1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 // Copyright (C) 2008 Juergen Beisert
4
5 #include <linux/clk.h>
6 #include <linux/completion.h>
7 #include <linux/delay.h>
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/irq.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/platform_device.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/slab.h>
20 #include <linux/spi/spi.h>
21 #include <linux/types.h>
22 #include <linux/of.h>
23 #include <linux/property.h>
24
25 #include <linux/dma/imx-dma.h>
26
27 #define DRIVER_NAME "spi_imx"
28
29 static bool use_dma = true;
30 module_param(use_dma, bool, 0644);
31 MODULE_PARM_DESC(use_dma, "Enable usage of DMA when available (default)");
32
33 /* define polling limits */
34 static unsigned int polling_limit_us = 30;
35 module_param(polling_limit_us, uint, 0664);
36 MODULE_PARM_DESC(polling_limit_us,
37 "time in us to run a transfer in polling mode\n");
38
39 #define MXC_RPM_TIMEOUT 2000 /* 2000ms */
40
41 #define MXC_CSPIRXDATA 0x00
42 #define MXC_CSPITXDATA 0x04
43 #define MXC_CSPICTRL 0x08
44 #define MXC_CSPIINT 0x0c
45 #define MXC_RESET 0x1c
46
47 /* generic defines to abstract from the different register layouts */
48 #define MXC_INT_RR (1 << 0) /* Receive data ready interrupt */
49 #define MXC_INT_TE (1 << 1) /* Transmit FIFO empty interrupt */
50 #define MXC_INT_RDR BIT(4) /* Receive date threshold interrupt */
51
52 /* The maximum bytes that a sdma BD can transfer. */
53 #define MAX_SDMA_BD_BYTES (1 << 15)
54 #define MX51_ECSPI_CTRL_MAX_BURST 512
55 /* The maximum bytes that IMX53_ECSPI can transfer in target mode.*/
56 #define MX53_MAX_TRANSFER_BYTES 512
57
58 enum spi_imx_devtype {
59 IMX1_CSPI,
60 IMX21_CSPI,
61 IMX27_CSPI,
62 IMX31_CSPI,
63 IMX35_CSPI, /* CSPI on all i.mx except above */
64 IMX51_ECSPI, /* ECSPI on i.mx51 */
65 IMX53_ECSPI, /* ECSPI on i.mx53 and later */
66 };
67
68 struct spi_imx_data;
69
70 struct spi_imx_devtype_data {
71 void (*intctrl)(struct spi_imx_data *spi_imx, int enable);
72 int (*prepare_message)(struct spi_imx_data *spi_imx, struct spi_message *msg);
73 int (*prepare_transfer)(struct spi_imx_data *spi_imx, struct spi_device *spi);
74 void (*trigger)(struct spi_imx_data *spi_imx);
75 int (*rx_available)(struct spi_imx_data *spi_imx);
76 void (*reset)(struct spi_imx_data *spi_imx);
77 void (*setup_wml)(struct spi_imx_data *spi_imx);
78 void (*disable)(struct spi_imx_data *spi_imx);
79 bool has_dmamode;
80 bool has_targetmode;
81 unsigned int fifo_size;
82 bool dynamic_burst;
83 /*
84 * ERR009165 fixed or not:
85 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
86 */
87 bool tx_glitch_fixed;
88 enum spi_imx_devtype devtype;
89 };
90
91 struct spi_imx_data {
92 struct spi_controller *controller;
93 struct device *dev;
94
95 struct completion xfer_done;
96 void __iomem *base;
97 unsigned long base_phys;
98
99 struct clk *clk_per;
100 struct clk *clk_ipg;
101 unsigned long spi_clk;
102 unsigned int spi_bus_clk;
103
104 unsigned int bits_per_word;
105 unsigned int spi_drctl;
106
107 unsigned int count, remainder;
108 void (*tx)(struct spi_imx_data *spi_imx);
109 void (*rx)(struct spi_imx_data *spi_imx);
110 void *rx_buf;
111 const void *tx_buf;
112 unsigned int txfifo; /* number of words pushed in tx FIFO */
113 unsigned int dynamic_burst;
114 bool rx_only;
115
116 /* Target mode */
117 bool target_mode;
118 bool target_aborted;
119 unsigned int target_burst;
120
121 /* DMA */
122 bool usedma;
123 u32 wml;
124 struct completion dma_rx_completion;
125 struct completion dma_tx_completion;
126
127 const struct spi_imx_devtype_data *devtype_data;
128 };
129
is_imx27_cspi(struct spi_imx_data * d)130 static inline int is_imx27_cspi(struct spi_imx_data *d)
131 {
132 return d->devtype_data->devtype == IMX27_CSPI;
133 }
134
is_imx35_cspi(struct spi_imx_data * d)135 static inline int is_imx35_cspi(struct spi_imx_data *d)
136 {
137 return d->devtype_data->devtype == IMX35_CSPI;
138 }
139
is_imx51_ecspi(struct spi_imx_data * d)140 static inline int is_imx51_ecspi(struct spi_imx_data *d)
141 {
142 return d->devtype_data->devtype == IMX51_ECSPI;
143 }
144
is_imx53_ecspi(struct spi_imx_data * d)145 static inline int is_imx53_ecspi(struct spi_imx_data *d)
146 {
147 return d->devtype_data->devtype == IMX53_ECSPI;
148 }
149
150 #define MXC_SPI_BUF_RX(type) \
151 static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx) \
152 { \
153 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA); \
154 \
155 if (spi_imx->rx_buf) { \
156 *(type *)spi_imx->rx_buf = val; \
157 spi_imx->rx_buf += sizeof(type); \
158 } \
159 \
160 spi_imx->remainder -= sizeof(type); \
161 }
162
163 #define MXC_SPI_BUF_TX(type) \
164 static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx) \
165 { \
166 type val = 0; \
167 \
168 if (spi_imx->tx_buf) { \
169 val = *(type *)spi_imx->tx_buf; \
170 spi_imx->tx_buf += sizeof(type); \
171 } \
172 \
173 spi_imx->count -= sizeof(type); \
174 \
175 writel(val, spi_imx->base + MXC_CSPITXDATA); \
176 }
177
178 MXC_SPI_BUF_RX(u8)
179 MXC_SPI_BUF_TX(u8)
180 MXC_SPI_BUF_RX(u16)
181 MXC_SPI_BUF_TX(u16)
182 MXC_SPI_BUF_RX(u32)
183 MXC_SPI_BUF_TX(u32)
184
185 /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set
186 * (which is currently not the case in this driver)
187 */
188 static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192,
189 256, 384, 512, 768, 1024};
190
191 /* MX21, MX27 */
spi_imx_clkdiv_1(unsigned int fin,unsigned int fspi,unsigned int max,unsigned int * fres)192 static unsigned int spi_imx_clkdiv_1(unsigned int fin,
193 unsigned int fspi, unsigned int max, unsigned int *fres)
194 {
195 int i;
196
197 for (i = 2; i < max; i++)
198 if (fspi * mxc_clkdivs[i] >= fin)
199 break;
200
201 *fres = fin / mxc_clkdivs[i];
202 return i;
203 }
204
205 /* MX1, MX31, MX35, MX51 CSPI */
spi_imx_clkdiv_2(unsigned int fin,unsigned int fspi,unsigned int * fres)206 static unsigned int spi_imx_clkdiv_2(unsigned int fin,
207 unsigned int fspi, unsigned int *fres)
208 {
209 int i, div = 4;
210
211 for (i = 0; i < 7; i++) {
212 if (fspi * div >= fin)
213 goto out;
214 div <<= 1;
215 }
216
217 out:
218 *fres = fin / div;
219 return i;
220 }
221
spi_imx_bytes_per_word(const int bits_per_word)222 static int spi_imx_bytes_per_word(const int bits_per_word)
223 {
224 if (bits_per_word <= 8)
225 return 1;
226 else if (bits_per_word <= 16)
227 return 2;
228 else
229 return 4;
230 }
231
spi_imx_can_dma(struct spi_controller * controller,struct spi_device * spi,struct spi_transfer * transfer)232 static bool spi_imx_can_dma(struct spi_controller *controller, struct spi_device *spi,
233 struct spi_transfer *transfer)
234 {
235 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
236
237 if (!use_dma || controller->fallback)
238 return false;
239
240 if (!controller->dma_rx)
241 return false;
242
243 if (spi_imx->target_mode)
244 return false;
245
246 if (transfer->len < spi_imx->devtype_data->fifo_size)
247 return false;
248
249 spi_imx->dynamic_burst = 0;
250
251 return true;
252 }
253
254 /*
255 * Note the number of natively supported chip selects for MX51 is 4. Some
256 * devices may have less actual SS pins but the register map supports 4. When
257 * using gpio chip selects the cs values passed into the macros below can go
258 * outside the range 0 - 3. We therefore need to limit the cs value to avoid
259 * corrupting bits outside the allocated locations.
260 *
261 * The simplest way to do this is to just mask the cs bits to 2 bits. This
262 * still allows all 4 native chip selects to work as well as gpio chip selects
263 * (which can use any of the 4 chip select configurations).
264 */
265
266 #define MX51_ECSPI_CTRL 0x08
267 #define MX51_ECSPI_CTRL_ENABLE (1 << 0)
268 #define MX51_ECSPI_CTRL_XCH (1 << 2)
269 #define MX51_ECSPI_CTRL_SMC (1 << 3)
270 #define MX51_ECSPI_CTRL_MODE_MASK (0xf << 4)
271 #define MX51_ECSPI_CTRL_DRCTL(drctl) ((drctl) << 16)
272 #define MX51_ECSPI_CTRL_POSTDIV_OFFSET 8
273 #define MX51_ECSPI_CTRL_PREDIV_OFFSET 12
274 #define MX51_ECSPI_CTRL_CS(cs) ((cs & 3) << 18)
275 #define MX51_ECSPI_CTRL_BL_OFFSET 20
276 #define MX51_ECSPI_CTRL_BL_MASK (0xfff << 20)
277
278 #define MX51_ECSPI_CONFIG 0x0c
279 #define MX51_ECSPI_CONFIG_SCLKPHA(cs) (1 << ((cs & 3) + 0))
280 #define MX51_ECSPI_CONFIG_SCLKPOL(cs) (1 << ((cs & 3) + 4))
281 #define MX51_ECSPI_CONFIG_SBBCTRL(cs) (1 << ((cs & 3) + 8))
282 #define MX51_ECSPI_CONFIG_SSBPOL(cs) (1 << ((cs & 3) + 12))
283 #define MX51_ECSPI_CONFIG_DATACTL(cs) (1 << ((cs & 3) + 16))
284 #define MX51_ECSPI_CONFIG_SCLKCTL(cs) (1 << ((cs & 3) + 20))
285
286 #define MX51_ECSPI_INT 0x10
287 #define MX51_ECSPI_INT_TEEN (1 << 0)
288 #define MX51_ECSPI_INT_RREN (1 << 3)
289 #define MX51_ECSPI_INT_RDREN (1 << 4)
290
291 #define MX51_ECSPI_DMA 0x14
292 #define MX51_ECSPI_DMA_TX_WML(wml) ((wml) & 0x3f)
293 #define MX51_ECSPI_DMA_RX_WML(wml) (((wml) & 0x3f) << 16)
294 #define MX51_ECSPI_DMA_RXT_WML(wml) (((wml) & 0x3f) << 24)
295
296 #define MX51_ECSPI_DMA_TEDEN (1 << 7)
297 #define MX51_ECSPI_DMA_RXDEN (1 << 23)
298 #define MX51_ECSPI_DMA_RXTDEN (1 << 31)
299
300 #define MX51_ECSPI_STAT 0x18
301 #define MX51_ECSPI_STAT_RR (1 << 3)
302
303 #define MX51_ECSPI_TESTREG 0x20
304 #define MX51_ECSPI_TESTREG_LBC BIT(31)
305
spi_imx_buf_rx_swap_u32(struct spi_imx_data * spi_imx)306 static void spi_imx_buf_rx_swap_u32(struct spi_imx_data *spi_imx)
307 {
308 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);
309
310 if (spi_imx->rx_buf) {
311 #ifdef __LITTLE_ENDIAN
312 unsigned int bytes_per_word;
313
314 bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
315 if (bytes_per_word == 1)
316 swab32s(&val);
317 else if (bytes_per_word == 2)
318 swahw32s(&val);
319 #endif
320 *(u32 *)spi_imx->rx_buf = val;
321 spi_imx->rx_buf += sizeof(u32);
322 }
323
324 spi_imx->remainder -= sizeof(u32);
325 }
326
spi_imx_buf_rx_swap(struct spi_imx_data * spi_imx)327 static void spi_imx_buf_rx_swap(struct spi_imx_data *spi_imx)
328 {
329 int unaligned;
330 u32 val;
331
332 unaligned = spi_imx->remainder % 4;
333
334 if (!unaligned) {
335 spi_imx_buf_rx_swap_u32(spi_imx);
336 return;
337 }
338
339 if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
340 spi_imx_buf_rx_u16(spi_imx);
341 return;
342 }
343
344 val = readl(spi_imx->base + MXC_CSPIRXDATA);
345
346 while (unaligned--) {
347 if (spi_imx->rx_buf) {
348 *(u8 *)spi_imx->rx_buf = (val >> (8 * unaligned)) & 0xff;
349 spi_imx->rx_buf++;
350 }
351 spi_imx->remainder--;
352 }
353 }
354
spi_imx_buf_tx_swap_u32(struct spi_imx_data * spi_imx)355 static void spi_imx_buf_tx_swap_u32(struct spi_imx_data *spi_imx)
356 {
357 u32 val = 0;
358 #ifdef __LITTLE_ENDIAN
359 unsigned int bytes_per_word;
360 #endif
361
362 if (spi_imx->tx_buf) {
363 val = *(u32 *)spi_imx->tx_buf;
364 spi_imx->tx_buf += sizeof(u32);
365 }
366
367 spi_imx->count -= sizeof(u32);
368 #ifdef __LITTLE_ENDIAN
369 bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
370
371 if (bytes_per_word == 1)
372 swab32s(&val);
373 else if (bytes_per_word == 2)
374 swahw32s(&val);
375 #endif
376 writel(val, spi_imx->base + MXC_CSPITXDATA);
377 }
378
spi_imx_buf_tx_swap(struct spi_imx_data * spi_imx)379 static void spi_imx_buf_tx_swap(struct spi_imx_data *spi_imx)
380 {
381 int unaligned;
382 u32 val = 0;
383
384 unaligned = spi_imx->count % 4;
385
386 if (!unaligned) {
387 spi_imx_buf_tx_swap_u32(spi_imx);
388 return;
389 }
390
391 if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
392 spi_imx_buf_tx_u16(spi_imx);
393 return;
394 }
395
396 while (unaligned--) {
397 if (spi_imx->tx_buf) {
398 val |= *(u8 *)spi_imx->tx_buf << (8 * unaligned);
399 spi_imx->tx_buf++;
400 }
401 spi_imx->count--;
402 }
403
404 writel(val, spi_imx->base + MXC_CSPITXDATA);
405 }
406
mx53_ecspi_rx_target(struct spi_imx_data * spi_imx)407 static void mx53_ecspi_rx_target(struct spi_imx_data *spi_imx)
408 {
409 u32 val = be32_to_cpu(readl(spi_imx->base + MXC_CSPIRXDATA));
410
411 if (spi_imx->rx_buf) {
412 int n_bytes = spi_imx->target_burst % sizeof(val);
413
414 if (!n_bytes)
415 n_bytes = sizeof(val);
416
417 memcpy(spi_imx->rx_buf,
418 ((u8 *)&val) + sizeof(val) - n_bytes, n_bytes);
419
420 spi_imx->rx_buf += n_bytes;
421 spi_imx->target_burst -= n_bytes;
422 }
423
424 spi_imx->remainder -= sizeof(u32);
425 }
426
mx53_ecspi_tx_target(struct spi_imx_data * spi_imx)427 static void mx53_ecspi_tx_target(struct spi_imx_data *spi_imx)
428 {
429 u32 val = 0;
430 int n_bytes = spi_imx->count % sizeof(val);
431
432 if (!n_bytes)
433 n_bytes = sizeof(val);
434
435 if (spi_imx->tx_buf) {
436 memcpy(((u8 *)&val) + sizeof(val) - n_bytes,
437 spi_imx->tx_buf, n_bytes);
438 val = cpu_to_be32(val);
439 spi_imx->tx_buf += n_bytes;
440 }
441
442 spi_imx->count -= n_bytes;
443
444 writel(val, spi_imx->base + MXC_CSPITXDATA);
445 }
446
447 /* MX51 eCSPI */
mx51_ecspi_clkdiv(struct spi_imx_data * spi_imx,unsigned int fspi,unsigned int * fres)448 static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx,
449 unsigned int fspi, unsigned int *fres)
450 {
451 /*
452 * there are two 4-bit dividers, the pre-divider divides by
453 * $pre, the post-divider by 2^$post
454 */
455 unsigned int pre, post;
456 unsigned int fin = spi_imx->spi_clk;
457
458 fspi = min(fspi, fin);
459
460 post = fls(fin) - fls(fspi);
461 if (fin > fspi << post)
462 post++;
463
464 /* now we have: (fin <= fspi << post) with post being minimal */
465
466 post = max(4U, post) - 4;
467 if (unlikely(post > 0xf)) {
468 dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n",
469 fspi, fin);
470 return 0xff;
471 }
472
473 pre = DIV_ROUND_UP(fin, fspi << post) - 1;
474
475 dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n",
476 __func__, fin, fspi, post, pre);
477
478 /* Resulting frequency for the SCLK line. */
479 *fres = (fin / (pre + 1)) >> post;
480
481 return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) |
482 (post << MX51_ECSPI_CTRL_POSTDIV_OFFSET);
483 }
484
mx51_ecspi_intctrl(struct spi_imx_data * spi_imx,int enable)485 static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable)
486 {
487 unsigned int val = 0;
488
489 if (enable & MXC_INT_TE)
490 val |= MX51_ECSPI_INT_TEEN;
491
492 if (enable & MXC_INT_RR)
493 val |= MX51_ECSPI_INT_RREN;
494
495 if (enable & MXC_INT_RDR)
496 val |= MX51_ECSPI_INT_RDREN;
497
498 writel(val, spi_imx->base + MX51_ECSPI_INT);
499 }
500
mx51_ecspi_trigger(struct spi_imx_data * spi_imx)501 static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx)
502 {
503 u32 reg;
504
505 reg = readl(spi_imx->base + MX51_ECSPI_CTRL);
506 reg |= MX51_ECSPI_CTRL_XCH;
507 writel(reg, spi_imx->base + MX51_ECSPI_CTRL);
508 }
509
mx51_ecspi_disable(struct spi_imx_data * spi_imx)510 static void mx51_ecspi_disable(struct spi_imx_data *spi_imx)
511 {
512 u32 ctrl;
513
514 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
515 ctrl &= ~MX51_ECSPI_CTRL_ENABLE;
516 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
517 }
518
mx51_ecspi_channel(const struct spi_device * spi)519 static int mx51_ecspi_channel(const struct spi_device *spi)
520 {
521 if (!spi_get_csgpiod(spi, 0))
522 return spi_get_chipselect(spi, 0);
523 return spi->controller->unused_native_cs;
524 }
525
mx51_ecspi_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)526 static int mx51_ecspi_prepare_message(struct spi_imx_data *spi_imx,
527 struct spi_message *msg)
528 {
529 struct spi_device *spi = msg->spi;
530 struct spi_transfer *xfer;
531 u32 ctrl = MX51_ECSPI_CTRL_ENABLE;
532 u32 min_speed_hz = ~0U;
533 u32 testreg, delay;
534 u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
535 u32 current_cfg = cfg;
536 int channel = mx51_ecspi_channel(spi);
537
538 /* set Host or Target mode */
539 if (spi_imx->target_mode)
540 ctrl &= ~MX51_ECSPI_CTRL_MODE_MASK;
541 else
542 ctrl |= MX51_ECSPI_CTRL_MODE_MASK;
543
544 /*
545 * Enable SPI_RDY handling (falling edge/level triggered).
546 */
547 if (spi->mode & SPI_READY)
548 ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl);
549
550 /* set chip select to use */
551 ctrl |= MX51_ECSPI_CTRL_CS(channel);
552
553 /*
554 * The ctrl register must be written first, with the EN bit set other
555 * registers must not be written to.
556 */
557 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
558
559 testreg = readl(spi_imx->base + MX51_ECSPI_TESTREG);
560 if (spi->mode & SPI_LOOP)
561 testreg |= MX51_ECSPI_TESTREG_LBC;
562 else
563 testreg &= ~MX51_ECSPI_TESTREG_LBC;
564 writel(testreg, spi_imx->base + MX51_ECSPI_TESTREG);
565
566 /*
567 * eCSPI burst completion by Chip Select signal in Target mode
568 * is not functional for imx53 Soc, config SPI burst completed when
569 * BURST_LENGTH + 1 bits are received
570 */
571 if (spi_imx->target_mode && is_imx53_ecspi(spi_imx))
572 cfg &= ~MX51_ECSPI_CONFIG_SBBCTRL(channel);
573 else
574 cfg |= MX51_ECSPI_CONFIG_SBBCTRL(channel);
575
576 if (spi->mode & SPI_CPOL) {
577 cfg |= MX51_ECSPI_CONFIG_SCLKPOL(channel);
578 cfg |= MX51_ECSPI_CONFIG_SCLKCTL(channel);
579 } else {
580 cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(channel);
581 cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(channel);
582 }
583
584 if (spi->mode & SPI_MOSI_IDLE_LOW)
585 cfg |= MX51_ECSPI_CONFIG_DATACTL(channel);
586 else
587 cfg &= ~MX51_ECSPI_CONFIG_DATACTL(channel);
588
589 if (spi->mode & SPI_CS_HIGH)
590 cfg |= MX51_ECSPI_CONFIG_SSBPOL(channel);
591 else
592 cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(channel);
593
594 if (cfg == current_cfg)
595 return 0;
596
597 writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
598
599 /*
600 * Wait until the changes in the configuration register CONFIGREG
601 * propagate into the hardware. It takes exactly one tick of the
602 * SCLK clock, but we will wait two SCLK clock just to be sure. The
603 * effect of the delay it takes for the hardware to apply changes
604 * is noticable if the SCLK clock run very slow. In such a case, if
605 * the polarity of SCLK should be inverted, the GPIO ChipSelect might
606 * be asserted before the SCLK polarity changes, which would disrupt
607 * the SPI communication as the device on the other end would consider
608 * the change of SCLK polarity as a clock tick already.
609 *
610 * Because spi_imx->spi_bus_clk is only set in prepare_message
611 * callback, iterate over all the transfers in spi_message, find the
612 * one with lowest bus frequency, and use that bus frequency for the
613 * delay calculation. In case all transfers have speed_hz == 0, then
614 * min_speed_hz is ~0 and the resulting delay is zero.
615 */
616 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
617 if (!xfer->speed_hz)
618 continue;
619 min_speed_hz = min(xfer->speed_hz, min_speed_hz);
620 }
621
622 delay = (2 * 1000000) / min_speed_hz;
623 if (likely(delay < 10)) /* SCLK is faster than 200 kHz */
624 udelay(delay);
625 else /* SCLK is _very_ slow */
626 usleep_range(delay, delay + 10);
627
628 return 0;
629 }
630
mx51_configure_cpha(struct spi_imx_data * spi_imx,struct spi_device * spi)631 static void mx51_configure_cpha(struct spi_imx_data *spi_imx,
632 struct spi_device *spi)
633 {
634 bool cpha = (spi->mode & SPI_CPHA);
635 bool flip_cpha = (spi->mode & SPI_RX_CPHA_FLIP) && spi_imx->rx_only;
636 u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
637 int channel = mx51_ecspi_channel(spi);
638
639 /* Flip cpha logical value iff flip_cpha */
640 cpha ^= flip_cpha;
641
642 if (cpha)
643 cfg |= MX51_ECSPI_CONFIG_SCLKPHA(channel);
644 else
645 cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(channel);
646
647 writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
648 }
649
mx51_ecspi_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi)650 static int mx51_ecspi_prepare_transfer(struct spi_imx_data *spi_imx,
651 struct spi_device *spi)
652 {
653 u32 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
654 u32 clk;
655
656 /* Clear BL field and set the right value */
657 ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
658 if (spi_imx->target_mode && is_imx53_ecspi(spi_imx))
659 ctrl |= (spi_imx->target_burst * 8 - 1)
660 << MX51_ECSPI_CTRL_BL_OFFSET;
661 else {
662 if (spi_imx->count >= 512)
663 ctrl |= 0xFFF << MX51_ECSPI_CTRL_BL_OFFSET;
664 else
665 ctrl |= (spi_imx->count * spi_imx->bits_per_word - 1)
666 << MX51_ECSPI_CTRL_BL_OFFSET;
667 }
668
669 /* set clock speed */
670 ctrl &= ~(0xf << MX51_ECSPI_CTRL_POSTDIV_OFFSET |
671 0xf << MX51_ECSPI_CTRL_PREDIV_OFFSET);
672 ctrl |= mx51_ecspi_clkdiv(spi_imx, spi_imx->spi_bus_clk, &clk);
673 spi_imx->spi_bus_clk = clk;
674
675 mx51_configure_cpha(spi_imx, spi);
676
677 /*
678 * ERR009165: work in XHC mode instead of SMC as PIO on the chips
679 * before i.mx6ul.
680 */
681 if (spi_imx->usedma && spi_imx->devtype_data->tx_glitch_fixed)
682 ctrl |= MX51_ECSPI_CTRL_SMC;
683 else
684 ctrl &= ~MX51_ECSPI_CTRL_SMC;
685
686 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
687
688 return 0;
689 }
690
mx51_setup_wml(struct spi_imx_data * spi_imx)691 static void mx51_setup_wml(struct spi_imx_data *spi_imx)
692 {
693 u32 tx_wml = 0;
694
695 if (spi_imx->devtype_data->tx_glitch_fixed)
696 tx_wml = spi_imx->wml;
697 /*
698 * Configure the DMA register: setup the watermark
699 * and enable DMA request.
700 */
701 writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml - 1) |
702 MX51_ECSPI_DMA_TX_WML(tx_wml) |
703 MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) |
704 MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN |
705 MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA);
706 }
707
mx51_ecspi_rx_available(struct spi_imx_data * spi_imx)708 static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx)
709 {
710 return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR;
711 }
712
mx51_ecspi_reset(struct spi_imx_data * spi_imx)713 static void mx51_ecspi_reset(struct spi_imx_data *spi_imx)
714 {
715 /* drain receive buffer */
716 while (mx51_ecspi_rx_available(spi_imx))
717 readl(spi_imx->base + MXC_CSPIRXDATA);
718 }
719
720 #define MX31_INTREG_TEEN (1 << 0)
721 #define MX31_INTREG_RREN (1 << 3)
722
723 #define MX31_CSPICTRL_ENABLE (1 << 0)
724 #define MX31_CSPICTRL_HOST (1 << 1)
725 #define MX31_CSPICTRL_XCH (1 << 2)
726 #define MX31_CSPICTRL_SMC (1 << 3)
727 #define MX31_CSPICTRL_POL (1 << 4)
728 #define MX31_CSPICTRL_PHA (1 << 5)
729 #define MX31_CSPICTRL_SSCTL (1 << 6)
730 #define MX31_CSPICTRL_SSPOL (1 << 7)
731 #define MX31_CSPICTRL_BC_SHIFT 8
732 #define MX35_CSPICTRL_BL_SHIFT 20
733 #define MX31_CSPICTRL_CS_SHIFT 24
734 #define MX35_CSPICTRL_CS_SHIFT 12
735 #define MX31_CSPICTRL_DR_SHIFT 16
736
737 #define MX31_CSPI_DMAREG 0x10
738 #define MX31_DMAREG_RH_DEN (1<<4)
739 #define MX31_DMAREG_TH_DEN (1<<1)
740
741 #define MX31_CSPISTATUS 0x14
742 #define MX31_STATUS_RR (1 << 3)
743
744 #define MX31_CSPI_TESTREG 0x1C
745 #define MX31_TEST_LBC (1 << 14)
746
747 /* These functions also work for the i.MX35, but be aware that
748 * the i.MX35 has a slightly different register layout for bits
749 * we do not use here.
750 */
mx31_intctrl(struct spi_imx_data * spi_imx,int enable)751 static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable)
752 {
753 unsigned int val = 0;
754
755 if (enable & MXC_INT_TE)
756 val |= MX31_INTREG_TEEN;
757 if (enable & MXC_INT_RR)
758 val |= MX31_INTREG_RREN;
759
760 writel(val, spi_imx->base + MXC_CSPIINT);
761 }
762
mx31_trigger(struct spi_imx_data * spi_imx)763 static void mx31_trigger(struct spi_imx_data *spi_imx)
764 {
765 unsigned int reg;
766
767 reg = readl(spi_imx->base + MXC_CSPICTRL);
768 reg |= MX31_CSPICTRL_XCH;
769 writel(reg, spi_imx->base + MXC_CSPICTRL);
770 }
771
mx31_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)772 static int mx31_prepare_message(struct spi_imx_data *spi_imx,
773 struct spi_message *msg)
774 {
775 return 0;
776 }
777
mx31_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi)778 static int mx31_prepare_transfer(struct spi_imx_data *spi_imx,
779 struct spi_device *spi)
780 {
781 unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_HOST;
782 unsigned int clk;
783
784 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
785 MX31_CSPICTRL_DR_SHIFT;
786 spi_imx->spi_bus_clk = clk;
787
788 if (is_imx35_cspi(spi_imx)) {
789 reg |= (spi_imx->bits_per_word - 1) << MX35_CSPICTRL_BL_SHIFT;
790 reg |= MX31_CSPICTRL_SSCTL;
791 } else {
792 reg |= (spi_imx->bits_per_word - 1) << MX31_CSPICTRL_BC_SHIFT;
793 }
794
795 if (spi->mode & SPI_CPHA)
796 reg |= MX31_CSPICTRL_PHA;
797 if (spi->mode & SPI_CPOL)
798 reg |= MX31_CSPICTRL_POL;
799 if (spi->mode & SPI_CS_HIGH)
800 reg |= MX31_CSPICTRL_SSPOL;
801 if (!spi_get_csgpiod(spi, 0))
802 reg |= (spi_get_chipselect(spi, 0)) <<
803 (is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT :
804 MX31_CSPICTRL_CS_SHIFT);
805
806 if (spi_imx->usedma)
807 reg |= MX31_CSPICTRL_SMC;
808
809 writel(reg, spi_imx->base + MXC_CSPICTRL);
810
811 reg = readl(spi_imx->base + MX31_CSPI_TESTREG);
812 if (spi->mode & SPI_LOOP)
813 reg |= MX31_TEST_LBC;
814 else
815 reg &= ~MX31_TEST_LBC;
816 writel(reg, spi_imx->base + MX31_CSPI_TESTREG);
817
818 if (spi_imx->usedma) {
819 /*
820 * configure DMA requests when RXFIFO is half full and
821 * when TXFIFO is half empty
822 */
823 writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN,
824 spi_imx->base + MX31_CSPI_DMAREG);
825 }
826
827 return 0;
828 }
829
mx31_rx_available(struct spi_imx_data * spi_imx)830 static int mx31_rx_available(struct spi_imx_data *spi_imx)
831 {
832 return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR;
833 }
834
mx31_reset(struct spi_imx_data * spi_imx)835 static void mx31_reset(struct spi_imx_data *spi_imx)
836 {
837 /* drain receive buffer */
838 while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR)
839 readl(spi_imx->base + MXC_CSPIRXDATA);
840 }
841
842 #define MX21_INTREG_RR (1 << 4)
843 #define MX21_INTREG_TEEN (1 << 9)
844 #define MX21_INTREG_RREN (1 << 13)
845
846 #define MX21_CSPICTRL_POL (1 << 5)
847 #define MX21_CSPICTRL_PHA (1 << 6)
848 #define MX21_CSPICTRL_SSPOL (1 << 8)
849 #define MX21_CSPICTRL_XCH (1 << 9)
850 #define MX21_CSPICTRL_ENABLE (1 << 10)
851 #define MX21_CSPICTRL_HOST (1 << 11)
852 #define MX21_CSPICTRL_DR_SHIFT 14
853 #define MX21_CSPICTRL_CS_SHIFT 19
854
mx21_intctrl(struct spi_imx_data * spi_imx,int enable)855 static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable)
856 {
857 unsigned int val = 0;
858
859 if (enable & MXC_INT_TE)
860 val |= MX21_INTREG_TEEN;
861 if (enable & MXC_INT_RR)
862 val |= MX21_INTREG_RREN;
863
864 writel(val, spi_imx->base + MXC_CSPIINT);
865 }
866
mx21_trigger(struct spi_imx_data * spi_imx)867 static void mx21_trigger(struct spi_imx_data *spi_imx)
868 {
869 unsigned int reg;
870
871 reg = readl(spi_imx->base + MXC_CSPICTRL);
872 reg |= MX21_CSPICTRL_XCH;
873 writel(reg, spi_imx->base + MXC_CSPICTRL);
874 }
875
mx21_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)876 static int mx21_prepare_message(struct spi_imx_data *spi_imx,
877 struct spi_message *msg)
878 {
879 return 0;
880 }
881
mx21_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi)882 static int mx21_prepare_transfer(struct spi_imx_data *spi_imx,
883 struct spi_device *spi)
884 {
885 unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_HOST;
886 unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18;
887 unsigned int clk;
888
889 reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, spi_imx->spi_bus_clk, max, &clk)
890 << MX21_CSPICTRL_DR_SHIFT;
891 spi_imx->spi_bus_clk = clk;
892
893 reg |= spi_imx->bits_per_word - 1;
894
895 if (spi->mode & SPI_CPHA)
896 reg |= MX21_CSPICTRL_PHA;
897 if (spi->mode & SPI_CPOL)
898 reg |= MX21_CSPICTRL_POL;
899 if (spi->mode & SPI_CS_HIGH)
900 reg |= MX21_CSPICTRL_SSPOL;
901 if (!spi_get_csgpiod(spi, 0))
902 reg |= spi_get_chipselect(spi, 0) << MX21_CSPICTRL_CS_SHIFT;
903
904 writel(reg, spi_imx->base + MXC_CSPICTRL);
905
906 return 0;
907 }
908
mx21_rx_available(struct spi_imx_data * spi_imx)909 static int mx21_rx_available(struct spi_imx_data *spi_imx)
910 {
911 return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR;
912 }
913
mx21_reset(struct spi_imx_data * spi_imx)914 static void mx21_reset(struct spi_imx_data *spi_imx)
915 {
916 writel(1, spi_imx->base + MXC_RESET);
917 }
918
919 #define MX1_INTREG_RR (1 << 3)
920 #define MX1_INTREG_TEEN (1 << 8)
921 #define MX1_INTREG_RREN (1 << 11)
922
923 #define MX1_CSPICTRL_POL (1 << 4)
924 #define MX1_CSPICTRL_PHA (1 << 5)
925 #define MX1_CSPICTRL_XCH (1 << 8)
926 #define MX1_CSPICTRL_ENABLE (1 << 9)
927 #define MX1_CSPICTRL_HOST (1 << 10)
928 #define MX1_CSPICTRL_DR_SHIFT 13
929
mx1_intctrl(struct spi_imx_data * spi_imx,int enable)930 static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable)
931 {
932 unsigned int val = 0;
933
934 if (enable & MXC_INT_TE)
935 val |= MX1_INTREG_TEEN;
936 if (enable & MXC_INT_RR)
937 val |= MX1_INTREG_RREN;
938
939 writel(val, spi_imx->base + MXC_CSPIINT);
940 }
941
mx1_trigger(struct spi_imx_data * spi_imx)942 static void mx1_trigger(struct spi_imx_data *spi_imx)
943 {
944 unsigned int reg;
945
946 reg = readl(spi_imx->base + MXC_CSPICTRL);
947 reg |= MX1_CSPICTRL_XCH;
948 writel(reg, spi_imx->base + MXC_CSPICTRL);
949 }
950
mx1_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)951 static int mx1_prepare_message(struct spi_imx_data *spi_imx,
952 struct spi_message *msg)
953 {
954 return 0;
955 }
956
mx1_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi)957 static int mx1_prepare_transfer(struct spi_imx_data *spi_imx,
958 struct spi_device *spi)
959 {
960 unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_HOST;
961 unsigned int clk;
962
963 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
964 MX1_CSPICTRL_DR_SHIFT;
965 spi_imx->spi_bus_clk = clk;
966
967 reg |= spi_imx->bits_per_word - 1;
968
969 if (spi->mode & SPI_CPHA)
970 reg |= MX1_CSPICTRL_PHA;
971 if (spi->mode & SPI_CPOL)
972 reg |= MX1_CSPICTRL_POL;
973
974 writel(reg, spi_imx->base + MXC_CSPICTRL);
975
976 return 0;
977 }
978
mx1_rx_available(struct spi_imx_data * spi_imx)979 static int mx1_rx_available(struct spi_imx_data *spi_imx)
980 {
981 return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR;
982 }
983
mx1_reset(struct spi_imx_data * spi_imx)984 static void mx1_reset(struct spi_imx_data *spi_imx)
985 {
986 writel(1, spi_imx->base + MXC_RESET);
987 }
988
989 static struct spi_imx_devtype_data imx1_cspi_devtype_data = {
990 .intctrl = mx1_intctrl,
991 .prepare_message = mx1_prepare_message,
992 .prepare_transfer = mx1_prepare_transfer,
993 .trigger = mx1_trigger,
994 .rx_available = mx1_rx_available,
995 .reset = mx1_reset,
996 .fifo_size = 8,
997 .has_dmamode = false,
998 .dynamic_burst = false,
999 .has_targetmode = false,
1000 .devtype = IMX1_CSPI,
1001 };
1002
1003 static struct spi_imx_devtype_data imx21_cspi_devtype_data = {
1004 .intctrl = mx21_intctrl,
1005 .prepare_message = mx21_prepare_message,
1006 .prepare_transfer = mx21_prepare_transfer,
1007 .trigger = mx21_trigger,
1008 .rx_available = mx21_rx_available,
1009 .reset = mx21_reset,
1010 .fifo_size = 8,
1011 .has_dmamode = false,
1012 .dynamic_burst = false,
1013 .has_targetmode = false,
1014 .devtype = IMX21_CSPI,
1015 };
1016
1017 static struct spi_imx_devtype_data imx27_cspi_devtype_data = {
1018 /* i.mx27 cspi shares the functions with i.mx21 one */
1019 .intctrl = mx21_intctrl,
1020 .prepare_message = mx21_prepare_message,
1021 .prepare_transfer = mx21_prepare_transfer,
1022 .trigger = mx21_trigger,
1023 .rx_available = mx21_rx_available,
1024 .reset = mx21_reset,
1025 .fifo_size = 8,
1026 .has_dmamode = false,
1027 .dynamic_burst = false,
1028 .has_targetmode = false,
1029 .devtype = IMX27_CSPI,
1030 };
1031
1032 static struct spi_imx_devtype_data imx31_cspi_devtype_data = {
1033 .intctrl = mx31_intctrl,
1034 .prepare_message = mx31_prepare_message,
1035 .prepare_transfer = mx31_prepare_transfer,
1036 .trigger = mx31_trigger,
1037 .rx_available = mx31_rx_available,
1038 .reset = mx31_reset,
1039 .fifo_size = 8,
1040 .has_dmamode = false,
1041 .dynamic_burst = false,
1042 .has_targetmode = false,
1043 .devtype = IMX31_CSPI,
1044 };
1045
1046 static struct spi_imx_devtype_data imx35_cspi_devtype_data = {
1047 /* i.mx35 and later cspi shares the functions with i.mx31 one */
1048 .intctrl = mx31_intctrl,
1049 .prepare_message = mx31_prepare_message,
1050 .prepare_transfer = mx31_prepare_transfer,
1051 .trigger = mx31_trigger,
1052 .rx_available = mx31_rx_available,
1053 .reset = mx31_reset,
1054 .fifo_size = 8,
1055 .has_dmamode = true,
1056 .dynamic_burst = false,
1057 .has_targetmode = false,
1058 .devtype = IMX35_CSPI,
1059 };
1060
1061 static struct spi_imx_devtype_data imx51_ecspi_devtype_data = {
1062 .intctrl = mx51_ecspi_intctrl,
1063 .prepare_message = mx51_ecspi_prepare_message,
1064 .prepare_transfer = mx51_ecspi_prepare_transfer,
1065 .trigger = mx51_ecspi_trigger,
1066 .rx_available = mx51_ecspi_rx_available,
1067 .reset = mx51_ecspi_reset,
1068 .setup_wml = mx51_setup_wml,
1069 .fifo_size = 64,
1070 .has_dmamode = true,
1071 .dynamic_burst = true,
1072 .has_targetmode = true,
1073 .disable = mx51_ecspi_disable,
1074 .devtype = IMX51_ECSPI,
1075 };
1076
1077 static struct spi_imx_devtype_data imx53_ecspi_devtype_data = {
1078 .intctrl = mx51_ecspi_intctrl,
1079 .prepare_message = mx51_ecspi_prepare_message,
1080 .prepare_transfer = mx51_ecspi_prepare_transfer,
1081 .trigger = mx51_ecspi_trigger,
1082 .rx_available = mx51_ecspi_rx_available,
1083 .reset = mx51_ecspi_reset,
1084 .fifo_size = 64,
1085 .has_dmamode = true,
1086 .has_targetmode = true,
1087 .disable = mx51_ecspi_disable,
1088 .devtype = IMX53_ECSPI,
1089 };
1090
1091 static struct spi_imx_devtype_data imx6ul_ecspi_devtype_data = {
1092 .intctrl = mx51_ecspi_intctrl,
1093 .prepare_message = mx51_ecspi_prepare_message,
1094 .prepare_transfer = mx51_ecspi_prepare_transfer,
1095 .trigger = mx51_ecspi_trigger,
1096 .rx_available = mx51_ecspi_rx_available,
1097 .reset = mx51_ecspi_reset,
1098 .setup_wml = mx51_setup_wml,
1099 .fifo_size = 64,
1100 .has_dmamode = true,
1101 .dynamic_burst = true,
1102 .has_targetmode = true,
1103 .tx_glitch_fixed = true,
1104 .disable = mx51_ecspi_disable,
1105 .devtype = IMX51_ECSPI,
1106 };
1107
1108 static const struct of_device_id spi_imx_dt_ids[] = {
1109 { .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, },
1110 { .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, },
1111 { .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, },
1112 { .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, },
1113 { .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, },
1114 { .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, },
1115 { .compatible = "fsl,imx53-ecspi", .data = &imx53_ecspi_devtype_data, },
1116 { .compatible = "fsl,imx6ul-ecspi", .data = &imx6ul_ecspi_devtype_data, },
1117 { /* sentinel */ }
1118 };
1119 MODULE_DEVICE_TABLE(of, spi_imx_dt_ids);
1120
spi_imx_set_burst_len(struct spi_imx_data * spi_imx,int n_bits)1121 static void spi_imx_set_burst_len(struct spi_imx_data *spi_imx, int n_bits)
1122 {
1123 u32 ctrl;
1124
1125 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
1126 ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
1127 ctrl |= ((n_bits - 1) << MX51_ECSPI_CTRL_BL_OFFSET);
1128 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
1129 }
1130
spi_imx_push(struct spi_imx_data * spi_imx)1131 static void spi_imx_push(struct spi_imx_data *spi_imx)
1132 {
1133 unsigned int burst_len;
1134
1135 /*
1136 * Reload the FIFO when the remaining bytes to be transferred in the
1137 * current burst is 0. This only applies when bits_per_word is a
1138 * multiple of 8.
1139 */
1140 if (!spi_imx->remainder) {
1141 if (spi_imx->dynamic_burst) {
1142
1143 /* We need to deal unaligned data first */
1144 burst_len = spi_imx->count % MX51_ECSPI_CTRL_MAX_BURST;
1145
1146 if (!burst_len)
1147 burst_len = MX51_ECSPI_CTRL_MAX_BURST;
1148
1149 spi_imx_set_burst_len(spi_imx, burst_len * 8);
1150
1151 spi_imx->remainder = burst_len;
1152 } else {
1153 spi_imx->remainder = spi_imx_bytes_per_word(spi_imx->bits_per_word);
1154 }
1155 }
1156
1157 while (spi_imx->txfifo < spi_imx->devtype_data->fifo_size) {
1158 if (!spi_imx->count)
1159 break;
1160 if (spi_imx->dynamic_burst &&
1161 spi_imx->txfifo >= DIV_ROUND_UP(spi_imx->remainder, 4))
1162 break;
1163 spi_imx->tx(spi_imx);
1164 spi_imx->txfifo++;
1165 }
1166
1167 if (!spi_imx->target_mode)
1168 spi_imx->devtype_data->trigger(spi_imx);
1169 }
1170
spi_imx_isr(int irq,void * dev_id)1171 static irqreturn_t spi_imx_isr(int irq, void *dev_id)
1172 {
1173 struct spi_imx_data *spi_imx = dev_id;
1174
1175 while (spi_imx->txfifo &&
1176 spi_imx->devtype_data->rx_available(spi_imx)) {
1177 spi_imx->rx(spi_imx);
1178 spi_imx->txfifo--;
1179 }
1180
1181 if (spi_imx->count) {
1182 spi_imx_push(spi_imx);
1183 return IRQ_HANDLED;
1184 }
1185
1186 if (spi_imx->txfifo) {
1187 /* No data left to push, but still waiting for rx data,
1188 * enable receive data available interrupt.
1189 */
1190 spi_imx->devtype_data->intctrl(
1191 spi_imx, MXC_INT_RR);
1192 return IRQ_HANDLED;
1193 }
1194
1195 spi_imx->devtype_data->intctrl(spi_imx, 0);
1196 complete(&spi_imx->xfer_done);
1197
1198 return IRQ_HANDLED;
1199 }
1200
spi_imx_dma_configure(struct spi_controller * controller)1201 static int spi_imx_dma_configure(struct spi_controller *controller)
1202 {
1203 int ret;
1204 enum dma_slave_buswidth buswidth;
1205 struct dma_slave_config rx = {}, tx = {};
1206 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1207
1208 switch (spi_imx_bytes_per_word(spi_imx->bits_per_word)) {
1209 case 4:
1210 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1211 break;
1212 case 2:
1213 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1214 break;
1215 case 1:
1216 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1217 break;
1218 default:
1219 return -EINVAL;
1220 }
1221
1222 tx.direction = DMA_MEM_TO_DEV;
1223 tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA;
1224 tx.dst_addr_width = buswidth;
1225 tx.dst_maxburst = spi_imx->wml;
1226 ret = dmaengine_slave_config(controller->dma_tx, &tx);
1227 if (ret) {
1228 dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret);
1229 return ret;
1230 }
1231
1232 rx.direction = DMA_DEV_TO_MEM;
1233 rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA;
1234 rx.src_addr_width = buswidth;
1235 rx.src_maxburst = spi_imx->wml;
1236 ret = dmaengine_slave_config(controller->dma_rx, &rx);
1237 if (ret) {
1238 dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret);
1239 return ret;
1240 }
1241
1242 return 0;
1243 }
1244
spi_imx_setupxfer(struct spi_device * spi,struct spi_transfer * t)1245 static int spi_imx_setupxfer(struct spi_device *spi,
1246 struct spi_transfer *t)
1247 {
1248 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1249
1250 if (!t)
1251 return 0;
1252
1253 if (!t->speed_hz) {
1254 if (!spi->max_speed_hz) {
1255 dev_err(&spi->dev, "no speed_hz provided!\n");
1256 return -EINVAL;
1257 }
1258 dev_dbg(&spi->dev, "using spi->max_speed_hz!\n");
1259 spi_imx->spi_bus_clk = spi->max_speed_hz;
1260 } else
1261 spi_imx->spi_bus_clk = t->speed_hz;
1262
1263 spi_imx->bits_per_word = t->bits_per_word;
1264 spi_imx->count = t->len;
1265
1266 /*
1267 * Initialize the functions for transfer. To transfer non byte-aligned
1268 * words, we have to use multiple word-size bursts, we can't use
1269 * dynamic_burst in that case.
1270 */
1271 if (spi_imx->devtype_data->dynamic_burst && !spi_imx->target_mode &&
1272 !(spi->mode & SPI_CS_WORD) &&
1273 (spi_imx->bits_per_word == 8 ||
1274 spi_imx->bits_per_word == 16 ||
1275 spi_imx->bits_per_word == 32)) {
1276
1277 spi_imx->rx = spi_imx_buf_rx_swap;
1278 spi_imx->tx = spi_imx_buf_tx_swap;
1279 spi_imx->dynamic_burst = 1;
1280
1281 } else {
1282 if (spi_imx->bits_per_word <= 8) {
1283 spi_imx->rx = spi_imx_buf_rx_u8;
1284 spi_imx->tx = spi_imx_buf_tx_u8;
1285 } else if (spi_imx->bits_per_word <= 16) {
1286 spi_imx->rx = spi_imx_buf_rx_u16;
1287 spi_imx->tx = spi_imx_buf_tx_u16;
1288 } else {
1289 spi_imx->rx = spi_imx_buf_rx_u32;
1290 spi_imx->tx = spi_imx_buf_tx_u32;
1291 }
1292 spi_imx->dynamic_burst = 0;
1293 }
1294
1295 if (spi_imx_can_dma(spi_imx->controller, spi, t))
1296 spi_imx->usedma = true;
1297 else
1298 spi_imx->usedma = false;
1299
1300 spi_imx->rx_only = ((t->tx_buf == NULL)
1301 || (t->tx_buf == spi->controller->dummy_tx));
1302
1303 if (is_imx53_ecspi(spi_imx) && spi_imx->target_mode) {
1304 spi_imx->rx = mx53_ecspi_rx_target;
1305 spi_imx->tx = mx53_ecspi_tx_target;
1306 spi_imx->target_burst = t->len;
1307 }
1308
1309 spi_imx->devtype_data->prepare_transfer(spi_imx, spi);
1310
1311 return 0;
1312 }
1313
spi_imx_sdma_exit(struct spi_imx_data * spi_imx)1314 static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx)
1315 {
1316 struct spi_controller *controller = spi_imx->controller;
1317
1318 if (controller->dma_rx) {
1319 dma_release_channel(controller->dma_rx);
1320 controller->dma_rx = NULL;
1321 }
1322
1323 if (controller->dma_tx) {
1324 dma_release_channel(controller->dma_tx);
1325 controller->dma_tx = NULL;
1326 }
1327 }
1328
spi_imx_sdma_init(struct device * dev,struct spi_imx_data * spi_imx,struct spi_controller * controller)1329 static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx,
1330 struct spi_controller *controller)
1331 {
1332 int ret;
1333
1334 spi_imx->wml = spi_imx->devtype_data->fifo_size / 2;
1335
1336 /* Prepare for TX DMA: */
1337 controller->dma_tx = dma_request_chan(dev, "tx");
1338 if (IS_ERR(controller->dma_tx)) {
1339 ret = PTR_ERR(controller->dma_tx);
1340 dev_dbg(dev, "can't get the TX DMA channel, error %d!\n", ret);
1341 controller->dma_tx = NULL;
1342 goto err;
1343 }
1344
1345 /* Prepare for RX : */
1346 controller->dma_rx = dma_request_chan(dev, "rx");
1347 if (IS_ERR(controller->dma_rx)) {
1348 ret = PTR_ERR(controller->dma_rx);
1349 dev_dbg(dev, "can't get the RX DMA channel, error %d\n", ret);
1350 controller->dma_rx = NULL;
1351 goto err;
1352 }
1353
1354 init_completion(&spi_imx->dma_rx_completion);
1355 init_completion(&spi_imx->dma_tx_completion);
1356 controller->can_dma = spi_imx_can_dma;
1357 controller->max_dma_len = MAX_SDMA_BD_BYTES;
1358 spi_imx->controller->flags = SPI_CONTROLLER_MUST_RX |
1359 SPI_CONTROLLER_MUST_TX;
1360
1361 return 0;
1362 err:
1363 spi_imx_sdma_exit(spi_imx);
1364 return ret;
1365 }
1366
spi_imx_dma_rx_callback(void * cookie)1367 static void spi_imx_dma_rx_callback(void *cookie)
1368 {
1369 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1370
1371 complete(&spi_imx->dma_rx_completion);
1372 }
1373
spi_imx_dma_tx_callback(void * cookie)1374 static void spi_imx_dma_tx_callback(void *cookie)
1375 {
1376 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1377
1378 complete(&spi_imx->dma_tx_completion);
1379 }
1380
spi_imx_calculate_timeout(struct spi_imx_data * spi_imx,int size)1381 static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size)
1382 {
1383 unsigned long timeout = 0;
1384
1385 /* Time with actual data transfer and CS change delay related to HW */
1386 timeout = (8 + 4) * size / spi_imx->spi_bus_clk;
1387
1388 /* Add extra second for scheduler related activities */
1389 timeout += 1;
1390
1391 /* Double calculated timeout */
1392 return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC);
1393 }
1394
spi_imx_dma_transfer(struct spi_imx_data * spi_imx,struct spi_transfer * transfer)1395 static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx,
1396 struct spi_transfer *transfer)
1397 {
1398 struct dma_async_tx_descriptor *desc_tx, *desc_rx;
1399 unsigned long transfer_timeout;
1400 unsigned long timeout;
1401 struct spi_controller *controller = spi_imx->controller;
1402 struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg;
1403 struct scatterlist *last_sg = sg_last(rx->sgl, rx->nents);
1404 unsigned int bytes_per_word, i;
1405 int ret;
1406
1407 /* Get the right burst length from the last sg to ensure no tail data */
1408 bytes_per_word = spi_imx_bytes_per_word(transfer->bits_per_word);
1409 for (i = spi_imx->devtype_data->fifo_size / 2; i > 0; i--) {
1410 if (!(sg_dma_len(last_sg) % (i * bytes_per_word)))
1411 break;
1412 }
1413 /* Use 1 as wml in case no available burst length got */
1414 if (i == 0)
1415 i = 1;
1416
1417 spi_imx->wml = i;
1418
1419 ret = spi_imx_dma_configure(controller);
1420 if (ret)
1421 goto dma_failure_no_start;
1422
1423 if (!spi_imx->devtype_data->setup_wml) {
1424 dev_err(spi_imx->dev, "No setup_wml()?\n");
1425 ret = -EINVAL;
1426 goto dma_failure_no_start;
1427 }
1428 spi_imx->devtype_data->setup_wml(spi_imx);
1429
1430 /*
1431 * The TX DMA setup starts the transfer, so make sure RX is configured
1432 * before TX.
1433 */
1434 desc_rx = dmaengine_prep_slave_sg(controller->dma_rx,
1435 rx->sgl, rx->nents, DMA_DEV_TO_MEM,
1436 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1437 if (!desc_rx) {
1438 ret = -EINVAL;
1439 goto dma_failure_no_start;
1440 }
1441
1442 desc_rx->callback = spi_imx_dma_rx_callback;
1443 desc_rx->callback_param = (void *)spi_imx;
1444 dmaengine_submit(desc_rx);
1445 reinit_completion(&spi_imx->dma_rx_completion);
1446 dma_async_issue_pending(controller->dma_rx);
1447
1448 desc_tx = dmaengine_prep_slave_sg(controller->dma_tx,
1449 tx->sgl, tx->nents, DMA_MEM_TO_DEV,
1450 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1451 if (!desc_tx) {
1452 dmaengine_terminate_all(controller->dma_tx);
1453 dmaengine_terminate_all(controller->dma_rx);
1454 return -EINVAL;
1455 }
1456
1457 desc_tx->callback = spi_imx_dma_tx_callback;
1458 desc_tx->callback_param = (void *)spi_imx;
1459 dmaengine_submit(desc_tx);
1460 reinit_completion(&spi_imx->dma_tx_completion);
1461 dma_async_issue_pending(controller->dma_tx);
1462
1463 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1464
1465 /* Wait SDMA to finish the data transfer.*/
1466 timeout = wait_for_completion_timeout(&spi_imx->dma_tx_completion,
1467 transfer_timeout);
1468 if (!timeout) {
1469 dev_err(spi_imx->dev, "I/O Error in DMA TX\n");
1470 dmaengine_terminate_all(controller->dma_tx);
1471 dmaengine_terminate_all(controller->dma_rx);
1472 return -ETIMEDOUT;
1473 }
1474
1475 timeout = wait_for_completion_timeout(&spi_imx->dma_rx_completion,
1476 transfer_timeout);
1477 if (!timeout) {
1478 dev_err(&controller->dev, "I/O Error in DMA RX\n");
1479 spi_imx->devtype_data->reset(spi_imx);
1480 dmaengine_terminate_all(controller->dma_rx);
1481 return -ETIMEDOUT;
1482 }
1483
1484 return 0;
1485 /* fallback to pio */
1486 dma_failure_no_start:
1487 transfer->error |= SPI_TRANS_FAIL_NO_START;
1488 return ret;
1489 }
1490
spi_imx_pio_transfer(struct spi_device * spi,struct spi_transfer * transfer)1491 static int spi_imx_pio_transfer(struct spi_device *spi,
1492 struct spi_transfer *transfer)
1493 {
1494 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1495 unsigned long transfer_timeout;
1496 unsigned long timeout;
1497
1498 spi_imx->tx_buf = transfer->tx_buf;
1499 spi_imx->rx_buf = transfer->rx_buf;
1500 spi_imx->count = transfer->len;
1501 spi_imx->txfifo = 0;
1502 spi_imx->remainder = 0;
1503
1504 reinit_completion(&spi_imx->xfer_done);
1505
1506 spi_imx_push(spi_imx);
1507
1508 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE);
1509
1510 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1511
1512 timeout = wait_for_completion_timeout(&spi_imx->xfer_done,
1513 transfer_timeout);
1514 if (!timeout) {
1515 dev_err(&spi->dev, "I/O Error in PIO\n");
1516 spi_imx->devtype_data->reset(spi_imx);
1517 return -ETIMEDOUT;
1518 }
1519
1520 return 0;
1521 }
1522
spi_imx_poll_transfer(struct spi_device * spi,struct spi_transfer * transfer)1523 static int spi_imx_poll_transfer(struct spi_device *spi,
1524 struct spi_transfer *transfer)
1525 {
1526 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1527 unsigned long timeout;
1528
1529 spi_imx->tx_buf = transfer->tx_buf;
1530 spi_imx->rx_buf = transfer->rx_buf;
1531 spi_imx->count = transfer->len;
1532 spi_imx->txfifo = 0;
1533 spi_imx->remainder = 0;
1534
1535 /* fill in the fifo before timeout calculations if we are
1536 * interrupted here, then the data is getting transferred by
1537 * the HW while we are interrupted
1538 */
1539 spi_imx_push(spi_imx);
1540
1541 timeout = spi_imx_calculate_timeout(spi_imx, transfer->len) + jiffies;
1542 while (spi_imx->txfifo) {
1543 /* RX */
1544 while (spi_imx->txfifo &&
1545 spi_imx->devtype_data->rx_available(spi_imx)) {
1546 spi_imx->rx(spi_imx);
1547 spi_imx->txfifo--;
1548 }
1549
1550 /* TX */
1551 if (spi_imx->count) {
1552 spi_imx_push(spi_imx);
1553 continue;
1554 }
1555
1556 if (spi_imx->txfifo &&
1557 time_after(jiffies, timeout)) {
1558
1559 dev_err_ratelimited(&spi->dev,
1560 "timeout period reached: jiffies: %lu- falling back to interrupt mode\n",
1561 jiffies - timeout);
1562
1563 /* fall back to interrupt mode */
1564 return spi_imx_pio_transfer(spi, transfer);
1565 }
1566 }
1567
1568 return 0;
1569 }
1570
spi_imx_pio_transfer_target(struct spi_device * spi,struct spi_transfer * transfer)1571 static int spi_imx_pio_transfer_target(struct spi_device *spi,
1572 struct spi_transfer *transfer)
1573 {
1574 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1575 int ret = 0;
1576
1577 if (is_imx53_ecspi(spi_imx) &&
1578 transfer->len > MX53_MAX_TRANSFER_BYTES) {
1579 dev_err(&spi->dev, "Transaction too big, max size is %d bytes\n",
1580 MX53_MAX_TRANSFER_BYTES);
1581 return -EMSGSIZE;
1582 }
1583
1584 spi_imx->tx_buf = transfer->tx_buf;
1585 spi_imx->rx_buf = transfer->rx_buf;
1586 spi_imx->count = transfer->len;
1587 spi_imx->txfifo = 0;
1588 spi_imx->remainder = 0;
1589
1590 reinit_completion(&spi_imx->xfer_done);
1591 spi_imx->target_aborted = false;
1592
1593 spi_imx_push(spi_imx);
1594
1595 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE | MXC_INT_RDR);
1596
1597 if (wait_for_completion_interruptible(&spi_imx->xfer_done) ||
1598 spi_imx->target_aborted) {
1599 dev_dbg(&spi->dev, "interrupted\n");
1600 ret = -EINTR;
1601 }
1602
1603 /* ecspi has a HW issue when works in Target mode,
1604 * after 64 words writtern to TXFIFO, even TXFIFO becomes empty,
1605 * ECSPI_TXDATA keeps shift out the last word data,
1606 * so we have to disable ECSPI when in target mode after the
1607 * transfer completes
1608 */
1609 if (spi_imx->devtype_data->disable)
1610 spi_imx->devtype_data->disable(spi_imx);
1611
1612 return ret;
1613 }
1614
spi_imx_transfer_one(struct spi_controller * controller,struct spi_device * spi,struct spi_transfer * transfer)1615 static int spi_imx_transfer_one(struct spi_controller *controller,
1616 struct spi_device *spi,
1617 struct spi_transfer *transfer)
1618 {
1619 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1620 unsigned long hz_per_byte, byte_limit;
1621
1622 spi_imx_setupxfer(spi, transfer);
1623 transfer->effective_speed_hz = spi_imx->spi_bus_clk;
1624
1625 /* flush rxfifo before transfer */
1626 while (spi_imx->devtype_data->rx_available(spi_imx))
1627 readl(spi_imx->base + MXC_CSPIRXDATA);
1628
1629 if (spi_imx->target_mode)
1630 return spi_imx_pio_transfer_target(spi, transfer);
1631
1632 /*
1633 * If we decided in spi_imx_can_dma() that we want to do a DMA
1634 * transfer, the SPI transfer has already been mapped, so we
1635 * have to do the DMA transfer here.
1636 */
1637 if (spi_imx->usedma)
1638 return spi_imx_dma_transfer(spi_imx, transfer);
1639 /*
1640 * Calculate the estimated time in us the transfer runs. Find
1641 * the number of Hz per byte per polling limit.
1642 */
1643 hz_per_byte = polling_limit_us ? ((8 + 4) * USEC_PER_SEC) / polling_limit_us : 0;
1644 byte_limit = hz_per_byte ? transfer->effective_speed_hz / hz_per_byte : 1;
1645
1646 /* run in polling mode for short transfers */
1647 if (transfer->len < byte_limit)
1648 return spi_imx_poll_transfer(spi, transfer);
1649
1650 return spi_imx_pio_transfer(spi, transfer);
1651 }
1652
spi_imx_setup(struct spi_device * spi)1653 static int spi_imx_setup(struct spi_device *spi)
1654 {
1655 dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__,
1656 spi->mode, spi->bits_per_word, spi->max_speed_hz);
1657
1658 return 0;
1659 }
1660
spi_imx_cleanup(struct spi_device * spi)1661 static void spi_imx_cleanup(struct spi_device *spi)
1662 {
1663 }
1664
1665 static int
spi_imx_prepare_message(struct spi_controller * controller,struct spi_message * msg)1666 spi_imx_prepare_message(struct spi_controller *controller, struct spi_message *msg)
1667 {
1668 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1669 int ret;
1670
1671 ret = pm_runtime_resume_and_get(spi_imx->dev);
1672 if (ret < 0) {
1673 dev_err(spi_imx->dev, "failed to enable clock\n");
1674 return ret;
1675 }
1676
1677 ret = spi_imx->devtype_data->prepare_message(spi_imx, msg);
1678 if (ret) {
1679 pm_runtime_mark_last_busy(spi_imx->dev);
1680 pm_runtime_put_autosuspend(spi_imx->dev);
1681 }
1682
1683 return ret;
1684 }
1685
1686 static int
spi_imx_unprepare_message(struct spi_controller * controller,struct spi_message * msg)1687 spi_imx_unprepare_message(struct spi_controller *controller, struct spi_message *msg)
1688 {
1689 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1690
1691 pm_runtime_mark_last_busy(spi_imx->dev);
1692 pm_runtime_put_autosuspend(spi_imx->dev);
1693 return 0;
1694 }
1695
spi_imx_target_abort(struct spi_controller * controller)1696 static int spi_imx_target_abort(struct spi_controller *controller)
1697 {
1698 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1699
1700 spi_imx->target_aborted = true;
1701 complete(&spi_imx->xfer_done);
1702
1703 return 0;
1704 }
1705
spi_imx_probe(struct platform_device * pdev)1706 static int spi_imx_probe(struct platform_device *pdev)
1707 {
1708 struct device_node *np = pdev->dev.of_node;
1709 struct spi_controller *controller;
1710 struct spi_imx_data *spi_imx;
1711 struct resource *res;
1712 int ret, irq, spi_drctl;
1713 const struct spi_imx_devtype_data *devtype_data =
1714 of_device_get_match_data(&pdev->dev);
1715 bool target_mode;
1716 u32 val;
1717
1718 target_mode = devtype_data->has_targetmode &&
1719 of_property_read_bool(np, "spi-slave");
1720 if (target_mode)
1721 controller = spi_alloc_target(&pdev->dev,
1722 sizeof(struct spi_imx_data));
1723 else
1724 controller = spi_alloc_host(&pdev->dev,
1725 sizeof(struct spi_imx_data));
1726 if (!controller)
1727 return -ENOMEM;
1728
1729 ret = of_property_read_u32(np, "fsl,spi-rdy-drctl", &spi_drctl);
1730 if ((ret < 0) || (spi_drctl >= 0x3)) {
1731 /* '11' is reserved */
1732 spi_drctl = 0;
1733 }
1734
1735 platform_set_drvdata(pdev, controller);
1736
1737 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
1738 controller->bus_num = np ? -1 : pdev->id;
1739 controller->use_gpio_descriptors = true;
1740
1741 spi_imx = spi_controller_get_devdata(controller);
1742 spi_imx->controller = controller;
1743 spi_imx->dev = &pdev->dev;
1744 spi_imx->target_mode = target_mode;
1745
1746 spi_imx->devtype_data = devtype_data;
1747
1748 /*
1749 * Get number of chip selects from device properties. This can be
1750 * coming from device tree or boardfiles, if it is not defined,
1751 * a default value of 3 chip selects will be used, as all the legacy
1752 * board files have <= 3 chip selects.
1753 */
1754 if (!device_property_read_u32(&pdev->dev, "num-cs", &val))
1755 controller->num_chipselect = val;
1756 else
1757 controller->num_chipselect = 3;
1758
1759 controller->transfer_one = spi_imx_transfer_one;
1760 controller->setup = spi_imx_setup;
1761 controller->cleanup = spi_imx_cleanup;
1762 controller->prepare_message = spi_imx_prepare_message;
1763 controller->unprepare_message = spi_imx_unprepare_message;
1764 controller->target_abort = spi_imx_target_abort;
1765 controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_NO_CS |
1766 SPI_MOSI_IDLE_LOW;
1767
1768 if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx) ||
1769 is_imx53_ecspi(spi_imx))
1770 controller->mode_bits |= SPI_LOOP | SPI_READY;
1771
1772 if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx))
1773 controller->mode_bits |= SPI_RX_CPHA_FLIP;
1774
1775 if (is_imx51_ecspi(spi_imx) &&
1776 device_property_read_u32(&pdev->dev, "cs-gpios", NULL))
1777 /*
1778 * When using HW-CS implementing SPI_CS_WORD can be done by just
1779 * setting the burst length to the word size. This is
1780 * considerably faster than manually controlling the CS.
1781 */
1782 controller->mode_bits |= SPI_CS_WORD;
1783
1784 if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx)) {
1785 controller->max_native_cs = 4;
1786 controller->flags |= SPI_CONTROLLER_GPIO_SS;
1787 }
1788
1789 spi_imx->spi_drctl = spi_drctl;
1790
1791 init_completion(&spi_imx->xfer_done);
1792
1793 spi_imx->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1794 if (IS_ERR(spi_imx->base)) {
1795 ret = PTR_ERR(spi_imx->base);
1796 goto out_controller_put;
1797 }
1798 spi_imx->base_phys = res->start;
1799
1800 irq = platform_get_irq(pdev, 0);
1801 if (irq < 0) {
1802 ret = irq;
1803 goto out_controller_put;
1804 }
1805
1806 ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0,
1807 dev_name(&pdev->dev), spi_imx);
1808 if (ret) {
1809 dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret);
1810 goto out_controller_put;
1811 }
1812
1813 spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1814 if (IS_ERR(spi_imx->clk_ipg)) {
1815 ret = PTR_ERR(spi_imx->clk_ipg);
1816 goto out_controller_put;
1817 }
1818
1819 spi_imx->clk_per = devm_clk_get(&pdev->dev, "per");
1820 if (IS_ERR(spi_imx->clk_per)) {
1821 ret = PTR_ERR(spi_imx->clk_per);
1822 goto out_controller_put;
1823 }
1824
1825 ret = clk_prepare_enable(spi_imx->clk_per);
1826 if (ret)
1827 goto out_controller_put;
1828
1829 ret = clk_prepare_enable(spi_imx->clk_ipg);
1830 if (ret)
1831 goto out_put_per;
1832
1833 pm_runtime_set_autosuspend_delay(spi_imx->dev, MXC_RPM_TIMEOUT);
1834 pm_runtime_use_autosuspend(spi_imx->dev);
1835 pm_runtime_get_noresume(spi_imx->dev);
1836 pm_runtime_set_active(spi_imx->dev);
1837 pm_runtime_enable(spi_imx->dev);
1838
1839 spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per);
1840 /*
1841 * Only validated on i.mx35 and i.mx6 now, can remove the constraint
1842 * if validated on other chips.
1843 */
1844 if (spi_imx->devtype_data->has_dmamode) {
1845 ret = spi_imx_sdma_init(&pdev->dev, spi_imx, controller);
1846 if (ret == -EPROBE_DEFER)
1847 goto out_runtime_pm_put;
1848
1849 if (ret < 0)
1850 dev_dbg(&pdev->dev, "dma setup error %d, use pio\n",
1851 ret);
1852 }
1853
1854 spi_imx->devtype_data->reset(spi_imx);
1855
1856 spi_imx->devtype_data->intctrl(spi_imx, 0);
1857
1858 controller->dev.of_node = pdev->dev.of_node;
1859 ret = spi_register_controller(controller);
1860 if (ret) {
1861 dev_err_probe(&pdev->dev, ret, "register controller failed\n");
1862 goto out_register_controller;
1863 }
1864
1865 pm_runtime_mark_last_busy(spi_imx->dev);
1866 pm_runtime_put_autosuspend(spi_imx->dev);
1867
1868 return ret;
1869
1870 out_register_controller:
1871 if (spi_imx->devtype_data->has_dmamode)
1872 spi_imx_sdma_exit(spi_imx);
1873 out_runtime_pm_put:
1874 pm_runtime_dont_use_autosuspend(spi_imx->dev);
1875 pm_runtime_set_suspended(&pdev->dev);
1876 pm_runtime_disable(spi_imx->dev);
1877
1878 clk_disable_unprepare(spi_imx->clk_ipg);
1879 out_put_per:
1880 clk_disable_unprepare(spi_imx->clk_per);
1881 out_controller_put:
1882 spi_controller_put(controller);
1883
1884 return ret;
1885 }
1886
spi_imx_remove(struct platform_device * pdev)1887 static void spi_imx_remove(struct platform_device *pdev)
1888 {
1889 struct spi_controller *controller = platform_get_drvdata(pdev);
1890 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1891 int ret;
1892
1893 spi_unregister_controller(controller);
1894
1895 ret = pm_runtime_get_sync(spi_imx->dev);
1896 if (ret >= 0)
1897 writel(0, spi_imx->base + MXC_CSPICTRL);
1898 else
1899 dev_warn(spi_imx->dev, "failed to enable clock, skip hw disable\n");
1900
1901 pm_runtime_dont_use_autosuspend(spi_imx->dev);
1902 pm_runtime_put_sync(spi_imx->dev);
1903 pm_runtime_disable(spi_imx->dev);
1904
1905 spi_imx_sdma_exit(spi_imx);
1906 }
1907
spi_imx_runtime_resume(struct device * dev)1908 static int __maybe_unused spi_imx_runtime_resume(struct device *dev)
1909 {
1910 struct spi_controller *controller = dev_get_drvdata(dev);
1911 struct spi_imx_data *spi_imx;
1912 int ret;
1913
1914 spi_imx = spi_controller_get_devdata(controller);
1915
1916 ret = clk_prepare_enable(spi_imx->clk_per);
1917 if (ret)
1918 return ret;
1919
1920 ret = clk_prepare_enable(spi_imx->clk_ipg);
1921 if (ret) {
1922 clk_disable_unprepare(spi_imx->clk_per);
1923 return ret;
1924 }
1925
1926 return 0;
1927 }
1928
spi_imx_runtime_suspend(struct device * dev)1929 static int __maybe_unused spi_imx_runtime_suspend(struct device *dev)
1930 {
1931 struct spi_controller *controller = dev_get_drvdata(dev);
1932 struct spi_imx_data *spi_imx;
1933
1934 spi_imx = spi_controller_get_devdata(controller);
1935
1936 clk_disable_unprepare(spi_imx->clk_per);
1937 clk_disable_unprepare(spi_imx->clk_ipg);
1938
1939 return 0;
1940 }
1941
spi_imx_suspend(struct device * dev)1942 static int __maybe_unused spi_imx_suspend(struct device *dev)
1943 {
1944 pinctrl_pm_select_sleep_state(dev);
1945 return 0;
1946 }
1947
spi_imx_resume(struct device * dev)1948 static int __maybe_unused spi_imx_resume(struct device *dev)
1949 {
1950 pinctrl_pm_select_default_state(dev);
1951 return 0;
1952 }
1953
1954 static const struct dev_pm_ops imx_spi_pm = {
1955 SET_RUNTIME_PM_OPS(spi_imx_runtime_suspend,
1956 spi_imx_runtime_resume, NULL)
1957 SET_SYSTEM_SLEEP_PM_OPS(spi_imx_suspend, spi_imx_resume)
1958 };
1959
1960 static struct platform_driver spi_imx_driver = {
1961 .driver = {
1962 .name = DRIVER_NAME,
1963 .of_match_table = spi_imx_dt_ids,
1964 .pm = &imx_spi_pm,
1965 },
1966 .probe = spi_imx_probe,
1967 .remove_new = spi_imx_remove,
1968 };
1969 module_platform_driver(spi_imx_driver);
1970
1971 MODULE_DESCRIPTION("i.MX SPI Controller driver");
1972 MODULE_AUTHOR("Sascha Hauer, Pengutronix");
1973 MODULE_LICENSE("GPL");
1974 MODULE_ALIAS("platform:" DRIVER_NAME);
1975