1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2022, Intel Corporation. */
3
4 #include "ice_virtchnl.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice.h"
7 #include "ice_base.h"
8 #include "ice_lib.h"
9 #include "ice_fltr.h"
10 #include "ice_virtchnl_allowlist.h"
11 #include "ice_vf_vsi_vlan_ops.h"
12 #include "ice_vlan.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_dcb_lib.h"
15
16 #define FIELD_SELECTOR(proto_hdr_field) \
17 BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
18
19 struct ice_vc_hdr_match_type {
20 u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
21 u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */
22 };
23
24 static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
25 {VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE},
26 {VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH},
27 {VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN},
28 {VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN},
29 {VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 |
30 ICE_FLOW_SEG_HDR_IPV_OTHER},
31 {VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 |
32 ICE_FLOW_SEG_HDR_IPV_OTHER},
33 {VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP},
34 {VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP},
35 {VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP},
36 {VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE},
37 {VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP},
38 {VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH},
39 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
40 ICE_FLOW_SEG_HDR_GTPU_DWN},
41 {VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
42 ICE_FLOW_SEG_HDR_GTPU_UP},
43 {VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3},
44 {VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP},
45 {VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH},
46 {VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION},
47 };
48
49 struct ice_vc_hash_field_match_type {
50 u32 vc_hdr; /* virtchnl headers
51 * (VIRTCHNL_PROTO_HDR_XXX)
52 */
53 u32 vc_hash_field; /* virtchnl hash fields selector
54 * FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
55 */
56 u64 ice_hash_field; /* ice hash fields
57 * (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
58 */
59 };
60
61 static const struct
62 ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
63 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
64 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
65 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
66 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
67 {VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
68 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
69 ICE_FLOW_HASH_ETH},
70 {VIRTCHNL_PROTO_HDR_ETH,
71 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
72 BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
73 {VIRTCHNL_PROTO_HDR_S_VLAN,
74 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
75 BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
76 {VIRTCHNL_PROTO_HDR_C_VLAN,
77 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
78 BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
79 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
80 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
81 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
82 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
83 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
84 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
85 ICE_FLOW_HASH_IPV4},
86 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
87 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
88 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
89 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
90 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
91 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
92 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
93 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
94 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
95 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
96 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
97 ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
98 {VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
99 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
100 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
101 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
102 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
103 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
104 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
105 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
106 ICE_FLOW_HASH_IPV6},
107 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
108 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
109 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
110 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
111 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
112 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
113 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
114 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
115 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
116 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
117 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
118 ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
119 {VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
120 BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
121 {VIRTCHNL_PROTO_HDR_TCP,
122 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
123 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
124 {VIRTCHNL_PROTO_HDR_TCP,
125 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
126 BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
127 {VIRTCHNL_PROTO_HDR_TCP,
128 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
129 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
130 ICE_FLOW_HASH_TCP_PORT},
131 {VIRTCHNL_PROTO_HDR_UDP,
132 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
133 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
134 {VIRTCHNL_PROTO_HDR_UDP,
135 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
136 BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
137 {VIRTCHNL_PROTO_HDR_UDP,
138 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
139 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
140 ICE_FLOW_HASH_UDP_PORT},
141 {VIRTCHNL_PROTO_HDR_SCTP,
142 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
143 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
144 {VIRTCHNL_PROTO_HDR_SCTP,
145 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
146 BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
147 {VIRTCHNL_PROTO_HDR_SCTP,
148 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
149 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
150 ICE_FLOW_HASH_SCTP_PORT},
151 {VIRTCHNL_PROTO_HDR_PPPOE,
152 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
153 BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
154 {VIRTCHNL_PROTO_HDR_GTPU_IP,
155 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
156 BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
157 {VIRTCHNL_PROTO_HDR_L2TPV3,
158 FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
159 BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
160 {VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
161 BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
162 {VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
163 BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
164 {VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
165 BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
166 };
167
168 /**
169 * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
170 * @pf: pointer to the PF structure
171 * @v_opcode: operation code
172 * @v_retval: return value
173 * @msg: pointer to the msg buffer
174 * @msglen: msg length
175 */
176 static void
ice_vc_vf_broadcast(struct ice_pf * pf,enum virtchnl_ops v_opcode,enum virtchnl_status_code v_retval,u8 * msg,u16 msglen)177 ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
178 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
179 {
180 struct ice_hw *hw = &pf->hw;
181 struct ice_vf *vf;
182 unsigned int bkt;
183
184 mutex_lock(&pf->vfs.table_lock);
185 ice_for_each_vf(pf, bkt, vf) {
186 /* Not all vfs are enabled so skip the ones that are not */
187 if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
188 !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
189 continue;
190
191 /* Ignore return value on purpose - a given VF may fail, but
192 * we need to keep going and send to all of them
193 */
194 ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
195 msglen, NULL);
196 }
197 mutex_unlock(&pf->vfs.table_lock);
198 }
199
200 /**
201 * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
202 * @vf: pointer to the VF structure
203 * @pfe: pointer to the virtchnl_pf_event to set link speed/status for
204 * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
205 * @link_up: whether or not to set the link up/down
206 */
207 static void
ice_set_pfe_link(struct ice_vf * vf,struct virtchnl_pf_event * pfe,int ice_link_speed,bool link_up)208 ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
209 int ice_link_speed, bool link_up)
210 {
211 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
212 pfe->event_data.link_event_adv.link_status = link_up;
213 /* Speed in Mbps */
214 pfe->event_data.link_event_adv.link_speed =
215 ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
216 } else {
217 pfe->event_data.link_event.link_status = link_up;
218 /* Legacy method for virtchnl link speeds */
219 pfe->event_data.link_event.link_speed =
220 (enum virtchnl_link_speed)
221 ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
222 }
223 }
224
225 /**
226 * ice_vc_notify_vf_link_state - Inform a VF of link status
227 * @vf: pointer to the VF structure
228 *
229 * send a link status message to a single VF
230 */
ice_vc_notify_vf_link_state(struct ice_vf * vf)231 void ice_vc_notify_vf_link_state(struct ice_vf *vf)
232 {
233 struct virtchnl_pf_event pfe = { 0 };
234 struct ice_hw *hw = &vf->pf->hw;
235
236 pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
237 pfe.severity = PF_EVENT_SEVERITY_INFO;
238
239 if (ice_is_vf_link_up(vf))
240 ice_set_pfe_link(vf, &pfe,
241 hw->port_info->phy.link_info.link_speed, true);
242 else
243 ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
244
245 ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
246 VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
247 sizeof(pfe), NULL);
248 }
249
250 /**
251 * ice_vc_notify_link_state - Inform all VFs on a PF of link status
252 * @pf: pointer to the PF structure
253 */
ice_vc_notify_link_state(struct ice_pf * pf)254 void ice_vc_notify_link_state(struct ice_pf *pf)
255 {
256 struct ice_vf *vf;
257 unsigned int bkt;
258
259 mutex_lock(&pf->vfs.table_lock);
260 ice_for_each_vf(pf, bkt, vf)
261 ice_vc_notify_vf_link_state(vf);
262 mutex_unlock(&pf->vfs.table_lock);
263 }
264
265 /**
266 * ice_vc_notify_reset - Send pending reset message to all VFs
267 * @pf: pointer to the PF structure
268 *
269 * indicate a pending reset to all VFs on a given PF
270 */
ice_vc_notify_reset(struct ice_pf * pf)271 void ice_vc_notify_reset(struct ice_pf *pf)
272 {
273 struct virtchnl_pf_event pfe;
274
275 if (!ice_has_vfs(pf))
276 return;
277
278 pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
279 pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
280 ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
281 (u8 *)&pfe, sizeof(struct virtchnl_pf_event));
282 }
283
284 /**
285 * ice_vc_send_msg_to_vf - Send message to VF
286 * @vf: pointer to the VF info
287 * @v_opcode: virtual channel opcode
288 * @v_retval: virtual channel return value
289 * @msg: pointer to the msg buffer
290 * @msglen: msg length
291 *
292 * send msg to VF
293 */
294 int
ice_vc_send_msg_to_vf(struct ice_vf * vf,u32 v_opcode,enum virtchnl_status_code v_retval,u8 * msg,u16 msglen)295 ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
296 enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
297 {
298 struct device *dev;
299 struct ice_pf *pf;
300 int aq_ret;
301
302 pf = vf->pf;
303 dev = ice_pf_to_dev(pf);
304
305 aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
306 msg, msglen, NULL);
307 if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
308 dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
309 vf->vf_id, aq_ret,
310 ice_aq_str(pf->hw.mailboxq.sq_last_status));
311 return -EIO;
312 }
313
314 return 0;
315 }
316
317 /**
318 * ice_vc_get_ver_msg
319 * @vf: pointer to the VF info
320 * @msg: pointer to the msg buffer
321 *
322 * called from the VF to request the API version used by the PF
323 */
ice_vc_get_ver_msg(struct ice_vf * vf,u8 * msg)324 static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
325 {
326 struct virtchnl_version_info info = {
327 VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
328 };
329
330 vf->vf_ver = *(struct virtchnl_version_info *)msg;
331 /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
332 if (VF_IS_V10(&vf->vf_ver))
333 info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
334
335 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
336 VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
337 sizeof(struct virtchnl_version_info));
338 }
339
340 /**
341 * ice_vc_get_max_frame_size - get max frame size allowed for VF
342 * @vf: VF used to determine max frame size
343 *
344 * Max frame size is determined based on the current port's max frame size and
345 * whether a port VLAN is configured on this VF. The VF is not aware whether
346 * it's in a port VLAN so the PF needs to account for this in max frame size
347 * checks and sending the max frame size to the VF.
348 */
ice_vc_get_max_frame_size(struct ice_vf * vf)349 static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
350 {
351 struct ice_port_info *pi = ice_vf_get_port_info(vf);
352 u16 max_frame_size;
353
354 max_frame_size = pi->phy.link_info.max_frame_size;
355
356 if (ice_vf_is_port_vlan_ena(vf))
357 max_frame_size -= VLAN_HLEN;
358
359 return max_frame_size;
360 }
361
362 /**
363 * ice_vc_get_vlan_caps
364 * @hw: pointer to the hw
365 * @vf: pointer to the VF info
366 * @vsi: pointer to the VSI
367 * @driver_caps: current driver caps
368 *
369 * Return 0 if there is no VLAN caps supported, or VLAN caps value
370 */
371 static u32
ice_vc_get_vlan_caps(struct ice_hw * hw,struct ice_vf * vf,struct ice_vsi * vsi,u32 driver_caps)372 ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
373 u32 driver_caps)
374 {
375 if (ice_is_eswitch_mode_switchdev(vf->pf))
376 /* In switchdev setting VLAN from VF isn't supported */
377 return 0;
378
379 if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
380 /* VLAN offloads based on current device configuration */
381 return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
382 } else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
383 /* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
384 * these two conditions, which amounts to guest VLAN filtering
385 * and offloads being based on the inner VLAN or the
386 * inner/single VLAN respectively and don't allow VF to
387 * negotiate VIRTCHNL_VF_OFFLOAD in any other cases
388 */
389 if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
390 return VIRTCHNL_VF_OFFLOAD_VLAN;
391 } else if (!ice_is_dvm_ena(hw) &&
392 !ice_vf_is_port_vlan_ena(vf)) {
393 /* configure backward compatible support for VFs that
394 * only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
395 * configured in SVM, and no port VLAN is configured
396 */
397 ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
398 return VIRTCHNL_VF_OFFLOAD_VLAN;
399 } else if (ice_is_dvm_ena(hw)) {
400 /* configure software offloaded VLAN support when DVM
401 * is enabled, but no port VLAN is enabled
402 */
403 ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
404 }
405 }
406
407 return 0;
408 }
409
410 /**
411 * ice_vc_get_vf_res_msg
412 * @vf: pointer to the VF info
413 * @msg: pointer to the msg buffer
414 *
415 * called from the VF to request its resources
416 */
ice_vc_get_vf_res_msg(struct ice_vf * vf,u8 * msg)417 static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
418 {
419 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
420 struct virtchnl_vf_resource *vfres = NULL;
421 struct ice_hw *hw = &vf->pf->hw;
422 struct ice_vsi *vsi;
423 int len = 0;
424 int ret;
425
426 if (ice_check_vf_init(vf)) {
427 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
428 goto err;
429 }
430
431 len = virtchnl_struct_size(vfres, vsi_res, 0);
432
433 vfres = kzalloc(len, GFP_KERNEL);
434 if (!vfres) {
435 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
436 len = 0;
437 goto err;
438 }
439 if (VF_IS_V11(&vf->vf_ver))
440 vf->driver_caps = *(u32 *)msg;
441 else
442 vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
443 VIRTCHNL_VF_OFFLOAD_RSS_REG |
444 VIRTCHNL_VF_OFFLOAD_VLAN;
445
446 vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
447 vsi = ice_get_vf_vsi(vf);
448 if (!vsi) {
449 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
450 goto err;
451 }
452
453 vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
454 vf->driver_caps);
455
456 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
457 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
458 } else {
459 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
460 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
461 else
462 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
463 }
464
465 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
466 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
467
468 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
469 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
470
471 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
472 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
473
474 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
475 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
476
477 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
478 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
479
480 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
481 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
482
483 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
484 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
485
486 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
487 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
488
489 if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
490 vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
491
492 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
493 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
494
495 if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
496 vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
497
498 vfres->num_vsis = 1;
499 /* Tx and Rx queue are equal for VF */
500 vfres->num_queue_pairs = vsi->num_txq;
501 vfres->max_vectors = vf->pf->vfs.num_msix_per;
502 vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
503 vfres->rss_lut_size = ICE_LUT_VSI_SIZE;
504 vfres->max_mtu = ice_vc_get_max_frame_size(vf);
505
506 vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
507 vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
508 vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
509 ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
510 vf->hw_lan_addr);
511
512 /* match guest capabilities */
513 vf->driver_caps = vfres->vf_cap_flags;
514
515 ice_vc_set_caps_allowlist(vf);
516 ice_vc_set_working_allowlist(vf);
517
518 set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
519
520 err:
521 /* send the response back to the VF */
522 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
523 (u8 *)vfres, len);
524
525 kfree(vfres);
526 return ret;
527 }
528
529 /**
530 * ice_vc_reset_vf_msg
531 * @vf: pointer to the VF info
532 *
533 * called from the VF to reset itself,
534 * unlike other virtchnl messages, PF driver
535 * doesn't send the response back to the VF
536 */
ice_vc_reset_vf_msg(struct ice_vf * vf)537 static void ice_vc_reset_vf_msg(struct ice_vf *vf)
538 {
539 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
540 ice_reset_vf(vf, 0);
541 }
542
543 /**
544 * ice_vc_isvalid_vsi_id
545 * @vf: pointer to the VF info
546 * @vsi_id: VF relative VSI ID
547 *
548 * check for the valid VSI ID
549 */
ice_vc_isvalid_vsi_id(struct ice_vf * vf,u16 vsi_id)550 bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
551 {
552 struct ice_pf *pf = vf->pf;
553 struct ice_vsi *vsi;
554
555 vsi = ice_find_vsi(pf, vsi_id);
556
557 return (vsi && (vsi->vf == vf));
558 }
559
560 /**
561 * ice_vc_isvalid_q_id
562 * @vf: pointer to the VF info
563 * @vsi_id: VSI ID
564 * @qid: VSI relative queue ID
565 *
566 * check for the valid queue ID
567 */
ice_vc_isvalid_q_id(struct ice_vf * vf,u16 vsi_id,u8 qid)568 static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
569 {
570 struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id);
571 /* allocated Tx and Rx queues should be always equal for VF VSI */
572 return (vsi && (qid < vsi->alloc_txq));
573 }
574
575 /**
576 * ice_vc_isvalid_ring_len
577 * @ring_len: length of ring
578 *
579 * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
580 * or zero
581 */
ice_vc_isvalid_ring_len(u16 ring_len)582 static bool ice_vc_isvalid_ring_len(u16 ring_len)
583 {
584 return ring_len == 0 ||
585 (ring_len >= ICE_MIN_NUM_DESC &&
586 ring_len <= ICE_MAX_NUM_DESC &&
587 !(ring_len % ICE_REQ_DESC_MULTIPLE));
588 }
589
590 /**
591 * ice_vc_validate_pattern
592 * @vf: pointer to the VF info
593 * @proto: virtchnl protocol headers
594 *
595 * validate the pattern is supported or not.
596 *
597 * Return: true on success, false on error.
598 */
599 bool
ice_vc_validate_pattern(struct ice_vf * vf,struct virtchnl_proto_hdrs * proto)600 ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
601 {
602 bool is_ipv4 = false;
603 bool is_ipv6 = false;
604 bool is_udp = false;
605 u16 ptype = -1;
606 int i = 0;
607
608 while (i < proto->count &&
609 proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
610 switch (proto->proto_hdr[i].type) {
611 case VIRTCHNL_PROTO_HDR_ETH:
612 ptype = ICE_PTYPE_MAC_PAY;
613 break;
614 case VIRTCHNL_PROTO_HDR_IPV4:
615 ptype = ICE_PTYPE_IPV4_PAY;
616 is_ipv4 = true;
617 break;
618 case VIRTCHNL_PROTO_HDR_IPV6:
619 ptype = ICE_PTYPE_IPV6_PAY;
620 is_ipv6 = true;
621 break;
622 case VIRTCHNL_PROTO_HDR_UDP:
623 if (is_ipv4)
624 ptype = ICE_PTYPE_IPV4_UDP_PAY;
625 else if (is_ipv6)
626 ptype = ICE_PTYPE_IPV6_UDP_PAY;
627 is_udp = true;
628 break;
629 case VIRTCHNL_PROTO_HDR_TCP:
630 if (is_ipv4)
631 ptype = ICE_PTYPE_IPV4_TCP_PAY;
632 else if (is_ipv6)
633 ptype = ICE_PTYPE_IPV6_TCP_PAY;
634 break;
635 case VIRTCHNL_PROTO_HDR_SCTP:
636 if (is_ipv4)
637 ptype = ICE_PTYPE_IPV4_SCTP_PAY;
638 else if (is_ipv6)
639 ptype = ICE_PTYPE_IPV6_SCTP_PAY;
640 break;
641 case VIRTCHNL_PROTO_HDR_GTPU_IP:
642 case VIRTCHNL_PROTO_HDR_GTPU_EH:
643 if (is_ipv4)
644 ptype = ICE_MAC_IPV4_GTPU;
645 else if (is_ipv6)
646 ptype = ICE_MAC_IPV6_GTPU;
647 goto out;
648 case VIRTCHNL_PROTO_HDR_L2TPV3:
649 if (is_ipv4)
650 ptype = ICE_MAC_IPV4_L2TPV3;
651 else if (is_ipv6)
652 ptype = ICE_MAC_IPV6_L2TPV3;
653 goto out;
654 case VIRTCHNL_PROTO_HDR_ESP:
655 if (is_ipv4)
656 ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
657 ICE_MAC_IPV4_ESP;
658 else if (is_ipv6)
659 ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
660 ICE_MAC_IPV6_ESP;
661 goto out;
662 case VIRTCHNL_PROTO_HDR_AH:
663 if (is_ipv4)
664 ptype = ICE_MAC_IPV4_AH;
665 else if (is_ipv6)
666 ptype = ICE_MAC_IPV6_AH;
667 goto out;
668 case VIRTCHNL_PROTO_HDR_PFCP:
669 if (is_ipv4)
670 ptype = ICE_MAC_IPV4_PFCP_SESSION;
671 else if (is_ipv6)
672 ptype = ICE_MAC_IPV6_PFCP_SESSION;
673 goto out;
674 default:
675 break;
676 }
677 i++;
678 }
679
680 out:
681 return ice_hw_ptype_ena(&vf->pf->hw, ptype);
682 }
683
684 /**
685 * ice_vc_parse_rss_cfg - parses hash fields and headers from
686 * a specific virtchnl RSS cfg
687 * @hw: pointer to the hardware
688 * @rss_cfg: pointer to the virtchnl RSS cfg
689 * @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*)
690 * to configure
691 * @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure
692 *
693 * Return true if all the protocol header and hash fields in the RSS cfg could
694 * be parsed, else return false
695 *
696 * This function parses the virtchnl RSS cfg to be the intended
697 * hash fields and the intended header for RSS configuration
698 */
699 static bool
ice_vc_parse_rss_cfg(struct ice_hw * hw,struct virtchnl_rss_cfg * rss_cfg,u32 * addl_hdrs,u64 * hash_flds)700 ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg,
701 u32 *addl_hdrs, u64 *hash_flds)
702 {
703 const struct ice_vc_hash_field_match_type *hf_list;
704 const struct ice_vc_hdr_match_type *hdr_list;
705 int i, hf_list_len, hdr_list_len;
706
707 hf_list = ice_vc_hash_field_list;
708 hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
709 hdr_list = ice_vc_hdr_list;
710 hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
711
712 for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
713 struct virtchnl_proto_hdr *proto_hdr =
714 &rss_cfg->proto_hdrs.proto_hdr[i];
715 bool hdr_found = false;
716 int j;
717
718 /* Find matched ice headers according to virtchnl headers. */
719 for (j = 0; j < hdr_list_len; j++) {
720 struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
721
722 if (proto_hdr->type == hdr_map.vc_hdr) {
723 *addl_hdrs |= hdr_map.ice_hdr;
724 hdr_found = true;
725 }
726 }
727
728 if (!hdr_found)
729 return false;
730
731 /* Find matched ice hash fields according to
732 * virtchnl hash fields.
733 */
734 for (j = 0; j < hf_list_len; j++) {
735 struct ice_vc_hash_field_match_type hf_map = hf_list[j];
736
737 if (proto_hdr->type == hf_map.vc_hdr &&
738 proto_hdr->field_selector == hf_map.vc_hash_field) {
739 *hash_flds |= hf_map.ice_hash_field;
740 break;
741 }
742 }
743 }
744
745 return true;
746 }
747
748 /**
749 * ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
750 * RSS offloads
751 * @caps: VF driver negotiated capabilities
752 *
753 * Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
754 * else return false
755 */
ice_vf_adv_rss_offload_ena(u32 caps)756 static bool ice_vf_adv_rss_offload_ena(u32 caps)
757 {
758 return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
759 }
760
761 /**
762 * ice_vc_handle_rss_cfg
763 * @vf: pointer to the VF info
764 * @msg: pointer to the message buffer
765 * @add: add a RSS config if true, otherwise delete a RSS config
766 *
767 * This function adds/deletes a RSS config
768 */
ice_vc_handle_rss_cfg(struct ice_vf * vf,u8 * msg,bool add)769 static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
770 {
771 u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
772 struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
773 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
774 struct device *dev = ice_pf_to_dev(vf->pf);
775 struct ice_hw *hw = &vf->pf->hw;
776 struct ice_vsi *vsi;
777
778 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
779 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
780 vf->vf_id);
781 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
782 goto error_param;
783 }
784
785 if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
786 dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
787 vf->vf_id);
788 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
789 goto error_param;
790 }
791
792 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
793 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
794 goto error_param;
795 }
796
797 if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
798 rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
799 rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
800 dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
801 vf->vf_id);
802 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
803 goto error_param;
804 }
805
806 vsi = ice_get_vf_vsi(vf);
807 if (!vsi) {
808 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
809 goto error_param;
810 }
811
812 if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
813 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
814 goto error_param;
815 }
816
817 if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
818 struct ice_vsi_ctx *ctx;
819 u8 lut_type, hash_type;
820 int status;
821
822 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
823 hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR :
824 ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
825
826 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
827 if (!ctx) {
828 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
829 goto error_param;
830 }
831
832 ctx->info.q_opt_rss = ((lut_type <<
833 ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
834 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
835 (hash_type &
836 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
837
838 /* Preserve existing queueing option setting */
839 ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
840 ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
841 ctx->info.q_opt_tc = vsi->info.q_opt_tc;
842 ctx->info.q_opt_flags = vsi->info.q_opt_rss;
843
844 ctx->info.valid_sections =
845 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
846
847 status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
848 if (status) {
849 dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
850 status, ice_aq_str(hw->adminq.sq_last_status));
851 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
852 } else {
853 vsi->info.q_opt_rss = ctx->info.q_opt_rss;
854 }
855
856 kfree(ctx);
857 } else {
858 u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
859 u64 hash_flds = ICE_HASH_INVALID;
860
861 if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs,
862 &hash_flds)) {
863 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
864 goto error_param;
865 }
866
867 if (add) {
868 if (ice_add_rss_cfg(hw, vsi->idx, hash_flds,
869 addl_hdrs)) {
870 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
871 dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
872 vsi->vsi_num, v_ret);
873 }
874 } else {
875 int status;
876
877 status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds,
878 addl_hdrs);
879 /* We just ignore -ENOENT, because if two configurations
880 * share the same profile remove one of them actually
881 * removes both, since the profile is deleted.
882 */
883 if (status && status != -ENOENT) {
884 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
885 dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
886 vf->vf_id, status);
887 }
888 }
889 }
890
891 error_param:
892 return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
893 }
894
895 /**
896 * ice_vc_config_rss_key
897 * @vf: pointer to the VF info
898 * @msg: pointer to the msg buffer
899 *
900 * Configure the VF's RSS key
901 */
ice_vc_config_rss_key(struct ice_vf * vf,u8 * msg)902 static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
903 {
904 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
905 struct virtchnl_rss_key *vrk =
906 (struct virtchnl_rss_key *)msg;
907 struct ice_vsi *vsi;
908
909 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
910 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
911 goto error_param;
912 }
913
914 if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
915 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
916 goto error_param;
917 }
918
919 if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
920 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
921 goto error_param;
922 }
923
924 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
925 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
926 goto error_param;
927 }
928
929 vsi = ice_get_vf_vsi(vf);
930 if (!vsi) {
931 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
932 goto error_param;
933 }
934
935 if (ice_set_rss_key(vsi, vrk->key))
936 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
937 error_param:
938 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
939 NULL, 0);
940 }
941
942 /**
943 * ice_vc_config_rss_lut
944 * @vf: pointer to the VF info
945 * @msg: pointer to the msg buffer
946 *
947 * Configure the VF's RSS LUT
948 */
ice_vc_config_rss_lut(struct ice_vf * vf,u8 * msg)949 static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
950 {
951 struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
952 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
953 struct ice_vsi *vsi;
954
955 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
956 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
957 goto error_param;
958 }
959
960 if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
961 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
962 goto error_param;
963 }
964
965 if (vrl->lut_entries != ICE_LUT_VSI_SIZE) {
966 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
967 goto error_param;
968 }
969
970 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
971 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
972 goto error_param;
973 }
974
975 vsi = ice_get_vf_vsi(vf);
976 if (!vsi) {
977 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
978 goto error_param;
979 }
980
981 if (ice_set_rss_lut(vsi, vrl->lut, ICE_LUT_VSI_SIZE))
982 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
983 error_param:
984 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
985 NULL, 0);
986 }
987
988 /**
989 * ice_vc_cfg_promiscuous_mode_msg
990 * @vf: pointer to the VF info
991 * @msg: pointer to the msg buffer
992 *
993 * called from the VF to configure VF VSIs promiscuous mode
994 */
ice_vc_cfg_promiscuous_mode_msg(struct ice_vf * vf,u8 * msg)995 static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
996 {
997 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
998 bool rm_promisc, alluni = false, allmulti = false;
999 struct virtchnl_promisc_info *info =
1000 (struct virtchnl_promisc_info *)msg;
1001 struct ice_vsi_vlan_ops *vlan_ops;
1002 int mcast_err = 0, ucast_err = 0;
1003 struct ice_pf *pf = vf->pf;
1004 struct ice_vsi *vsi;
1005 u8 mcast_m, ucast_m;
1006 struct device *dev;
1007 int ret = 0;
1008
1009 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1010 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1011 goto error_param;
1012 }
1013
1014 if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
1015 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1016 goto error_param;
1017 }
1018
1019 vsi = ice_get_vf_vsi(vf);
1020 if (!vsi) {
1021 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1022 goto error_param;
1023 }
1024
1025 dev = ice_pf_to_dev(pf);
1026 if (!ice_is_vf_trusted(vf)) {
1027 dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
1028 vf->vf_id);
1029 /* Leave v_ret alone, lie to the VF on purpose. */
1030 goto error_param;
1031 }
1032
1033 if (info->flags & FLAG_VF_UNICAST_PROMISC)
1034 alluni = true;
1035
1036 if (info->flags & FLAG_VF_MULTICAST_PROMISC)
1037 allmulti = true;
1038
1039 rm_promisc = !allmulti && !alluni;
1040
1041 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
1042 if (rm_promisc)
1043 ret = vlan_ops->ena_rx_filtering(vsi);
1044 else
1045 ret = vlan_ops->dis_rx_filtering(vsi);
1046 if (ret) {
1047 dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
1048 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1049 goto error_param;
1050 }
1051
1052 ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
1053
1054 if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
1055 if (alluni) {
1056 /* in this case we're turning on promiscuous mode */
1057 ret = ice_set_dflt_vsi(vsi);
1058 } else {
1059 /* in this case we're turning off promiscuous mode */
1060 if (ice_is_dflt_vsi_in_use(vsi->port_info))
1061 ret = ice_clear_dflt_vsi(vsi);
1062 }
1063
1064 /* in this case we're turning on/off only
1065 * allmulticast
1066 */
1067 if (allmulti)
1068 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1069 else
1070 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1071
1072 if (ret) {
1073 dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
1074 vf->vf_id, ret);
1075 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
1076 goto error_param;
1077 }
1078 } else {
1079 if (alluni)
1080 ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
1081 else
1082 ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
1083
1084 if (allmulti)
1085 mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
1086 else
1087 mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
1088
1089 if (ucast_err || mcast_err)
1090 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1091 }
1092
1093 if (!mcast_err) {
1094 if (allmulti &&
1095 !test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
1096 dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
1097 vf->vf_id);
1098 else if (!allmulti &&
1099 test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
1100 vf->vf_states))
1101 dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
1102 vf->vf_id);
1103 } else {
1104 dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
1105 vf->vf_id, mcast_err);
1106 }
1107
1108 if (!ucast_err) {
1109 if (alluni &&
1110 !test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
1111 dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
1112 vf->vf_id);
1113 else if (!alluni &&
1114 test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
1115 vf->vf_states))
1116 dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
1117 vf->vf_id);
1118 } else {
1119 dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
1120 vf->vf_id, ucast_err);
1121 }
1122
1123 error_param:
1124 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
1125 v_ret, NULL, 0);
1126 }
1127
1128 /**
1129 * ice_vc_get_stats_msg
1130 * @vf: pointer to the VF info
1131 * @msg: pointer to the msg buffer
1132 *
1133 * called from the VF to get VSI stats
1134 */
ice_vc_get_stats_msg(struct ice_vf * vf,u8 * msg)1135 static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
1136 {
1137 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1138 struct virtchnl_queue_select *vqs =
1139 (struct virtchnl_queue_select *)msg;
1140 struct ice_eth_stats stats = { 0 };
1141 struct ice_vsi *vsi;
1142
1143 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1144 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1145 goto error_param;
1146 }
1147
1148 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1149 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1150 goto error_param;
1151 }
1152
1153 vsi = ice_get_vf_vsi(vf);
1154 if (!vsi) {
1155 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1156 goto error_param;
1157 }
1158
1159 ice_update_eth_stats(vsi);
1160
1161 stats = vsi->eth_stats;
1162
1163 error_param:
1164 /* send the response to the VF */
1165 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
1166 (u8 *)&stats, sizeof(stats));
1167 }
1168
1169 /**
1170 * ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
1171 * @vqs: virtchnl_queue_select structure containing bitmaps to validate
1172 *
1173 * Return true on successful validation, else false
1174 */
ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select * vqs)1175 static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
1176 {
1177 if ((!vqs->rx_queues && !vqs->tx_queues) ||
1178 vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
1179 vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
1180 return false;
1181
1182 return true;
1183 }
1184
1185 /**
1186 * ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
1187 * @vsi: VSI of the VF to configure
1188 * @q_idx: VF queue index used to determine the queue in the PF's space
1189 */
ice_vf_ena_txq_interrupt(struct ice_vsi * vsi,u32 q_idx)1190 static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1191 {
1192 struct ice_hw *hw = &vsi->back->hw;
1193 u32 pfq = vsi->txq_map[q_idx];
1194 u32 reg;
1195
1196 reg = rd32(hw, QINT_TQCTL(pfq));
1197
1198 /* MSI-X index 0 in the VF's space is always for the OICR, which means
1199 * this is most likely a poll mode VF driver, so don't enable an
1200 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1201 */
1202 if (!(reg & QINT_TQCTL_MSIX_INDX_M))
1203 return;
1204
1205 wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
1206 }
1207
1208 /**
1209 * ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
1210 * @vsi: VSI of the VF to configure
1211 * @q_idx: VF queue index used to determine the queue in the PF's space
1212 */
ice_vf_ena_rxq_interrupt(struct ice_vsi * vsi,u32 q_idx)1213 static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
1214 {
1215 struct ice_hw *hw = &vsi->back->hw;
1216 u32 pfq = vsi->rxq_map[q_idx];
1217 u32 reg;
1218
1219 reg = rd32(hw, QINT_RQCTL(pfq));
1220
1221 /* MSI-X index 0 in the VF's space is always for the OICR, which means
1222 * this is most likely a poll mode VF driver, so don't enable an
1223 * interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
1224 */
1225 if (!(reg & QINT_RQCTL_MSIX_INDX_M))
1226 return;
1227
1228 wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
1229 }
1230
1231 /**
1232 * ice_vc_ena_qs_msg
1233 * @vf: pointer to the VF info
1234 * @msg: pointer to the msg buffer
1235 *
1236 * called from the VF to enable all or specific queue(s)
1237 */
ice_vc_ena_qs_msg(struct ice_vf * vf,u8 * msg)1238 static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
1239 {
1240 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1241 struct virtchnl_queue_select *vqs =
1242 (struct virtchnl_queue_select *)msg;
1243 struct ice_vsi *vsi;
1244 unsigned long q_map;
1245 u16 vf_q_id;
1246
1247 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
1248 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1249 goto error_param;
1250 }
1251
1252 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1253 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1254 goto error_param;
1255 }
1256
1257 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1258 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1259 goto error_param;
1260 }
1261
1262 vsi = ice_get_vf_vsi(vf);
1263 if (!vsi) {
1264 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1265 goto error_param;
1266 }
1267
1268 /* Enable only Rx rings, Tx rings were enabled by the FW when the
1269 * Tx queue group list was configured and the context bits were
1270 * programmed using ice_vsi_cfg_txqs
1271 */
1272 q_map = vqs->rx_queues;
1273 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1274 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1275 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1276 goto error_param;
1277 }
1278
1279 /* Skip queue if enabled */
1280 if (test_bit(vf_q_id, vf->rxq_ena))
1281 continue;
1282
1283 if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
1284 dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
1285 vf_q_id, vsi->vsi_num);
1286 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1287 goto error_param;
1288 }
1289
1290 ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
1291 set_bit(vf_q_id, vf->rxq_ena);
1292 }
1293
1294 q_map = vqs->tx_queues;
1295 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1296 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1297 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1298 goto error_param;
1299 }
1300
1301 /* Skip queue if enabled */
1302 if (test_bit(vf_q_id, vf->txq_ena))
1303 continue;
1304
1305 ice_vf_ena_txq_interrupt(vsi, vf_q_id);
1306 set_bit(vf_q_id, vf->txq_ena);
1307 }
1308
1309 /* Set flag to indicate that queues are enabled */
1310 if (v_ret == VIRTCHNL_STATUS_SUCCESS)
1311 set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1312
1313 error_param:
1314 /* send the response to the VF */
1315 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
1316 NULL, 0);
1317 }
1318
1319 /**
1320 * ice_vf_vsi_dis_single_txq - disable a single Tx queue
1321 * @vf: VF to disable queue for
1322 * @vsi: VSI for the VF
1323 * @q_id: VF relative (0-based) queue ID
1324 *
1325 * Attempt to disable the Tx queue passed in. If the Tx queue was successfully
1326 * disabled then clear q_id bit in the enabled queues bitmap and return
1327 * success. Otherwise return error.
1328 */
1329 static int
ice_vf_vsi_dis_single_txq(struct ice_vf * vf,struct ice_vsi * vsi,u16 q_id)1330 ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
1331 {
1332 struct ice_txq_meta txq_meta = { 0 };
1333 struct ice_tx_ring *ring;
1334 int err;
1335
1336 if (!test_bit(q_id, vf->txq_ena))
1337 dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
1338 q_id, vsi->vsi_num);
1339
1340 ring = vsi->tx_rings[q_id];
1341 if (!ring)
1342 return -EINVAL;
1343
1344 ice_fill_txq_meta(vsi, ring, &txq_meta);
1345
1346 err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
1347 if (err) {
1348 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
1349 q_id, vsi->vsi_num);
1350 return err;
1351 }
1352
1353 /* Clear enabled queues flag */
1354 clear_bit(q_id, vf->txq_ena);
1355
1356 return 0;
1357 }
1358
1359 /**
1360 * ice_vc_dis_qs_msg
1361 * @vf: pointer to the VF info
1362 * @msg: pointer to the msg buffer
1363 *
1364 * called from the VF to disable all or specific queue(s)
1365 */
ice_vc_dis_qs_msg(struct ice_vf * vf,u8 * msg)1366 static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
1367 {
1368 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1369 struct virtchnl_queue_select *vqs =
1370 (struct virtchnl_queue_select *)msg;
1371 struct ice_vsi *vsi;
1372 unsigned long q_map;
1373 u16 vf_q_id;
1374
1375 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
1376 !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
1377 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1378 goto error_param;
1379 }
1380
1381 if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
1382 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1383 goto error_param;
1384 }
1385
1386 if (!ice_vc_validate_vqs_bitmaps(vqs)) {
1387 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1388 goto error_param;
1389 }
1390
1391 vsi = ice_get_vf_vsi(vf);
1392 if (!vsi) {
1393 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1394 goto error_param;
1395 }
1396
1397 if (vqs->tx_queues) {
1398 q_map = vqs->tx_queues;
1399
1400 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1401 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1402 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1403 goto error_param;
1404 }
1405
1406 if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
1407 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1408 goto error_param;
1409 }
1410 }
1411 }
1412
1413 q_map = vqs->rx_queues;
1414 /* speed up Rx queue disable by batching them if possible */
1415 if (q_map &&
1416 bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
1417 if (ice_vsi_stop_all_rx_rings(vsi)) {
1418 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
1419 vsi->vsi_num);
1420 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1421 goto error_param;
1422 }
1423
1424 bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
1425 } else if (q_map) {
1426 for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
1427 if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
1428 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1429 goto error_param;
1430 }
1431
1432 /* Skip queue if not enabled */
1433 if (!test_bit(vf_q_id, vf->rxq_ena))
1434 continue;
1435
1436 if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
1437 true)) {
1438 dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
1439 vf_q_id, vsi->vsi_num);
1440 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1441 goto error_param;
1442 }
1443
1444 /* Clear enabled queues flag */
1445 clear_bit(vf_q_id, vf->rxq_ena);
1446 }
1447 }
1448
1449 /* Clear enabled queues flag */
1450 if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
1451 clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
1452
1453 error_param:
1454 /* send the response to the VF */
1455 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
1456 NULL, 0);
1457 }
1458
1459 /**
1460 * ice_cfg_interrupt
1461 * @vf: pointer to the VF info
1462 * @vsi: the VSI being configured
1463 * @vector_id: vector ID
1464 * @map: vector map for mapping vectors to queues
1465 * @q_vector: structure for interrupt vector
1466 * configure the IRQ to queue map
1467 */
1468 static int
ice_cfg_interrupt(struct ice_vf * vf,struct ice_vsi * vsi,u16 vector_id,struct virtchnl_vector_map * map,struct ice_q_vector * q_vector)1469 ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
1470 struct virtchnl_vector_map *map,
1471 struct ice_q_vector *q_vector)
1472 {
1473 u16 vsi_q_id, vsi_q_id_idx;
1474 unsigned long qmap;
1475
1476 q_vector->num_ring_rx = 0;
1477 q_vector->num_ring_tx = 0;
1478
1479 qmap = map->rxq_map;
1480 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1481 vsi_q_id = vsi_q_id_idx;
1482
1483 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1484 return VIRTCHNL_STATUS_ERR_PARAM;
1485
1486 q_vector->num_ring_rx++;
1487 q_vector->rx.itr_idx = map->rxitr_idx;
1488 vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
1489 ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
1490 q_vector->rx.itr_idx);
1491 }
1492
1493 qmap = map->txq_map;
1494 for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
1495 vsi_q_id = vsi_q_id_idx;
1496
1497 if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
1498 return VIRTCHNL_STATUS_ERR_PARAM;
1499
1500 q_vector->num_ring_tx++;
1501 q_vector->tx.itr_idx = map->txitr_idx;
1502 vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
1503 ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
1504 q_vector->tx.itr_idx);
1505 }
1506
1507 return VIRTCHNL_STATUS_SUCCESS;
1508 }
1509
1510 /**
1511 * ice_vc_cfg_irq_map_msg
1512 * @vf: pointer to the VF info
1513 * @msg: pointer to the msg buffer
1514 *
1515 * called from the VF to configure the IRQ to queue map
1516 */
ice_vc_cfg_irq_map_msg(struct ice_vf * vf,u8 * msg)1517 static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
1518 {
1519 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1520 u16 num_q_vectors_mapped, vsi_id, vector_id;
1521 struct virtchnl_irq_map_info *irqmap_info;
1522 struct virtchnl_vector_map *map;
1523 struct ice_pf *pf = vf->pf;
1524 struct ice_vsi *vsi;
1525 int i;
1526
1527 irqmap_info = (struct virtchnl_irq_map_info *)msg;
1528 num_q_vectors_mapped = irqmap_info->num_vectors;
1529
1530 /* Check to make sure number of VF vectors mapped is not greater than
1531 * number of VF vectors originally allocated, and check that
1532 * there is actually at least a single VF queue vector mapped
1533 */
1534 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1535 pf->vfs.num_msix_per < num_q_vectors_mapped ||
1536 !num_q_vectors_mapped) {
1537 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1538 goto error_param;
1539 }
1540
1541 vsi = ice_get_vf_vsi(vf);
1542 if (!vsi) {
1543 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1544 goto error_param;
1545 }
1546
1547 for (i = 0; i < num_q_vectors_mapped; i++) {
1548 struct ice_q_vector *q_vector;
1549
1550 map = &irqmap_info->vecmap[i];
1551
1552 vector_id = map->vector_id;
1553 vsi_id = map->vsi_id;
1554 /* vector_id is always 0-based for each VF, and can never be
1555 * larger than or equal to the max allowed interrupts per VF
1556 */
1557 if (!(vector_id < pf->vfs.num_msix_per) ||
1558 !ice_vc_isvalid_vsi_id(vf, vsi_id) ||
1559 (!vector_id && (map->rxq_map || map->txq_map))) {
1560 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1561 goto error_param;
1562 }
1563
1564 /* No need to map VF miscellaneous or rogue vector */
1565 if (!vector_id)
1566 continue;
1567
1568 /* Subtract non queue vector from vector_id passed by VF
1569 * to get actual number of VSI queue vector array index
1570 */
1571 q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
1572 if (!q_vector) {
1573 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1574 goto error_param;
1575 }
1576
1577 /* lookout for the invalid queue index */
1578 v_ret = (enum virtchnl_status_code)
1579 ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
1580 if (v_ret)
1581 goto error_param;
1582 }
1583
1584 error_param:
1585 /* send the response to the VF */
1586 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
1587 NULL, 0);
1588 }
1589
1590 /**
1591 * ice_vc_cfg_qs_msg
1592 * @vf: pointer to the VF info
1593 * @msg: pointer to the msg buffer
1594 *
1595 * called from the VF to configure the Rx/Tx queues
1596 */
ice_vc_cfg_qs_msg(struct ice_vf * vf,u8 * msg)1597 static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
1598 {
1599 struct virtchnl_vsi_queue_config_info *qci =
1600 (struct virtchnl_vsi_queue_config_info *)msg;
1601 struct virtchnl_queue_pair_info *qpi;
1602 struct ice_pf *pf = vf->pf;
1603 struct ice_vsi *vsi;
1604 int i = -1, q_idx;
1605
1606 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
1607 goto error_param;
1608
1609 if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
1610 goto error_param;
1611
1612 vsi = ice_get_vf_vsi(vf);
1613 if (!vsi)
1614 goto error_param;
1615
1616 if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
1617 qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
1618 dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
1619 vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
1620 goto error_param;
1621 }
1622
1623 for (i = 0; i < qci->num_queue_pairs; i++) {
1624 qpi = &qci->qpair[i];
1625 if (qpi->txq.vsi_id != qci->vsi_id ||
1626 qpi->rxq.vsi_id != qci->vsi_id ||
1627 qpi->rxq.queue_id != qpi->txq.queue_id ||
1628 qpi->txq.headwb_enabled ||
1629 !ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
1630 !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
1631 !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
1632 goto error_param;
1633 }
1634
1635 q_idx = qpi->rxq.queue_id;
1636
1637 /* make sure selected "q_idx" is in valid range of queues
1638 * for selected "vsi"
1639 */
1640 if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
1641 goto error_param;
1642 }
1643
1644 /* copy Tx queue info from VF into VSI */
1645 if (qpi->txq.ring_len > 0) {
1646 vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
1647 vsi->tx_rings[i]->count = qpi->txq.ring_len;
1648
1649 /* Disable any existing queue first */
1650 if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
1651 goto error_param;
1652
1653 /* Configure a queue with the requested settings */
1654 if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
1655 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
1656 vf->vf_id, i);
1657 goto error_param;
1658 }
1659 }
1660
1661 /* copy Rx queue info from VF into VSI */
1662 if (qpi->rxq.ring_len > 0) {
1663 u16 max_frame_size = ice_vc_get_max_frame_size(vf);
1664 u32 rxdid;
1665
1666 vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
1667 vsi->rx_rings[i]->count = qpi->rxq.ring_len;
1668
1669 if (qpi->rxq.databuffer_size != 0 &&
1670 (qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
1671 qpi->rxq.databuffer_size < 1024))
1672 goto error_param;
1673 vsi->rx_buf_len = qpi->rxq.databuffer_size;
1674 vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
1675 if (qpi->rxq.max_pkt_size > max_frame_size ||
1676 qpi->rxq.max_pkt_size < 64)
1677 goto error_param;
1678
1679 vsi->max_frame = qpi->rxq.max_pkt_size;
1680 /* add space for the port VLAN since the VF driver is
1681 * not expected to account for it in the MTU
1682 * calculation
1683 */
1684 if (ice_vf_is_port_vlan_ena(vf))
1685 vsi->max_frame += VLAN_HLEN;
1686
1687 if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
1688 dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
1689 vf->vf_id, i);
1690 goto error_param;
1691 }
1692
1693 /* If Rx flex desc is supported, select RXDID for Rx
1694 * queues. Otherwise, use legacy 32byte descriptor
1695 * format. Legacy 16byte descriptor is not supported.
1696 * If this RXDID is selected, return error.
1697 */
1698 if (vf->driver_caps &
1699 VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
1700 rxdid = qpi->rxq.rxdid;
1701 if (!(BIT(rxdid) & pf->supported_rxdids))
1702 goto error_param;
1703 } else {
1704 rxdid = ICE_RXDID_LEGACY_1;
1705 }
1706
1707 ice_write_qrxflxp_cntxt(&vsi->back->hw,
1708 vsi->rxq_map[q_idx],
1709 rxdid, 0x03, false);
1710 }
1711 }
1712
1713 /* send the response to the VF */
1714 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1715 VIRTCHNL_STATUS_SUCCESS, NULL, 0);
1716 error_param:
1717 /* disable whatever we can */
1718 for (; i >= 0; i--) {
1719 if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
1720 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
1721 vf->vf_id, i);
1722 if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
1723 dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
1724 vf->vf_id, i);
1725 }
1726
1727 ice_lag_move_new_vf_nodes(vf);
1728
1729 /* send the response to the VF */
1730 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
1731 VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
1732 }
1733
1734 /**
1735 * ice_can_vf_change_mac
1736 * @vf: pointer to the VF info
1737 *
1738 * Return true if the VF is allowed to change its MAC filters, false otherwise
1739 */
ice_can_vf_change_mac(struct ice_vf * vf)1740 static bool ice_can_vf_change_mac(struct ice_vf *vf)
1741 {
1742 /* If the VF MAC address has been set administratively (via the
1743 * ndo_set_vf_mac command), then deny permission to the VF to
1744 * add/delete unicast MAC addresses, unless the VF is trusted
1745 */
1746 if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
1747 return false;
1748
1749 return true;
1750 }
1751
1752 /**
1753 * ice_vc_ether_addr_type - get type of virtchnl_ether_addr
1754 * @vc_ether_addr: used to extract the type
1755 */
1756 static u8
ice_vc_ether_addr_type(struct virtchnl_ether_addr * vc_ether_addr)1757 ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
1758 {
1759 return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
1760 }
1761
1762 /**
1763 * ice_is_vc_addr_legacy - check if the MAC address is from an older VF
1764 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1765 */
1766 static bool
ice_is_vc_addr_legacy(struct virtchnl_ether_addr * vc_ether_addr)1767 ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
1768 {
1769 u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1770
1771 return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
1772 }
1773
1774 /**
1775 * ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
1776 * @vc_ether_addr: VIRTCHNL structure that contains MAC and type
1777 *
1778 * This function should only be called when the MAC address in
1779 * virtchnl_ether_addr is a valid unicast MAC
1780 */
1781 static bool
ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused * vc_ether_addr)1782 ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
1783 {
1784 u8 type = ice_vc_ether_addr_type(vc_ether_addr);
1785
1786 return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
1787 }
1788
1789 /**
1790 * ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
1791 * @vf: VF to update
1792 * @vc_ether_addr: structure from VIRTCHNL with MAC to add
1793 */
1794 static void
ice_vfhw_mac_add(struct ice_vf * vf,struct virtchnl_ether_addr * vc_ether_addr)1795 ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1796 {
1797 u8 *mac_addr = vc_ether_addr->addr;
1798
1799 if (!is_valid_ether_addr(mac_addr))
1800 return;
1801
1802 /* only allow legacy VF drivers to set the device and hardware MAC if it
1803 * is zero and allow new VF drivers to set the hardware MAC if the type
1804 * was correctly specified over VIRTCHNL
1805 */
1806 if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
1807 is_zero_ether_addr(vf->hw_lan_addr)) ||
1808 ice_is_vc_addr_primary(vc_ether_addr)) {
1809 ether_addr_copy(vf->dev_lan_addr, mac_addr);
1810 ether_addr_copy(vf->hw_lan_addr, mac_addr);
1811 }
1812
1813 /* hardware and device MACs are already set, but its possible that the
1814 * VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
1815 * VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
1816 * away for the legacy VF driver case as it will be updated in the
1817 * delete flow for this case
1818 */
1819 if (ice_is_vc_addr_legacy(vc_ether_addr)) {
1820 ether_addr_copy(vf->legacy_last_added_umac.addr,
1821 mac_addr);
1822 vf->legacy_last_added_umac.time_modified = jiffies;
1823 }
1824 }
1825
1826 /**
1827 * ice_vc_add_mac_addr - attempt to add the MAC address passed in
1828 * @vf: pointer to the VF info
1829 * @vsi: pointer to the VF's VSI
1830 * @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
1831 */
1832 static int
ice_vc_add_mac_addr(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_ether_addr * vc_ether_addr)1833 ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1834 struct virtchnl_ether_addr *vc_ether_addr)
1835 {
1836 struct device *dev = ice_pf_to_dev(vf->pf);
1837 u8 *mac_addr = vc_ether_addr->addr;
1838 int ret;
1839
1840 /* device MAC already added */
1841 if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
1842 return 0;
1843
1844 if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
1845 dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
1846 return -EPERM;
1847 }
1848
1849 ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1850 if (ret == -EEXIST) {
1851 dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
1852 vf->vf_id);
1853 /* don't return since we might need to update
1854 * the primary MAC in ice_vfhw_mac_add() below
1855 */
1856 } else if (ret) {
1857 dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
1858 mac_addr, vf->vf_id, ret);
1859 return ret;
1860 } else {
1861 vf->num_mac++;
1862 }
1863
1864 ice_vfhw_mac_add(vf, vc_ether_addr);
1865
1866 return ret;
1867 }
1868
1869 /**
1870 * ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
1871 * @last_added_umac: structure used to check expiration
1872 */
ice_is_legacy_umac_expired(struct ice_time_mac * last_added_umac)1873 static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
1874 {
1875 #define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000)
1876 return time_is_before_jiffies(last_added_umac->time_modified +
1877 ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
1878 }
1879
1880 /**
1881 * ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
1882 * @vf: VF to update
1883 * @vc_ether_addr: structure from VIRTCHNL with MAC to check
1884 *
1885 * only update cached hardware MAC for legacy VF drivers on delete
1886 * because we cannot guarantee order/type of MAC from the VF driver
1887 */
1888 static void
ice_update_legacy_cached_mac(struct ice_vf * vf,struct virtchnl_ether_addr * vc_ether_addr)1889 ice_update_legacy_cached_mac(struct ice_vf *vf,
1890 struct virtchnl_ether_addr *vc_ether_addr)
1891 {
1892 if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
1893 ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
1894 return;
1895
1896 ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
1897 ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
1898 }
1899
1900 /**
1901 * ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
1902 * @vf: VF to update
1903 * @vc_ether_addr: structure from VIRTCHNL with MAC to delete
1904 */
1905 static void
ice_vfhw_mac_del(struct ice_vf * vf,struct virtchnl_ether_addr * vc_ether_addr)1906 ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
1907 {
1908 u8 *mac_addr = vc_ether_addr->addr;
1909
1910 if (!is_valid_ether_addr(mac_addr) ||
1911 !ether_addr_equal(vf->dev_lan_addr, mac_addr))
1912 return;
1913
1914 /* allow the device MAC to be repopulated in the add flow and don't
1915 * clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
1916 * to be persistent on VM reboot and across driver unload/load, which
1917 * won't work if we clear the hardware MAC here
1918 */
1919 eth_zero_addr(vf->dev_lan_addr);
1920
1921 ice_update_legacy_cached_mac(vf, vc_ether_addr);
1922 }
1923
1924 /**
1925 * ice_vc_del_mac_addr - attempt to delete the MAC address passed in
1926 * @vf: pointer to the VF info
1927 * @vsi: pointer to the VF's VSI
1928 * @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
1929 */
1930 static int
ice_vc_del_mac_addr(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_ether_addr * vc_ether_addr)1931 ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
1932 struct virtchnl_ether_addr *vc_ether_addr)
1933 {
1934 struct device *dev = ice_pf_to_dev(vf->pf);
1935 u8 *mac_addr = vc_ether_addr->addr;
1936 int status;
1937
1938 if (!ice_can_vf_change_mac(vf) &&
1939 ether_addr_equal(vf->dev_lan_addr, mac_addr))
1940 return 0;
1941
1942 status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
1943 if (status == -ENOENT) {
1944 dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
1945 vf->vf_id);
1946 return -ENOENT;
1947 } else if (status) {
1948 dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
1949 mac_addr, vf->vf_id, status);
1950 return -EIO;
1951 }
1952
1953 ice_vfhw_mac_del(vf, vc_ether_addr);
1954
1955 vf->num_mac--;
1956
1957 return 0;
1958 }
1959
1960 /**
1961 * ice_vc_handle_mac_addr_msg
1962 * @vf: pointer to the VF info
1963 * @msg: pointer to the msg buffer
1964 * @set: true if MAC filters are being set, false otherwise
1965 *
1966 * add guest MAC address filter
1967 */
1968 static int
ice_vc_handle_mac_addr_msg(struct ice_vf * vf,u8 * msg,bool set)1969 ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
1970 {
1971 int (*ice_vc_cfg_mac)
1972 (struct ice_vf *vf, struct ice_vsi *vsi,
1973 struct virtchnl_ether_addr *virtchnl_ether_addr);
1974 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
1975 struct virtchnl_ether_addr_list *al =
1976 (struct virtchnl_ether_addr_list *)msg;
1977 struct ice_pf *pf = vf->pf;
1978 enum virtchnl_ops vc_op;
1979 struct ice_vsi *vsi;
1980 int i;
1981
1982 if (set) {
1983 vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
1984 ice_vc_cfg_mac = ice_vc_add_mac_addr;
1985 } else {
1986 vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
1987 ice_vc_cfg_mac = ice_vc_del_mac_addr;
1988 }
1989
1990 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
1991 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
1992 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
1993 goto handle_mac_exit;
1994 }
1995
1996 /* If this VF is not privileged, then we can't add more than a
1997 * limited number of addresses. Check to make sure that the
1998 * additions do not push us over the limit.
1999 */
2000 if (set && !ice_is_vf_trusted(vf) &&
2001 (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
2002 dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
2003 vf->vf_id);
2004 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2005 goto handle_mac_exit;
2006 }
2007
2008 vsi = ice_get_vf_vsi(vf);
2009 if (!vsi) {
2010 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2011 goto handle_mac_exit;
2012 }
2013
2014 for (i = 0; i < al->num_elements; i++) {
2015 u8 *mac_addr = al->list[i].addr;
2016 int result;
2017
2018 if (is_broadcast_ether_addr(mac_addr) ||
2019 is_zero_ether_addr(mac_addr))
2020 continue;
2021
2022 result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
2023 if (result == -EEXIST || result == -ENOENT) {
2024 continue;
2025 } else if (result) {
2026 v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
2027 goto handle_mac_exit;
2028 }
2029 }
2030
2031 handle_mac_exit:
2032 /* send the response to the VF */
2033 return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
2034 }
2035
2036 /**
2037 * ice_vc_add_mac_addr_msg
2038 * @vf: pointer to the VF info
2039 * @msg: pointer to the msg buffer
2040 *
2041 * add guest MAC address filter
2042 */
ice_vc_add_mac_addr_msg(struct ice_vf * vf,u8 * msg)2043 static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2044 {
2045 return ice_vc_handle_mac_addr_msg(vf, msg, true);
2046 }
2047
2048 /**
2049 * ice_vc_del_mac_addr_msg
2050 * @vf: pointer to the VF info
2051 * @msg: pointer to the msg buffer
2052 *
2053 * remove guest MAC address filter
2054 */
ice_vc_del_mac_addr_msg(struct ice_vf * vf,u8 * msg)2055 static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
2056 {
2057 return ice_vc_handle_mac_addr_msg(vf, msg, false);
2058 }
2059
2060 /**
2061 * ice_vc_request_qs_msg
2062 * @vf: pointer to the VF info
2063 * @msg: pointer to the msg buffer
2064 *
2065 * VFs get a default number of queues but can use this message to request a
2066 * different number. If the request is successful, PF will reset the VF and
2067 * return 0. If unsuccessful, PF will send message informing VF of number of
2068 * available queue pairs via virtchnl message response to VF.
2069 */
ice_vc_request_qs_msg(struct ice_vf * vf,u8 * msg)2070 static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
2071 {
2072 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2073 struct virtchnl_vf_res_request *vfres =
2074 (struct virtchnl_vf_res_request *)msg;
2075 u16 req_queues = vfres->num_queue_pairs;
2076 struct ice_pf *pf = vf->pf;
2077 u16 max_allowed_vf_queues;
2078 u16 tx_rx_queue_left;
2079 struct device *dev;
2080 u16 cur_queues;
2081
2082 dev = ice_pf_to_dev(pf);
2083 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2084 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2085 goto error_param;
2086 }
2087
2088 cur_queues = vf->num_vf_qs;
2089 tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
2090 ice_get_avail_rxq_count(pf));
2091 max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
2092 if (!req_queues) {
2093 dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
2094 vf->vf_id);
2095 } else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
2096 dev_err(dev, "VF %d tried to request more than %d queues.\n",
2097 vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
2098 vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
2099 } else if (req_queues > cur_queues &&
2100 req_queues - cur_queues > tx_rx_queue_left) {
2101 dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
2102 vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
2103 vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
2104 ICE_MAX_RSS_QS_PER_VF);
2105 } else {
2106 /* request is successful, then reset VF */
2107 vf->num_req_qs = req_queues;
2108 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
2109 dev_info(dev, "VF %d granted request of %u queues.\n",
2110 vf->vf_id, req_queues);
2111 return 0;
2112 }
2113
2114 error_param:
2115 /* send the response to the VF */
2116 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
2117 v_ret, (u8 *)vfres, sizeof(*vfres));
2118 }
2119
2120 /**
2121 * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
2122 * @caps: VF driver negotiated capabilities
2123 *
2124 * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
2125 */
ice_vf_vlan_offload_ena(u32 caps)2126 static bool ice_vf_vlan_offload_ena(u32 caps)
2127 {
2128 return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
2129 }
2130
2131 /**
2132 * ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
2133 * @vf: VF used to determine if VLAN promiscuous config is allowed
2134 */
ice_is_vlan_promisc_allowed(struct ice_vf * vf)2135 static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
2136 {
2137 if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
2138 test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
2139 test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
2140 return true;
2141
2142 return false;
2143 }
2144
2145 /**
2146 * ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
2147 * @vsi: VF's VSI used to enable VLAN promiscuous mode
2148 * @vlan: VLAN used to enable VLAN promiscuous
2149 *
2150 * This function should only be called if VLAN promiscuous mode is allowed,
2151 * which can be determined via ice_is_vlan_promisc_allowed().
2152 */
ice_vf_ena_vlan_promisc(struct ice_vsi * vsi,struct ice_vlan * vlan)2153 static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2154 {
2155 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2156 int status;
2157
2158 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2159 vlan->vid);
2160 if (status && status != -EEXIST)
2161 return status;
2162
2163 return 0;
2164 }
2165
2166 /**
2167 * ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
2168 * @vsi: VF's VSI used to disable VLAN promiscuous mode for
2169 * @vlan: VLAN used to disable VLAN promiscuous
2170 *
2171 * This function should only be called if VLAN promiscuous mode is allowed,
2172 * which can be determined via ice_is_vlan_promisc_allowed().
2173 */
ice_vf_dis_vlan_promisc(struct ice_vsi * vsi,struct ice_vlan * vlan)2174 static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
2175 {
2176 u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
2177 int status;
2178
2179 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
2180 vlan->vid);
2181 if (status && status != -ENOENT)
2182 return status;
2183
2184 return 0;
2185 }
2186
2187 /**
2188 * ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
2189 * @vf: VF to check against
2190 * @vsi: VF's VSI
2191 *
2192 * If the VF is trusted then the VF is allowed to add as many VLANs as it
2193 * wants to, so return false.
2194 *
2195 * When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
2196 * allowed VLANs for an untrusted VF. Return the result of this comparison.
2197 */
ice_vf_has_max_vlans(struct ice_vf * vf,struct ice_vsi * vsi)2198 static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
2199 {
2200 if (ice_is_vf_trusted(vf))
2201 return false;
2202
2203 #define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1
2204 return ((ice_vsi_num_non_zero_vlans(vsi) +
2205 ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
2206 }
2207
2208 /**
2209 * ice_vc_process_vlan_msg
2210 * @vf: pointer to the VF info
2211 * @msg: pointer to the msg buffer
2212 * @add_v: Add VLAN if true, otherwise delete VLAN
2213 *
2214 * Process virtchnl op to add or remove programmed guest VLAN ID
2215 */
ice_vc_process_vlan_msg(struct ice_vf * vf,u8 * msg,bool add_v)2216 static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
2217 {
2218 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2219 struct virtchnl_vlan_filter_list *vfl =
2220 (struct virtchnl_vlan_filter_list *)msg;
2221 struct ice_pf *pf = vf->pf;
2222 bool vlan_promisc = false;
2223 struct ice_vsi *vsi;
2224 struct device *dev;
2225 int status = 0;
2226 int i;
2227
2228 dev = ice_pf_to_dev(pf);
2229 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2230 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2231 goto error_param;
2232 }
2233
2234 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2235 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2236 goto error_param;
2237 }
2238
2239 if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
2240 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2241 goto error_param;
2242 }
2243
2244 for (i = 0; i < vfl->num_elements; i++) {
2245 if (vfl->vlan_id[i] >= VLAN_N_VID) {
2246 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2247 dev_err(dev, "invalid VF VLAN id %d\n",
2248 vfl->vlan_id[i]);
2249 goto error_param;
2250 }
2251 }
2252
2253 vsi = ice_get_vf_vsi(vf);
2254 if (!vsi) {
2255 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2256 goto error_param;
2257 }
2258
2259 if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
2260 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2261 vf->vf_id);
2262 /* There is no need to let VF know about being not trusted,
2263 * so we can just return success message here
2264 */
2265 goto error_param;
2266 }
2267
2268 /* in DVM a VF can add/delete inner VLAN filters when
2269 * VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
2270 */
2271 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
2272 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2273 goto error_param;
2274 }
2275
2276 /* in DVM VLAN promiscuous is based on the outer VLAN, which would be
2277 * the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
2278 * allow vlan_promisc = true in SVM and if no port VLAN is configured
2279 */
2280 vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
2281 !ice_is_dvm_ena(&pf->hw) &&
2282 !ice_vf_is_port_vlan_ena(vf);
2283
2284 if (add_v) {
2285 for (i = 0; i < vfl->num_elements; i++) {
2286 u16 vid = vfl->vlan_id[i];
2287 struct ice_vlan vlan;
2288
2289 if (ice_vf_has_max_vlans(vf, vsi)) {
2290 dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
2291 vf->vf_id);
2292 /* There is no need to let VF know about being
2293 * not trusted, so we can just return success
2294 * message here as well.
2295 */
2296 goto error_param;
2297 }
2298
2299 /* we add VLAN 0 by default for each VF so we can enable
2300 * Tx VLAN anti-spoof without triggering MDD events so
2301 * we don't need to add it again here
2302 */
2303 if (!vid)
2304 continue;
2305
2306 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2307 status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
2308 if (status) {
2309 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2310 goto error_param;
2311 }
2312
2313 /* Enable VLAN filtering on first non-zero VLAN */
2314 if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
2315 if (vf->spoofchk) {
2316 status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
2317 if (status) {
2318 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2319 dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
2320 vid, status);
2321 goto error_param;
2322 }
2323 }
2324 if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
2325 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2326 dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
2327 vid, status);
2328 goto error_param;
2329 }
2330 } else if (vlan_promisc) {
2331 status = ice_vf_ena_vlan_promisc(vsi, &vlan);
2332 if (status) {
2333 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2334 dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
2335 vid, status);
2336 }
2337 }
2338 }
2339 } else {
2340 /* In case of non_trusted VF, number of VLAN elements passed
2341 * to PF for removal might be greater than number of VLANs
2342 * filter programmed for that VF - So, use actual number of
2343 * VLANS added earlier with add VLAN opcode. In order to avoid
2344 * removing VLAN that doesn't exist, which result to sending
2345 * erroneous failed message back to the VF
2346 */
2347 int num_vf_vlan;
2348
2349 num_vf_vlan = vsi->num_vlan;
2350 for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
2351 u16 vid = vfl->vlan_id[i];
2352 struct ice_vlan vlan;
2353
2354 /* we add VLAN 0 by default for each VF so we can enable
2355 * Tx VLAN anti-spoof without triggering MDD events so
2356 * we don't want a VIRTCHNL request to remove it
2357 */
2358 if (!vid)
2359 continue;
2360
2361 vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
2362 status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
2363 if (status) {
2364 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2365 goto error_param;
2366 }
2367
2368 /* Disable VLAN filtering when only VLAN 0 is left */
2369 if (!ice_vsi_has_non_zero_vlans(vsi)) {
2370 vsi->inner_vlan_ops.dis_tx_filtering(vsi);
2371 vsi->inner_vlan_ops.dis_rx_filtering(vsi);
2372 }
2373
2374 if (vlan_promisc)
2375 ice_vf_dis_vlan_promisc(vsi, &vlan);
2376 }
2377 }
2378
2379 error_param:
2380 /* send the response to the VF */
2381 if (add_v)
2382 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
2383 NULL, 0);
2384 else
2385 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
2386 NULL, 0);
2387 }
2388
2389 /**
2390 * ice_vc_add_vlan_msg
2391 * @vf: pointer to the VF info
2392 * @msg: pointer to the msg buffer
2393 *
2394 * Add and program guest VLAN ID
2395 */
ice_vc_add_vlan_msg(struct ice_vf * vf,u8 * msg)2396 static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
2397 {
2398 return ice_vc_process_vlan_msg(vf, msg, true);
2399 }
2400
2401 /**
2402 * ice_vc_remove_vlan_msg
2403 * @vf: pointer to the VF info
2404 * @msg: pointer to the msg buffer
2405 *
2406 * remove programmed guest VLAN ID
2407 */
ice_vc_remove_vlan_msg(struct ice_vf * vf,u8 * msg)2408 static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
2409 {
2410 return ice_vc_process_vlan_msg(vf, msg, false);
2411 }
2412
2413 /**
2414 * ice_vc_ena_vlan_stripping
2415 * @vf: pointer to the VF info
2416 *
2417 * Enable VLAN header stripping for a given VF
2418 */
ice_vc_ena_vlan_stripping(struct ice_vf * vf)2419 static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
2420 {
2421 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2422 struct ice_vsi *vsi;
2423
2424 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2425 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2426 goto error_param;
2427 }
2428
2429 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2430 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2431 goto error_param;
2432 }
2433
2434 vsi = ice_get_vf_vsi(vf);
2435 if (!vsi) {
2436 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2437 goto error_param;
2438 }
2439
2440 if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
2441 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2442
2443 error_param:
2444 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
2445 v_ret, NULL, 0);
2446 }
2447
2448 /**
2449 * ice_vc_dis_vlan_stripping
2450 * @vf: pointer to the VF info
2451 *
2452 * Disable VLAN header stripping for a given VF
2453 */
ice_vc_dis_vlan_stripping(struct ice_vf * vf)2454 static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
2455 {
2456 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2457 struct ice_vsi *vsi;
2458
2459 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2460 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2461 goto error_param;
2462 }
2463
2464 if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
2465 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2466 goto error_param;
2467 }
2468
2469 vsi = ice_get_vf_vsi(vf);
2470 if (!vsi) {
2471 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2472 goto error_param;
2473 }
2474
2475 if (vsi->inner_vlan_ops.dis_stripping(vsi))
2476 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2477
2478 error_param:
2479 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
2480 v_ret, NULL, 0);
2481 }
2482
2483 /**
2484 * ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
2485 * @vf: pointer to the VF info
2486 */
ice_vc_get_rss_hena(struct ice_vf * vf)2487 static int ice_vc_get_rss_hena(struct ice_vf *vf)
2488 {
2489 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2490 struct virtchnl_rss_hena *vrh = NULL;
2491 int len = 0, ret;
2492
2493 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2494 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2495 goto err;
2496 }
2497
2498 if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
2499 dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
2500 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2501 goto err;
2502 }
2503
2504 len = sizeof(struct virtchnl_rss_hena);
2505 vrh = kzalloc(len, GFP_KERNEL);
2506 if (!vrh) {
2507 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2508 len = 0;
2509 goto err;
2510 }
2511
2512 vrh->hena = ICE_DEFAULT_RSS_HENA;
2513 err:
2514 /* send the response back to the VF */
2515 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
2516 (u8 *)vrh, len);
2517 kfree(vrh);
2518 return ret;
2519 }
2520
2521 /**
2522 * ice_vc_set_rss_hena - set RSS HENA bits for the VF
2523 * @vf: pointer to the VF info
2524 * @msg: pointer to the msg buffer
2525 */
ice_vc_set_rss_hena(struct ice_vf * vf,u8 * msg)2526 static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
2527 {
2528 struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
2529 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2530 struct ice_pf *pf = vf->pf;
2531 struct ice_vsi *vsi;
2532 struct device *dev;
2533 int status;
2534
2535 dev = ice_pf_to_dev(pf);
2536
2537 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2538 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2539 goto err;
2540 }
2541
2542 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2543 dev_err(dev, "RSS not supported by PF\n");
2544 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2545 goto err;
2546 }
2547
2548 vsi = ice_get_vf_vsi(vf);
2549 if (!vsi) {
2550 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2551 goto err;
2552 }
2553
2554 /* clear all previously programmed RSS configuration to allow VF drivers
2555 * the ability to customize the RSS configuration and/or completely
2556 * disable RSS
2557 */
2558 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
2559 if (status && !vrh->hena) {
2560 /* only report failure to clear the current RSS configuration if
2561 * that was clearly the VF's intention (i.e. vrh->hena = 0)
2562 */
2563 v_ret = ice_err_to_virt_err(status);
2564 goto err;
2565 } else if (status) {
2566 /* allow the VF to update the RSS configuration even on failure
2567 * to clear the current RSS confguration in an attempt to keep
2568 * RSS in a working state
2569 */
2570 dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
2571 vf->vf_id);
2572 }
2573
2574 if (vrh->hena) {
2575 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, vrh->hena);
2576 v_ret = ice_err_to_virt_err(status);
2577 }
2578
2579 /* send the response to the VF */
2580 err:
2581 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
2582 NULL, 0);
2583 }
2584
2585 /**
2586 * ice_vc_query_rxdid - query RXDID supported by DDP package
2587 * @vf: pointer to VF info
2588 *
2589 * Called from VF to query a bitmap of supported flexible
2590 * descriptor RXDIDs of a DDP package.
2591 */
ice_vc_query_rxdid(struct ice_vf * vf)2592 static int ice_vc_query_rxdid(struct ice_vf *vf)
2593 {
2594 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2595 struct virtchnl_supported_rxdids *rxdid = NULL;
2596 struct ice_hw *hw = &vf->pf->hw;
2597 struct ice_pf *pf = vf->pf;
2598 int len = 0;
2599 int ret, i;
2600 u32 regval;
2601
2602 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2603 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2604 goto err;
2605 }
2606
2607 if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
2608 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2609 goto err;
2610 }
2611
2612 len = sizeof(struct virtchnl_supported_rxdids);
2613 rxdid = kzalloc(len, GFP_KERNEL);
2614 if (!rxdid) {
2615 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2616 len = 0;
2617 goto err;
2618 }
2619
2620 /* RXDIDs supported by DDP package can be read from the register
2621 * to get the supported RXDID bitmap. But the legacy 32byte RXDID
2622 * is not listed in DDP package, add it in the bitmap manually.
2623 * Legacy 16byte descriptor is not supported.
2624 */
2625 rxdid->supported_rxdids |= BIT(ICE_RXDID_LEGACY_1);
2626
2627 for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
2628 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
2629 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
2630 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
2631 rxdid->supported_rxdids |= BIT(i);
2632 }
2633
2634 pf->supported_rxdids = rxdid->supported_rxdids;
2635
2636 err:
2637 ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
2638 v_ret, (u8 *)rxdid, len);
2639 kfree(rxdid);
2640 return ret;
2641 }
2642
2643 /**
2644 * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
2645 * @vf: VF to enable/disable VLAN stripping for on initialization
2646 *
2647 * Set the default for VLAN stripping based on whether a port VLAN is configured
2648 * and the current VLAN mode of the device.
2649 */
ice_vf_init_vlan_stripping(struct ice_vf * vf)2650 static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
2651 {
2652 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
2653
2654 if (!vsi)
2655 return -EINVAL;
2656
2657 /* don't modify stripping if port VLAN is configured in SVM since the
2658 * port VLAN is based on the inner/single VLAN in SVM
2659 */
2660 if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
2661 return 0;
2662
2663 if (ice_vf_vlan_offload_ena(vf->driver_caps))
2664 return vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
2665 else
2666 return vsi->inner_vlan_ops.dis_stripping(vsi);
2667 }
2668
ice_vc_get_max_vlan_fltrs(struct ice_vf * vf)2669 static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
2670 {
2671 if (vf->trusted)
2672 return VLAN_N_VID;
2673 else
2674 return ICE_MAX_VLAN_PER_VF;
2675 }
2676
2677 /**
2678 * ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
2679 * @vf: VF that being checked for
2680 *
2681 * When the device is in double VLAN mode, check whether or not the outer VLAN
2682 * is allowed.
2683 */
ice_vf_outer_vlan_not_allowed(struct ice_vf * vf)2684 static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
2685 {
2686 if (ice_vf_is_port_vlan_ena(vf))
2687 return true;
2688
2689 return false;
2690 }
2691
2692 /**
2693 * ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
2694 * @vf: VF that capabilities are being set for
2695 * @caps: VLAN capabilities to populate
2696 *
2697 * Determine VLAN capabilities support based on whether a port VLAN is
2698 * configured. If a port VLAN is configured then the VF should use the inner
2699 * filtering/offload capabilities since the port VLAN is using the outer VLAN
2700 * capabilies.
2701 */
2702 static void
ice_vc_set_dvm_caps(struct ice_vf * vf,struct virtchnl_vlan_caps * caps)2703 ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2704 {
2705 struct virtchnl_vlan_supported_caps *supported_caps;
2706
2707 if (ice_vf_outer_vlan_not_allowed(vf)) {
2708 /* until support for inner VLAN filtering is added when a port
2709 * VLAN is configured, only support software offloaded inner
2710 * VLANs when a port VLAN is confgured in DVM
2711 */
2712 supported_caps = &caps->filtering.filtering_support;
2713 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2714
2715 supported_caps = &caps->offloads.stripping_support;
2716 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2717 VIRTCHNL_VLAN_TOGGLE |
2718 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2719 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2720
2721 supported_caps = &caps->offloads.insertion_support;
2722 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2723 VIRTCHNL_VLAN_TOGGLE |
2724 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2725 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2726
2727 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2728 caps->offloads.ethertype_match =
2729 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2730 } else {
2731 supported_caps = &caps->filtering.filtering_support;
2732 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2733 supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2734 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2735 VIRTCHNL_VLAN_ETHERTYPE_9100 |
2736 VIRTCHNL_VLAN_ETHERTYPE_AND;
2737 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2738 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2739 VIRTCHNL_VLAN_ETHERTYPE_9100;
2740
2741 supported_caps = &caps->offloads.stripping_support;
2742 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2743 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2744 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2745 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2746 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2747 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2748 VIRTCHNL_VLAN_ETHERTYPE_9100 |
2749 VIRTCHNL_VLAN_ETHERTYPE_XOR |
2750 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
2751
2752 supported_caps = &caps->offloads.insertion_support;
2753 supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
2754 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2755 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2756 supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
2757 VIRTCHNL_VLAN_ETHERTYPE_8100 |
2758 VIRTCHNL_VLAN_ETHERTYPE_88A8 |
2759 VIRTCHNL_VLAN_ETHERTYPE_9100 |
2760 VIRTCHNL_VLAN_ETHERTYPE_XOR |
2761 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
2762
2763 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2764
2765 caps->offloads.ethertype_match =
2766 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2767 }
2768
2769 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2770 }
2771
2772 /**
2773 * ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
2774 * @vf: VF that capabilities are being set for
2775 * @caps: VLAN capabilities to populate
2776 *
2777 * Determine VLAN capabilities support based on whether a port VLAN is
2778 * configured. If a port VLAN is configured then the VF does not have any VLAN
2779 * filtering or offload capabilities since the port VLAN is using the inner VLAN
2780 * capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
2781 * VLAN fitlering and offload capabilities.
2782 */
2783 static void
ice_vc_set_svm_caps(struct ice_vf * vf,struct virtchnl_vlan_caps * caps)2784 ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
2785 {
2786 struct virtchnl_vlan_supported_caps *supported_caps;
2787
2788 if (ice_vf_is_port_vlan_ena(vf)) {
2789 supported_caps = &caps->filtering.filtering_support;
2790 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2791 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2792
2793 supported_caps = &caps->offloads.stripping_support;
2794 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2795 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2796
2797 supported_caps = &caps->offloads.insertion_support;
2798 supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
2799 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2800
2801 caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
2802 caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
2803 caps->filtering.max_filters = 0;
2804 } else {
2805 supported_caps = &caps->filtering.filtering_support;
2806 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
2807 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2808 caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2809
2810 supported_caps = &caps->offloads.stripping_support;
2811 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2812 VIRTCHNL_VLAN_TOGGLE |
2813 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2814 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2815
2816 supported_caps = &caps->offloads.insertion_support;
2817 supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
2818 VIRTCHNL_VLAN_TOGGLE |
2819 VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
2820 supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
2821
2822 caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
2823 caps->offloads.ethertype_match =
2824 VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
2825 caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
2826 }
2827 }
2828
2829 /**
2830 * ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
2831 * @vf: VF to determine VLAN capabilities for
2832 *
2833 * This will only be called if the VF and PF successfully negotiated
2834 * VIRTCHNL_VF_OFFLOAD_VLAN_V2.
2835 *
2836 * Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
2837 * is configured or not.
2838 */
ice_vc_get_offload_vlan_v2_caps(struct ice_vf * vf)2839 static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
2840 {
2841 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
2842 struct virtchnl_vlan_caps *caps = NULL;
2843 int err, len = 0;
2844
2845 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
2846 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
2847 goto out;
2848 }
2849
2850 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
2851 if (!caps) {
2852 v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
2853 goto out;
2854 }
2855 len = sizeof(*caps);
2856
2857 if (ice_is_dvm_ena(&vf->pf->hw))
2858 ice_vc_set_dvm_caps(vf, caps);
2859 else
2860 ice_vc_set_svm_caps(vf, caps);
2861
2862 /* store negotiated caps to prevent invalid VF messages */
2863 memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
2864
2865 out:
2866 err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
2867 v_ret, (u8 *)caps, len);
2868 kfree(caps);
2869 return err;
2870 }
2871
2872 /**
2873 * ice_vc_validate_vlan_tpid - validate VLAN TPID
2874 * @filtering_caps: negotiated/supported VLAN filtering capabilities
2875 * @tpid: VLAN TPID used for validation
2876 *
2877 * Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
2878 * the negotiated/supported filtering caps to see if the VLAN TPID is valid.
2879 */
ice_vc_validate_vlan_tpid(u16 filtering_caps,u16 tpid)2880 static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
2881 {
2882 enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
2883
2884 switch (tpid) {
2885 case ETH_P_8021Q:
2886 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
2887 break;
2888 case ETH_P_8021AD:
2889 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
2890 break;
2891 case ETH_P_QINQ1:
2892 vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
2893 break;
2894 }
2895
2896 if (!(filtering_caps & vlan_ethertype))
2897 return false;
2898
2899 return true;
2900 }
2901
2902 /**
2903 * ice_vc_is_valid_vlan - validate the virtchnl_vlan
2904 * @vc_vlan: virtchnl_vlan to validate
2905 *
2906 * If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
2907 * false. Otherwise return true.
2908 */
ice_vc_is_valid_vlan(struct virtchnl_vlan * vc_vlan)2909 static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
2910 {
2911 if (!vc_vlan->tci || !vc_vlan->tpid)
2912 return false;
2913
2914 return true;
2915 }
2916
2917 /**
2918 * ice_vc_validate_vlan_filter_list - validate the filter list from the VF
2919 * @vfc: negotiated/supported VLAN filtering capabilities
2920 * @vfl: VLAN filter list from VF to validate
2921 *
2922 * Validate all of the filters in the VLAN filter list from the VF. If any of
2923 * the checks fail then return false. Otherwise return true.
2924 */
2925 static bool
ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps * vfc,struct virtchnl_vlan_filter_list_v2 * vfl)2926 ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
2927 struct virtchnl_vlan_filter_list_v2 *vfl)
2928 {
2929 u16 i;
2930
2931 if (!vfl->num_elements)
2932 return false;
2933
2934 for (i = 0; i < vfl->num_elements; i++) {
2935 struct virtchnl_vlan_supported_caps *filtering_support =
2936 &vfc->filtering_support;
2937 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
2938 struct virtchnl_vlan *outer = &vlan_fltr->outer;
2939 struct virtchnl_vlan *inner = &vlan_fltr->inner;
2940
2941 if ((ice_vc_is_valid_vlan(outer) &&
2942 filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
2943 (ice_vc_is_valid_vlan(inner) &&
2944 filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
2945 return false;
2946
2947 if ((outer->tci_mask &&
2948 !(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
2949 (inner->tci_mask &&
2950 !(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
2951 return false;
2952
2953 if (((outer->tci & VLAN_PRIO_MASK) &&
2954 !(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
2955 ((inner->tci & VLAN_PRIO_MASK) &&
2956 !(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
2957 return false;
2958
2959 if ((ice_vc_is_valid_vlan(outer) &&
2960 !ice_vc_validate_vlan_tpid(filtering_support->outer,
2961 outer->tpid)) ||
2962 (ice_vc_is_valid_vlan(inner) &&
2963 !ice_vc_validate_vlan_tpid(filtering_support->inner,
2964 inner->tpid)))
2965 return false;
2966 }
2967
2968 return true;
2969 }
2970
2971 /**
2972 * ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
2973 * @vc_vlan: struct virtchnl_vlan to transform
2974 */
ice_vc_to_vlan(struct virtchnl_vlan * vc_vlan)2975 static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
2976 {
2977 struct ice_vlan vlan = { 0 };
2978
2979 vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2980 vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
2981 vlan.tpid = vc_vlan->tpid;
2982
2983 return vlan;
2984 }
2985
2986 /**
2987 * ice_vc_vlan_action - action to perform on the virthcnl_vlan
2988 * @vsi: VF's VSI used to perform the action
2989 * @vlan_action: function to perform the action with (i.e. add/del)
2990 * @vlan: VLAN filter to perform the action with
2991 */
2992 static int
ice_vc_vlan_action(struct ice_vsi * vsi,int (* vlan_action)(struct ice_vsi *,struct ice_vlan *),struct ice_vlan * vlan)2993 ice_vc_vlan_action(struct ice_vsi *vsi,
2994 int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
2995 struct ice_vlan *vlan)
2996 {
2997 int err;
2998
2999 err = vlan_action(vsi, vlan);
3000 if (err)
3001 return err;
3002
3003 return 0;
3004 }
3005
3006 /**
3007 * ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
3008 * @vf: VF used to delete the VLAN(s)
3009 * @vsi: VF's VSI used to delete the VLAN(s)
3010 * @vfl: virthchnl filter list used to delete the filters
3011 */
3012 static int
ice_vc_del_vlans(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_vlan_filter_list_v2 * vfl)3013 ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3014 struct virtchnl_vlan_filter_list_v2 *vfl)
3015 {
3016 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3017 int err;
3018 u16 i;
3019
3020 for (i = 0; i < vfl->num_elements; i++) {
3021 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3022 struct virtchnl_vlan *vc_vlan;
3023
3024 vc_vlan = &vlan_fltr->outer;
3025 if (ice_vc_is_valid_vlan(vc_vlan)) {
3026 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3027
3028 err = ice_vc_vlan_action(vsi,
3029 vsi->outer_vlan_ops.del_vlan,
3030 &vlan);
3031 if (err)
3032 return err;
3033
3034 if (vlan_promisc)
3035 ice_vf_dis_vlan_promisc(vsi, &vlan);
3036
3037 /* Disable VLAN filtering when only VLAN 0 is left */
3038 if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
3039 err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
3040 if (err)
3041 return err;
3042 }
3043 }
3044
3045 vc_vlan = &vlan_fltr->inner;
3046 if (ice_vc_is_valid_vlan(vc_vlan)) {
3047 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3048
3049 err = ice_vc_vlan_action(vsi,
3050 vsi->inner_vlan_ops.del_vlan,
3051 &vlan);
3052 if (err)
3053 return err;
3054
3055 /* no support for VLAN promiscuous on inner VLAN unless
3056 * we are in Single VLAN Mode (SVM)
3057 */
3058 if (!ice_is_dvm_ena(&vsi->back->hw)) {
3059 if (vlan_promisc)
3060 ice_vf_dis_vlan_promisc(vsi, &vlan);
3061
3062 /* Disable VLAN filtering when only VLAN 0 is left */
3063 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3064 err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
3065 if (err)
3066 return err;
3067 }
3068 }
3069 }
3070 }
3071
3072 return 0;
3073 }
3074
3075 /**
3076 * ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
3077 * @vf: VF the message was received from
3078 * @msg: message received from the VF
3079 */
ice_vc_remove_vlan_v2_msg(struct ice_vf * vf,u8 * msg)3080 static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3081 {
3082 struct virtchnl_vlan_filter_list_v2 *vfl =
3083 (struct virtchnl_vlan_filter_list_v2 *)msg;
3084 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3085 struct ice_vsi *vsi;
3086
3087 if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
3088 vfl)) {
3089 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3090 goto out;
3091 }
3092
3093 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3094 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3095 goto out;
3096 }
3097
3098 vsi = ice_get_vf_vsi(vf);
3099 if (!vsi) {
3100 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3101 goto out;
3102 }
3103
3104 if (ice_vc_del_vlans(vf, vsi, vfl))
3105 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3106
3107 out:
3108 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
3109 0);
3110 }
3111
3112 /**
3113 * ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
3114 * @vf: VF used to add the VLAN(s)
3115 * @vsi: VF's VSI used to add the VLAN(s)
3116 * @vfl: virthchnl filter list used to add the filters
3117 */
3118 static int
ice_vc_add_vlans(struct ice_vf * vf,struct ice_vsi * vsi,struct virtchnl_vlan_filter_list_v2 * vfl)3119 ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
3120 struct virtchnl_vlan_filter_list_v2 *vfl)
3121 {
3122 bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
3123 int err;
3124 u16 i;
3125
3126 for (i = 0; i < vfl->num_elements; i++) {
3127 struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
3128 struct virtchnl_vlan *vc_vlan;
3129
3130 vc_vlan = &vlan_fltr->outer;
3131 if (ice_vc_is_valid_vlan(vc_vlan)) {
3132 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3133
3134 err = ice_vc_vlan_action(vsi,
3135 vsi->outer_vlan_ops.add_vlan,
3136 &vlan);
3137 if (err)
3138 return err;
3139
3140 if (vlan_promisc) {
3141 err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3142 if (err)
3143 return err;
3144 }
3145
3146 /* Enable VLAN filtering on first non-zero VLAN */
3147 if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
3148 err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
3149 if (err)
3150 return err;
3151 }
3152 }
3153
3154 vc_vlan = &vlan_fltr->inner;
3155 if (ice_vc_is_valid_vlan(vc_vlan)) {
3156 struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
3157
3158 err = ice_vc_vlan_action(vsi,
3159 vsi->inner_vlan_ops.add_vlan,
3160 &vlan);
3161 if (err)
3162 return err;
3163
3164 /* no support for VLAN promiscuous on inner VLAN unless
3165 * we are in Single VLAN Mode (SVM)
3166 */
3167 if (!ice_is_dvm_ena(&vsi->back->hw)) {
3168 if (vlan_promisc) {
3169 err = ice_vf_ena_vlan_promisc(vsi, &vlan);
3170 if (err)
3171 return err;
3172 }
3173
3174 /* Enable VLAN filtering on first non-zero VLAN */
3175 if (vf->spoofchk && vlan.vid) {
3176 err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
3177 if (err)
3178 return err;
3179 }
3180 }
3181 }
3182 }
3183
3184 return 0;
3185 }
3186
3187 /**
3188 * ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
3189 * @vsi: VF VSI used to get number of existing VLAN filters
3190 * @vfc: negotiated/supported VLAN filtering capabilities
3191 * @vfl: VLAN filter list from VF to validate
3192 *
3193 * Validate all of the filters in the VLAN filter list from the VF during the
3194 * VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
3195 * Otherwise return true.
3196 */
3197 static bool
ice_vc_validate_add_vlan_filter_list(struct ice_vsi * vsi,struct virtchnl_vlan_filtering_caps * vfc,struct virtchnl_vlan_filter_list_v2 * vfl)3198 ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
3199 struct virtchnl_vlan_filtering_caps *vfc,
3200 struct virtchnl_vlan_filter_list_v2 *vfl)
3201 {
3202 u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
3203 vfl->num_elements;
3204
3205 if (num_requested_filters > vfc->max_filters)
3206 return false;
3207
3208 return ice_vc_validate_vlan_filter_list(vfc, vfl);
3209 }
3210
3211 /**
3212 * ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
3213 * @vf: VF the message was received from
3214 * @msg: message received from the VF
3215 */
ice_vc_add_vlan_v2_msg(struct ice_vf * vf,u8 * msg)3216 static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
3217 {
3218 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3219 struct virtchnl_vlan_filter_list_v2 *vfl =
3220 (struct virtchnl_vlan_filter_list_v2 *)msg;
3221 struct ice_vsi *vsi;
3222
3223 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3224 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3225 goto out;
3226 }
3227
3228 if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
3229 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3230 goto out;
3231 }
3232
3233 vsi = ice_get_vf_vsi(vf);
3234 if (!vsi) {
3235 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3236 goto out;
3237 }
3238
3239 if (!ice_vc_validate_add_vlan_filter_list(vsi,
3240 &vf->vlan_v2_caps.filtering,
3241 vfl)) {
3242 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3243 goto out;
3244 }
3245
3246 if (ice_vc_add_vlans(vf, vsi, vfl))
3247 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3248
3249 out:
3250 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
3251 0);
3252 }
3253
3254 /**
3255 * ice_vc_valid_vlan_setting - validate VLAN setting
3256 * @negotiated_settings: negotiated VLAN settings during VF init
3257 * @ethertype_setting: ethertype(s) requested for the VLAN setting
3258 */
3259 static bool
ice_vc_valid_vlan_setting(u32 negotiated_settings,u32 ethertype_setting)3260 ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
3261 {
3262 if (ethertype_setting && !(negotiated_settings & ethertype_setting))
3263 return false;
3264
3265 /* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
3266 * VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
3267 */
3268 if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
3269 hweight32(ethertype_setting) > 1)
3270 return false;
3271
3272 /* ability to modify the VLAN setting was not negotiated */
3273 if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
3274 return false;
3275
3276 return true;
3277 }
3278
3279 /**
3280 * ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
3281 * @caps: negotiated VLAN settings during VF init
3282 * @msg: message to validate
3283 *
3284 * Used to validate any VLAN virtchnl message sent as a
3285 * virtchnl_vlan_setting structure. Validates the message against the
3286 * negotiated/supported caps during VF driver init.
3287 */
3288 static bool
ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps * caps,struct virtchnl_vlan_setting * msg)3289 ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
3290 struct virtchnl_vlan_setting *msg)
3291 {
3292 if ((!msg->outer_ethertype_setting &&
3293 !msg->inner_ethertype_setting) ||
3294 (!caps->outer && !caps->inner))
3295 return false;
3296
3297 if (msg->outer_ethertype_setting &&
3298 !ice_vc_valid_vlan_setting(caps->outer,
3299 msg->outer_ethertype_setting))
3300 return false;
3301
3302 if (msg->inner_ethertype_setting &&
3303 !ice_vc_valid_vlan_setting(caps->inner,
3304 msg->inner_ethertype_setting))
3305 return false;
3306
3307 return true;
3308 }
3309
3310 /**
3311 * ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
3312 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
3313 * @tpid: VLAN TPID to populate
3314 */
ice_vc_get_tpid(u32 ethertype_setting,u16 * tpid)3315 static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
3316 {
3317 switch (ethertype_setting) {
3318 case VIRTCHNL_VLAN_ETHERTYPE_8100:
3319 *tpid = ETH_P_8021Q;
3320 break;
3321 case VIRTCHNL_VLAN_ETHERTYPE_88A8:
3322 *tpid = ETH_P_8021AD;
3323 break;
3324 case VIRTCHNL_VLAN_ETHERTYPE_9100:
3325 *tpid = ETH_P_QINQ1;
3326 break;
3327 default:
3328 *tpid = 0;
3329 return -EINVAL;
3330 }
3331
3332 return 0;
3333 }
3334
3335 /**
3336 * ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
3337 * @vsi: VF's VSI used to enable the VLAN offload
3338 * @ena_offload: function used to enable the VLAN offload
3339 * @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
3340 */
3341 static int
ice_vc_ena_vlan_offload(struct ice_vsi * vsi,int (* ena_offload)(struct ice_vsi * vsi,u16 tpid),u32 ethertype_setting)3342 ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
3343 int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
3344 u32 ethertype_setting)
3345 {
3346 u16 tpid;
3347 int err;
3348
3349 err = ice_vc_get_tpid(ethertype_setting, &tpid);
3350 if (err)
3351 return err;
3352
3353 err = ena_offload(vsi, tpid);
3354 if (err)
3355 return err;
3356
3357 return 0;
3358 }
3359
3360 #define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3
3361 #define ICE_L2TSEL_BIT_OFFSET 23
3362 enum ice_l2tsel {
3363 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
3364 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
3365 };
3366
3367 /**
3368 * ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
3369 * @vsi: VSI used to update l2tsel on
3370 * @l2tsel: l2tsel setting requested
3371 *
3372 * Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
3373 * This will modify which descriptor field the first offloaded VLAN will be
3374 * stripped into.
3375 */
ice_vsi_update_l2tsel(struct ice_vsi * vsi,enum ice_l2tsel l2tsel)3376 static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
3377 {
3378 struct ice_hw *hw = &vsi->back->hw;
3379 u32 l2tsel_bit;
3380 int i;
3381
3382 if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
3383 l2tsel_bit = 0;
3384 else
3385 l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
3386
3387 for (i = 0; i < vsi->alloc_rxq; i++) {
3388 u16 pfq = vsi->rxq_map[i];
3389 u32 qrx_context_offset;
3390 u32 regval;
3391
3392 qrx_context_offset =
3393 QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
3394
3395 regval = rd32(hw, qrx_context_offset);
3396 regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
3397 regval |= l2tsel_bit;
3398 wr32(hw, qrx_context_offset, regval);
3399 }
3400 }
3401
3402 /**
3403 * ice_vc_ena_vlan_stripping_v2_msg
3404 * @vf: VF the message was received from
3405 * @msg: message received from the VF
3406 *
3407 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
3408 */
ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf * vf,u8 * msg)3409 static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3410 {
3411 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3412 struct virtchnl_vlan_supported_caps *stripping_support;
3413 struct virtchnl_vlan_setting *strip_msg =
3414 (struct virtchnl_vlan_setting *)msg;
3415 u32 ethertype_setting;
3416 struct ice_vsi *vsi;
3417
3418 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3419 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3420 goto out;
3421 }
3422
3423 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3424 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3425 goto out;
3426 }
3427
3428 vsi = ice_get_vf_vsi(vf);
3429 if (!vsi) {
3430 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3431 goto out;
3432 }
3433
3434 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3435 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3436 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3437 goto out;
3438 }
3439
3440 ethertype_setting = strip_msg->outer_ethertype_setting;
3441 if (ethertype_setting) {
3442 if (ice_vc_ena_vlan_offload(vsi,
3443 vsi->outer_vlan_ops.ena_stripping,
3444 ethertype_setting)) {
3445 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3446 goto out;
3447 } else {
3448 enum ice_l2tsel l2tsel =
3449 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
3450
3451 /* PF tells the VF that the outer VLAN tag is always
3452 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3453 * inner is always extracted to
3454 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3455 * support outer stripping so the first tag always ends
3456 * up in L2TAG2_2ND and the second/inner tag, if
3457 * enabled, is extracted in L2TAG1.
3458 */
3459 ice_vsi_update_l2tsel(vsi, l2tsel);
3460 }
3461 }
3462
3463 ethertype_setting = strip_msg->inner_ethertype_setting;
3464 if (ethertype_setting &&
3465 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
3466 ethertype_setting)) {
3467 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3468 goto out;
3469 }
3470
3471 out:
3472 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
3473 v_ret, NULL, 0);
3474 }
3475
3476 /**
3477 * ice_vc_dis_vlan_stripping_v2_msg
3478 * @vf: VF the message was received from
3479 * @msg: message received from the VF
3480 *
3481 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
3482 */
ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf * vf,u8 * msg)3483 static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
3484 {
3485 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3486 struct virtchnl_vlan_supported_caps *stripping_support;
3487 struct virtchnl_vlan_setting *strip_msg =
3488 (struct virtchnl_vlan_setting *)msg;
3489 u32 ethertype_setting;
3490 struct ice_vsi *vsi;
3491
3492 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3493 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3494 goto out;
3495 }
3496
3497 if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
3498 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3499 goto out;
3500 }
3501
3502 vsi = ice_get_vf_vsi(vf);
3503 if (!vsi) {
3504 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3505 goto out;
3506 }
3507
3508 stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
3509 if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
3510 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3511 goto out;
3512 }
3513
3514 ethertype_setting = strip_msg->outer_ethertype_setting;
3515 if (ethertype_setting) {
3516 if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
3517 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3518 goto out;
3519 } else {
3520 enum ice_l2tsel l2tsel =
3521 ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
3522
3523 /* PF tells the VF that the outer VLAN tag is always
3524 * extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
3525 * inner is always extracted to
3526 * VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
3527 * support inner stripping while outer stripping is
3528 * disabled so that the first and only tag is extracted
3529 * in L2TAG1.
3530 */
3531 ice_vsi_update_l2tsel(vsi, l2tsel);
3532 }
3533 }
3534
3535 ethertype_setting = strip_msg->inner_ethertype_setting;
3536 if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
3537 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3538 goto out;
3539 }
3540
3541 out:
3542 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
3543 v_ret, NULL, 0);
3544 }
3545
3546 /**
3547 * ice_vc_ena_vlan_insertion_v2_msg
3548 * @vf: VF the message was received from
3549 * @msg: message received from the VF
3550 *
3551 * virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
3552 */
ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf * vf,u8 * msg)3553 static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3554 {
3555 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3556 struct virtchnl_vlan_supported_caps *insertion_support;
3557 struct virtchnl_vlan_setting *insertion_msg =
3558 (struct virtchnl_vlan_setting *)msg;
3559 u32 ethertype_setting;
3560 struct ice_vsi *vsi;
3561
3562 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3563 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3564 goto out;
3565 }
3566
3567 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3568 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3569 goto out;
3570 }
3571
3572 vsi = ice_get_vf_vsi(vf);
3573 if (!vsi) {
3574 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3575 goto out;
3576 }
3577
3578 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3579 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3580 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3581 goto out;
3582 }
3583
3584 ethertype_setting = insertion_msg->outer_ethertype_setting;
3585 if (ethertype_setting &&
3586 ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
3587 ethertype_setting)) {
3588 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3589 goto out;
3590 }
3591
3592 ethertype_setting = insertion_msg->inner_ethertype_setting;
3593 if (ethertype_setting &&
3594 ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
3595 ethertype_setting)) {
3596 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3597 goto out;
3598 }
3599
3600 out:
3601 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
3602 v_ret, NULL, 0);
3603 }
3604
3605 /**
3606 * ice_vc_dis_vlan_insertion_v2_msg
3607 * @vf: VF the message was received from
3608 * @msg: message received from the VF
3609 *
3610 * virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
3611 */
ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf * vf,u8 * msg)3612 static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
3613 {
3614 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3615 struct virtchnl_vlan_supported_caps *insertion_support;
3616 struct virtchnl_vlan_setting *insertion_msg =
3617 (struct virtchnl_vlan_setting *)msg;
3618 u32 ethertype_setting;
3619 struct ice_vsi *vsi;
3620
3621 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
3622 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3623 goto out;
3624 }
3625
3626 if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
3627 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3628 goto out;
3629 }
3630
3631 vsi = ice_get_vf_vsi(vf);
3632 if (!vsi) {
3633 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3634 goto out;
3635 }
3636
3637 insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
3638 if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
3639 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3640 goto out;
3641 }
3642
3643 ethertype_setting = insertion_msg->outer_ethertype_setting;
3644 if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
3645 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3646 goto out;
3647 }
3648
3649 ethertype_setting = insertion_msg->inner_ethertype_setting;
3650 if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
3651 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3652 goto out;
3653 }
3654
3655 out:
3656 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
3657 v_ret, NULL, 0);
3658 }
3659
3660 static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
3661 .get_ver_msg = ice_vc_get_ver_msg,
3662 .get_vf_res_msg = ice_vc_get_vf_res_msg,
3663 .reset_vf = ice_vc_reset_vf_msg,
3664 .add_mac_addr_msg = ice_vc_add_mac_addr_msg,
3665 .del_mac_addr_msg = ice_vc_del_mac_addr_msg,
3666 .cfg_qs_msg = ice_vc_cfg_qs_msg,
3667 .ena_qs_msg = ice_vc_ena_qs_msg,
3668 .dis_qs_msg = ice_vc_dis_qs_msg,
3669 .request_qs_msg = ice_vc_request_qs_msg,
3670 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3671 .config_rss_key = ice_vc_config_rss_key,
3672 .config_rss_lut = ice_vc_config_rss_lut,
3673 .get_stats_msg = ice_vc_get_stats_msg,
3674 .cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
3675 .add_vlan_msg = ice_vc_add_vlan_msg,
3676 .remove_vlan_msg = ice_vc_remove_vlan_msg,
3677 .query_rxdid = ice_vc_query_rxdid,
3678 .get_rss_hena = ice_vc_get_rss_hena,
3679 .set_rss_hena_msg = ice_vc_set_rss_hena,
3680 .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3681 .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3682 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3683 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3684 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3685 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3686 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3687 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3688 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3689 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3690 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3691 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3692 };
3693
3694 /**
3695 * ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
3696 * @vf: the VF to switch ops
3697 */
ice_virtchnl_set_dflt_ops(struct ice_vf * vf)3698 void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
3699 {
3700 vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
3701 }
3702
3703 /**
3704 * ice_vc_repr_add_mac
3705 * @vf: pointer to VF
3706 * @msg: virtchannel message
3707 *
3708 * When port representors are created, we do not add MAC rule
3709 * to firmware, we store it so that PF could report same
3710 * MAC as VF.
3711 */
ice_vc_repr_add_mac(struct ice_vf * vf,u8 * msg)3712 static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
3713 {
3714 enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
3715 struct virtchnl_ether_addr_list *al =
3716 (struct virtchnl_ether_addr_list *)msg;
3717 struct ice_vsi *vsi;
3718 struct ice_pf *pf;
3719 int i;
3720
3721 if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
3722 !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
3723 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3724 goto handle_mac_exit;
3725 }
3726
3727 pf = vf->pf;
3728
3729 vsi = ice_get_vf_vsi(vf);
3730 if (!vsi) {
3731 v_ret = VIRTCHNL_STATUS_ERR_PARAM;
3732 goto handle_mac_exit;
3733 }
3734
3735 for (i = 0; i < al->num_elements; i++) {
3736 u8 *mac_addr = al->list[i].addr;
3737
3738 if (!is_unicast_ether_addr(mac_addr) ||
3739 ether_addr_equal(mac_addr, vf->hw_lan_addr))
3740 continue;
3741
3742 if (vf->pf_set_mac) {
3743 dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
3744 v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
3745 goto handle_mac_exit;
3746 }
3747
3748 ice_vfhw_mac_add(vf, &al->list[i]);
3749 vf->num_mac++;
3750 break;
3751 }
3752
3753 handle_mac_exit:
3754 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
3755 v_ret, NULL, 0);
3756 }
3757
3758 /**
3759 * ice_vc_repr_del_mac - response with success for deleting MAC
3760 * @vf: pointer to VF
3761 * @msg: virtchannel message
3762 *
3763 * Respond with success to not break normal VF flow.
3764 * For legacy VF driver try to update cached MAC address.
3765 */
3766 static int
ice_vc_repr_del_mac(struct ice_vf __always_unused * vf,u8 __always_unused * msg)3767 ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
3768 {
3769 struct virtchnl_ether_addr_list *al =
3770 (struct virtchnl_ether_addr_list *)msg;
3771
3772 ice_update_legacy_cached_mac(vf, &al->list[0]);
3773
3774 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
3775 VIRTCHNL_STATUS_SUCCESS, NULL, 0);
3776 }
3777
3778 static int
ice_vc_repr_cfg_promiscuous_mode(struct ice_vf * vf,u8 __always_unused * msg)3779 ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
3780 {
3781 dev_dbg(ice_pf_to_dev(vf->pf),
3782 "Can't config promiscuous mode in switchdev mode for VF %d\n",
3783 vf->vf_id);
3784 return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
3785 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
3786 NULL, 0);
3787 }
3788
3789 static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
3790 .get_ver_msg = ice_vc_get_ver_msg,
3791 .get_vf_res_msg = ice_vc_get_vf_res_msg,
3792 .reset_vf = ice_vc_reset_vf_msg,
3793 .add_mac_addr_msg = ice_vc_repr_add_mac,
3794 .del_mac_addr_msg = ice_vc_repr_del_mac,
3795 .cfg_qs_msg = ice_vc_cfg_qs_msg,
3796 .ena_qs_msg = ice_vc_ena_qs_msg,
3797 .dis_qs_msg = ice_vc_dis_qs_msg,
3798 .request_qs_msg = ice_vc_request_qs_msg,
3799 .cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
3800 .config_rss_key = ice_vc_config_rss_key,
3801 .config_rss_lut = ice_vc_config_rss_lut,
3802 .get_stats_msg = ice_vc_get_stats_msg,
3803 .cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
3804 .add_vlan_msg = ice_vc_add_vlan_msg,
3805 .remove_vlan_msg = ice_vc_remove_vlan_msg,
3806 .query_rxdid = ice_vc_query_rxdid,
3807 .get_rss_hena = ice_vc_get_rss_hena,
3808 .set_rss_hena_msg = ice_vc_set_rss_hena,
3809 .ena_vlan_stripping = ice_vc_ena_vlan_stripping,
3810 .dis_vlan_stripping = ice_vc_dis_vlan_stripping,
3811 .handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
3812 .add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
3813 .del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
3814 .get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
3815 .add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
3816 .remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
3817 .ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
3818 .dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
3819 .ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
3820 .dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
3821 };
3822
3823 /**
3824 * ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
3825 * @vf: the VF to switch ops
3826 */
ice_virtchnl_set_repr_ops(struct ice_vf * vf)3827 void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
3828 {
3829 vf->virtchnl_ops = &ice_virtchnl_repr_ops;
3830 }
3831
3832 /**
3833 * ice_is_malicious_vf - check if this vf might be overflowing mailbox
3834 * @vf: the VF to check
3835 * @mbxdata: data about the state of the mailbox
3836 *
3837 * Detect if a given VF might be malicious and attempting to overflow the PF
3838 * mailbox. If so, log a warning message and ignore this event.
3839 */
3840 static bool
ice_is_malicious_vf(struct ice_vf * vf,struct ice_mbx_data * mbxdata)3841 ice_is_malicious_vf(struct ice_vf *vf, struct ice_mbx_data *mbxdata)
3842 {
3843 bool report_malvf = false;
3844 struct device *dev;
3845 struct ice_pf *pf;
3846 int status;
3847
3848 pf = vf->pf;
3849 dev = ice_pf_to_dev(pf);
3850
3851 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
3852 return vf->mbx_info.malicious;
3853
3854 /* check to see if we have a newly malicious VF */
3855 status = ice_mbx_vf_state_handler(&pf->hw, mbxdata, &vf->mbx_info,
3856 &report_malvf);
3857 if (status)
3858 dev_warn_ratelimited(dev, "Unable to check status of mailbox overflow for VF %u MAC %pM, status %d\n",
3859 vf->vf_id, vf->dev_lan_addr, status);
3860
3861 if (report_malvf) {
3862 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3863 u8 zero_addr[ETH_ALEN] = {};
3864
3865 dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
3866 vf->dev_lan_addr,
3867 pf_vsi ? pf_vsi->netdev->dev_addr : zero_addr);
3868 }
3869
3870 return vf->mbx_info.malicious;
3871 }
3872
3873 /**
3874 * ice_vc_process_vf_msg - Process request from VF
3875 * @pf: pointer to the PF structure
3876 * @event: pointer to the AQ event
3877 * @mbxdata: information used to detect VF attempting mailbox overflow
3878 *
3879 * called from the common asq/arq handler to
3880 * process request from VF
3881 */
ice_vc_process_vf_msg(struct ice_pf * pf,struct ice_rq_event_info * event,struct ice_mbx_data * mbxdata)3882 void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event,
3883 struct ice_mbx_data *mbxdata)
3884 {
3885 u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
3886 s16 vf_id = le16_to_cpu(event->desc.retval);
3887 const struct ice_virtchnl_ops *ops;
3888 u16 msglen = event->msg_len;
3889 u8 *msg = event->msg_buf;
3890 struct ice_vf *vf = NULL;
3891 struct device *dev;
3892 int err = 0;
3893
3894 dev = ice_pf_to_dev(pf);
3895
3896 vf = ice_get_vf_by_id(pf, vf_id);
3897 if (!vf) {
3898 dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
3899 vf_id, v_opcode, msglen);
3900 return;
3901 }
3902
3903 mutex_lock(&vf->cfg_lock);
3904
3905 /* Check if the VF is trying to overflow the mailbox */
3906 if (ice_is_malicious_vf(vf, mbxdata))
3907 goto finish;
3908
3909 /* Check if VF is disabled. */
3910 if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
3911 err = -EPERM;
3912 goto error_handler;
3913 }
3914
3915 ops = vf->virtchnl_ops;
3916
3917 /* Perform basic checks on the msg */
3918 err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
3919 if (err) {
3920 if (err == VIRTCHNL_STATUS_ERR_PARAM)
3921 err = -EPERM;
3922 else
3923 err = -EINVAL;
3924 }
3925
3926 error_handler:
3927 if (err) {
3928 ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
3929 NULL, 0);
3930 dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
3931 vf_id, v_opcode, msglen, err);
3932 goto finish;
3933 }
3934
3935 if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
3936 ice_vc_send_msg_to_vf(vf, v_opcode,
3937 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
3938 0);
3939 goto finish;
3940 }
3941
3942 switch (v_opcode) {
3943 case VIRTCHNL_OP_VERSION:
3944 err = ops->get_ver_msg(vf, msg);
3945 break;
3946 case VIRTCHNL_OP_GET_VF_RESOURCES:
3947 err = ops->get_vf_res_msg(vf, msg);
3948 if (ice_vf_init_vlan_stripping(vf))
3949 dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
3950 vf->vf_id);
3951 ice_vc_notify_vf_link_state(vf);
3952 break;
3953 case VIRTCHNL_OP_RESET_VF:
3954 ops->reset_vf(vf);
3955 break;
3956 case VIRTCHNL_OP_ADD_ETH_ADDR:
3957 err = ops->add_mac_addr_msg(vf, msg);
3958 break;
3959 case VIRTCHNL_OP_DEL_ETH_ADDR:
3960 err = ops->del_mac_addr_msg(vf, msg);
3961 break;
3962 case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
3963 err = ops->cfg_qs_msg(vf, msg);
3964 break;
3965 case VIRTCHNL_OP_ENABLE_QUEUES:
3966 err = ops->ena_qs_msg(vf, msg);
3967 ice_vc_notify_vf_link_state(vf);
3968 break;
3969 case VIRTCHNL_OP_DISABLE_QUEUES:
3970 err = ops->dis_qs_msg(vf, msg);
3971 break;
3972 case VIRTCHNL_OP_REQUEST_QUEUES:
3973 err = ops->request_qs_msg(vf, msg);
3974 break;
3975 case VIRTCHNL_OP_CONFIG_IRQ_MAP:
3976 err = ops->cfg_irq_map_msg(vf, msg);
3977 break;
3978 case VIRTCHNL_OP_CONFIG_RSS_KEY:
3979 err = ops->config_rss_key(vf, msg);
3980 break;
3981 case VIRTCHNL_OP_CONFIG_RSS_LUT:
3982 err = ops->config_rss_lut(vf, msg);
3983 break;
3984 case VIRTCHNL_OP_GET_STATS:
3985 err = ops->get_stats_msg(vf, msg);
3986 break;
3987 case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
3988 err = ops->cfg_promiscuous_mode_msg(vf, msg);
3989 break;
3990 case VIRTCHNL_OP_ADD_VLAN:
3991 err = ops->add_vlan_msg(vf, msg);
3992 break;
3993 case VIRTCHNL_OP_DEL_VLAN:
3994 err = ops->remove_vlan_msg(vf, msg);
3995 break;
3996 case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
3997 err = ops->query_rxdid(vf);
3998 break;
3999 case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
4000 err = ops->get_rss_hena(vf);
4001 break;
4002 case VIRTCHNL_OP_SET_RSS_HENA:
4003 err = ops->set_rss_hena_msg(vf, msg);
4004 break;
4005 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
4006 err = ops->ena_vlan_stripping(vf);
4007 break;
4008 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
4009 err = ops->dis_vlan_stripping(vf);
4010 break;
4011 case VIRTCHNL_OP_ADD_FDIR_FILTER:
4012 err = ops->add_fdir_fltr_msg(vf, msg);
4013 break;
4014 case VIRTCHNL_OP_DEL_FDIR_FILTER:
4015 err = ops->del_fdir_fltr_msg(vf, msg);
4016 break;
4017 case VIRTCHNL_OP_ADD_RSS_CFG:
4018 err = ops->handle_rss_cfg_msg(vf, msg, true);
4019 break;
4020 case VIRTCHNL_OP_DEL_RSS_CFG:
4021 err = ops->handle_rss_cfg_msg(vf, msg, false);
4022 break;
4023 case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
4024 err = ops->get_offload_vlan_v2_caps(vf);
4025 break;
4026 case VIRTCHNL_OP_ADD_VLAN_V2:
4027 err = ops->add_vlan_v2_msg(vf, msg);
4028 break;
4029 case VIRTCHNL_OP_DEL_VLAN_V2:
4030 err = ops->remove_vlan_v2_msg(vf, msg);
4031 break;
4032 case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
4033 err = ops->ena_vlan_stripping_v2_msg(vf, msg);
4034 break;
4035 case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
4036 err = ops->dis_vlan_stripping_v2_msg(vf, msg);
4037 break;
4038 case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
4039 err = ops->ena_vlan_insertion_v2_msg(vf, msg);
4040 break;
4041 case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
4042 err = ops->dis_vlan_insertion_v2_msg(vf, msg);
4043 break;
4044 case VIRTCHNL_OP_UNKNOWN:
4045 default:
4046 dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
4047 vf_id);
4048 err = ice_vc_send_msg_to_vf(vf, v_opcode,
4049 VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
4050 NULL, 0);
4051 break;
4052 }
4053 if (err) {
4054 /* Helper function cares less about error return values here
4055 * as it is busy with pending work.
4056 */
4057 dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
4058 vf_id, v_opcode, err);
4059 }
4060
4061 finish:
4062 mutex_unlock(&vf->cfg_lock);
4063 ice_put_vf(vf);
4064 }
4065