1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * GICv3 ITS emulation
4 *
5 * Copyright (C) 2015,2016 ARM Ltd.
6 * Author: Andre Przywara <andre.przywara@arm.com>
7 */
8
9 #include <linux/cpu.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/uaccess.h>
15 #include <linux/list_sort.h>
16
17 #include <linux/irqchip/arm-gic-v3.h>
18
19 #include <asm/kvm_emulate.h>
20 #include <asm/kvm_arm.h>
21 #include <asm/kvm_mmu.h>
22
23 #include "vgic.h"
24 #include "vgic-mmio.h"
25
26 static int vgic_its_save_tables_v0(struct vgic_its *its);
27 static int vgic_its_restore_tables_v0(struct vgic_its *its);
28 static int vgic_its_commit_v0(struct vgic_its *its);
29 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
30 struct kvm_vcpu *filter_vcpu, bool needs_inv);
31
32 /*
33 * Creates a new (reference to a) struct vgic_irq for a given LPI.
34 * If this LPI is already mapped on another ITS, we increase its refcount
35 * and return a pointer to the existing structure.
36 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
37 * This function returns a pointer to the _unlocked_ structure.
38 */
vgic_add_lpi(struct kvm * kvm,u32 intid,struct kvm_vcpu * vcpu)39 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
40 struct kvm_vcpu *vcpu)
41 {
42 struct vgic_dist *dist = &kvm->arch.vgic;
43 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
44 unsigned long flags;
45 int ret;
46
47 /* In this case there is no put, since we keep the reference. */
48 if (irq)
49 return irq;
50
51 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL_ACCOUNT);
52 if (!irq)
53 return ERR_PTR(-ENOMEM);
54
55 INIT_LIST_HEAD(&irq->lpi_list);
56 INIT_LIST_HEAD(&irq->ap_list);
57 raw_spin_lock_init(&irq->irq_lock);
58
59 irq->config = VGIC_CONFIG_EDGE;
60 kref_init(&irq->refcount);
61 irq->intid = intid;
62 irq->target_vcpu = vcpu;
63 irq->group = 1;
64
65 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
66
67 /*
68 * There could be a race with another vgic_add_lpi(), so we need to
69 * check that we don't add a second list entry with the same LPI.
70 */
71 list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
72 if (oldirq->intid != intid)
73 continue;
74
75 /* Someone was faster with adding this LPI, lets use that. */
76 kfree(irq);
77 irq = oldirq;
78
79 /*
80 * This increases the refcount, the caller is expected to
81 * call vgic_put_irq() on the returned pointer once it's
82 * finished with the IRQ.
83 */
84 vgic_get_irq_kref(irq);
85
86 goto out_unlock;
87 }
88
89 list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
90 dist->lpi_list_count++;
91
92 out_unlock:
93 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
94
95 /*
96 * We "cache" the configuration table entries in our struct vgic_irq's.
97 * However we only have those structs for mapped IRQs, so we read in
98 * the respective config data from memory here upon mapping the LPI.
99 *
100 * Should any of these fail, behave as if we couldn't create the LPI
101 * by dropping the refcount and returning the error.
102 */
103 ret = update_lpi_config(kvm, irq, NULL, false);
104 if (ret) {
105 vgic_put_irq(kvm, irq);
106 return ERR_PTR(ret);
107 }
108
109 ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
110 if (ret) {
111 vgic_put_irq(kvm, irq);
112 return ERR_PTR(ret);
113 }
114
115 return irq;
116 }
117
118 struct its_device {
119 struct list_head dev_list;
120
121 /* the head for the list of ITTEs */
122 struct list_head itt_head;
123 u32 num_eventid_bits;
124 gpa_t itt_addr;
125 u32 device_id;
126 };
127
128 #define COLLECTION_NOT_MAPPED ((u32)~0)
129
130 struct its_collection {
131 struct list_head coll_list;
132
133 u32 collection_id;
134 u32 target_addr;
135 };
136
137 #define its_is_collection_mapped(coll) ((coll) && \
138 ((coll)->target_addr != COLLECTION_NOT_MAPPED))
139
140 struct its_ite {
141 struct list_head ite_list;
142
143 struct vgic_irq *irq;
144 struct its_collection *collection;
145 u32 event_id;
146 };
147
148 struct vgic_translation_cache_entry {
149 struct list_head entry;
150 phys_addr_t db;
151 u32 devid;
152 u32 eventid;
153 struct vgic_irq *irq;
154 };
155
156 /**
157 * struct vgic_its_abi - ITS abi ops and settings
158 * @cte_esz: collection table entry size
159 * @dte_esz: device table entry size
160 * @ite_esz: interrupt translation table entry size
161 * @save tables: save the ITS tables into guest RAM
162 * @restore_tables: restore the ITS internal structs from tables
163 * stored in guest RAM
164 * @commit: initialize the registers which expose the ABI settings,
165 * especially the entry sizes
166 */
167 struct vgic_its_abi {
168 int cte_esz;
169 int dte_esz;
170 int ite_esz;
171 int (*save_tables)(struct vgic_its *its);
172 int (*restore_tables)(struct vgic_its *its);
173 int (*commit)(struct vgic_its *its);
174 };
175
176 #define ABI_0_ESZ 8
177 #define ESZ_MAX ABI_0_ESZ
178
179 static const struct vgic_its_abi its_table_abi_versions[] = {
180 [0] = {
181 .cte_esz = ABI_0_ESZ,
182 .dte_esz = ABI_0_ESZ,
183 .ite_esz = ABI_0_ESZ,
184 .save_tables = vgic_its_save_tables_v0,
185 .restore_tables = vgic_its_restore_tables_v0,
186 .commit = vgic_its_commit_v0,
187 },
188 };
189
190 #define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions)
191
vgic_its_get_abi(struct vgic_its * its)192 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
193 {
194 return &its_table_abi_versions[its->abi_rev];
195 }
196
vgic_its_set_abi(struct vgic_its * its,u32 rev)197 static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
198 {
199 const struct vgic_its_abi *abi;
200
201 its->abi_rev = rev;
202 abi = vgic_its_get_abi(its);
203 return abi->commit(its);
204 }
205
206 /*
207 * Find and returns a device in the device table for an ITS.
208 * Must be called with the its_lock mutex held.
209 */
find_its_device(struct vgic_its * its,u32 device_id)210 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
211 {
212 struct its_device *device;
213
214 list_for_each_entry(device, &its->device_list, dev_list)
215 if (device_id == device->device_id)
216 return device;
217
218 return NULL;
219 }
220
221 /*
222 * Find and returns an interrupt translation table entry (ITTE) for a given
223 * Device ID/Event ID pair on an ITS.
224 * Must be called with the its_lock mutex held.
225 */
find_ite(struct vgic_its * its,u32 device_id,u32 event_id)226 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
227 u32 event_id)
228 {
229 struct its_device *device;
230 struct its_ite *ite;
231
232 device = find_its_device(its, device_id);
233 if (device == NULL)
234 return NULL;
235
236 list_for_each_entry(ite, &device->itt_head, ite_list)
237 if (ite->event_id == event_id)
238 return ite;
239
240 return NULL;
241 }
242
243 /* To be used as an iterator this macro misses the enclosing parentheses */
244 #define for_each_lpi_its(dev, ite, its) \
245 list_for_each_entry(dev, &(its)->device_list, dev_list) \
246 list_for_each_entry(ite, &(dev)->itt_head, ite_list)
247
248 #define GIC_LPI_OFFSET 8192
249
250 #define VITS_TYPER_IDBITS 16
251 #define VITS_TYPER_DEVBITS 16
252 #define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1)
253 #define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1)
254
255 /*
256 * Finds and returns a collection in the ITS collection table.
257 * Must be called with the its_lock mutex held.
258 */
find_collection(struct vgic_its * its,int coll_id)259 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
260 {
261 struct its_collection *collection;
262
263 list_for_each_entry(collection, &its->collection_list, coll_list) {
264 if (coll_id == collection->collection_id)
265 return collection;
266 }
267
268 return NULL;
269 }
270
271 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
272 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
273
274 /*
275 * Reads the configuration data for a given LPI from guest memory and
276 * updates the fields in struct vgic_irq.
277 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
278 * VCPU. Unconditionally applies if filter_vcpu is NULL.
279 */
update_lpi_config(struct kvm * kvm,struct vgic_irq * irq,struct kvm_vcpu * filter_vcpu,bool needs_inv)280 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
281 struct kvm_vcpu *filter_vcpu, bool needs_inv)
282 {
283 u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
284 u8 prop;
285 int ret;
286 unsigned long flags;
287
288 ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
289 &prop, 1);
290
291 if (ret)
292 return ret;
293
294 raw_spin_lock_irqsave(&irq->irq_lock, flags);
295
296 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
297 irq->priority = LPI_PROP_PRIORITY(prop);
298 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
299
300 if (!irq->hw) {
301 vgic_queue_irq_unlock(kvm, irq, flags);
302 return 0;
303 }
304 }
305
306 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
307
308 if (irq->hw)
309 return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
310
311 return 0;
312 }
313
314 /*
315 * Create a snapshot of the current LPIs targeting @vcpu, so that we can
316 * enumerate those LPIs without holding any lock.
317 * Returns their number and puts the kmalloc'ed array into intid_ptr.
318 */
vgic_copy_lpi_list(struct kvm * kvm,struct kvm_vcpu * vcpu,u32 ** intid_ptr)319 int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
320 {
321 struct vgic_dist *dist = &kvm->arch.vgic;
322 struct vgic_irq *irq;
323 unsigned long flags;
324 u32 *intids;
325 int irq_count, i = 0;
326
327 /*
328 * There is an obvious race between allocating the array and LPIs
329 * being mapped/unmapped. If we ended up here as a result of a
330 * command, we're safe (locks are held, preventing another
331 * command). If coming from another path (such as enabling LPIs),
332 * we must be careful not to overrun the array.
333 */
334 irq_count = READ_ONCE(dist->lpi_list_count);
335 intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL_ACCOUNT);
336 if (!intids)
337 return -ENOMEM;
338
339 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
340 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
341 if (i == irq_count)
342 break;
343 /* We don't need to "get" the IRQ, as we hold the list lock. */
344 if (vcpu && irq->target_vcpu != vcpu)
345 continue;
346 intids[i++] = irq->intid;
347 }
348 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
349
350 *intid_ptr = intids;
351 return i;
352 }
353
update_affinity(struct vgic_irq * irq,struct kvm_vcpu * vcpu)354 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
355 {
356 int ret = 0;
357 unsigned long flags;
358
359 raw_spin_lock_irqsave(&irq->irq_lock, flags);
360 irq->target_vcpu = vcpu;
361 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
362
363 if (irq->hw) {
364 struct its_vlpi_map map;
365
366 ret = its_get_vlpi(irq->host_irq, &map);
367 if (ret)
368 return ret;
369
370 if (map.vpe)
371 atomic_dec(&map.vpe->vlpi_count);
372 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
373 atomic_inc(&map.vpe->vlpi_count);
374
375 ret = its_map_vlpi(irq->host_irq, &map);
376 }
377
378 return ret;
379 }
380
381 /*
382 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
383 * is targeting) to the VGIC's view, which deals with target VCPUs.
384 * Needs to be called whenever either the collection for a LPIs has
385 * changed or the collection itself got retargeted.
386 */
update_affinity_ite(struct kvm * kvm,struct its_ite * ite)387 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
388 {
389 struct kvm_vcpu *vcpu;
390
391 if (!its_is_collection_mapped(ite->collection))
392 return;
393
394 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
395 update_affinity(ite->irq, vcpu);
396 }
397
398 /*
399 * Updates the target VCPU for every LPI targeting this collection.
400 * Must be called with the its_lock mutex held.
401 */
update_affinity_collection(struct kvm * kvm,struct vgic_its * its,struct its_collection * coll)402 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
403 struct its_collection *coll)
404 {
405 struct its_device *device;
406 struct its_ite *ite;
407
408 for_each_lpi_its(device, ite, its) {
409 if (ite->collection != coll)
410 continue;
411
412 update_affinity_ite(kvm, ite);
413 }
414 }
415
max_lpis_propbaser(u64 propbaser)416 static u32 max_lpis_propbaser(u64 propbaser)
417 {
418 int nr_idbits = (propbaser & 0x1f) + 1;
419
420 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
421 }
422
423 /*
424 * Sync the pending table pending bit of LPIs targeting @vcpu
425 * with our own data structures. This relies on the LPI being
426 * mapped before.
427 */
its_sync_lpi_pending_table(struct kvm_vcpu * vcpu)428 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
429 {
430 gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
431 struct vgic_irq *irq;
432 int last_byte_offset = -1;
433 int ret = 0;
434 u32 *intids;
435 int nr_irqs, i;
436 unsigned long flags;
437 u8 pendmask;
438
439 nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
440 if (nr_irqs < 0)
441 return nr_irqs;
442
443 for (i = 0; i < nr_irqs; i++) {
444 int byte_offset, bit_nr;
445
446 byte_offset = intids[i] / BITS_PER_BYTE;
447 bit_nr = intids[i] % BITS_PER_BYTE;
448
449 /*
450 * For contiguously allocated LPIs chances are we just read
451 * this very same byte in the last iteration. Reuse that.
452 */
453 if (byte_offset != last_byte_offset) {
454 ret = kvm_read_guest_lock(vcpu->kvm,
455 pendbase + byte_offset,
456 &pendmask, 1);
457 if (ret) {
458 kfree(intids);
459 return ret;
460 }
461 last_byte_offset = byte_offset;
462 }
463
464 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
465 raw_spin_lock_irqsave(&irq->irq_lock, flags);
466 irq->pending_latch = pendmask & (1U << bit_nr);
467 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
468 vgic_put_irq(vcpu->kvm, irq);
469 }
470
471 kfree(intids);
472
473 return ret;
474 }
475
vgic_mmio_read_its_typer(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)476 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
477 struct vgic_its *its,
478 gpa_t addr, unsigned int len)
479 {
480 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
481 u64 reg = GITS_TYPER_PLPIS;
482
483 /*
484 * We use linear CPU numbers for redistributor addressing,
485 * so GITS_TYPER.PTA is 0.
486 * Also we force all PROPBASER registers to be the same, so
487 * CommonLPIAff is 0 as well.
488 * To avoid memory waste in the guest, we keep the number of IDBits and
489 * DevBits low - as least for the time being.
490 */
491 reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
492 reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
493 reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
494
495 return extract_bytes(reg, addr & 7, len);
496 }
497
vgic_mmio_read_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)498 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
499 struct vgic_its *its,
500 gpa_t addr, unsigned int len)
501 {
502 u32 val;
503
504 val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
505 val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
506 return val;
507 }
508
vgic_mmio_uaccess_write_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)509 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
510 struct vgic_its *its,
511 gpa_t addr, unsigned int len,
512 unsigned long val)
513 {
514 u32 rev = GITS_IIDR_REV(val);
515
516 if (rev >= NR_ITS_ABIS)
517 return -EINVAL;
518 return vgic_its_set_abi(its, rev);
519 }
520
vgic_mmio_read_its_idregs(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)521 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
522 struct vgic_its *its,
523 gpa_t addr, unsigned int len)
524 {
525 switch (addr & 0xffff) {
526 case GITS_PIDR0:
527 return 0x92; /* part number, bits[7:0] */
528 case GITS_PIDR1:
529 return 0xb4; /* part number, bits[11:8] */
530 case GITS_PIDR2:
531 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
532 case GITS_PIDR4:
533 return 0x40; /* This is a 64K software visible page */
534 /* The following are the ID registers for (any) GIC. */
535 case GITS_CIDR0:
536 return 0x0d;
537 case GITS_CIDR1:
538 return 0xf0;
539 case GITS_CIDR2:
540 return 0x05;
541 case GITS_CIDR3:
542 return 0xb1;
543 }
544
545 return 0;
546 }
547
__vgic_its_check_cache(struct vgic_dist * dist,phys_addr_t db,u32 devid,u32 eventid)548 static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist,
549 phys_addr_t db,
550 u32 devid, u32 eventid)
551 {
552 struct vgic_translation_cache_entry *cte;
553
554 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
555 /*
556 * If we hit a NULL entry, there is nothing after this
557 * point.
558 */
559 if (!cte->irq)
560 break;
561
562 if (cte->db != db || cte->devid != devid ||
563 cte->eventid != eventid)
564 continue;
565
566 /*
567 * Move this entry to the head, as it is the most
568 * recently used.
569 */
570 if (!list_is_first(&cte->entry, &dist->lpi_translation_cache))
571 list_move(&cte->entry, &dist->lpi_translation_cache);
572
573 return cte->irq;
574 }
575
576 return NULL;
577 }
578
vgic_its_check_cache(struct kvm * kvm,phys_addr_t db,u32 devid,u32 eventid)579 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
580 u32 devid, u32 eventid)
581 {
582 struct vgic_dist *dist = &kvm->arch.vgic;
583 struct vgic_irq *irq;
584 unsigned long flags;
585
586 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
587 irq = __vgic_its_check_cache(dist, db, devid, eventid);
588 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
589
590 return irq;
591 }
592
vgic_its_cache_translation(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid,struct vgic_irq * irq)593 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
594 u32 devid, u32 eventid,
595 struct vgic_irq *irq)
596 {
597 struct vgic_dist *dist = &kvm->arch.vgic;
598 struct vgic_translation_cache_entry *cte;
599 unsigned long flags;
600 phys_addr_t db;
601
602 /* Do not cache a directly injected interrupt */
603 if (irq->hw)
604 return;
605
606 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
607
608 if (unlikely(list_empty(&dist->lpi_translation_cache)))
609 goto out;
610
611 /*
612 * We could have raced with another CPU caching the same
613 * translation behind our back, so let's check it is not in
614 * already
615 */
616 db = its->vgic_its_base + GITS_TRANSLATER;
617 if (__vgic_its_check_cache(dist, db, devid, eventid))
618 goto out;
619
620 /* Always reuse the last entry (LRU policy) */
621 cte = list_last_entry(&dist->lpi_translation_cache,
622 typeof(*cte), entry);
623
624 /*
625 * Caching the translation implies having an extra reference
626 * to the interrupt, so drop the potential reference on what
627 * was in the cache, and increment it on the new interrupt.
628 */
629 if (cte->irq)
630 __vgic_put_lpi_locked(kvm, cte->irq);
631
632 vgic_get_irq_kref(irq);
633
634 cte->db = db;
635 cte->devid = devid;
636 cte->eventid = eventid;
637 cte->irq = irq;
638
639 /* Move the new translation to the head of the list */
640 list_move(&cte->entry, &dist->lpi_translation_cache);
641
642 out:
643 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
644 }
645
vgic_its_invalidate_cache(struct kvm * kvm)646 void vgic_its_invalidate_cache(struct kvm *kvm)
647 {
648 struct vgic_dist *dist = &kvm->arch.vgic;
649 struct vgic_translation_cache_entry *cte;
650 unsigned long flags;
651
652 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
653
654 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
655 /*
656 * If we hit a NULL entry, there is nothing after this
657 * point.
658 */
659 if (!cte->irq)
660 break;
661
662 __vgic_put_lpi_locked(kvm, cte->irq);
663 cte->irq = NULL;
664 }
665
666 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
667 }
668
vgic_its_resolve_lpi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid,struct vgic_irq ** irq)669 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
670 u32 devid, u32 eventid, struct vgic_irq **irq)
671 {
672 struct kvm_vcpu *vcpu;
673 struct its_ite *ite;
674
675 if (!its->enabled)
676 return -EBUSY;
677
678 ite = find_ite(its, devid, eventid);
679 if (!ite || !its_is_collection_mapped(ite->collection))
680 return E_ITS_INT_UNMAPPED_INTERRUPT;
681
682 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
683 if (!vcpu)
684 return E_ITS_INT_UNMAPPED_INTERRUPT;
685
686 if (!vgic_lpis_enabled(vcpu))
687 return -EBUSY;
688
689 vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
690
691 *irq = ite->irq;
692 return 0;
693 }
694
vgic_msi_to_its(struct kvm * kvm,struct kvm_msi * msi)695 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
696 {
697 u64 address;
698 struct kvm_io_device *kvm_io_dev;
699 struct vgic_io_device *iodev;
700
701 if (!vgic_has_its(kvm))
702 return ERR_PTR(-ENODEV);
703
704 if (!(msi->flags & KVM_MSI_VALID_DEVID))
705 return ERR_PTR(-EINVAL);
706
707 address = (u64)msi->address_hi << 32 | msi->address_lo;
708
709 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
710 if (!kvm_io_dev)
711 return ERR_PTR(-EINVAL);
712
713 if (kvm_io_dev->ops != &kvm_io_gic_ops)
714 return ERR_PTR(-EINVAL);
715
716 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
717 if (iodev->iodev_type != IODEV_ITS)
718 return ERR_PTR(-EINVAL);
719
720 return iodev->its;
721 }
722
723 /*
724 * Find the target VCPU and the LPI number for a given devid/eventid pair
725 * and make this IRQ pending, possibly injecting it.
726 * Must be called with the its_lock mutex held.
727 * Returns 0 on success, a positive error value for any ITS mapping
728 * related errors and negative error values for generic errors.
729 */
vgic_its_trigger_msi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid)730 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
731 u32 devid, u32 eventid)
732 {
733 struct vgic_irq *irq = NULL;
734 unsigned long flags;
735 int err;
736
737 err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
738 if (err)
739 return err;
740
741 if (irq->hw)
742 return irq_set_irqchip_state(irq->host_irq,
743 IRQCHIP_STATE_PENDING, true);
744
745 raw_spin_lock_irqsave(&irq->irq_lock, flags);
746 irq->pending_latch = true;
747 vgic_queue_irq_unlock(kvm, irq, flags);
748
749 return 0;
750 }
751
vgic_its_inject_cached_translation(struct kvm * kvm,struct kvm_msi * msi)752 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
753 {
754 struct vgic_irq *irq;
755 unsigned long flags;
756 phys_addr_t db;
757
758 db = (u64)msi->address_hi << 32 | msi->address_lo;
759 irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
760 if (!irq)
761 return -EWOULDBLOCK;
762
763 raw_spin_lock_irqsave(&irq->irq_lock, flags);
764 irq->pending_latch = true;
765 vgic_queue_irq_unlock(kvm, irq, flags);
766
767 return 0;
768 }
769
770 /*
771 * Queries the KVM IO bus framework to get the ITS pointer from the given
772 * doorbell address.
773 * We then call vgic_its_trigger_msi() with the decoded data.
774 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
775 */
vgic_its_inject_msi(struct kvm * kvm,struct kvm_msi * msi)776 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
777 {
778 struct vgic_its *its;
779 int ret;
780
781 if (!vgic_its_inject_cached_translation(kvm, msi))
782 return 1;
783
784 its = vgic_msi_to_its(kvm, msi);
785 if (IS_ERR(its))
786 return PTR_ERR(its);
787
788 mutex_lock(&its->its_lock);
789 ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
790 mutex_unlock(&its->its_lock);
791
792 if (ret < 0)
793 return ret;
794
795 /*
796 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
797 * if the guest has blocked the MSI. So we map any LPI mapping
798 * related error to that.
799 */
800 if (ret)
801 return 0;
802 else
803 return 1;
804 }
805
806 /* Requires the its_lock to be held. */
its_free_ite(struct kvm * kvm,struct its_ite * ite)807 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
808 {
809 list_del(&ite->ite_list);
810
811 /* This put matches the get in vgic_add_lpi. */
812 if (ite->irq) {
813 if (ite->irq->hw)
814 WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
815
816 vgic_put_irq(kvm, ite->irq);
817 }
818
819 kfree(ite);
820 }
821
its_cmd_mask_field(u64 * its_cmd,int word,int shift,int size)822 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
823 {
824 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
825 }
826
827 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
828 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
829 #define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1)
830 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
831 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
832 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
833 #define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8)
834 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
835 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
836
837 /*
838 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
839 * Must be called with the its_lock mutex held.
840 */
vgic_its_cmd_handle_discard(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)841 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
842 u64 *its_cmd)
843 {
844 u32 device_id = its_cmd_get_deviceid(its_cmd);
845 u32 event_id = its_cmd_get_id(its_cmd);
846 struct its_ite *ite;
847
848 ite = find_ite(its, device_id, event_id);
849 if (ite && its_is_collection_mapped(ite->collection)) {
850 /*
851 * Though the spec talks about removing the pending state, we
852 * don't bother here since we clear the ITTE anyway and the
853 * pending state is a property of the ITTE struct.
854 */
855 vgic_its_invalidate_cache(kvm);
856
857 its_free_ite(kvm, ite);
858 return 0;
859 }
860
861 return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
862 }
863
864 /*
865 * The MOVI command moves an ITTE to a different collection.
866 * Must be called with the its_lock mutex held.
867 */
vgic_its_cmd_handle_movi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)868 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
869 u64 *its_cmd)
870 {
871 u32 device_id = its_cmd_get_deviceid(its_cmd);
872 u32 event_id = its_cmd_get_id(its_cmd);
873 u32 coll_id = its_cmd_get_collection(its_cmd);
874 struct kvm_vcpu *vcpu;
875 struct its_ite *ite;
876 struct its_collection *collection;
877
878 ite = find_ite(its, device_id, event_id);
879 if (!ite)
880 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
881
882 if (!its_is_collection_mapped(ite->collection))
883 return E_ITS_MOVI_UNMAPPED_COLLECTION;
884
885 collection = find_collection(its, coll_id);
886 if (!its_is_collection_mapped(collection))
887 return E_ITS_MOVI_UNMAPPED_COLLECTION;
888
889 ite->collection = collection;
890 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
891
892 vgic_its_invalidate_cache(kvm);
893
894 return update_affinity(ite->irq, vcpu);
895 }
896
__is_visible_gfn_locked(struct vgic_its * its,gpa_t gpa)897 static bool __is_visible_gfn_locked(struct vgic_its *its, gpa_t gpa)
898 {
899 gfn_t gfn = gpa >> PAGE_SHIFT;
900 int idx;
901 bool ret;
902
903 idx = srcu_read_lock(&its->dev->kvm->srcu);
904 ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
905 srcu_read_unlock(&its->dev->kvm->srcu, idx);
906 return ret;
907 }
908
909 /*
910 * Check whether an ID can be stored into the corresponding guest table.
911 * For a direct table this is pretty easy, but gets a bit nasty for
912 * indirect tables. We check whether the resulting guest physical address
913 * is actually valid (covered by a memslot and guest accessible).
914 * For this we have to read the respective first level entry.
915 */
vgic_its_check_id(struct vgic_its * its,u64 baser,u32 id,gpa_t * eaddr)916 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
917 gpa_t *eaddr)
918 {
919 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
920 u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
921 phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
922 int esz = GITS_BASER_ENTRY_SIZE(baser);
923 int index;
924
925 switch (type) {
926 case GITS_BASER_TYPE_DEVICE:
927 if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
928 return false;
929 break;
930 case GITS_BASER_TYPE_COLLECTION:
931 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
932 if (id >= BIT_ULL(16))
933 return false;
934 break;
935 default:
936 return false;
937 }
938
939 if (!(baser & GITS_BASER_INDIRECT)) {
940 phys_addr_t addr;
941
942 if (id >= (l1_tbl_size / esz))
943 return false;
944
945 addr = base + id * esz;
946
947 if (eaddr)
948 *eaddr = addr;
949
950 return __is_visible_gfn_locked(its, addr);
951 }
952
953 /* calculate and check the index into the 1st level */
954 index = id / (SZ_64K / esz);
955 if (index >= (l1_tbl_size / sizeof(u64)))
956 return false;
957
958 /* Each 1st level entry is represented by a 64-bit value. */
959 if (kvm_read_guest_lock(its->dev->kvm,
960 base + index * sizeof(indirect_ptr),
961 &indirect_ptr, sizeof(indirect_ptr)))
962 return false;
963
964 indirect_ptr = le64_to_cpu(indirect_ptr);
965
966 /* check the valid bit of the first level entry */
967 if (!(indirect_ptr & BIT_ULL(63)))
968 return false;
969
970 /* Mask the guest physical address and calculate the frame number. */
971 indirect_ptr &= GENMASK_ULL(51, 16);
972
973 /* Find the address of the actual entry */
974 index = id % (SZ_64K / esz);
975 indirect_ptr += index * esz;
976
977 if (eaddr)
978 *eaddr = indirect_ptr;
979
980 return __is_visible_gfn_locked(its, indirect_ptr);
981 }
982
983 /*
984 * Check whether an event ID can be stored in the corresponding Interrupt
985 * Translation Table, which starts at device->itt_addr.
986 */
vgic_its_check_event_id(struct vgic_its * its,struct its_device * device,u32 event_id)987 static bool vgic_its_check_event_id(struct vgic_its *its, struct its_device *device,
988 u32 event_id)
989 {
990 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
991 int ite_esz = abi->ite_esz;
992 gpa_t gpa;
993
994 /* max table size is: BIT_ULL(device->num_eventid_bits) * ite_esz */
995 if (event_id >= BIT_ULL(device->num_eventid_bits))
996 return false;
997
998 gpa = device->itt_addr + event_id * ite_esz;
999 return __is_visible_gfn_locked(its, gpa);
1000 }
1001
1002 /*
1003 * Add a new collection into the ITS collection table.
1004 * Returns 0 on success, and a negative error value for generic errors.
1005 */
vgic_its_alloc_collection(struct vgic_its * its,struct its_collection ** colp,u32 coll_id)1006 static int vgic_its_alloc_collection(struct vgic_its *its,
1007 struct its_collection **colp,
1008 u32 coll_id)
1009 {
1010 struct its_collection *collection;
1011
1012 collection = kzalloc(sizeof(*collection), GFP_KERNEL_ACCOUNT);
1013 if (!collection)
1014 return -ENOMEM;
1015
1016 collection->collection_id = coll_id;
1017 collection->target_addr = COLLECTION_NOT_MAPPED;
1018
1019 list_add_tail(&collection->coll_list, &its->collection_list);
1020 *colp = collection;
1021
1022 return 0;
1023 }
1024
vgic_its_free_collection(struct vgic_its * its,u32 coll_id)1025 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
1026 {
1027 struct its_collection *collection;
1028 struct its_device *device;
1029 struct its_ite *ite;
1030
1031 /*
1032 * Clearing the mapping for that collection ID removes the
1033 * entry from the list. If there wasn't any before, we can
1034 * go home early.
1035 */
1036 collection = find_collection(its, coll_id);
1037 if (!collection)
1038 return;
1039
1040 for_each_lpi_its(device, ite, its)
1041 if (ite->collection &&
1042 ite->collection->collection_id == coll_id)
1043 ite->collection = NULL;
1044
1045 list_del(&collection->coll_list);
1046 kfree(collection);
1047 }
1048
1049 /* Must be called with its_lock mutex held */
vgic_its_alloc_ite(struct its_device * device,struct its_collection * collection,u32 event_id)1050 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
1051 struct its_collection *collection,
1052 u32 event_id)
1053 {
1054 struct its_ite *ite;
1055
1056 ite = kzalloc(sizeof(*ite), GFP_KERNEL_ACCOUNT);
1057 if (!ite)
1058 return ERR_PTR(-ENOMEM);
1059
1060 ite->event_id = event_id;
1061 ite->collection = collection;
1062
1063 list_add_tail(&ite->ite_list, &device->itt_head);
1064 return ite;
1065 }
1066
1067 /*
1068 * The MAPTI and MAPI commands map LPIs to ITTEs.
1069 * Must be called with its_lock mutex held.
1070 */
vgic_its_cmd_handle_mapi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1071 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1072 u64 *its_cmd)
1073 {
1074 u32 device_id = its_cmd_get_deviceid(its_cmd);
1075 u32 event_id = its_cmd_get_id(its_cmd);
1076 u32 coll_id = its_cmd_get_collection(its_cmd);
1077 struct its_ite *ite;
1078 struct kvm_vcpu *vcpu = NULL;
1079 struct its_device *device;
1080 struct its_collection *collection, *new_coll = NULL;
1081 struct vgic_irq *irq;
1082 int lpi_nr;
1083
1084 device = find_its_device(its, device_id);
1085 if (!device)
1086 return E_ITS_MAPTI_UNMAPPED_DEVICE;
1087
1088 if (!vgic_its_check_event_id(its, device, event_id))
1089 return E_ITS_MAPTI_ID_OOR;
1090
1091 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1092 lpi_nr = its_cmd_get_physical_id(its_cmd);
1093 else
1094 lpi_nr = event_id;
1095 if (lpi_nr < GIC_LPI_OFFSET ||
1096 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1097 return E_ITS_MAPTI_PHYSICALID_OOR;
1098
1099 /* If there is an existing mapping, behavior is UNPREDICTABLE. */
1100 if (find_ite(its, device_id, event_id))
1101 return 0;
1102
1103 collection = find_collection(its, coll_id);
1104 if (!collection) {
1105 int ret;
1106
1107 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
1108 return E_ITS_MAPC_COLLECTION_OOR;
1109
1110 ret = vgic_its_alloc_collection(its, &collection, coll_id);
1111 if (ret)
1112 return ret;
1113 new_coll = collection;
1114 }
1115
1116 ite = vgic_its_alloc_ite(device, collection, event_id);
1117 if (IS_ERR(ite)) {
1118 if (new_coll)
1119 vgic_its_free_collection(its, coll_id);
1120 return PTR_ERR(ite);
1121 }
1122
1123 if (its_is_collection_mapped(collection))
1124 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1125
1126 irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1127 if (IS_ERR(irq)) {
1128 if (new_coll)
1129 vgic_its_free_collection(its, coll_id);
1130 its_free_ite(kvm, ite);
1131 return PTR_ERR(irq);
1132 }
1133 ite->irq = irq;
1134
1135 return 0;
1136 }
1137
1138 /* Requires the its_lock to be held. */
vgic_its_free_device(struct kvm * kvm,struct its_device * device)1139 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
1140 {
1141 struct its_ite *ite, *temp;
1142
1143 /*
1144 * The spec says that unmapping a device with still valid
1145 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1146 * since we cannot leave the memory unreferenced.
1147 */
1148 list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1149 its_free_ite(kvm, ite);
1150
1151 vgic_its_invalidate_cache(kvm);
1152
1153 list_del(&device->dev_list);
1154 kfree(device);
1155 }
1156
1157 /* its lock must be held */
vgic_its_free_device_list(struct kvm * kvm,struct vgic_its * its)1158 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1159 {
1160 struct its_device *cur, *temp;
1161
1162 list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1163 vgic_its_free_device(kvm, cur);
1164 }
1165
1166 /* its lock must be held */
vgic_its_free_collection_list(struct kvm * kvm,struct vgic_its * its)1167 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1168 {
1169 struct its_collection *cur, *temp;
1170
1171 list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1172 vgic_its_free_collection(its, cur->collection_id);
1173 }
1174
1175 /* Must be called with its_lock mutex held */
vgic_its_alloc_device(struct vgic_its * its,u32 device_id,gpa_t itt_addr,u8 num_eventid_bits)1176 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1177 u32 device_id, gpa_t itt_addr,
1178 u8 num_eventid_bits)
1179 {
1180 struct its_device *device;
1181
1182 device = kzalloc(sizeof(*device), GFP_KERNEL_ACCOUNT);
1183 if (!device)
1184 return ERR_PTR(-ENOMEM);
1185
1186 device->device_id = device_id;
1187 device->itt_addr = itt_addr;
1188 device->num_eventid_bits = num_eventid_bits;
1189 INIT_LIST_HEAD(&device->itt_head);
1190
1191 list_add_tail(&device->dev_list, &its->device_list);
1192 return device;
1193 }
1194
1195 /*
1196 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1197 * Must be called with the its_lock mutex held.
1198 */
vgic_its_cmd_handle_mapd(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1199 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1200 u64 *its_cmd)
1201 {
1202 u32 device_id = its_cmd_get_deviceid(its_cmd);
1203 bool valid = its_cmd_get_validbit(its_cmd);
1204 u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1205 gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1206 struct its_device *device;
1207
1208 if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1209 return E_ITS_MAPD_DEVICE_OOR;
1210
1211 if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1212 return E_ITS_MAPD_ITTSIZE_OOR;
1213
1214 device = find_its_device(its, device_id);
1215
1216 /*
1217 * The spec says that calling MAPD on an already mapped device
1218 * invalidates all cached data for this device. We implement this
1219 * by removing the mapping and re-establishing it.
1220 */
1221 if (device)
1222 vgic_its_free_device(kvm, device);
1223
1224 /*
1225 * The spec does not say whether unmapping a not-mapped device
1226 * is an error, so we are done in any case.
1227 */
1228 if (!valid)
1229 return 0;
1230
1231 device = vgic_its_alloc_device(its, device_id, itt_addr,
1232 num_eventid_bits);
1233
1234 return PTR_ERR_OR_ZERO(device);
1235 }
1236
1237 /*
1238 * The MAPC command maps collection IDs to redistributors.
1239 * Must be called with the its_lock mutex held.
1240 */
vgic_its_cmd_handle_mapc(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1241 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1242 u64 *its_cmd)
1243 {
1244 u16 coll_id;
1245 u32 target_addr;
1246 struct its_collection *collection;
1247 bool valid;
1248
1249 valid = its_cmd_get_validbit(its_cmd);
1250 coll_id = its_cmd_get_collection(its_cmd);
1251 target_addr = its_cmd_get_target_addr(its_cmd);
1252
1253 if (target_addr >= atomic_read(&kvm->online_vcpus))
1254 return E_ITS_MAPC_PROCNUM_OOR;
1255
1256 if (!valid) {
1257 vgic_its_free_collection(its, coll_id);
1258 vgic_its_invalidate_cache(kvm);
1259 } else {
1260 collection = find_collection(its, coll_id);
1261
1262 if (!collection) {
1263 int ret;
1264
1265 if (!vgic_its_check_id(its, its->baser_coll_table,
1266 coll_id, NULL))
1267 return E_ITS_MAPC_COLLECTION_OOR;
1268
1269 ret = vgic_its_alloc_collection(its, &collection,
1270 coll_id);
1271 if (ret)
1272 return ret;
1273 collection->target_addr = target_addr;
1274 } else {
1275 collection->target_addr = target_addr;
1276 update_affinity_collection(kvm, its, collection);
1277 }
1278 }
1279
1280 return 0;
1281 }
1282
1283 /*
1284 * The CLEAR command removes the pending state for a particular LPI.
1285 * Must be called with the its_lock mutex held.
1286 */
vgic_its_cmd_handle_clear(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1287 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1288 u64 *its_cmd)
1289 {
1290 u32 device_id = its_cmd_get_deviceid(its_cmd);
1291 u32 event_id = its_cmd_get_id(its_cmd);
1292 struct its_ite *ite;
1293
1294
1295 ite = find_ite(its, device_id, event_id);
1296 if (!ite)
1297 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1298
1299 ite->irq->pending_latch = false;
1300
1301 if (ite->irq->hw)
1302 return irq_set_irqchip_state(ite->irq->host_irq,
1303 IRQCHIP_STATE_PENDING, false);
1304
1305 return 0;
1306 }
1307
vgic_its_inv_lpi(struct kvm * kvm,struct vgic_irq * irq)1308 int vgic_its_inv_lpi(struct kvm *kvm, struct vgic_irq *irq)
1309 {
1310 return update_lpi_config(kvm, irq, NULL, true);
1311 }
1312
1313 /*
1314 * The INV command syncs the configuration bits from the memory table.
1315 * Must be called with the its_lock mutex held.
1316 */
vgic_its_cmd_handle_inv(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1317 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1318 u64 *its_cmd)
1319 {
1320 u32 device_id = its_cmd_get_deviceid(its_cmd);
1321 u32 event_id = its_cmd_get_id(its_cmd);
1322 struct its_ite *ite;
1323
1324
1325 ite = find_ite(its, device_id, event_id);
1326 if (!ite)
1327 return E_ITS_INV_UNMAPPED_INTERRUPT;
1328
1329 return vgic_its_inv_lpi(kvm, ite->irq);
1330 }
1331
1332 /**
1333 * vgic_its_invall - invalidate all LPIs targetting a given vcpu
1334 * @vcpu: the vcpu for which the RD is targetted by an invalidation
1335 *
1336 * Contrary to the INVALL command, this targets a RD instead of a
1337 * collection, and we don't need to hold the its_lock, since no ITS is
1338 * involved here.
1339 */
vgic_its_invall(struct kvm_vcpu * vcpu)1340 int vgic_its_invall(struct kvm_vcpu *vcpu)
1341 {
1342 struct kvm *kvm = vcpu->kvm;
1343 int irq_count, i = 0;
1344 u32 *intids;
1345
1346 irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1347 if (irq_count < 0)
1348 return irq_count;
1349
1350 for (i = 0; i < irq_count; i++) {
1351 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intids[i]);
1352 if (!irq)
1353 continue;
1354 update_lpi_config(kvm, irq, vcpu, false);
1355 vgic_put_irq(kvm, irq);
1356 }
1357
1358 kfree(intids);
1359
1360 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1361 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1362
1363 return 0;
1364 }
1365
1366 /*
1367 * The INVALL command requests flushing of all IRQ data in this collection.
1368 * Find the VCPU mapped to that collection, then iterate over the VM's list
1369 * of mapped LPIs and update the configuration for each IRQ which targets
1370 * the specified vcpu. The configuration will be read from the in-memory
1371 * configuration table.
1372 * Must be called with the its_lock mutex held.
1373 */
vgic_its_cmd_handle_invall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1374 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1375 u64 *its_cmd)
1376 {
1377 u32 coll_id = its_cmd_get_collection(its_cmd);
1378 struct its_collection *collection;
1379 struct kvm_vcpu *vcpu;
1380
1381 collection = find_collection(its, coll_id);
1382 if (!its_is_collection_mapped(collection))
1383 return E_ITS_INVALL_UNMAPPED_COLLECTION;
1384
1385 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1386 vgic_its_invall(vcpu);
1387
1388 return 0;
1389 }
1390
1391 /*
1392 * The MOVALL command moves the pending state of all IRQs targeting one
1393 * redistributor to another. We don't hold the pending state in the VCPUs,
1394 * but in the IRQs instead, so there is really not much to do for us here.
1395 * However the spec says that no IRQ must target the old redistributor
1396 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1397 * This command affects all LPIs in the system that target that redistributor.
1398 */
vgic_its_cmd_handle_movall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1399 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1400 u64 *its_cmd)
1401 {
1402 u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1403 u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1404 struct kvm_vcpu *vcpu1, *vcpu2;
1405 struct vgic_irq *irq;
1406 u32 *intids;
1407 int irq_count, i;
1408
1409 if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1410 target2_addr >= atomic_read(&kvm->online_vcpus))
1411 return E_ITS_MOVALL_PROCNUM_OOR;
1412
1413 if (target1_addr == target2_addr)
1414 return 0;
1415
1416 vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1417 vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1418
1419 irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1420 if (irq_count < 0)
1421 return irq_count;
1422
1423 for (i = 0; i < irq_count; i++) {
1424 irq = vgic_get_irq(kvm, NULL, intids[i]);
1425
1426 update_affinity(irq, vcpu2);
1427
1428 vgic_put_irq(kvm, irq);
1429 }
1430
1431 vgic_its_invalidate_cache(kvm);
1432
1433 kfree(intids);
1434 return 0;
1435 }
1436
1437 /*
1438 * The INT command injects the LPI associated with that DevID/EvID pair.
1439 * Must be called with the its_lock mutex held.
1440 */
vgic_its_cmd_handle_int(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1441 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1442 u64 *its_cmd)
1443 {
1444 u32 msi_data = its_cmd_get_id(its_cmd);
1445 u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1446
1447 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1448 }
1449
1450 /*
1451 * This function is called with the its_cmd lock held, but the ITS data
1452 * structure lock dropped.
1453 */
vgic_its_handle_command(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1454 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1455 u64 *its_cmd)
1456 {
1457 int ret = -ENODEV;
1458
1459 mutex_lock(&its->its_lock);
1460 switch (its_cmd_get_command(its_cmd)) {
1461 case GITS_CMD_MAPD:
1462 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1463 break;
1464 case GITS_CMD_MAPC:
1465 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1466 break;
1467 case GITS_CMD_MAPI:
1468 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1469 break;
1470 case GITS_CMD_MAPTI:
1471 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1472 break;
1473 case GITS_CMD_MOVI:
1474 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1475 break;
1476 case GITS_CMD_DISCARD:
1477 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1478 break;
1479 case GITS_CMD_CLEAR:
1480 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1481 break;
1482 case GITS_CMD_MOVALL:
1483 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1484 break;
1485 case GITS_CMD_INT:
1486 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1487 break;
1488 case GITS_CMD_INV:
1489 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1490 break;
1491 case GITS_CMD_INVALL:
1492 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1493 break;
1494 case GITS_CMD_SYNC:
1495 /* we ignore this command: we are in sync all of the time */
1496 ret = 0;
1497 break;
1498 }
1499 mutex_unlock(&its->its_lock);
1500
1501 return ret;
1502 }
1503
vgic_sanitise_its_baser(u64 reg)1504 static u64 vgic_sanitise_its_baser(u64 reg)
1505 {
1506 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1507 GITS_BASER_SHAREABILITY_SHIFT,
1508 vgic_sanitise_shareability);
1509 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1510 GITS_BASER_INNER_CACHEABILITY_SHIFT,
1511 vgic_sanitise_inner_cacheability);
1512 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1513 GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1514 vgic_sanitise_outer_cacheability);
1515
1516 /* We support only one (ITS) page size: 64K */
1517 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1518
1519 return reg;
1520 }
1521
vgic_sanitise_its_cbaser(u64 reg)1522 static u64 vgic_sanitise_its_cbaser(u64 reg)
1523 {
1524 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1525 GITS_CBASER_SHAREABILITY_SHIFT,
1526 vgic_sanitise_shareability);
1527 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1528 GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1529 vgic_sanitise_inner_cacheability);
1530 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1531 GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1532 vgic_sanitise_outer_cacheability);
1533
1534 /* Sanitise the physical address to be 64k aligned. */
1535 reg &= ~GENMASK_ULL(15, 12);
1536
1537 return reg;
1538 }
1539
vgic_mmio_read_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1540 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1541 struct vgic_its *its,
1542 gpa_t addr, unsigned int len)
1543 {
1544 return extract_bytes(its->cbaser, addr & 7, len);
1545 }
1546
vgic_mmio_write_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1547 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1548 gpa_t addr, unsigned int len,
1549 unsigned long val)
1550 {
1551 /* When GITS_CTLR.Enable is 1, this register is RO. */
1552 if (its->enabled)
1553 return;
1554
1555 mutex_lock(&its->cmd_lock);
1556 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1557 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1558 its->creadr = 0;
1559 /*
1560 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1561 * it to CREADR to make sure we start with an empty command buffer.
1562 */
1563 its->cwriter = its->creadr;
1564 mutex_unlock(&its->cmd_lock);
1565 }
1566
1567 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
1568 #define ITS_CMD_SIZE 32
1569 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
1570
1571 /* Must be called with the cmd_lock held. */
vgic_its_process_commands(struct kvm * kvm,struct vgic_its * its)1572 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1573 {
1574 gpa_t cbaser;
1575 u64 cmd_buf[4];
1576
1577 /* Commands are only processed when the ITS is enabled. */
1578 if (!its->enabled)
1579 return;
1580
1581 cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1582
1583 while (its->cwriter != its->creadr) {
1584 int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1585 cmd_buf, ITS_CMD_SIZE);
1586 /*
1587 * If kvm_read_guest() fails, this could be due to the guest
1588 * programming a bogus value in CBASER or something else going
1589 * wrong from which we cannot easily recover.
1590 * According to section 6.3.2 in the GICv3 spec we can just
1591 * ignore that command then.
1592 */
1593 if (!ret)
1594 vgic_its_handle_command(kvm, its, cmd_buf);
1595
1596 its->creadr += ITS_CMD_SIZE;
1597 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1598 its->creadr = 0;
1599 }
1600 }
1601
1602 /*
1603 * By writing to CWRITER the guest announces new commands to be processed.
1604 * To avoid any races in the first place, we take the its_cmd lock, which
1605 * protects our ring buffer variables, so that there is only one user
1606 * per ITS handling commands at a given time.
1607 */
vgic_mmio_write_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1608 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1609 gpa_t addr, unsigned int len,
1610 unsigned long val)
1611 {
1612 u64 reg;
1613
1614 if (!its)
1615 return;
1616
1617 mutex_lock(&its->cmd_lock);
1618
1619 reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1620 reg = ITS_CMD_OFFSET(reg);
1621 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1622 mutex_unlock(&its->cmd_lock);
1623 return;
1624 }
1625 its->cwriter = reg;
1626
1627 vgic_its_process_commands(kvm, its);
1628
1629 mutex_unlock(&its->cmd_lock);
1630 }
1631
vgic_mmio_read_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1632 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1633 struct vgic_its *its,
1634 gpa_t addr, unsigned int len)
1635 {
1636 return extract_bytes(its->cwriter, addr & 0x7, len);
1637 }
1638
vgic_mmio_read_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1639 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1640 struct vgic_its *its,
1641 gpa_t addr, unsigned int len)
1642 {
1643 return extract_bytes(its->creadr, addr & 0x7, len);
1644 }
1645
vgic_mmio_uaccess_write_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1646 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1647 struct vgic_its *its,
1648 gpa_t addr, unsigned int len,
1649 unsigned long val)
1650 {
1651 u32 cmd_offset;
1652 int ret = 0;
1653
1654 mutex_lock(&its->cmd_lock);
1655
1656 if (its->enabled) {
1657 ret = -EBUSY;
1658 goto out;
1659 }
1660
1661 cmd_offset = ITS_CMD_OFFSET(val);
1662 if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1663 ret = -EINVAL;
1664 goto out;
1665 }
1666
1667 its->creadr = cmd_offset;
1668 out:
1669 mutex_unlock(&its->cmd_lock);
1670 return ret;
1671 }
1672
1673 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
vgic_mmio_read_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1674 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1675 struct vgic_its *its,
1676 gpa_t addr, unsigned int len)
1677 {
1678 u64 reg;
1679
1680 switch (BASER_INDEX(addr)) {
1681 case 0:
1682 reg = its->baser_device_table;
1683 break;
1684 case 1:
1685 reg = its->baser_coll_table;
1686 break;
1687 default:
1688 reg = 0;
1689 break;
1690 }
1691
1692 return extract_bytes(reg, addr & 7, len);
1693 }
1694
1695 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
vgic_mmio_write_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1696 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1697 struct vgic_its *its,
1698 gpa_t addr, unsigned int len,
1699 unsigned long val)
1700 {
1701 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1702 u64 entry_size, table_type;
1703 u64 reg, *regptr, clearbits = 0;
1704
1705 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1706 if (its->enabled)
1707 return;
1708
1709 switch (BASER_INDEX(addr)) {
1710 case 0:
1711 regptr = &its->baser_device_table;
1712 entry_size = abi->dte_esz;
1713 table_type = GITS_BASER_TYPE_DEVICE;
1714 break;
1715 case 1:
1716 regptr = &its->baser_coll_table;
1717 entry_size = abi->cte_esz;
1718 table_type = GITS_BASER_TYPE_COLLECTION;
1719 clearbits = GITS_BASER_INDIRECT;
1720 break;
1721 default:
1722 return;
1723 }
1724
1725 reg = update_64bit_reg(*regptr, addr & 7, len, val);
1726 reg &= ~GITS_BASER_RO_MASK;
1727 reg &= ~clearbits;
1728
1729 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1730 reg |= table_type << GITS_BASER_TYPE_SHIFT;
1731 reg = vgic_sanitise_its_baser(reg);
1732
1733 *regptr = reg;
1734
1735 if (!(reg & GITS_BASER_VALID)) {
1736 /* Take the its_lock to prevent a race with a save/restore */
1737 mutex_lock(&its->its_lock);
1738 switch (table_type) {
1739 case GITS_BASER_TYPE_DEVICE:
1740 vgic_its_free_device_list(kvm, its);
1741 break;
1742 case GITS_BASER_TYPE_COLLECTION:
1743 vgic_its_free_collection_list(kvm, its);
1744 break;
1745 }
1746 mutex_unlock(&its->its_lock);
1747 }
1748 }
1749
vgic_mmio_read_its_ctlr(struct kvm * vcpu,struct vgic_its * its,gpa_t addr,unsigned int len)1750 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1751 struct vgic_its *its,
1752 gpa_t addr, unsigned int len)
1753 {
1754 u32 reg = 0;
1755
1756 mutex_lock(&its->cmd_lock);
1757 if (its->creadr == its->cwriter)
1758 reg |= GITS_CTLR_QUIESCENT;
1759 if (its->enabled)
1760 reg |= GITS_CTLR_ENABLE;
1761 mutex_unlock(&its->cmd_lock);
1762
1763 return reg;
1764 }
1765
vgic_mmio_write_its_ctlr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1766 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1767 gpa_t addr, unsigned int len,
1768 unsigned long val)
1769 {
1770 mutex_lock(&its->cmd_lock);
1771
1772 /*
1773 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1774 * device/collection BASER are invalid
1775 */
1776 if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1777 (!(its->baser_device_table & GITS_BASER_VALID) ||
1778 !(its->baser_coll_table & GITS_BASER_VALID) ||
1779 !(its->cbaser & GITS_CBASER_VALID)))
1780 goto out;
1781
1782 its->enabled = !!(val & GITS_CTLR_ENABLE);
1783 if (!its->enabled)
1784 vgic_its_invalidate_cache(kvm);
1785
1786 /*
1787 * Try to process any pending commands. This function bails out early
1788 * if the ITS is disabled or no commands have been queued.
1789 */
1790 vgic_its_process_commands(kvm, its);
1791
1792 out:
1793 mutex_unlock(&its->cmd_lock);
1794 }
1795
1796 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
1797 { \
1798 .reg_offset = off, \
1799 .len = length, \
1800 .access_flags = acc, \
1801 .its_read = rd, \
1802 .its_write = wr, \
1803 }
1804
1805 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1806 { \
1807 .reg_offset = off, \
1808 .len = length, \
1809 .access_flags = acc, \
1810 .its_read = rd, \
1811 .its_write = wr, \
1812 .uaccess_its_write = uwr, \
1813 }
1814
its_mmio_write_wi(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1815 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1816 gpa_t addr, unsigned int len, unsigned long val)
1817 {
1818 /* Ignore */
1819 }
1820
1821 static struct vgic_register_region its_registers[] = {
1822 REGISTER_ITS_DESC(GITS_CTLR,
1823 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1824 VGIC_ACCESS_32bit),
1825 REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1826 vgic_mmio_read_its_iidr, its_mmio_write_wi,
1827 vgic_mmio_uaccess_write_its_iidr, 4,
1828 VGIC_ACCESS_32bit),
1829 REGISTER_ITS_DESC(GITS_TYPER,
1830 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1831 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1832 REGISTER_ITS_DESC(GITS_CBASER,
1833 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1834 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1835 REGISTER_ITS_DESC(GITS_CWRITER,
1836 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1837 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1838 REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1839 vgic_mmio_read_its_creadr, its_mmio_write_wi,
1840 vgic_mmio_uaccess_write_its_creadr, 8,
1841 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1842 REGISTER_ITS_DESC(GITS_BASER,
1843 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1844 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1845 REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1846 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1847 VGIC_ACCESS_32bit),
1848 };
1849
1850 /* This is called on setting the LPI enable bit in the redistributor. */
vgic_enable_lpis(struct kvm_vcpu * vcpu)1851 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1852 {
1853 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1854 its_sync_lpi_pending_table(vcpu);
1855 }
1856
vgic_register_its_iodev(struct kvm * kvm,struct vgic_its * its,u64 addr)1857 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1858 u64 addr)
1859 {
1860 struct vgic_io_device *iodev = &its->iodev;
1861 int ret;
1862
1863 mutex_lock(&kvm->slots_lock);
1864 if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1865 ret = -EBUSY;
1866 goto out;
1867 }
1868
1869 its->vgic_its_base = addr;
1870 iodev->regions = its_registers;
1871 iodev->nr_regions = ARRAY_SIZE(its_registers);
1872 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1873
1874 iodev->base_addr = its->vgic_its_base;
1875 iodev->iodev_type = IODEV_ITS;
1876 iodev->its = its;
1877 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1878 KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1879 out:
1880 mutex_unlock(&kvm->slots_lock);
1881
1882 return ret;
1883 }
1884
1885 /* Default is 16 cached LPIs per vcpu */
1886 #define LPI_DEFAULT_PCPU_CACHE_SIZE 16
1887
vgic_lpi_translation_cache_init(struct kvm * kvm)1888 void vgic_lpi_translation_cache_init(struct kvm *kvm)
1889 {
1890 struct vgic_dist *dist = &kvm->arch.vgic;
1891 unsigned int sz;
1892 int i;
1893
1894 if (!list_empty(&dist->lpi_translation_cache))
1895 return;
1896
1897 sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE;
1898
1899 for (i = 0; i < sz; i++) {
1900 struct vgic_translation_cache_entry *cte;
1901
1902 /* An allocation failure is not fatal */
1903 cte = kzalloc(sizeof(*cte), GFP_KERNEL_ACCOUNT);
1904 if (WARN_ON(!cte))
1905 break;
1906
1907 INIT_LIST_HEAD(&cte->entry);
1908 list_add(&cte->entry, &dist->lpi_translation_cache);
1909 }
1910 }
1911
vgic_lpi_translation_cache_destroy(struct kvm * kvm)1912 void vgic_lpi_translation_cache_destroy(struct kvm *kvm)
1913 {
1914 struct vgic_dist *dist = &kvm->arch.vgic;
1915 struct vgic_translation_cache_entry *cte, *tmp;
1916
1917 vgic_its_invalidate_cache(kvm);
1918
1919 list_for_each_entry_safe(cte, tmp,
1920 &dist->lpi_translation_cache, entry) {
1921 list_del(&cte->entry);
1922 kfree(cte);
1923 }
1924 }
1925
1926 #define INITIAL_BASER_VALUE \
1927 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
1928 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
1929 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
1930 GITS_BASER_PAGE_SIZE_64K)
1931
1932 #define INITIAL_PROPBASER_VALUE \
1933 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
1934 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
1935 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1936
vgic_its_create(struct kvm_device * dev,u32 type)1937 static int vgic_its_create(struct kvm_device *dev, u32 type)
1938 {
1939 int ret;
1940 struct vgic_its *its;
1941
1942 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1943 return -ENODEV;
1944
1945 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL_ACCOUNT);
1946 if (!its)
1947 return -ENOMEM;
1948
1949 mutex_lock(&dev->kvm->arch.config_lock);
1950
1951 if (vgic_initialized(dev->kvm)) {
1952 ret = vgic_v4_init(dev->kvm);
1953 if (ret < 0) {
1954 mutex_unlock(&dev->kvm->arch.config_lock);
1955 kfree(its);
1956 return ret;
1957 }
1958
1959 vgic_lpi_translation_cache_init(dev->kvm);
1960 }
1961
1962 mutex_init(&its->its_lock);
1963 mutex_init(&its->cmd_lock);
1964
1965 /* Yep, even more trickery for lock ordering... */
1966 #ifdef CONFIG_LOCKDEP
1967 mutex_lock(&its->cmd_lock);
1968 mutex_lock(&its->its_lock);
1969 mutex_unlock(&its->its_lock);
1970 mutex_unlock(&its->cmd_lock);
1971 #endif
1972
1973 its->vgic_its_base = VGIC_ADDR_UNDEF;
1974
1975 INIT_LIST_HEAD(&its->device_list);
1976 INIT_LIST_HEAD(&its->collection_list);
1977
1978 dev->kvm->arch.vgic.msis_require_devid = true;
1979 dev->kvm->arch.vgic.has_its = true;
1980 its->enabled = false;
1981 its->dev = dev;
1982
1983 its->baser_device_table = INITIAL_BASER_VALUE |
1984 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1985 its->baser_coll_table = INITIAL_BASER_VALUE |
1986 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1987 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1988
1989 dev->private = its;
1990
1991 ret = vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1992
1993 mutex_unlock(&dev->kvm->arch.config_lock);
1994
1995 return ret;
1996 }
1997
vgic_its_destroy(struct kvm_device * kvm_dev)1998 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1999 {
2000 struct kvm *kvm = kvm_dev->kvm;
2001 struct vgic_its *its = kvm_dev->private;
2002
2003 mutex_lock(&its->its_lock);
2004
2005 vgic_its_free_device_list(kvm, its);
2006 vgic_its_free_collection_list(kvm, its);
2007
2008 mutex_unlock(&its->its_lock);
2009 kfree(its);
2010 kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
2011 }
2012
vgic_its_has_attr_regs(struct kvm_device * dev,struct kvm_device_attr * attr)2013 static int vgic_its_has_attr_regs(struct kvm_device *dev,
2014 struct kvm_device_attr *attr)
2015 {
2016 const struct vgic_register_region *region;
2017 gpa_t offset = attr->attr;
2018 int align;
2019
2020 align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
2021
2022 if (offset & align)
2023 return -EINVAL;
2024
2025 region = vgic_find_mmio_region(its_registers,
2026 ARRAY_SIZE(its_registers),
2027 offset);
2028 if (!region)
2029 return -ENXIO;
2030
2031 return 0;
2032 }
2033
vgic_its_attr_regs_access(struct kvm_device * dev,struct kvm_device_attr * attr,u64 * reg,bool is_write)2034 static int vgic_its_attr_regs_access(struct kvm_device *dev,
2035 struct kvm_device_attr *attr,
2036 u64 *reg, bool is_write)
2037 {
2038 const struct vgic_register_region *region;
2039 struct vgic_its *its;
2040 gpa_t addr, offset;
2041 unsigned int len;
2042 int align, ret = 0;
2043
2044 its = dev->private;
2045 offset = attr->attr;
2046
2047 /*
2048 * Although the spec supports upper/lower 32-bit accesses to
2049 * 64-bit ITS registers, the userspace ABI requires 64-bit
2050 * accesses to all 64-bit wide registers. We therefore only
2051 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
2052 * registers
2053 */
2054 if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
2055 align = 0x3;
2056 else
2057 align = 0x7;
2058
2059 if (offset & align)
2060 return -EINVAL;
2061
2062 mutex_lock(&dev->kvm->lock);
2063
2064 if (!lock_all_vcpus(dev->kvm)) {
2065 mutex_unlock(&dev->kvm->lock);
2066 return -EBUSY;
2067 }
2068
2069 mutex_lock(&dev->kvm->arch.config_lock);
2070
2071 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
2072 ret = -ENXIO;
2073 goto out;
2074 }
2075
2076 region = vgic_find_mmio_region(its_registers,
2077 ARRAY_SIZE(its_registers),
2078 offset);
2079 if (!region) {
2080 ret = -ENXIO;
2081 goto out;
2082 }
2083
2084 addr = its->vgic_its_base + offset;
2085
2086 len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
2087
2088 if (is_write) {
2089 if (region->uaccess_its_write)
2090 ret = region->uaccess_its_write(dev->kvm, its, addr,
2091 len, *reg);
2092 else
2093 region->its_write(dev->kvm, its, addr, len, *reg);
2094 } else {
2095 *reg = region->its_read(dev->kvm, its, addr, len);
2096 }
2097 out:
2098 mutex_unlock(&dev->kvm->arch.config_lock);
2099 unlock_all_vcpus(dev->kvm);
2100 mutex_unlock(&dev->kvm->lock);
2101 return ret;
2102 }
2103
compute_next_devid_offset(struct list_head * h,struct its_device * dev)2104 static u32 compute_next_devid_offset(struct list_head *h,
2105 struct its_device *dev)
2106 {
2107 struct its_device *next;
2108 u32 next_offset;
2109
2110 if (list_is_last(&dev->dev_list, h))
2111 return 0;
2112 next = list_next_entry(dev, dev_list);
2113 next_offset = next->device_id - dev->device_id;
2114
2115 return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2116 }
2117
compute_next_eventid_offset(struct list_head * h,struct its_ite * ite)2118 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2119 {
2120 struct its_ite *next;
2121 u32 next_offset;
2122
2123 if (list_is_last(&ite->ite_list, h))
2124 return 0;
2125 next = list_next_entry(ite, ite_list);
2126 next_offset = next->event_id - ite->event_id;
2127
2128 return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2129 }
2130
2131 /**
2132 * entry_fn_t - Callback called on a table entry restore path
2133 * @its: its handle
2134 * @id: id of the entry
2135 * @entry: pointer to the entry
2136 * @opaque: pointer to an opaque data
2137 *
2138 * Return: < 0 on error, 0 if last element was identified, id offset to next
2139 * element otherwise
2140 */
2141 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2142 void *opaque);
2143
2144 /**
2145 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2146 * to each entry
2147 *
2148 * @its: its handle
2149 * @base: base gpa of the table
2150 * @size: size of the table in bytes
2151 * @esz: entry size in bytes
2152 * @start_id: the ID of the first entry in the table
2153 * (non zero for 2d level tables)
2154 * @fn: function to apply on each entry
2155 *
2156 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2157 * (the last element may not be found on second level tables)
2158 */
scan_its_table(struct vgic_its * its,gpa_t base,int size,u32 esz,int start_id,entry_fn_t fn,void * opaque)2159 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2160 int start_id, entry_fn_t fn, void *opaque)
2161 {
2162 struct kvm *kvm = its->dev->kvm;
2163 unsigned long len = size;
2164 int id = start_id;
2165 gpa_t gpa = base;
2166 char entry[ESZ_MAX];
2167 int ret;
2168
2169 memset(entry, 0, esz);
2170
2171 while (true) {
2172 int next_offset;
2173 size_t byte_offset;
2174
2175 ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2176 if (ret)
2177 return ret;
2178
2179 next_offset = fn(its, id, entry, opaque);
2180 if (next_offset <= 0)
2181 return next_offset;
2182
2183 byte_offset = next_offset * esz;
2184 if (byte_offset >= len)
2185 break;
2186
2187 id += next_offset;
2188 gpa += byte_offset;
2189 len -= byte_offset;
2190 }
2191 return 1;
2192 }
2193
2194 /**
2195 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2196 */
vgic_its_save_ite(struct vgic_its * its,struct its_device * dev,struct its_ite * ite,gpa_t gpa,int ite_esz)2197 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2198 struct its_ite *ite, gpa_t gpa, int ite_esz)
2199 {
2200 struct kvm *kvm = its->dev->kvm;
2201 u32 next_offset;
2202 u64 val;
2203
2204 next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2205 val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2206 ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2207 ite->collection->collection_id;
2208 val = cpu_to_le64(val);
2209 return vgic_write_guest_lock(kvm, gpa, &val, ite_esz);
2210 }
2211
2212 /**
2213 * vgic_its_restore_ite - restore an interrupt translation entry
2214 * @event_id: id used for indexing
2215 * @ptr: pointer to the ITE entry
2216 * @opaque: pointer to the its_device
2217 */
vgic_its_restore_ite(struct vgic_its * its,u32 event_id,void * ptr,void * opaque)2218 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2219 void *ptr, void *opaque)
2220 {
2221 struct its_device *dev = opaque;
2222 struct its_collection *collection;
2223 struct kvm *kvm = its->dev->kvm;
2224 struct kvm_vcpu *vcpu = NULL;
2225 u64 val;
2226 u64 *p = (u64 *)ptr;
2227 struct vgic_irq *irq;
2228 u32 coll_id, lpi_id;
2229 struct its_ite *ite;
2230 u32 offset;
2231
2232 val = *p;
2233
2234 val = le64_to_cpu(val);
2235
2236 coll_id = val & KVM_ITS_ITE_ICID_MASK;
2237 lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2238
2239 if (!lpi_id)
2240 return 1; /* invalid entry, no choice but to scan next entry */
2241
2242 if (lpi_id < VGIC_MIN_LPI)
2243 return -EINVAL;
2244
2245 offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2246 if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2247 return -EINVAL;
2248
2249 collection = find_collection(its, coll_id);
2250 if (!collection)
2251 return -EINVAL;
2252
2253 if (!vgic_its_check_event_id(its, dev, event_id))
2254 return -EINVAL;
2255
2256 ite = vgic_its_alloc_ite(dev, collection, event_id);
2257 if (IS_ERR(ite))
2258 return PTR_ERR(ite);
2259
2260 if (its_is_collection_mapped(collection))
2261 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
2262
2263 irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2264 if (IS_ERR(irq)) {
2265 its_free_ite(kvm, ite);
2266 return PTR_ERR(irq);
2267 }
2268 ite->irq = irq;
2269
2270 return offset;
2271 }
2272
vgic_its_ite_cmp(void * priv,const struct list_head * a,const struct list_head * b)2273 static int vgic_its_ite_cmp(void *priv, const struct list_head *a,
2274 const struct list_head *b)
2275 {
2276 struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2277 struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2278
2279 if (itea->event_id < iteb->event_id)
2280 return -1;
2281 else
2282 return 1;
2283 }
2284
vgic_its_save_itt(struct vgic_its * its,struct its_device * device)2285 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2286 {
2287 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2288 gpa_t base = device->itt_addr;
2289 struct its_ite *ite;
2290 int ret;
2291 int ite_esz = abi->ite_esz;
2292
2293 list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2294
2295 list_for_each_entry(ite, &device->itt_head, ite_list) {
2296 gpa_t gpa = base + ite->event_id * ite_esz;
2297
2298 /*
2299 * If an LPI carries the HW bit, this means that this
2300 * interrupt is controlled by GICv4, and we do not
2301 * have direct access to that state without GICv4.1.
2302 * Let's simply fail the save operation...
2303 */
2304 if (ite->irq->hw && !kvm_vgic_global_state.has_gicv4_1)
2305 return -EACCES;
2306
2307 ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2308 if (ret)
2309 return ret;
2310 }
2311 return 0;
2312 }
2313
2314 /**
2315 * vgic_its_restore_itt - restore the ITT of a device
2316 *
2317 * @its: its handle
2318 * @dev: device handle
2319 *
2320 * Return 0 on success, < 0 on error
2321 */
vgic_its_restore_itt(struct vgic_its * its,struct its_device * dev)2322 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2323 {
2324 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2325 gpa_t base = dev->itt_addr;
2326 int ret;
2327 int ite_esz = abi->ite_esz;
2328 size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2329
2330 ret = scan_its_table(its, base, max_size, ite_esz, 0,
2331 vgic_its_restore_ite, dev);
2332
2333 /* scan_its_table returns +1 if all ITEs are invalid */
2334 if (ret > 0)
2335 ret = 0;
2336
2337 return ret;
2338 }
2339
2340 /**
2341 * vgic_its_save_dte - Save a device table entry at a given GPA
2342 *
2343 * @its: ITS handle
2344 * @dev: ITS device
2345 * @ptr: GPA
2346 */
vgic_its_save_dte(struct vgic_its * its,struct its_device * dev,gpa_t ptr,int dte_esz)2347 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2348 gpa_t ptr, int dte_esz)
2349 {
2350 struct kvm *kvm = its->dev->kvm;
2351 u64 val, itt_addr_field;
2352 u32 next_offset;
2353
2354 itt_addr_field = dev->itt_addr >> 8;
2355 next_offset = compute_next_devid_offset(&its->device_list, dev);
2356 val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2357 ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2358 (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2359 (dev->num_eventid_bits - 1));
2360 val = cpu_to_le64(val);
2361 return vgic_write_guest_lock(kvm, ptr, &val, dte_esz);
2362 }
2363
2364 /**
2365 * vgic_its_restore_dte - restore a device table entry
2366 *
2367 * @its: its handle
2368 * @id: device id the DTE corresponds to
2369 * @ptr: kernel VA where the 8 byte DTE is located
2370 * @opaque: unused
2371 *
2372 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2373 * next dte otherwise
2374 */
vgic_its_restore_dte(struct vgic_its * its,u32 id,void * ptr,void * opaque)2375 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2376 void *ptr, void *opaque)
2377 {
2378 struct its_device *dev;
2379 u64 baser = its->baser_device_table;
2380 gpa_t itt_addr;
2381 u8 num_eventid_bits;
2382 u64 entry = *(u64 *)ptr;
2383 bool valid;
2384 u32 offset;
2385 int ret;
2386
2387 entry = le64_to_cpu(entry);
2388
2389 valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2390 num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2391 itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2392 >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2393
2394 if (!valid)
2395 return 1;
2396
2397 /* dte entry is valid */
2398 offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2399
2400 if (!vgic_its_check_id(its, baser, id, NULL))
2401 return -EINVAL;
2402
2403 dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2404 if (IS_ERR(dev))
2405 return PTR_ERR(dev);
2406
2407 ret = vgic_its_restore_itt(its, dev);
2408 if (ret) {
2409 vgic_its_free_device(its->dev->kvm, dev);
2410 return ret;
2411 }
2412
2413 return offset;
2414 }
2415
vgic_its_device_cmp(void * priv,const struct list_head * a,const struct list_head * b)2416 static int vgic_its_device_cmp(void *priv, const struct list_head *a,
2417 const struct list_head *b)
2418 {
2419 struct its_device *deva = container_of(a, struct its_device, dev_list);
2420 struct its_device *devb = container_of(b, struct its_device, dev_list);
2421
2422 if (deva->device_id < devb->device_id)
2423 return -1;
2424 else
2425 return 1;
2426 }
2427
2428 /**
2429 * vgic_its_save_device_tables - Save the device table and all ITT
2430 * into guest RAM
2431 *
2432 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2433 * returns the GPA of the device entry
2434 */
vgic_its_save_device_tables(struct vgic_its * its)2435 static int vgic_its_save_device_tables(struct vgic_its *its)
2436 {
2437 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2438 u64 baser = its->baser_device_table;
2439 struct its_device *dev;
2440 int dte_esz = abi->dte_esz;
2441
2442 if (!(baser & GITS_BASER_VALID))
2443 return 0;
2444
2445 list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2446
2447 list_for_each_entry(dev, &its->device_list, dev_list) {
2448 int ret;
2449 gpa_t eaddr;
2450
2451 if (!vgic_its_check_id(its, baser,
2452 dev->device_id, &eaddr))
2453 return -EINVAL;
2454
2455 ret = vgic_its_save_itt(its, dev);
2456 if (ret)
2457 return ret;
2458
2459 ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2460 if (ret)
2461 return ret;
2462 }
2463 return 0;
2464 }
2465
2466 /**
2467 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2468 *
2469 * @its: its handle
2470 * @id: index of the entry in the L1 table
2471 * @addr: kernel VA
2472 * @opaque: unused
2473 *
2474 * L1 table entries are scanned by steps of 1 entry
2475 * Return < 0 if error, 0 if last dte was found when scanning the L2
2476 * table, +1 otherwise (meaning next L1 entry must be scanned)
2477 */
handle_l1_dte(struct vgic_its * its,u32 id,void * addr,void * opaque)2478 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2479 void *opaque)
2480 {
2481 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2482 int l2_start_id = id * (SZ_64K / abi->dte_esz);
2483 u64 entry = *(u64 *)addr;
2484 int dte_esz = abi->dte_esz;
2485 gpa_t gpa;
2486 int ret;
2487
2488 entry = le64_to_cpu(entry);
2489
2490 if (!(entry & KVM_ITS_L1E_VALID_MASK))
2491 return 1;
2492
2493 gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2494
2495 ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2496 l2_start_id, vgic_its_restore_dte, NULL);
2497
2498 return ret;
2499 }
2500
2501 /**
2502 * vgic_its_restore_device_tables - Restore the device table and all ITT
2503 * from guest RAM to internal data structs
2504 */
vgic_its_restore_device_tables(struct vgic_its * its)2505 static int vgic_its_restore_device_tables(struct vgic_its *its)
2506 {
2507 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2508 u64 baser = its->baser_device_table;
2509 int l1_esz, ret;
2510 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2511 gpa_t l1_gpa;
2512
2513 if (!(baser & GITS_BASER_VALID))
2514 return 0;
2515
2516 l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2517
2518 if (baser & GITS_BASER_INDIRECT) {
2519 l1_esz = GITS_LVL1_ENTRY_SIZE;
2520 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2521 handle_l1_dte, NULL);
2522 } else {
2523 l1_esz = abi->dte_esz;
2524 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2525 vgic_its_restore_dte, NULL);
2526 }
2527
2528 /* scan_its_table returns +1 if all entries are invalid */
2529 if (ret > 0)
2530 ret = 0;
2531
2532 if (ret < 0)
2533 vgic_its_free_device_list(its->dev->kvm, its);
2534
2535 return ret;
2536 }
2537
vgic_its_save_cte(struct vgic_its * its,struct its_collection * collection,gpa_t gpa,int esz)2538 static int vgic_its_save_cte(struct vgic_its *its,
2539 struct its_collection *collection,
2540 gpa_t gpa, int esz)
2541 {
2542 u64 val;
2543
2544 val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2545 ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2546 collection->collection_id);
2547 val = cpu_to_le64(val);
2548 return vgic_write_guest_lock(its->dev->kvm, gpa, &val, esz);
2549 }
2550
2551 /*
2552 * Restore a collection entry into the ITS collection table.
2553 * Return +1 on success, 0 if the entry was invalid (which should be
2554 * interpreted as end-of-table), and a negative error value for generic errors.
2555 */
vgic_its_restore_cte(struct vgic_its * its,gpa_t gpa,int esz)2556 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2557 {
2558 struct its_collection *collection;
2559 struct kvm *kvm = its->dev->kvm;
2560 u32 target_addr, coll_id;
2561 u64 val;
2562 int ret;
2563
2564 BUG_ON(esz > sizeof(val));
2565 ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2566 if (ret)
2567 return ret;
2568 val = le64_to_cpu(val);
2569 if (!(val & KVM_ITS_CTE_VALID_MASK))
2570 return 0;
2571
2572 target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2573 coll_id = val & KVM_ITS_CTE_ICID_MASK;
2574
2575 if (target_addr != COLLECTION_NOT_MAPPED &&
2576 target_addr >= atomic_read(&kvm->online_vcpus))
2577 return -EINVAL;
2578
2579 collection = find_collection(its, coll_id);
2580 if (collection)
2581 return -EEXIST;
2582
2583 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
2584 return -EINVAL;
2585
2586 ret = vgic_its_alloc_collection(its, &collection, coll_id);
2587 if (ret)
2588 return ret;
2589 collection->target_addr = target_addr;
2590 return 1;
2591 }
2592
2593 /**
2594 * vgic_its_save_collection_table - Save the collection table into
2595 * guest RAM
2596 */
vgic_its_save_collection_table(struct vgic_its * its)2597 static int vgic_its_save_collection_table(struct vgic_its *its)
2598 {
2599 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2600 u64 baser = its->baser_coll_table;
2601 gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2602 struct its_collection *collection;
2603 u64 val;
2604 size_t max_size, filled = 0;
2605 int ret, cte_esz = abi->cte_esz;
2606
2607 if (!(baser & GITS_BASER_VALID))
2608 return 0;
2609
2610 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2611
2612 list_for_each_entry(collection, &its->collection_list, coll_list) {
2613 ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2614 if (ret)
2615 return ret;
2616 gpa += cte_esz;
2617 filled += cte_esz;
2618 }
2619
2620 if (filled == max_size)
2621 return 0;
2622
2623 /*
2624 * table is not fully filled, add a last dummy element
2625 * with valid bit unset
2626 */
2627 val = 0;
2628 BUG_ON(cte_esz > sizeof(val));
2629 ret = vgic_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
2630 return ret;
2631 }
2632
2633 /**
2634 * vgic_its_restore_collection_table - reads the collection table
2635 * in guest memory and restores the ITS internal state. Requires the
2636 * BASER registers to be restored before.
2637 */
vgic_its_restore_collection_table(struct vgic_its * its)2638 static int vgic_its_restore_collection_table(struct vgic_its *its)
2639 {
2640 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2641 u64 baser = its->baser_coll_table;
2642 int cte_esz = abi->cte_esz;
2643 size_t max_size, read = 0;
2644 gpa_t gpa;
2645 int ret;
2646
2647 if (!(baser & GITS_BASER_VALID))
2648 return 0;
2649
2650 gpa = GITS_BASER_ADDR_48_to_52(baser);
2651
2652 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2653
2654 while (read < max_size) {
2655 ret = vgic_its_restore_cte(its, gpa, cte_esz);
2656 if (ret <= 0)
2657 break;
2658 gpa += cte_esz;
2659 read += cte_esz;
2660 }
2661
2662 if (ret > 0)
2663 return 0;
2664
2665 if (ret < 0)
2666 vgic_its_free_collection_list(its->dev->kvm, its);
2667
2668 return ret;
2669 }
2670
2671 /**
2672 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2673 * according to v0 ABI
2674 */
vgic_its_save_tables_v0(struct vgic_its * its)2675 static int vgic_its_save_tables_v0(struct vgic_its *its)
2676 {
2677 int ret;
2678
2679 ret = vgic_its_save_device_tables(its);
2680 if (ret)
2681 return ret;
2682
2683 return vgic_its_save_collection_table(its);
2684 }
2685
2686 /**
2687 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2688 * to internal data structs according to V0 ABI
2689 *
2690 */
vgic_its_restore_tables_v0(struct vgic_its * its)2691 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2692 {
2693 int ret;
2694
2695 ret = vgic_its_restore_collection_table(its);
2696 if (ret)
2697 return ret;
2698
2699 ret = vgic_its_restore_device_tables(its);
2700 if (ret)
2701 vgic_its_free_collection_list(its->dev->kvm, its);
2702 return ret;
2703 }
2704
vgic_its_commit_v0(struct vgic_its * its)2705 static int vgic_its_commit_v0(struct vgic_its *its)
2706 {
2707 const struct vgic_its_abi *abi;
2708
2709 abi = vgic_its_get_abi(its);
2710 its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2711 its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2712
2713 its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2714 << GITS_BASER_ENTRY_SIZE_SHIFT);
2715
2716 its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2717 << GITS_BASER_ENTRY_SIZE_SHIFT);
2718 return 0;
2719 }
2720
vgic_its_reset(struct kvm * kvm,struct vgic_its * its)2721 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2722 {
2723 /* We need to keep the ABI specific field values */
2724 its->baser_coll_table &= ~GITS_BASER_VALID;
2725 its->baser_device_table &= ~GITS_BASER_VALID;
2726 its->cbaser = 0;
2727 its->creadr = 0;
2728 its->cwriter = 0;
2729 its->enabled = 0;
2730 vgic_its_free_device_list(kvm, its);
2731 vgic_its_free_collection_list(kvm, its);
2732 }
2733
vgic_its_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2734 static int vgic_its_has_attr(struct kvm_device *dev,
2735 struct kvm_device_attr *attr)
2736 {
2737 switch (attr->group) {
2738 case KVM_DEV_ARM_VGIC_GRP_ADDR:
2739 switch (attr->attr) {
2740 case KVM_VGIC_ITS_ADDR_TYPE:
2741 return 0;
2742 }
2743 break;
2744 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2745 switch (attr->attr) {
2746 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2747 return 0;
2748 case KVM_DEV_ARM_ITS_CTRL_RESET:
2749 return 0;
2750 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2751 return 0;
2752 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2753 return 0;
2754 }
2755 break;
2756 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2757 return vgic_its_has_attr_regs(dev, attr);
2758 }
2759 return -ENXIO;
2760 }
2761
vgic_its_ctrl(struct kvm * kvm,struct vgic_its * its,u64 attr)2762 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2763 {
2764 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2765 int ret = 0;
2766
2767 if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2768 return 0;
2769
2770 mutex_lock(&kvm->lock);
2771
2772 if (!lock_all_vcpus(kvm)) {
2773 mutex_unlock(&kvm->lock);
2774 return -EBUSY;
2775 }
2776
2777 mutex_lock(&kvm->arch.config_lock);
2778 mutex_lock(&its->its_lock);
2779
2780 switch (attr) {
2781 case KVM_DEV_ARM_ITS_CTRL_RESET:
2782 vgic_its_reset(kvm, its);
2783 break;
2784 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2785 ret = abi->save_tables(its);
2786 break;
2787 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2788 ret = abi->restore_tables(its);
2789 break;
2790 }
2791
2792 mutex_unlock(&its->its_lock);
2793 mutex_unlock(&kvm->arch.config_lock);
2794 unlock_all_vcpus(kvm);
2795 mutex_unlock(&kvm->lock);
2796 return ret;
2797 }
2798
2799 /*
2800 * kvm_arch_allow_write_without_running_vcpu - allow writing guest memory
2801 * without the running VCPU when dirty ring is enabled.
2802 *
2803 * The running VCPU is required to track dirty guest pages when dirty ring
2804 * is enabled. Otherwise, the backup bitmap should be used to track the
2805 * dirty guest pages. When vgic/its tables are being saved, the backup
2806 * bitmap is used to track the dirty guest pages due to the missed running
2807 * VCPU in the period.
2808 */
kvm_arch_allow_write_without_running_vcpu(struct kvm * kvm)2809 bool kvm_arch_allow_write_without_running_vcpu(struct kvm *kvm)
2810 {
2811 struct vgic_dist *dist = &kvm->arch.vgic;
2812
2813 return dist->table_write_in_progress;
2814 }
2815
vgic_its_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2816 static int vgic_its_set_attr(struct kvm_device *dev,
2817 struct kvm_device_attr *attr)
2818 {
2819 struct vgic_its *its = dev->private;
2820 int ret;
2821
2822 switch (attr->group) {
2823 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2824 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2825 unsigned long type = (unsigned long)attr->attr;
2826 u64 addr;
2827
2828 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2829 return -ENODEV;
2830
2831 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2832 return -EFAULT;
2833
2834 ret = vgic_check_iorange(dev->kvm, its->vgic_its_base,
2835 addr, SZ_64K, KVM_VGIC_V3_ITS_SIZE);
2836 if (ret)
2837 return ret;
2838
2839 return vgic_register_its_iodev(dev->kvm, its, addr);
2840 }
2841 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2842 return vgic_its_ctrl(dev->kvm, its, attr->attr);
2843 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2844 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2845 u64 reg;
2846
2847 if (get_user(reg, uaddr))
2848 return -EFAULT;
2849
2850 return vgic_its_attr_regs_access(dev, attr, ®, true);
2851 }
2852 }
2853 return -ENXIO;
2854 }
2855
vgic_its_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2856 static int vgic_its_get_attr(struct kvm_device *dev,
2857 struct kvm_device_attr *attr)
2858 {
2859 switch (attr->group) {
2860 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2861 struct vgic_its *its = dev->private;
2862 u64 addr = its->vgic_its_base;
2863 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2864 unsigned long type = (unsigned long)attr->attr;
2865
2866 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2867 return -ENODEV;
2868
2869 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2870 return -EFAULT;
2871 break;
2872 }
2873 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2874 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2875 u64 reg;
2876 int ret;
2877
2878 ret = vgic_its_attr_regs_access(dev, attr, ®, false);
2879 if (ret)
2880 return ret;
2881 return put_user(reg, uaddr);
2882 }
2883 default:
2884 return -ENXIO;
2885 }
2886
2887 return 0;
2888 }
2889
2890 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2891 .name = "kvm-arm-vgic-its",
2892 .create = vgic_its_create,
2893 .destroy = vgic_its_destroy,
2894 .set_attr = vgic_its_set_attr,
2895 .get_attr = vgic_its_get_attr,
2896 .has_attr = vgic_its_has_attr,
2897 };
2898
kvm_vgic_register_its_device(void)2899 int kvm_vgic_register_its_device(void)
2900 {
2901 return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2902 KVM_DEV_TYPE_ARM_VGIC_ITS);
2903 }
2904