1660 __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1661 return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1662 }
1663
__rbd_object_map_set(struct rbd_device * rbd_dev,u64 objno,u8 val)1664 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1665 {
1666 u64 index;
1667 u8 shift;
1668 u8 *p;
1669
1670 lockdep_assert_held(&rbd_dev->object_map_lock);
1671 rbd_assert(!(val & ~OBJ_MASK));
1672
1673 __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1674 p = &rbd_dev->object_map[index];
1675 *p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1676 }
1677
rbd_object_map_get(struct rbd_device * rbd_dev,u64 objno)1678 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1679 {
1680 u8 state;
1681
1682 spin_lock(&rbd_dev->object_map_lock);
1683 state = __rbd_object_map_get(rbd_dev, objno);
1684 spin_unlock(&rbd_dev->object_map_lock);
1685 return state;
1686 }
1687
use_object_map(struct rbd_device * rbd_dev)1688 static bool use_object_map(struct rbd_device *rbd_dev)
1689 {
1690 /*
1691 * An image mapped read-only can't use the object map -- it isn't
1692 * loaded because the header lock isn't acquired. Someone else can
1693 * write to the image and update the object map behind our back.
1694 *
1695 * A snapshot can't be written to, so using the object map is always
1696 * safe.
1697 */
1698 if (!rbd_is_snap(rbd_dev) && rbd_is_ro(rbd_dev))
1699 return false;
1700
1701 return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1702 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1703 }
1704
rbd_object_map_may_exist(struct rbd_device * rbd_dev,u64 objno)1705 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1706 {
1707 u8 state;
1708
1709 /* fall back to default logic if object map is disabled or invalid */
1710 if (!use_object_map(rbd_dev))
1711 return true;
1712
1713 state = rbd_object_map_get(rbd_dev, objno);
1714 return state != OBJECT_NONEXISTENT;
1715 }
1716
rbd_object_map_name(struct rbd_device * rbd_dev,u64 snap_id,struct ceph_object_id * oid)1717 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1718 struct ceph_object_id *oid)
1719 {
1720 if (snap_id == CEPH_NOSNAP)
1721 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1722 rbd_dev->spec->image_id);
1723 else
1724 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1725 rbd_dev->spec->image_id, snap_id);
1726 }
1727
rbd_object_map_lock(struct rbd_device * rbd_dev)1728 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1729 {
1730 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1731 CEPH_DEFINE_OID_ONSTACK(oid);
1732 u8 lock_type;
1733 char *lock_tag;
1734 struct ceph_locker *lockers;
1735 u32 num_lockers;
1736 bool broke_lock = false;
1737 int ret;
1738
1739 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1740
1741 again:
1742 ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1743 CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1744 if (ret != -EBUSY || broke_lock) {
1745 if (ret == -EEXIST)
1746 ret = 0; /* already locked by myself */
1747 if (ret)
1748 rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1749 return ret;
1750 }
1751
1752 ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1753 RBD_LOCK_NAME, &lock_type, &lock_tag,
1754 &lockers, &num_lockers);
1755 if (ret) {
1756 if (ret == -ENOENT)
1757 goto again;
1758
1759 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1760 return ret;
1761 }
1762
1763 kfree(lock_tag);
1764 if (num_lockers == 0)
1765 goto again;
1766
1767 rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1768 ENTITY_NAME(lockers[0].id.name));
1769
1770 ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1771 RBD_LOCK_NAME, lockers[0].id.cookie,
1772 &lockers[0].id.name);
1773 ceph_free_lockers(lockers, num_lockers);
1774 if (ret) {
1775 if (ret == -ENOENT)
1776 goto again;
1777
1778 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1779 return ret;
1780 }
1781
1782 broke_lock = true;
1783 goto again;
1784 }
1785
rbd_object_map_unlock(struct rbd_device * rbd_dev)1786 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1787 {
1788 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1789 CEPH_DEFINE_OID_ONSTACK(oid);
1790 int ret;
1791
1792 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1793
1794 ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1795 "");
1796 if (ret && ret != -ENOENT)
1797 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1798 }
1799
decode_object_map_header(void ** p,void * end,u64 * object_map_size)1800 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1801 {
1802 u8 struct_v;
1803 u32 struct_len;
1804 u32 header_len;
1805 void *header_end;
1806 int ret;
1807
1808 ceph_decode_32_safe(p, end, header_len, e_inval);
1809 header_end = *p + header_len;
1810
1811 ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1812 &struct_len);
1813 if (ret)
1814 return ret;
1815
1816 ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1817
1818 *p = header_end;
1819 return 0;
1820
1821 e_inval:
1822 return -EINVAL;
1823 }
1824
__rbd_object_map_load(struct rbd_device * rbd_dev)1825 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1826 {
1827 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1828 CEPH_DEFINE_OID_ONSTACK(oid);
1829 struct page **pages;
1830 void *p, *end;
1831 size_t reply_len;
1832 u64 num_objects;
1833 u64 object_map_bytes;
1834 u64 object_map_size;
1835 int num_pages;
1836 int ret;
1837
1838 rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1839
1840 num_objects = ceph_get_num_objects(&rbd_dev->layout,
1841 rbd_dev->mapping.size);
1842 object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1843 BITS_PER_BYTE);
1844 num_pages = calc_pages_for(0, object_map_bytes) + 1;
1845 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1846 if (IS_ERR(pages))
1847 return PTR_ERR(pages);
1848
1849 reply_len = num_pages * PAGE_SIZE;
1850 rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1851 ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1852 "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1853 NULL, 0, pages, &reply_len);
1854 if (ret)
1855 goto out;
1856
1857 p = page_address(pages[0]);
1858 end = p + min(reply_len, (size_t)PAGE_SIZE);
1859 ret = decode_object_map_header(&p, end, &object_map_size);
1860 if (ret)
1861 goto out;
1862
1863 if (object_map_size != num_objects) {
1864 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1865 object_map_size, num_objects);
1866 ret = -EINVAL;
1867 goto out;
1868 }
1869
1870 if (offset_in_page(p) + object_map_bytes > reply_len) {
1871 ret = -EINVAL;
1872 goto out;
1873 }
1874
1875 rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
1876 if (!rbd_dev->object_map) {
1877 ret = -ENOMEM;
1878 goto out;
1879 }
1880
1881 rbd_dev->object_map_size = object_map_size;
1882 ceph_copy_from_page_vector(pages, rbd_dev->object_map,
1883 offset_in_page(p), object_map_bytes);
1884
1885 out:
1886 ceph_release_page_vector(pages, num_pages);
1887 return ret;
1888 }
1889
rbd_object_map_free(struct rbd_device * rbd_dev)1890 static void rbd_object_map_free(struct rbd_device *rbd_dev)
1891 {
1892 kvfree(rbd_dev->object_map);
1893 rbd_dev->object_map = NULL;
1894 rbd_dev->object_map_size = 0;
1895 }
1896
rbd_object_map_load(struct rbd_device * rbd_dev)1897 static int rbd_object_map_load(struct rbd_device *rbd_dev)
1898 {
1899 int ret;
1900
1901 ret = __rbd_object_map_load(rbd_dev);
1902 if (ret)
1903 return ret;
1904
1905 ret = rbd_dev_v2_get_flags(rbd_dev);
1906 if (ret) {
1907 rbd_object_map_free(rbd_dev);
1908 return ret;
1909 }
1910
1911 if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
1912 rbd_warn(rbd_dev, "object map is invalid");
1913
1914 return 0;
1915 }
1916
rbd_object_map_open(struct rbd_device * rbd_dev)1917 static int rbd_object_map_open(struct rbd_device *rbd_dev)
1918 {
1919 int ret;
1920
1921 ret = rbd_object_map_lock(rbd_dev);
1922 if (ret)
1923 return ret;
1924
1925 ret = rbd_object_map_load(rbd_dev);
1926 if (ret) {
1927 rbd_object_map_unlock(rbd_dev);
1928 return ret;
1929 }
1930
1931 return 0;
1932 }
1933
rbd_object_map_close(struct rbd_device * rbd_dev)1934 static void rbd_object_map_close(struct rbd_device *rbd_dev)
1935 {
1936 rbd_object_map_free(rbd_dev);
1937 rbd_object_map_unlock(rbd_dev);
1938 }
1939
1940 /*
1941 * This function needs snap_id (or more precisely just something to
1942 * distinguish between HEAD and snapshot object maps), new_state and
1943 * current_state that were passed to rbd_object_map_update().
1944 *
1945 * To avoid allocating and stashing a context we piggyback on the OSD
1946 * request. A HEAD update has two ops (assert_locked). For new_state
1947 * and current_state we decode our own object_map_update op, encoded in
1948 * rbd_cls_object_map_update().
1949 */
rbd_object_map_update_finish(struct rbd_obj_request * obj_req,struct ceph_osd_request * osd_req)1950 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
1951 struct ceph_osd_request *osd_req)
1952 {
1953 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1954 struct ceph_osd_data *osd_data;
1955 u64 objno;
1956 u8 state, new_state, current_state;
1957 bool has_current_state;
1958 void *p;
1959
1960 if (osd_req->r_result)
1961 return osd_req->r_result;
1962
1963 /*
1964 * Nothing to do for a snapshot object map.
1965 */
1966 if (osd_req->r_num_ops == 1)
1967 return 0;
1968
1969 /*
1970 * Update in-memory HEAD object map.
1971 */
1972 rbd_assert(osd_req->r_num_ops == 2);
1973 osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
1974 rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
1975
1976 p = page_address(osd_data->pages[0]);
1977 objno = ceph_decode_64(&p);
1978 rbd_assert(objno == obj_req->ex.oe_objno);
1979 rbd_assert(ceph_decode_64(&p) == objno + 1);
1980 new_state = ceph_decode_8(&p);
1981 has_current_state = ceph_decode_8(&p);
1982 if (has_current_state)
1983 current_state = ceph_decode_8(&p);
1984
1985 spin_lock(&rbd_dev->object_map_lock);
1986 state = __rbd_object_map_get(rbd_dev, objno);
1987 if (!has_current_state || current_state == state ||
1988 (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
1989 __rbd_object_map_set(rbd_dev, objno, new_state);
1990 spin_unlock(&rbd_dev->object_map_lock);
1991
1992 return 0;
1993 }
1994
rbd_object_map_callback(struct ceph_osd_request * osd_req)1995 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
1996 {
1997 struct rbd_obj_request *obj_req = osd_req->r_priv;
1998 int result;
1999
2000 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2001 osd_req->r_result, obj_req);
2002
2003 result = rbd_object_map_update_finish(obj_req, osd_req);
2004 rbd_obj_handle_request(obj_req, result);
2005 }
2006
update_needed(struct rbd_device * rbd_dev,u64 objno,u8 new_state)2007 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2008 {
2009 u8 state = rbd_object_map_get(rbd_dev, objno);
2010
2011 if (state == new_state ||
2012 (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2013 (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2014 return false;
2015
2016 return true;
2017 }
2018
rbd_cls_object_map_update(struct ceph_osd_request * req,int which,u64 objno,u8 new_state,const u8 * current_state)2019 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2020 int which, u64 objno, u8 new_state,
2021 const u8 *current_state)
2022 {
2023 struct page **pages;
2024 void *p, *start;
2025 int ret;
2026
2027 ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2028 if (ret)
2029 return ret;
2030
2031 pages = ceph_alloc_page_vector(1, GFP_NOIO);
2032 if (IS_ERR(pages))
2033 return PTR_ERR(pages);
2034
2035 p = start = page_address(pages[0]);
2036 ceph_encode_64(&p, objno);
2037 ceph_encode_64(&p, objno + 1);
2038 ceph_encode_8(&p, new_state);
2039 if (current_state) {
2040 ceph_encode_8(&p, 1);
2041 ceph_encode_8(&p, *current_state);
2042 } else {
2043 ceph_encode_8(&p, 0);
2044 }
2045
2046 osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2047 false, true);
2048 return 0;
2049 }
2050
2051 /*
2052 * Return:
2053 * 0 - object map update sent
2054 * 1 - object map update isn't needed
2055 * <0 - error
2056 */
rbd_object_map_update(struct rbd_obj_request * obj_req,u64 snap_id,u8 new_state,const u8 * current_state)2057 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2058 u8 new_state, const u8 *current_state)
2059 {
2060 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2061 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2062 struct ceph_osd_request *req;
2063 int num_ops = 1;
2064 int which = 0;
2065 int ret;
2066
2067 if (snap_id == CEPH_NOSNAP) {
2068 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2069 return 1;
2070
2071 num_ops++; /* assert_locked */
2072 }
2073
2074 req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2075 if (!req)
2076 return -ENOMEM;
2077
2078 list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2079 req->r_callback = rbd_object_map_callback;
2080 req->r_priv = obj_req;
2081
2082 rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2083 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2084 req->r_flags = CEPH_OSD_FLAG_WRITE;
2085 ktime_get_real_ts64(&req->r_mtime);
2086
2087 if (snap_id == CEPH_NOSNAP) {
2088 /*
2089 * Protect against possible race conditions during lock
2090 * ownership transitions.
2091 */
2092 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2093 CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2094 if (ret)
2095 return ret;
2096 }
2097
2098 ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2099 new_state, current_state);
2100 if (ret)
2101 return ret;
2102
2103 ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2104 if (ret)
2105 return ret;
2106
2107 ceph_osdc_start_request(osdc, req);
2108 return 0;
2109 }
2110
prune_extents(struct ceph_file_extent * img_extents,u32 * num_img_extents,u64 overlap)2111 static void prune_extents(struct ceph_file_extent *img_extents,
2112 u32 *num_img_extents, u64 overlap)
2113 {
2114 u32 cnt = *num_img_extents;
2115
2116 /* drop extents completely beyond the overlap */
2117 while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2118 cnt--;
2119
2120 if (cnt) {
2121 struct ceph_file_extent *ex = &img_extents[cnt - 1];
2122
2123 /* trim final overlapping extent */
2124 if (ex->fe_off + ex->fe_len > overlap)
2125 ex->fe_len = overlap - ex->fe_off;
2126 }
2127
2128 *num_img_extents = cnt;
2129 }
2130
2131 /*
2132 * Determine the byte range(s) covered by either just the object extent
2133 * or the entire object in the parent image.
2134 */
rbd_obj_calc_img_extents(struct rbd_obj_request * obj_req,bool entire)2135 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2136 bool entire)
2137 {
2138 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2139 int ret;
2140
2141 if (!rbd_dev->parent_overlap)
2142 return 0;
2143
2144 ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2145 entire ? 0 : obj_req->ex.oe_off,
2146 entire ? rbd_dev->layout.object_size :
2147 obj_req->ex.oe_len,
2148 &obj_req->img_extents,
2149 &obj_req->num_img_extents);
2150 if (ret)
2151 return ret;
2152
2153 prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2154 rbd_dev->parent_overlap);
2155 return 0;
2156 }
2157
rbd_osd_setup_data(struct ceph_osd_request * osd_req,int which)2158 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2159 {
2160 struct rbd_obj_request *obj_req = osd_req->r_priv;
2161
2162 switch (obj_req->img_request->data_type) {
2163 case OBJ_REQUEST_BIO:
2164 osd_req_op_extent_osd_data_bio(osd_req, which,
2165 &obj_req->bio_pos,
2166 obj_req->ex.oe_len);
2167 break;
2168 case OBJ_REQUEST_BVECS:
2169 case OBJ_REQUEST_OWN_BVECS:
2170 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2171 obj_req->ex.oe_len);
2172 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2173 osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2174 &obj_req->bvec_pos);
2175 break;
2176 default:
2177 BUG();
2178 }
2179 }
2180
rbd_osd_setup_stat(struct ceph_osd_request * osd_req,int which)2181 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2182 {
2183 struct page **pages;
2184
2185 /*
2186 * The response data for a STAT call consists of:
2187 * le64 length;
2188 * struct {
2189 * le32 tv_sec;
2190 * le32 tv_nsec;
2191 * } mtime;
2192 */
2193 pages = ceph_alloc_page_vector(1, GFP_NOIO);
2194 if (IS_ERR(pages))
2195 return PTR_ERR(pages);
2196
2197 osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2198 osd_req_op_raw_data_in_pages(osd_req, which, pages,
2199 8 + sizeof(struct ceph_timespec),
2200 0, false, true);
2201 return 0;
2202 }
2203
rbd_osd_setup_copyup(struct ceph_osd_request * osd_req,int which,u32 bytes)2204 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2205 u32 bytes)
2206 {
2207 struct rbd_obj_request *obj_req = osd_req->r_priv;
2208 int ret;
2209
2210 ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2211 if (ret)
2212 return ret;
2213
2214 osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2215 obj_req->copyup_bvec_count, bytes);
2216 return 0;
2217 }
2218
rbd_obj_init_read(struct rbd_obj_request * obj_req)2219 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2220 {
2221 obj_req->read_state = RBD_OBJ_READ_START;
2222 return 0;
2223 }
2224
__rbd_osd_setup_write_ops(struct ceph_osd_request * osd_req,int which)2225 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2226 int which)
2227 {
2228 struct rbd_obj_request *obj_req = osd_req->r_priv;
2229 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2230 u16 opcode;
2231
2232 if (!use_object_map(rbd_dev) ||
2233 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2234 osd_req_op_alloc_hint_init(osd_req, which++,
2235 rbd_dev->layout.object_size,
2236 rbd_dev->layout.object_size,
2237 rbd_dev->opts->alloc_hint_flags);
2238 }
2239
2240 if (rbd_obj_is_entire(obj_req))
2241 opcode = CEPH_OSD_OP_WRITEFULL;
2242 else
2243 opcode = CEPH_OSD_OP_WRITE;
2244
2245 osd_req_op_extent_init(osd_req, which, opcode,
2246 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2247 rbd_osd_setup_data(osd_req, which);
2248 }
2249
rbd_obj_init_write(struct rbd_obj_request * obj_req)2250 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2251 {
2252 int ret;
2253
2254 /* reverse map the entire object onto the parent */
2255 ret = rbd_obj_calc_img_extents(obj_req, true);
2256 if (ret)
2257 return ret;
2258
2259 obj_req->write_state = RBD_OBJ_WRITE_START;
2260 return 0;
2261 }
2262
truncate_or_zero_opcode(struct rbd_obj_request * obj_req)2263 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2264 {
2265 return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2266 CEPH_OSD_OP_ZERO;
2267 }
2268
__rbd_osd_setup_discard_ops(struct ceph_osd_request * osd_req,int which)2269 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2270 int which)
2271 {
2272 struct rbd_obj_request *obj_req = osd_req->r_priv;
2273
2274 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2275 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2276 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2277 } else {
2278 osd_req_op_extent_init(osd_req, which,
2279 truncate_or_zero_opcode(obj_req),
2280 obj_req->ex.oe_off, obj_req->ex.oe_len,
2281 0, 0);
2282 }
2283 }
2284
rbd_obj_init_discard(struct rbd_obj_request * obj_req)2285 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2286 {
2287 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2288 u64 off, next_off;
2289 int ret;
2290
2291 /*
2292 * Align the range to alloc_size boundary and punt on discards
2293 * that are too small to free up any space.
2294 *
2295 * alloc_size == object_size && is_tail() is a special case for
2296 * filestore with filestore_punch_hole = false, needed to allow
2297 * truncate (in addition to delete).
2298 */
2299 if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2300 !rbd_obj_is_tail(obj_req)) {
2301 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2302 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2303 rbd_dev->opts->alloc_size);
2304 if (off >= next_off)
2305 return 1;
2306
2307 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2308 obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2309 off, next_off - off);
2310 obj_req->ex.oe_off = off;
2311 obj_req->ex.oe_len = next_off - off;
2312 }
2313
2314 /* reverse map the entire object onto the parent */
2315 ret = rbd_obj_calc_img_extents(obj_req, true);
2316 if (ret)
2317 return ret;
2318
2319 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2320 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2321 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2322
2323 obj_req->write_state = RBD_OBJ_WRITE_START;
2324 return 0;
2325 }
2326
__rbd_osd_setup_zeroout_ops(struct ceph_osd_request * osd_req,int which)2327 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2328 int which)
2329 {
2330 struct rbd_obj_request *obj_req = osd_req->r_priv;
2331 u16 opcode;
2332
2333 if (rbd_obj_is_entire(obj_req)) {
2334 if (obj_req->num_img_extents) {
2335 if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2336 osd_req_op_init(osd_req, which++,
2337 CEPH_OSD_OP_CREATE, 0);
2338 opcode = CEPH_OSD_OP_TRUNCATE;
2339 } else {
2340 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2341 osd_req_op_init(osd_req, which++,
2342 CEPH_OSD_OP_DELETE, 0);
2343 opcode = 0;
2344 }
2345 } else {
2346 opcode = truncate_or_zero_opcode(obj_req);
2347 }
2348
2349 if (opcode)
2350 osd_req_op_extent_init(osd_req, which, opcode,
2351 obj_req->ex.oe_off, obj_req->ex.oe_len,
2352 0, 0);
2353 }
2354
rbd_obj_init_zeroout(struct rbd_obj_request * obj_req)2355 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2356 {
2357 int ret;
2358
2359 /* reverse map the entire object onto the parent */
2360 ret = rbd_obj_calc_img_extents(obj_req, true);
2361 if (ret)
2362 return ret;
2363
2364 if (!obj_req->num_img_extents) {
2365 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2366 if (rbd_obj_is_entire(obj_req))
2367 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2368 }
2369
2370 obj_req->write_state = RBD_OBJ_WRITE_START;
2371 return 0;
2372 }
2373
count_write_ops(struct rbd_obj_request * obj_req)2374 static int count_write_ops(struct rbd_obj_request *obj_req)
2375 {
2376 struct rbd_img_request *img_req = obj_req->img_request;
2377
2378 switch (img_req->op_type) {
2379 case OBJ_OP_WRITE:
2380 if (!use_object_map(img_req->rbd_dev) ||
2381 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2382 return 2; /* setallochint + write/writefull */
2383
2384 return 1; /* write/writefull */
2385 case OBJ_OP_DISCARD:
2386 return 1; /* delete/truncate/zero */
2387 case OBJ_OP_ZEROOUT:
2388 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2389 !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2390 return 2; /* create + truncate */
2391
2392 return 1; /* delete/truncate/zero */
2393 default:
2394 BUG();
2395 }
2396 }
2397
rbd_osd_setup_write_ops(struct ceph_osd_request * osd_req,int which)2398 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2399 int which)
2400 {
2401 struct rbd_obj_request *obj_req = osd_req->r_priv;
2402
2403 switch (obj_req->img_request->op_type) {
2404 case OBJ_OP_WRITE:
2405 __rbd_osd_setup_write_ops(osd_req, which);
2406 break;
2407 case OBJ_OP_DISCARD:
2408 __rbd_osd_setup_discard_ops(osd_req, which);
2409 break;
2410 case OBJ_OP_ZEROOUT:
2411 __rbd_osd_setup_zeroout_ops(osd_req, which);
2412 break;
2413 default:
2414 BUG();
2415 }
2416 }
2417
2418 /*
2419 * Prune the list of object requests (adjust offset and/or length, drop
2420 * redundant requests). Prepare object request state machines and image
2421 * request state machine for execution.
2422 */
__rbd_img_fill_request(struct rbd_img_request * img_req)2423 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2424 {
2425 struct rbd_obj_request *obj_req, *next_obj_req;
2426 int ret;
2427
2428 for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2429 switch (img_req->op_type) {
2430 case OBJ_OP_READ:
2431 ret = rbd_obj_init_read(obj_req);
2432 break;
2433 case OBJ_OP_WRITE:
2434 ret = rbd_obj_init_write(obj_req);
2435 break;
2436 case OBJ_OP_DISCARD:
2437 ret = rbd_obj_init_discard(obj_req);
2438 break;
2439 case OBJ_OP_ZEROOUT:
2440 ret = rbd_obj_init_zeroout(obj_req);
2441 break;
2442 default:
2443 BUG();
2444 }
2445 if (ret < 0)
2446 return ret;
2447 if (ret > 0) {
2448 rbd_img_obj_request_del(img_req, obj_req);
2449 continue;
2450 }
2451 }
2452
2453 img_req->state = RBD_IMG_START;
2454 return 0;
2455 }
2456
2457 union rbd_img_fill_iter {
2458 struct ceph_bio_iter bio_iter;
2459 struct ceph_bvec_iter bvec_iter;
2460 };
2461
2462 struct rbd_img_fill_ctx {
2463 enum obj_request_type pos_type;
2464 union rbd_img_fill_iter *pos;
2465 union rbd_img_fill_iter iter;
2466 ceph_object_extent_fn_t set_pos_fn;
2467 ceph_object_extent_fn_t count_fn;
2468 ceph_object_extent_fn_t copy_fn;
2469 };
2470
alloc_object_extent(void * arg)2471 static struct ceph_object_extent *alloc_object_extent(void *arg)
2472 {
2473 struct rbd_img_request *img_req = arg;
2474 struct rbd_obj_request *obj_req;
2475
2476 obj_req = rbd_obj_request_create();
2477 if (!obj_req)
2478 return NULL;
2479
2480 rbd_img_obj_request_add(img_req, obj_req);
2481 return &obj_req->ex;
2482 }
2483
2484 /*
2485 * While su != os && sc == 1 is technically not fancy (it's the same
2486 * layout as su == os && sc == 1), we can't use the nocopy path for it
2487 * because ->set_pos_fn() should be called only once per object.
2488 * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2489 * treat su != os && sc == 1 as fancy.
2490 */
rbd_layout_is_fancy(struct ceph_file_layout * l)2491 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2492 {
2493 return l->stripe_unit != l->object_size;
2494 }
2495
rbd_img_fill_request_nocopy(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct rbd_img_fill_ctx * fctx)2496 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2497 struct ceph_file_extent *img_extents,
2498 u32 num_img_extents,
2499 struct rbd_img_fill_ctx *fctx)
2500 {
2501 u32 i;
2502 int ret;
2503
2504 img_req->data_type = fctx->pos_type;
2505
2506 /*
2507 * Create object requests and set each object request's starting
2508 * position in the provided bio (list) or bio_vec array.
2509 */
2510 fctx->iter = *fctx->pos;
2511 for (i = 0; i < num_img_extents; i++) {
2512 ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2513 img_extents[i].fe_off,
2514 img_extents[i].fe_len,
2515 &img_req->object_extents,
2516 alloc_object_extent, img_req,
2517 fctx->set_pos_fn, &fctx->iter);
2518 if (ret)
2519 return ret;
2520 }
2521
2522 return __rbd_img_fill_request(img_req);
2523 }
2524
2525 /*
2526 * Map a list of image extents to a list of object extents, create the
2527 * corresponding object requests (normally each to a different object,
2528 * but not always) and add them to @img_req. For each object request,
2529 * set up its data descriptor to point to the corresponding chunk(s) of
2530 * @fctx->pos data buffer.
2531 *
2532 * Because ceph_file_to_extents() will merge adjacent object extents
2533 * together, each object request's data descriptor may point to multiple
2534 * different chunks of @fctx->pos data buffer.
2535 *
2536 * @fctx->pos data buffer is assumed to be large enough.
2537 */
rbd_img_fill_request(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct rbd_img_fill_ctx * fctx)2538 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2539 struct ceph_file_extent *img_extents,
2540 u32 num_img_extents,
2541 struct rbd_img_fill_ctx *fctx)
2542 {
2543 struct rbd_device *rbd_dev = img_req->rbd_dev;
2544 struct rbd_obj_request *obj_req;
2545 u32 i;
2546 int ret;
2547
2548 if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2549 !rbd_layout_is_fancy(&rbd_dev->layout))
2550 return rbd_img_fill_request_nocopy(img_req, img_extents,
2551 num_img_extents, fctx);
2552
2553 img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2554
2555 /*
2556 * Create object requests and determine ->bvec_count for each object
2557 * request. Note that ->bvec_count sum over all object requests may
2558 * be greater than the number of bio_vecs in the provided bio (list)
2559 * or bio_vec array because when mapped, those bio_vecs can straddle
2560 * stripe unit boundaries.
2561 */
2562 fctx->iter = *fctx->pos;
2563 for (i = 0; i < num_img_extents; i++) {
2564 ret = ceph_file_to_extents(&rbd_dev->layout,
2565 img_extents[i].fe_off,
2566 img_extents[i].fe_len,
2567 &img_req->object_extents,
2568 alloc_object_extent, img_req,
2569 fctx->count_fn, &fctx->iter);
2570 if (ret)
2571 return ret;
2572 }
2573
2574 for_each_obj_request(img_req, obj_req) {
2575 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2576 sizeof(*obj_req->bvec_pos.bvecs),
2577 GFP_NOIO);
2578 if (!obj_req->bvec_pos.bvecs)
2579 return -ENOMEM;
2580 }
2581
2582 /*
2583 * Fill in each object request's private bio_vec array, splitting and
2584 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2585 */
2586 fctx->iter = *fctx->pos;
2587 for (i = 0; i < num_img_extents; i++) {
2588 ret = ceph_iterate_extents(&rbd_dev->layout,
2589 img_extents[i].fe_off,
2590 img_extents[i].fe_len,
2591 &img_req->object_extents,
2592 fctx->copy_fn, &fctx->iter);
2593 if (ret)
2594 return ret;
2595 }
2596
2597 return __rbd_img_fill_request(img_req);
2598 }
2599
rbd_img_fill_nodata(struct rbd_img_request * img_req,u64 off,u64 len)2600 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2601 u64 off, u64 len)
2602 {
2603 struct ceph_file_extent ex = { off, len };
2604 union rbd_img_fill_iter dummy = {};
2605 struct rbd_img_fill_ctx fctx = {
2606 .pos_type = OBJ_REQUEST_NODATA,
2607 .pos = &dummy,
2608 };
2609
2610 return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2611 }
2612
set_bio_pos(struct ceph_object_extent * ex,u32 bytes,void * arg)2613 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2614 {
2615 struct rbd_obj_request *obj_req =
2616 container_of(ex, struct rbd_obj_request, ex);
2617 struct ceph_bio_iter *it = arg;
2618
2619 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2620 obj_req->bio_pos = *it;
2621 ceph_bio_iter_advance(it, bytes);
2622 }
2623
count_bio_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2624 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2625 {
2626 struct rbd_obj_request *obj_req =
2627 container_of(ex, struct rbd_obj_request, ex);
2628 struct ceph_bio_iter *it = arg;
2629
2630 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2631 ceph_bio_iter_advance_step(it, bytes, ({
2632 obj_req->bvec_count++;
2633 }));
2634
2635 }
2636
copy_bio_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2637 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2638 {
2639 struct rbd_obj_request *obj_req =
2640 container_of(ex, struct rbd_obj_request, ex);
2641 struct ceph_bio_iter *it = arg;
2642
2643 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2644 ceph_bio_iter_advance_step(it, bytes, ({
2645 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2646 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2647 }));
2648 }
2649
__rbd_img_fill_from_bio(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct ceph_bio_iter * bio_pos)2650 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2651 struct ceph_file_extent *img_extents,
2652 u32 num_img_extents,
2653 struct ceph_bio_iter *bio_pos)
2654 {
2655 struct rbd_img_fill_ctx fctx = {
2656 .pos_type = OBJ_REQUEST_BIO,
2657 .pos = (union rbd_img_fill_iter *)bio_pos,
2658 .set_pos_fn = set_bio_pos,
2659 .count_fn = count_bio_bvecs,
2660 .copy_fn = copy_bio_bvecs,
2661 };
2662
2663 return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2664 &fctx);
2665 }
2666
rbd_img_fill_from_bio(struct rbd_img_request * img_req,u64 off,u64 len,struct bio * bio)2667 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2668 u64 off, u64 len, struct bio *bio)
2669 {
2670 struct ceph_file_extent ex = { off, len };
2671 struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2672
2673 return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2674 }
2675
set_bvec_pos(struct ceph_object_extent * ex,u32 bytes,void * arg)2676 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2677 {
2678 struct rbd_obj_request *obj_req =
2679 container_of(ex, struct rbd_obj_request, ex);
2680 struct ceph_bvec_iter *it = arg;
2681
2682 obj_req->bvec_pos = *it;
2683 ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2684 ceph_bvec_iter_advance(it, bytes);
2685 }
2686
count_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2687 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2688 {
2689 struct rbd_obj_request *obj_req =
2690 container_of(ex, struct rbd_obj_request, ex);
2691 struct ceph_bvec_iter *it = arg;
2692
2693 ceph_bvec_iter_advance_step(it, bytes, ({
2694 obj_req->bvec_count++;
2695 }));
2696 }
2697
copy_bvecs(struct ceph_object_extent * ex,u32 bytes,void * arg)2698 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2699 {
2700 struct rbd_obj_request *obj_req =
2701 container_of(ex, struct rbd_obj_request, ex);
2702 struct ceph_bvec_iter *it = arg;
2703
2704 ceph_bvec_iter_advance_step(it, bytes, ({
2705 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2706 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2707 }));
2708 }
2709
__rbd_img_fill_from_bvecs(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct ceph_bvec_iter * bvec_pos)2710 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2711 struct ceph_file_extent *img_extents,
2712 u32 num_img_extents,
2713 struct ceph_bvec_iter *bvec_pos)
2714 {
2715 struct rbd_img_fill_ctx fctx = {
2716 .pos_type = OBJ_REQUEST_BVECS,
2717 .pos = (union rbd_img_fill_iter *)bvec_pos,
2718 .set_pos_fn = set_bvec_pos,
2719 .count_fn = count_bvecs,
2720 .copy_fn = copy_bvecs,
2721 };
2722
2723 return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2724 &fctx);
2725 }
2726
rbd_img_fill_from_bvecs(struct rbd_img_request * img_req,struct ceph_file_extent * img_extents,u32 num_img_extents,struct bio_vec * bvecs)2727 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2728 struct ceph_file_extent *img_extents,
2729 u32 num_img_extents,
2730 struct bio_vec *bvecs)
2731 {
2732 struct ceph_bvec_iter it = {
2733 .bvecs = bvecs,
2734 .iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2735 num_img_extents) },
2736 };
2737
2738 return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2739 &it);
2740 }
2741
rbd_img_handle_request_work(struct work_struct * work)2742 static void rbd_img_handle_request_work(struct work_struct *work)
2743 {
2744 struct rbd_img_request *img_req =
2745 container_of(work, struct rbd_img_request, work);
2746
2747 rbd_img_handle_request(img_req, img_req->work_result);
2748 }
2749
rbd_img_schedule(struct rbd_img_request * img_req,int result)2750 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2751 {
2752 INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2753 img_req->work_result = result;
2754 queue_work(rbd_wq, &img_req->work);
2755 }
2756
rbd_obj_may_exist(struct rbd_obj_request * obj_req)2757 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2758 {
2759 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2760
2761 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2762 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2763 return true;
2764 }
2765
2766 dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2767 obj_req->ex.oe_objno);
2768 return false;
2769 }
2770
rbd_obj_read_object(struct rbd_obj_request * obj_req)2771 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2772 {
2773 struct ceph_osd_request *osd_req;
2774 int ret;
2775
2776 osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2777 if (IS_ERR(osd_req))
2778 return PTR_ERR(osd_req);
2779
2780 osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2781 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2782 rbd_osd_setup_data(osd_req, 0);
2783 rbd_osd_format_read(osd_req);
2784
2785 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2786 if (ret)
2787 return ret;
2788
2789 rbd_osd_submit(osd_req);
2790 return 0;
2791 }
2792
rbd_obj_read_from_parent(struct rbd_obj_request * obj_req)2793 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2794 {
2795 struct rbd_img_request *img_req = obj_req->img_request;
2796 struct rbd_device *parent = img_req->rbd_dev->parent;
2797 struct rbd_img_request *child_img_req;
2798 int ret;
2799
2800 child_img_req = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2801 if (!child_img_req)
2802 return -ENOMEM;
2803
2804 rbd_img_request_init(child_img_req, parent, OBJ_OP_READ);
2805 __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2806 child_img_req->obj_request = obj_req;
2807
2808 down_read(&parent->header_rwsem);
2809 rbd_img_capture_header(child_img_req);
2810 up_read(&parent->header_rwsem);
2811
2812 dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2813 obj_req);
2814
2815 if (!rbd_img_is_write(img_req)) {
2816 switch (img_req->data_type) {
2817 case OBJ_REQUEST_BIO:
2818 ret = __rbd_img_fill_from_bio(child_img_req,
2819 obj_req->img_extents,
2820 obj_req->num_img_extents,
2821 &obj_req->bio_pos);
2822 break;
2823 case OBJ_REQUEST_BVECS:
2824 case OBJ_REQUEST_OWN_BVECS:
2825 ret = __rbd_img_fill_from_bvecs(child_img_req,
2826 obj_req->img_extents,
2827 obj_req->num_img_extents,
2828 &obj_req->bvec_pos);
2829 break;
2830 default:
2831 BUG();
2832 }
2833 } else {
2834 ret = rbd_img_fill_from_bvecs(child_img_req,
2835 obj_req->img_extents,
2836 obj_req->num_img_extents,
2837 obj_req->copyup_bvecs);
2838 }
2839 if (ret) {
2840 rbd_img_request_destroy(child_img_req);
2841 return ret;
2842 }
2843
2844 /* avoid parent chain recursion */
2845 rbd_img_schedule(child_img_req, 0);
2846 return 0;
2847 }
2848
rbd_obj_advance_read(struct rbd_obj_request * obj_req,int * result)2849 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2850 {
2851 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2852 int ret;
2853
2854 again:
2855 switch (obj_req->read_state) {
2856 case RBD_OBJ_READ_START:
2857 rbd_assert(!*result);
2858
2859 if (!rbd_obj_may_exist(obj_req)) {
2860 *result = -ENOENT;
2861 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2862 goto again;
2863 }
2864
2865 ret = rbd_obj_read_object(obj_req);
2866 if (ret) {
2867 *result = ret;
2868 return true;
2869 }
2870 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2871 return false;
2872 case RBD_OBJ_READ_OBJECT:
2873 if (*result == -ENOENT && rbd_dev->parent_overlap) {
2874 /* reverse map this object extent onto the parent */
2875 ret = rbd_obj_calc_img_extents(obj_req, false);
2876 if (ret) {
2877 *result = ret;
2878 return true;
2879 }
2880 if (obj_req->num_img_extents) {
2881 ret = rbd_obj_read_from_parent(obj_req);
2882 if (ret) {
2883 *result = ret;
2884 return true;
2885 }
2886 obj_req->read_state = RBD_OBJ_READ_PARENT;
2887 return false;
2888 }
2889 }
2890
2891 /*
2892 * -ENOENT means a hole in the image -- zero-fill the entire
2893 * length of the request. A short read also implies zero-fill
2894 * to the end of the request.
2895 */
2896 if (*result == -ENOENT) {
2897 rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
2898 *result = 0;
2899 } else if (*result >= 0) {
2900 if (*result < obj_req->ex.oe_len)
2901 rbd_obj_zero_range(obj_req, *result,
2902 obj_req->ex.oe_len - *result);
2903 else
2904 rbd_assert(*result == obj_req->ex.oe_len);
2905 *result = 0;
2906 }
2907 return true;
2908 case RBD_OBJ_READ_PARENT:
2909 /*
2910 * The parent image is read only up to the overlap -- zero-fill
2911 * from the overlap to the end of the request.
2912 */
2913 if (!*result) {
2914 u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
2915
2916 if (obj_overlap < obj_req->ex.oe_len)
2917 rbd_obj_zero_range(obj_req, obj_overlap,
2918 obj_req->ex.oe_len - obj_overlap);
2919 }
2920 return true;
2921 default:
2922 BUG();
2923 }
2924 }
2925
rbd_obj_write_is_noop(struct rbd_obj_request * obj_req)2926 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
2927 {
2928 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2929
2930 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
2931 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2932
2933 if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
2934 (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
2935 dout("%s %p noop for nonexistent\n", __func__, obj_req);
2936 return true;
2937 }
2938
2939 return false;
2940 }
2941
2942 /*
2943 * Return:
2944 * 0 - object map update sent
2945 * 1 - object map update isn't needed
2946 * <0 - error
2947 */
rbd_obj_write_pre_object_map(struct rbd_obj_request * obj_req)2948 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
2949 {
2950 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2951 u8 new_state;
2952
2953 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
2954 return 1;
2955
2956 if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
2957 new_state = OBJECT_PENDING;
2958 else
2959 new_state = OBJECT_EXISTS;
2960
2961 return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
2962 }
2963
rbd_obj_write_object(struct rbd_obj_request * obj_req)2964 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
2965 {
2966 struct ceph_osd_request *osd_req;
2967 int num_ops = count_write_ops(obj_req);
2968 int which = 0;
2969 int ret;
2970
2971 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
2972 num_ops++; /* stat */
2973
2974 osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
2975 if (IS_ERR(osd_req))
2976 return PTR_ERR(osd_req);
2977
2978 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
2979 ret = rbd_osd_setup_stat(osd_req, which++);
2980 if (ret)
2981 return ret;
2982 }
2983
2984 rbd_osd_setup_write_ops(osd_req, which);
2985 rbd_osd_format_write(osd_req);
2986
2987 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2988 if (ret)
2989 return ret;
2990
2991 rbd_osd_submit(osd_req);
2992 return 0;
2993 }
2994
2995 /*
2996 * copyup_bvecs pages are never highmem pages
2997 */
is_zero_bvecs(struct bio_vec * bvecs,u32 bytes)2998 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
2999 {
3000 struct ceph_bvec_iter it = {
3001 .bvecs = bvecs,
3002 .iter = { .bi_size = bytes },
3003 };
3004
3005 ceph_bvec_iter_advance_step(&it, bytes, ({
3006 if (memchr_inv(bvec_virt(&bv), 0, bv.bv_len))
3007 return false;
3008 }));
3009 return true;
3010 }
3011
3012 #define MODS_ONLY U32_MAX
3013
rbd_obj_copyup_empty_snapc(struct rbd_obj_request * obj_req,u32 bytes)3014 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3015 u32 bytes)
3016 {
3017 struct ceph_osd_request *osd_req;
3018 int ret;
3019
3020 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3021 rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3022
3023 osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3024 if (IS_ERR(osd_req))
3025 return PTR_ERR(osd_req);
3026
3027 ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3028 if (ret)
3029 return ret;
3030
3031 rbd_osd_format_write(osd_req);
3032
3033 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3034 if (ret)
3035 return ret;
3036
3037 rbd_osd_submit(osd_req);
3038 return 0;
3039 }
3040
rbd_obj_copyup_current_snapc(struct rbd_obj_request * obj_req,u32 bytes)3041 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3042 u32 bytes)
3043 {
3044 struct ceph_osd_request *osd_req;
3045 int num_ops = count_write_ops(obj_req);
3046 int which = 0;
3047 int ret;
3048
3049 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3050
3051 if (bytes != MODS_ONLY)
3052 num_ops++; /* copyup */
3053
3054 osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3055 if (IS_ERR(osd_req))
3056 return PTR_ERR(osd_req);
3057
3058 if (bytes != MODS_ONLY) {
3059 ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3060 if (ret)
3061 return ret;
3062 }
3063
3064 rbd_osd_setup_write_ops(osd_req, which);
3065 rbd_osd_format_write(osd_req);
3066
3067 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3068 if (ret)
3069 return ret;
3070
3071 rbd_osd_submit(osd_req);
3072 return 0;
3073 }
3074
setup_copyup_bvecs(struct rbd_obj_request * obj_req,u64 obj_overlap)3075 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3076 {
3077 u32 i;
3078
3079 rbd_assert(!obj_req->copyup_bvecs);
3080 obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3081 obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3082 sizeof(*obj_req->copyup_bvecs),
3083 GFP_NOIO);
3084 if (!obj_req->copyup_bvecs)
3085 return -ENOMEM;
3086
3087 for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3088 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3089 struct page *page = alloc_page(GFP_NOIO);
3090
3091 if (!page)
3092 return -ENOMEM;
3093
3094 bvec_set_page(&obj_req->copyup_bvecs[i], page, len, 0);
3095 obj_overlap -= len;
3096 }
3097
3098 rbd_assert(!obj_overlap);
3099 return 0;
3100 }
3101
3102 /*
3103 * The target object doesn't exist. Read the data for the entire
3104 * target object up to the overlap point (if any) from the parent,
3105 * so we can use it for a copyup.
3106 */
rbd_obj_copyup_read_parent(struct rbd_obj_request * obj_req)3107 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3108 {
3109 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3110 int ret;
3111
3112 rbd_assert(obj_req->num_img_extents);
3113 prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3114 rbd_dev->parent_overlap);
3115 if (!obj_req->num_img_extents) {
3116 /*
3117 * The overlap has become 0 (most likely because the
3118 * image has been flattened). Re-submit the original write
3119 * request -- pass MODS_ONLY since the copyup isn't needed
3120 * anymore.
3121 */
3122 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3123 }
3124
3125 ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3126 if (ret)
3127 return ret;
3128
3129 return rbd_obj_read_from_parent(obj_req);
3130 }
3131
rbd_obj_copyup_object_maps(struct rbd_obj_request * obj_req)3132 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3133 {
3134 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3135 struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3136 u8 new_state;
3137 u32 i;
3138 int ret;
3139
3140 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3141
3142 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3143 return;
3144
3145 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3146 return;
3147
3148 for (i = 0; i < snapc->num_snaps; i++) {
3149 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3150 i + 1 < snapc->num_snaps)
3151 new_state = OBJECT_EXISTS_CLEAN;
3152 else
3153 new_state = OBJECT_EXISTS;
3154
3155 ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3156 new_state, NULL);
3157 if (ret < 0) {
3158 obj_req->pending.result = ret;
3159 return;
3160 }
3161
3162 rbd_assert(!ret);
3163 obj_req->pending.num_pending++;
3164 }
3165 }
3166
rbd_obj_copyup_write_object(struct rbd_obj_request * obj_req)3167 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3168 {
3169 u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3170 int ret;
3171
3172 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3173
3174 /*
3175 * Only send non-zero copyup data to save some I/O and network
3176 * bandwidth -- zero copyup data is equivalent to the object not
3177 * existing.
3178 */
3179 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3180 bytes = 0;
3181
3182 if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3183 /*
3184 * Send a copyup request with an empty snapshot context to
3185 * deep-copyup the object through all existing snapshots.
3186 * A second request with the current snapshot context will be
3187 * sent for the actual modification.
3188 */
3189 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3190 if (ret) {
3191 obj_req->pending.result = ret;
3192 return;
3193 }
3194
3195 obj_req->pending.num_pending++;
3196 bytes = MODS_ONLY;
3197 }
3198
3199 ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3200 if (ret) {
3201 obj_req->pending.result = ret;
3202 return;
3203 }
3204
3205 obj_req->pending.num_pending++;
3206 }
3207
rbd_obj_advance_copyup(struct rbd_obj_request * obj_req,int * result)3208 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3209 {
3210 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3211 int ret;
3212
3213 again:
3214 switch (obj_req->copyup_state) {
3215 case RBD_OBJ_COPYUP_START:
3216 rbd_assert(!*result);
3217
3218 ret = rbd_obj_copyup_read_parent(obj_req);
3219 if (ret) {
3220 *result = ret;
3221 return true;
3222 }
3223 if (obj_req->num_img_extents)
3224 obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3225 else
3226 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3227 return false;
3228 case RBD_OBJ_COPYUP_READ_PARENT:
3229 if (*result)
3230 return true;
3231
3232 if (is_zero_bvecs(obj_req->copyup_bvecs,
3233 rbd_obj_img_extents_bytes(obj_req))) {
3234 dout("%s %p detected zeros\n", __func__, obj_req);
3235 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3236 }
3237
3238 rbd_obj_copyup_object_maps(obj_req);
3239 if (!obj_req->pending.num_pending) {
3240 *result = obj_req->pending.result;
3241 obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3242 goto again;
3243 }
3244 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3245 return false;
3246 case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3247 if (!pending_result_dec(&obj_req->pending, result))
3248 return false;
3249 fallthrough;
3250 case RBD_OBJ_COPYUP_OBJECT_MAPS:
3251 if (*result) {
3252 rbd_warn(rbd_dev, "snap object map update failed: %d",
3253 *result);
3254 return true;
3255 }
3256
3257 rbd_obj_copyup_write_object(obj_req);
3258 if (!obj_req->pending.num_pending) {
3259 *result = obj_req->pending.result;
3260 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3261 goto again;
3262 }
3263 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3264 return false;
3265 case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3266 if (!pending_result_dec(&obj_req->pending, result))
3267 return false;
3268 fallthrough;
3269 case RBD_OBJ_COPYUP_WRITE_OBJECT:
3270 return true;
3271 default:
3272 BUG();
3273 }
3274 }
3275
3276 /*
3277 * Return:
3278 * 0 - object map update sent
3279 * 1 - object map update isn't needed
3280 * <0 - error
3281 */
rbd_obj_write_post_object_map(struct rbd_obj_request * obj_req)3282 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3283 {
3284 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3285 u8 current_state = OBJECT_PENDING;
3286
3287 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3288 return 1;
3289
3290 if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3291 return 1;
3292
3293 return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3294 ¤t_state);
3295 }
3296
rbd_obj_advance_write(struct rbd_obj_request * obj_req,int * result)3297 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3298 {
3299 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3300 int ret;
3301
3302 again:
3303 switch (obj_req->write_state) {
3304 case RBD_OBJ_WRITE_START:
3305 rbd_assert(!*result);
3306
3307 rbd_obj_set_copyup_enabled(obj_req);
3308 if (rbd_obj_write_is_noop(obj_req))
3309 return true;
3310
3311 ret = rbd_obj_write_pre_object_map(obj_req);
3312 if (ret < 0) {
3313 *result = ret;
3314 return true;
3315 }
3316 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3317 if (ret > 0)
3318 goto again;
3319 return false;
3320 case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3321 if (*result) {
3322 rbd_warn(rbd_dev, "pre object map update failed: %d",
3323 *result);
3324 return true;
3325 }
3326 ret = rbd_obj_write_object(obj_req);
3327 if (ret) {
3328 *result = ret;
3329 return true;
3330 }
3331 obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3332 return false;
3333 case RBD_OBJ_WRITE_OBJECT:
3334 if (*result == -ENOENT) {
3335 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3336 *result = 0;
3337 obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3338 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3339 goto again;
3340 }
3341 /*
3342 * On a non-existent object:
3343 * delete - -ENOENT, truncate/zero - 0
3344 */
3345 if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3346 *result = 0;
3347 }
3348 if (*result)
3349 return true;
3350
3351 obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3352 goto again;
3353 case __RBD_OBJ_WRITE_COPYUP:
3354 if (!rbd_obj_advance_copyup(obj_req, result))
3355 return false;
3356 fallthrough;
3357 case RBD_OBJ_WRITE_COPYUP:
3358 if (*result) {
3359 rbd_warn(rbd_dev, "copyup failed: %d", *result);
3360 return true;
3361 }
3362 ret = rbd_obj_write_post_object_map(obj_req);
3363 if (ret < 0) {
3364 *result = ret;
3365 return true;
3366 }
3367 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3368 if (ret > 0)
3369 goto again;
3370 return false;
3371 case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3372 if (*result)
3373 rbd_warn(rbd_dev, "post object map update failed: %d",
3374 *result);
3375 return true;
3376 default:
3377 BUG();
3378 }
3379 }
3380
3381 /*
3382 * Return true if @obj_req is completed.
3383 */
__rbd_obj_handle_request(struct rbd_obj_request * obj_req,int * result)3384 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3385 int *result)
3386 {
3387 struct rbd_img_request *img_req = obj_req->img_request;
3388 struct rbd_device *rbd_dev = img_req->rbd_dev;
3389 bool done;
3390
3391 mutex_lock(&obj_req->state_mutex);
3392 if (!rbd_img_is_write(img_req))
3393 done = rbd_obj_advance_read(obj_req, result);
3394 else
3395 done = rbd_obj_advance_write(obj_req, result);
3396 mutex_unlock(&obj_req->state_mutex);
3397
3398 if (done && *result) {
3399 rbd_assert(*result < 0);
3400 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3401 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3402 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3403 }
3404 return done;
3405 }
3406
3407 /*
3408 * This is open-coded in rbd_img_handle_request() to avoid parent chain
3409 * recursion.
3410 */
rbd_obj_handle_request(struct rbd_obj_request * obj_req,int result)3411 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3412 {
3413 if (__rbd_obj_handle_request(obj_req, &result))
3414 rbd_img_handle_request(obj_req->img_request, result);
3415 }
3416
need_exclusive_lock(struct rbd_img_request * img_req)3417 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3418 {
3419 struct rbd_device *rbd_dev = img_req->rbd_dev;
3420
3421 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3422 return false;
3423
3424 if (rbd_is_ro(rbd_dev))
3425 return false;
3426
3427 rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3428 if (rbd_dev->opts->lock_on_read ||
3429 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3430 return true;
3431
3432 return rbd_img_is_write(img_req);
3433 }
3434
rbd_lock_add_request(struct rbd_img_request * img_req)3435 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3436 {
3437 struct rbd_device *rbd_dev = img_req->rbd_dev;
3438 bool locked;
3439
3440 lockdep_assert_held(&rbd_dev->lock_rwsem);
3441 locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3442 spin_lock(&rbd_dev->lock_lists_lock);
3443 rbd_assert(list_empty(&img_req->lock_item));
3444 if (!locked)
3445 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3446 else
3447 list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3448 spin_unlock(&rbd_dev->lock_lists_lock);
3449 return locked;
3450 }
3451
rbd_lock_del_request(struct rbd_img_request * img_req)3452 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3453 {
3454 struct rbd_device *rbd_dev = img_req->rbd_dev;
3455 bool need_wakeup;
3456
3457 lockdep_assert_held(&rbd_dev->lock_rwsem);
3458 spin_lock(&rbd_dev->lock_lists_lock);
3459 rbd_assert(!list_empty(&img_req->lock_item));
3460 list_del_init(&img_req->lock_item);
3461 need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3462 list_empty(&rbd_dev->running_list));
3463 spin_unlock(&rbd_dev->lock_lists_lock);
3464 if (need_wakeup)
3465 complete(&rbd_dev->releasing_wait);
3466 }
3467
rbd_img_exclusive_lock(struct rbd_img_request * img_req)3468 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3469 {
3470 struct rbd_device *rbd_dev = img_req->rbd_dev;
3471
3472 if (!need_exclusive_lock(img_req))
3473 return 1;
3474
3475 if (rbd_lock_add_request(img_req))
3476 return 1;
3477
3478 if (rbd_dev->opts->exclusive) {
3479 WARN_ON(1); /* lock got released? */
3480 return -EROFS;
3481 }
3482
3483 /*
3484 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3485 * and cancel_delayed_work() in wake_lock_waiters().
3486 */
3487 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3488 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3489 return 0;
3490 }
3491
rbd_img_object_requests(struct rbd_img_request * img_req)3492 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3493 {
3494 struct rbd_device *rbd_dev = img_req->rbd_dev;
3495 struct rbd_obj_request *obj_req;
3496
3497 rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3498 rbd_assert(!need_exclusive_lock(img_req) ||
3499 __rbd_is_lock_owner(rbd_dev));
3500
3501 if (rbd_img_is_write(img_req)) {
3502 rbd_assert(!img_req->snapc);
3503 down_read(&rbd_dev->header_rwsem);
3504 img_req->snapc = ceph_get_snap_context(rbd_dev->header.snapc);
3505 up_read(&rbd_dev->header_rwsem);
3506 }
3507
3508 for_each_obj_request(img_req, obj_req) {
3509 int result = 0;
3510
3511 if (__rbd_obj_handle_request(obj_req, &result)) {
3512 if (result) {
3513 img_req->pending.result = result;
3514 return;
3515 }
3516 } else {
3517 img_req->pending.num_pending++;
3518 }
3519 }
3520 }
3521
rbd_img_advance(struct rbd_img_request * img_req,int * result)3522 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3523 {
3524 int ret;
3525
3526 again:
3527 switch (img_req->state) {
3528 case RBD_IMG_START:
3529 rbd_assert(!*result);
3530
3531 ret = rbd_img_exclusive_lock(img_req);
3532 if (ret < 0) {
3533 *result = ret;
3534 return true;
3535 }
3536 img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3537 if (ret > 0)
3538 goto again;
3539 return false;
3540 case RBD_IMG_EXCLUSIVE_LOCK:
3541 if (*result)
3542 return true;
3543
3544 rbd_img_object_requests(img_req);
3545 if (!img_req->pending.num_pending) {
3546 *result = img_req->pending.result;
3547 img_req->state = RBD_IMG_OBJECT_REQUESTS;
3548 goto again;
3549 }
3550 img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3551 return false;
3552 case __RBD_IMG_OBJECT_REQUESTS:
3553 if (!pending_result_dec(&img_req->pending, result))
3554 return false;
3555 fallthrough;
3556 case RBD_IMG_OBJECT_REQUESTS:
3557 return true;
3558 default:
3559 BUG();
3560 }
3561 }
3562
3563 /*
3564 * Return true if @img_req is completed.
3565 */
__rbd_img_handle_request(struct rbd_img_request * img_req,int * result)3566 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3567 int *result)
3568 {
3569 struct rbd_device *rbd_dev = img_req->rbd_dev;
3570 bool done;
3571
3572 if (need_exclusive_lock(img_req)) {
3573 down_read(&rbd_dev->lock_rwsem);
3574 mutex_lock(&img_req->state_mutex);
3575 done = rbd_img_advance(img_req, result);
3576 if (done)
3577 rbd_lock_del_request(img_req);
3578 mutex_unlock(&img_req->state_mutex);
3579 up_read(&rbd_dev->lock_rwsem);
3580 } else {
3581 mutex_lock(&img_req->state_mutex);
3582 done = rbd_img_advance(img_req, result);
3583 mutex_unlock(&img_req->state_mutex);
3584 }
3585
3586 if (done && *result) {
3587 rbd_assert(*result < 0);
3588 rbd_warn(rbd_dev, "%s%s result %d",
3589 test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3590 obj_op_name(img_req->op_type), *result);
3591 }
3592 return done;
3593 }
3594
rbd_img_handle_request(struct rbd_img_request * img_req,int result)3595 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3596 {
3597 again:
3598 if (!__rbd_img_handle_request(img_req, &result))
3599 return;
3600
3601 if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3602 struct rbd_obj_request *obj_req = img_req->obj_request;
3603
3604 rbd_img_request_destroy(img_req);
3605 if (__rbd_obj_handle_request(obj_req, &result)) {
3606 img_req = obj_req->img_request;
3607 goto again;
3608 }
3609 } else {
3610 struct request *rq = blk_mq_rq_from_pdu(img_req);
3611
3612 rbd_img_request_destroy(img_req);
3613 blk_mq_end_request(rq, errno_to_blk_status(result));
3614 }
3615 }
3616
3617 static const struct rbd_client_id rbd_empty_cid;
3618
rbd_cid_equal(const struct rbd_client_id * lhs,const struct rbd_client_id * rhs)3619 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3620 const struct rbd_client_id *rhs)
3621 {
3622 return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3623 }
3624
rbd_get_cid(struct rbd_device * rbd_dev)3625 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3626 {
3627 struct rbd_client_id cid;
3628
3629 mutex_lock(&rbd_dev->watch_mutex);
3630 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3631 cid.handle = rbd_dev->watch_cookie;
3632 mutex_unlock(&rbd_dev->watch_mutex);
3633 return cid;
3634 }
3635
3636 /*
3637 * lock_rwsem must be held for write
3638 */
rbd_set_owner_cid(struct rbd_device * rbd_dev,const struct rbd_client_id * cid)3639 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3640 const struct rbd_client_id *cid)
3641 {
3642 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3643 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3644 cid->gid, cid->handle);
3645 rbd_dev->owner_cid = *cid; /* struct */
3646 }
3647
format_lock_cookie(struct rbd_device * rbd_dev,char * buf)3648 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3649 {
3650 mutex_lock(&rbd_dev->watch_mutex);
3651 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3652 mutex_unlock(&rbd_dev->watch_mutex);
3653 }
3654
__rbd_lock(struct rbd_device * rbd_dev,const char * cookie)3655 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3656 {
3657 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3658
3659 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3660 strcpy(rbd_dev->lock_cookie, cookie);
3661 rbd_set_owner_cid(rbd_dev, &cid);
3662 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3663 }
3664
3665 /*
3666 * lock_rwsem must be held for write
3667 */
rbd_lock(struct rbd_device * rbd_dev)3668 static int rbd_lock(struct rbd_device *rbd_dev)
3669 {
3670 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3671 char cookie[32];
3672 int ret;
3673
3674 WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3675 rbd_dev->lock_cookie[0] != '\0');
3676
3677 format_lock_cookie(rbd_dev, cookie);
3678 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3679 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3680 RBD_LOCK_TAG, "", 0);
3681 if (ret && ret != -EEXIST)
3682 return ret;
3683
3684 __rbd_lock(rbd_dev, cookie);
3685 return 0;
3686 }
3687
3688 /*
3689 * lock_rwsem must be held for write
3690 */
rbd_unlock(struct rbd_device * rbd_dev)3691 static void rbd_unlock(struct rbd_device *rbd_dev)
3692 {
3693 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3694 int ret;
3695
3696 WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3697 rbd_dev->lock_cookie[0] == '\0');
3698
3699 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3700 RBD_LOCK_NAME, rbd_dev->lock_cookie);
3701 if (ret && ret != -ENOENT)
3702 rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3703
3704 /* treat errors as the image is unlocked */
3705 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3706 rbd_dev->lock_cookie[0] = '\0';
3707 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3708 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3709 }
3710
__rbd_notify_op_lock(struct rbd_device * rbd_dev,enum rbd_notify_op notify_op,struct page *** preply_pages,size_t * preply_len)3711 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3712 enum rbd_notify_op notify_op,
3713 struct page ***preply_pages,
3714 size_t *preply_len)
3715 {
3716 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3717 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3718 char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3719 int buf_size = sizeof(buf);
3720 void *p = buf;
3721
3722 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3723
3724 /* encode *LockPayload NotifyMessage (op + ClientId) */
3725 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3726 ceph_encode_32(&p, notify_op);
3727 ceph_encode_64(&p, cid.gid);
3728 ceph_encode_64(&p, cid.handle);
3729
3730 return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3731 &rbd_dev->header_oloc, buf, buf_size,
3732 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3733 }
3734
rbd_notify_op_lock(struct rbd_device * rbd_dev,enum rbd_notify_op notify_op)3735 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3736 enum rbd_notify_op notify_op)
3737 {
3738 __rbd_notify_op_lock(rbd_dev, notify_op, NULL, NULL);
3739 }
3740
rbd_notify_acquired_lock(struct work_struct * work)3741 static void rbd_notify_acquired_lock(struct work_struct *work)
3742 {
3743 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3744 acquired_lock_work);
3745
3746 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3747 }
3748
rbd_notify_released_lock(struct work_struct * work)3749 static void rbd_notify_released_lock(struct work_struct *work)
3750 {
3751 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3752 released_lock_work);
3753
3754 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3755 }
3756
rbd_request_lock(struct rbd_device * rbd_dev)3757 static int rbd_request_lock(struct rbd_device *rbd_dev)
3758 {
3759 struct page **reply_pages;
3760 size_t reply_len;
3761 bool lock_owner_responded = false;
3762 int ret;
3763
3764 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3765
3766 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3767 &reply_pages, &reply_len);
3768 if (ret && ret != -ETIMEDOUT) {
3769 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3770 goto out;
3771 }
3772
3773 if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3774 void *p = page_address(reply_pages[0]);
3775 void *const end = p + reply_len;
3776 u32 n;
3777
3778 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3779 while (n--) {
3780 u8 struct_v;
3781 u32 len;
3782
3783 ceph_decode_need(&p, end, 8 + 8, e_inval);
3784 p += 8 + 8; /* skip gid and cookie */
3785
3786 ceph_decode_32_safe(&p, end, len, e_inval);
3787 if (!len)
3788 continue;
3789
3790 if (lock_owner_responded) {
3791 rbd_warn(rbd_dev,
3792 "duplicate lock owners detected");
3793 ret = -EIO;
3794 goto out;
3795 }
3796
3797 lock_owner_responded = true;
3798 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3799 &struct_v, &len);
3800 if (ret) {
3801 rbd_warn(rbd_dev,
3802 "failed to decode ResponseMessage: %d",
3803 ret);
3804 goto e_inval;
3805 }
3806
3807 ret = ceph_decode_32(&p);
3808 }
3809 }
3810
3811 if (!lock_owner_responded) {
3812 rbd_warn(rbd_dev, "no lock owners detected");
3813 ret = -ETIMEDOUT;
3814 }
3815
3816 out:
3817 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3818 return ret;
3819
3820 e_inval:
3821 ret = -EINVAL;
3822 goto out;
3823 }
3824
3825 /*
3826 * Either image request state machine(s) or rbd_add_acquire_lock()
3827 * (i.e. "rbd map").
3828 */
wake_lock_waiters(struct rbd_device * rbd_dev,int result)3829 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3830 {
3831 struct rbd_img_request *img_req;
3832
3833 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3834 lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3835
3836 cancel_delayed_work(&rbd_dev->lock_dwork);
3837 if (!completion_done(&rbd_dev->acquire_wait)) {
3838 rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3839 list_empty(&rbd_dev->running_list));
3840 rbd_dev->acquire_err = result;
3841 complete_all(&rbd_dev->acquire_wait);
3842 return;
3843 }
3844
3845 list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3846 mutex_lock(&img_req->state_mutex);
3847 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3848 rbd_img_schedule(img_req, result);
3849 mutex_unlock(&img_req->state_mutex);
3850 }
3851
3852 list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3853 }
3854
locker_equal(const struct ceph_locker * lhs,const struct ceph_locker * rhs)3855 static bool locker_equal(const struct ceph_locker *lhs,
3856 const struct ceph_locker *rhs)
3857 {
3858 return lhs->id.name.type == rhs->id.name.type &&
3859 lhs->id.name.num == rhs->id.name.num &&
3860 !strcmp(lhs->id.cookie, rhs->id.cookie) &&
3861 ceph_addr_equal_no_type(&lhs->info.addr, &rhs->info.addr);
3862 }
3863
free_locker(struct ceph_locker * locker)3864 static void free_locker(struct ceph_locker *locker)
3865 {
3866 if (locker)
3867 ceph_free_lockers(locker, 1);
3868 }
3869
get_lock_owner_info(struct rbd_device * rbd_dev)3870 static struct ceph_locker *get_lock_owner_info(struct rbd_device *rbd_dev)
3871 {
3872 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3873 struct ceph_locker *lockers;
3874 u32 num_lockers;
3875 u8 lock_type;
3876 char *lock_tag;
3877 u64 handle;
3878 int ret;
3879
3880 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3881 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3882 &lock_type, &lock_tag, &lockers, &num_lockers);
3883 if (ret) {
3884 rbd_warn(rbd_dev, "failed to get header lockers: %d", ret);
3885 return ERR_PTR(ret);
3886 }
3887
3888 if (num_lockers == 0) {
3889 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
3890 lockers = NULL;
3891 goto out;
3892 }
3893
3894 if (strcmp(lock_tag, RBD_LOCK_TAG)) {
3895 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
3896 lock_tag);
3897 goto err_busy;
3898 }
3899
3900 if (lock_type != CEPH_CLS_LOCK_EXCLUSIVE) {
3901 rbd_warn(rbd_dev, "incompatible lock type detected");
3902 goto err_busy;
3903 }
3904
3905 WARN_ON(num_lockers != 1);
3906 ret = sscanf(lockers[0].id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu",
3907 &handle);
3908 if (ret != 1) {
3909 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
3910 lockers[0].id.cookie);
3911 goto err_busy;
3912 }
3913 if (ceph_addr_is_blank(&lockers[0].info.addr)) {
3914 rbd_warn(rbd_dev, "locker has a blank address");
3915 goto err_busy;
3916 }
3917
3918 dout("%s rbd_dev %p got locker %s%llu@%pISpc/%u handle %llu\n",
3919 __func__, rbd_dev, ENTITY_NAME(lockers[0].id.name),
3920 &lockers[0].info.addr.in_addr,
3921 le32_to_cpu(lockers[0].info.addr.nonce), handle);
3922
3923 out:
3924 kfree(lock_tag);
3925 return lockers;
3926
3927 err_busy:
3928 kfree(lock_tag);
3929 ceph_free_lockers(lockers, num_lockers);
3930 return ERR_PTR(-EBUSY);
3931 }
3932
find_watcher(struct rbd_device * rbd_dev,const struct ceph_locker * locker)3933 static int find_watcher(struct rbd_device *rbd_dev,
3934 const struct ceph_locker *locker)
3935 {
3936 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3937 struct ceph_watch_item *watchers;
3938 u32 num_watchers;
3939 u64 cookie;
3940 int i;
3941 int ret;
3942
3943 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
3944 &rbd_dev->header_oloc, &watchers,
3945 &num_watchers);
3946 if (ret) {
3947 rbd_warn(rbd_dev, "failed to get watchers: %d", ret);
3948 return ret;
3949 }
3950
3951 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
3952 for (i = 0; i < num_watchers; i++) {
3953 /*
3954 * Ignore addr->type while comparing. This mimics
3955 * entity_addr_t::get_legacy_str() + strcmp().
3956 */
3957 if (ceph_addr_equal_no_type(&watchers[i].addr,
3958 &locker->info.addr) &&
3959 watchers[i].cookie == cookie) {
3960 struct rbd_client_id cid = {
3961 .gid = le64_to_cpu(watchers[i].name.num),
3962 .handle = cookie,
3963 };
3964
3965 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
3966 rbd_dev, cid.gid, cid.handle);
3967 rbd_set_owner_cid(rbd_dev, &cid);
3968 ret = 1;
3969 goto out;
3970 }
3971 }
3972
3973 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
3974 ret = 0;
3975 out:
3976 kfree(watchers);
3977 return ret;
3978 }
3979
3980 /*
3981 * lock_rwsem must be held for write
3982 */
rbd_try_lock(struct rbd_device * rbd_dev)3983 static int rbd_try_lock(struct rbd_device *rbd_dev)
3984 {
3985 struct ceph_client *client = rbd_dev->rbd_client->client;
3986 struct ceph_locker *locker, *refreshed_locker;
3987 int ret;
3988
3989 for (;;) {
3990 locker = refreshed_locker = NULL;
3991
3992 ret = rbd_lock(rbd_dev);
3993 if (!ret)
3994 goto out;
3995 if (ret != -EBUSY) {
3996 rbd_warn(rbd_dev, "failed to lock header: %d", ret);
3997 goto out;
3998 }
3999
4000 /* determine if the current lock holder is still alive */
4001 locker = get_lock_owner_info(rbd_dev);
4002 if (IS_ERR(locker)) {
4003 ret = PTR_ERR(locker);
4004 locker = NULL;
4005 goto out;
4006 }
4007 if (!locker)
4008 goto again;
4009
4010 ret = find_watcher(rbd_dev, locker);
4011 if (ret)
4012 goto out; /* request lock or error */
4013
4014 refreshed_locker = get_lock_owner_info(rbd_dev);
4015 if (IS_ERR(refreshed_locker)) {
4016 ret = PTR_ERR(refreshed_locker);
4017 refreshed_locker = NULL;
4018 goto out;
4019 }
4020 if (!refreshed_locker ||
4021 !locker_equal(locker, refreshed_locker))
4022 goto again;
4023
4024 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4025 ENTITY_NAME(locker->id.name));
4026
4027 ret = ceph_monc_blocklist_add(&client->monc,
4028 &locker->info.addr);
4029 if (ret) {
4030 rbd_warn(rbd_dev, "failed to blocklist %s%llu: %d",
4031 ENTITY_NAME(locker->id.name), ret);
4032 goto out;
4033 }
4034
4035 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4036 &rbd_dev->header_oloc, RBD_LOCK_NAME,
4037 locker->id.cookie, &locker->id.name);
4038 if (ret && ret != -ENOENT) {
4039 rbd_warn(rbd_dev, "failed to break header lock: %d",
4040 ret);
4041 goto out;
4042 }
4043
4044 again:
4045 free_locker(refreshed_locker);
4046 free_locker(locker);
4047 }
4048
4049 out:
4050 free_locker(refreshed_locker);
4051 free_locker(locker);
4052 return ret;
4053 }
4054
rbd_post_acquire_action(struct rbd_device * rbd_dev)4055 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4056 {
4057 int ret;
4058
4059 ret = rbd_dev_refresh(rbd_dev);
4060 if (ret)
4061 return ret;
4062
4063 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4064 ret = rbd_object_map_open(rbd_dev);
4065 if (ret)
4066 return ret;
4067 }
4068
4069 return 0;
4070 }
4071
4072 /*
4073 * Return:
4074 * 0 - lock acquired
4075 * 1 - caller should call rbd_request_lock()
4076 * <0 - error
4077 */
rbd_try_acquire_lock(struct rbd_device * rbd_dev)4078 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4079 {
4080 int ret;
4081
4082 down_read(&rbd_dev->lock_rwsem);
4083 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4084 rbd_dev->lock_state);
4085 if (__rbd_is_lock_owner(rbd_dev)) {
4086 up_read(&rbd_dev->lock_rwsem);
4087 return 0;
4088 }
4089
4090 up_read(&rbd_dev->lock_rwsem);
4091 down_write(&rbd_dev->lock_rwsem);
4092 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4093 rbd_dev->lock_state);
4094 if (__rbd_is_lock_owner(rbd_dev)) {
4095 up_write(&rbd_dev->lock_rwsem);
4096 return 0;
4097 }
4098
4099 ret = rbd_try_lock(rbd_dev);
4100 if (ret < 0) {
4101 rbd_warn(rbd_dev, "failed to acquire lock: %d", ret);
4102 goto out;
4103 }
4104 if (ret > 0) {
4105 up_write(&rbd_dev->lock_rwsem);
4106 return ret;
4107 }
4108
4109 rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4110 rbd_assert(list_empty(&rbd_dev->running_list));
4111
4112 ret = rbd_post_acquire_action(rbd_dev);
4113 if (ret) {
4114 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4115 /*
4116 * Can't stay in RBD_LOCK_STATE_LOCKED because
4117 * rbd_lock_add_request() would let the request through,
4118 * assuming that e.g. object map is locked and loaded.
4119 */
4120 rbd_unlock(rbd_dev);
4121 }
4122
4123 out:
4124 wake_lock_waiters(rbd_dev, ret);
4125 up_write(&rbd_dev->lock_rwsem);
4126 return ret;
4127 }
4128
rbd_acquire_lock(struct work_struct * work)4129 static void rbd_acquire_lock(struct work_struct *work)
4130 {
4131 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4132 struct rbd_device, lock_dwork);
4133 int ret;
4134
4135 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4136 again:
4137 ret = rbd_try_acquire_lock(rbd_dev);
4138 if (ret <= 0) {
4139 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4140 return;
4141 }
4142
4143 ret = rbd_request_lock(rbd_dev);
4144 if (ret == -ETIMEDOUT) {
4145 goto again; /* treat this as a dead client */
4146 } else if (ret == -EROFS) {
4147 rbd_warn(rbd_dev, "peer will not release lock");
4148 down_write(&rbd_dev->lock_rwsem);
4149 wake_lock_waiters(rbd_dev, ret);
4150 up_write(&rbd_dev->lock_rwsem);
4151 } else if (ret < 0) {
4152 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4153 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4154 RBD_RETRY_DELAY);
4155 } else {
4156 /*
4157 * lock owner acked, but resend if we don't see them
4158 * release the lock
4159 */
4160 dout("%s rbd_dev %p requeuing lock_dwork\n", __func__,
4161 rbd_dev);
4162 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4163 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4164 }
4165 }
4166
rbd_quiesce_lock(struct rbd_device * rbd_dev)4167 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4168 {
4169 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4170 lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4171
4172 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4173 return false;
4174
4175 /*
4176 * Ensure that all in-flight IO is flushed.
4177 */
4178 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4179 rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4180 if (list_empty(&rbd_dev->running_list))
4181 return true;
4182
4183 up_write(&rbd_dev->lock_rwsem);
4184 wait_for_completion(&rbd_dev->releasing_wait);
4185
4186 down_write(&rbd_dev->lock_rwsem);
4187 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4188 return false;
4189
4190 rbd_assert(list_empty(&rbd_dev->running_list));
4191 return true;
4192 }
4193
rbd_pre_release_action(struct rbd_device * rbd_dev)4194 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4195 {
4196 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4197 rbd_object_map_close(rbd_dev);
4198 }
4199
__rbd_release_lock(struct rbd_device * rbd_dev)4200 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4201 {
4202 rbd_assert(list_empty(&rbd_dev->running_list));
4203
4204 rbd_pre_release_action(rbd_dev);
4205 rbd_unlock(rbd_dev);
4206 }
4207
4208 /*
4209 * lock_rwsem must be held for write
4210 */
rbd_release_lock(struct rbd_device * rbd_dev)4211 static void rbd_release_lock(struct rbd_device *rbd_dev)
4212 {
4213 if (!rbd_quiesce_lock(rbd_dev))
4214 return;
4215
4216 __rbd_release_lock(rbd_dev);
4217
4218 /*
4219 * Give others a chance to grab the lock - we would re-acquire
4220 * almost immediately if we got new IO while draining the running
4221 * list otherwise. We need to ack our own notifications, so this
4222 * lock_dwork will be requeued from rbd_handle_released_lock() by
4223 * way of maybe_kick_acquire().
4224 */
4225 cancel_delayed_work(&rbd_dev->lock_dwork);
4226 }
4227
rbd_release_lock_work(struct work_struct * work)4228 static void rbd_release_lock_work(struct work_struct *work)
4229 {
4230 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4231 unlock_work);
4232
4233 down_write(&rbd_dev->lock_rwsem);
4234 rbd_release_lock(rbd_dev);
4235 up_write(&rbd_dev->lock_rwsem);
4236 }
4237
maybe_kick_acquire(struct rbd_device * rbd_dev)4238 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4239 {
4240 bool have_requests;
4241
4242 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4243 if (__rbd_is_lock_owner(rbd_dev))
4244 return;
4245
4246 spin_lock(&rbd_dev->lock_lists_lock);
4247 have_requests = !list_empty(&rbd_dev->acquiring_list);
4248 spin_unlock(&rbd_dev->lock_lists_lock);
4249 if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4250 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4251 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4252 }
4253 }
4254
rbd_handle_acquired_lock(struct rbd_device * rbd_dev,u8 struct_v,void ** p)4255 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4256 void **p)
4257 {
4258 struct rbd_client_id cid = { 0 };
4259
4260 if (struct_v >= 2) {
4261 cid.gid = ceph_decode_64(p);
4262 cid.handle = ceph_decode_64(p);
4263 }
4264
4265 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4266 cid.handle);
4267 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4268 down_write(&rbd_dev->lock_rwsem);
4269 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4270 dout("%s rbd_dev %p cid %llu-%llu == owner_cid\n",
4271 __func__, rbd_dev, cid.gid, cid.handle);
4272 } else {
4273 rbd_set_owner_cid(rbd_dev, &cid);
4274 }
4275 downgrade_write(&rbd_dev->lock_rwsem);
4276 } else {
4277 down_read(&rbd_dev->lock_rwsem);
4278 }
4279
4280 maybe_kick_acquire(rbd_dev);
4281 up_read(&rbd_dev->lock_rwsem);
4282 }
4283
rbd_handle_released_lock(struct rbd_device * rbd_dev,u8 struct_v,void ** p)4284 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4285 void **p)
4286 {
4287 struct rbd_client_id cid = { 0 };
4288
4289 if (struct_v >= 2) {
4290 cid.gid = ceph_decode_64(p);
4291 cid.handle = ceph_decode_64(p);
4292 }
4293
4294 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4295 cid.handle);
4296 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4297 down_write(&rbd_dev->lock_rwsem);
4298 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4299 dout("%s rbd_dev %p cid %llu-%llu != owner_cid %llu-%llu\n",
4300 __func__, rbd_dev, cid.gid, cid.handle,
4301 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4302 } else {
4303 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4304 }
4305 downgrade_write(&rbd_dev->lock_rwsem);
4306 } else {
4307 down_read(&rbd_dev->lock_rwsem);
4308 }
4309
4310 maybe_kick_acquire(rbd_dev);
4311 up_read(&rbd_dev->lock_rwsem);
4312 }
4313
4314 /*
4315 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4316 * ResponseMessage is needed.
4317 */
rbd_handle_request_lock(struct rbd_device * rbd_dev,u8 struct_v,void ** p)4318 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4319 void **p)
4320 {
4321 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4322 struct rbd_client_id cid = { 0 };
4323 int result = 1;
4324
4325 if (struct_v >= 2) {
4326 cid.gid = ceph_decode_64(p);
4327 cid.handle = ceph_decode_64(p);
4328 }
4329
4330 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4331 cid.handle);
4332 if (rbd_cid_equal(&cid, &my_cid))
4333 return result;
4334
4335 down_read(&rbd_dev->lock_rwsem);
4336 if (__rbd_is_lock_owner(rbd_dev)) {
4337 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4338 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4339 goto out_unlock;
4340
4341 /*
4342 * encode ResponseMessage(0) so the peer can detect
4343 * a missing owner
4344 */
4345 result = 0;
4346
4347 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4348 if (!rbd_dev->opts->exclusive) {
4349 dout("%s rbd_dev %p queueing unlock_work\n",
4350 __func__, rbd_dev);
4351 queue_work(rbd_dev->task_wq,
4352 &rbd_dev->unlock_work);
4353 } else {
4354 /* refuse to release the lock */
4355 result = -EROFS;
4356 }
4357 }
4358 }
4359
4360 out_unlock:
4361 up_read(&rbd_dev->lock_rwsem);
4362 return result;
4363 }
4364
__rbd_acknowledge_notify(struct rbd_device * rbd_dev,u64 notify_id,u64 cookie,s32 * result)4365 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4366 u64 notify_id, u64 cookie, s32 *result)
4367 {
4368 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4369 char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4370 int buf_size = sizeof(buf);
4371 int ret;
4372
4373 if (result) {
4374 void *p = buf;
4375
4376 /* encode ResponseMessage */
4377 ceph_start_encoding(&p, 1, 1,
4378 buf_size - CEPH_ENCODING_START_BLK_LEN);
4379 ceph_encode_32(&p, *result);
4380 } else {
4381 buf_size = 0;
4382 }
4383
4384 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4385 &rbd_dev->header_oloc, notify_id, cookie,
4386 buf, buf_size);
4387 if (ret)
4388 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4389 }
4390
rbd_acknowledge_notify(struct rbd_device * rbd_dev,u64 notify_id,u64 cookie)4391 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4392 u64 cookie)
4393 {
4394 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4395 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4396 }
4397
rbd_acknowledge_notify_result(struct rbd_device * rbd_dev,u64 notify_id,u64 cookie,s32 result)4398 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4399 u64 notify_id, u64 cookie, s32 result)
4400 {
4401 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4402 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4403 }
4404
rbd_watch_cb(void * arg,u64 notify_id,u64 cookie,u64 notifier_id,void * data,size_t data_len)4405 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4406 u64 notifier_id, void *data, size_t data_len)
4407 {
4408 struct rbd_device *rbd_dev = arg;
4409 void *p = data;
4410 void *const end = p + data_len;
4411 u8 struct_v = 0;
4412 u32 len;
4413 u32 notify_op;
4414 int ret;
4415
4416 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4417 __func__, rbd_dev, cookie, notify_id, data_len);
4418 if (data_len) {
4419 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4420 &struct_v, &len);
4421 if (ret) {
4422 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4423 ret);
4424 return;
4425 }
4426
4427 notify_op = ceph_decode_32(&p);
4428 } else {
4429 /* legacy notification for header updates */
4430 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4431 len = 0;
4432 }
4433
4434 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4435 switch (notify_op) {
4436 case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4437 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4438 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4439 break;
4440 case RBD_NOTIFY_OP_RELEASED_LOCK:
4441 rbd_handle_released_lock(rbd_dev, struct_v, &p);
4442 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4443 break;
4444 case RBD_NOTIFY_OP_REQUEST_LOCK:
4445 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4446 if (ret <= 0)
4447 rbd_acknowledge_notify_result(rbd_dev, notify_id,
4448 cookie, ret);
4449 else
4450 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4451 break;
4452 case RBD_NOTIFY_OP_HEADER_UPDATE:
4453 ret = rbd_dev_refresh(rbd_dev);
4454 if (ret)
4455 rbd_warn(rbd_dev, "refresh failed: %d", ret);
4456
4457 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4458 break;
4459 default:
4460 if (rbd_is_lock_owner(rbd_dev))
4461 rbd_acknowledge_notify_result(rbd_dev, notify_id,
4462 cookie, -EOPNOTSUPP);
4463 else
4464 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4465 break;
4466 }
4467 }
4468
4469 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4470
rbd_watch_errcb(void * arg,u64 cookie,int err)4471 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4472 {
4473 struct rbd_device *rbd_dev = arg;
4474
4475 rbd_warn(rbd_dev, "encountered watch error: %d", err);
4476
4477 down_write(&rbd_dev->lock_rwsem);
4478 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4479 up_write(&rbd_dev->lock_rwsem);
4480
4481 mutex_lock(&rbd_dev->watch_mutex);
4482 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4483 __rbd_unregister_watch(rbd_dev);
4484 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4485
4486 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4487 }
4488 mutex_unlock(&rbd_dev->watch_mutex);
4489 }
4490
4491 /*
4492 * watch_mutex must be locked
4493 */
__rbd_register_watch(struct rbd_device * rbd_dev)4494 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4495 {
4496 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4497 struct ceph_osd_linger_request *handle;
4498
4499 rbd_assert(!rbd_dev->watch_handle);
4500 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4501
4502 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4503 &rbd_dev->header_oloc, rbd_watch_cb,
4504 rbd_watch_errcb, rbd_dev);
4505 if (IS_ERR(handle))
4506 return PTR_ERR(handle);
4507
4508 rbd_dev->watch_handle = handle;
4509 return 0;
4510 }
4511
4512 /*
4513 * watch_mutex must be locked
4514 */
__rbd_unregister_watch(struct rbd_device * rbd_dev)4515 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4516 {
4517 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4518 int ret;
4519
4520 rbd_assert(rbd_dev->watch_handle);
4521 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4522
4523 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4524 if (ret)
4525 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4526
4527 rbd_dev->watch_handle = NULL;
4528 }
4529
rbd_register_watch(struct rbd_device * rbd_dev)4530 static int rbd_register_watch(struct rbd_device *rbd_dev)
4531 {
4532 int ret;
4533
4534 mutex_lock(&rbd_dev->watch_mutex);
4535 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4536 ret = __rbd_register_watch(rbd_dev);
4537 if (ret)
4538 goto out;
4539
4540 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4541 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4542
4543 out:
4544 mutex_unlock(&rbd_dev->watch_mutex);
4545 return ret;
4546 }
4547
cancel_tasks_sync(struct rbd_device * rbd_dev)4548 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4549 {
4550 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4551
4552 cancel_work_sync(&rbd_dev->acquired_lock_work);
4553 cancel_work_sync(&rbd_dev->released_lock_work);
4554 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4555 cancel_work_sync(&rbd_dev->unlock_work);
4556 }
4557
4558 /*
4559 * header_rwsem must not be held to avoid a deadlock with
4560 * rbd_dev_refresh() when flushing notifies.
4561 */
rbd_unregister_watch(struct rbd_device * rbd_dev)4562 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4563 {
4564 cancel_tasks_sync(rbd_dev);
4565
4566 mutex_lock(&rbd_dev->watch_mutex);
4567 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4568 __rbd_unregister_watch(rbd_dev);
4569 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4570 mutex_unlock(&rbd_dev->watch_mutex);
4571
4572 cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4573 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4574 }
4575
4576 /*
4577 * lock_rwsem must be held for write
4578 */
rbd_reacquire_lock(struct rbd_device * rbd_dev)4579 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4580 {
4581 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4582 char cookie[32];
4583 int ret;
4584
4585 if (!rbd_quiesce_lock(rbd_dev))
4586 return;
4587
4588 format_lock_cookie(rbd_dev, cookie);
4589 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4590 &rbd_dev->header_oloc, RBD_LOCK_NAME,
4591 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4592 RBD_LOCK_TAG, cookie);
4593 if (ret) {
4594 if (ret != -EOPNOTSUPP)
4595 rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4596 ret);
4597
4598 /*
4599 * Lock cookie cannot be updated on older OSDs, so do
4600 * a manual release and queue an acquire.
4601 */
4602 __rbd_release_lock(rbd_dev);
4603 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4604 } else {
4605 __rbd_lock(rbd_dev, cookie);
4606 wake_lock_waiters(rbd_dev, 0);
4607 }
4608 }
4609
rbd_reregister_watch(struct work_struct * work)4610 static void rbd_reregister_watch(struct work_struct *work)
4611 {
4612 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4613 struct rbd_device, watch_dwork);
4614 int ret;
4615
4616 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4617
4618 mutex_lock(&rbd_dev->watch_mutex);
4619 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4620 mutex_unlock(&rbd_dev->watch_mutex);
4621 return;
4622 }
4623
4624 ret = __rbd_register_watch(rbd_dev);
4625 if (ret) {
4626 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4627 if (ret != -EBLOCKLISTED && ret != -ENOENT) {
4628 queue_delayed_work(rbd_dev->task_wq,
4629 &rbd_dev->watch_dwork,
4630 RBD_RETRY_DELAY);
4631 mutex_unlock(&rbd_dev->watch_mutex);
4632 return;
4633 }
4634
4635 mutex_unlock(&rbd_dev->watch_mutex);
4636 down_write(&rbd_dev->lock_rwsem);
4637 wake_lock_waiters(rbd_dev, ret);
4638 up_write(&rbd_dev->lock_rwsem);
4639 return;
4640 }
4641
4642 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4643 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4644 mutex_unlock(&rbd_dev->watch_mutex);
4645
4646 down_write(&rbd_dev->lock_rwsem);
4647 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4648 rbd_reacquire_lock(rbd_dev);
4649 up_write(&rbd_dev->lock_rwsem);
4650
4651 ret = rbd_dev_refresh(rbd_dev);
4652 if (ret)
4653 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4654 }
4655
4656 /*
4657 * Synchronous osd object method call. Returns the number of bytes
4658 * returned in the outbound buffer, or a negative error code.
4659 */
rbd_obj_method_sync(struct rbd_device * rbd_dev,struct ceph_object_id * oid,struct ceph_object_locator * oloc,const char * method_name,const void * outbound,size_t outbound_size,void * inbound,size_t inbound_size)4660 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4661 struct ceph_object_id *oid,
4662 struct ceph_object_locator *oloc,
4663 const char *method_name,
4664 const void *outbound,
4665 size_t outbound_size,
4666 void *inbound,
4667 size_t inbound_size)
4668 {
4669 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4670 struct page *req_page = NULL;
4671 struct page *reply_page;
4672 int ret;
4673
4674 /*
4675 * Method calls are ultimately read operations. The result
4676 * should placed into the inbound buffer provided. They
4677 * also supply outbound data--parameters for the object
4678 * method. Currently if this is present it will be a
4679 * snapshot id.
4680 */
4681 if (outbound) {
4682 if (outbound_size > PAGE_SIZE)
4683 return -E2BIG;
4684
4685 req_page = alloc_page(GFP_KERNEL);
4686 if (!req_page)
4687 return -ENOMEM;
4688
4689 memcpy(page_address(req_page), outbound, outbound_size);
4690 }
4691
4692 reply_page = alloc_page(GFP_KERNEL);
4693 if (!reply_page) {
4694 if (req_page)
4695 __free_page(req_page);
4696 return -ENOMEM;
4697 }
4698
4699 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4700 CEPH_OSD_FLAG_READ, req_page, outbound_size,
4701 &reply_page, &inbound_size);
4702 if (!ret) {
4703 memcpy(inbound, page_address(reply_page), inbound_size);
4704 ret = inbound_size;
4705 }
4706
4707 if (req_page)
4708 __free_page(req_page);
4709 __free_page(reply_page);
4710 return ret;
4711 }
4712
rbd_queue_workfn(struct work_struct * work)4713 static void rbd_queue_workfn(struct work_struct *work)
4714 {
4715 struct rbd_img_request *img_request =
4716 container_of(work, struct rbd_img_request, work);
4717 struct rbd_device *rbd_dev = img_request->rbd_dev;
4718 enum obj_operation_type op_type = img_request->op_type;
4719 struct request *rq = blk_mq_rq_from_pdu(img_request);
4720 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4721 u64 length = blk_rq_bytes(rq);
4722 u64 mapping_size;
4723 int result;
4724
4725 /* Ignore/skip any zero-length requests */
4726 if (!length) {
4727 dout("%s: zero-length request\n", __func__);
4728 result = 0;
4729 goto err_img_request;
4730 }
4731
4732 blk_mq_start_request(rq);
4733
4734 down_read(&rbd_dev->header_rwsem);
4735 mapping_size = rbd_dev->mapping.size;
4736 rbd_img_capture_header(img_request);
4737 up_read(&rbd_dev->header_rwsem);
4738
4739 if (offset + length > mapping_size) {
4740 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4741 length, mapping_size);
4742 result = -EIO;
4743 goto err_img_request;
4744 }
4745
4746 dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4747 img_request, obj_op_name(op_type), offset, length);
4748
4749 if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4750 result = rbd_img_fill_nodata(img_request, offset, length);
4751 else
4752 result = rbd_img_fill_from_bio(img_request, offset, length,
4753 rq->bio);
4754 if (result)
4755 goto err_img_request;
4756
4757 rbd_img_handle_request(img_request, 0);
4758 return;
4759
4760 err_img_request:
4761 rbd_img_request_destroy(img_request);
4762 if (result)
4763 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4764 obj_op_name(op_type), length, offset, result);
4765 blk_mq_end_request(rq, errno_to_blk_status(result));
4766 }
4767
rbd_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)4768 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4769 const struct blk_mq_queue_data *bd)
4770 {
4771 struct rbd_device *rbd_dev = hctx->queue->queuedata;
4772 struct rbd_img_request *img_req = blk_mq_rq_to_pdu(bd->rq);
4773 enum obj_operation_type op_type;
4774
4775 switch (req_op(bd->rq)) {
4776 case REQ_OP_DISCARD:
4777 op_type = OBJ_OP_DISCARD;
4778 break;
4779 case REQ_OP_WRITE_ZEROES:
4780 op_type = OBJ_OP_ZEROOUT;
4781 break;
4782 case REQ_OP_WRITE:
4783 op_type = OBJ_OP_WRITE;
4784 break;
4785 case REQ_OP_READ:
4786 op_type = OBJ_OP_READ;
4787 break;
4788 default:
4789 rbd_warn(rbd_dev, "unknown req_op %d", req_op(bd->rq));
4790 return BLK_STS_IOERR;
4791 }
4792
4793 rbd_img_request_init(img_req, rbd_dev, op_type);
4794
4795 if (rbd_img_is_write(img_req)) {
4796 if (rbd_is_ro(rbd_dev)) {
4797 rbd_warn(rbd_dev, "%s on read-only mapping",
4798 obj_op_name(img_req->op_type));
4799 return BLK_STS_IOERR;
4800 }
4801 rbd_assert(!rbd_is_snap(rbd_dev));
4802 }
4803
4804 INIT_WORK(&img_req->work, rbd_queue_workfn);
4805 queue_work(rbd_wq, &img_req->work);
4806 return BLK_STS_OK;
4807 }
4808
rbd_free_disk(struct rbd_device * rbd_dev)4809 static void rbd_free_disk(struct rbd_device *rbd_dev)
4810 {
4811 put_disk(rbd_dev->disk);
4812 blk_mq_free_tag_set(&rbd_dev->tag_set);
4813 rbd_dev->disk = NULL;
4814 }
4815
rbd_obj_read_sync(struct rbd_device * rbd_dev,struct ceph_object_id * oid,struct ceph_object_locator * oloc,void * buf,int buf_len)4816 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4817 struct ceph_object_id *oid,
4818 struct ceph_object_locator *oloc,
4819 void *buf, int buf_len)
4820
4821 {
4822 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4823 struct ceph_osd_request *req;
4824 struct page **pages;
4825 int num_pages = calc_pages_for(0, buf_len);
4826 int ret;
4827
4828 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4829 if (!req)
4830 return -ENOMEM;
4831
4832 ceph_oid_copy(&req->r_base_oid, oid);
4833 ceph_oloc_copy(&req->r_base_oloc, oloc);
4834 req->r_flags = CEPH_OSD_FLAG_READ;
4835
4836 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4837 if (IS_ERR(pages)) {
4838 ret = PTR_ERR(pages);
4839 goto out_req;
4840 }
4841
4842 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4843 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4844 true);
4845
4846 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4847 if (ret)
4848 goto out_req;
4849
4850 ceph_osdc_start_request(osdc, req);
4851 ret = ceph_osdc_wait_request(osdc, req);
4852 if (ret >= 0)
4853 ceph_copy_from_page_vector(pages, buf, 0, ret);
4854
4855 out_req:
4856 ceph_osdc_put_request(req);
4857 return ret;
4858 }
4859
4860 /*
4861 * Read the complete header for the given rbd device. On successful
4862 * return, the rbd_dev->header field will contain up-to-date
4863 * information about the image.
4864 */
rbd_dev_v1_header_info(struct rbd_device * rbd_dev,struct rbd_image_header * header,bool first_time)4865 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev,
4866 struct rbd_image_header *header,
4867 bool first_time)
4868 {
4869 struct rbd_image_header_ondisk *ondisk = NULL;
4870 u32 snap_count = 0;
4871 u64 names_size = 0;
4872 u32 want_count;
4873 int ret;
4874
4875 /*
4876 * The complete header will include an array of its 64-bit
4877 * snapshot ids, followed by the names of those snapshots as
4878 * a contiguous block of NUL-terminated strings. Note that
4879 * the number of snapshots could change by the time we read
4880 * it in, in which case we re-read it.
4881 */
4882 do {
4883 size_t size;
4884
4885 kfree(ondisk);
4886
4887 size = sizeof (*ondisk);
4888 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4889 size += names_size;
4890 ondisk = kmalloc(size, GFP_KERNEL);
4891 if (!ondisk)
4892 return -ENOMEM;
4893
4894 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
4895 &rbd_dev->header_oloc, ondisk, size);
4896 if (ret < 0)
4897 goto out;
4898 if ((size_t)ret < size) {
4899 ret = -ENXIO;
4900 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
4901 size, ret);
4902 goto out;
4903 }
4904 if (!rbd_dev_ondisk_valid(ondisk)) {
4905 ret = -ENXIO;
4906 rbd_warn(rbd_dev, "invalid header");
4907 goto out;
4908 }
4909
4910 names_size = le64_to_cpu(ondisk->snap_names_len);
4911 want_count = snap_count;
4912 snap_count = le32_to_cpu(ondisk->snap_count);
4913 } while (snap_count != want_count);
4914
4915 ret = rbd_header_from_disk(header, ondisk, first_time);
4916 out:
4917 kfree(ondisk);
4918
4919 return ret;
4920 }
4921
rbd_dev_update_size(struct rbd_device * rbd_dev)4922 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
4923 {
4924 sector_t size;
4925
4926 /*
4927 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
4928 * try to update its size. If REMOVING is set, updating size
4929 * is just useless work since the device can't be opened.
4930 */
4931 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
4932 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
4933 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
4934 dout("setting size to %llu sectors", (unsigned long long)size);
4935 set_capacity_and_notify(rbd_dev->disk, size);
4936 }
4937 }
4938
4939 static const struct blk_mq_ops rbd_mq_ops = {
4940 .queue_rq = rbd_queue_rq,
4941 };
4942
rbd_init_disk(struct rbd_device * rbd_dev)4943 static int rbd_init_disk(struct rbd_device *rbd_dev)
4944 {
4945 struct gendisk *disk;
4946 struct request_queue *q;
4947 unsigned int objset_bytes =
4948 rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
4949 int err;
4950
4951 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
4952 rbd_dev->tag_set.ops = &rbd_mq_ops;
4953 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
4954 rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
4955 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
4956 rbd_dev->tag_set.nr_hw_queues = num_present_cpus();
4957 rbd_dev->tag_set.cmd_size = sizeof(struct rbd_img_request);
4958
4959 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
4960 if (err)
4961 return err;
4962
4963 disk = blk_mq_alloc_disk(&rbd_dev->tag_set, rbd_dev);
4964 if (IS_ERR(disk)) {
4965 err = PTR_ERR(disk);
4966 goto out_tag_set;
4967 }
4968 q = disk->queue;
4969
4970 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
4971 rbd_dev->dev_id);
4972 disk->major = rbd_dev->major;
4973 disk->first_minor = rbd_dev->minor;
4974 if (single_major)
4975 disk->minors = (1 << RBD_SINGLE_MAJOR_PART_SHIFT);
4976 else
4977 disk->minors = RBD_MINORS_PER_MAJOR;
4978 disk->fops = &rbd_bd_ops;
4979 disk->private_data = rbd_dev;
4980
4981 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
4982 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
4983
4984 blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
4985 q->limits.max_sectors = queue_max_hw_sectors(q);
4986 blk_queue_max_segments(q, USHRT_MAX);
4987 blk_queue_max_segment_size(q, UINT_MAX);
4988 blk_queue_io_min(q, rbd_dev->opts->alloc_size);
4989 blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
4990
4991 if (rbd_dev->opts->trim) {
4992 q->limits.discard_granularity = rbd_dev->opts->alloc_size;
4993 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
4994 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
4995 }
4996
4997 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
4998 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
4999
5000 rbd_dev->disk = disk;
5001
5002 return 0;
5003 out_tag_set:
5004 blk_mq_free_tag_set(&rbd_dev->tag_set);
5005 return err;
5006 }
5007
5008 /*
5009 sysfs
5010 */
5011
dev_to_rbd_dev(struct device * dev)5012 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5013 {
5014 return container_of(dev, struct rbd_device, dev);
5015 }
5016
rbd_size_show(struct device * dev,struct device_attribute * attr,char * buf)5017 static ssize_t rbd_size_show(struct device *dev,
5018 struct device_attribute *attr, char *buf)
5019 {
5020 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5021
5022 return sprintf(buf, "%llu\n",
5023 (unsigned long long)rbd_dev->mapping.size);
5024 }
5025
rbd_features_show(struct device * dev,struct device_attribute * attr,char * buf)5026 static ssize_t rbd_features_show(struct device *dev,
5027 struct device_attribute *attr, char *buf)
5028 {
5029 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5030
5031 return sprintf(buf, "0x%016llx\n", rbd_dev->header.features);
5032 }
5033
rbd_major_show(struct device * dev,struct device_attribute * attr,char * buf)5034 static ssize_t rbd_major_show(struct device *dev,
5035 struct device_attribute *attr, char *buf)
5036 {
5037 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5038
5039 if (rbd_dev->major)
5040 return sprintf(buf, "%d\n", rbd_dev->major);
5041
5042 return sprintf(buf, "(none)\n");
5043 }
5044
rbd_minor_show(struct device * dev,struct device_attribute * attr,char * buf)5045 static ssize_t rbd_minor_show(struct device *dev,
5046 struct device_attribute *attr, char *buf)
5047 {
5048 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5049
5050 return sprintf(buf, "%d\n", rbd_dev->minor);
5051 }
5052
rbd_client_addr_show(struct device * dev,struct device_attribute * attr,char * buf)5053 static ssize_t rbd_client_addr_show(struct device *dev,
5054 struct device_attribute *attr, char *buf)
5055 {
5056 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5057 struct ceph_entity_addr *client_addr =
5058 ceph_client_addr(rbd_dev->rbd_client->client);
5059
5060 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5061 le32_to_cpu(client_addr->nonce));
5062 }
5063
rbd_client_id_show(struct device * dev,struct device_attribute * attr,char * buf)5064 static ssize_t rbd_client_id_show(struct device *dev,
5065 struct device_attribute *attr, char *buf)
5066 {
5067 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5068
5069 return sprintf(buf, "client%lld\n",
5070 ceph_client_gid(rbd_dev->rbd_client->client));
5071 }
5072
rbd_cluster_fsid_show(struct device * dev,struct device_attribute * attr,char * buf)5073 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5074 struct device_attribute *attr, char *buf)
5075 {
5076 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5077
5078 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5079 }
5080
rbd_config_info_show(struct device * dev,struct device_attribute * attr,char * buf)5081 static ssize_t rbd_config_info_show(struct device *dev,
5082 struct device_attribute *attr, char *buf)
5083 {
5084 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5085
5086 if (!capable(CAP_SYS_ADMIN))
5087 return -EPERM;
5088
5089 return sprintf(buf, "%s\n", rbd_dev->config_info);
5090 }
5091
rbd_pool_show(struct device * dev,struct device_attribute * attr,char * buf)5092 static ssize_t rbd_pool_show(struct device *dev,
5093 struct device_attribute *attr, char *buf)
5094 {
5095 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5096
5097 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5098 }
5099
rbd_pool_id_show(struct device * dev,struct device_attribute * attr,char * buf)5100 static ssize_t rbd_pool_id_show(struct device *dev,
5101 struct device_attribute *attr, char *buf)
5102 {
5103 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5104
5105 return sprintf(buf, "%llu\n",
5106 (unsigned long long) rbd_dev->spec->pool_id);
5107 }
5108
rbd_pool_ns_show(struct device * dev,struct device_attribute * attr,char * buf)5109 static ssize_t rbd_pool_ns_show(struct device *dev,
5110 struct device_attribute *attr, char *buf)
5111 {
5112 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5113
5114 return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5115 }
5116
rbd_name_show(struct device * dev,struct device_attribute * attr,char * buf)5117 static ssize_t rbd_name_show(struct device *dev,
5118 struct device_attribute *attr, char *buf)
5119 {
5120 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5121
5122 if (rbd_dev->spec->image_name)
5123 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5124
5125 return sprintf(buf, "(unknown)\n");
5126 }
5127
rbd_image_id_show(struct device * dev,struct device_attribute * attr,char * buf)5128 static ssize_t rbd_image_id_show(struct device *dev,
5129 struct device_attribute *attr, char *buf)
5130 {
5131 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5132
5133 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5134 }
5135
5136 /*
5137 * Shows the name of the currently-mapped snapshot (or
5138 * RBD_SNAP_HEAD_NAME for the base image).
5139 */
rbd_snap_show(struct device * dev,struct device_attribute * attr,char * buf)5140 static ssize_t rbd_snap_show(struct device *dev,
5141 struct device_attribute *attr,
5142 char *buf)
5143 {
5144 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5145
5146 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5147 }
5148
rbd_snap_id_show(struct device * dev,struct device_attribute * attr,char * buf)5149 static ssize_t rbd_snap_id_show(struct device *dev,
5150 struct device_attribute *attr, char *buf)
5151 {
5152 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5153
5154 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5155 }
5156
5157 /*
5158 * For a v2 image, shows the chain of parent images, separated by empty
5159 * lines. For v1 images or if there is no parent, shows "(no parent
5160 * image)".
5161 */
rbd_parent_show(struct device * dev,struct device_attribute * attr,char * buf)5162 static ssize_t rbd_parent_show(struct device *dev,
5163 struct device_attribute *attr,
5164 char *buf)
5165 {
5166 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5167 ssize_t count = 0;
5168
5169 if (!rbd_dev->parent)
5170 return sprintf(buf, "(no parent image)\n");
5171
5172 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5173 struct rbd_spec *spec = rbd_dev->parent_spec;
5174
5175 count += sprintf(&buf[count], "%s"
5176 "pool_id %llu\npool_name %s\n"
5177 "pool_ns %s\n"
5178 "image_id %s\nimage_name %s\n"
5179 "snap_id %llu\nsnap_name %s\n"
5180 "overlap %llu\n",
5181 !count ? "" : "\n", /* first? */
5182 spec->pool_id, spec->pool_name,
5183 spec->pool_ns ?: "",
5184 spec->image_id, spec->image_name ?: "(unknown)",
5185 spec->snap_id, spec->snap_name,
5186 rbd_dev->parent_overlap);
5187 }
5188
5189 return count;
5190 }
5191
rbd_image_refresh(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)5192 static ssize_t rbd_image_refresh(struct device *dev,
5193 struct device_attribute *attr,
5194 const char *buf,
5195 size_t size)
5196 {
5197 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5198 int ret;
5199
5200 if (!capable(CAP_SYS_ADMIN))
5201 return -EPERM;
5202
5203 ret = rbd_dev_refresh(rbd_dev);
5204 if (ret)
5205 return ret;
5206
5207 return size;
5208 }
5209
5210 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5211 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5212 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5213 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5214 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5215 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5216 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5217 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5218 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5219 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5220 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5221 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5222 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5223 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5224 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5225 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5226 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5227
5228 static struct attribute *rbd_attrs[] = {
5229 &dev_attr_size.attr,
5230 &dev_attr_features.attr,
5231 &dev_attr_major.attr,
5232 &dev_attr_minor.attr,
5233 &dev_attr_client_addr.attr,
5234 &dev_attr_client_id.attr,
5235 &dev_attr_cluster_fsid.attr,
5236 &dev_attr_config_info.attr,
5237 &dev_attr_pool.attr,
5238 &dev_attr_pool_id.attr,
5239 &dev_attr_pool_ns.attr,
5240 &dev_attr_name.attr,
5241 &dev_attr_image_id.attr,
5242 &dev_attr_current_snap.attr,
5243 &dev_attr_snap_id.attr,
5244 &dev_attr_parent.attr,
5245 &dev_attr_refresh.attr,
5246 NULL
5247 };
5248
5249 static struct attribute_group rbd_attr_group = {
5250 .attrs = rbd_attrs,
5251 };
5252
5253 static const struct attribute_group *rbd_attr_groups[] = {
5254 &rbd_attr_group,
5255 NULL
5256 };
5257
5258 static void rbd_dev_release(struct device *dev);
5259
5260 static const struct device_type rbd_device_type = {
5261 .name = "rbd",
5262 .groups = rbd_attr_groups,
5263 .release = rbd_dev_release,
5264 };
5265
rbd_spec_get(struct rbd_spec * spec)5266 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5267 {
5268 kref_get(&spec->kref);
5269
5270 return spec;
5271 }
5272
5273 static void rbd_spec_free(struct kref *kref);
rbd_spec_put(struct rbd_spec * spec)5274 static void rbd_spec_put(struct rbd_spec *spec)
5275 {
5276 if (spec)
5277 kref_put(&spec->kref, rbd_spec_free);
5278 }
5279
rbd_spec_alloc(void)5280 static struct rbd_spec *rbd_spec_alloc(void)
5281 {
5282 struct rbd_spec *spec;
5283
5284 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5285 if (!spec)
5286 return NULL;
5287
5288 spec->pool_id = CEPH_NOPOOL;
5289 spec->snap_id = CEPH_NOSNAP;
5290 kref_init(&spec->kref);
5291
5292 return spec;
5293 }
5294
rbd_spec_free(struct kref * kref)5295 static void rbd_spec_free(struct kref *kref)
5296 {
5297 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5298
5299 kfree(spec->pool_name);
5300 kfree(spec->pool_ns);
5301 kfree(spec->image_id);
5302 kfree(spec->image_name);
5303 kfree(spec->snap_name);
5304 kfree(spec);
5305 }
5306
rbd_dev_free(struct rbd_device * rbd_dev)5307 static void rbd_dev_free(struct rbd_device *rbd_dev)
5308 {
5309 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5310 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5311
5312 ceph_oid_destroy(&rbd_dev->header_oid);
5313 ceph_oloc_destroy(&rbd_dev->header_oloc);
5314 kfree(rbd_dev->config_info);
5315
5316 rbd_put_client(rbd_dev->rbd_client);
5317 rbd_spec_put(rbd_dev->spec);
5318 kfree(rbd_dev->opts);
5319 kfree(rbd_dev);
5320 }
5321
rbd_dev_release(struct device * dev)5322 static void rbd_dev_release(struct device *dev)
5323 {
5324 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5325 bool need_put = !!rbd_dev->opts;
5326
5327 if (need_put) {
5328 destroy_workqueue(rbd_dev->task_wq);
5329 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5330 }
5331
5332 rbd_dev_free(rbd_dev);
5333
5334 /*
5335 * This is racy, but way better than putting module outside of
5336 * the release callback. The race window is pretty small, so
5337 * doing something similar to dm (dm-builtin.c) is overkill.
5338 */
5339 if (need_put)
5340 module_put(THIS_MODULE);
5341 }
5342
__rbd_dev_create(struct rbd_spec * spec)5343 static struct rbd_device *__rbd_dev_create(struct rbd_spec *spec)
5344 {
5345 struct rbd_device *rbd_dev;
5346
5347 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5348 if (!rbd_dev)
5349 return NULL;
5350
5351 spin_lock_init(&rbd_dev->lock);
5352 INIT_LIST_HEAD(&rbd_dev->node);
5353 init_rwsem(&rbd_dev->header_rwsem);
5354
5355 rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5356 ceph_oid_init(&rbd_dev->header_oid);
5357 rbd_dev->header_oloc.pool = spec->pool_id;
5358 if (spec->pool_ns) {
5359 WARN_ON(!*spec->pool_ns);
5360 rbd_dev->header_oloc.pool_ns =
5361 ceph_find_or_create_string(spec->pool_ns,
5362 strlen(spec->pool_ns));
5363 }
5364
5365 mutex_init(&rbd_dev->watch_mutex);
5366 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5367 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5368
5369 init_rwsem(&rbd_dev->lock_rwsem);
5370 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5371 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5372 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5373 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5374 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5375 spin_lock_init(&rbd_dev->lock_lists_lock);
5376 INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5377 INIT_LIST_HEAD(&rbd_dev->running_list);
5378 init_completion(&rbd_dev->acquire_wait);
5379 init_completion(&rbd_dev->releasing_wait);
5380
5381 spin_lock_init(&rbd_dev->object_map_lock);
5382
5383 rbd_dev->dev.bus = &rbd_bus_type;
5384 rbd_dev->dev.type = &rbd_device_type;
5385 rbd_dev->dev.parent = &rbd_root_dev;
5386 device_initialize(&rbd_dev->dev);
5387
5388 return rbd_dev;
5389 }
5390
5391 /*
5392 * Create a mapping rbd_dev.
5393 */
rbd_dev_create(struct rbd_client * rbdc,struct rbd_spec * spec,struct rbd_options * opts)5394 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5395 struct rbd_spec *spec,
5396 struct rbd_options *opts)
5397 {
5398 struct rbd_device *rbd_dev;
5399
5400 rbd_dev = __rbd_dev_create(spec);
5401 if (!rbd_dev)
5402 return NULL;
5403
5404 /* get an id and fill in device name */
5405 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5406 minor_to_rbd_dev_id(1 << MINORBITS),
5407 GFP_KERNEL);
5408 if (rbd_dev->dev_id < 0)
5409 goto fail_rbd_dev;
5410
5411 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5412 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5413 rbd_dev->name);
5414 if (!rbd_dev->task_wq)
5415 goto fail_dev_id;
5416
5417 /* we have a ref from do_rbd_add() */
5418 __module_get(THIS_MODULE);
5419
5420 rbd_dev->rbd_client = rbdc;
5421 rbd_dev->spec = spec;
5422 rbd_dev->opts = opts;
5423
5424 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5425 return rbd_dev;
5426
5427 fail_dev_id:
5428 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5429 fail_rbd_dev:
5430 rbd_dev_free(rbd_dev);
5431 return NULL;
5432 }
5433
rbd_dev_destroy(struct rbd_device * rbd_dev)5434 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5435 {
5436 if (rbd_dev)
5437 put_device(&rbd_dev->dev);
5438 }
5439
5440 /*
5441 * Get the size and object order for an image snapshot, or if
5442 * snap_id is CEPH_NOSNAP, gets this information for the base
5443 * image.
5444 */
_rbd_dev_v2_snap_size(struct rbd_device * rbd_dev,u64 snap_id,u8 * order,u64 * snap_size)5445 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5446 u8 *order, u64 *snap_size)
5447 {
5448 __le64 snapid = cpu_to_le64(snap_id);
5449 int ret;
5450 struct {
5451 u8 order;
5452 __le64 size;
5453 } __attribute__ ((packed)) size_buf = { 0 };
5454
5455 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5456 &rbd_dev->header_oloc, "get_size",
5457 &snapid, sizeof(snapid),
5458 &size_buf, sizeof(size_buf));
5459 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5460 if (ret < 0)
5461 return ret;
5462 if (ret < sizeof (size_buf))
5463 return -ERANGE;
5464
5465 if (order) {
5466 *order = size_buf.order;
5467 dout(" order %u", (unsigned int)*order);
5468 }
5469 *snap_size = le64_to_cpu(size_buf.size);
5470
5471 dout(" snap_id 0x%016llx snap_size = %llu\n",
5472 (unsigned long long)snap_id,
5473 (unsigned long long)*snap_size);
5474
5475 return 0;
5476 }
5477
rbd_dev_v2_object_prefix(struct rbd_device * rbd_dev,char ** pobject_prefix)5478 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev,
5479 char **pobject_prefix)
5480 {
5481 size_t size;
5482 void *reply_buf;
5483 char *object_prefix;
5484 int ret;
5485 void *p;
5486
5487 /* Response will be an encoded string, which includes a length */
5488 size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5489 reply_buf = kzalloc(size, GFP_KERNEL);
5490 if (!reply_buf)
5491 return -ENOMEM;
5492
5493 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5494 &rbd_dev->header_oloc, "get_object_prefix",
5495 NULL, 0, reply_buf, size);
5496 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5497 if (ret < 0)
5498 goto out;
5499
5500 p = reply_buf;
5501 object_prefix = ceph_extract_encoded_string(&p, p + ret, NULL,
5502 GFP_NOIO);
5503 if (IS_ERR(object_prefix)) {
5504 ret = PTR_ERR(object_prefix);
5505 goto out;
5506 }
5507 ret = 0;
5508
5509 *pobject_prefix = object_prefix;
5510 dout(" object_prefix = %s\n", object_prefix);
5511 out:
5512 kfree(reply_buf);
5513
5514 return ret;
5515 }
5516
_rbd_dev_v2_snap_features(struct rbd_device * rbd_dev,u64 snap_id,bool read_only,u64 * snap_features)5517 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5518 bool read_only, u64 *snap_features)
5519 {
5520 struct {
5521 __le64 snap_id;
5522 u8 read_only;
5523 } features_in;
5524 struct {
5525 __le64 features;
5526 __le64 incompat;
5527 } __attribute__ ((packed)) features_buf = { 0 };
5528 u64 unsup;
5529 int ret;
5530
5531 features_in.snap_id = cpu_to_le64(snap_id);
5532 features_in.read_only = read_only;
5533
5534 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5535 &rbd_dev->header_oloc, "get_features",
5536 &features_in, sizeof(features_in),
5537 &features_buf, sizeof(features_buf));
5538 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5539 if (ret < 0)
5540 return ret;
5541 if (ret < sizeof (features_buf))
5542 return -ERANGE;
5543
5544 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5545 if (unsup) {
5546 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5547 unsup);
5548 return -ENXIO;
5549 }
5550
5551 *snap_features = le64_to_cpu(features_buf.features);
5552
5553 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5554 (unsigned long long)snap_id,
5555 (unsigned long long)*snap_features,
5556 (unsigned long long)le64_to_cpu(features_buf.incompat));
5557
5558 return 0;
5559 }
5560
5561 /*
5562 * These are generic image flags, but since they are used only for
5563 * object map, store them in rbd_dev->object_map_flags.
5564 *
5565 * For the same reason, this function is called only on object map
5566 * (re)load and not on header refresh.
5567 */
rbd_dev_v2_get_flags(struct rbd_device * rbd_dev)5568 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5569 {
5570 __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5571 __le64 flags;
5572 int ret;
5573
5574 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5575 &rbd_dev->header_oloc, "get_flags",
5576 &snapid, sizeof(snapid),
5577 &flags, sizeof(flags));
5578 if (ret < 0)
5579 return ret;
5580 if (ret < sizeof(flags))
5581 return -EBADMSG;
5582
5583 rbd_dev->object_map_flags = le64_to_cpu(flags);
5584 return 0;
5585 }
5586
5587 struct parent_image_info {
5588 u64 pool_id;
5589 const char *pool_ns;
5590 const char *image_id;
5591 u64 snap_id;
5592
5593 bool has_overlap;
5594 u64 overlap;
5595 };
5596
rbd_parent_info_cleanup(struct parent_image_info * pii)5597 static void rbd_parent_info_cleanup(struct parent_image_info *pii)
5598 {
5599 kfree(pii->pool_ns);
5600 kfree(pii->image_id);
5601
5602 memset(pii, 0, sizeof(*pii));
5603 }
5604
5605 /*
5606 * The caller is responsible for @pii.
5607 */
decode_parent_image_spec(void ** p,void * end,struct parent_image_info * pii)5608 static int decode_parent_image_spec(void **p, void *end,
5609 struct parent_image_info *pii)
5610 {
5611 u8 struct_v;
5612 u32 struct_len;
5613 int ret;
5614
5615 ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5616 &struct_v, &struct_len);
5617 if (ret)
5618 return ret;
5619
5620 ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5621 pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5622 if (IS_ERR(pii->pool_ns)) {
5623 ret = PTR_ERR(pii->pool_ns);
5624 pii->pool_ns = NULL;
5625 return ret;
5626 }
5627 pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5628 if (IS_ERR(pii->image_id)) {
5629 ret = PTR_ERR(pii->image_id);
5630 pii->image_id = NULL;
5631 return ret;
5632 }
5633 ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5634 return 0;
5635
5636 e_inval:
5637 return -EINVAL;
5638 }
5639
__get_parent_info(struct rbd_device * rbd_dev,struct page * req_page,struct page * reply_page,struct parent_image_info * pii)5640 static int __get_parent_info(struct rbd_device *rbd_dev,
5641 struct page *req_page,
5642 struct page *reply_page,
5643 struct parent_image_info *pii)
5644 {
5645 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5646 size_t reply_len = PAGE_SIZE;
5647 void *p, *end;
5648 int ret;
5649
5650 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5651 "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5652 req_page, sizeof(u64), &reply_page, &reply_len);
5653 if (ret)
5654 return ret == -EOPNOTSUPP ? 1 : ret;
5655
5656 p = page_address(reply_page);
5657 end = p + reply_len;
5658 ret = decode_parent_image_spec(&p, end, pii);
5659 if (ret)
5660 return ret;
5661
5662 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5663 "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5664 req_page, sizeof(u64), &reply_page, &reply_len);
5665 if (ret)
5666 return ret;
5667
5668 p = page_address(reply_page);
5669 end = p + reply_len;
5670 ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5671 if (pii->has_overlap)
5672 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5673
5674 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5675 __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5676 pii->has_overlap, pii->overlap);
5677 return 0;
5678
5679 e_inval:
5680 return -EINVAL;
5681 }
5682
5683 /*
5684 * The caller is responsible for @pii.
5685 */
__get_parent_info_legacy(struct rbd_device * rbd_dev,struct page * req_page,struct page * reply_page,struct parent_image_info * pii)5686 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5687 struct page *req_page,
5688 struct page *reply_page,
5689 struct parent_image_info *pii)
5690 {
5691 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5692 size_t reply_len = PAGE_SIZE;
5693 void *p, *end;
5694 int ret;
5695
5696 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5697 "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5698 req_page, sizeof(u64), &reply_page, &reply_len);
5699 if (ret)
5700 return ret;
5701
5702 p = page_address(reply_page);
5703 end = p + reply_len;
5704 ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5705 pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5706 if (IS_ERR(pii->image_id)) {
5707 ret = PTR_ERR(pii->image_id);
5708 pii->image_id = NULL;
5709 return ret;
5710 }
5711 ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5712 pii->has_overlap = true;
5713 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5714
5715 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5716 __func__, pii->pool_id, pii->pool_ns, pii->image_id, pii->snap_id,
5717 pii->has_overlap, pii->overlap);
5718 return 0;
5719
5720 e_inval:
5721 return -EINVAL;
5722 }
5723
rbd_dev_v2_parent_info(struct rbd_device * rbd_dev,struct parent_image_info * pii)5724 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev,
5725 struct parent_image_info *pii)
5726 {
5727 struct page *req_page, *reply_page;
5728 void *p;
5729 int ret;
5730
5731 req_page = alloc_page(GFP_KERNEL);
5732 if (!req_page)
5733 return -ENOMEM;
5734
5735 reply_page = alloc_page(GFP_KERNEL);
5736 if (!reply_page) {
5737 __free_page(req_page);
5738 return -ENOMEM;
5739 }
5740
5741 p = page_address(req_page);
5742 ceph_encode_64(&p, rbd_dev->spec->snap_id);
5743 ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5744 if (ret > 0)
5745 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5746 pii);
5747
5748 __free_page(req_page);
5749 __free_page(reply_page);
5750 return ret;
5751 }
5752
rbd_dev_setup_parent(struct rbd_device * rbd_dev)5753 static int rbd_dev_setup_parent(struct rbd_device *rbd_dev)
5754 {
5755 struct rbd_spec *parent_spec;
5756 struct parent_image_info pii = { 0 };
5757 int ret;
5758
5759 parent_spec = rbd_spec_alloc();
5760 if (!parent_spec)
5761 return -ENOMEM;
5762
5763 ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
5764 if (ret)
5765 goto out_err;
5766
5767 if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap)
5768 goto out; /* No parent? No problem. */
5769
5770 /* The ceph file layout needs to fit pool id in 32 bits */
5771
5772 ret = -EIO;
5773 if (pii.pool_id > (u64)U32_MAX) {
5774 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5775 (unsigned long long)pii.pool_id, U32_MAX);
5776 goto out_err;
5777 }
5778
5779 /*
5780 * The parent won't change except when the clone is flattened,
5781 * so we only need to record the parent image spec once.
5782 */
5783 parent_spec->pool_id = pii.pool_id;
5784 if (pii.pool_ns && *pii.pool_ns) {
5785 parent_spec->pool_ns = pii.pool_ns;
5786 pii.pool_ns = NULL;
5787 }
5788 parent_spec->image_id = pii.image_id;
5789 pii.image_id = NULL;
5790 parent_spec->snap_id = pii.snap_id;
5791
5792 rbd_assert(!rbd_dev->parent_spec);
5793 rbd_dev->parent_spec = parent_spec;
5794 parent_spec = NULL; /* rbd_dev now owns this */
5795
5796 /*
5797 * Record the parent overlap. If it's zero, issue a warning as
5798 * we will proceed as if there is no parent.
5799 */
5800 if (!pii.overlap)
5801 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
5802 rbd_dev->parent_overlap = pii.overlap;
5803
5804 out:
5805 ret = 0;
5806 out_err:
5807 rbd_parent_info_cleanup(&pii);
5808 rbd_spec_put(parent_spec);
5809 return ret;
5810 }
5811
rbd_dev_v2_striping_info(struct rbd_device * rbd_dev,u64 * stripe_unit,u64 * stripe_count)5812 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev,
5813 u64 *stripe_unit, u64 *stripe_count)
5814 {
5815 struct {
5816 __le64 stripe_unit;
5817 __le64 stripe_count;
5818 } __attribute__ ((packed)) striping_info_buf = { 0 };
5819 size_t size = sizeof (striping_info_buf);
5820 int ret;
5821
5822 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5823 &rbd_dev->header_oloc, "get_stripe_unit_count",
5824 NULL, 0, &striping_info_buf, size);
5825 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5826 if (ret < 0)
5827 return ret;
5828 if (ret < size)
5829 return -ERANGE;
5830
5831 *stripe_unit = le64_to_cpu(striping_info_buf.stripe_unit);
5832 *stripe_count = le64_to_cpu(striping_info_buf.stripe_count);
5833 dout(" stripe_unit = %llu stripe_count = %llu\n", *stripe_unit,
5834 *stripe_count);
5835
5836 return 0;
5837 }
5838
rbd_dev_v2_data_pool(struct rbd_device * rbd_dev,s64 * data_pool_id)5839 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev, s64 *data_pool_id)
5840 {
5841 __le64 data_pool_buf;
5842 int ret;
5843
5844 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5845 &rbd_dev->header_oloc, "get_data_pool",
5846 NULL, 0, &data_pool_buf,
5847 sizeof(data_pool_buf));
5848 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5849 if (ret < 0)
5850 return ret;
5851 if (ret < sizeof(data_pool_buf))
5852 return -EBADMSG;
5853
5854 *data_pool_id = le64_to_cpu(data_pool_buf);
5855 dout(" data_pool_id = %lld\n", *data_pool_id);
5856 WARN_ON(*data_pool_id == CEPH_NOPOOL);
5857
5858 return 0;
5859 }
5860
rbd_dev_image_name(struct rbd_device * rbd_dev)5861 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
5862 {
5863 CEPH_DEFINE_OID_ONSTACK(oid);
5864 size_t image_id_size;
5865 char *image_id;
5866 void *p;
5867 void *end;
5868 size_t size;
5869 void *reply_buf = NULL;
5870 size_t len = 0;
5871 char *image_name = NULL;
5872 int ret;
5873
5874 rbd_assert(!rbd_dev->spec->image_name);
5875
5876 len = strlen(rbd_dev->spec->image_id);
5877 image_id_size = sizeof (__le32) + len;
5878 image_id = kmalloc(image_id_size, GFP_KERNEL);
5879 if (!image_id)
5880 return NULL;
5881
5882 p = image_id;
5883 end = image_id + image_id_size;
5884 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
5885
5886 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
5887 reply_buf = kmalloc(size, GFP_KERNEL);
5888 if (!reply_buf)
5889 goto out;
5890
5891 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
5892 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
5893 "dir_get_name", image_id, image_id_size,
5894 reply_buf, size);
5895 if (ret < 0)
5896 goto out;
5897 p = reply_buf;
5898 end = reply_buf + ret;
5899
5900 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
5901 if (IS_ERR(image_name))
5902 image_name = NULL;
5903 else
5904 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
5905 out:
5906 kfree(reply_buf);
5907 kfree(image_id);
5908
5909 return image_name;
5910 }
5911
rbd_v1_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)5912 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5913 {
5914 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5915 const char *snap_name;
5916 u32 which = 0;
5917
5918 /* Skip over names until we find the one we are looking for */
5919
5920 snap_name = rbd_dev->header.snap_names;
5921 while (which < snapc->num_snaps) {
5922 if (!strcmp(name, snap_name))
5923 return snapc->snaps[which];
5924 snap_name += strlen(snap_name) + 1;
5925 which++;
5926 }
5927 return CEPH_NOSNAP;
5928 }
5929
rbd_v2_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)5930 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5931 {
5932 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
5933 u32 which;
5934 bool found = false;
5935 u64 snap_id;
5936
5937 for (which = 0; !found && which < snapc->num_snaps; which++) {
5938 const char *snap_name;
5939
5940 snap_id = snapc->snaps[which];
5941 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
5942 if (IS_ERR(snap_name)) {
5943 /* ignore no-longer existing snapshots */
5944 if (PTR_ERR(snap_name) == -ENOENT)
5945 continue;
5946 else
5947 break;
5948 }
5949 found = !strcmp(name, snap_name);
5950 kfree(snap_name);
5951 }
5952 return found ? snap_id : CEPH_NOSNAP;
5953 }
5954
5955 /*
5956 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
5957 * no snapshot by that name is found, or if an error occurs.
5958 */
rbd_snap_id_by_name(struct rbd_device * rbd_dev,const char * name)5959 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
5960 {
5961 if (rbd_dev->image_format == 1)
5962 return rbd_v1_snap_id_by_name(rbd_dev, name);
5963
5964 return rbd_v2_snap_id_by_name(rbd_dev, name);
5965 }
5966
5967 /*
5968 * An image being mapped will have everything but the snap id.
5969 */
rbd_spec_fill_snap_id(struct rbd_device * rbd_dev)5970 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
5971 {
5972 struct rbd_spec *spec = rbd_dev->spec;
5973
5974 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
5975 rbd_assert(spec->image_id && spec->image_name);
5976 rbd_assert(spec->snap_name);
5977
5978 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
5979 u64 snap_id;
5980
5981 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
5982 if (snap_id == CEPH_NOSNAP)
5983 return -ENOENT;
5984
5985 spec->snap_id = snap_id;
5986 } else {
5987 spec->snap_id = CEPH_NOSNAP;
5988 }
5989
5990 return 0;
5991 }
5992
5993 /*
5994 * A parent image will have all ids but none of the names.
5995 *
5996 * All names in an rbd spec are dynamically allocated. It's OK if we
5997 * can't figure out the name for an image id.
5998 */
rbd_spec_fill_names(struct rbd_device * rbd_dev)5999 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6000 {
6001 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6002 struct rbd_spec *spec = rbd_dev->spec;
6003 const char *pool_name;
6004 const char *image_name;
6005 const char *snap_name;
6006 int ret;
6007
6008 rbd_assert(spec->pool_id != CEPH_NOPOOL);
6009 rbd_assert(spec->image_id);
6010 rbd_assert(spec->snap_id != CEPH_NOSNAP);
6011
6012 /* Get the pool name; we have to make our own copy of this */
6013
6014 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6015 if (!pool_name) {
6016 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6017 return -EIO;
6018 }
6019 pool_name = kstrdup(pool_name, GFP_KERNEL);
6020 if (!pool_name)
6021 return -ENOMEM;
6022
6023 /* Fetch the image name; tolerate failure here */
6024
6025 image_name = rbd_dev_image_name(rbd_dev);
6026 if (!image_name)
6027 rbd_warn(rbd_dev, "unable to get image name");
6028
6029 /* Fetch the snapshot name */
6030
6031 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6032 if (IS_ERR(snap_name)) {
6033 ret = PTR_ERR(snap_name);
6034 goto out_err;
6035 }
6036
6037 spec->pool_name = pool_name;
6038 spec->image_name = image_name;
6039 spec->snap_name = snap_name;
6040
6041 return 0;
6042
6043 out_err:
6044 kfree(image_name);
6045 kfree(pool_name);
6046 return ret;
6047 }
6048
rbd_dev_v2_snap_context(struct rbd_device * rbd_dev,struct ceph_snap_context ** psnapc)6049 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev,
6050 struct ceph_snap_context **psnapc)
6051 {
6052 size_t size;
6053 int ret;
6054 void *reply_buf;
6055 void *p;
6056 void *end;
6057 u64 seq;
6058 u32 snap_count;
6059 struct ceph_snap_context *snapc;
6060 u32 i;
6061
6062 /*
6063 * We'll need room for the seq value (maximum snapshot id),
6064 * snapshot count, and array of that many snapshot ids.
6065 * For now we have a fixed upper limit on the number we're
6066 * prepared to receive.
6067 */
6068 size = sizeof (__le64) + sizeof (__le32) +
6069 RBD_MAX_SNAP_COUNT * sizeof (__le64);
6070 reply_buf = kzalloc(size, GFP_KERNEL);
6071 if (!reply_buf)
6072 return -ENOMEM;
6073
6074 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6075 &rbd_dev->header_oloc, "get_snapcontext",
6076 NULL, 0, reply_buf, size);
6077 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6078 if (ret < 0)
6079 goto out;
6080
6081 p = reply_buf;
6082 end = reply_buf + ret;
6083 ret = -ERANGE;
6084 ceph_decode_64_safe(&p, end, seq, out);
6085 ceph_decode_32_safe(&p, end, snap_count, out);
6086
6087 /*
6088 * Make sure the reported number of snapshot ids wouldn't go
6089 * beyond the end of our buffer. But before checking that,
6090 * make sure the computed size of the snapshot context we
6091 * allocate is representable in a size_t.
6092 */
6093 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6094 / sizeof (u64)) {
6095 ret = -EINVAL;
6096 goto out;
6097 }
6098 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6099 goto out;
6100 ret = 0;
6101
6102 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6103 if (!snapc) {
6104 ret = -ENOMEM;
6105 goto out;
6106 }
6107 snapc->seq = seq;
6108 for (i = 0; i < snap_count; i++)
6109 snapc->snaps[i] = ceph_decode_64(&p);
6110
6111 *psnapc = snapc;
6112 dout(" snap context seq = %llu, snap_count = %u\n",
6113 (unsigned long long)seq, (unsigned int)snap_count);
6114 out:
6115 kfree(reply_buf);
6116
6117 return ret;
6118 }
6119
rbd_dev_v2_snap_name(struct rbd_device * rbd_dev,u64 snap_id)6120 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6121 u64 snap_id)
6122 {
6123 size_t size;
6124 void *reply_buf;
6125 __le64 snapid;
6126 int ret;
6127 void *p;
6128 void *end;
6129 char *snap_name;
6130
6131 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6132 reply_buf = kmalloc(size, GFP_KERNEL);
6133 if (!reply_buf)
6134 return ERR_PTR(-ENOMEM);
6135
6136 snapid = cpu_to_le64(snap_id);
6137 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6138 &rbd_dev->header_oloc, "get_snapshot_name",
6139 &snapid, sizeof(snapid), reply_buf, size);
6140 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6141 if (ret < 0) {
6142 snap_name = ERR_PTR(ret);
6143 goto out;
6144 }
6145
6146 p = reply_buf;
6147 end = reply_buf + ret;
6148 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6149 if (IS_ERR(snap_name))
6150 goto out;
6151
6152 dout(" snap_id 0x%016llx snap_name = %s\n",
6153 (unsigned long long)snap_id, snap_name);
6154 out:
6155 kfree(reply_buf);
6156
6157 return snap_name;
6158 }
6159
rbd_dev_v2_header_info(struct rbd_device * rbd_dev,struct rbd_image_header * header,bool first_time)6160 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev,
6161 struct rbd_image_header *header,
6162 bool first_time)
6163 {
6164 int ret;
6165
6166 ret = _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
6167 first_time ? &header->obj_order : NULL,
6168 &header->image_size);
6169 if (ret)
6170 return ret;
6171
6172 if (first_time) {
6173 ret = rbd_dev_v2_header_onetime(rbd_dev, header);
6174 if (ret)
6175 return ret;
6176 }
6177
6178 ret = rbd_dev_v2_snap_context(rbd_dev, &header->snapc);
6179 if (ret)
6180 return ret;
6181
6182 return 0;
6183 }
6184
rbd_dev_header_info(struct rbd_device * rbd_dev,struct rbd_image_header * header,bool first_time)6185 static int rbd_dev_header_info(struct rbd_device *rbd_dev,
6186 struct rbd_image_header *header,
6187 bool first_time)
6188 {
6189 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6190 rbd_assert(!header->object_prefix && !header->snapc);
6191
6192 if (rbd_dev->image_format == 1)
6193 return rbd_dev_v1_header_info(rbd_dev, header, first_time);
6194
6195 return rbd_dev_v2_header_info(rbd_dev, header, first_time);
6196 }
6197
6198 /*
6199 * Skips over white space at *buf, and updates *buf to point to the
6200 * first found non-space character (if any). Returns the length of
6201 * the token (string of non-white space characters) found. Note
6202 * that *buf must be terminated with '\0'.
6203 */
next_token(const char ** buf)6204 static inline size_t next_token(const char **buf)
6205 {
6206 /*
6207 * These are the characters that produce nonzero for
6208 * isspace() in the "C" and "POSIX" locales.
6209 */
6210 static const char spaces[] = " \f\n\r\t\v";
6211
6212 *buf += strspn(*buf, spaces); /* Find start of token */
6213
6214 return strcspn(*buf, spaces); /* Return token length */
6215 }
6216
6217 /*
6218 * Finds the next token in *buf, dynamically allocates a buffer big
6219 * enough to hold a copy of it, and copies the token into the new
6220 * buffer. The copy is guaranteed to be terminated with '\0'. Note
6221 * that a duplicate buffer is created even for a zero-length token.
6222 *
6223 * Returns a pointer to the newly-allocated duplicate, or a null
6224 * pointer if memory for the duplicate was not available. If
6225 * the lenp argument is a non-null pointer, the length of the token
6226 * (not including the '\0') is returned in *lenp.
6227 *
6228 * If successful, the *buf pointer will be updated to point beyond
6229 * the end of the found token.
6230 *
6231 * Note: uses GFP_KERNEL for allocation.
6232 */
dup_token(const char ** buf,size_t * lenp)6233 static inline char *dup_token(const char **buf, size_t *lenp)
6234 {
6235 char *dup;
6236 size_t len;
6237
6238 len = next_token(buf);
6239 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6240 if (!dup)
6241 return NULL;
6242 *(dup + len) = '\0';
6243 *buf += len;
6244
6245 if (lenp)
6246 *lenp = len;
6247
6248 return dup;
6249 }
6250
rbd_parse_param(struct fs_parameter * param,struct rbd_parse_opts_ctx * pctx)6251 static int rbd_parse_param(struct fs_parameter *param,
6252 struct rbd_parse_opts_ctx *pctx)
6253 {
6254 struct rbd_options *opt = pctx->opts;
6255 struct fs_parse_result result;
6256 struct p_log log = {.prefix = "rbd"};
6257 int token, ret;
6258
6259 ret = ceph_parse_param(param, pctx->copts, NULL);
6260 if (ret != -ENOPARAM)
6261 return ret;
6262
6263 token = __fs_parse(&log, rbd_parameters, param, &result);
6264 dout("%s fs_parse '%s' token %d\n", __func__, param->key, token);
6265 if (token < 0) {
6266 if (token == -ENOPARAM)
6267 return inval_plog(&log, "Unknown parameter '%s'",
6268 param->key);
6269 return token;
6270 }
6271
6272 switch (token) {
6273 case Opt_queue_depth:
6274 if (result.uint_32 < 1)
6275 goto out_of_range;
6276 opt->queue_depth = result.uint_32;
6277 break;
6278 case Opt_alloc_size:
6279 if (result.uint_32 < SECTOR_SIZE)
6280 goto out_of_range;
6281 if (!is_power_of_2(result.uint_32))
6282 return inval_plog(&log, "alloc_size must be a power of 2");
6283 opt->alloc_size = result.uint_32;
6284 break;
6285 case Opt_lock_timeout:
6286 /* 0 is "wait forever" (i.e. infinite timeout) */
6287 if (result.uint_32 > INT_MAX / 1000)
6288 goto out_of_range;
6289 opt->lock_timeout = msecs_to_jiffies(result.uint_32 * 1000);
6290 break;
6291 case Opt_pool_ns:
6292 kfree(pctx->spec->pool_ns);
6293 pctx->spec->pool_ns = param->string;
6294 param->string = NULL;
6295 break;
6296 case Opt_compression_hint:
6297 switch (result.uint_32) {
6298 case Opt_compression_hint_none:
6299 opt->alloc_hint_flags &=
6300 ~(CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE |
6301 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE);
6302 break;
6303 case Opt_compression_hint_compressible:
6304 opt->alloc_hint_flags |=
6305 CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6306 opt->alloc_hint_flags &=
6307 ~CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6308 break;
6309 case Opt_compression_hint_incompressible:
6310 opt->alloc_hint_flags |=
6311 CEPH_OSD_ALLOC_HINT_FLAG_INCOMPRESSIBLE;
6312 opt->alloc_hint_flags &=
6313 ~CEPH_OSD_ALLOC_HINT_FLAG_COMPRESSIBLE;
6314 break;
6315 default:
6316 BUG();
6317 }
6318 break;
6319 case Opt_read_only:
6320 opt->read_only = true;
6321 break;
6322 case Opt_read_write:
6323 opt->read_only = false;
6324 break;
6325 case Opt_lock_on_read:
6326 opt->lock_on_read = true;
6327 break;
6328 case Opt_exclusive:
6329 opt->exclusive = true;
6330 break;
6331 case Opt_notrim:
6332 opt->trim = false;
6333 break;
6334 default:
6335 BUG();
6336 }
6337
6338 return 0;
6339
6340 out_of_range:
6341 return inval_plog(&log, "%s out of range", param->key);
6342 }
6343
6344 /*
6345 * This duplicates most of generic_parse_monolithic(), untying it from
6346 * fs_context and skipping standard superblock and security options.
6347 */
rbd_parse_options(char * options,struct rbd_parse_opts_ctx * pctx)6348 static int rbd_parse_options(char *options, struct rbd_parse_opts_ctx *pctx)
6349 {
6350 char *key;
6351 int ret = 0;
6352
6353 dout("%s '%s'\n", __func__, options);
6354 while ((key = strsep(&options, ",")) != NULL) {
6355 if (*key) {
6356 struct fs_parameter param = {
6357 .key = key,
6358 .type = fs_value_is_flag,
6359 };
6360 char *value = strchr(key, '=');
6361 size_t v_len = 0;
6362
6363 if (value) {
6364 if (value == key)
6365 continue;
6366 *value++ = 0;
6367 v_len = strlen(value);
6368 param.string = kmemdup_nul(value, v_len,
6369 GFP_KERNEL);
6370 if (!param.string)
6371 return -ENOMEM;
6372 param.type = fs_value_is_string;
6373 }
6374 param.size = v_len;
6375
6376 ret = rbd_parse_param(¶m, pctx);
6377 kfree(param.string);
6378 if (ret)
6379 break;
6380 }
6381 }
6382
6383 return ret;
6384 }
6385
6386 /*
6387 * Parse the options provided for an "rbd add" (i.e., rbd image
6388 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
6389 * and the data written is passed here via a NUL-terminated buffer.
6390 * Returns 0 if successful or an error code otherwise.
6391 *
6392 * The information extracted from these options is recorded in
6393 * the other parameters which return dynamically-allocated
6394 * structures:
6395 * ceph_opts
6396 * The address of a pointer that will refer to a ceph options
6397 * structure. Caller must release the returned pointer using
6398 * ceph_destroy_options() when it is no longer needed.
6399 * rbd_opts
6400 * Address of an rbd options pointer. Fully initialized by
6401 * this function; caller must release with kfree().
6402 * spec
6403 * Address of an rbd image specification pointer. Fully
6404 * initialized by this function based on parsed options.
6405 * Caller must release with rbd_spec_put().
6406 *
6407 * The options passed take this form:
6408 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6409 * where:
6410 * <mon_addrs>
6411 * A comma-separated list of one or more monitor addresses.
6412 * A monitor address is an ip address, optionally followed
6413 * by a port number (separated by a colon).
6414 * I.e.: ip1[:port1][,ip2[:port2]...]
6415 * <options>
6416 * A comma-separated list of ceph and/or rbd options.
6417 * <pool_name>
6418 * The name of the rados pool containing the rbd image.
6419 * <image_name>
6420 * The name of the image in that pool to map.
6421 * <snap_id>
6422 * An optional snapshot id. If provided, the mapping will
6423 * present data from the image at the time that snapshot was
6424 * created. The image head is used if no snapshot id is
6425 * provided. Snapshot mappings are always read-only.
6426 */
rbd_add_parse_args(const char * buf,struct ceph_options ** ceph_opts,struct rbd_options ** opts,struct rbd_spec ** rbd_spec)6427 static int rbd_add_parse_args(const char *buf,
6428 struct ceph_options **ceph_opts,
6429 struct rbd_options **opts,
6430 struct rbd_spec **rbd_spec)
6431 {
6432 size_t len;
6433 char *options;
6434 const char *mon_addrs;
6435 char *snap_name;
6436 size_t mon_addrs_size;
6437 struct rbd_parse_opts_ctx pctx = { 0 };
6438 int ret;
6439
6440 /* The first four tokens are required */
6441
6442 len = next_token(&buf);
6443 if (!len) {
6444 rbd_warn(NULL, "no monitor address(es) provided");
6445 return -EINVAL;
6446 }
6447 mon_addrs = buf;
6448 mon_addrs_size = len;
6449 buf += len;
6450
6451 ret = -EINVAL;
6452 options = dup_token(&buf, NULL);
6453 if (!options)
6454 return -ENOMEM;
6455 if (!*options) {
6456 rbd_warn(NULL, "no options provided");
6457 goto out_err;
6458 }
6459
6460 pctx.spec = rbd_spec_alloc();
6461 if (!pctx.spec)
6462 goto out_mem;
6463
6464 pctx.spec->pool_name = dup_token(&buf, NULL);
6465 if (!pctx.spec->pool_name)
6466 goto out_mem;
6467 if (!*pctx.spec->pool_name) {
6468 rbd_warn(NULL, "no pool name provided");
6469 goto out_err;
6470 }
6471
6472 pctx.spec->image_name = dup_token(&buf, NULL);
6473 if (!pctx.spec->image_name)
6474 goto out_mem;
6475 if (!*pctx.spec->image_name) {
6476 rbd_warn(NULL, "no image name provided");
6477 goto out_err;
6478 }
6479
6480 /*
6481 * Snapshot name is optional; default is to use "-"
6482 * (indicating the head/no snapshot).
6483 */
6484 len = next_token(&buf);
6485 if (!len) {
6486 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6487 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6488 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
6489 ret = -ENAMETOOLONG;
6490 goto out_err;
6491 }
6492 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6493 if (!snap_name)
6494 goto out_mem;
6495 *(snap_name + len) = '\0';
6496 pctx.spec->snap_name = snap_name;
6497
6498 pctx.copts = ceph_alloc_options();
6499 if (!pctx.copts)
6500 goto out_mem;
6501
6502 /* Initialize all rbd options to the defaults */
6503
6504 pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6505 if (!pctx.opts)
6506 goto out_mem;
6507
6508 pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6509 pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6510 pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6511 pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6512 pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6513 pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6514 pctx.opts->trim = RBD_TRIM_DEFAULT;
6515
6516 ret = ceph_parse_mon_ips(mon_addrs, mon_addrs_size, pctx.copts, NULL,
6517 ',');
6518 if (ret)
6519 goto out_err;
6520
6521 ret = rbd_parse_options(options, &pctx);
6522 if (ret)
6523 goto out_err;
6524
6525 *ceph_opts = pctx.copts;
6526 *opts = pctx.opts;
6527 *rbd_spec = pctx.spec;
6528 kfree(options);
6529 return 0;
6530
6531 out_mem:
6532 ret = -ENOMEM;
6533 out_err:
6534 kfree(pctx.opts);
6535 ceph_destroy_options(pctx.copts);
6536 rbd_spec_put(pctx.spec);
6537 kfree(options);
6538 return ret;
6539 }
6540
rbd_dev_image_unlock(struct rbd_device * rbd_dev)6541 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6542 {
6543 down_write(&rbd_dev->lock_rwsem);
6544 if (__rbd_is_lock_owner(rbd_dev))
6545 __rbd_release_lock(rbd_dev);
6546 up_write(&rbd_dev->lock_rwsem);
6547 }
6548
6549 /*
6550 * If the wait is interrupted, an error is returned even if the lock
6551 * was successfully acquired. rbd_dev_image_unlock() will release it
6552 * if needed.
6553 */
rbd_add_acquire_lock(struct rbd_device * rbd_dev)6554 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6555 {
6556 long ret;
6557
6558 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6559 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6560 return 0;
6561
6562 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6563 return -EINVAL;
6564 }
6565
6566 if (rbd_is_ro(rbd_dev))
6567 return 0;
6568
6569 rbd_assert(!rbd_is_lock_owner(rbd_dev));
6570 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6571 ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6572 ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6573 if (ret > 0) {
6574 ret = rbd_dev->acquire_err;
6575 } else {
6576 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
6577 if (!ret)
6578 ret = -ETIMEDOUT;
6579
6580 rbd_warn(rbd_dev, "failed to acquire lock: %ld", ret);
6581 }
6582 if (ret)
6583 return ret;
6584
6585 /*
6586 * The lock may have been released by now, unless automatic lock
6587 * transitions are disabled.
6588 */
6589 rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6590 return 0;
6591 }
6592
6593 /*
6594 * An rbd format 2 image has a unique identifier, distinct from the
6595 * name given to it by the user. Internally, that identifier is
6596 * what's used to specify the names of objects related to the image.
6597 *
6598 * A special "rbd id" object is used to map an rbd image name to its
6599 * id. If that object doesn't exist, then there is no v2 rbd image
6600 * with the supplied name.
6601 *
6602 * This function will record the given rbd_dev's image_id field if
6603 * it can be determined, and in that case will return 0. If any
6604 * errors occur a negative errno will be returned and the rbd_dev's
6605 * image_id field will be unchanged (and should be NULL).
6606 */
rbd_dev_image_id(struct rbd_device * rbd_dev)6607 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6608 {
6609 int ret;
6610 size_t size;
6611 CEPH_DEFINE_OID_ONSTACK(oid);
6612 void *response;
6613 char *image_id;
6614
6615 /*
6616 * When probing a parent image, the image id is already
6617 * known (and the image name likely is not). There's no
6618 * need to fetch the image id again in this case. We
6619 * do still need to set the image format though.
6620 */
6621 if (rbd_dev->spec->image_id) {
6622 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6623
6624 return 0;
6625 }
6626
6627 /*
6628 * First, see if the format 2 image id file exists, and if
6629 * so, get the image's persistent id from it.
6630 */
6631 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6632 rbd_dev->spec->image_name);
6633 if (ret)
6634 return ret;
6635
6636 dout("rbd id object name is %s\n", oid.name);
6637
6638 /* Response will be an encoded string, which includes a length */
6639 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6640 response = kzalloc(size, GFP_NOIO);
6641 if (!response) {
6642 ret = -ENOMEM;
6643 goto out;
6644 }
6645
6646 /* If it doesn't exist we'll assume it's a format 1 image */
6647
6648 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6649 "get_id", NULL, 0,
6650 response, size);
6651 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6652 if (ret == -ENOENT) {
6653 image_id = kstrdup("", GFP_KERNEL);
6654 ret = image_id ? 0 : -ENOMEM;
6655 if (!ret)
6656 rbd_dev->image_format = 1;
6657 } else if (ret >= 0) {
6658 void *p = response;
6659
6660 image_id = ceph_extract_encoded_string(&p, p + ret,
6661 NULL, GFP_NOIO);
6662 ret = PTR_ERR_OR_ZERO(image_id);
6663 if (!ret)
6664 rbd_dev->image_format = 2;
6665 }
6666
6667 if (!ret) {
6668 rbd_dev->spec->image_id = image_id;
6669 dout("image_id is %s\n", image_id);
6670 }
6671 out:
6672 kfree(response);
6673 ceph_oid_destroy(&oid);
6674 return ret;
6675 }
6676
6677 /*
6678 * Undo whatever state changes are made by v1 or v2 header info
6679 * call.
6680 */
rbd_dev_unprobe(struct rbd_device * rbd_dev)6681 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6682 {
6683 rbd_dev_parent_put(rbd_dev);
6684 rbd_object_map_free(rbd_dev);
6685 rbd_dev_mapping_clear(rbd_dev);
6686
6687 /* Free dynamic fields from the header, then zero it out */
6688
6689 rbd_image_header_cleanup(&rbd_dev->header);
6690 }
6691
rbd_dev_v2_header_onetime(struct rbd_device * rbd_dev,struct rbd_image_header * header)6692 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev,
6693 struct rbd_image_header *header)
6694 {
6695 int ret;
6696
6697 ret = rbd_dev_v2_object_prefix(rbd_dev, &header->object_prefix);
6698 if (ret)
6699 return ret;
6700
6701 /*
6702 * Get the and check features for the image. Currently the
6703 * features are assumed to never change.
6704 */
6705 ret = _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
6706 rbd_is_ro(rbd_dev), &header->features);
6707 if (ret)
6708 return ret;
6709
6710 /* If the image supports fancy striping, get its parameters */
6711
6712 if (header->features & RBD_FEATURE_STRIPINGV2) {
6713 ret = rbd_dev_v2_striping_info(rbd_dev, &header->stripe_unit,
6714 &header->stripe_count);
6715 if (ret)
6716 return ret;
6717 }
6718
6719 if (header->features & RBD_FEATURE_DATA_POOL) {
6720 ret = rbd_dev_v2_data_pool(rbd_dev, &header->data_pool_id);
6721 if (ret)
6722 return ret;
6723 }
6724
6725 return 0;
6726 }
6727
6728 /*
6729 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6730 * rbd_dev_image_probe() recursion depth, which means it's also the
6731 * length of the already discovered part of the parent chain.
6732 */
rbd_dev_probe_parent(struct rbd_device * rbd_dev,int depth)6733 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6734 {
6735 struct rbd_device *parent = NULL;
6736 int ret;
6737
6738 if (!rbd_dev->parent_spec)
6739 return 0;
6740
6741 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6742 pr_info("parent chain is too long (%d)\n", depth);
6743 ret = -EINVAL;
6744 goto out_err;
6745 }
6746
6747 parent = __rbd_dev_create(rbd_dev->parent_spec);
6748 if (!parent) {
6749 ret = -ENOMEM;
6750 goto out_err;
6751 }
6752
6753 /*
6754 * Images related by parent/child relationships always share
6755 * rbd_client and spec/parent_spec, so bump their refcounts.
6756 */
6757 parent->rbd_client = __rbd_get_client(rbd_dev->rbd_client);
6758 parent->spec = rbd_spec_get(rbd_dev->parent_spec);
6759
6760 __set_bit(RBD_DEV_FLAG_READONLY, &parent->flags);
6761
6762 ret = rbd_dev_image_probe(parent, depth);
6763 if (ret < 0)
6764 goto out_err;
6765
6766 rbd_dev->parent = parent;
6767 atomic_set(&rbd_dev->parent_ref, 1);
6768 return 0;
6769
6770 out_err:
6771 rbd_dev_unparent(rbd_dev);
6772 rbd_dev_destroy(parent);
6773 return ret;
6774 }
6775
rbd_dev_device_release(struct rbd_device * rbd_dev)6776 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6777 {
6778 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6779 rbd_free_disk(rbd_dev);
6780 if (!single_major)
6781 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6782 }
6783
6784 /*
6785 * rbd_dev->header_rwsem must be locked for write and will be unlocked
6786 * upon return.
6787 */
rbd_dev_device_setup(struct rbd_device * rbd_dev)6788 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6789 {
6790 int ret;
6791
6792 /* Record our major and minor device numbers. */
6793
6794 if (!single_major) {
6795 ret = register_blkdev(0, rbd_dev->name);
6796 if (ret < 0)
6797 goto err_out_unlock;
6798
6799 rbd_dev->major = ret;
6800 rbd_dev->minor = 0;
6801 } else {
6802 rbd_dev->major = rbd_major;
6803 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6804 }
6805
6806 /* Set up the blkdev mapping. */
6807
6808 ret = rbd_init_disk(rbd_dev);
6809 if (ret)
6810 goto err_out_blkdev;
6811
6812 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6813 set_disk_ro(rbd_dev->disk, rbd_is_ro(rbd_dev));
6814
6815 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6816 if (ret)
6817 goto err_out_disk;
6818
6819 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6820 up_write(&rbd_dev->header_rwsem);
6821 return 0;
6822
6823 err_out_disk:
6824 rbd_free_disk(rbd_dev);
6825 err_out_blkdev:
6826 if (!single_major)
6827 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6828 err_out_unlock:
6829 up_write(&rbd_dev->header_rwsem);
6830 return ret;
6831 }
6832
rbd_dev_header_name(struct rbd_device * rbd_dev)6833 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6834 {
6835 struct rbd_spec *spec = rbd_dev->spec;
6836 int ret;
6837
6838 /* Record the header object name for this rbd image. */
6839
6840 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6841 if (rbd_dev->image_format == 1)
6842 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6843 spec->image_name, RBD_SUFFIX);
6844 else
6845 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6846 RBD_HEADER_PREFIX, spec->image_id);
6847
6848 return ret;
6849 }
6850
rbd_print_dne(struct rbd_device * rbd_dev,bool is_snap)6851 static void rbd_print_dne(struct rbd_device *rbd_dev, bool is_snap)
6852 {
6853 if (!is_snap) {
6854 pr_info("image %s/%s%s%s does not exist\n",
6855 rbd_dev->spec->pool_name,
6856 rbd_dev->spec->pool_ns ?: "",
6857 rbd_dev->spec->pool_ns ? "/" : "",
6858 rbd_dev->spec->image_name);
6859 } else {
6860 pr_info("snap %s/%s%s%s@%s does not exist\n",
6861 rbd_dev->spec->pool_name,
6862 rbd_dev->spec->pool_ns ?: "",
6863 rbd_dev->spec->pool_ns ? "/" : "",
6864 rbd_dev->spec->image_name,
6865 rbd_dev->spec->snap_name);
6866 }
6867 }
6868
rbd_dev_image_release(struct rbd_device * rbd_dev)6869 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6870 {
6871 if (!rbd_is_ro(rbd_dev))
6872 rbd_unregister_watch(rbd_dev);
6873
6874 rbd_dev_unprobe(rbd_dev);
6875 rbd_dev->image_format = 0;
6876 kfree(rbd_dev->spec->image_id);
6877 rbd_dev->spec->image_id = NULL;
6878 }
6879
6880 /*
6881 * Probe for the existence of the header object for the given rbd
6882 * device. If this image is the one being mapped (i.e., not a
6883 * parent), initiate a watch on its header object before using that
6884 * object to get detailed information about the rbd image.
6885 *
6886 * On success, returns with header_rwsem held for write if called
6887 * with @depth == 0.
6888 */
rbd_dev_image_probe(struct rbd_device * rbd_dev,int depth)6889 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6890 {
6891 bool need_watch = !rbd_is_ro(rbd_dev);
6892 int ret;
6893
6894 /*
6895 * Get the id from the image id object. Unless there's an
6896 * error, rbd_dev->spec->image_id will be filled in with
6897 * a dynamically-allocated string, and rbd_dev->image_format
6898 * will be set to either 1 or 2.
6899 */
6900 ret = rbd_dev_image_id(rbd_dev);
6901 if (ret)
6902 return ret;
6903
6904 ret = rbd_dev_header_name(rbd_dev);
6905 if (ret)
6906 goto err_out_format;
6907
6908 if (need_watch) {
6909 ret = rbd_register_watch(rbd_dev);
6910 if (ret) {
6911 if (ret == -ENOENT)
6912 rbd_print_dne(rbd_dev, false);
6913 goto err_out_format;
6914 }
6915 }
6916
6917 if (!depth)
6918 down_write(&rbd_dev->header_rwsem);
6919
6920 ret = rbd_dev_header_info(rbd_dev, &rbd_dev->header, true);
6921 if (ret) {
6922 if (ret == -ENOENT && !need_watch)
6923 rbd_print_dne(rbd_dev, false);
6924 goto err_out_probe;
6925 }
6926
6927 rbd_init_layout(rbd_dev);
6928
6929 /*
6930 * If this image is the one being mapped, we have pool name and
6931 * id, image name and id, and snap name - need to fill snap id.
6932 * Otherwise this is a parent image, identified by pool, image
6933 * and snap ids - need to fill in names for those ids.
6934 */
6935 if (!depth)
6936 ret = rbd_spec_fill_snap_id(rbd_dev);
6937 else
6938 ret = rbd_spec_fill_names(rbd_dev);
6939 if (ret) {
6940 if (ret == -ENOENT)
6941 rbd_print_dne(rbd_dev, true);
6942 goto err_out_probe;
6943 }
6944
6945 ret = rbd_dev_mapping_set(rbd_dev);
6946 if (ret)
6947 goto err_out_probe;
6948
6949 if (rbd_is_snap(rbd_dev) &&
6950 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
6951 ret = rbd_object_map_load(rbd_dev);
6952 if (ret)
6953 goto err_out_probe;
6954 }
6955
6956 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
6957 ret = rbd_dev_setup_parent(rbd_dev);
6958 if (ret)
6959 goto err_out_probe;
6960 }
6961
6962 ret = rbd_dev_probe_parent(rbd_dev, depth);
6963 if (ret)
6964 goto err_out_probe;
6965
6966 dout("discovered format %u image, header name is %s\n",
6967 rbd_dev->image_format, rbd_dev->header_oid.name);
6968 return 0;
6969
6970 err_out_probe:
6971 if (!depth)
6972 up_write(&rbd_dev->header_rwsem);
6973 if (need_watch)
6974 rbd_unregister_watch(rbd_dev);
6975 rbd_dev_unprobe(rbd_dev);
6976 err_out_format:
6977 rbd_dev->image_format = 0;
6978 kfree(rbd_dev->spec->image_id);
6979 rbd_dev->spec->image_id = NULL;
6980 return ret;
6981 }
6982
rbd_dev_update_header(struct rbd_device * rbd_dev,struct rbd_image_header * header)6983 static void rbd_dev_update_header(struct rbd_device *rbd_dev,
6984 struct rbd_image_header *header)
6985 {
6986 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6987 rbd_assert(rbd_dev->header.object_prefix); /* !first_time */
6988
6989 if (rbd_dev->header.image_size != header->image_size) {
6990 rbd_dev->header.image_size = header->image_size;
6991
6992 if (!rbd_is_snap(rbd_dev)) {
6993 rbd_dev->mapping.size = header->image_size;
6994 rbd_dev_update_size(rbd_dev);
6995 }
6996 }
6997
6998 ceph_put_snap_context(rbd_dev->header.snapc);
6999 rbd_dev->header.snapc = header->snapc;
7000 header->snapc = NULL;
7001
7002 if (rbd_dev->image_format == 1) {
7003 kfree(rbd_dev->header.snap_names);
7004 rbd_dev->header.snap_names = header->snap_names;
7005 header->snap_names = NULL;
7006
7007 kfree(rbd_dev->header.snap_sizes);
7008 rbd_dev->header.snap_sizes = header->snap_sizes;
7009 header->snap_sizes = NULL;
7010 }
7011 }
7012
rbd_dev_update_parent(struct rbd_device * rbd_dev,struct parent_image_info * pii)7013 static void rbd_dev_update_parent(struct rbd_device *rbd_dev,
7014 struct parent_image_info *pii)
7015 {
7016 if (pii->pool_id == CEPH_NOPOOL || !pii->has_overlap) {
7017 /*
7018 * Either the parent never existed, or we have
7019 * record of it but the image got flattened so it no
7020 * longer has a parent. When the parent of a
7021 * layered image disappears we immediately set the
7022 * overlap to 0. The effect of this is that all new
7023 * requests will be treated as if the image had no
7024 * parent.
7025 *
7026 * If !pii.has_overlap, the parent image spec is not
7027 * applicable. It's there to avoid duplication in each
7028 * snapshot record.
7029 */
7030 if (rbd_dev->parent_overlap) {
7031 rbd_dev->parent_overlap = 0;
7032 rbd_dev_parent_put(rbd_dev);
7033 pr_info("%s: clone has been flattened\n",
7034 rbd_dev->disk->disk_name);
7035 }
7036 } else {
7037 rbd_assert(rbd_dev->parent_spec);
7038
7039 /*
7040 * Update the parent overlap. If it became zero, issue
7041 * a warning as we will proceed as if there is no parent.
7042 */
7043 if (!pii->overlap && rbd_dev->parent_overlap)
7044 rbd_warn(rbd_dev,
7045 "clone has become standalone (overlap 0)");
7046 rbd_dev->parent_overlap = pii->overlap;
7047 }
7048 }
7049
rbd_dev_refresh(struct rbd_device * rbd_dev)7050 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
7051 {
7052 struct rbd_image_header header = { 0 };
7053 struct parent_image_info pii = { 0 };
7054 int ret;
7055
7056 dout("%s rbd_dev %p\n", __func__, rbd_dev);
7057
7058 ret = rbd_dev_header_info(rbd_dev, &header, false);
7059 if (ret)
7060 goto out;
7061
7062 /*
7063 * If there is a parent, see if it has disappeared due to the
7064 * mapped image getting flattened.
7065 */
7066 if (rbd_dev->parent) {
7067 ret = rbd_dev_v2_parent_info(rbd_dev, &pii);
7068 if (ret)
7069 goto out;
7070 }
7071
7072 down_write(&rbd_dev->header_rwsem);
7073 rbd_dev_update_header(rbd_dev, &header);
7074 if (rbd_dev->parent)
7075 rbd_dev_update_parent(rbd_dev, &pii);
7076 up_write(&rbd_dev->header_rwsem);
7077
7078 out:
7079 rbd_parent_info_cleanup(&pii);
7080 rbd_image_header_cleanup(&header);
7081 return ret;
7082 }
7083
do_rbd_add(const char * buf,size_t count)7084 static ssize_t do_rbd_add(const char *buf, size_t count)
7085 {
7086 struct rbd_device *rbd_dev = NULL;
7087 struct ceph_options *ceph_opts = NULL;
7088 struct rbd_options *rbd_opts = NULL;
7089 struct rbd_spec *spec = NULL;
7090 struct rbd_client *rbdc;
7091 int rc;
7092
7093 if (!capable(CAP_SYS_ADMIN))
7094 return -EPERM;
7095
7096 if (!try_module_get(THIS_MODULE))
7097 return -ENODEV;
7098
7099 /* parse add command */
7100 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7101 if (rc < 0)
7102 goto out;
7103
7104 rbdc = rbd_get_client(ceph_opts);
7105 if (IS_ERR(rbdc)) {
7106 rc = PTR_ERR(rbdc);
7107 goto err_out_args;
7108 }
7109
7110 /* pick the pool */
7111 rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7112 if (rc < 0) {
7113 if (rc == -ENOENT)
7114 pr_info("pool %s does not exist\n", spec->pool_name);
7115 goto err_out_client;
7116 }
7117 spec->pool_id = (u64)rc;
7118
7119 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7120 if (!rbd_dev) {
7121 rc = -ENOMEM;
7122 goto err_out_client;
7123 }
7124 rbdc = NULL; /* rbd_dev now owns this */
7125 spec = NULL; /* rbd_dev now owns this */
7126 rbd_opts = NULL; /* rbd_dev now owns this */
7127
7128 /* if we are mapping a snapshot it will be a read-only mapping */
7129 if (rbd_dev->opts->read_only ||
7130 strcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME))
7131 __set_bit(RBD_DEV_FLAG_READONLY, &rbd_dev->flags);
7132
7133 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7134 if (!rbd_dev->config_info) {
7135 rc = -ENOMEM;
7136 goto err_out_rbd_dev;
7137 }
7138
7139 rc = rbd_dev_image_probe(rbd_dev, 0);
7140 if (rc < 0)
7141 goto err_out_rbd_dev;
7142
7143 if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7144 rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7145 rbd_dev->layout.object_size);
7146 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7147 }
7148
7149 rc = rbd_dev_device_setup(rbd_dev);
7150 if (rc)
7151 goto err_out_image_probe;
7152
7153 rc = rbd_add_acquire_lock(rbd_dev);
7154 if (rc)
7155 goto err_out_image_lock;
7156
7157 /* Everything's ready. Announce the disk to the world. */
7158
7159 rc = device_add(&rbd_dev->dev);
7160 if (rc)
7161 goto err_out_image_lock;
7162
7163 rc = device_add_disk(&rbd_dev->dev, rbd_dev->disk, NULL);
7164 if (rc)
7165 goto err_out_cleanup_disk;
7166
7167 spin_lock(&rbd_dev_list_lock);
7168 list_add_tail(&rbd_dev->node, &rbd_dev_list);
7169 spin_unlock(&rbd_dev_list_lock);
7170
7171 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7172 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7173 rbd_dev->header.features);
7174 rc = count;
7175 out:
7176 module_put(THIS_MODULE);
7177 return rc;
7178
7179 err_out_cleanup_disk:
7180 rbd_free_disk(rbd_dev);
7181 err_out_image_lock:
7182 rbd_dev_image_unlock(rbd_dev);
7183 rbd_dev_device_release(rbd_dev);
7184 err_out_image_probe:
7185 rbd_dev_image_release(rbd_dev);
7186 err_out_rbd_dev:
7187 rbd_dev_destroy(rbd_dev);
7188 err_out_client:
7189 rbd_put_client(rbdc);
7190 err_out_args:
7191 rbd_spec_put(spec);
7192 kfree(rbd_opts);
7193 goto out;
7194 }
7195
add_store(const struct bus_type * bus,const char * buf,size_t count)7196 static ssize_t add_store(const struct bus_type *bus, const char *buf, size_t count)
7197 {
7198 if (single_major)
7199 return -EINVAL;
7200
7201 return do_rbd_add(buf, count);
7202 }
7203
add_single_major_store(const struct bus_type * bus,const char * buf,size_t count)7204 static ssize_t add_single_major_store(const struct bus_type *bus, const char *buf,
7205 size_t count)
7206 {
7207 return do_rbd_add(buf, count);
7208 }
7209
rbd_dev_remove_parent(struct rbd_device * rbd_dev)7210 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7211 {
7212 while (rbd_dev->parent) {
7213 struct rbd_device *first = rbd_dev;
7214 struct rbd_device *second = first->parent;
7215 struct rbd_device *third;
7216
7217 /*
7218 * Follow to the parent with no grandparent and
7219 * remove it.
7220 */
7221 while (second && (third = second->parent)) {
7222 first = second;
7223 second = third;
7224 }
7225 rbd_assert(second);
7226 rbd_dev_image_release(second);
7227 rbd_dev_destroy(second);
7228 first->parent = NULL;
7229 first->parent_overlap = 0;
7230
7231 rbd_assert(first->parent_spec);
7232 rbd_spec_put(first->parent_spec);
7233 first->parent_spec = NULL;
7234 }
7235 }
7236
do_rbd_remove(const char * buf,size_t count)7237 static ssize_t do_rbd_remove(const char *buf, size_t count)
7238 {
7239 struct rbd_device *rbd_dev = NULL;
7240 int dev_id;
7241 char opt_buf[6];
7242 bool force = false;
7243 int ret;
7244
7245 if (!capable(CAP_SYS_ADMIN))
7246 return -EPERM;
7247
7248 dev_id = -1;
7249 opt_buf[0] = '\0';
7250 sscanf(buf, "%d %5s", &dev_id, opt_buf);
7251 if (dev_id < 0) {
7252 pr_err("dev_id out of range\n");
7253 return -EINVAL;
7254 }
7255 if (opt_buf[0] != '\0') {
7256 if (!strcmp(opt_buf, "force")) {
7257 force = true;
7258 } else {
7259 pr_err("bad remove option at '%s'\n", opt_buf);
7260 return -EINVAL;
7261 }
7262 }
7263
7264 ret = -ENOENT;
7265 spin_lock(&rbd_dev_list_lock);
7266 list_for_each_entry(rbd_dev, &rbd_dev_list, node) {
7267 if (rbd_dev->dev_id == dev_id) {
7268 ret = 0;
7269 break;
7270 }
7271 }
7272 if (!ret) {
7273 spin_lock_irq(&rbd_dev->lock);
7274 if (rbd_dev->open_count && !force)
7275 ret = -EBUSY;
7276 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7277 &rbd_dev->flags))
7278 ret = -EINPROGRESS;
7279 spin_unlock_irq(&rbd_dev->lock);
7280 }
7281 spin_unlock(&rbd_dev_list_lock);
7282 if (ret)
7283 return ret;
7284
7285 if (force) {
7286 /*
7287 * Prevent new IO from being queued and wait for existing
7288 * IO to complete/fail.
7289 */
7290 blk_mq_freeze_queue(rbd_dev->disk->queue);
7291 blk_mark_disk_dead(rbd_dev->disk);
7292 }
7293
7294 del_gendisk(rbd_dev->disk);
7295 spin_lock(&rbd_dev_list_lock);
7296 list_del_init(&rbd_dev->node);
7297 spin_unlock(&rbd_dev_list_lock);
7298 device_del(&rbd_dev->dev);
7299
7300 rbd_dev_image_unlock(rbd_dev);
7301 rbd_dev_device_release(rbd_dev);
7302 rbd_dev_image_release(rbd_dev);
7303 rbd_dev_destroy(rbd_dev);
7304 return count;
7305 }
7306
remove_store(const struct bus_type * bus,const char * buf,size_t count)7307 static ssize_t remove_store(const struct bus_type *bus, const char *buf, size_t count)
7308 {
7309 if (single_major)
7310 return -EINVAL;
7311
7312 return do_rbd_remove(buf, count);
7313 }
7314
remove_single_major_store(const struct bus_type * bus,const char * buf,size_t count)7315 static ssize_t remove_single_major_store(const struct bus_type *bus, const char *buf,
7316 size_t count)
7317 {
7318 return do_rbd_remove(buf, count);
7319 }
7320
7321 /*
7322 * create control files in sysfs
7323 * /sys/bus/rbd/...
7324 */
rbd_sysfs_init(void)7325 static int __init rbd_sysfs_init(void)
7326 {
7327 int ret;
7328
7329 ret = device_register(&rbd_root_dev);
7330 if (ret < 0) {
7331 put_device(&rbd_root_dev);
7332 return ret;
7333 }
7334
7335 ret = bus_register(&rbd_bus_type);
7336 if (ret < 0)
7337 device_unregister(&rbd_root_dev);
7338
7339 return ret;
7340 }
7341
rbd_sysfs_cleanup(void)7342 static void __exit rbd_sysfs_cleanup(void)
7343 {
7344 bus_unregister(&rbd_bus_type);
7345 device_unregister(&rbd_root_dev);
7346 }
7347
rbd_slab_init(void)7348 static int __init rbd_slab_init(void)
7349 {
7350 rbd_assert(!rbd_img_request_cache);
7351 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7352 if (!rbd_img_request_cache)
7353 return -ENOMEM;
7354
7355 rbd_assert(!rbd_obj_request_cache);
7356 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7357 if (!rbd_obj_request_cache)
7358 goto out_err;
7359
7360 return 0;
7361
7362 out_err:
7363 kmem_cache_destroy(rbd_img_request_cache);
7364 rbd_img_request_cache = NULL;
7365 return -ENOMEM;
7366 }
7367
rbd_slab_exit(void)7368 static void rbd_slab_exit(void)
7369 {
7370 rbd_assert(rbd_obj_request_cache);
7371 kmem_cache_destroy(rbd_obj_request_cache);
7372 rbd_obj_request_cache = NULL;
7373
7374 rbd_assert(rbd_img_request_cache);
7375 kmem_cache_destroy(rbd_img_request_cache);
7376 rbd_img_request_cache = NULL;
7377 }
7378
rbd_init(void)7379 static int __init rbd_init(void)
7380 {
7381 int rc;
7382
7383 if (!libceph_compatible(NULL)) {
7384 rbd_warn(NULL, "libceph incompatibility (quitting)");
7385 return -EINVAL;
7386 }
7387
7388 rc = rbd_slab_init();
7389 if (rc)
7390 return rc;
7391
7392 /*
7393 * The number of active work items is limited by the number of
7394 * rbd devices * queue depth, so leave @max_active at default.
7395 */
7396 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7397 if (!rbd_wq) {
7398 rc = -ENOMEM;
7399 goto err_out_slab;
7400 }
7401
7402 if (single_major) {
7403 rbd_major = register_blkdev(0, RBD_DRV_NAME);
7404 if (rbd_major < 0) {
7405 rc = rbd_major;
7406 goto err_out_wq;
7407 }
7408 }
7409
7410 rc = rbd_sysfs_init();
7411 if (rc)
7412 goto err_out_blkdev;
7413
7414 if (single_major)
7415 pr_info("loaded (major %d)\n", rbd_major);
7416 else
7417 pr_info("loaded\n");
7418
7419 return 0;
7420
7421 err_out_blkdev:
7422 if (single_major)
7423 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7424 err_out_wq:
7425 destroy_workqueue(rbd_wq);
7426 err_out_slab:
7427 rbd_slab_exit();
7428 return rc;
7429 }
7430
rbd_exit(void)7431 static void __exit rbd_exit(void)
7432 {
7433 ida_destroy(&rbd_dev_id_ida);
7434 rbd_sysfs_cleanup();
7435 if (single_major)
7436 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7437 destroy_workqueue(rbd_wq);
7438 rbd_slab_exit();
7439 }
7440
7441 module_init(rbd_init);
7442 module_exit(rbd_exit);
7443
7444 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
7445 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
7446 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
7447 /* following authorship retained from original osdblk.c */
7448 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
7449
7450 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7451 MODULE_LICENSE("GPL");
7452