1 
2 /* drivers/atm/firestream.c - FireStream 155 (MB86697) and
3  *                            FireStream  50 (MB86695) device driver
4  */
5 
6 /* Written & (C) 2000 by R.E.Wolff@BitWizard.nl
7  * Copied snippets from zatm.c by Werner Almesberger, EPFL LRC/ICA
8  * and ambassador.c Copyright (C) 1995-1999  Madge Networks Ltd
9  */
10 
11 /*
12   This program is free software; you can redistribute it and/or modify
13   it under the terms of the GNU General Public License as published by
14   the Free Software Foundation; either version 2 of the License, or
15   (at your option) any later version.
16 
17   This program is distributed in the hope that it will be useful,
18   but WITHOUT ANY WARRANTY; without even the implied warranty of
19   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20   GNU General Public License for more details.
21 
22   You should have received a copy of the GNU General Public License
23   along with this program; if not, write to the Free Software
24   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25 
26   The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
27   system and in the file COPYING in the Linux kernel source.
28 */
29 
30 
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/errno.h>
38 #include <linux/atm.h>
39 #include <linux/atmdev.h>
40 #include <linux/sonet.h>
41 #include <linux/skbuff.h>
42 #include <linux/netdevice.h>
43 #include <linux/delay.h>
44 #include <linux/ioport.h> /* for request_region */
45 #include <linux/uio.h>
46 #include <linux/init.h>
47 #include <linux/interrupt.h>
48 #include <linux/capability.h>
49 #include <linux/bitops.h>
50 #include <linux/slab.h>
51 #include <asm/byteorder.h>
52 #include <asm/string.h>
53 #include <asm/io.h>
54 #include <linux/atomic.h>
55 #include <linux/uaccess.h>
56 #include <linux/wait.h>
57 
58 #include "firestream.h"
59 
60 static int loopback = 0;
61 static int num=0x5a;
62 
63 /* According to measurements (but they look suspicious to me!) done in
64  * '97, 37% of the packets are one cell in size. So it pays to have
65  * buffers allocated at that size. A large jump in percentage of
66  * packets occurs at packets around 536 bytes in length. So it also
67  * pays to have those pre-allocated. Unfortunately, we can't fully
68  * take advantage of this as the majority of the packets is likely to
69  * be TCP/IP (As where obviously the measurement comes from) There the
70  * link would be opened with say a 1500 byte MTU, and we can't handle
71  * smaller buffers more efficiently than the larger ones. -- REW
72  */
73 
74 /* Due to the way Linux memory management works, specifying "576" as
75  * an allocation size here isn't going to help. They are allocated
76  * from 1024-byte regions anyway. With the size of the sk_buffs (quite
77  * large), it doesn't pay to allocate the smallest size (64) -- REW */
78 
79 /* This is all guesswork. Hard numbers to back this up or disprove this,
80  * are appreciated. -- REW */
81 
82 /* The last entry should be about 64k. However, the "buffer size" is
83  * passed to the chip in a 16 bit field. I don't know how "65536"
84  * would be interpreted. -- REW */
85 
86 #define NP FS_NR_FREE_POOLS
87 static int rx_buf_sizes[NP]  = {128,  256,  512, 1024, 2048, 4096, 16384, 65520};
88 /* log2:                 7     8     9    10    11    12    14     16 */
89 
90 #if 0
91 static int rx_pool_sizes[NP] = {1024, 1024, 512, 256,  128,  64,   32,    32};
92 #else
93 /* debug */
94 static int rx_pool_sizes[NP] = {128,  128,  128, 64,   64,   64,   32,    32};
95 #endif
96 /* log2:                 10    10    9    8     7     6     5      5  */
97 /* sumlog2:              17    18    18   18    18    18    19     21 */
98 /* mem allocated:        128k  256k  256k 256k  256k  256k  512k   2M */
99 /* tot mem: almost 4M */
100 
101 /* NP is shorter, so that it fits on a single line. */
102 #undef NP
103 
104 
105 /* Small hardware gotcha:
106 
107    The FS50 CAM (VP/VC match registers) always take the lowest channel
108    number that matches. This is not a problem.
109 
110    However, they also ignore whether the channel is enabled or
111    not. This means that if you allocate channel 0 to 1.2 and then
112    channel 1 to 0.0, then disabeling channel 0 and writing 0 to the
113    match channel for channel 0 will "steal" the traffic from channel
114    1, even if you correctly disable channel 0.
115 
116    Workaround:
117 
118    - When disabling channels, write an invalid VP/VC value to the
119    match register. (We use 0xffffffff, which in the worst case
120    matches VP/VC = <maxVP>/<maxVC>, but I expect it not to match
121    anything as some "when not in use, program to 0" bits are now
122    programmed to 1...)
123 
124    - Don't initialize the match registers to 0, as 0.0 is a valid
125    channel.
126 */
127 
128 
129 /* Optimization hints and tips.
130 
131    The FireStream chips are very capable of reducing the amount of
132    "interrupt-traffic" for the CPU. This driver requests an interrupt on EVERY
133    action. You could try to minimize this a bit.
134 
135    Besides that, the userspace->kernel copy and the PCI bus are the
136    performance limiting issues for this driver.
137 
138    You could queue up a bunch of outgoing packets without telling the
139    FireStream. I'm not sure that's going to win you much though. The
140    Linux layer won't tell us in advance when it's not going to give us
141    any more packets in a while. So this is tricky to implement right without
142    introducing extra delays.
143 
144    -- REW
145  */
146 
147 
148 
149 
150 /* The strings that define what the RX queue entry is all about. */
151 /* Fujitsu: Please tell me which ones can have a pointer to a
152    freepool descriptor! */
153 static char *res_strings[] = {
154 	"RX OK: streaming not EOP",
155 	"RX OK: streaming EOP",
156 	"RX OK: Single buffer packet",
157 	"RX OK: packet mode",
158 	"RX OK: F4 OAM (end to end)",
159 	"RX OK: F4 OAM (Segment)",
160 	"RX OK: F5 OAM (end to end)",
161 	"RX OK: F5 OAM (Segment)",
162 	"RX OK: RM cell",
163 	"RX OK: TRANSP cell",
164 	"RX OK: TRANSPC cell",
165 	"Unmatched cell",
166 	"reserved 12",
167 	"reserved 13",
168 	"reserved 14",
169 	"Unrecognized cell",
170 	"reserved 16",
171 	"reassembly abort: AAL5 abort",
172 	"packet purged",
173 	"packet ageing timeout",
174 	"channel ageing timeout",
175 	"calculated length error",
176 	"programmed length limit error",
177 	"aal5 crc32 error",
178 	"oam transp or transpc crc10 error",
179 	"reserved 25",
180 	"reserved 26",
181 	"reserved 27",
182 	"reserved 28",
183 	"reserved 29",
184 	"reserved 30", /* FIXME: The strings between 30-40 might be wrong. */
185 	"reassembly abort: no buffers",
186 	"receive buffer overflow",
187 	"change in GFC",
188 	"receive buffer full",
189 	"low priority discard - no receive descriptor",
190 	"low priority discard - missing end of packet",
191 	"reserved 37",
192 	"reserved 38",
193 	"reserved 39",
194 	"reserved 40",
195 	"reserved 41",
196 	"reserved 42",
197 	"reserved 43",
198 	"reserved 44",
199 	"reserved 45",
200 	"reserved 46",
201 	"reserved 47",
202 	"reserved 48",
203 	"reserved 49",
204 	"reserved 50",
205 	"reserved 51",
206 	"reserved 52",
207 	"reserved 53",
208 	"reserved 54",
209 	"reserved 55",
210 	"reserved 56",
211 	"reserved 57",
212 	"reserved 58",
213 	"reserved 59",
214 	"reserved 60",
215 	"reserved 61",
216 	"reserved 62",
217 	"reserved 63",
218 };
219 
220 static char *irq_bitname[] = {
221 	"LPCO",
222 	"DPCO",
223 	"RBRQ0_W",
224 	"RBRQ1_W",
225 	"RBRQ2_W",
226 	"RBRQ3_W",
227 	"RBRQ0_NF",
228 	"RBRQ1_NF",
229 	"RBRQ2_NF",
230 	"RBRQ3_NF",
231 	"BFP_SC",
232 	"INIT",
233 	"INIT_ERR",
234 	"USCEO",
235 	"UPEC0",
236 	"VPFCO",
237 	"CRCCO",
238 	"HECO",
239 	"TBRQ_W",
240 	"TBRQ_NF",
241 	"CTPQ_E",
242 	"GFC_C0",
243 	"PCI_FTL",
244 	"CSQ_W",
245 	"CSQ_NF",
246 	"EXT_INT",
247 	"RXDMA_S"
248 };
249 
250 
251 #define PHY_EOF -1
252 #define PHY_CLEARALL -2
253 
254 struct reginit_item {
255 	int reg, val;
256 };
257 
258 
259 static struct reginit_item PHY_NTC_INIT[] = {
260 	{ PHY_CLEARALL, 0x40 },
261 	{ 0x12,  0x0001 },
262 	{ 0x13,  0x7605 },
263 	{ 0x1A,  0x0001 },
264 	{ 0x1B,  0x0005 },
265 	{ 0x38,  0x0003 },
266 	{ 0x39,  0x0006 },   /* changed here to make loopback */
267 	{ 0x01,  0x5262 },
268 	{ 0x15,  0x0213 },
269 	{ 0x00,  0x0003 },
270 	{ PHY_EOF, 0},    /* -1 signals end of list */
271 };
272 
273 
274 /* Safetyfeature: If the card interrupts more than this number of times
275    in a jiffy (1/100th of a second) then we just disable the interrupt and
276    print a message. This prevents the system from hanging.
277 
278    150000 packets per second is close to the limit a PC is going to have
279    anyway. We therefore have to disable this for production. -- REW */
280 #undef IRQ_RATE_LIMIT // 100
281 
282 /* Interrupts work now. Unlike serial cards, ATM cards don't work all
283    that great without interrupts. -- REW */
284 #undef FS_POLL_FREQ // 100
285 
286 /*
287    This driver can spew a whole lot of debugging output at you. If you
288    need maximum performance, you should disable the DEBUG define. To
289    aid in debugging in the field, I'm leaving the compile-time debug
290    features enabled, and disable them "runtime". That allows me to
291    instruct people with problems to enable debugging without requiring
292    them to recompile... -- REW
293 */
294 #define DEBUG
295 
296 #ifdef DEBUG
297 #define fs_dprintk(f, str...) if (fs_debug & f) printk (str)
298 #else
299 #define fs_dprintk(f, str...) /* nothing */
300 #endif
301 
302 
303 static int fs_keystream = 0;
304 
305 #ifdef DEBUG
306 /* I didn't forget to set this to zero before shipping. Hit me with a stick
307    if you get this with the debug default not set to zero again. -- REW */
308 static int fs_debug = 0;
309 #else
310 #define fs_debug 0
311 #endif
312 
313 #ifdef MODULE
314 #ifdef DEBUG
315 module_param(fs_debug, int, 0644);
316 #endif
317 module_param(loopback, int, 0);
318 module_param(num, int, 0);
319 module_param(fs_keystream, int, 0);
320 /* XXX Add rx_buf_sizes, and rx_pool_sizes As per request Amar. -- REW */
321 #endif
322 
323 
324 #define FS_DEBUG_FLOW    0x00000001
325 #define FS_DEBUG_OPEN    0x00000002
326 #define FS_DEBUG_QUEUE   0x00000004
327 #define FS_DEBUG_IRQ     0x00000008
328 #define FS_DEBUG_INIT    0x00000010
329 #define FS_DEBUG_SEND    0x00000020
330 #define FS_DEBUG_PHY     0x00000040
331 #define FS_DEBUG_CLEANUP 0x00000080
332 #define FS_DEBUG_QOS     0x00000100
333 #define FS_DEBUG_TXQ     0x00000200
334 #define FS_DEBUG_ALLOC   0x00000400
335 #define FS_DEBUG_TXMEM   0x00000800
336 #define FS_DEBUG_QSIZE   0x00001000
337 
338 
339 #define func_enter() fs_dprintk(FS_DEBUG_FLOW, "fs: enter %s\n", __func__)
340 #define func_exit()  fs_dprintk(FS_DEBUG_FLOW, "fs: exit  %s\n", __func__)
341 
342 
343 static struct fs_dev *fs_boards = NULL;
344 
345 #ifdef DEBUG
346 
my_hd(void * addr,int len)347 static void my_hd (void *addr, int len)
348 {
349 	int j, ch;
350 	unsigned char *ptr = addr;
351 
352 	while (len > 0) {
353 		printk ("%p ", ptr);
354 		for (j=0;j < ((len < 16)?len:16);j++) {
355 			printk ("%02x %s", ptr[j], (j==7)?" ":"");
356 		}
357 		for (  ;j < 16;j++) {
358 			printk ("   %s", (j==7)?" ":"");
359 		}
360 		for (j=0;j < ((len < 16)?len:16);j++) {
361 			ch = ptr[j];
362 			printk ("%c", (ch < 0x20)?'.':((ch > 0x7f)?'.':ch));
363 		}
364 		printk ("\n");
365 		ptr += 16;
366 		len -= 16;
367 	}
368 }
369 #else /* DEBUG */
my_hd(void * addr,int len)370 static void my_hd (void *addr, int len){}
371 #endif /* DEBUG */
372 
373 /********** free an skb (as per ATM device driver documentation) **********/
374 
375 /* Hmm. If this is ATM specific, why isn't there an ATM routine for this?
376  * I copied it over from the ambassador driver. -- REW */
377 
fs_kfree_skb(struct sk_buff * skb)378 static inline void fs_kfree_skb (struct sk_buff * skb)
379 {
380 	if (ATM_SKB(skb)->vcc->pop)
381 		ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
382 	else
383 		dev_kfree_skb_any (skb);
384 }
385 
386 
387 
388 
389 /* It seems the ATM forum recommends this horribly complicated 16bit
390  * floating point format. Turns out the Ambassador uses the exact same
391  * encoding. I just copied it over. If Mitch agrees, I'll move it over
392  * to the atm_misc file or something like that. (and remove it from
393  * here and the ambassador driver) -- REW
394  */
395 
396 /* The good thing about this format is that it is monotonic. So,
397    a conversion routine need not be very complicated. To be able to
398    round "nearest" we need to take along a few extra bits. Lets
399    put these after 16 bits, so that we can just return the top 16
400    bits of the 32bit number as the result:
401 
402    int mr (unsigned int rate, int r)
403      {
404      int e = 16+9;
405      static int round[4]={0, 0, 0xffff, 0x8000};
406      if (!rate) return 0;
407      while (rate & 0xfc000000) {
408        rate >>= 1;
409        e++;
410      }
411      while (! (rate & 0xfe000000)) {
412        rate <<= 1;
413        e--;
414      }
415 
416 // Now the mantissa is in positions bit 16-25. Excepf for the "hidden 1" that's in bit 26.
417      rate &= ~0x02000000;
418 // Next add in the exponent
419      rate |= e << (16+9);
420 // And perform the rounding:
421      return (rate + round[r]) >> 16;
422    }
423 
424    14 lines-of-code. Compare that with the 120 that the Ambassador
425    guys needed. (would be 8 lines shorter if I'd try to really reduce
426    the number of lines:
427 
428    int mr (unsigned int rate, int r)
429    {
430      int e = 16+9;
431      static int round[4]={0, 0, 0xffff, 0x8000};
432      if (!rate) return 0;
433      for (;  rate & 0xfc000000 ;rate >>= 1, e++);
434      for (;!(rate & 0xfe000000);rate <<= 1, e--);
435      return ((rate & ~0x02000000) | (e << (16+9)) + round[r]) >> 16;
436    }
437 
438    Exercise for the reader: Remove one more line-of-code, without
439    cheating. (Just joining two lines is cheating). (I know it's
440    possible, don't think you've beat me if you found it... If you
441    manage to lose two lines or more, keep me updated! ;-)
442 
443    -- REW */
444 
445 
446 #define ROUND_UP      1
447 #define ROUND_DOWN    2
448 #define ROUND_NEAREST 3
449 /********** make rate (not quite as much fun as Horizon) **********/
450 
make_rate(unsigned int rate,int r,u16 * bits,unsigned int * actual)451 static int make_rate(unsigned int rate, int r,
452 		      u16 *bits, unsigned int *actual)
453 {
454 	unsigned char exp = -1; /* hush gcc */
455 	unsigned int man = -1;  /* hush gcc */
456 
457 	fs_dprintk (FS_DEBUG_QOS, "make_rate %u", rate);
458 
459 	/* rates in cells per second, ITU format (nasty 16-bit floating-point)
460 	   given 5-bit e and 9-bit m:
461 	   rate = EITHER (1+m/2^9)*2^e    OR 0
462 	   bits = EITHER 1<<14 | e<<9 | m OR 0
463 	   (bit 15 is "reserved", bit 14 "non-zero")
464 	   smallest rate is 0 (special representation)
465 	   largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
466 	   smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
467 	   simple algorithm:
468 	   find position of top bit, this gives e
469 	   remove top bit and shift (rounding if feeling clever) by 9-e
470 	*/
471 	/* Ambassador ucode bug: please don't set bit 14! so 0 rate not
472 	   representable. // This should move into the ambassador driver
473 	   when properly merged. -- REW */
474 
475 	if (rate > 0xffc00000U) {
476 		/* larger than largest representable rate */
477 
478 		if (r == ROUND_UP) {
479 			return -EINVAL;
480 		} else {
481 			exp = 31;
482 			man = 511;
483 		}
484 
485 	} else if (rate) {
486 		/* representable rate */
487 
488 		exp = 31;
489 		man = rate;
490 
491 		/* invariant: rate = man*2^(exp-31) */
492 		while (!(man & (1<<31))) {
493 			exp = exp - 1;
494 			man = man<<1;
495 		}
496 
497 		/* man has top bit set
498 		   rate = (2^31+(man-2^31))*2^(exp-31)
499 		   rate = (1+(man-2^31)/2^31)*2^exp
500 		*/
501 		man = man<<1;
502 		man &= 0xffffffffU; /* a nop on 32-bit systems */
503 		/* rate = (1+man/2^32)*2^exp
504 
505 		   exp is in the range 0 to 31, man is in the range 0 to 2^32-1
506 		   time to lose significance... we want m in the range 0 to 2^9-1
507 		   rounding presents a minor problem... we first decide which way
508 		   we are rounding (based on given rounding direction and possibly
509 		   the bits of the mantissa that are to be discarded).
510 		*/
511 
512 		switch (r) {
513 		case ROUND_DOWN: {
514 			/* just truncate */
515 			man = man>>(32-9);
516 			break;
517 		}
518 		case ROUND_UP: {
519 			/* check all bits that we are discarding */
520 			if (man & (~0U>>9)) {
521 				man = (man>>(32-9)) + 1;
522 				if (man == (1<<9)) {
523 					/* no need to check for round up outside of range */
524 					man = 0;
525 					exp += 1;
526 				}
527 			} else {
528 				man = (man>>(32-9));
529 			}
530 			break;
531 		}
532 		case ROUND_NEAREST: {
533 			/* check msb that we are discarding */
534 			if (man & (1<<(32-9-1))) {
535 				man = (man>>(32-9)) + 1;
536 				if (man == (1<<9)) {
537 					/* no need to check for round up outside of range */
538 					man = 0;
539 					exp += 1;
540 				}
541 			} else {
542 				man = (man>>(32-9));
543 			}
544 			break;
545 		}
546 		}
547 
548 	} else {
549 		/* zero rate - not representable */
550 
551 		if (r == ROUND_DOWN) {
552 			return -EINVAL;
553 		} else {
554 			exp = 0;
555 			man = 0;
556 		}
557 	}
558 
559 	fs_dprintk (FS_DEBUG_QOS, "rate: man=%u, exp=%hu", man, exp);
560 
561 	if (bits)
562 		*bits = /* (1<<14) | */ (exp<<9) | man;
563 
564 	if (actual)
565 		*actual = (exp >= 9)
566 			? (1 << exp) + (man << (exp-9))
567 			: (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
568 
569 	return 0;
570 }
571 
572 
573 
574 
575 /* FireStream access routines */
576 /* For DEEP-DOWN debugging these can be rigged to intercept accesses to
577    certain registers or to just log all accesses. */
578 
write_fs(struct fs_dev * dev,int offset,u32 val)579 static inline void write_fs (struct fs_dev *dev, int offset, u32 val)
580 {
581 	writel (val, dev->base + offset);
582 }
583 
584 
read_fs(struct fs_dev * dev,int offset)585 static inline u32  read_fs (struct fs_dev *dev, int offset)
586 {
587 	return readl (dev->base + offset);
588 }
589 
590 
591 
get_qentry(struct fs_dev * dev,struct queue * q)592 static inline struct FS_QENTRY *get_qentry (struct fs_dev *dev, struct queue *q)
593 {
594 	return bus_to_virt (read_fs (dev, Q_WP(q->offset)) & Q_ADDR_MASK);
595 }
596 
597 
submit_qentry(struct fs_dev * dev,struct queue * q,struct FS_QENTRY * qe)598 static void submit_qentry (struct fs_dev *dev, struct queue *q, struct FS_QENTRY *qe)
599 {
600 	u32 wp;
601 	struct FS_QENTRY *cqe;
602 
603 	/* XXX Sanity check: the write pointer can be checked to be
604 	   still the same as the value passed as qe... -- REW */
605 	/*  udelay (5); */
606 	while ((wp = read_fs (dev, Q_WP (q->offset))) & Q_FULL) {
607 		fs_dprintk (FS_DEBUG_TXQ, "Found queue at %x full. Waiting.\n",
608 			    q->offset);
609 		schedule ();
610 	}
611 
612 	wp &= ~0xf;
613 	cqe = bus_to_virt (wp);
614 	if (qe != cqe) {
615 		fs_dprintk (FS_DEBUG_TXQ, "q mismatch! %p %p\n", qe, cqe);
616 	}
617 
618 	write_fs (dev, Q_WP(q->offset), Q_INCWRAP);
619 
620 	{
621 		static int c;
622 		if (!(c++ % 100))
623 			{
624 				int rp, wp;
625 				rp =  read_fs (dev, Q_RP(q->offset));
626 				wp =  read_fs (dev, Q_WP(q->offset));
627 				fs_dprintk (FS_DEBUG_TXQ, "q at %d: %x-%x: %x entries.\n",
628 					    q->offset, rp, wp, wp-rp);
629 			}
630 	}
631 }
632 
633 #ifdef DEBUG_EXTRA
634 static struct FS_QENTRY pq[60];
635 static int qp;
636 
637 static struct FS_BPENTRY dq[60];
638 static int qd;
639 static void *da[60];
640 #endif
641 
submit_queue(struct fs_dev * dev,struct queue * q,u32 cmd,u32 p1,u32 p2,u32 p3)642 static void submit_queue (struct fs_dev *dev, struct queue *q,
643 			  u32 cmd, u32 p1, u32 p2, u32 p3)
644 {
645 	struct FS_QENTRY *qe;
646 
647 	qe = get_qentry (dev, q);
648 	qe->cmd = cmd;
649 	qe->p0 = p1;
650 	qe->p1 = p2;
651 	qe->p2 = p3;
652 	submit_qentry (dev,  q, qe);
653 
654 #ifdef DEBUG_EXTRA
655 	pq[qp].cmd = cmd;
656 	pq[qp].p0 = p1;
657 	pq[qp].p1 = p2;
658 	pq[qp].p2 = p3;
659 	qp++;
660 	if (qp >= 60) qp = 0;
661 #endif
662 }
663 
664 /* Test the "other" way one day... -- REW */
665 #if 1
666 #define submit_command submit_queue
667 #else
668 
submit_command(struct fs_dev * dev,struct queue * q,u32 cmd,u32 p1,u32 p2,u32 p3)669 static void submit_command (struct fs_dev *dev, struct queue *q,
670 			    u32 cmd, u32 p1, u32 p2, u32 p3)
671 {
672 	write_fs (dev, CMDR0, cmd);
673 	write_fs (dev, CMDR1, p1);
674 	write_fs (dev, CMDR2, p2);
675 	write_fs (dev, CMDR3, p3);
676 }
677 #endif
678 
679 
680 
process_return_queue(struct fs_dev * dev,struct queue * q)681 static void process_return_queue (struct fs_dev *dev, struct queue *q)
682 {
683 	long rq;
684 	struct FS_QENTRY *qe;
685 	void *tc;
686 
687 	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
688 		fs_dprintk (FS_DEBUG_QUEUE, "reaping return queue entry at %lx\n", rq);
689 		qe = bus_to_virt (rq);
690 
691 		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. (%d)\n",
692 			    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
693 
694 		switch (STATUS_CODE (qe)) {
695 		case 5:
696 			tc = bus_to_virt (qe->p0);
697 			fs_dprintk (FS_DEBUG_ALLOC, "Free tc: %p\n", tc);
698 			kfree (tc);
699 			break;
700 		}
701 
702 		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
703 	}
704 }
705 
706 
process_txdone_queue(struct fs_dev * dev,struct queue * q)707 static void process_txdone_queue (struct fs_dev *dev, struct queue *q)
708 {
709 	long rq;
710 	long tmp;
711 	struct FS_QENTRY *qe;
712 	struct sk_buff *skb;
713 	struct FS_BPENTRY *td;
714 
715 	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
716 		fs_dprintk (FS_DEBUG_QUEUE, "reaping txdone entry at %lx\n", rq);
717 		qe = bus_to_virt (rq);
718 
719 		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x: %d\n",
720 			    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
721 
722 		if (STATUS_CODE (qe) != 2)
723 			fs_dprintk (FS_DEBUG_TXMEM, "queue entry: %08x %08x %08x %08x: %d\n",
724 				    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
725 
726 
727 		switch (STATUS_CODE (qe)) {
728 		case 0x01: /* This is for AAL0 where we put the chip in streaming mode */
729 			/* Fall through */
730 		case 0x02:
731 			/* Process a real txdone entry. */
732 			tmp = qe->p0;
733 			if (tmp & 0x0f)
734 				printk (KERN_WARNING "td not aligned: %ld\n", tmp);
735 			tmp &= ~0x0f;
736 			td = bus_to_virt (tmp);
737 
738 			fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p.\n",
739 				    td->flags, td->next, td->bsa, td->aal_bufsize, td->skb );
740 
741 			skb = td->skb;
742 			if (skb == FS_VCC (ATM_SKB(skb)->vcc)->last_skb) {
743 				FS_VCC (ATM_SKB(skb)->vcc)->last_skb = NULL;
744 				wake_up_interruptible (& FS_VCC (ATM_SKB(skb)->vcc)->close_wait);
745 			}
746 			td->dev->ntxpckts--;
747 
748 			{
749 				static int c=0;
750 
751 				if (!(c++ % 100)) {
752 					fs_dprintk (FS_DEBUG_QSIZE, "[%d]", td->dev->ntxpckts);
753 				}
754 			}
755 
756 			atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
757 
758 			fs_dprintk (FS_DEBUG_TXMEM, "i");
759 			fs_dprintk (FS_DEBUG_ALLOC, "Free t-skb: %p\n", skb);
760 			fs_kfree_skb (skb);
761 
762 			fs_dprintk (FS_DEBUG_ALLOC, "Free trans-d: %p\n", td);
763 			memset (td, ATM_POISON_FREE, sizeof(struct FS_BPENTRY));
764 			kfree (td);
765 			break;
766 		default:
767 			/* Here we get the tx purge inhibit command ... */
768 			/* Action, I believe, is "don't do anything". -- REW */
769 			;
770 		}
771 
772 		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
773 	}
774 }
775 
776 
process_incoming(struct fs_dev * dev,struct queue * q)777 static void process_incoming (struct fs_dev *dev, struct queue *q)
778 {
779 	long rq;
780 	struct FS_QENTRY *qe;
781 	struct FS_BPENTRY *pe;
782 	struct sk_buff *skb;
783 	unsigned int channo;
784 	struct atm_vcc *atm_vcc;
785 
786 	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
787 		fs_dprintk (FS_DEBUG_QUEUE, "reaping incoming queue entry at %lx\n", rq);
788 		qe = bus_to_virt (rq);
789 
790 		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x.  ",
791 			    qe->cmd, qe->p0, qe->p1, qe->p2);
792 
793 		fs_dprintk (FS_DEBUG_QUEUE, "-> %x: %s\n",
794 			    STATUS_CODE (qe),
795 			    res_strings[STATUS_CODE(qe)]);
796 
797 		pe = bus_to_virt (qe->p0);
798 		fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p %p.\n",
799 			    pe->flags, pe->next, pe->bsa, pe->aal_bufsize,
800 			    pe->skb, pe->fp);
801 
802 		channo = qe->cmd & 0xffff;
803 
804 		if (channo < dev->nchannels)
805 			atm_vcc = dev->atm_vccs[channo];
806 		else
807 			atm_vcc = NULL;
808 
809 		/* Single buffer packet */
810 		switch (STATUS_CODE (qe)) {
811 		case 0x1:
812 			/* Fall through for streaming mode */
813 		case 0x2:/* Packet received OK.... */
814 			if (atm_vcc) {
815 				skb = pe->skb;
816 				pe->fp->n--;
817 #if 0
818 				fs_dprintk (FS_DEBUG_QUEUE, "Got skb: %p\n", skb);
819 				if (FS_DEBUG_QUEUE & fs_debug) my_hd (bus_to_virt (pe->bsa), 0x20);
820 #endif
821 				skb_put (skb, qe->p1 & 0xffff);
822 				ATM_SKB(skb)->vcc = atm_vcc;
823 				atomic_inc(&atm_vcc->stats->rx);
824 				__net_timestamp(skb);
825 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p (pushed)\n", skb);
826 				atm_vcc->push (atm_vcc, skb);
827 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
828 				kfree (pe);
829 			} else {
830 				printk (KERN_ERR "Got a receive on a non-open channel %d.\n", channo);
831 			}
832 			break;
833 		case 0x17:/* AAL 5 CRC32 error. IFF the length field is nonzero, a buffer
834 			     has been consumed and needs to be processed. -- REW */
835 			if (qe->p1 & 0xffff) {
836 				pe = bus_to_virt (qe->p0);
837 				pe->fp->n--;
838 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", pe->skb);
839 				dev_kfree_skb_any (pe->skb);
840 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
841 				kfree (pe);
842 			}
843 			if (atm_vcc)
844 				atomic_inc(&atm_vcc->stats->rx_drop);
845 			break;
846 		case 0x1f: /*  Reassembly abort: no buffers. */
847 			/* Silently increment error counter. */
848 			if (atm_vcc)
849 				atomic_inc(&atm_vcc->stats->rx_drop);
850 			break;
851 		default: /* Hmm. Haven't written the code to handle the others yet... -- REW */
852 			printk (KERN_WARNING "Don't know what to do with RX status %x: %s.\n",
853 				STATUS_CODE(qe), res_strings[STATUS_CODE (qe)]);
854 		}
855 		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
856 	}
857 }
858 
859 
860 
861 #define DO_DIRECTION(tp) ((tp)->traffic_class != ATM_NONE)
862 
fs_open(struct atm_vcc * atm_vcc)863 static int fs_open(struct atm_vcc *atm_vcc)
864 {
865 	struct fs_dev *dev;
866 	struct fs_vcc *vcc;
867 	struct fs_transmit_config *tc;
868 	struct atm_trafprm * txtp;
869 	struct atm_trafprm * rxtp;
870 	/*  struct fs_receive_config *rc;*/
871 	/*  struct FS_QENTRY *qe; */
872 	int error;
873 	int bfp;
874 	int to;
875 	unsigned short tmc0;
876 	short vpi = atm_vcc->vpi;
877 	int vci = atm_vcc->vci;
878 
879 	func_enter ();
880 
881 	dev = FS_DEV(atm_vcc->dev);
882 	fs_dprintk (FS_DEBUG_OPEN, "fs: open on dev: %p, vcc at %p\n",
883 		    dev, atm_vcc);
884 
885 	if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
886 		set_bit(ATM_VF_ADDR, &atm_vcc->flags);
887 
888 	if ((atm_vcc->qos.aal != ATM_AAL5) &&
889 	    (atm_vcc->qos.aal != ATM_AAL2))
890 	  return -EINVAL; /* XXX AAL0 */
891 
892 	fs_dprintk (FS_DEBUG_OPEN, "fs: (itf %d): open %d.%d\n",
893 		    atm_vcc->dev->number, atm_vcc->vpi, atm_vcc->vci);
894 
895 	/* XXX handle qos parameters (rate limiting) ? */
896 
897 	vcc = kmalloc(sizeof(struct fs_vcc), GFP_KERNEL);
898 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc VCC: %p(%zd)\n", vcc, sizeof(struct fs_vcc));
899 	if (!vcc) {
900 		clear_bit(ATM_VF_ADDR, &atm_vcc->flags);
901 		return -ENOMEM;
902 	}
903 
904 	atm_vcc->dev_data = vcc;
905 	vcc->last_skb = NULL;
906 
907 	init_waitqueue_head (&vcc->close_wait);
908 
909 	txtp = &atm_vcc->qos.txtp;
910 	rxtp = &atm_vcc->qos.rxtp;
911 
912 	if (!test_bit(ATM_VF_PARTIAL, &atm_vcc->flags)) {
913 		if (IS_FS50(dev)) {
914 			/* Increment the channel numer: take a free one next time.  */
915 			for (to=33;to;to--, dev->channo++) {
916 				/* We only have 32 channels */
917 				if (dev->channo >= 32)
918 					dev->channo = 0;
919 				/* If we need to do RX, AND the RX is inuse, try the next */
920 				if (DO_DIRECTION(rxtp) && dev->atm_vccs[dev->channo])
921 					continue;
922 				/* If we need to do TX, AND the TX is inuse, try the next */
923 				if (DO_DIRECTION(txtp) && test_bit (dev->channo, dev->tx_inuse))
924 					continue;
925 				/* Ok, both are free! (or not needed) */
926 				break;
927 			}
928 			if (!to) {
929 				printk ("No more free channels for FS50..\n");
930 				return -EBUSY;
931 			}
932 			vcc->channo = dev->channo;
933 			dev->channo &= dev->channel_mask;
934 
935 		} else {
936 			vcc->channo = (vpi << FS155_VCI_BITS) | (vci);
937 			if (((DO_DIRECTION(rxtp) && dev->atm_vccs[vcc->channo])) ||
938 			    ( DO_DIRECTION(txtp) && test_bit (vcc->channo, dev->tx_inuse))) {
939 				printk ("Channel is in use for FS155.\n");
940 				return -EBUSY;
941 			}
942 		}
943 		fs_dprintk (FS_DEBUG_OPEN, "OK. Allocated channel %x(%d).\n",
944 			    vcc->channo, vcc->channo);
945 	}
946 
947 	if (DO_DIRECTION (txtp)) {
948 		tc = kmalloc (sizeof (struct fs_transmit_config), GFP_KERNEL);
949 		fs_dprintk (FS_DEBUG_ALLOC, "Alloc tc: %p(%zd)\n",
950 			    tc, sizeof (struct fs_transmit_config));
951 		if (!tc) {
952 			fs_dprintk (FS_DEBUG_OPEN, "fs: can't alloc transmit_config.\n");
953 			return -ENOMEM;
954 		}
955 
956 		/* Allocate the "open" entry from the high priority txq. This makes
957 		   it most likely that the chip will notice it. It also prevents us
958 		   from having to wait for completion. On the other hand, we may
959 		   need to wait for completion anyway, to see if it completed
960 		   successfully. */
961 
962 		switch (atm_vcc->qos.aal) {
963 		case ATM_AAL2:
964 		case ATM_AAL0:
965 		  tc->flags = 0
966 		    | TC_FLAGS_TRANSPARENT_PAYLOAD
967 		    | TC_FLAGS_PACKET
968 		    | (1 << 28)
969 		    | TC_FLAGS_TYPE_UBR /* XXX Change to VBR -- PVDL */
970 		    | TC_FLAGS_CAL0;
971 		  break;
972 		case ATM_AAL5:
973 		  tc->flags = 0
974 			| TC_FLAGS_AAL5
975 			| TC_FLAGS_PACKET  /* ??? */
976 			| TC_FLAGS_TYPE_CBR
977 			| TC_FLAGS_CAL0;
978 		  break;
979 		default:
980 			printk ("Unknown aal: %d\n", atm_vcc->qos.aal);
981 			tc->flags = 0;
982 		}
983 		/* Docs are vague about this atm_hdr field. By the way, the FS
984 		 * chip makes odd errors if lower bits are set.... -- REW */
985 		tc->atm_hdr =  (vpi << 20) | (vci << 4);
986 		tmc0 = 0;
987 		{
988 			int pcr = atm_pcr_goal (txtp);
989 
990 			fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
991 
992 			/* XXX Hmm. officially we're only allowed to do this if rounding
993 			   is round_down -- REW */
994 			if (IS_FS50(dev)) {
995 				if (pcr > 51840000/53/8)  pcr = 51840000/53/8;
996 			} else {
997 				if (pcr > 155520000/53/8) pcr = 155520000/53/8;
998 			}
999 			if (!pcr) {
1000 				/* no rate cap */
1001 				tmc0 = IS_FS50(dev)?0x61BE:0x64c9; /* Just copied over the bits from Fujitsu -- REW */
1002 			} else {
1003 				int r;
1004 				if (pcr < 0) {
1005 					r = ROUND_DOWN;
1006 					pcr = -pcr;
1007 				} else {
1008 					r = ROUND_UP;
1009 				}
1010 				error = make_rate (pcr, r, &tmc0, NULL);
1011 				if (error) {
1012 					kfree(tc);
1013 					return error;
1014 				}
1015 			}
1016 			fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
1017 		}
1018 
1019 		tc->TMC[0] = tmc0 | 0x4000;
1020 		tc->TMC[1] = 0; /* Unused */
1021 		tc->TMC[2] = 0; /* Unused */
1022 		tc->TMC[3] = 0; /* Unused */
1023 
1024 		tc->spec = 0;    /* UTOPIA address, UDF, HEC: Unused -> 0 */
1025 		tc->rtag[0] = 0; /* What should I do with routing tags???
1026 				    -- Not used -- AS -- Thanks -- REW*/
1027 		tc->rtag[1] = 0;
1028 		tc->rtag[2] = 0;
1029 
1030 		if (fs_debug & FS_DEBUG_OPEN) {
1031 			fs_dprintk (FS_DEBUG_OPEN, "TX config record:\n");
1032 			my_hd (tc, sizeof (*tc));
1033 		}
1034 
1035 		/* We now use the "submit_command" function to submit commands to
1036 		   the firestream. There is a define up near the definition of
1037 		   that routine that switches this routine between immediate write
1038 		   to the immediate command registers and queuing the commands in
1039 		   the HPTXQ for execution. This last technique might be more
1040 		   efficient if we know we're going to submit a whole lot of
1041 		   commands in one go, but this driver is not setup to be able to
1042 		   use such a construct. So it probably doen't matter much right
1043 		   now. -- REW */
1044 
1045 		/* The command is IMMediate and INQueue. The parameters are out-of-line.. */
1046 		submit_command (dev, &dev->hp_txq,
1047 				QE_CMD_CONFIG_TX | QE_CMD_IMM_INQ | vcc->channo,
1048 				virt_to_bus (tc), 0, 0);
1049 
1050 		submit_command (dev, &dev->hp_txq,
1051 				QE_CMD_TX_EN | QE_CMD_IMM_INQ | vcc->channo,
1052 				0, 0, 0);
1053 		set_bit (vcc->channo, dev->tx_inuse);
1054 	}
1055 
1056 	if (DO_DIRECTION (rxtp)) {
1057 		dev->atm_vccs[vcc->channo] = atm_vcc;
1058 
1059 		for (bfp = 0;bfp < FS_NR_FREE_POOLS; bfp++)
1060 			if (atm_vcc->qos.rxtp.max_sdu <= dev->rx_fp[bfp].bufsize) break;
1061 		if (bfp >= FS_NR_FREE_POOLS) {
1062 			fs_dprintk (FS_DEBUG_OPEN, "No free pool fits sdu: %d.\n",
1063 				    atm_vcc->qos.rxtp.max_sdu);
1064 			/* XXX Cleanup? -- Would just calling fs_close work??? -- REW */
1065 
1066 			/* XXX clear tx inuse. Close TX part? */
1067 			dev->atm_vccs[vcc->channo] = NULL;
1068 			kfree (vcc);
1069 			return -EINVAL;
1070 		}
1071 
1072 		switch (atm_vcc->qos.aal) {
1073 		case ATM_AAL0:
1074 		case ATM_AAL2:
1075 			submit_command (dev, &dev->hp_txq,
1076 					QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1077 					RC_FLAGS_TRANSP |
1078 					RC_FLAGS_BFPS_BFP * bfp |
1079 					RC_FLAGS_RXBM_PSB, 0, 0);
1080 			break;
1081 		case ATM_AAL5:
1082 			submit_command (dev, &dev->hp_txq,
1083 					QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1084 					RC_FLAGS_AAL5 |
1085 					RC_FLAGS_BFPS_BFP * bfp |
1086 					RC_FLAGS_RXBM_PSB, 0, 0);
1087 			break;
1088 		};
1089 		if (IS_FS50 (dev)) {
1090 			submit_command (dev, &dev->hp_txq,
1091 					QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1092 					0x80 + vcc->channo,
1093 					(vpi << 16) | vci, 0 ); /* XXX -- Use defines. */
1094 		}
1095 		submit_command (dev, &dev->hp_txq,
1096 				QE_CMD_RX_EN | QE_CMD_IMM_INQ | vcc->channo,
1097 				0, 0, 0);
1098 	}
1099 
1100 	/* Indicate we're done! */
1101 	set_bit(ATM_VF_READY, &atm_vcc->flags);
1102 
1103 	func_exit ();
1104 	return 0;
1105 }
1106 
1107 
fs_close(struct atm_vcc * atm_vcc)1108 static void fs_close(struct atm_vcc *atm_vcc)
1109 {
1110 	struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1111 	struct fs_vcc *vcc = FS_VCC (atm_vcc);
1112 	struct atm_trafprm * txtp;
1113 	struct atm_trafprm * rxtp;
1114 
1115 	func_enter ();
1116 
1117 	clear_bit(ATM_VF_READY, &atm_vcc->flags);
1118 
1119 	fs_dprintk (FS_DEBUG_QSIZE, "--==**[%d]**==--", dev->ntxpckts);
1120 	if (vcc->last_skb) {
1121 		fs_dprintk (FS_DEBUG_QUEUE, "Waiting for skb %p to be sent.\n",
1122 			    vcc->last_skb);
1123 		/* We're going to wait for the last packet to get sent on this VC. It would
1124 		   be impolite not to send them don't you think?
1125 		   XXX
1126 		   We don't know which packets didn't get sent. So if we get interrupted in
1127 		   this sleep_on, we'll lose any reference to these packets. Memory leak!
1128 		   On the other hand, it's awfully convenient that we can abort a "close" that
1129 		   is taking too long. Maybe just use non-interruptible sleep on? -- REW */
1130 		wait_event_interruptible(vcc->close_wait, !vcc->last_skb);
1131 	}
1132 
1133 	txtp = &atm_vcc->qos.txtp;
1134 	rxtp = &atm_vcc->qos.rxtp;
1135 
1136 
1137 	/* See App note XXX (Unpublished as of now) for the reason for the
1138 	   removal of the "CMD_IMM_INQ" part of the TX_PURGE_INH... -- REW */
1139 
1140 	if (DO_DIRECTION (txtp)) {
1141 		submit_command (dev,  &dev->hp_txq,
1142 				QE_CMD_TX_PURGE_INH | /*QE_CMD_IMM_INQ|*/ vcc->channo, 0,0,0);
1143 		clear_bit (vcc->channo, dev->tx_inuse);
1144 	}
1145 
1146 	if (DO_DIRECTION (rxtp)) {
1147 		submit_command (dev,  &dev->hp_txq,
1148 				QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1149 		dev->atm_vccs [vcc->channo] = NULL;
1150 
1151 		/* This means that this is configured as a receive channel */
1152 		if (IS_FS50 (dev)) {
1153 			/* Disable the receive filter. Is 0/0 indeed an invalid receive
1154 			   channel? -- REW.  Yes it is. -- Hang. Ok. I'll use -1
1155 			   (0xfff...) -- REW */
1156 			submit_command (dev, &dev->hp_txq,
1157 					QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1158 					0x80 + vcc->channo, -1, 0 );
1159 		}
1160 	}
1161 
1162 	fs_dprintk (FS_DEBUG_ALLOC, "Free vcc: %p\n", vcc);
1163 	kfree (vcc);
1164 
1165 	func_exit ();
1166 }
1167 
1168 
fs_send(struct atm_vcc * atm_vcc,struct sk_buff * skb)1169 static int fs_send (struct atm_vcc *atm_vcc, struct sk_buff *skb)
1170 {
1171 	struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1172 	struct fs_vcc *vcc = FS_VCC (atm_vcc);
1173 	struct FS_BPENTRY *td;
1174 
1175 	func_enter ();
1176 
1177 	fs_dprintk (FS_DEBUG_TXMEM, "I");
1178 	fs_dprintk (FS_DEBUG_SEND, "Send: atm_vcc %p skb %p vcc %p dev %p\n",
1179 		    atm_vcc, skb, vcc, dev);
1180 
1181 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc t-skb: %p (atm_send)\n", skb);
1182 
1183 	ATM_SKB(skb)->vcc = atm_vcc;
1184 
1185 	vcc->last_skb = skb;
1186 
1187 	td = kmalloc (sizeof (struct FS_BPENTRY), GFP_ATOMIC);
1188 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc transd: %p(%zd)\n", td, sizeof (struct FS_BPENTRY));
1189 	if (!td) {
1190 		/* Oops out of mem */
1191 		return -ENOMEM;
1192 	}
1193 
1194 	fs_dprintk (FS_DEBUG_SEND, "first word in buffer: %x\n",
1195 		    *(int *) skb->data);
1196 
1197 	td->flags =  TD_EPI | TD_DATA | skb->len;
1198 	td->next = 0;
1199 	td->bsa  = virt_to_bus (skb->data);
1200 	td->skb = skb;
1201 	td->dev = dev;
1202 	dev->ntxpckts++;
1203 
1204 #ifdef DEBUG_EXTRA
1205 	da[qd] = td;
1206 	dq[qd].flags = td->flags;
1207 	dq[qd].next  = td->next;
1208 	dq[qd].bsa   = td->bsa;
1209 	dq[qd].skb   = td->skb;
1210 	dq[qd].dev   = td->dev;
1211 	qd++;
1212 	if (qd >= 60) qd = 0;
1213 #endif
1214 
1215 	submit_queue (dev, &dev->hp_txq,
1216 		      QE_TRANSMIT_DE | vcc->channo,
1217 		      virt_to_bus (td), 0,
1218 		      virt_to_bus (td));
1219 
1220 	fs_dprintk (FS_DEBUG_QUEUE, "in send: txq %d txrq %d\n",
1221 		    read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1222 		    read_fs (dev, Q_SA (dev->hp_txq.offset)),
1223 		    read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1224 		    read_fs (dev, Q_SA (dev->tx_relq.offset)));
1225 
1226 	func_exit ();
1227 	return 0;
1228 }
1229 
1230 
1231 /* Some function placeholders for functions we don't yet support. */
1232 
1233 #if 0
1234 static int fs_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
1235 {
1236 	func_enter ();
1237 	func_exit ();
1238 	return -ENOIOCTLCMD;
1239 }
1240 
1241 
1242 static int fs_getsockopt(struct atm_vcc *vcc,int level,int optname,
1243 			 void __user *optval,int optlen)
1244 {
1245 	func_enter ();
1246 	func_exit ();
1247 	return 0;
1248 }
1249 
1250 
1251 static int fs_setsockopt(struct atm_vcc *vcc,int level,int optname,
1252 			 void __user *optval,unsigned int optlen)
1253 {
1254 	func_enter ();
1255 	func_exit ();
1256 	return 0;
1257 }
1258 
1259 
1260 static void fs_phy_put(struct atm_dev *dev,unsigned char value,
1261 		       unsigned long addr)
1262 {
1263 	func_enter ();
1264 	func_exit ();
1265 }
1266 
1267 
1268 static unsigned char fs_phy_get(struct atm_dev *dev,unsigned long addr)
1269 {
1270 	func_enter ();
1271 	func_exit ();
1272 	return 0;
1273 }
1274 
1275 
1276 static int fs_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
1277 {
1278 	func_enter ();
1279 	func_exit ();
1280 	return 0;
1281 };
1282 
1283 #endif
1284 
1285 
1286 static const struct atmdev_ops ops = {
1287 	.open =         fs_open,
1288 	.close =        fs_close,
1289 	.send =         fs_send,
1290 	.owner =        THIS_MODULE,
1291 	/* ioctl:          fs_ioctl, */
1292 	/* getsockopt:     fs_getsockopt, */
1293 	/* setsockopt:     fs_setsockopt, */
1294 	/* change_qos:     fs_change_qos, */
1295 
1296 	/* For now implement these internally here... */
1297 	/* phy_put:        fs_phy_put, */
1298 	/* phy_get:        fs_phy_get, */
1299 };
1300 
1301 
undocumented_pci_fix(struct pci_dev * pdev)1302 static void undocumented_pci_fix(struct pci_dev *pdev)
1303 {
1304 	u32 tint;
1305 
1306 	/* The Windows driver says: */
1307 	/* Switch off FireStream Retry Limit Threshold
1308 	 */
1309 
1310 	/* The register at 0x28 is documented as "reserved", no further
1311 	   comments. */
1312 
1313 	pci_read_config_dword (pdev, 0x28, &tint);
1314 	if (tint != 0x80) {
1315 		tint = 0x80;
1316 		pci_write_config_dword (pdev, 0x28, tint);
1317 	}
1318 }
1319 
1320 
1321 
1322 /**************************************************************************
1323  *                              PHY routines                              *
1324  **************************************************************************/
1325 
write_phy(struct fs_dev * dev,int regnum,int val)1326 static void write_phy(struct fs_dev *dev, int regnum, int val)
1327 {
1328 	submit_command (dev,  &dev->hp_txq, QE_CMD_PRP_WR | QE_CMD_IMM_INQ,
1329 			regnum, val, 0);
1330 }
1331 
init_phy(struct fs_dev * dev,struct reginit_item * reginit)1332 static int init_phy(struct fs_dev *dev, struct reginit_item *reginit)
1333 {
1334 	int i;
1335 
1336 	func_enter ();
1337 	while (reginit->reg != PHY_EOF) {
1338 		if (reginit->reg == PHY_CLEARALL) {
1339 			/* "PHY_CLEARALL means clear all registers. Numregisters is in "val". */
1340 			for (i=0;i<reginit->val;i++) {
1341 				write_phy (dev, i, 0);
1342 			}
1343 		} else {
1344 			write_phy (dev, reginit->reg, reginit->val);
1345 		}
1346 		reginit++;
1347 	}
1348 	func_exit ();
1349 	return 0;
1350 }
1351 
reset_chip(struct fs_dev * dev)1352 static void reset_chip (struct fs_dev *dev)
1353 {
1354 	int i;
1355 
1356 	write_fs (dev, SARMODE0, SARMODE0_SRTS0);
1357 
1358 	/* Undocumented delay */
1359 	udelay (128);
1360 
1361 	/* The "internal registers are documented to all reset to zero, but
1362 	   comments & code in the Windows driver indicates that the pools are
1363 	   NOT reset. */
1364 	for (i=0;i < FS_NR_FREE_POOLS;i++) {
1365 		write_fs (dev, FP_CNF (RXB_FP(i)), 0);
1366 		write_fs (dev, FP_SA  (RXB_FP(i)), 0);
1367 		write_fs (dev, FP_EA  (RXB_FP(i)), 0);
1368 		write_fs (dev, FP_CNT (RXB_FP(i)), 0);
1369 		write_fs (dev, FP_CTU (RXB_FP(i)), 0);
1370 	}
1371 
1372 	/* The same goes for the match channel registers, although those are
1373 	   NOT documented that way in the Windows driver. -- REW */
1374 	/* The Windows driver DOES write 0 to these registers somewhere in
1375 	   the init sequence. However, a small hardware-feature, will
1376 	   prevent reception of data on VPI/VCI = 0/0 (Unless the channel
1377 	   allocated happens to have no disabled channels that have a lower
1378 	   number. -- REW */
1379 
1380 	/* Clear the match channel registers. */
1381 	if (IS_FS50 (dev)) {
1382 		for (i=0;i<FS50_NR_CHANNELS;i++) {
1383 			write_fs (dev, 0x200 + i * 4, -1);
1384 		}
1385 	}
1386 }
1387 
aligned_kmalloc(int size,gfp_t flags,int alignment)1388 static void *aligned_kmalloc(int size, gfp_t flags, int alignment)
1389 {
1390 	void  *t;
1391 
1392 	if (alignment <= 0x10) {
1393 		t = kmalloc (size, flags);
1394 		if ((unsigned long)t & (alignment-1)) {
1395 			printk ("Kmalloc doesn't align things correctly! %p\n", t);
1396 			kfree (t);
1397 			return aligned_kmalloc (size, flags, alignment * 4);
1398 		}
1399 		return t;
1400 	}
1401 	printk (KERN_ERR "Request for > 0x10 alignment not yet implemented (hard!)\n");
1402 	return NULL;
1403 }
1404 
init_q(struct fs_dev * dev,struct queue * txq,int queue,int nentries,int is_rq)1405 static int init_q(struct fs_dev *dev, struct queue *txq, int queue,
1406 		  int nentries, int is_rq)
1407 {
1408 	int sz = nentries * sizeof (struct FS_QENTRY);
1409 	struct FS_QENTRY *p;
1410 
1411 	func_enter ();
1412 
1413 	fs_dprintk (FS_DEBUG_INIT, "Inititing queue at %x: %d entries:\n",
1414 		    queue, nentries);
1415 
1416 	p = aligned_kmalloc (sz, GFP_KERNEL, 0x10);
1417 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc queue: %p(%d)\n", p, sz);
1418 
1419 	if (!p) return 0;
1420 
1421 	write_fs (dev, Q_SA(queue), virt_to_bus(p));
1422 	write_fs (dev, Q_EA(queue), virt_to_bus(p+nentries-1));
1423 	write_fs (dev, Q_WP(queue), virt_to_bus(p));
1424 	write_fs (dev, Q_RP(queue), virt_to_bus(p));
1425 	if (is_rq) {
1426 		/* Configuration for the receive queue: 0: interrupt immediately,
1427 		   no pre-warning to empty queues: We do our best to keep the
1428 		   queue filled anyway. */
1429 		write_fs (dev, Q_CNF(queue), 0 );
1430 	}
1431 
1432 	txq->sa = p;
1433 	txq->ea = p;
1434 	txq->offset = queue;
1435 
1436 	func_exit ();
1437 	return 1;
1438 }
1439 
1440 
init_fp(struct fs_dev * dev,struct freepool * fp,int queue,int bufsize,int nr_buffers)1441 static int init_fp(struct fs_dev *dev, struct freepool *fp, int queue,
1442 		   int bufsize, int nr_buffers)
1443 {
1444 	func_enter ();
1445 
1446 	fs_dprintk (FS_DEBUG_INIT, "Inititing free pool at %x:\n", queue);
1447 
1448 	write_fs (dev, FP_CNF(queue), (bufsize * RBFP_RBS) | RBFP_RBSVAL | RBFP_CME);
1449 	write_fs (dev, FP_SA(queue),  0);
1450 	write_fs (dev, FP_EA(queue),  0);
1451 	write_fs (dev, FP_CTU(queue), 0);
1452 	write_fs (dev, FP_CNT(queue), 0);
1453 
1454 	fp->offset = queue;
1455 	fp->bufsize = bufsize;
1456 	fp->nr_buffers = nr_buffers;
1457 
1458 	func_exit ();
1459 	return 1;
1460 }
1461 
1462 
nr_buffers_in_freepool(struct fs_dev * dev,struct freepool * fp)1463 static inline int nr_buffers_in_freepool (struct fs_dev *dev, struct freepool *fp)
1464 {
1465 #if 0
1466 	/* This seems to be unreliable.... */
1467 	return read_fs (dev, FP_CNT (fp->offset));
1468 #else
1469 	return fp->n;
1470 #endif
1471 }
1472 
1473 
1474 /* Check if this gets going again if a pool ever runs out.  -- Yes, it
1475    does. I've seen "receive abort: no buffers" and things started
1476    working again after that...  -- REW */
1477 
top_off_fp(struct fs_dev * dev,struct freepool * fp,gfp_t gfp_flags)1478 static void top_off_fp (struct fs_dev *dev, struct freepool *fp,
1479 			gfp_t gfp_flags)
1480 {
1481 	struct FS_BPENTRY *qe, *ne;
1482 	struct sk_buff *skb;
1483 	int n = 0;
1484 	u32 qe_tmp;
1485 
1486 	fs_dprintk (FS_DEBUG_QUEUE, "Topping off queue at %x (%d-%d/%d)\n",
1487 		    fp->offset, read_fs (dev, FP_CNT (fp->offset)), fp->n,
1488 		    fp->nr_buffers);
1489 	while (nr_buffers_in_freepool(dev, fp) < fp->nr_buffers) {
1490 
1491 		skb = alloc_skb (fp->bufsize, gfp_flags);
1492 		fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-skb: %p(%d)\n", skb, fp->bufsize);
1493 		if (!skb) break;
1494 		ne = kmalloc (sizeof (struct FS_BPENTRY), gfp_flags);
1495 		fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-d: %p(%zd)\n", ne, sizeof (struct FS_BPENTRY));
1496 		if (!ne) {
1497 			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", skb);
1498 			dev_kfree_skb_any (skb);
1499 			break;
1500 		}
1501 
1502 		fs_dprintk (FS_DEBUG_QUEUE, "Adding skb %p desc %p -> %p(%p) ",
1503 			    skb, ne, skb->data, skb->head);
1504 		n++;
1505 		ne->flags = FP_FLAGS_EPI | fp->bufsize;
1506 		ne->next  = virt_to_bus (NULL);
1507 		ne->bsa   = virt_to_bus (skb->data);
1508 		ne->aal_bufsize = fp->bufsize;
1509 		ne->skb = skb;
1510 		ne->fp = fp;
1511 
1512 		/*
1513 		 * FIXME: following code encodes and decodes
1514 		 * machine pointers (could be 64-bit) into a
1515 		 * 32-bit register.
1516 		 */
1517 
1518 		qe_tmp = read_fs (dev, FP_EA(fp->offset));
1519 		fs_dprintk (FS_DEBUG_QUEUE, "link at %x\n", qe_tmp);
1520 		if (qe_tmp) {
1521 			qe = bus_to_virt ((long) qe_tmp);
1522 			qe->next = virt_to_bus(ne);
1523 			qe->flags &= ~FP_FLAGS_EPI;
1524 		} else
1525 			write_fs (dev, FP_SA(fp->offset), virt_to_bus(ne));
1526 
1527 		write_fs (dev, FP_EA(fp->offset), virt_to_bus (ne));
1528 		fp->n++;   /* XXX Atomic_inc? */
1529 		write_fs (dev, FP_CTU(fp->offset), 1);
1530 	}
1531 
1532 	fs_dprintk (FS_DEBUG_QUEUE, "Added %d entries. \n", n);
1533 }
1534 
free_queue(struct fs_dev * dev,struct queue * txq)1535 static void free_queue(struct fs_dev *dev, struct queue *txq)
1536 {
1537 	func_enter ();
1538 
1539 	write_fs (dev, Q_SA(txq->offset), 0);
1540 	write_fs (dev, Q_EA(txq->offset), 0);
1541 	write_fs (dev, Q_RP(txq->offset), 0);
1542 	write_fs (dev, Q_WP(txq->offset), 0);
1543 	/* Configuration ? */
1544 
1545 	fs_dprintk (FS_DEBUG_ALLOC, "Free queue: %p\n", txq->sa);
1546 	kfree (txq->sa);
1547 
1548 	func_exit ();
1549 }
1550 
free_freepool(struct fs_dev * dev,struct freepool * fp)1551 static void free_freepool(struct fs_dev *dev, struct freepool *fp)
1552 {
1553 	func_enter ();
1554 
1555 	write_fs (dev, FP_CNF(fp->offset), 0);
1556 	write_fs (dev, FP_SA (fp->offset), 0);
1557 	write_fs (dev, FP_EA (fp->offset), 0);
1558 	write_fs (dev, FP_CNT(fp->offset), 0);
1559 	write_fs (dev, FP_CTU(fp->offset), 0);
1560 
1561 	func_exit ();
1562 }
1563 
1564 
1565 
fs_irq(int irq,void * dev_id)1566 static irqreturn_t fs_irq (int irq, void *dev_id)
1567 {
1568 	int i;
1569 	u32 status;
1570 	struct fs_dev *dev = dev_id;
1571 
1572 	status = read_fs (dev, ISR);
1573 	if (!status)
1574 		return IRQ_NONE;
1575 
1576 	func_enter ();
1577 
1578 #ifdef IRQ_RATE_LIMIT
1579 	/* Aaargh! I'm ashamed. This costs more lines-of-code than the actual
1580 	   interrupt routine!. (Well, used to when I wrote that comment) -- REW */
1581 	{
1582 		static int lastjif;
1583 		static int nintr=0;
1584 
1585 		if (lastjif == jiffies) {
1586 			if (++nintr > IRQ_RATE_LIMIT) {
1587 				free_irq (dev->irq, dev_id);
1588 				printk (KERN_ERR "fs: Too many interrupts. Turning off interrupt %d.\n",
1589 					dev->irq);
1590 			}
1591 		} else {
1592 			lastjif = jiffies;
1593 			nintr = 0;
1594 		}
1595 	}
1596 #endif
1597 	fs_dprintk (FS_DEBUG_QUEUE, "in intr: txq %d txrq %d\n",
1598 		    read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1599 		    read_fs (dev, Q_SA (dev->hp_txq.offset)),
1600 		    read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1601 		    read_fs (dev, Q_SA (dev->tx_relq.offset)));
1602 
1603 	/* print the bits in the ISR register. */
1604 	if (fs_debug & FS_DEBUG_IRQ) {
1605 		/* The FS_DEBUG things are unnecessary here. But this way it is
1606 		   clear for grep that these are debug prints. */
1607 		fs_dprintk (FS_DEBUG_IRQ,  "IRQ status:");
1608 		for (i=0;i<27;i++)
1609 			if (status & (1 << i))
1610 				fs_dprintk (FS_DEBUG_IRQ, " %s", irq_bitname[i]);
1611 		fs_dprintk (FS_DEBUG_IRQ, "\n");
1612 	}
1613 
1614 	if (status & ISR_RBRQ0_W) {
1615 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (0)!!!!\n");
1616 		process_incoming (dev, &dev->rx_rq[0]);
1617 		/* items mentioned on RBRQ0 are from FP 0 or 1. */
1618 		top_off_fp (dev, &dev->rx_fp[0], GFP_ATOMIC);
1619 		top_off_fp (dev, &dev->rx_fp[1], GFP_ATOMIC);
1620 	}
1621 
1622 	if (status & ISR_RBRQ1_W) {
1623 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (1)!!!!\n");
1624 		process_incoming (dev, &dev->rx_rq[1]);
1625 		top_off_fp (dev, &dev->rx_fp[2], GFP_ATOMIC);
1626 		top_off_fp (dev, &dev->rx_fp[3], GFP_ATOMIC);
1627 	}
1628 
1629 	if (status & ISR_RBRQ2_W) {
1630 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (2)!!!!\n");
1631 		process_incoming (dev, &dev->rx_rq[2]);
1632 		top_off_fp (dev, &dev->rx_fp[4], GFP_ATOMIC);
1633 		top_off_fp (dev, &dev->rx_fp[5], GFP_ATOMIC);
1634 	}
1635 
1636 	if (status & ISR_RBRQ3_W) {
1637 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (3)!!!!\n");
1638 		process_incoming (dev, &dev->rx_rq[3]);
1639 		top_off_fp (dev, &dev->rx_fp[6], GFP_ATOMIC);
1640 		top_off_fp (dev, &dev->rx_fp[7], GFP_ATOMIC);
1641 	}
1642 
1643 	if (status & ISR_CSQ_W) {
1644 		fs_dprintk (FS_DEBUG_IRQ, "Command executed ok!\n");
1645 		process_return_queue (dev, &dev->st_q);
1646 	}
1647 
1648 	if (status & ISR_TBRQ_W) {
1649 		fs_dprintk (FS_DEBUG_IRQ, "Data tramsitted!\n");
1650 		process_txdone_queue (dev, &dev->tx_relq);
1651 	}
1652 
1653 	func_exit ();
1654 	return IRQ_HANDLED;
1655 }
1656 
1657 
1658 #ifdef FS_POLL_FREQ
fs_poll(struct timer_list * t)1659 static void fs_poll (struct timer_list *t)
1660 {
1661 	struct fs_dev *dev = from_timer(dev, t, timer);
1662 
1663 	fs_irq (0, dev);
1664 	dev->timer.expires = jiffies + FS_POLL_FREQ;
1665 	add_timer (&dev->timer);
1666 }
1667 #endif
1668 
fs_init(struct fs_dev * dev)1669 static int fs_init(struct fs_dev *dev)
1670 {
1671 	struct pci_dev  *pci_dev;
1672 	int isr, to;
1673 	int i;
1674 
1675 	func_enter ();
1676 	pci_dev = dev->pci_dev;
1677 
1678 	printk (KERN_INFO "found a FireStream %d card, base %16llx, irq%d.\n",
1679 		IS_FS50(dev)?50:155,
1680 		(unsigned long long)pci_resource_start(pci_dev, 0),
1681 		dev->pci_dev->irq);
1682 
1683 	if (fs_debug & FS_DEBUG_INIT)
1684 		my_hd ((unsigned char *) dev, sizeof (*dev));
1685 
1686 	undocumented_pci_fix (pci_dev);
1687 
1688 	dev->hw_base = pci_resource_start(pci_dev, 0);
1689 
1690 	dev->base = ioremap(dev->hw_base, 0x1000);
1691 
1692 	reset_chip (dev);
1693 
1694 	write_fs (dev, SARMODE0, 0
1695 		  | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1696 		  | (1 * SARMODE0_INTMODE_READCLEAR)
1697 		  | (1 * SARMODE0_CWRE)
1698 		  | (IS_FS50(dev) ? SARMODE0_PRPWT_FS50_5:
1699 			  SARMODE0_PRPWT_FS155_3)
1700 		  | (1 * SARMODE0_CALSUP_1)
1701 		  | (IS_FS50(dev) ? (0
1702 				   | SARMODE0_RXVCS_32
1703 				   | SARMODE0_ABRVCS_32
1704 				   | SARMODE0_TXVCS_32):
1705 		                  (0
1706 				   | SARMODE0_RXVCS_1k
1707 				   | SARMODE0_ABRVCS_1k
1708 				   | SARMODE0_TXVCS_1k)));
1709 
1710 	/* 10ms * 100 is 1 second. That should be enough, as AN3:9 says it takes
1711 	   1ms. */
1712 	to = 100;
1713 	while (--to) {
1714 		isr = read_fs (dev, ISR);
1715 
1716 		/* This bit is documented as "RESERVED" */
1717 		if (isr & ISR_INIT_ERR) {
1718 			printk (KERN_ERR "Error initializing the FS... \n");
1719 			goto unmap;
1720 		}
1721 		if (isr & ISR_INIT) {
1722 			fs_dprintk (FS_DEBUG_INIT, "Ha! Initialized OK!\n");
1723 			break;
1724 		}
1725 
1726 		/* Try again after 10ms. */
1727 		msleep(10);
1728 	}
1729 
1730 	if (!to) {
1731 		printk (KERN_ERR "timeout initializing the FS... \n");
1732 		goto unmap;
1733 	}
1734 
1735 	/* XXX fix for fs155 */
1736 	dev->channel_mask = 0x1f;
1737 	dev->channo = 0;
1738 
1739 	/* AN3: 10 */
1740 	write_fs (dev, SARMODE1, 0
1741 		  | (fs_keystream * SARMODE1_DEFHEC) /* XXX PHY */
1742 		  | ((loopback == 1) * SARMODE1_TSTLP) /* XXX Loopback mode enable... */
1743 		  | (1 * SARMODE1_DCRM)
1744 		  | (1 * SARMODE1_DCOAM)
1745 		  | (0 * SARMODE1_OAMCRC)
1746 		  | (0 * SARMODE1_DUMPE)
1747 		  | (0 * SARMODE1_GPLEN)
1748 		  | (0 * SARMODE1_GNAM)
1749 		  | (0 * SARMODE1_GVAS)
1750 		  | (0 * SARMODE1_GPAS)
1751 		  | (1 * SARMODE1_GPRI)
1752 		  | (0 * SARMODE1_PMS)
1753 		  | (0 * SARMODE1_GFCR)
1754 		  | (1 * SARMODE1_HECM2)
1755 		  | (1 * SARMODE1_HECM1)
1756 		  | (1 * SARMODE1_HECM0)
1757 		  | (1 << 12) /* That's what hang's driver does. Program to 0 */
1758 		  | (0 * 0xff) /* XXX FS155 */);
1759 
1760 
1761 	/* Cal prescale etc */
1762 
1763 	/* AN3: 11 */
1764 	write_fs (dev, TMCONF, 0x0000000f);
1765 	write_fs (dev, CALPRESCALE, 0x01010101 * num);
1766 	write_fs (dev, 0x80, 0x000F00E4);
1767 
1768 	/* AN3: 12 */
1769 	write_fs (dev, CELLOSCONF, 0
1770 		  | (   0 * CELLOSCONF_CEN)
1771 		  | (       CELLOSCONF_SC1)
1772 		  | (0x80 * CELLOSCONF_COBS)
1773 		  | (num  * CELLOSCONF_COPK)  /* Changed from 0xff to 0x5a */
1774 		  | (num  * CELLOSCONF_COST));/* after a hint from Hang.
1775 					       * performance jumped 50->70... */
1776 
1777 	/* Magic value by Hang */
1778 	write_fs (dev, CELLOSCONF_COST, 0x0B809191);
1779 
1780 	if (IS_FS50 (dev)) {
1781 		write_fs (dev, RAS0, RAS0_DCD_XHLT);
1782 		dev->atm_dev->ci_range.vpi_bits = 12;
1783 		dev->atm_dev->ci_range.vci_bits = 16;
1784 		dev->nchannels = FS50_NR_CHANNELS;
1785 	} else {
1786 		write_fs (dev, RAS0, RAS0_DCD_XHLT
1787 			  | (((1 << FS155_VPI_BITS) - 1) * RAS0_VPSEL)
1788 			  | (((1 << FS155_VCI_BITS) - 1) * RAS0_VCSEL));
1789 		/* We can chose the split arbitrarily. We might be able to
1790 		   support more. Whatever. This should do for now. */
1791 		dev->atm_dev->ci_range.vpi_bits = FS155_VPI_BITS;
1792 		dev->atm_dev->ci_range.vci_bits = FS155_VCI_BITS;
1793 
1794 		/* Address bits we can't use should be compared to 0. */
1795 		write_fs (dev, RAC, 0);
1796 
1797 		/* Manual (AN9, page 6) says ASF1=0 means compare Utopia address
1798 		 * too.  I can't find ASF1 anywhere. Anyway, we AND with just the
1799 		 * other bits, then compare with 0, which is exactly what we
1800 		 * want. */
1801 		write_fs (dev, RAM, (1 << (28 - FS155_VPI_BITS - FS155_VCI_BITS)) - 1);
1802 		dev->nchannels = FS155_NR_CHANNELS;
1803 	}
1804 	dev->atm_vccs = kcalloc (dev->nchannels, sizeof (struct atm_vcc *),
1805 				 GFP_KERNEL);
1806 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc atmvccs: %p(%zd)\n",
1807 		    dev->atm_vccs, dev->nchannels * sizeof (struct atm_vcc *));
1808 
1809 	if (!dev->atm_vccs) {
1810 		printk (KERN_WARNING "Couldn't allocate memory for VCC buffers. Woops!\n");
1811 		/* XXX Clean up..... */
1812 		goto unmap;
1813 	}
1814 
1815 	dev->tx_inuse = kzalloc (dev->nchannels / 8 /* bits/byte */ , GFP_KERNEL);
1816 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc tx_inuse: %p(%d)\n",
1817 		    dev->atm_vccs, dev->nchannels / 8);
1818 
1819 	if (!dev->tx_inuse) {
1820 		printk (KERN_WARNING "Couldn't allocate memory for tx_inuse bits!\n");
1821 		/* XXX Clean up..... */
1822 		goto unmap;
1823 	}
1824 	/* -- RAS1 : FS155 and 50 differ. Default (0) should be OK for both */
1825 	/* -- RAS2 : FS50 only: Default is OK. */
1826 
1827 	/* DMAMODE, default should be OK. -- REW */
1828 	write_fs (dev, DMAMR, DMAMR_TX_MODE_FULL);
1829 
1830 	init_q (dev, &dev->hp_txq, TX_PQ(TXQ_HP), TXQ_NENTRIES, 0);
1831 	init_q (dev, &dev->lp_txq, TX_PQ(TXQ_LP), TXQ_NENTRIES, 0);
1832 	init_q (dev, &dev->tx_relq, TXB_RQ, TXQ_NENTRIES, 1);
1833 	init_q (dev, &dev->st_q, ST_Q, TXQ_NENTRIES, 1);
1834 
1835 	for (i=0;i < FS_NR_FREE_POOLS;i++) {
1836 		init_fp (dev, &dev->rx_fp[i], RXB_FP(i),
1837 			 rx_buf_sizes[i], rx_pool_sizes[i]);
1838 		top_off_fp (dev, &dev->rx_fp[i], GFP_KERNEL);
1839 	}
1840 
1841 
1842 	for (i=0;i < FS_NR_RX_QUEUES;i++)
1843 		init_q (dev, &dev->rx_rq[i], RXB_RQ(i), RXRQ_NENTRIES, 1);
1844 
1845 	dev->irq = pci_dev->irq;
1846 	if (request_irq (dev->irq, fs_irq, IRQF_SHARED, "firestream", dev)) {
1847 		printk (KERN_WARNING "couldn't get irq %d for firestream.\n", pci_dev->irq);
1848 		/* XXX undo all previous stuff... */
1849 		goto unmap;
1850 	}
1851 	fs_dprintk (FS_DEBUG_INIT, "Grabbed irq %d for dev at %p.\n", dev->irq, dev);
1852 
1853 	/* We want to be notified of most things. Just the statistics count
1854 	   overflows are not interesting */
1855 	write_fs (dev, IMR, 0
1856 		  | ISR_RBRQ0_W
1857 		  | ISR_RBRQ1_W
1858 		  | ISR_RBRQ2_W
1859 		  | ISR_RBRQ3_W
1860 		  | ISR_TBRQ_W
1861 		  | ISR_CSQ_W);
1862 
1863 	write_fs (dev, SARMODE0, 0
1864 		  | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1865 		  | (1 * SARMODE0_GINT)
1866 		  | (1 * SARMODE0_INTMODE_READCLEAR)
1867 		  | (0 * SARMODE0_CWRE)
1868 		  | (IS_FS50(dev)?SARMODE0_PRPWT_FS50_5:
1869 		                  SARMODE0_PRPWT_FS155_3)
1870 		  | (1 * SARMODE0_CALSUP_1)
1871 		  | (IS_FS50 (dev)?(0
1872 				    | SARMODE0_RXVCS_32
1873 				    | SARMODE0_ABRVCS_32
1874 				    | SARMODE0_TXVCS_32):
1875 		                   (0
1876 				    | SARMODE0_RXVCS_1k
1877 				    | SARMODE0_ABRVCS_1k
1878 				    | SARMODE0_TXVCS_1k))
1879 		  | (1 * SARMODE0_RUN));
1880 
1881 	init_phy (dev, PHY_NTC_INIT);
1882 
1883 	if (loopback == 2) {
1884 		write_phy (dev, 0x39, 0x000e);
1885 	}
1886 
1887 #ifdef FS_POLL_FREQ
1888 	timer_setup(&dev->timer, fs_poll, 0);
1889 	dev->timer.expires = jiffies + FS_POLL_FREQ;
1890 	add_timer (&dev->timer);
1891 #endif
1892 
1893 	dev->atm_dev->dev_data = dev;
1894 
1895 	func_exit ();
1896 	return 0;
1897 unmap:
1898 	iounmap(dev->base);
1899 	return 1;
1900 }
1901 
firestream_init_one(struct pci_dev * pci_dev,const struct pci_device_id * ent)1902 static int firestream_init_one(struct pci_dev *pci_dev,
1903 			       const struct pci_device_id *ent)
1904 {
1905 	struct atm_dev *atm_dev;
1906 	struct fs_dev *fs_dev;
1907 
1908 	if (pci_enable_device(pci_dev))
1909 		goto err_out;
1910 
1911 	fs_dev = kzalloc (sizeof (struct fs_dev), GFP_KERNEL);
1912 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc fs-dev: %p(%zd)\n",
1913 		    fs_dev, sizeof (struct fs_dev));
1914 	if (!fs_dev)
1915 		goto err_out;
1916 	atm_dev = atm_dev_register("fs", &pci_dev->dev, &ops, -1, NULL);
1917 	if (!atm_dev)
1918 		goto err_out_free_fs_dev;
1919 
1920 	fs_dev->pci_dev = pci_dev;
1921 	fs_dev->atm_dev = atm_dev;
1922 	fs_dev->flags = ent->driver_data;
1923 
1924 	if (fs_init(fs_dev))
1925 		goto err_out_free_atm_dev;
1926 
1927 	fs_dev->next = fs_boards;
1928 	fs_boards = fs_dev;
1929 	return 0;
1930 
1931  err_out_free_atm_dev:
1932 	atm_dev_deregister(atm_dev);
1933  err_out_free_fs_dev:
1934  	kfree(fs_dev);
1935  err_out:
1936 	return -ENODEV;
1937 }
1938 
firestream_remove_one(struct pci_dev * pdev)1939 static void firestream_remove_one(struct pci_dev *pdev)
1940 {
1941 	int i;
1942 	struct fs_dev *dev, *nxtdev;
1943 	struct fs_vcc *vcc;
1944 	struct FS_BPENTRY *fp, *nxt;
1945 
1946 	func_enter ();
1947 
1948 #if 0
1949 	printk ("hptxq:\n");
1950 	for (i=0;i<60;i++) {
1951 		printk ("%d: %08x %08x %08x %08x \n",
1952 			i, pq[qp].cmd, pq[qp].p0, pq[qp].p1, pq[qp].p2);
1953 		qp++;
1954 		if (qp >= 60) qp = 0;
1955 	}
1956 
1957 	printk ("descriptors:\n");
1958 	for (i=0;i<60;i++) {
1959 		printk ("%d: %p: %08x %08x %p %p\n",
1960 			i, da[qd], dq[qd].flags, dq[qd].bsa, dq[qd].skb, dq[qd].dev);
1961 		qd++;
1962 		if (qd >= 60) qd = 0;
1963 	}
1964 #endif
1965 
1966 	for (dev = fs_boards;dev != NULL;dev=nxtdev) {
1967 		fs_dprintk (FS_DEBUG_CLEANUP, "Releasing resources for dev at %p.\n", dev);
1968 
1969 		/* XXX Hit all the tx channels too! */
1970 
1971 		for (i=0;i < dev->nchannels;i++) {
1972 			if (dev->atm_vccs[i]) {
1973 				vcc = FS_VCC (dev->atm_vccs[i]);
1974 				submit_command (dev,  &dev->hp_txq,
1975 						QE_CMD_TX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1976 				submit_command (dev,  &dev->hp_txq,
1977 						QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1978 
1979 			}
1980 		}
1981 
1982 		/* XXX Wait a while for the chip to release all buffers. */
1983 
1984 		for (i=0;i < FS_NR_FREE_POOLS;i++) {
1985 			for (fp=bus_to_virt (read_fs (dev, FP_SA(dev->rx_fp[i].offset)));
1986 			     !(fp->flags & FP_FLAGS_EPI);fp = nxt) {
1987 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1988 				dev_kfree_skb_any (fp->skb);
1989 				nxt = bus_to_virt (fp->next);
1990 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1991 				kfree (fp);
1992 			}
1993 			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1994 			dev_kfree_skb_any (fp->skb);
1995 			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1996 			kfree (fp);
1997 		}
1998 
1999 		/* Hang the chip in "reset", prevent it clobbering memory that is
2000 		   no longer ours. */
2001 		reset_chip (dev);
2002 
2003 		fs_dprintk (FS_DEBUG_CLEANUP, "Freeing irq%d.\n", dev->irq);
2004 		free_irq (dev->irq, dev);
2005 		del_timer_sync (&dev->timer);
2006 
2007 		atm_dev_deregister(dev->atm_dev);
2008 		free_queue (dev, &dev->hp_txq);
2009 		free_queue (dev, &dev->lp_txq);
2010 		free_queue (dev, &dev->tx_relq);
2011 		free_queue (dev, &dev->st_q);
2012 
2013 		fs_dprintk (FS_DEBUG_ALLOC, "Free atmvccs: %p\n", dev->atm_vccs);
2014 		kfree (dev->atm_vccs);
2015 
2016 		for (i=0;i< FS_NR_FREE_POOLS;i++)
2017 			free_freepool (dev, &dev->rx_fp[i]);
2018 
2019 		for (i=0;i < FS_NR_RX_QUEUES;i++)
2020 			free_queue (dev, &dev->rx_rq[i]);
2021 
2022 		iounmap(dev->base);
2023 		fs_dprintk (FS_DEBUG_ALLOC, "Free fs-dev: %p\n", dev);
2024 		nxtdev = dev->next;
2025 		kfree (dev);
2026 	}
2027 
2028 	func_exit ();
2029 }
2030 
2031 static const struct pci_device_id firestream_pci_tbl[] = {
2032 	{ PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS50), FS_IS50},
2033 	{ PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS155), FS_IS155},
2034 	{ 0, }
2035 };
2036 
2037 MODULE_DEVICE_TABLE(pci, firestream_pci_tbl);
2038 
2039 static struct pci_driver firestream_driver = {
2040 	.name		= "firestream",
2041 	.id_table	= firestream_pci_tbl,
2042 	.probe		= firestream_init_one,
2043 	.remove		= firestream_remove_one,
2044 };
2045 
firestream_init_module(void)2046 static int __init firestream_init_module (void)
2047 {
2048 	int error;
2049 
2050 	func_enter ();
2051 	error = pci_register_driver(&firestream_driver);
2052 	func_exit ();
2053 	return error;
2054 }
2055 
firestream_cleanup_module(void)2056 static void __exit firestream_cleanup_module(void)
2057 {
2058 	pci_unregister_driver(&firestream_driver);
2059 }
2060 
2061 module_init(firestream_init_module);
2062 module_exit(firestream_cleanup_module);
2063 
2064 MODULE_LICENSE("GPL");
2065 
2066 
2067 
2068