1  // SPDX-License-Identifier: GPL-2.0
2  #include <errno.h>
3  #include <inttypes.h>
4  #include "string2.h"
5  #include <sys/param.h>
6  #include <sys/types.h>
7  #include <byteswap.h>
8  #include <unistd.h>
9  #include <regex.h>
10  #include <stdio.h>
11  #include <stdlib.h>
12  #include <linux/compiler.h>
13  #include <linux/list.h>
14  #include <linux/kernel.h>
15  #include <linux/bitops.h>
16  #include <linux/string.h>
17  #include <linux/stringify.h>
18  #include <linux/zalloc.h>
19  #include <sys/stat.h>
20  #include <sys/utsname.h>
21  #include <linux/time64.h>
22  #include <dirent.h>
23  #ifdef HAVE_LIBBPF_SUPPORT
24  #include <bpf/libbpf.h>
25  #endif
26  #include <perf/cpumap.h>
27  #include <tools/libc_compat.h> // reallocarray
28  
29  #include "dso.h"
30  #include "evlist.h"
31  #include "evsel.h"
32  #include "util/evsel_fprintf.h"
33  #include "header.h"
34  #include "memswap.h"
35  #include "trace-event.h"
36  #include "session.h"
37  #include "symbol.h"
38  #include "debug.h"
39  #include "cpumap.h"
40  #include "pmu.h"
41  #include "pmus.h"
42  #include "vdso.h"
43  #include "strbuf.h"
44  #include "build-id.h"
45  #include "data.h"
46  #include <api/fs/fs.h>
47  #include "asm/bug.h"
48  #include "tool.h"
49  #include "time-utils.h"
50  #include "units.h"
51  #include "util/util.h" // perf_exe()
52  #include "cputopo.h"
53  #include "bpf-event.h"
54  #include "bpf-utils.h"
55  #include "clockid.h"
56  
57  #include <linux/ctype.h>
58  #include <internal/lib.h>
59  
60  #ifdef HAVE_LIBTRACEEVENT
61  #include <traceevent/event-parse.h>
62  #endif
63  
64  /*
65   * magic2 = "PERFILE2"
66   * must be a numerical value to let the endianness
67   * determine the memory layout. That way we are able
68   * to detect endianness when reading the perf.data file
69   * back.
70   *
71   * we check for legacy (PERFFILE) format.
72   */
73  static const char *__perf_magic1 = "PERFFILE";
74  static const u64 __perf_magic2    = 0x32454c4946524550ULL;
75  static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
76  
77  #define PERF_MAGIC	__perf_magic2
78  
79  const char perf_version_string[] = PERF_VERSION;
80  
81  struct perf_file_attr {
82  	struct perf_event_attr	attr;
83  	struct perf_file_section	ids;
84  };
85  
perf_header__set_feat(struct perf_header * header,int feat)86  void perf_header__set_feat(struct perf_header *header, int feat)
87  {
88  	__set_bit(feat, header->adds_features);
89  }
90  
perf_header__clear_feat(struct perf_header * header,int feat)91  void perf_header__clear_feat(struct perf_header *header, int feat)
92  {
93  	__clear_bit(feat, header->adds_features);
94  }
95  
perf_header__has_feat(const struct perf_header * header,int feat)96  bool perf_header__has_feat(const struct perf_header *header, int feat)
97  {
98  	return test_bit(feat, header->adds_features);
99  }
100  
__do_write_fd(struct feat_fd * ff,const void * buf,size_t size)101  static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
102  {
103  	ssize_t ret = writen(ff->fd, buf, size);
104  
105  	if (ret != (ssize_t)size)
106  		return ret < 0 ? (int)ret : -1;
107  	return 0;
108  }
109  
__do_write_buf(struct feat_fd * ff,const void * buf,size_t size)110  static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
111  {
112  	/* struct perf_event_header::size is u16 */
113  	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
114  	size_t new_size = ff->size;
115  	void *addr;
116  
117  	if (size + ff->offset > max_size)
118  		return -E2BIG;
119  
120  	while (size > (new_size - ff->offset))
121  		new_size <<= 1;
122  	new_size = min(max_size, new_size);
123  
124  	if (ff->size < new_size) {
125  		addr = realloc(ff->buf, new_size);
126  		if (!addr)
127  			return -ENOMEM;
128  		ff->buf = addr;
129  		ff->size = new_size;
130  	}
131  
132  	memcpy(ff->buf + ff->offset, buf, size);
133  	ff->offset += size;
134  
135  	return 0;
136  }
137  
138  /* Return: 0 if succeeded, -ERR if failed. */
do_write(struct feat_fd * ff,const void * buf,size_t size)139  int do_write(struct feat_fd *ff, const void *buf, size_t size)
140  {
141  	if (!ff->buf)
142  		return __do_write_fd(ff, buf, size);
143  	return __do_write_buf(ff, buf, size);
144  }
145  
146  /* Return: 0 if succeeded, -ERR if failed. */
do_write_bitmap(struct feat_fd * ff,unsigned long * set,u64 size)147  static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
148  {
149  	u64 *p = (u64 *) set;
150  	int i, ret;
151  
152  	ret = do_write(ff, &size, sizeof(size));
153  	if (ret < 0)
154  		return ret;
155  
156  	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
157  		ret = do_write(ff, p + i, sizeof(*p));
158  		if (ret < 0)
159  			return ret;
160  	}
161  
162  	return 0;
163  }
164  
165  /* Return: 0 if succeeded, -ERR if failed. */
write_padded(struct feat_fd * ff,const void * bf,size_t count,size_t count_aligned)166  int write_padded(struct feat_fd *ff, const void *bf,
167  		 size_t count, size_t count_aligned)
168  {
169  	static const char zero_buf[NAME_ALIGN];
170  	int err = do_write(ff, bf, count);
171  
172  	if (!err)
173  		err = do_write(ff, zero_buf, count_aligned - count);
174  
175  	return err;
176  }
177  
178  #define string_size(str)						\
179  	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
180  
181  /* Return: 0 if succeeded, -ERR if failed. */
do_write_string(struct feat_fd * ff,const char * str)182  static int do_write_string(struct feat_fd *ff, const char *str)
183  {
184  	u32 len, olen;
185  	int ret;
186  
187  	olen = strlen(str) + 1;
188  	len = PERF_ALIGN(olen, NAME_ALIGN);
189  
190  	/* write len, incl. \0 */
191  	ret = do_write(ff, &len, sizeof(len));
192  	if (ret < 0)
193  		return ret;
194  
195  	return write_padded(ff, str, olen, len);
196  }
197  
__do_read_fd(struct feat_fd * ff,void * addr,ssize_t size)198  static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
199  {
200  	ssize_t ret = readn(ff->fd, addr, size);
201  
202  	if (ret != size)
203  		return ret < 0 ? (int)ret : -1;
204  	return 0;
205  }
206  
__do_read_buf(struct feat_fd * ff,void * addr,ssize_t size)207  static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
208  {
209  	if (size > (ssize_t)ff->size - ff->offset)
210  		return -1;
211  
212  	memcpy(addr, ff->buf + ff->offset, size);
213  	ff->offset += size;
214  
215  	return 0;
216  
217  }
218  
__do_read(struct feat_fd * ff,void * addr,ssize_t size)219  static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
220  {
221  	if (!ff->buf)
222  		return __do_read_fd(ff, addr, size);
223  	return __do_read_buf(ff, addr, size);
224  }
225  
do_read_u32(struct feat_fd * ff,u32 * addr)226  static int do_read_u32(struct feat_fd *ff, u32 *addr)
227  {
228  	int ret;
229  
230  	ret = __do_read(ff, addr, sizeof(*addr));
231  	if (ret)
232  		return ret;
233  
234  	if (ff->ph->needs_swap)
235  		*addr = bswap_32(*addr);
236  	return 0;
237  }
238  
do_read_u64(struct feat_fd * ff,u64 * addr)239  static int do_read_u64(struct feat_fd *ff, u64 *addr)
240  {
241  	int ret;
242  
243  	ret = __do_read(ff, addr, sizeof(*addr));
244  	if (ret)
245  		return ret;
246  
247  	if (ff->ph->needs_swap)
248  		*addr = bswap_64(*addr);
249  	return 0;
250  }
251  
do_read_string(struct feat_fd * ff)252  static char *do_read_string(struct feat_fd *ff)
253  {
254  	u32 len;
255  	char *buf;
256  
257  	if (do_read_u32(ff, &len))
258  		return NULL;
259  
260  	buf = malloc(len);
261  	if (!buf)
262  		return NULL;
263  
264  	if (!__do_read(ff, buf, len)) {
265  		/*
266  		 * strings are padded by zeroes
267  		 * thus the actual strlen of buf
268  		 * may be less than len
269  		 */
270  		return buf;
271  	}
272  
273  	free(buf);
274  	return NULL;
275  }
276  
277  /* Return: 0 if succeeded, -ERR if failed. */
do_read_bitmap(struct feat_fd * ff,unsigned long ** pset,u64 * psize)278  static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
279  {
280  	unsigned long *set;
281  	u64 size, *p;
282  	int i, ret;
283  
284  	ret = do_read_u64(ff, &size);
285  	if (ret)
286  		return ret;
287  
288  	set = bitmap_zalloc(size);
289  	if (!set)
290  		return -ENOMEM;
291  
292  	p = (u64 *) set;
293  
294  	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
295  		ret = do_read_u64(ff, p + i);
296  		if (ret < 0) {
297  			free(set);
298  			return ret;
299  		}
300  	}
301  
302  	*pset  = set;
303  	*psize = size;
304  	return 0;
305  }
306  
307  #ifdef HAVE_LIBTRACEEVENT
write_tracing_data(struct feat_fd * ff,struct evlist * evlist)308  static int write_tracing_data(struct feat_fd *ff,
309  			      struct evlist *evlist)
310  {
311  	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
312  		return -1;
313  
314  	return read_tracing_data(ff->fd, &evlist->core.entries);
315  }
316  #endif
317  
write_build_id(struct feat_fd * ff,struct evlist * evlist __maybe_unused)318  static int write_build_id(struct feat_fd *ff,
319  			  struct evlist *evlist __maybe_unused)
320  {
321  	struct perf_session *session;
322  	int err;
323  
324  	session = container_of(ff->ph, struct perf_session, header);
325  
326  	if (!perf_session__read_build_ids(session, true))
327  		return -1;
328  
329  	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
330  		return -1;
331  
332  	err = perf_session__write_buildid_table(session, ff);
333  	if (err < 0) {
334  		pr_debug("failed to write buildid table\n");
335  		return err;
336  	}
337  	perf_session__cache_build_ids(session);
338  
339  	return 0;
340  }
341  
write_hostname(struct feat_fd * ff,struct evlist * evlist __maybe_unused)342  static int write_hostname(struct feat_fd *ff,
343  			  struct evlist *evlist __maybe_unused)
344  {
345  	struct utsname uts;
346  	int ret;
347  
348  	ret = uname(&uts);
349  	if (ret < 0)
350  		return -1;
351  
352  	return do_write_string(ff, uts.nodename);
353  }
354  
write_osrelease(struct feat_fd * ff,struct evlist * evlist __maybe_unused)355  static int write_osrelease(struct feat_fd *ff,
356  			   struct evlist *evlist __maybe_unused)
357  {
358  	struct utsname uts;
359  	int ret;
360  
361  	ret = uname(&uts);
362  	if (ret < 0)
363  		return -1;
364  
365  	return do_write_string(ff, uts.release);
366  }
367  
write_arch(struct feat_fd * ff,struct evlist * evlist __maybe_unused)368  static int write_arch(struct feat_fd *ff,
369  		      struct evlist *evlist __maybe_unused)
370  {
371  	struct utsname uts;
372  	int ret;
373  
374  	ret = uname(&uts);
375  	if (ret < 0)
376  		return -1;
377  
378  	return do_write_string(ff, uts.machine);
379  }
380  
write_version(struct feat_fd * ff,struct evlist * evlist __maybe_unused)381  static int write_version(struct feat_fd *ff,
382  			 struct evlist *evlist __maybe_unused)
383  {
384  	return do_write_string(ff, perf_version_string);
385  }
386  
__write_cpudesc(struct feat_fd * ff,const char * cpuinfo_proc)387  static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
388  {
389  	FILE *file;
390  	char *buf = NULL;
391  	char *s, *p;
392  	const char *search = cpuinfo_proc;
393  	size_t len = 0;
394  	int ret = -1;
395  
396  	if (!search)
397  		return -1;
398  
399  	file = fopen("/proc/cpuinfo", "r");
400  	if (!file)
401  		return -1;
402  
403  	while (getline(&buf, &len, file) > 0) {
404  		ret = strncmp(buf, search, strlen(search));
405  		if (!ret)
406  			break;
407  	}
408  
409  	if (ret) {
410  		ret = -1;
411  		goto done;
412  	}
413  
414  	s = buf;
415  
416  	p = strchr(buf, ':');
417  	if (p && *(p+1) == ' ' && *(p+2))
418  		s = p + 2;
419  	p = strchr(s, '\n');
420  	if (p)
421  		*p = '\0';
422  
423  	/* squash extra space characters (branding string) */
424  	p = s;
425  	while (*p) {
426  		if (isspace(*p)) {
427  			char *r = p + 1;
428  			char *q = skip_spaces(r);
429  			*p = ' ';
430  			if (q != (p+1))
431  				while ((*r++ = *q++));
432  		}
433  		p++;
434  	}
435  	ret = do_write_string(ff, s);
436  done:
437  	free(buf);
438  	fclose(file);
439  	return ret;
440  }
441  
write_cpudesc(struct feat_fd * ff,struct evlist * evlist __maybe_unused)442  static int write_cpudesc(struct feat_fd *ff,
443  		       struct evlist *evlist __maybe_unused)
444  {
445  #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
446  #define CPUINFO_PROC	{ "cpu", }
447  #elif defined(__s390__)
448  #define CPUINFO_PROC	{ "vendor_id", }
449  #elif defined(__sh__)
450  #define CPUINFO_PROC	{ "cpu type", }
451  #elif defined(__alpha__) || defined(__mips__)
452  #define CPUINFO_PROC	{ "cpu model", }
453  #elif defined(__arm__)
454  #define CPUINFO_PROC	{ "model name", "Processor", }
455  #elif defined(__arc__)
456  #define CPUINFO_PROC	{ "Processor", }
457  #elif defined(__xtensa__)
458  #define CPUINFO_PROC	{ "core ID", }
459  #elif defined(__loongarch__)
460  #define CPUINFO_PROC	{ "Model Name", }
461  #else
462  #define CPUINFO_PROC	{ "model name", }
463  #endif
464  	const char *cpuinfo_procs[] = CPUINFO_PROC;
465  #undef CPUINFO_PROC
466  	unsigned int i;
467  
468  	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
469  		int ret;
470  		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
471  		if (ret >= 0)
472  			return ret;
473  	}
474  	return -1;
475  }
476  
477  
write_nrcpus(struct feat_fd * ff,struct evlist * evlist __maybe_unused)478  static int write_nrcpus(struct feat_fd *ff,
479  			struct evlist *evlist __maybe_unused)
480  {
481  	long nr;
482  	u32 nrc, nra;
483  	int ret;
484  
485  	nrc = cpu__max_present_cpu().cpu;
486  
487  	nr = sysconf(_SC_NPROCESSORS_ONLN);
488  	if (nr < 0)
489  		return -1;
490  
491  	nra = (u32)(nr & UINT_MAX);
492  
493  	ret = do_write(ff, &nrc, sizeof(nrc));
494  	if (ret < 0)
495  		return ret;
496  
497  	return do_write(ff, &nra, sizeof(nra));
498  }
499  
write_event_desc(struct feat_fd * ff,struct evlist * evlist)500  static int write_event_desc(struct feat_fd *ff,
501  			    struct evlist *evlist)
502  {
503  	struct evsel *evsel;
504  	u32 nre, nri, sz;
505  	int ret;
506  
507  	nre = evlist->core.nr_entries;
508  
509  	/*
510  	 * write number of events
511  	 */
512  	ret = do_write(ff, &nre, sizeof(nre));
513  	if (ret < 0)
514  		return ret;
515  
516  	/*
517  	 * size of perf_event_attr struct
518  	 */
519  	sz = (u32)sizeof(evsel->core.attr);
520  	ret = do_write(ff, &sz, sizeof(sz));
521  	if (ret < 0)
522  		return ret;
523  
524  	evlist__for_each_entry(evlist, evsel) {
525  		ret = do_write(ff, &evsel->core.attr, sz);
526  		if (ret < 0)
527  			return ret;
528  		/*
529  		 * write number of unique id per event
530  		 * there is one id per instance of an event
531  		 *
532  		 * copy into an nri to be independent of the
533  		 * type of ids,
534  		 */
535  		nri = evsel->core.ids;
536  		ret = do_write(ff, &nri, sizeof(nri));
537  		if (ret < 0)
538  			return ret;
539  
540  		/*
541  		 * write event string as passed on cmdline
542  		 */
543  		ret = do_write_string(ff, evsel__name(evsel));
544  		if (ret < 0)
545  			return ret;
546  		/*
547  		 * write unique ids for this event
548  		 */
549  		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
550  		if (ret < 0)
551  			return ret;
552  	}
553  	return 0;
554  }
555  
write_cmdline(struct feat_fd * ff,struct evlist * evlist __maybe_unused)556  static int write_cmdline(struct feat_fd *ff,
557  			 struct evlist *evlist __maybe_unused)
558  {
559  	char pbuf[MAXPATHLEN], *buf;
560  	int i, ret, n;
561  
562  	/* actual path to perf binary */
563  	buf = perf_exe(pbuf, MAXPATHLEN);
564  
565  	/* account for binary path */
566  	n = perf_env.nr_cmdline + 1;
567  
568  	ret = do_write(ff, &n, sizeof(n));
569  	if (ret < 0)
570  		return ret;
571  
572  	ret = do_write_string(ff, buf);
573  	if (ret < 0)
574  		return ret;
575  
576  	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
577  		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
578  		if (ret < 0)
579  			return ret;
580  	}
581  	return 0;
582  }
583  
584  
write_cpu_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)585  static int write_cpu_topology(struct feat_fd *ff,
586  			      struct evlist *evlist __maybe_unused)
587  {
588  	struct cpu_topology *tp;
589  	u32 i;
590  	int ret, j;
591  
592  	tp = cpu_topology__new();
593  	if (!tp)
594  		return -1;
595  
596  	ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
597  	if (ret < 0)
598  		goto done;
599  
600  	for (i = 0; i < tp->package_cpus_lists; i++) {
601  		ret = do_write_string(ff, tp->package_cpus_list[i]);
602  		if (ret < 0)
603  			goto done;
604  	}
605  	ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
606  	if (ret < 0)
607  		goto done;
608  
609  	for (i = 0; i < tp->core_cpus_lists; i++) {
610  		ret = do_write_string(ff, tp->core_cpus_list[i]);
611  		if (ret < 0)
612  			break;
613  	}
614  
615  	ret = perf_env__read_cpu_topology_map(&perf_env);
616  	if (ret < 0)
617  		goto done;
618  
619  	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
620  		ret = do_write(ff, &perf_env.cpu[j].core_id,
621  			       sizeof(perf_env.cpu[j].core_id));
622  		if (ret < 0)
623  			return ret;
624  		ret = do_write(ff, &perf_env.cpu[j].socket_id,
625  			       sizeof(perf_env.cpu[j].socket_id));
626  		if (ret < 0)
627  			return ret;
628  	}
629  
630  	if (!tp->die_cpus_lists)
631  		goto done;
632  
633  	ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
634  	if (ret < 0)
635  		goto done;
636  
637  	for (i = 0; i < tp->die_cpus_lists; i++) {
638  		ret = do_write_string(ff, tp->die_cpus_list[i]);
639  		if (ret < 0)
640  			goto done;
641  	}
642  
643  	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
644  		ret = do_write(ff, &perf_env.cpu[j].die_id,
645  			       sizeof(perf_env.cpu[j].die_id));
646  		if (ret < 0)
647  			return ret;
648  	}
649  
650  done:
651  	cpu_topology__delete(tp);
652  	return ret;
653  }
654  
655  
656  
write_total_mem(struct feat_fd * ff,struct evlist * evlist __maybe_unused)657  static int write_total_mem(struct feat_fd *ff,
658  			   struct evlist *evlist __maybe_unused)
659  {
660  	char *buf = NULL;
661  	FILE *fp;
662  	size_t len = 0;
663  	int ret = -1, n;
664  	uint64_t mem;
665  
666  	fp = fopen("/proc/meminfo", "r");
667  	if (!fp)
668  		return -1;
669  
670  	while (getline(&buf, &len, fp) > 0) {
671  		ret = strncmp(buf, "MemTotal:", 9);
672  		if (!ret)
673  			break;
674  	}
675  	if (!ret) {
676  		n = sscanf(buf, "%*s %"PRIu64, &mem);
677  		if (n == 1)
678  			ret = do_write(ff, &mem, sizeof(mem));
679  	} else
680  		ret = -1;
681  	free(buf);
682  	fclose(fp);
683  	return ret;
684  }
685  
write_numa_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)686  static int write_numa_topology(struct feat_fd *ff,
687  			       struct evlist *evlist __maybe_unused)
688  {
689  	struct numa_topology *tp;
690  	int ret = -1;
691  	u32 i;
692  
693  	tp = numa_topology__new();
694  	if (!tp)
695  		return -ENOMEM;
696  
697  	ret = do_write(ff, &tp->nr, sizeof(u32));
698  	if (ret < 0)
699  		goto err;
700  
701  	for (i = 0; i < tp->nr; i++) {
702  		struct numa_topology_node *n = &tp->nodes[i];
703  
704  		ret = do_write(ff, &n->node, sizeof(u32));
705  		if (ret < 0)
706  			goto err;
707  
708  		ret = do_write(ff, &n->mem_total, sizeof(u64));
709  		if (ret)
710  			goto err;
711  
712  		ret = do_write(ff, &n->mem_free, sizeof(u64));
713  		if (ret)
714  			goto err;
715  
716  		ret = do_write_string(ff, n->cpus);
717  		if (ret < 0)
718  			goto err;
719  	}
720  
721  	ret = 0;
722  
723  err:
724  	numa_topology__delete(tp);
725  	return ret;
726  }
727  
728  /*
729   * File format:
730   *
731   * struct pmu_mappings {
732   *	u32	pmu_num;
733   *	struct pmu_map {
734   *		u32	type;
735   *		char	name[];
736   *	}[pmu_num];
737   * };
738   */
739  
write_pmu_mappings(struct feat_fd * ff,struct evlist * evlist __maybe_unused)740  static int write_pmu_mappings(struct feat_fd *ff,
741  			      struct evlist *evlist __maybe_unused)
742  {
743  	struct perf_pmu *pmu = NULL;
744  	u32 pmu_num = 0;
745  	int ret;
746  
747  	/*
748  	 * Do a first pass to count number of pmu to avoid lseek so this
749  	 * works in pipe mode as well.
750  	 */
751  	while ((pmu = perf_pmus__scan(pmu)))
752  		pmu_num++;
753  
754  	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
755  	if (ret < 0)
756  		return ret;
757  
758  	while ((pmu = perf_pmus__scan(pmu))) {
759  		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
760  		if (ret < 0)
761  			return ret;
762  
763  		ret = do_write_string(ff, pmu->name);
764  		if (ret < 0)
765  			return ret;
766  	}
767  
768  	return 0;
769  }
770  
771  /*
772   * File format:
773   *
774   * struct group_descs {
775   *	u32	nr_groups;
776   *	struct group_desc {
777   *		char	name[];
778   *		u32	leader_idx;
779   *		u32	nr_members;
780   *	}[nr_groups];
781   * };
782   */
write_group_desc(struct feat_fd * ff,struct evlist * evlist)783  static int write_group_desc(struct feat_fd *ff,
784  			    struct evlist *evlist)
785  {
786  	u32 nr_groups = evlist__nr_groups(evlist);
787  	struct evsel *evsel;
788  	int ret;
789  
790  	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
791  	if (ret < 0)
792  		return ret;
793  
794  	evlist__for_each_entry(evlist, evsel) {
795  		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
796  			const char *name = evsel->group_name ?: "{anon_group}";
797  			u32 leader_idx = evsel->core.idx;
798  			u32 nr_members = evsel->core.nr_members;
799  
800  			ret = do_write_string(ff, name);
801  			if (ret < 0)
802  				return ret;
803  
804  			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
805  			if (ret < 0)
806  				return ret;
807  
808  			ret = do_write(ff, &nr_members, sizeof(nr_members));
809  			if (ret < 0)
810  				return ret;
811  		}
812  	}
813  	return 0;
814  }
815  
816  /*
817   * Return the CPU id as a raw string.
818   *
819   * Each architecture should provide a more precise id string that
820   * can be use to match the architecture's "mapfile".
821   */
get_cpuid_str(struct perf_pmu * pmu __maybe_unused)822  char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
823  {
824  	return NULL;
825  }
826  
827  /* Return zero when the cpuid from the mapfile.csv matches the
828   * cpuid string generated on this platform.
829   * Otherwise return non-zero.
830   */
strcmp_cpuid_str(const char * mapcpuid,const char * cpuid)831  int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
832  {
833  	regex_t re;
834  	regmatch_t pmatch[1];
835  	int match;
836  
837  	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
838  		/* Warn unable to generate match particular string. */
839  		pr_info("Invalid regular expression %s\n", mapcpuid);
840  		return 1;
841  	}
842  
843  	match = !regexec(&re, cpuid, 1, pmatch, 0);
844  	regfree(&re);
845  	if (match) {
846  		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
847  
848  		/* Verify the entire string matched. */
849  		if (match_len == strlen(cpuid))
850  			return 0;
851  	}
852  	return 1;
853  }
854  
855  /*
856   * default get_cpuid(): nothing gets recorded
857   * actual implementation must be in arch/$(SRCARCH)/util/header.c
858   */
get_cpuid(char * buffer __maybe_unused,size_t sz __maybe_unused)859  int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
860  {
861  	return ENOSYS; /* Not implemented */
862  }
863  
write_cpuid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)864  static int write_cpuid(struct feat_fd *ff,
865  		       struct evlist *evlist __maybe_unused)
866  {
867  	char buffer[64];
868  	int ret;
869  
870  	ret = get_cpuid(buffer, sizeof(buffer));
871  	if (ret)
872  		return -1;
873  
874  	return do_write_string(ff, buffer);
875  }
876  
write_branch_stack(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)877  static int write_branch_stack(struct feat_fd *ff __maybe_unused,
878  			      struct evlist *evlist __maybe_unused)
879  {
880  	return 0;
881  }
882  
write_auxtrace(struct feat_fd * ff,struct evlist * evlist __maybe_unused)883  static int write_auxtrace(struct feat_fd *ff,
884  			  struct evlist *evlist __maybe_unused)
885  {
886  	struct perf_session *session;
887  	int err;
888  
889  	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
890  		return -1;
891  
892  	session = container_of(ff->ph, struct perf_session, header);
893  
894  	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
895  	if (err < 0)
896  		pr_err("Failed to write auxtrace index\n");
897  	return err;
898  }
899  
write_clockid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)900  static int write_clockid(struct feat_fd *ff,
901  			 struct evlist *evlist __maybe_unused)
902  {
903  	return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
904  			sizeof(ff->ph->env.clock.clockid_res_ns));
905  }
906  
write_clock_data(struct feat_fd * ff,struct evlist * evlist __maybe_unused)907  static int write_clock_data(struct feat_fd *ff,
908  			    struct evlist *evlist __maybe_unused)
909  {
910  	u64 *data64;
911  	u32 data32;
912  	int ret;
913  
914  	/* version */
915  	data32 = 1;
916  
917  	ret = do_write(ff, &data32, sizeof(data32));
918  	if (ret < 0)
919  		return ret;
920  
921  	/* clockid */
922  	data32 = ff->ph->env.clock.clockid;
923  
924  	ret = do_write(ff, &data32, sizeof(data32));
925  	if (ret < 0)
926  		return ret;
927  
928  	/* TOD ref time */
929  	data64 = &ff->ph->env.clock.tod_ns;
930  
931  	ret = do_write(ff, data64, sizeof(*data64));
932  	if (ret < 0)
933  		return ret;
934  
935  	/* clockid ref time */
936  	data64 = &ff->ph->env.clock.clockid_ns;
937  
938  	return do_write(ff, data64, sizeof(*data64));
939  }
940  
write_hybrid_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)941  static int write_hybrid_topology(struct feat_fd *ff,
942  				 struct evlist *evlist __maybe_unused)
943  {
944  	struct hybrid_topology *tp;
945  	int ret;
946  	u32 i;
947  
948  	tp = hybrid_topology__new();
949  	if (!tp)
950  		return -ENOENT;
951  
952  	ret = do_write(ff, &tp->nr, sizeof(u32));
953  	if (ret < 0)
954  		goto err;
955  
956  	for (i = 0; i < tp->nr; i++) {
957  		struct hybrid_topology_node *n = &tp->nodes[i];
958  
959  		ret = do_write_string(ff, n->pmu_name);
960  		if (ret < 0)
961  			goto err;
962  
963  		ret = do_write_string(ff, n->cpus);
964  		if (ret < 0)
965  			goto err;
966  	}
967  
968  	ret = 0;
969  
970  err:
971  	hybrid_topology__delete(tp);
972  	return ret;
973  }
974  
write_dir_format(struct feat_fd * ff,struct evlist * evlist __maybe_unused)975  static int write_dir_format(struct feat_fd *ff,
976  			    struct evlist *evlist __maybe_unused)
977  {
978  	struct perf_session *session;
979  	struct perf_data *data;
980  
981  	session = container_of(ff->ph, struct perf_session, header);
982  	data = session->data;
983  
984  	if (WARN_ON(!perf_data__is_dir(data)))
985  		return -1;
986  
987  	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
988  }
989  
990  /*
991   * Check whether a CPU is online
992   *
993   * Returns:
994   *     1 -> if CPU is online
995   *     0 -> if CPU is offline
996   *    -1 -> error case
997   */
is_cpu_online(unsigned int cpu)998  int is_cpu_online(unsigned int cpu)
999  {
1000  	char *str;
1001  	size_t strlen;
1002  	char buf[256];
1003  	int status = -1;
1004  	struct stat statbuf;
1005  
1006  	snprintf(buf, sizeof(buf),
1007  		"/sys/devices/system/cpu/cpu%d", cpu);
1008  	if (stat(buf, &statbuf) != 0)
1009  		return 0;
1010  
1011  	/*
1012  	 * Check if /sys/devices/system/cpu/cpux/online file
1013  	 * exists. Some cases cpu0 won't have online file since
1014  	 * it is not expected to be turned off generally.
1015  	 * In kernels without CONFIG_HOTPLUG_CPU, this
1016  	 * file won't exist
1017  	 */
1018  	snprintf(buf, sizeof(buf),
1019  		"/sys/devices/system/cpu/cpu%d/online", cpu);
1020  	if (stat(buf, &statbuf) != 0)
1021  		return 1;
1022  
1023  	/*
1024  	 * Read online file using sysfs__read_str.
1025  	 * If read or open fails, return -1.
1026  	 * If read succeeds, return value from file
1027  	 * which gets stored in "str"
1028  	 */
1029  	snprintf(buf, sizeof(buf),
1030  		"devices/system/cpu/cpu%d/online", cpu);
1031  
1032  	if (sysfs__read_str(buf, &str, &strlen) < 0)
1033  		return status;
1034  
1035  	status = atoi(str);
1036  
1037  	free(str);
1038  	return status;
1039  }
1040  
1041  #ifdef HAVE_LIBBPF_SUPPORT
write_bpf_prog_info(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1042  static int write_bpf_prog_info(struct feat_fd *ff,
1043  			       struct evlist *evlist __maybe_unused)
1044  {
1045  	struct perf_env *env = &ff->ph->env;
1046  	struct rb_root *root;
1047  	struct rb_node *next;
1048  	int ret;
1049  
1050  	down_read(&env->bpf_progs.lock);
1051  
1052  	ret = do_write(ff, &env->bpf_progs.infos_cnt,
1053  		       sizeof(env->bpf_progs.infos_cnt));
1054  	if (ret < 0)
1055  		goto out;
1056  
1057  	root = &env->bpf_progs.infos;
1058  	next = rb_first(root);
1059  	while (next) {
1060  		struct bpf_prog_info_node *node;
1061  		size_t len;
1062  
1063  		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1064  		next = rb_next(&node->rb_node);
1065  		len = sizeof(struct perf_bpil) +
1066  			node->info_linear->data_len;
1067  
1068  		/* before writing to file, translate address to offset */
1069  		bpil_addr_to_offs(node->info_linear);
1070  		ret = do_write(ff, node->info_linear, len);
1071  		/*
1072  		 * translate back to address even when do_write() fails,
1073  		 * so that this function never changes the data.
1074  		 */
1075  		bpil_offs_to_addr(node->info_linear);
1076  		if (ret < 0)
1077  			goto out;
1078  	}
1079  out:
1080  	up_read(&env->bpf_progs.lock);
1081  	return ret;
1082  }
1083  
write_bpf_btf(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1084  static int write_bpf_btf(struct feat_fd *ff,
1085  			 struct evlist *evlist __maybe_unused)
1086  {
1087  	struct perf_env *env = &ff->ph->env;
1088  	struct rb_root *root;
1089  	struct rb_node *next;
1090  	int ret;
1091  
1092  	down_read(&env->bpf_progs.lock);
1093  
1094  	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1095  		       sizeof(env->bpf_progs.btfs_cnt));
1096  
1097  	if (ret < 0)
1098  		goto out;
1099  
1100  	root = &env->bpf_progs.btfs;
1101  	next = rb_first(root);
1102  	while (next) {
1103  		struct btf_node *node;
1104  
1105  		node = rb_entry(next, struct btf_node, rb_node);
1106  		next = rb_next(&node->rb_node);
1107  		ret = do_write(ff, &node->id,
1108  			       sizeof(u32) * 2 + node->data_size);
1109  		if (ret < 0)
1110  			goto out;
1111  	}
1112  out:
1113  	up_read(&env->bpf_progs.lock);
1114  	return ret;
1115  }
1116  #endif // HAVE_LIBBPF_SUPPORT
1117  
cpu_cache_level__sort(const void * a,const void * b)1118  static int cpu_cache_level__sort(const void *a, const void *b)
1119  {
1120  	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1121  	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1122  
1123  	return cache_a->level - cache_b->level;
1124  }
1125  
cpu_cache_level__cmp(struct cpu_cache_level * a,struct cpu_cache_level * b)1126  static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1127  {
1128  	if (a->level != b->level)
1129  		return false;
1130  
1131  	if (a->line_size != b->line_size)
1132  		return false;
1133  
1134  	if (a->sets != b->sets)
1135  		return false;
1136  
1137  	if (a->ways != b->ways)
1138  		return false;
1139  
1140  	if (strcmp(a->type, b->type))
1141  		return false;
1142  
1143  	if (strcmp(a->size, b->size))
1144  		return false;
1145  
1146  	if (strcmp(a->map, b->map))
1147  		return false;
1148  
1149  	return true;
1150  }
1151  
cpu_cache_level__read(struct cpu_cache_level * cache,u32 cpu,u16 level)1152  static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1153  {
1154  	char path[PATH_MAX], file[PATH_MAX];
1155  	struct stat st;
1156  	size_t len;
1157  
1158  	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1159  	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1160  
1161  	if (stat(file, &st))
1162  		return 1;
1163  
1164  	scnprintf(file, PATH_MAX, "%s/level", path);
1165  	if (sysfs__read_int(file, (int *) &cache->level))
1166  		return -1;
1167  
1168  	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1169  	if (sysfs__read_int(file, (int *) &cache->line_size))
1170  		return -1;
1171  
1172  	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1173  	if (sysfs__read_int(file, (int *) &cache->sets))
1174  		return -1;
1175  
1176  	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1177  	if (sysfs__read_int(file, (int *) &cache->ways))
1178  		return -1;
1179  
1180  	scnprintf(file, PATH_MAX, "%s/type", path);
1181  	if (sysfs__read_str(file, &cache->type, &len))
1182  		return -1;
1183  
1184  	cache->type[len] = 0;
1185  	cache->type = strim(cache->type);
1186  
1187  	scnprintf(file, PATH_MAX, "%s/size", path);
1188  	if (sysfs__read_str(file, &cache->size, &len)) {
1189  		zfree(&cache->type);
1190  		return -1;
1191  	}
1192  
1193  	cache->size[len] = 0;
1194  	cache->size = strim(cache->size);
1195  
1196  	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1197  	if (sysfs__read_str(file, &cache->map, &len)) {
1198  		zfree(&cache->size);
1199  		zfree(&cache->type);
1200  		return -1;
1201  	}
1202  
1203  	cache->map[len] = 0;
1204  	cache->map = strim(cache->map);
1205  	return 0;
1206  }
1207  
cpu_cache_level__fprintf(FILE * out,struct cpu_cache_level * c)1208  static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1209  {
1210  	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1211  }
1212  
1213  /*
1214   * Build caches levels for a particular CPU from the data in
1215   * /sys/devices/system/cpu/cpu<cpu>/cache/
1216   * The cache level data is stored in caches[] from index at
1217   * *cntp.
1218   */
build_caches_for_cpu(u32 cpu,struct cpu_cache_level caches[],u32 * cntp)1219  int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp)
1220  {
1221  	u16 level;
1222  
1223  	for (level = 0; level < MAX_CACHE_LVL; level++) {
1224  		struct cpu_cache_level c;
1225  		int err;
1226  		u32 i;
1227  
1228  		err = cpu_cache_level__read(&c, cpu, level);
1229  		if (err < 0)
1230  			return err;
1231  
1232  		if (err == 1)
1233  			break;
1234  
1235  		for (i = 0; i < *cntp; i++) {
1236  			if (cpu_cache_level__cmp(&c, &caches[i]))
1237  				break;
1238  		}
1239  
1240  		if (i == *cntp) {
1241  			caches[*cntp] = c;
1242  			*cntp = *cntp + 1;
1243  		} else
1244  			cpu_cache_level__free(&c);
1245  	}
1246  
1247  	return 0;
1248  }
1249  
build_caches(struct cpu_cache_level caches[],u32 * cntp)1250  static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1251  {
1252  	u32 nr, cpu, cnt = 0;
1253  
1254  	nr = cpu__max_cpu().cpu;
1255  
1256  	for (cpu = 0; cpu < nr; cpu++) {
1257  		int ret = build_caches_for_cpu(cpu, caches, &cnt);
1258  
1259  		if (ret)
1260  			return ret;
1261  	}
1262  	*cntp = cnt;
1263  	return 0;
1264  }
1265  
write_cache(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1266  static int write_cache(struct feat_fd *ff,
1267  		       struct evlist *evlist __maybe_unused)
1268  {
1269  	u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1270  	struct cpu_cache_level caches[max_caches];
1271  	u32 cnt = 0, i, version = 1;
1272  	int ret;
1273  
1274  	ret = build_caches(caches, &cnt);
1275  	if (ret)
1276  		goto out;
1277  
1278  	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1279  
1280  	ret = do_write(ff, &version, sizeof(u32));
1281  	if (ret < 0)
1282  		goto out;
1283  
1284  	ret = do_write(ff, &cnt, sizeof(u32));
1285  	if (ret < 0)
1286  		goto out;
1287  
1288  	for (i = 0; i < cnt; i++) {
1289  		struct cpu_cache_level *c = &caches[i];
1290  
1291  		#define _W(v)					\
1292  			ret = do_write(ff, &c->v, sizeof(u32));	\
1293  			if (ret < 0)				\
1294  				goto out;
1295  
1296  		_W(level)
1297  		_W(line_size)
1298  		_W(sets)
1299  		_W(ways)
1300  		#undef _W
1301  
1302  		#define _W(v)						\
1303  			ret = do_write_string(ff, (const char *) c->v);	\
1304  			if (ret < 0)					\
1305  				goto out;
1306  
1307  		_W(type)
1308  		_W(size)
1309  		_W(map)
1310  		#undef _W
1311  	}
1312  
1313  out:
1314  	for (i = 0; i < cnt; i++)
1315  		cpu_cache_level__free(&caches[i]);
1316  	return ret;
1317  }
1318  
write_stat(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1319  static int write_stat(struct feat_fd *ff __maybe_unused,
1320  		      struct evlist *evlist __maybe_unused)
1321  {
1322  	return 0;
1323  }
1324  
write_sample_time(struct feat_fd * ff,struct evlist * evlist)1325  static int write_sample_time(struct feat_fd *ff,
1326  			     struct evlist *evlist)
1327  {
1328  	int ret;
1329  
1330  	ret = do_write(ff, &evlist->first_sample_time,
1331  		       sizeof(evlist->first_sample_time));
1332  	if (ret < 0)
1333  		return ret;
1334  
1335  	return do_write(ff, &evlist->last_sample_time,
1336  			sizeof(evlist->last_sample_time));
1337  }
1338  
1339  
memory_node__read(struct memory_node * n,unsigned long idx)1340  static int memory_node__read(struct memory_node *n, unsigned long idx)
1341  {
1342  	unsigned int phys, size = 0;
1343  	char path[PATH_MAX];
1344  	struct dirent *ent;
1345  	DIR *dir;
1346  
1347  #define for_each_memory(mem, dir)					\
1348  	while ((ent = readdir(dir)))					\
1349  		if (strcmp(ent->d_name, ".") &&				\
1350  		    strcmp(ent->d_name, "..") &&			\
1351  		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1352  
1353  	scnprintf(path, PATH_MAX,
1354  		  "%s/devices/system/node/node%lu",
1355  		  sysfs__mountpoint(), idx);
1356  
1357  	dir = opendir(path);
1358  	if (!dir) {
1359  		pr_warning("failed: can't open memory sysfs data\n");
1360  		return -1;
1361  	}
1362  
1363  	for_each_memory(phys, dir) {
1364  		size = max(phys, size);
1365  	}
1366  
1367  	size++;
1368  
1369  	n->set = bitmap_zalloc(size);
1370  	if (!n->set) {
1371  		closedir(dir);
1372  		return -ENOMEM;
1373  	}
1374  
1375  	n->node = idx;
1376  	n->size = size;
1377  
1378  	rewinddir(dir);
1379  
1380  	for_each_memory(phys, dir) {
1381  		__set_bit(phys, n->set);
1382  	}
1383  
1384  	closedir(dir);
1385  	return 0;
1386  }
1387  
memory_node__delete_nodes(struct memory_node * nodesp,u64 cnt)1388  static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt)
1389  {
1390  	for (u64 i = 0; i < cnt; i++)
1391  		bitmap_free(nodesp[i].set);
1392  
1393  	free(nodesp);
1394  }
1395  
memory_node__sort(const void * a,const void * b)1396  static int memory_node__sort(const void *a, const void *b)
1397  {
1398  	const struct memory_node *na = a;
1399  	const struct memory_node *nb = b;
1400  
1401  	return na->node - nb->node;
1402  }
1403  
build_mem_topology(struct memory_node ** nodesp,u64 * cntp)1404  static int build_mem_topology(struct memory_node **nodesp, u64 *cntp)
1405  {
1406  	char path[PATH_MAX];
1407  	struct dirent *ent;
1408  	DIR *dir;
1409  	int ret = 0;
1410  	size_t cnt = 0, size = 0;
1411  	struct memory_node *nodes = NULL;
1412  
1413  	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1414  		  sysfs__mountpoint());
1415  
1416  	dir = opendir(path);
1417  	if (!dir) {
1418  		pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1419  			  __func__, path);
1420  		return -1;
1421  	}
1422  
1423  	while (!ret && (ent = readdir(dir))) {
1424  		unsigned int idx;
1425  		int r;
1426  
1427  		if (!strcmp(ent->d_name, ".") ||
1428  		    !strcmp(ent->d_name, ".."))
1429  			continue;
1430  
1431  		r = sscanf(ent->d_name, "node%u", &idx);
1432  		if (r != 1)
1433  			continue;
1434  
1435  		if (cnt >= size) {
1436  			struct memory_node *new_nodes =
1437  				reallocarray(nodes, cnt + 4, sizeof(*nodes));
1438  
1439  			if (!new_nodes) {
1440  				pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size);
1441  				ret = -ENOMEM;
1442  				goto out;
1443  			}
1444  			nodes = new_nodes;
1445  			size += 4;
1446  		}
1447  		ret = memory_node__read(&nodes[cnt++], idx);
1448  	}
1449  out:
1450  	closedir(dir);
1451  	if (!ret) {
1452  		*cntp = cnt;
1453  		*nodesp = nodes;
1454  		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1455  	} else
1456  		memory_node__delete_nodes(nodes, cnt);
1457  
1458  	return ret;
1459  }
1460  
1461  /*
1462   * The MEM_TOPOLOGY holds physical memory map for every
1463   * node in system. The format of data is as follows:
1464   *
1465   *  0 - version          | for future changes
1466   *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1467   * 16 - count            | number of nodes
1468   *
1469   * For each node we store map of physical indexes for
1470   * each node:
1471   *
1472   * 32 - node id          | node index
1473   * 40 - size             | size of bitmap
1474   * 48 - bitmap           | bitmap of memory indexes that belongs to node
1475   */
write_mem_topology(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1476  static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1477  			      struct evlist *evlist __maybe_unused)
1478  {
1479  	struct memory_node *nodes = NULL;
1480  	u64 bsize, version = 1, i, nr = 0;
1481  	int ret;
1482  
1483  	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1484  			      (unsigned long long *) &bsize);
1485  	if (ret)
1486  		return ret;
1487  
1488  	ret = build_mem_topology(&nodes, &nr);
1489  	if (ret)
1490  		return ret;
1491  
1492  	ret = do_write(ff, &version, sizeof(version));
1493  	if (ret < 0)
1494  		goto out;
1495  
1496  	ret = do_write(ff, &bsize, sizeof(bsize));
1497  	if (ret < 0)
1498  		goto out;
1499  
1500  	ret = do_write(ff, &nr, sizeof(nr));
1501  	if (ret < 0)
1502  		goto out;
1503  
1504  	for (i = 0; i < nr; i++) {
1505  		struct memory_node *n = &nodes[i];
1506  
1507  		#define _W(v)						\
1508  			ret = do_write(ff, &n->v, sizeof(n->v));	\
1509  			if (ret < 0)					\
1510  				goto out;
1511  
1512  		_W(node)
1513  		_W(size)
1514  
1515  		#undef _W
1516  
1517  		ret = do_write_bitmap(ff, n->set, n->size);
1518  		if (ret < 0)
1519  			goto out;
1520  	}
1521  
1522  out:
1523  	memory_node__delete_nodes(nodes, nr);
1524  	return ret;
1525  }
1526  
write_compressed(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1527  static int write_compressed(struct feat_fd *ff __maybe_unused,
1528  			    struct evlist *evlist __maybe_unused)
1529  {
1530  	int ret;
1531  
1532  	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1533  	if (ret)
1534  		return ret;
1535  
1536  	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1537  	if (ret)
1538  		return ret;
1539  
1540  	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1541  	if (ret)
1542  		return ret;
1543  
1544  	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1545  	if (ret)
1546  		return ret;
1547  
1548  	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1549  }
1550  
__write_pmu_caps(struct feat_fd * ff,struct perf_pmu * pmu,bool write_pmu)1551  static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1552  			    bool write_pmu)
1553  {
1554  	struct perf_pmu_caps *caps = NULL;
1555  	int ret;
1556  
1557  	ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps));
1558  	if (ret < 0)
1559  		return ret;
1560  
1561  	list_for_each_entry(caps, &pmu->caps, list) {
1562  		ret = do_write_string(ff, caps->name);
1563  		if (ret < 0)
1564  			return ret;
1565  
1566  		ret = do_write_string(ff, caps->value);
1567  		if (ret < 0)
1568  			return ret;
1569  	}
1570  
1571  	if (write_pmu) {
1572  		ret = do_write_string(ff, pmu->name);
1573  		if (ret < 0)
1574  			return ret;
1575  	}
1576  
1577  	return ret;
1578  }
1579  
write_cpu_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1580  static int write_cpu_pmu_caps(struct feat_fd *ff,
1581  			      struct evlist *evlist __maybe_unused)
1582  {
1583  	struct perf_pmu *cpu_pmu = perf_pmus__find("cpu");
1584  	int ret;
1585  
1586  	if (!cpu_pmu)
1587  		return -ENOENT;
1588  
1589  	ret = perf_pmu__caps_parse(cpu_pmu);
1590  	if (ret < 0)
1591  		return ret;
1592  
1593  	return __write_pmu_caps(ff, cpu_pmu, false);
1594  }
1595  
write_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1596  static int write_pmu_caps(struct feat_fd *ff,
1597  			  struct evlist *evlist __maybe_unused)
1598  {
1599  	struct perf_pmu *pmu = NULL;
1600  	int nr_pmu = 0;
1601  	int ret;
1602  
1603  	while ((pmu = perf_pmus__scan(pmu))) {
1604  		if (!strcmp(pmu->name, "cpu")) {
1605  			/*
1606  			 * The "cpu" PMU is special and covered by
1607  			 * HEADER_CPU_PMU_CAPS. Note, core PMUs are
1608  			 * counted/written here for ARM, s390 and Intel hybrid.
1609  			 */
1610  			continue;
1611  		}
1612  		if (perf_pmu__caps_parse(pmu) <= 0)
1613  			continue;
1614  		nr_pmu++;
1615  	}
1616  
1617  	ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1618  	if (ret < 0)
1619  		return ret;
1620  
1621  	if (!nr_pmu)
1622  		return 0;
1623  
1624  	/*
1625  	 * Note older perf tools assume core PMUs come first, this is a property
1626  	 * of perf_pmus__scan.
1627  	 */
1628  	pmu = NULL;
1629  	while ((pmu = perf_pmus__scan(pmu))) {
1630  		if (!strcmp(pmu->name, "cpu")) {
1631  			/* Skip as above. */
1632  			continue;
1633  		}
1634  		if (perf_pmu__caps_parse(pmu) <= 0)
1635  			continue;
1636  		ret = __write_pmu_caps(ff, pmu, true);
1637  		if (ret < 0)
1638  			return ret;
1639  	}
1640  	return 0;
1641  }
1642  
print_hostname(struct feat_fd * ff,FILE * fp)1643  static void print_hostname(struct feat_fd *ff, FILE *fp)
1644  {
1645  	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1646  }
1647  
print_osrelease(struct feat_fd * ff,FILE * fp)1648  static void print_osrelease(struct feat_fd *ff, FILE *fp)
1649  {
1650  	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1651  }
1652  
print_arch(struct feat_fd * ff,FILE * fp)1653  static void print_arch(struct feat_fd *ff, FILE *fp)
1654  {
1655  	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1656  }
1657  
print_cpudesc(struct feat_fd * ff,FILE * fp)1658  static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1659  {
1660  	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1661  }
1662  
print_nrcpus(struct feat_fd * ff,FILE * fp)1663  static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1664  {
1665  	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1666  	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1667  }
1668  
print_version(struct feat_fd * ff,FILE * fp)1669  static void print_version(struct feat_fd *ff, FILE *fp)
1670  {
1671  	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1672  }
1673  
print_cmdline(struct feat_fd * ff,FILE * fp)1674  static void print_cmdline(struct feat_fd *ff, FILE *fp)
1675  {
1676  	int nr, i;
1677  
1678  	nr = ff->ph->env.nr_cmdline;
1679  
1680  	fprintf(fp, "# cmdline : ");
1681  
1682  	for (i = 0; i < nr; i++) {
1683  		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1684  		if (!argv_i) {
1685  			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1686  		} else {
1687  			char *mem = argv_i;
1688  			do {
1689  				char *quote = strchr(argv_i, '\'');
1690  				if (!quote)
1691  					break;
1692  				*quote++ = '\0';
1693  				fprintf(fp, "%s\\\'", argv_i);
1694  				argv_i = quote;
1695  			} while (1);
1696  			fprintf(fp, "%s ", argv_i);
1697  			free(mem);
1698  		}
1699  	}
1700  	fputc('\n', fp);
1701  }
1702  
print_cpu_topology(struct feat_fd * ff,FILE * fp)1703  static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1704  {
1705  	struct perf_header *ph = ff->ph;
1706  	int cpu_nr = ph->env.nr_cpus_avail;
1707  	int nr, i;
1708  	char *str;
1709  
1710  	nr = ph->env.nr_sibling_cores;
1711  	str = ph->env.sibling_cores;
1712  
1713  	for (i = 0; i < nr; i++) {
1714  		fprintf(fp, "# sibling sockets : %s\n", str);
1715  		str += strlen(str) + 1;
1716  	}
1717  
1718  	if (ph->env.nr_sibling_dies) {
1719  		nr = ph->env.nr_sibling_dies;
1720  		str = ph->env.sibling_dies;
1721  
1722  		for (i = 0; i < nr; i++) {
1723  			fprintf(fp, "# sibling dies    : %s\n", str);
1724  			str += strlen(str) + 1;
1725  		}
1726  	}
1727  
1728  	nr = ph->env.nr_sibling_threads;
1729  	str = ph->env.sibling_threads;
1730  
1731  	for (i = 0; i < nr; i++) {
1732  		fprintf(fp, "# sibling threads : %s\n", str);
1733  		str += strlen(str) + 1;
1734  	}
1735  
1736  	if (ph->env.nr_sibling_dies) {
1737  		if (ph->env.cpu != NULL) {
1738  			for (i = 0; i < cpu_nr; i++)
1739  				fprintf(fp, "# CPU %d: Core ID %d, "
1740  					    "Die ID %d, Socket ID %d\n",
1741  					    i, ph->env.cpu[i].core_id,
1742  					    ph->env.cpu[i].die_id,
1743  					    ph->env.cpu[i].socket_id);
1744  		} else
1745  			fprintf(fp, "# Core ID, Die ID and Socket ID "
1746  				    "information is not available\n");
1747  	} else {
1748  		if (ph->env.cpu != NULL) {
1749  			for (i = 0; i < cpu_nr; i++)
1750  				fprintf(fp, "# CPU %d: Core ID %d, "
1751  					    "Socket ID %d\n",
1752  					    i, ph->env.cpu[i].core_id,
1753  					    ph->env.cpu[i].socket_id);
1754  		} else
1755  			fprintf(fp, "# Core ID and Socket ID "
1756  				    "information is not available\n");
1757  	}
1758  }
1759  
print_clockid(struct feat_fd * ff,FILE * fp)1760  static void print_clockid(struct feat_fd *ff, FILE *fp)
1761  {
1762  	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1763  		ff->ph->env.clock.clockid_res_ns * 1000);
1764  }
1765  
print_clock_data(struct feat_fd * ff,FILE * fp)1766  static void print_clock_data(struct feat_fd *ff, FILE *fp)
1767  {
1768  	struct timespec clockid_ns;
1769  	char tstr[64], date[64];
1770  	struct timeval tod_ns;
1771  	clockid_t clockid;
1772  	struct tm ltime;
1773  	u64 ref;
1774  
1775  	if (!ff->ph->env.clock.enabled) {
1776  		fprintf(fp, "# reference time disabled\n");
1777  		return;
1778  	}
1779  
1780  	/* Compute TOD time. */
1781  	ref = ff->ph->env.clock.tod_ns;
1782  	tod_ns.tv_sec = ref / NSEC_PER_SEC;
1783  	ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1784  	tod_ns.tv_usec = ref / NSEC_PER_USEC;
1785  
1786  	/* Compute clockid time. */
1787  	ref = ff->ph->env.clock.clockid_ns;
1788  	clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1789  	ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1790  	clockid_ns.tv_nsec = ref;
1791  
1792  	clockid = ff->ph->env.clock.clockid;
1793  
1794  	if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1795  		snprintf(tstr, sizeof(tstr), "<error>");
1796  	else {
1797  		strftime(date, sizeof(date), "%F %T", &ltime);
1798  		scnprintf(tstr, sizeof(tstr), "%s.%06d",
1799  			  date, (int) tod_ns.tv_usec);
1800  	}
1801  
1802  	fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1803  	fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1804  		    tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1805  		    (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1806  		    clockid_name(clockid));
1807  }
1808  
print_hybrid_topology(struct feat_fd * ff,FILE * fp)1809  static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1810  {
1811  	int i;
1812  	struct hybrid_node *n;
1813  
1814  	fprintf(fp, "# hybrid cpu system:\n");
1815  	for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1816  		n = &ff->ph->env.hybrid_nodes[i];
1817  		fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1818  	}
1819  }
1820  
print_dir_format(struct feat_fd * ff,FILE * fp)1821  static void print_dir_format(struct feat_fd *ff, FILE *fp)
1822  {
1823  	struct perf_session *session;
1824  	struct perf_data *data;
1825  
1826  	session = container_of(ff->ph, struct perf_session, header);
1827  	data = session->data;
1828  
1829  	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1830  }
1831  
1832  #ifdef HAVE_LIBBPF_SUPPORT
print_bpf_prog_info(struct feat_fd * ff,FILE * fp)1833  static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1834  {
1835  	struct perf_env *env = &ff->ph->env;
1836  	struct rb_root *root;
1837  	struct rb_node *next;
1838  
1839  	down_read(&env->bpf_progs.lock);
1840  
1841  	root = &env->bpf_progs.infos;
1842  	next = rb_first(root);
1843  
1844  	while (next) {
1845  		struct bpf_prog_info_node *node;
1846  
1847  		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1848  		next = rb_next(&node->rb_node);
1849  
1850  		bpf_event__print_bpf_prog_info(&node->info_linear->info,
1851  					       env, fp);
1852  	}
1853  
1854  	up_read(&env->bpf_progs.lock);
1855  }
1856  
print_bpf_btf(struct feat_fd * ff,FILE * fp)1857  static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1858  {
1859  	struct perf_env *env = &ff->ph->env;
1860  	struct rb_root *root;
1861  	struct rb_node *next;
1862  
1863  	down_read(&env->bpf_progs.lock);
1864  
1865  	root = &env->bpf_progs.btfs;
1866  	next = rb_first(root);
1867  
1868  	while (next) {
1869  		struct btf_node *node;
1870  
1871  		node = rb_entry(next, struct btf_node, rb_node);
1872  		next = rb_next(&node->rb_node);
1873  		fprintf(fp, "# btf info of id %u\n", node->id);
1874  	}
1875  
1876  	up_read(&env->bpf_progs.lock);
1877  }
1878  #endif // HAVE_LIBBPF_SUPPORT
1879  
free_event_desc(struct evsel * events)1880  static void free_event_desc(struct evsel *events)
1881  {
1882  	struct evsel *evsel;
1883  
1884  	if (!events)
1885  		return;
1886  
1887  	for (evsel = events; evsel->core.attr.size; evsel++) {
1888  		zfree(&evsel->name);
1889  		zfree(&evsel->core.id);
1890  	}
1891  
1892  	free(events);
1893  }
1894  
perf_attr_check(struct perf_event_attr * attr)1895  static bool perf_attr_check(struct perf_event_attr *attr)
1896  {
1897  	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1898  		pr_warning("Reserved bits are set unexpectedly. "
1899  			   "Please update perf tool.\n");
1900  		return false;
1901  	}
1902  
1903  	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1904  		pr_warning("Unknown sample type (0x%llx) is detected. "
1905  			   "Please update perf tool.\n",
1906  			   attr->sample_type);
1907  		return false;
1908  	}
1909  
1910  	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1911  		pr_warning("Unknown read format (0x%llx) is detected. "
1912  			   "Please update perf tool.\n",
1913  			   attr->read_format);
1914  		return false;
1915  	}
1916  
1917  	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1918  	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1919  		pr_warning("Unknown branch sample type (0x%llx) is detected. "
1920  			   "Please update perf tool.\n",
1921  			   attr->branch_sample_type);
1922  
1923  		return false;
1924  	}
1925  
1926  	return true;
1927  }
1928  
read_event_desc(struct feat_fd * ff)1929  static struct evsel *read_event_desc(struct feat_fd *ff)
1930  {
1931  	struct evsel *evsel, *events = NULL;
1932  	u64 *id;
1933  	void *buf = NULL;
1934  	u32 nre, sz, nr, i, j;
1935  	size_t msz;
1936  
1937  	/* number of events */
1938  	if (do_read_u32(ff, &nre))
1939  		goto error;
1940  
1941  	if (do_read_u32(ff, &sz))
1942  		goto error;
1943  
1944  	/* buffer to hold on file attr struct */
1945  	buf = malloc(sz);
1946  	if (!buf)
1947  		goto error;
1948  
1949  	/* the last event terminates with evsel->core.attr.size == 0: */
1950  	events = calloc(nre + 1, sizeof(*events));
1951  	if (!events)
1952  		goto error;
1953  
1954  	msz = sizeof(evsel->core.attr);
1955  	if (sz < msz)
1956  		msz = sz;
1957  
1958  	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1959  		evsel->core.idx = i;
1960  
1961  		/*
1962  		 * must read entire on-file attr struct to
1963  		 * sync up with layout.
1964  		 */
1965  		if (__do_read(ff, buf, sz))
1966  			goto error;
1967  
1968  		if (ff->ph->needs_swap)
1969  			perf_event__attr_swap(buf);
1970  
1971  		memcpy(&evsel->core.attr, buf, msz);
1972  
1973  		if (!perf_attr_check(&evsel->core.attr))
1974  			goto error;
1975  
1976  		if (do_read_u32(ff, &nr))
1977  			goto error;
1978  
1979  		if (ff->ph->needs_swap)
1980  			evsel->needs_swap = true;
1981  
1982  		evsel->name = do_read_string(ff);
1983  		if (!evsel->name)
1984  			goto error;
1985  
1986  		if (!nr)
1987  			continue;
1988  
1989  		id = calloc(nr, sizeof(*id));
1990  		if (!id)
1991  			goto error;
1992  		evsel->core.ids = nr;
1993  		evsel->core.id = id;
1994  
1995  		for (j = 0 ; j < nr; j++) {
1996  			if (do_read_u64(ff, id))
1997  				goto error;
1998  			id++;
1999  		}
2000  	}
2001  out:
2002  	free(buf);
2003  	return events;
2004  error:
2005  	free_event_desc(events);
2006  	events = NULL;
2007  	goto out;
2008  }
2009  
__desc_attr__fprintf(FILE * fp,const char * name,const char * val,void * priv __maybe_unused)2010  static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
2011  				void *priv __maybe_unused)
2012  {
2013  	return fprintf(fp, ", %s = %s", name, val);
2014  }
2015  
print_event_desc(struct feat_fd * ff,FILE * fp)2016  static void print_event_desc(struct feat_fd *ff, FILE *fp)
2017  {
2018  	struct evsel *evsel, *events;
2019  	u32 j;
2020  	u64 *id;
2021  
2022  	if (ff->events)
2023  		events = ff->events;
2024  	else
2025  		events = read_event_desc(ff);
2026  
2027  	if (!events) {
2028  		fprintf(fp, "# event desc: not available or unable to read\n");
2029  		return;
2030  	}
2031  
2032  	for (evsel = events; evsel->core.attr.size; evsel++) {
2033  		fprintf(fp, "# event : name = %s, ", evsel->name);
2034  
2035  		if (evsel->core.ids) {
2036  			fprintf(fp, ", id = {");
2037  			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
2038  				if (j)
2039  					fputc(',', fp);
2040  				fprintf(fp, " %"PRIu64, *id);
2041  			}
2042  			fprintf(fp, " }");
2043  		}
2044  
2045  		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
2046  
2047  		fputc('\n', fp);
2048  	}
2049  
2050  	free_event_desc(events);
2051  	ff->events = NULL;
2052  }
2053  
print_total_mem(struct feat_fd * ff,FILE * fp)2054  static void print_total_mem(struct feat_fd *ff, FILE *fp)
2055  {
2056  	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
2057  }
2058  
print_numa_topology(struct feat_fd * ff,FILE * fp)2059  static void print_numa_topology(struct feat_fd *ff, FILE *fp)
2060  {
2061  	int i;
2062  	struct numa_node *n;
2063  
2064  	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2065  		n = &ff->ph->env.numa_nodes[i];
2066  
2067  		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
2068  			    " free = %"PRIu64" kB\n",
2069  			n->node, n->mem_total, n->mem_free);
2070  
2071  		fprintf(fp, "# node%u cpu list : ", n->node);
2072  		cpu_map__fprintf(n->map, fp);
2073  	}
2074  }
2075  
print_cpuid(struct feat_fd * ff,FILE * fp)2076  static void print_cpuid(struct feat_fd *ff, FILE *fp)
2077  {
2078  	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2079  }
2080  
print_branch_stack(struct feat_fd * ff __maybe_unused,FILE * fp)2081  static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
2082  {
2083  	fprintf(fp, "# contains samples with branch stack\n");
2084  }
2085  
print_auxtrace(struct feat_fd * ff __maybe_unused,FILE * fp)2086  static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
2087  {
2088  	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2089  }
2090  
print_stat(struct feat_fd * ff __maybe_unused,FILE * fp)2091  static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
2092  {
2093  	fprintf(fp, "# contains stat data\n");
2094  }
2095  
print_cache(struct feat_fd * ff,FILE * fp __maybe_unused)2096  static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
2097  {
2098  	int i;
2099  
2100  	fprintf(fp, "# CPU cache info:\n");
2101  	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2102  		fprintf(fp, "#  ");
2103  		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2104  	}
2105  }
2106  
print_compressed(struct feat_fd * ff,FILE * fp)2107  static void print_compressed(struct feat_fd *ff, FILE *fp)
2108  {
2109  	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2110  		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2111  		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2112  }
2113  
__print_pmu_caps(FILE * fp,int nr_caps,char ** caps,char * pmu_name)2114  static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name)
2115  {
2116  	const char *delimiter = "";
2117  	int i;
2118  
2119  	if (!nr_caps) {
2120  		fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2121  		return;
2122  	}
2123  
2124  	fprintf(fp, "# %s pmu capabilities: ", pmu_name);
2125  	for (i = 0; i < nr_caps; i++) {
2126  		fprintf(fp, "%s%s", delimiter, caps[i]);
2127  		delimiter = ", ";
2128  	}
2129  
2130  	fprintf(fp, "\n");
2131  }
2132  
print_cpu_pmu_caps(struct feat_fd * ff,FILE * fp)2133  static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2134  {
2135  	__print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2136  			 ff->ph->env.cpu_pmu_caps, (char *)"cpu");
2137  }
2138  
print_pmu_caps(struct feat_fd * ff,FILE * fp)2139  static void print_pmu_caps(struct feat_fd *ff, FILE *fp)
2140  {
2141  	struct pmu_caps *pmu_caps;
2142  
2143  	for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) {
2144  		pmu_caps = &ff->ph->env.pmu_caps[i];
2145  		__print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps,
2146  				 pmu_caps->pmu_name);
2147  	}
2148  }
2149  
print_pmu_mappings(struct feat_fd * ff,FILE * fp)2150  static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2151  {
2152  	const char *delimiter = "# pmu mappings: ";
2153  	char *str, *tmp;
2154  	u32 pmu_num;
2155  	u32 type;
2156  
2157  	pmu_num = ff->ph->env.nr_pmu_mappings;
2158  	if (!pmu_num) {
2159  		fprintf(fp, "# pmu mappings: not available\n");
2160  		return;
2161  	}
2162  
2163  	str = ff->ph->env.pmu_mappings;
2164  
2165  	while (pmu_num) {
2166  		type = strtoul(str, &tmp, 0);
2167  		if (*tmp != ':')
2168  			goto error;
2169  
2170  		str = tmp + 1;
2171  		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2172  
2173  		delimiter = ", ";
2174  		str += strlen(str) + 1;
2175  		pmu_num--;
2176  	}
2177  
2178  	fprintf(fp, "\n");
2179  
2180  	if (!pmu_num)
2181  		return;
2182  error:
2183  	fprintf(fp, "# pmu mappings: unable to read\n");
2184  }
2185  
print_group_desc(struct feat_fd * ff,FILE * fp)2186  static void print_group_desc(struct feat_fd *ff, FILE *fp)
2187  {
2188  	struct perf_session *session;
2189  	struct evsel *evsel;
2190  	u32 nr = 0;
2191  
2192  	session = container_of(ff->ph, struct perf_session, header);
2193  
2194  	evlist__for_each_entry(session->evlist, evsel) {
2195  		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2196  			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2197  
2198  			nr = evsel->core.nr_members - 1;
2199  		} else if (nr) {
2200  			fprintf(fp, ",%s", evsel__name(evsel));
2201  
2202  			if (--nr == 0)
2203  				fprintf(fp, "}\n");
2204  		}
2205  	}
2206  }
2207  
print_sample_time(struct feat_fd * ff,FILE * fp)2208  static void print_sample_time(struct feat_fd *ff, FILE *fp)
2209  {
2210  	struct perf_session *session;
2211  	char time_buf[32];
2212  	double d;
2213  
2214  	session = container_of(ff->ph, struct perf_session, header);
2215  
2216  	timestamp__scnprintf_usec(session->evlist->first_sample_time,
2217  				  time_buf, sizeof(time_buf));
2218  	fprintf(fp, "# time of first sample : %s\n", time_buf);
2219  
2220  	timestamp__scnprintf_usec(session->evlist->last_sample_time,
2221  				  time_buf, sizeof(time_buf));
2222  	fprintf(fp, "# time of last sample : %s\n", time_buf);
2223  
2224  	d = (double)(session->evlist->last_sample_time -
2225  		session->evlist->first_sample_time) / NSEC_PER_MSEC;
2226  
2227  	fprintf(fp, "# sample duration : %10.3f ms\n", d);
2228  }
2229  
memory_node__fprintf(struct memory_node * n,unsigned long long bsize,FILE * fp)2230  static void memory_node__fprintf(struct memory_node *n,
2231  				 unsigned long long bsize, FILE *fp)
2232  {
2233  	char buf_map[100], buf_size[50];
2234  	unsigned long long size;
2235  
2236  	size = bsize * bitmap_weight(n->set, n->size);
2237  	unit_number__scnprintf(buf_size, 50, size);
2238  
2239  	bitmap_scnprintf(n->set, n->size, buf_map, 100);
2240  	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2241  }
2242  
print_mem_topology(struct feat_fd * ff,FILE * fp)2243  static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2244  {
2245  	struct memory_node *nodes;
2246  	int i, nr;
2247  
2248  	nodes = ff->ph->env.memory_nodes;
2249  	nr    = ff->ph->env.nr_memory_nodes;
2250  
2251  	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2252  		nr, ff->ph->env.memory_bsize);
2253  
2254  	for (i = 0; i < nr; i++) {
2255  		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2256  	}
2257  }
2258  
__event_process_build_id(struct perf_record_header_build_id * bev,char * filename,struct perf_session * session)2259  static int __event_process_build_id(struct perf_record_header_build_id *bev,
2260  				    char *filename,
2261  				    struct perf_session *session)
2262  {
2263  	int err = -1;
2264  	struct machine *machine;
2265  	u16 cpumode;
2266  	struct dso *dso;
2267  	enum dso_space_type dso_space;
2268  
2269  	machine = perf_session__findnew_machine(session, bev->pid);
2270  	if (!machine)
2271  		goto out;
2272  
2273  	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2274  
2275  	switch (cpumode) {
2276  	case PERF_RECORD_MISC_KERNEL:
2277  		dso_space = DSO_SPACE__KERNEL;
2278  		break;
2279  	case PERF_RECORD_MISC_GUEST_KERNEL:
2280  		dso_space = DSO_SPACE__KERNEL_GUEST;
2281  		break;
2282  	case PERF_RECORD_MISC_USER:
2283  	case PERF_RECORD_MISC_GUEST_USER:
2284  		dso_space = DSO_SPACE__USER;
2285  		break;
2286  	default:
2287  		goto out;
2288  	}
2289  
2290  	dso = machine__findnew_dso(machine, filename);
2291  	if (dso != NULL) {
2292  		char sbuild_id[SBUILD_ID_SIZE];
2293  		struct build_id bid;
2294  		size_t size = BUILD_ID_SIZE;
2295  
2296  		if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2297  			size = bev->size;
2298  
2299  		build_id__init(&bid, bev->data, size);
2300  		dso__set_build_id(dso, &bid);
2301  		dso->header_build_id = 1;
2302  
2303  		if (dso_space != DSO_SPACE__USER) {
2304  			struct kmod_path m = { .name = NULL, };
2305  
2306  			if (!kmod_path__parse_name(&m, filename) && m.kmod)
2307  				dso__set_module_info(dso, &m, machine);
2308  
2309  			dso->kernel = dso_space;
2310  			free(m.name);
2311  		}
2312  
2313  		build_id__sprintf(&dso->bid, sbuild_id);
2314  		pr_debug("build id event received for %s: %s [%zu]\n",
2315  			 dso->long_name, sbuild_id, size);
2316  		dso__put(dso);
2317  	}
2318  
2319  	err = 0;
2320  out:
2321  	return err;
2322  }
2323  
perf_header__read_build_ids_abi_quirk(struct perf_header * header,int input,u64 offset,u64 size)2324  static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2325  						 int input, u64 offset, u64 size)
2326  {
2327  	struct perf_session *session = container_of(header, struct perf_session, header);
2328  	struct {
2329  		struct perf_event_header   header;
2330  		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2331  		char			   filename[0];
2332  	} old_bev;
2333  	struct perf_record_header_build_id bev;
2334  	char filename[PATH_MAX];
2335  	u64 limit = offset + size;
2336  
2337  	while (offset < limit) {
2338  		ssize_t len;
2339  
2340  		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2341  			return -1;
2342  
2343  		if (header->needs_swap)
2344  			perf_event_header__bswap(&old_bev.header);
2345  
2346  		len = old_bev.header.size - sizeof(old_bev);
2347  		if (readn(input, filename, len) != len)
2348  			return -1;
2349  
2350  		bev.header = old_bev.header;
2351  
2352  		/*
2353  		 * As the pid is the missing value, we need to fill
2354  		 * it properly. The header.misc value give us nice hint.
2355  		 */
2356  		bev.pid	= HOST_KERNEL_ID;
2357  		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2358  		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2359  			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
2360  
2361  		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2362  		__event_process_build_id(&bev, filename, session);
2363  
2364  		offset += bev.header.size;
2365  	}
2366  
2367  	return 0;
2368  }
2369  
perf_header__read_build_ids(struct perf_header * header,int input,u64 offset,u64 size)2370  static int perf_header__read_build_ids(struct perf_header *header,
2371  				       int input, u64 offset, u64 size)
2372  {
2373  	struct perf_session *session = container_of(header, struct perf_session, header);
2374  	struct perf_record_header_build_id bev;
2375  	char filename[PATH_MAX];
2376  	u64 limit = offset + size, orig_offset = offset;
2377  	int err = -1;
2378  
2379  	while (offset < limit) {
2380  		ssize_t len;
2381  
2382  		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2383  			goto out;
2384  
2385  		if (header->needs_swap)
2386  			perf_event_header__bswap(&bev.header);
2387  
2388  		len = bev.header.size - sizeof(bev);
2389  		if (readn(input, filename, len) != len)
2390  			goto out;
2391  		/*
2392  		 * The a1645ce1 changeset:
2393  		 *
2394  		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2395  		 *
2396  		 * Added a field to struct perf_record_header_build_id that broke the file
2397  		 * format.
2398  		 *
2399  		 * Since the kernel build-id is the first entry, process the
2400  		 * table using the old format if the well known
2401  		 * '[kernel.kallsyms]' string for the kernel build-id has the
2402  		 * first 4 characters chopped off (where the pid_t sits).
2403  		 */
2404  		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2405  			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2406  				return -1;
2407  			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2408  		}
2409  
2410  		__event_process_build_id(&bev, filename, session);
2411  
2412  		offset += bev.header.size;
2413  	}
2414  	err = 0;
2415  out:
2416  	return err;
2417  }
2418  
2419  /* Macro for features that simply need to read and store a string. */
2420  #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2421  static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2422  {\
2423  	free(ff->ph->env.__feat_env);		     \
2424  	ff->ph->env.__feat_env = do_read_string(ff); \
2425  	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2426  }
2427  
2428  FEAT_PROCESS_STR_FUN(hostname, hostname);
2429  FEAT_PROCESS_STR_FUN(osrelease, os_release);
2430  FEAT_PROCESS_STR_FUN(version, version);
2431  FEAT_PROCESS_STR_FUN(arch, arch);
2432  FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2433  FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2434  
2435  #ifdef HAVE_LIBTRACEEVENT
process_tracing_data(struct feat_fd * ff,void * data)2436  static int process_tracing_data(struct feat_fd *ff, void *data)
2437  {
2438  	ssize_t ret = trace_report(ff->fd, data, false);
2439  
2440  	return ret < 0 ? -1 : 0;
2441  }
2442  #endif
2443  
process_build_id(struct feat_fd * ff,void * data __maybe_unused)2444  static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2445  {
2446  	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2447  		pr_debug("Failed to read buildids, continuing...\n");
2448  	return 0;
2449  }
2450  
process_nrcpus(struct feat_fd * ff,void * data __maybe_unused)2451  static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2452  {
2453  	int ret;
2454  	u32 nr_cpus_avail, nr_cpus_online;
2455  
2456  	ret = do_read_u32(ff, &nr_cpus_avail);
2457  	if (ret)
2458  		return ret;
2459  
2460  	ret = do_read_u32(ff, &nr_cpus_online);
2461  	if (ret)
2462  		return ret;
2463  	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2464  	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2465  	return 0;
2466  }
2467  
process_total_mem(struct feat_fd * ff,void * data __maybe_unused)2468  static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2469  {
2470  	u64 total_mem;
2471  	int ret;
2472  
2473  	ret = do_read_u64(ff, &total_mem);
2474  	if (ret)
2475  		return -1;
2476  	ff->ph->env.total_mem = (unsigned long long)total_mem;
2477  	return 0;
2478  }
2479  
evlist__find_by_index(struct evlist * evlist,int idx)2480  static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2481  {
2482  	struct evsel *evsel;
2483  
2484  	evlist__for_each_entry(evlist, evsel) {
2485  		if (evsel->core.idx == idx)
2486  			return evsel;
2487  	}
2488  
2489  	return NULL;
2490  }
2491  
evlist__set_event_name(struct evlist * evlist,struct evsel * event)2492  static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2493  {
2494  	struct evsel *evsel;
2495  
2496  	if (!event->name)
2497  		return;
2498  
2499  	evsel = evlist__find_by_index(evlist, event->core.idx);
2500  	if (!evsel)
2501  		return;
2502  
2503  	if (evsel->name)
2504  		return;
2505  
2506  	evsel->name = strdup(event->name);
2507  }
2508  
2509  static int
process_event_desc(struct feat_fd * ff,void * data __maybe_unused)2510  process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2511  {
2512  	struct perf_session *session;
2513  	struct evsel *evsel, *events = read_event_desc(ff);
2514  
2515  	if (!events)
2516  		return 0;
2517  
2518  	session = container_of(ff->ph, struct perf_session, header);
2519  
2520  	if (session->data->is_pipe) {
2521  		/* Save events for reading later by print_event_desc,
2522  		 * since they can't be read again in pipe mode. */
2523  		ff->events = events;
2524  	}
2525  
2526  	for (evsel = events; evsel->core.attr.size; evsel++)
2527  		evlist__set_event_name(session->evlist, evsel);
2528  
2529  	if (!session->data->is_pipe)
2530  		free_event_desc(events);
2531  
2532  	return 0;
2533  }
2534  
process_cmdline(struct feat_fd * ff,void * data __maybe_unused)2535  static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2536  {
2537  	char *str, *cmdline = NULL, **argv = NULL;
2538  	u32 nr, i, len = 0;
2539  
2540  	if (do_read_u32(ff, &nr))
2541  		return -1;
2542  
2543  	ff->ph->env.nr_cmdline = nr;
2544  
2545  	cmdline = zalloc(ff->size + nr + 1);
2546  	if (!cmdline)
2547  		return -1;
2548  
2549  	argv = zalloc(sizeof(char *) * (nr + 1));
2550  	if (!argv)
2551  		goto error;
2552  
2553  	for (i = 0; i < nr; i++) {
2554  		str = do_read_string(ff);
2555  		if (!str)
2556  			goto error;
2557  
2558  		argv[i] = cmdline + len;
2559  		memcpy(argv[i], str, strlen(str) + 1);
2560  		len += strlen(str) + 1;
2561  		free(str);
2562  	}
2563  	ff->ph->env.cmdline = cmdline;
2564  	ff->ph->env.cmdline_argv = (const char **) argv;
2565  	return 0;
2566  
2567  error:
2568  	free(argv);
2569  	free(cmdline);
2570  	return -1;
2571  }
2572  
process_cpu_topology(struct feat_fd * ff,void * data __maybe_unused)2573  static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2574  {
2575  	u32 nr, i;
2576  	char *str;
2577  	struct strbuf sb;
2578  	int cpu_nr = ff->ph->env.nr_cpus_avail;
2579  	u64 size = 0;
2580  	struct perf_header *ph = ff->ph;
2581  	bool do_core_id_test = true;
2582  
2583  	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2584  	if (!ph->env.cpu)
2585  		return -1;
2586  
2587  	if (do_read_u32(ff, &nr))
2588  		goto free_cpu;
2589  
2590  	ph->env.nr_sibling_cores = nr;
2591  	size += sizeof(u32);
2592  	if (strbuf_init(&sb, 128) < 0)
2593  		goto free_cpu;
2594  
2595  	for (i = 0; i < nr; i++) {
2596  		str = do_read_string(ff);
2597  		if (!str)
2598  			goto error;
2599  
2600  		/* include a NULL character at the end */
2601  		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2602  			goto error;
2603  		size += string_size(str);
2604  		free(str);
2605  	}
2606  	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2607  
2608  	if (do_read_u32(ff, &nr))
2609  		return -1;
2610  
2611  	ph->env.nr_sibling_threads = nr;
2612  	size += sizeof(u32);
2613  
2614  	for (i = 0; i < nr; i++) {
2615  		str = do_read_string(ff);
2616  		if (!str)
2617  			goto error;
2618  
2619  		/* include a NULL character at the end */
2620  		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2621  			goto error;
2622  		size += string_size(str);
2623  		free(str);
2624  	}
2625  	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2626  
2627  	/*
2628  	 * The header may be from old perf,
2629  	 * which doesn't include core id and socket id information.
2630  	 */
2631  	if (ff->size <= size) {
2632  		zfree(&ph->env.cpu);
2633  		return 0;
2634  	}
2635  
2636  	/* On s390 the socket_id number is not related to the numbers of cpus.
2637  	 * The socket_id number might be higher than the numbers of cpus.
2638  	 * This depends on the configuration.
2639  	 * AArch64 is the same.
2640  	 */
2641  	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2642  			  || !strncmp(ph->env.arch, "aarch64", 7)))
2643  		do_core_id_test = false;
2644  
2645  	for (i = 0; i < (u32)cpu_nr; i++) {
2646  		if (do_read_u32(ff, &nr))
2647  			goto free_cpu;
2648  
2649  		ph->env.cpu[i].core_id = nr;
2650  		size += sizeof(u32);
2651  
2652  		if (do_read_u32(ff, &nr))
2653  			goto free_cpu;
2654  
2655  		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2656  			pr_debug("socket_id number is too big."
2657  				 "You may need to upgrade the perf tool.\n");
2658  			goto free_cpu;
2659  		}
2660  
2661  		ph->env.cpu[i].socket_id = nr;
2662  		size += sizeof(u32);
2663  	}
2664  
2665  	/*
2666  	 * The header may be from old perf,
2667  	 * which doesn't include die information.
2668  	 */
2669  	if (ff->size <= size)
2670  		return 0;
2671  
2672  	if (do_read_u32(ff, &nr))
2673  		return -1;
2674  
2675  	ph->env.nr_sibling_dies = nr;
2676  	size += sizeof(u32);
2677  
2678  	for (i = 0; i < nr; i++) {
2679  		str = do_read_string(ff);
2680  		if (!str)
2681  			goto error;
2682  
2683  		/* include a NULL character at the end */
2684  		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2685  			goto error;
2686  		size += string_size(str);
2687  		free(str);
2688  	}
2689  	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2690  
2691  	for (i = 0; i < (u32)cpu_nr; i++) {
2692  		if (do_read_u32(ff, &nr))
2693  			goto free_cpu;
2694  
2695  		ph->env.cpu[i].die_id = nr;
2696  	}
2697  
2698  	return 0;
2699  
2700  error:
2701  	strbuf_release(&sb);
2702  free_cpu:
2703  	zfree(&ph->env.cpu);
2704  	return -1;
2705  }
2706  
process_numa_topology(struct feat_fd * ff,void * data __maybe_unused)2707  static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2708  {
2709  	struct numa_node *nodes, *n;
2710  	u32 nr, i;
2711  	char *str;
2712  
2713  	/* nr nodes */
2714  	if (do_read_u32(ff, &nr))
2715  		return -1;
2716  
2717  	nodes = zalloc(sizeof(*nodes) * nr);
2718  	if (!nodes)
2719  		return -ENOMEM;
2720  
2721  	for (i = 0; i < nr; i++) {
2722  		n = &nodes[i];
2723  
2724  		/* node number */
2725  		if (do_read_u32(ff, &n->node))
2726  			goto error;
2727  
2728  		if (do_read_u64(ff, &n->mem_total))
2729  			goto error;
2730  
2731  		if (do_read_u64(ff, &n->mem_free))
2732  			goto error;
2733  
2734  		str = do_read_string(ff);
2735  		if (!str)
2736  			goto error;
2737  
2738  		n->map = perf_cpu_map__new(str);
2739  		if (!n->map)
2740  			goto error;
2741  
2742  		free(str);
2743  	}
2744  	ff->ph->env.nr_numa_nodes = nr;
2745  	ff->ph->env.numa_nodes = nodes;
2746  	return 0;
2747  
2748  error:
2749  	free(nodes);
2750  	return -1;
2751  }
2752  
process_pmu_mappings(struct feat_fd * ff,void * data __maybe_unused)2753  static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2754  {
2755  	char *name;
2756  	u32 pmu_num;
2757  	u32 type;
2758  	struct strbuf sb;
2759  
2760  	if (do_read_u32(ff, &pmu_num))
2761  		return -1;
2762  
2763  	if (!pmu_num) {
2764  		pr_debug("pmu mappings not available\n");
2765  		return 0;
2766  	}
2767  
2768  	ff->ph->env.nr_pmu_mappings = pmu_num;
2769  	if (strbuf_init(&sb, 128) < 0)
2770  		return -1;
2771  
2772  	while (pmu_num) {
2773  		if (do_read_u32(ff, &type))
2774  			goto error;
2775  
2776  		name = do_read_string(ff);
2777  		if (!name)
2778  			goto error;
2779  
2780  		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2781  			goto error;
2782  		/* include a NULL character at the end */
2783  		if (strbuf_add(&sb, "", 1) < 0)
2784  			goto error;
2785  
2786  		if (!strcmp(name, "msr"))
2787  			ff->ph->env.msr_pmu_type = type;
2788  
2789  		free(name);
2790  		pmu_num--;
2791  	}
2792  	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2793  	return 0;
2794  
2795  error:
2796  	strbuf_release(&sb);
2797  	return -1;
2798  }
2799  
process_group_desc(struct feat_fd * ff,void * data __maybe_unused)2800  static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2801  {
2802  	size_t ret = -1;
2803  	u32 i, nr, nr_groups;
2804  	struct perf_session *session;
2805  	struct evsel *evsel, *leader = NULL;
2806  	struct group_desc {
2807  		char *name;
2808  		u32 leader_idx;
2809  		u32 nr_members;
2810  	} *desc;
2811  
2812  	if (do_read_u32(ff, &nr_groups))
2813  		return -1;
2814  
2815  	ff->ph->env.nr_groups = nr_groups;
2816  	if (!nr_groups) {
2817  		pr_debug("group desc not available\n");
2818  		return 0;
2819  	}
2820  
2821  	desc = calloc(nr_groups, sizeof(*desc));
2822  	if (!desc)
2823  		return -1;
2824  
2825  	for (i = 0; i < nr_groups; i++) {
2826  		desc[i].name = do_read_string(ff);
2827  		if (!desc[i].name)
2828  			goto out_free;
2829  
2830  		if (do_read_u32(ff, &desc[i].leader_idx))
2831  			goto out_free;
2832  
2833  		if (do_read_u32(ff, &desc[i].nr_members))
2834  			goto out_free;
2835  	}
2836  
2837  	/*
2838  	 * Rebuild group relationship based on the group_desc
2839  	 */
2840  	session = container_of(ff->ph, struct perf_session, header);
2841  
2842  	i = nr = 0;
2843  	evlist__for_each_entry(session->evlist, evsel) {
2844  		if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) {
2845  			evsel__set_leader(evsel, evsel);
2846  			/* {anon_group} is a dummy name */
2847  			if (strcmp(desc[i].name, "{anon_group}")) {
2848  				evsel->group_name = desc[i].name;
2849  				desc[i].name = NULL;
2850  			}
2851  			evsel->core.nr_members = desc[i].nr_members;
2852  
2853  			if (i >= nr_groups || nr > 0) {
2854  				pr_debug("invalid group desc\n");
2855  				goto out_free;
2856  			}
2857  
2858  			leader = evsel;
2859  			nr = evsel->core.nr_members - 1;
2860  			i++;
2861  		} else if (nr) {
2862  			/* This is a group member */
2863  			evsel__set_leader(evsel, leader);
2864  
2865  			nr--;
2866  		}
2867  	}
2868  
2869  	if (i != nr_groups || nr != 0) {
2870  		pr_debug("invalid group desc\n");
2871  		goto out_free;
2872  	}
2873  
2874  	ret = 0;
2875  out_free:
2876  	for (i = 0; i < nr_groups; i++)
2877  		zfree(&desc[i].name);
2878  	free(desc);
2879  
2880  	return ret;
2881  }
2882  
process_auxtrace(struct feat_fd * ff,void * data __maybe_unused)2883  static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2884  {
2885  	struct perf_session *session;
2886  	int err;
2887  
2888  	session = container_of(ff->ph, struct perf_session, header);
2889  
2890  	err = auxtrace_index__process(ff->fd, ff->size, session,
2891  				      ff->ph->needs_swap);
2892  	if (err < 0)
2893  		pr_err("Failed to process auxtrace index\n");
2894  	return err;
2895  }
2896  
process_cache(struct feat_fd * ff,void * data __maybe_unused)2897  static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2898  {
2899  	struct cpu_cache_level *caches;
2900  	u32 cnt, i, version;
2901  
2902  	if (do_read_u32(ff, &version))
2903  		return -1;
2904  
2905  	if (version != 1)
2906  		return -1;
2907  
2908  	if (do_read_u32(ff, &cnt))
2909  		return -1;
2910  
2911  	caches = zalloc(sizeof(*caches) * cnt);
2912  	if (!caches)
2913  		return -1;
2914  
2915  	for (i = 0; i < cnt; i++) {
2916  		struct cpu_cache_level c;
2917  
2918  		#define _R(v)						\
2919  			if (do_read_u32(ff, &c.v))\
2920  				goto out_free_caches;			\
2921  
2922  		_R(level)
2923  		_R(line_size)
2924  		_R(sets)
2925  		_R(ways)
2926  		#undef _R
2927  
2928  		#define _R(v)					\
2929  			c.v = do_read_string(ff);		\
2930  			if (!c.v)				\
2931  				goto out_free_caches;
2932  
2933  		_R(type)
2934  		_R(size)
2935  		_R(map)
2936  		#undef _R
2937  
2938  		caches[i] = c;
2939  	}
2940  
2941  	ff->ph->env.caches = caches;
2942  	ff->ph->env.caches_cnt = cnt;
2943  	return 0;
2944  out_free_caches:
2945  	free(caches);
2946  	return -1;
2947  }
2948  
process_sample_time(struct feat_fd * ff,void * data __maybe_unused)2949  static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2950  {
2951  	struct perf_session *session;
2952  	u64 first_sample_time, last_sample_time;
2953  	int ret;
2954  
2955  	session = container_of(ff->ph, struct perf_session, header);
2956  
2957  	ret = do_read_u64(ff, &first_sample_time);
2958  	if (ret)
2959  		return -1;
2960  
2961  	ret = do_read_u64(ff, &last_sample_time);
2962  	if (ret)
2963  		return -1;
2964  
2965  	session->evlist->first_sample_time = first_sample_time;
2966  	session->evlist->last_sample_time = last_sample_time;
2967  	return 0;
2968  }
2969  
process_mem_topology(struct feat_fd * ff,void * data __maybe_unused)2970  static int process_mem_topology(struct feat_fd *ff,
2971  				void *data __maybe_unused)
2972  {
2973  	struct memory_node *nodes;
2974  	u64 version, i, nr, bsize;
2975  	int ret = -1;
2976  
2977  	if (do_read_u64(ff, &version))
2978  		return -1;
2979  
2980  	if (version != 1)
2981  		return -1;
2982  
2983  	if (do_read_u64(ff, &bsize))
2984  		return -1;
2985  
2986  	if (do_read_u64(ff, &nr))
2987  		return -1;
2988  
2989  	nodes = zalloc(sizeof(*nodes) * nr);
2990  	if (!nodes)
2991  		return -1;
2992  
2993  	for (i = 0; i < nr; i++) {
2994  		struct memory_node n;
2995  
2996  		#define _R(v)				\
2997  			if (do_read_u64(ff, &n.v))	\
2998  				goto out;		\
2999  
3000  		_R(node)
3001  		_R(size)
3002  
3003  		#undef _R
3004  
3005  		if (do_read_bitmap(ff, &n.set, &n.size))
3006  			goto out;
3007  
3008  		nodes[i] = n;
3009  	}
3010  
3011  	ff->ph->env.memory_bsize    = bsize;
3012  	ff->ph->env.memory_nodes    = nodes;
3013  	ff->ph->env.nr_memory_nodes = nr;
3014  	ret = 0;
3015  
3016  out:
3017  	if (ret)
3018  		free(nodes);
3019  	return ret;
3020  }
3021  
process_clockid(struct feat_fd * ff,void * data __maybe_unused)3022  static int process_clockid(struct feat_fd *ff,
3023  			   void *data __maybe_unused)
3024  {
3025  	if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
3026  		return -1;
3027  
3028  	return 0;
3029  }
3030  
process_clock_data(struct feat_fd * ff,void * _data __maybe_unused)3031  static int process_clock_data(struct feat_fd *ff,
3032  			      void *_data __maybe_unused)
3033  {
3034  	u32 data32;
3035  	u64 data64;
3036  
3037  	/* version */
3038  	if (do_read_u32(ff, &data32))
3039  		return -1;
3040  
3041  	if (data32 != 1)
3042  		return -1;
3043  
3044  	/* clockid */
3045  	if (do_read_u32(ff, &data32))
3046  		return -1;
3047  
3048  	ff->ph->env.clock.clockid = data32;
3049  
3050  	/* TOD ref time */
3051  	if (do_read_u64(ff, &data64))
3052  		return -1;
3053  
3054  	ff->ph->env.clock.tod_ns = data64;
3055  
3056  	/* clockid ref time */
3057  	if (do_read_u64(ff, &data64))
3058  		return -1;
3059  
3060  	ff->ph->env.clock.clockid_ns = data64;
3061  	ff->ph->env.clock.enabled = true;
3062  	return 0;
3063  }
3064  
process_hybrid_topology(struct feat_fd * ff,void * data __maybe_unused)3065  static int process_hybrid_topology(struct feat_fd *ff,
3066  				   void *data __maybe_unused)
3067  {
3068  	struct hybrid_node *nodes, *n;
3069  	u32 nr, i;
3070  
3071  	/* nr nodes */
3072  	if (do_read_u32(ff, &nr))
3073  		return -1;
3074  
3075  	nodes = zalloc(sizeof(*nodes) * nr);
3076  	if (!nodes)
3077  		return -ENOMEM;
3078  
3079  	for (i = 0; i < nr; i++) {
3080  		n = &nodes[i];
3081  
3082  		n->pmu_name = do_read_string(ff);
3083  		if (!n->pmu_name)
3084  			goto error;
3085  
3086  		n->cpus = do_read_string(ff);
3087  		if (!n->cpus)
3088  			goto error;
3089  	}
3090  
3091  	ff->ph->env.nr_hybrid_nodes = nr;
3092  	ff->ph->env.hybrid_nodes = nodes;
3093  	return 0;
3094  
3095  error:
3096  	for (i = 0; i < nr; i++) {
3097  		free(nodes[i].pmu_name);
3098  		free(nodes[i].cpus);
3099  	}
3100  
3101  	free(nodes);
3102  	return -1;
3103  }
3104  
process_dir_format(struct feat_fd * ff,void * _data __maybe_unused)3105  static int process_dir_format(struct feat_fd *ff,
3106  			      void *_data __maybe_unused)
3107  {
3108  	struct perf_session *session;
3109  	struct perf_data *data;
3110  
3111  	session = container_of(ff->ph, struct perf_session, header);
3112  	data = session->data;
3113  
3114  	if (WARN_ON(!perf_data__is_dir(data)))
3115  		return -1;
3116  
3117  	return do_read_u64(ff, &data->dir.version);
3118  }
3119  
3120  #ifdef HAVE_LIBBPF_SUPPORT
process_bpf_prog_info(struct feat_fd * ff,void * data __maybe_unused)3121  static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3122  {
3123  	struct bpf_prog_info_node *info_node;
3124  	struct perf_env *env = &ff->ph->env;
3125  	struct perf_bpil *info_linear;
3126  	u32 count, i;
3127  	int err = -1;
3128  
3129  	if (ff->ph->needs_swap) {
3130  		pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3131  		return 0;
3132  	}
3133  
3134  	if (do_read_u32(ff, &count))
3135  		return -1;
3136  
3137  	down_write(&env->bpf_progs.lock);
3138  
3139  	for (i = 0; i < count; ++i) {
3140  		u32 info_len, data_len;
3141  
3142  		info_linear = NULL;
3143  		info_node = NULL;
3144  		if (do_read_u32(ff, &info_len))
3145  			goto out;
3146  		if (do_read_u32(ff, &data_len))
3147  			goto out;
3148  
3149  		if (info_len > sizeof(struct bpf_prog_info)) {
3150  			pr_warning("detected invalid bpf_prog_info\n");
3151  			goto out;
3152  		}
3153  
3154  		info_linear = malloc(sizeof(struct perf_bpil) +
3155  				     data_len);
3156  		if (!info_linear)
3157  			goto out;
3158  		info_linear->info_len = sizeof(struct bpf_prog_info);
3159  		info_linear->data_len = data_len;
3160  		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3161  			goto out;
3162  		if (__do_read(ff, &info_linear->info, info_len))
3163  			goto out;
3164  		if (info_len < sizeof(struct bpf_prog_info))
3165  			memset(((void *)(&info_linear->info)) + info_len, 0,
3166  			       sizeof(struct bpf_prog_info) - info_len);
3167  
3168  		if (__do_read(ff, info_linear->data, data_len))
3169  			goto out;
3170  
3171  		info_node = malloc(sizeof(struct bpf_prog_info_node));
3172  		if (!info_node)
3173  			goto out;
3174  
3175  		/* after reading from file, translate offset to address */
3176  		bpil_offs_to_addr(info_linear);
3177  		info_node->info_linear = info_linear;
3178  		perf_env__insert_bpf_prog_info(env, info_node);
3179  	}
3180  
3181  	up_write(&env->bpf_progs.lock);
3182  	return 0;
3183  out:
3184  	free(info_linear);
3185  	free(info_node);
3186  	up_write(&env->bpf_progs.lock);
3187  	return err;
3188  }
3189  
process_bpf_btf(struct feat_fd * ff,void * data __maybe_unused)3190  static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3191  {
3192  	struct perf_env *env = &ff->ph->env;
3193  	struct btf_node *node = NULL;
3194  	u32 count, i;
3195  	int err = -1;
3196  
3197  	if (ff->ph->needs_swap) {
3198  		pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3199  		return 0;
3200  	}
3201  
3202  	if (do_read_u32(ff, &count))
3203  		return -1;
3204  
3205  	down_write(&env->bpf_progs.lock);
3206  
3207  	for (i = 0; i < count; ++i) {
3208  		u32 id, data_size;
3209  
3210  		if (do_read_u32(ff, &id))
3211  			goto out;
3212  		if (do_read_u32(ff, &data_size))
3213  			goto out;
3214  
3215  		node = malloc(sizeof(struct btf_node) + data_size);
3216  		if (!node)
3217  			goto out;
3218  
3219  		node->id = id;
3220  		node->data_size = data_size;
3221  
3222  		if (__do_read(ff, node->data, data_size))
3223  			goto out;
3224  
3225  		perf_env__insert_btf(env, node);
3226  		node = NULL;
3227  	}
3228  
3229  	err = 0;
3230  out:
3231  	up_write(&env->bpf_progs.lock);
3232  	free(node);
3233  	return err;
3234  }
3235  #endif // HAVE_LIBBPF_SUPPORT
3236  
process_compressed(struct feat_fd * ff,void * data __maybe_unused)3237  static int process_compressed(struct feat_fd *ff,
3238  			      void *data __maybe_unused)
3239  {
3240  	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3241  		return -1;
3242  
3243  	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3244  		return -1;
3245  
3246  	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3247  		return -1;
3248  
3249  	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3250  		return -1;
3251  
3252  	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3253  		return -1;
3254  
3255  	return 0;
3256  }
3257  
__process_pmu_caps(struct feat_fd * ff,int * nr_caps,char *** caps,unsigned int * max_branches)3258  static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps,
3259  			      char ***caps, unsigned int *max_branches)
3260  {
3261  	char *name, *value, *ptr;
3262  	u32 nr_pmu_caps, i;
3263  
3264  	*nr_caps = 0;
3265  	*caps = NULL;
3266  
3267  	if (do_read_u32(ff, &nr_pmu_caps))
3268  		return -1;
3269  
3270  	if (!nr_pmu_caps)
3271  		return 0;
3272  
3273  	*caps = zalloc(sizeof(char *) * nr_pmu_caps);
3274  	if (!*caps)
3275  		return -1;
3276  
3277  	for (i = 0; i < nr_pmu_caps; i++) {
3278  		name = do_read_string(ff);
3279  		if (!name)
3280  			goto error;
3281  
3282  		value = do_read_string(ff);
3283  		if (!value)
3284  			goto free_name;
3285  
3286  		if (asprintf(&ptr, "%s=%s", name, value) < 0)
3287  			goto free_value;
3288  
3289  		(*caps)[i] = ptr;
3290  
3291  		if (!strcmp(name, "branches"))
3292  			*max_branches = atoi(value);
3293  
3294  		free(value);
3295  		free(name);
3296  	}
3297  	*nr_caps = nr_pmu_caps;
3298  	return 0;
3299  
3300  free_value:
3301  	free(value);
3302  free_name:
3303  	free(name);
3304  error:
3305  	for (; i > 0; i--)
3306  		free((*caps)[i - 1]);
3307  	free(*caps);
3308  	*caps = NULL;
3309  	*nr_caps = 0;
3310  	return -1;
3311  }
3312  
process_cpu_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3313  static int process_cpu_pmu_caps(struct feat_fd *ff,
3314  				void *data __maybe_unused)
3315  {
3316  	int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3317  				     &ff->ph->env.cpu_pmu_caps,
3318  				     &ff->ph->env.max_branches);
3319  
3320  	if (!ret && !ff->ph->env.cpu_pmu_caps)
3321  		pr_debug("cpu pmu capabilities not available\n");
3322  	return ret;
3323  }
3324  
process_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3325  static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused)
3326  {
3327  	struct pmu_caps *pmu_caps;
3328  	u32 nr_pmu, i;
3329  	int ret;
3330  	int j;
3331  
3332  	if (do_read_u32(ff, &nr_pmu))
3333  		return -1;
3334  
3335  	if (!nr_pmu) {
3336  		pr_debug("pmu capabilities not available\n");
3337  		return 0;
3338  	}
3339  
3340  	pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu);
3341  	if (!pmu_caps)
3342  		return -ENOMEM;
3343  
3344  	for (i = 0; i < nr_pmu; i++) {
3345  		ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps,
3346  					 &pmu_caps[i].caps,
3347  					 &pmu_caps[i].max_branches);
3348  		if (ret)
3349  			goto err;
3350  
3351  		pmu_caps[i].pmu_name = do_read_string(ff);
3352  		if (!pmu_caps[i].pmu_name) {
3353  			ret = -1;
3354  			goto err;
3355  		}
3356  		if (!pmu_caps[i].nr_caps) {
3357  			pr_debug("%s pmu capabilities not available\n",
3358  				 pmu_caps[i].pmu_name);
3359  		}
3360  	}
3361  
3362  	ff->ph->env.nr_pmus_with_caps = nr_pmu;
3363  	ff->ph->env.pmu_caps = pmu_caps;
3364  	return 0;
3365  
3366  err:
3367  	for (i = 0; i < nr_pmu; i++) {
3368  		for (j = 0; j < pmu_caps[i].nr_caps; j++)
3369  			free(pmu_caps[i].caps[j]);
3370  		free(pmu_caps[i].caps);
3371  		free(pmu_caps[i].pmu_name);
3372  	}
3373  
3374  	free(pmu_caps);
3375  	return ret;
3376  }
3377  
3378  #define FEAT_OPR(n, func, __full_only) \
3379  	[HEADER_##n] = {					\
3380  		.name	    = __stringify(n),			\
3381  		.write	    = write_##func,			\
3382  		.print	    = print_##func,			\
3383  		.full_only  = __full_only,			\
3384  		.process    = process_##func,			\
3385  		.synthesize = true				\
3386  	}
3387  
3388  #define FEAT_OPN(n, func, __full_only) \
3389  	[HEADER_##n] = {					\
3390  		.name	    = __stringify(n),			\
3391  		.write	    = write_##func,			\
3392  		.print	    = print_##func,			\
3393  		.full_only  = __full_only,			\
3394  		.process    = process_##func			\
3395  	}
3396  
3397  /* feature_ops not implemented: */
3398  #define print_tracing_data	NULL
3399  #define print_build_id		NULL
3400  
3401  #define process_branch_stack	NULL
3402  #define process_stat		NULL
3403  
3404  // Only used in util/synthetic-events.c
3405  const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3406  
3407  const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3408  #ifdef HAVE_LIBTRACEEVENT
3409  	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
3410  #endif
3411  	FEAT_OPN(BUILD_ID,	build_id,	false),
3412  	FEAT_OPR(HOSTNAME,	hostname,	false),
3413  	FEAT_OPR(OSRELEASE,	osrelease,	false),
3414  	FEAT_OPR(VERSION,	version,	false),
3415  	FEAT_OPR(ARCH,		arch,		false),
3416  	FEAT_OPR(NRCPUS,	nrcpus,		false),
3417  	FEAT_OPR(CPUDESC,	cpudesc,	false),
3418  	FEAT_OPR(CPUID,		cpuid,		false),
3419  	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
3420  	FEAT_OPR(EVENT_DESC,	event_desc,	false),
3421  	FEAT_OPR(CMDLINE,	cmdline,	false),
3422  	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
3423  	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
3424  	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
3425  	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
3426  	FEAT_OPR(GROUP_DESC,	group_desc,	false),
3427  	FEAT_OPN(AUXTRACE,	auxtrace,	false),
3428  	FEAT_OPN(STAT,		stat,		false),
3429  	FEAT_OPN(CACHE,		cache,		true),
3430  	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
3431  	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
3432  	FEAT_OPR(CLOCKID,	clockid,	false),
3433  	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
3434  #ifdef HAVE_LIBBPF_SUPPORT
3435  	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3436  	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3437  #endif
3438  	FEAT_OPR(COMPRESSED,	compressed,	false),
3439  	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
3440  	FEAT_OPR(CLOCK_DATA,	clock_data,	false),
3441  	FEAT_OPN(HYBRID_TOPOLOGY,	hybrid_topology,	true),
3442  	FEAT_OPR(PMU_CAPS,	pmu_caps,	false),
3443  };
3444  
3445  struct header_print_data {
3446  	FILE *fp;
3447  	bool full; /* extended list of headers */
3448  };
3449  
perf_file_section__fprintf_info(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)3450  static int perf_file_section__fprintf_info(struct perf_file_section *section,
3451  					   struct perf_header *ph,
3452  					   int feat, int fd, void *data)
3453  {
3454  	struct header_print_data *hd = data;
3455  	struct feat_fd ff;
3456  
3457  	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3458  		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3459  				"%d, continuing...\n", section->offset, feat);
3460  		return 0;
3461  	}
3462  	if (feat >= HEADER_LAST_FEATURE) {
3463  		pr_warning("unknown feature %d\n", feat);
3464  		return 0;
3465  	}
3466  	if (!feat_ops[feat].print)
3467  		return 0;
3468  
3469  	ff = (struct  feat_fd) {
3470  		.fd = fd,
3471  		.ph = ph,
3472  	};
3473  
3474  	if (!feat_ops[feat].full_only || hd->full)
3475  		feat_ops[feat].print(&ff, hd->fp);
3476  	else
3477  		fprintf(hd->fp, "# %s info available, use -I to display\n",
3478  			feat_ops[feat].name);
3479  
3480  	return 0;
3481  }
3482  
perf_header__fprintf_info(struct perf_session * session,FILE * fp,bool full)3483  int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3484  {
3485  	struct header_print_data hd;
3486  	struct perf_header *header = &session->header;
3487  	int fd = perf_data__fd(session->data);
3488  	struct stat st;
3489  	time_t stctime;
3490  	int ret, bit;
3491  
3492  	hd.fp = fp;
3493  	hd.full = full;
3494  
3495  	ret = fstat(fd, &st);
3496  	if (ret == -1)
3497  		return -1;
3498  
3499  	stctime = st.st_mtime;
3500  	fprintf(fp, "# captured on    : %s", ctime(&stctime));
3501  
3502  	fprintf(fp, "# header version : %u\n", header->version);
3503  	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3504  	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3505  	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3506  
3507  	perf_header__process_sections(header, fd, &hd,
3508  				      perf_file_section__fprintf_info);
3509  
3510  	if (session->data->is_pipe)
3511  		return 0;
3512  
3513  	fprintf(fp, "# missing features: ");
3514  	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3515  		if (bit)
3516  			fprintf(fp, "%s ", feat_ops[bit].name);
3517  	}
3518  
3519  	fprintf(fp, "\n");
3520  	return 0;
3521  }
3522  
3523  struct header_fw {
3524  	struct feat_writer	fw;
3525  	struct feat_fd		*ff;
3526  };
3527  
feat_writer_cb(struct feat_writer * fw,void * buf,size_t sz)3528  static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3529  {
3530  	struct header_fw *h = container_of(fw, struct header_fw, fw);
3531  
3532  	return do_write(h->ff, buf, sz);
3533  }
3534  
do_write_feat(struct feat_fd * ff,int type,struct perf_file_section ** p,struct evlist * evlist,struct feat_copier * fc)3535  static int do_write_feat(struct feat_fd *ff, int type,
3536  			 struct perf_file_section **p,
3537  			 struct evlist *evlist,
3538  			 struct feat_copier *fc)
3539  {
3540  	int err;
3541  	int ret = 0;
3542  
3543  	if (perf_header__has_feat(ff->ph, type)) {
3544  		if (!feat_ops[type].write)
3545  			return -1;
3546  
3547  		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3548  			return -1;
3549  
3550  		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3551  
3552  		/*
3553  		 * Hook to let perf inject copy features sections from the input
3554  		 * file.
3555  		 */
3556  		if (fc && fc->copy) {
3557  			struct header_fw h = {
3558  				.fw.write = feat_writer_cb,
3559  				.ff = ff,
3560  			};
3561  
3562  			/* ->copy() returns 0 if the feature was not copied */
3563  			err = fc->copy(fc, type, &h.fw);
3564  		} else {
3565  			err = 0;
3566  		}
3567  		if (!err)
3568  			err = feat_ops[type].write(ff, evlist);
3569  		if (err < 0) {
3570  			pr_debug("failed to write feature %s\n", feat_ops[type].name);
3571  
3572  			/* undo anything written */
3573  			lseek(ff->fd, (*p)->offset, SEEK_SET);
3574  
3575  			return -1;
3576  		}
3577  		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3578  		(*p)++;
3579  	}
3580  	return ret;
3581  }
3582  
perf_header__adds_write(struct perf_header * header,struct evlist * evlist,int fd,struct feat_copier * fc)3583  static int perf_header__adds_write(struct perf_header *header,
3584  				   struct evlist *evlist, int fd,
3585  				   struct feat_copier *fc)
3586  {
3587  	int nr_sections;
3588  	struct feat_fd ff;
3589  	struct perf_file_section *feat_sec, *p;
3590  	int sec_size;
3591  	u64 sec_start;
3592  	int feat;
3593  	int err;
3594  
3595  	ff = (struct feat_fd){
3596  		.fd  = fd,
3597  		.ph = header,
3598  	};
3599  
3600  	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3601  	if (!nr_sections)
3602  		return 0;
3603  
3604  	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3605  	if (feat_sec == NULL)
3606  		return -ENOMEM;
3607  
3608  	sec_size = sizeof(*feat_sec) * nr_sections;
3609  
3610  	sec_start = header->feat_offset;
3611  	lseek(fd, sec_start + sec_size, SEEK_SET);
3612  
3613  	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3614  		if (do_write_feat(&ff, feat, &p, evlist, fc))
3615  			perf_header__clear_feat(header, feat);
3616  	}
3617  
3618  	lseek(fd, sec_start, SEEK_SET);
3619  	/*
3620  	 * may write more than needed due to dropped feature, but
3621  	 * this is okay, reader will skip the missing entries
3622  	 */
3623  	err = do_write(&ff, feat_sec, sec_size);
3624  	if (err < 0)
3625  		pr_debug("failed to write feature section\n");
3626  	free(feat_sec);
3627  	return err;
3628  }
3629  
perf_header__write_pipe(int fd)3630  int perf_header__write_pipe(int fd)
3631  {
3632  	struct perf_pipe_file_header f_header;
3633  	struct feat_fd ff;
3634  	int err;
3635  
3636  	ff = (struct feat_fd){ .fd = fd };
3637  
3638  	f_header = (struct perf_pipe_file_header){
3639  		.magic	   = PERF_MAGIC,
3640  		.size	   = sizeof(f_header),
3641  	};
3642  
3643  	err = do_write(&ff, &f_header, sizeof(f_header));
3644  	if (err < 0) {
3645  		pr_debug("failed to write perf pipe header\n");
3646  		return err;
3647  	}
3648  
3649  	return 0;
3650  }
3651  
perf_session__do_write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit,struct feat_copier * fc)3652  static int perf_session__do_write_header(struct perf_session *session,
3653  					 struct evlist *evlist,
3654  					 int fd, bool at_exit,
3655  					 struct feat_copier *fc)
3656  {
3657  	struct perf_file_header f_header;
3658  	struct perf_file_attr   f_attr;
3659  	struct perf_header *header = &session->header;
3660  	struct evsel *evsel;
3661  	struct feat_fd ff;
3662  	u64 attr_offset;
3663  	int err;
3664  
3665  	ff = (struct feat_fd){ .fd = fd};
3666  	lseek(fd, sizeof(f_header), SEEK_SET);
3667  
3668  	evlist__for_each_entry(session->evlist, evsel) {
3669  		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3670  		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3671  		if (err < 0) {
3672  			pr_debug("failed to write perf header\n");
3673  			return err;
3674  		}
3675  	}
3676  
3677  	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3678  
3679  	evlist__for_each_entry(evlist, evsel) {
3680  		if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3681  			/*
3682  			 * We are likely in "perf inject" and have read
3683  			 * from an older file. Update attr size so that
3684  			 * reader gets the right offset to the ids.
3685  			 */
3686  			evsel->core.attr.size = sizeof(evsel->core.attr);
3687  		}
3688  		f_attr = (struct perf_file_attr){
3689  			.attr = evsel->core.attr,
3690  			.ids  = {
3691  				.offset = evsel->id_offset,
3692  				.size   = evsel->core.ids * sizeof(u64),
3693  			}
3694  		};
3695  		err = do_write(&ff, &f_attr, sizeof(f_attr));
3696  		if (err < 0) {
3697  			pr_debug("failed to write perf header attribute\n");
3698  			return err;
3699  		}
3700  	}
3701  
3702  	if (!header->data_offset)
3703  		header->data_offset = lseek(fd, 0, SEEK_CUR);
3704  	header->feat_offset = header->data_offset + header->data_size;
3705  
3706  	if (at_exit) {
3707  		err = perf_header__adds_write(header, evlist, fd, fc);
3708  		if (err < 0)
3709  			return err;
3710  	}
3711  
3712  	f_header = (struct perf_file_header){
3713  		.magic	   = PERF_MAGIC,
3714  		.size	   = sizeof(f_header),
3715  		.attr_size = sizeof(f_attr),
3716  		.attrs = {
3717  			.offset = attr_offset,
3718  			.size   = evlist->core.nr_entries * sizeof(f_attr),
3719  		},
3720  		.data = {
3721  			.offset = header->data_offset,
3722  			.size	= header->data_size,
3723  		},
3724  		/* event_types is ignored, store zeros */
3725  	};
3726  
3727  	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3728  
3729  	lseek(fd, 0, SEEK_SET);
3730  	err = do_write(&ff, &f_header, sizeof(f_header));
3731  	if (err < 0) {
3732  		pr_debug("failed to write perf header\n");
3733  		return err;
3734  	}
3735  	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3736  
3737  	return 0;
3738  }
3739  
perf_session__write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit)3740  int perf_session__write_header(struct perf_session *session,
3741  			       struct evlist *evlist,
3742  			       int fd, bool at_exit)
3743  {
3744  	return perf_session__do_write_header(session, evlist, fd, at_exit, NULL);
3745  }
3746  
perf_session__data_offset(const struct evlist * evlist)3747  size_t perf_session__data_offset(const struct evlist *evlist)
3748  {
3749  	struct evsel *evsel;
3750  	size_t data_offset;
3751  
3752  	data_offset = sizeof(struct perf_file_header);
3753  	evlist__for_each_entry(evlist, evsel) {
3754  		data_offset += evsel->core.ids * sizeof(u64);
3755  	}
3756  	data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
3757  
3758  	return data_offset;
3759  }
3760  
perf_session__inject_header(struct perf_session * session,struct evlist * evlist,int fd,struct feat_copier * fc)3761  int perf_session__inject_header(struct perf_session *session,
3762  				struct evlist *evlist,
3763  				int fd,
3764  				struct feat_copier *fc)
3765  {
3766  	return perf_session__do_write_header(session, evlist, fd, true, fc);
3767  }
3768  
perf_header__getbuffer64(struct perf_header * header,int fd,void * buf,size_t size)3769  static int perf_header__getbuffer64(struct perf_header *header,
3770  				    int fd, void *buf, size_t size)
3771  {
3772  	if (readn(fd, buf, size) <= 0)
3773  		return -1;
3774  
3775  	if (header->needs_swap)
3776  		mem_bswap_64(buf, size);
3777  
3778  	return 0;
3779  }
3780  
perf_header__process_sections(struct perf_header * header,int fd,void * data,int (* process)(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data))3781  int perf_header__process_sections(struct perf_header *header, int fd,
3782  				  void *data,
3783  				  int (*process)(struct perf_file_section *section,
3784  						 struct perf_header *ph,
3785  						 int feat, int fd, void *data))
3786  {
3787  	struct perf_file_section *feat_sec, *sec;
3788  	int nr_sections;
3789  	int sec_size;
3790  	int feat;
3791  	int err;
3792  
3793  	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3794  	if (!nr_sections)
3795  		return 0;
3796  
3797  	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3798  	if (!feat_sec)
3799  		return -1;
3800  
3801  	sec_size = sizeof(*feat_sec) * nr_sections;
3802  
3803  	lseek(fd, header->feat_offset, SEEK_SET);
3804  
3805  	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3806  	if (err < 0)
3807  		goto out_free;
3808  
3809  	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3810  		err = process(sec++, header, feat, fd, data);
3811  		if (err < 0)
3812  			goto out_free;
3813  	}
3814  	err = 0;
3815  out_free:
3816  	free(feat_sec);
3817  	return err;
3818  }
3819  
3820  static const int attr_file_abi_sizes[] = {
3821  	[0] = PERF_ATTR_SIZE_VER0,
3822  	[1] = PERF_ATTR_SIZE_VER1,
3823  	[2] = PERF_ATTR_SIZE_VER2,
3824  	[3] = PERF_ATTR_SIZE_VER3,
3825  	[4] = PERF_ATTR_SIZE_VER4,
3826  	0,
3827  };
3828  
3829  /*
3830   * In the legacy file format, the magic number is not used to encode endianness.
3831   * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3832   * on ABI revisions, we need to try all combinations for all endianness to
3833   * detect the endianness.
3834   */
try_all_file_abis(uint64_t hdr_sz,struct perf_header * ph)3835  static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3836  {
3837  	uint64_t ref_size, attr_size;
3838  	int i;
3839  
3840  	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3841  		ref_size = attr_file_abi_sizes[i]
3842  			 + sizeof(struct perf_file_section);
3843  		if (hdr_sz != ref_size) {
3844  			attr_size = bswap_64(hdr_sz);
3845  			if (attr_size != ref_size)
3846  				continue;
3847  
3848  			ph->needs_swap = true;
3849  		}
3850  		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3851  			 i,
3852  			 ph->needs_swap);
3853  		return 0;
3854  	}
3855  	/* could not determine endianness */
3856  	return -1;
3857  }
3858  
3859  #define PERF_PIPE_HDR_VER0	16
3860  
3861  static const size_t attr_pipe_abi_sizes[] = {
3862  	[0] = PERF_PIPE_HDR_VER0,
3863  	0,
3864  };
3865  
3866  /*
3867   * In the legacy pipe format, there is an implicit assumption that endianness
3868   * between host recording the samples, and host parsing the samples is the
3869   * same. This is not always the case given that the pipe output may always be
3870   * redirected into a file and analyzed on a different machine with possibly a
3871   * different endianness and perf_event ABI revisions in the perf tool itself.
3872   */
try_all_pipe_abis(uint64_t hdr_sz,struct perf_header * ph)3873  static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3874  {
3875  	u64 attr_size;
3876  	int i;
3877  
3878  	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3879  		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3880  			attr_size = bswap_64(hdr_sz);
3881  			if (attr_size != hdr_sz)
3882  				continue;
3883  
3884  			ph->needs_swap = true;
3885  		}
3886  		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3887  		return 0;
3888  	}
3889  	return -1;
3890  }
3891  
is_perf_magic(u64 magic)3892  bool is_perf_magic(u64 magic)
3893  {
3894  	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3895  		|| magic == __perf_magic2
3896  		|| magic == __perf_magic2_sw)
3897  		return true;
3898  
3899  	return false;
3900  }
3901  
check_magic_endian(u64 magic,uint64_t hdr_sz,bool is_pipe,struct perf_header * ph)3902  static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3903  			      bool is_pipe, struct perf_header *ph)
3904  {
3905  	int ret;
3906  
3907  	/* check for legacy format */
3908  	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3909  	if (ret == 0) {
3910  		ph->version = PERF_HEADER_VERSION_1;
3911  		pr_debug("legacy perf.data format\n");
3912  		if (is_pipe)
3913  			return try_all_pipe_abis(hdr_sz, ph);
3914  
3915  		return try_all_file_abis(hdr_sz, ph);
3916  	}
3917  	/*
3918  	 * the new magic number serves two purposes:
3919  	 * - unique number to identify actual perf.data files
3920  	 * - encode endianness of file
3921  	 */
3922  	ph->version = PERF_HEADER_VERSION_2;
3923  
3924  	/* check magic number with one endianness */
3925  	if (magic == __perf_magic2)
3926  		return 0;
3927  
3928  	/* check magic number with opposite endianness */
3929  	if (magic != __perf_magic2_sw)
3930  		return -1;
3931  
3932  	ph->needs_swap = true;
3933  
3934  	return 0;
3935  }
3936  
perf_file_header__read(struct perf_file_header * header,struct perf_header * ph,int fd)3937  int perf_file_header__read(struct perf_file_header *header,
3938  			   struct perf_header *ph, int fd)
3939  {
3940  	ssize_t ret;
3941  
3942  	lseek(fd, 0, SEEK_SET);
3943  
3944  	ret = readn(fd, header, sizeof(*header));
3945  	if (ret <= 0)
3946  		return -1;
3947  
3948  	if (check_magic_endian(header->magic,
3949  			       header->attr_size, false, ph) < 0) {
3950  		pr_debug("magic/endian check failed\n");
3951  		return -1;
3952  	}
3953  
3954  	if (ph->needs_swap) {
3955  		mem_bswap_64(header, offsetof(struct perf_file_header,
3956  			     adds_features));
3957  	}
3958  
3959  	if (header->size != sizeof(*header)) {
3960  		/* Support the previous format */
3961  		if (header->size == offsetof(typeof(*header), adds_features))
3962  			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3963  		else
3964  			return -1;
3965  	} else if (ph->needs_swap) {
3966  		/*
3967  		 * feature bitmap is declared as an array of unsigned longs --
3968  		 * not good since its size can differ between the host that
3969  		 * generated the data file and the host analyzing the file.
3970  		 *
3971  		 * We need to handle endianness, but we don't know the size of
3972  		 * the unsigned long where the file was generated. Take a best
3973  		 * guess at determining it: try 64-bit swap first (ie., file
3974  		 * created on a 64-bit host), and check if the hostname feature
3975  		 * bit is set (this feature bit is forced on as of fbe96f2).
3976  		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3977  		 * swap. If the hostname bit is still not set (e.g., older data
3978  		 * file), punt and fallback to the original behavior --
3979  		 * clearing all feature bits and setting buildid.
3980  		 */
3981  		mem_bswap_64(&header->adds_features,
3982  			    BITS_TO_U64(HEADER_FEAT_BITS));
3983  
3984  		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3985  			/* unswap as u64 */
3986  			mem_bswap_64(&header->adds_features,
3987  				    BITS_TO_U64(HEADER_FEAT_BITS));
3988  
3989  			/* unswap as u32 */
3990  			mem_bswap_32(&header->adds_features,
3991  				    BITS_TO_U32(HEADER_FEAT_BITS));
3992  		}
3993  
3994  		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3995  			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3996  			__set_bit(HEADER_BUILD_ID, header->adds_features);
3997  		}
3998  	}
3999  
4000  	memcpy(&ph->adds_features, &header->adds_features,
4001  	       sizeof(ph->adds_features));
4002  
4003  	ph->data_offset  = header->data.offset;
4004  	ph->data_size	 = header->data.size;
4005  	ph->feat_offset  = header->data.offset + header->data.size;
4006  	return 0;
4007  }
4008  
perf_file_section__process(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)4009  static int perf_file_section__process(struct perf_file_section *section,
4010  				      struct perf_header *ph,
4011  				      int feat, int fd, void *data)
4012  {
4013  	struct feat_fd fdd = {
4014  		.fd	= fd,
4015  		.ph	= ph,
4016  		.size	= section->size,
4017  		.offset	= section->offset,
4018  	};
4019  
4020  	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
4021  		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
4022  			  "%d, continuing...\n", section->offset, feat);
4023  		return 0;
4024  	}
4025  
4026  	if (feat >= HEADER_LAST_FEATURE) {
4027  		pr_debug("unknown feature %d, continuing...\n", feat);
4028  		return 0;
4029  	}
4030  
4031  	if (!feat_ops[feat].process)
4032  		return 0;
4033  
4034  	return feat_ops[feat].process(&fdd, data);
4035  }
4036  
perf_file_header__read_pipe(struct perf_pipe_file_header * header,struct perf_header * ph,struct perf_data * data,bool repipe,int repipe_fd)4037  static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
4038  				       struct perf_header *ph,
4039  				       struct perf_data* data,
4040  				       bool repipe, int repipe_fd)
4041  {
4042  	struct feat_fd ff = {
4043  		.fd = repipe_fd,
4044  		.ph = ph,
4045  	};
4046  	ssize_t ret;
4047  
4048  	ret = perf_data__read(data, header, sizeof(*header));
4049  	if (ret <= 0)
4050  		return -1;
4051  
4052  	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
4053  		pr_debug("endian/magic failed\n");
4054  		return -1;
4055  	}
4056  
4057  	if (ph->needs_swap)
4058  		header->size = bswap_64(header->size);
4059  
4060  	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
4061  		return -1;
4062  
4063  	return 0;
4064  }
4065  
perf_header__read_pipe(struct perf_session * session,int repipe_fd)4066  static int perf_header__read_pipe(struct perf_session *session, int repipe_fd)
4067  {
4068  	struct perf_header *header = &session->header;
4069  	struct perf_pipe_file_header f_header;
4070  
4071  	if (perf_file_header__read_pipe(&f_header, header, session->data,
4072  					session->repipe, repipe_fd) < 0) {
4073  		pr_debug("incompatible file format\n");
4074  		return -EINVAL;
4075  	}
4076  
4077  	return f_header.size == sizeof(f_header) ? 0 : -1;
4078  }
4079  
read_attr(int fd,struct perf_header * ph,struct perf_file_attr * f_attr)4080  static int read_attr(int fd, struct perf_header *ph,
4081  		     struct perf_file_attr *f_attr)
4082  {
4083  	struct perf_event_attr *attr = &f_attr->attr;
4084  	size_t sz, left;
4085  	size_t our_sz = sizeof(f_attr->attr);
4086  	ssize_t ret;
4087  
4088  	memset(f_attr, 0, sizeof(*f_attr));
4089  
4090  	/* read minimal guaranteed structure */
4091  	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4092  	if (ret <= 0) {
4093  		pr_debug("cannot read %d bytes of header attr\n",
4094  			 PERF_ATTR_SIZE_VER0);
4095  		return -1;
4096  	}
4097  
4098  	/* on file perf_event_attr size */
4099  	sz = attr->size;
4100  
4101  	if (ph->needs_swap)
4102  		sz = bswap_32(sz);
4103  
4104  	if (sz == 0) {
4105  		/* assume ABI0 */
4106  		sz =  PERF_ATTR_SIZE_VER0;
4107  	} else if (sz > our_sz) {
4108  		pr_debug("file uses a more recent and unsupported ABI"
4109  			 " (%zu bytes extra)\n", sz - our_sz);
4110  		return -1;
4111  	}
4112  	/* what we have not yet read and that we know about */
4113  	left = sz - PERF_ATTR_SIZE_VER0;
4114  	if (left) {
4115  		void *ptr = attr;
4116  		ptr += PERF_ATTR_SIZE_VER0;
4117  
4118  		ret = readn(fd, ptr, left);
4119  	}
4120  	/* read perf_file_section, ids are read in caller */
4121  	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4122  
4123  	return ret <= 0 ? -1 : 0;
4124  }
4125  
4126  #ifdef HAVE_LIBTRACEEVENT
evsel__prepare_tracepoint_event(struct evsel * evsel,struct tep_handle * pevent)4127  static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4128  {
4129  	struct tep_event *event;
4130  	char bf[128];
4131  
4132  	/* already prepared */
4133  	if (evsel->tp_format)
4134  		return 0;
4135  
4136  	if (pevent == NULL) {
4137  		pr_debug("broken or missing trace data\n");
4138  		return -1;
4139  	}
4140  
4141  	event = tep_find_event(pevent, evsel->core.attr.config);
4142  	if (event == NULL) {
4143  		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4144  		return -1;
4145  	}
4146  
4147  	if (!evsel->name) {
4148  		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4149  		evsel->name = strdup(bf);
4150  		if (evsel->name == NULL)
4151  			return -1;
4152  	}
4153  
4154  	evsel->tp_format = event;
4155  	return 0;
4156  }
4157  
evlist__prepare_tracepoint_events(struct evlist * evlist,struct tep_handle * pevent)4158  static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
4159  {
4160  	struct evsel *pos;
4161  
4162  	evlist__for_each_entry(evlist, pos) {
4163  		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4164  		    evsel__prepare_tracepoint_event(pos, pevent))
4165  			return -1;
4166  	}
4167  
4168  	return 0;
4169  }
4170  #endif
4171  
perf_session__read_header(struct perf_session * session,int repipe_fd)4172  int perf_session__read_header(struct perf_session *session, int repipe_fd)
4173  {
4174  	struct perf_data *data = session->data;
4175  	struct perf_header *header = &session->header;
4176  	struct perf_file_header	f_header;
4177  	struct perf_file_attr	f_attr;
4178  	u64			f_id;
4179  	int nr_attrs, nr_ids, i, j, err;
4180  	int fd = perf_data__fd(data);
4181  
4182  	session->evlist = evlist__new();
4183  	if (session->evlist == NULL)
4184  		return -ENOMEM;
4185  
4186  	session->evlist->env = &header->env;
4187  	session->machines.host.env = &header->env;
4188  
4189  	/*
4190  	 * We can read 'pipe' data event from regular file,
4191  	 * check for the pipe header regardless of source.
4192  	 */
4193  	err = perf_header__read_pipe(session, repipe_fd);
4194  	if (!err || perf_data__is_pipe(data)) {
4195  		data->is_pipe = true;
4196  		return err;
4197  	}
4198  
4199  	if (perf_file_header__read(&f_header, header, fd) < 0)
4200  		return -EINVAL;
4201  
4202  	if (header->needs_swap && data->in_place_update) {
4203  		pr_err("In-place update not supported when byte-swapping is required\n");
4204  		return -EINVAL;
4205  	}
4206  
4207  	/*
4208  	 * Sanity check that perf.data was written cleanly; data size is
4209  	 * initialized to 0 and updated only if the on_exit function is run.
4210  	 * If data size is still 0 then the file contains only partial
4211  	 * information.  Just warn user and process it as much as it can.
4212  	 */
4213  	if (f_header.data.size == 0) {
4214  		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4215  			   "Was the 'perf record' command properly terminated?\n",
4216  			   data->file.path);
4217  	}
4218  
4219  	if (f_header.attr_size == 0) {
4220  		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4221  		       "Was the 'perf record' command properly terminated?\n",
4222  		       data->file.path);
4223  		return -EINVAL;
4224  	}
4225  
4226  	nr_attrs = f_header.attrs.size / f_header.attr_size;
4227  	lseek(fd, f_header.attrs.offset, SEEK_SET);
4228  
4229  	for (i = 0; i < nr_attrs; i++) {
4230  		struct evsel *evsel;
4231  		off_t tmp;
4232  
4233  		if (read_attr(fd, header, &f_attr) < 0)
4234  			goto out_errno;
4235  
4236  		if (header->needs_swap) {
4237  			f_attr.ids.size   = bswap_64(f_attr.ids.size);
4238  			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4239  			perf_event__attr_swap(&f_attr.attr);
4240  		}
4241  
4242  		tmp = lseek(fd, 0, SEEK_CUR);
4243  		evsel = evsel__new(&f_attr.attr);
4244  
4245  		if (evsel == NULL)
4246  			goto out_delete_evlist;
4247  
4248  		evsel->needs_swap = header->needs_swap;
4249  		/*
4250  		 * Do it before so that if perf_evsel__alloc_id fails, this
4251  		 * entry gets purged too at evlist__delete().
4252  		 */
4253  		evlist__add(session->evlist, evsel);
4254  
4255  		nr_ids = f_attr.ids.size / sizeof(u64);
4256  		/*
4257  		 * We don't have the cpu and thread maps on the header, so
4258  		 * for allocating the perf_sample_id table we fake 1 cpu and
4259  		 * hattr->ids threads.
4260  		 */
4261  		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4262  			goto out_delete_evlist;
4263  
4264  		lseek(fd, f_attr.ids.offset, SEEK_SET);
4265  
4266  		for (j = 0; j < nr_ids; j++) {
4267  			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4268  				goto out_errno;
4269  
4270  			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4271  		}
4272  
4273  		lseek(fd, tmp, SEEK_SET);
4274  	}
4275  
4276  #ifdef HAVE_LIBTRACEEVENT
4277  	perf_header__process_sections(header, fd, &session->tevent,
4278  				      perf_file_section__process);
4279  
4280  	if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4281  		goto out_delete_evlist;
4282  #else
4283  	perf_header__process_sections(header, fd, NULL, perf_file_section__process);
4284  #endif
4285  
4286  	return 0;
4287  out_errno:
4288  	return -errno;
4289  
4290  out_delete_evlist:
4291  	evlist__delete(session->evlist);
4292  	session->evlist = NULL;
4293  	return -ENOMEM;
4294  }
4295  
perf_event__process_feature(struct perf_session * session,union perf_event * event)4296  int perf_event__process_feature(struct perf_session *session,
4297  				union perf_event *event)
4298  {
4299  	struct perf_tool *tool = session->tool;
4300  	struct feat_fd ff = { .fd = 0 };
4301  	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4302  	int type = fe->header.type;
4303  	u64 feat = fe->feat_id;
4304  	int ret = 0;
4305  
4306  	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4307  		pr_warning("invalid record type %d in pipe-mode\n", type);
4308  		return 0;
4309  	}
4310  	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4311  		pr_warning("invalid record type %d in pipe-mode\n", type);
4312  		return -1;
4313  	}
4314  
4315  	if (!feat_ops[feat].process)
4316  		return 0;
4317  
4318  	ff.buf  = (void *)fe->data;
4319  	ff.size = event->header.size - sizeof(*fe);
4320  	ff.ph = &session->header;
4321  
4322  	if (feat_ops[feat].process(&ff, NULL)) {
4323  		ret = -1;
4324  		goto out;
4325  	}
4326  
4327  	if (!feat_ops[feat].print || !tool->show_feat_hdr)
4328  		goto out;
4329  
4330  	if (!feat_ops[feat].full_only ||
4331  	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4332  		feat_ops[feat].print(&ff, stdout);
4333  	} else {
4334  		fprintf(stdout, "# %s info available, use -I to display\n",
4335  			feat_ops[feat].name);
4336  	}
4337  out:
4338  	free_event_desc(ff.events);
4339  	return ret;
4340  }
4341  
perf_event__fprintf_event_update(union perf_event * event,FILE * fp)4342  size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4343  {
4344  	struct perf_record_event_update *ev = &event->event_update;
4345  	struct perf_cpu_map *map;
4346  	size_t ret;
4347  
4348  	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
4349  
4350  	switch (ev->type) {
4351  	case PERF_EVENT_UPDATE__SCALE:
4352  		ret += fprintf(fp, "... scale: %f\n", ev->scale.scale);
4353  		break;
4354  	case PERF_EVENT_UPDATE__UNIT:
4355  		ret += fprintf(fp, "... unit:  %s\n", ev->unit);
4356  		break;
4357  	case PERF_EVENT_UPDATE__NAME:
4358  		ret += fprintf(fp, "... name:  %s\n", ev->name);
4359  		break;
4360  	case PERF_EVENT_UPDATE__CPUS:
4361  		ret += fprintf(fp, "... ");
4362  
4363  		map = cpu_map__new_data(&ev->cpus.cpus);
4364  		if (map)
4365  			ret += cpu_map__fprintf(map, fp);
4366  		else
4367  			ret += fprintf(fp, "failed to get cpus\n");
4368  		break;
4369  	default:
4370  		ret += fprintf(fp, "... unknown type\n");
4371  		break;
4372  	}
4373  
4374  	return ret;
4375  }
4376  
perf_event__process_attr(struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4377  int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4378  			     union perf_event *event,
4379  			     struct evlist **pevlist)
4380  {
4381  	u32 i, n_ids;
4382  	u64 *ids;
4383  	struct evsel *evsel;
4384  	struct evlist *evlist = *pevlist;
4385  
4386  	if (evlist == NULL) {
4387  		*pevlist = evlist = evlist__new();
4388  		if (evlist == NULL)
4389  			return -ENOMEM;
4390  	}
4391  
4392  	evsel = evsel__new(&event->attr.attr);
4393  	if (evsel == NULL)
4394  		return -ENOMEM;
4395  
4396  	evlist__add(evlist, evsel);
4397  
4398  	n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size;
4399  	n_ids = n_ids / sizeof(u64);
4400  	/*
4401  	 * We don't have the cpu and thread maps on the header, so
4402  	 * for allocating the perf_sample_id table we fake 1 cpu and
4403  	 * hattr->ids threads.
4404  	 */
4405  	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4406  		return -ENOMEM;
4407  
4408  	ids = perf_record_header_attr_id(event);
4409  	for (i = 0; i < n_ids; i++) {
4410  		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]);
4411  	}
4412  
4413  	return 0;
4414  }
4415  
perf_event__process_event_update(struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4416  int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4417  				     union perf_event *event,
4418  				     struct evlist **pevlist)
4419  {
4420  	struct perf_record_event_update *ev = &event->event_update;
4421  	struct evlist *evlist;
4422  	struct evsel *evsel;
4423  	struct perf_cpu_map *map;
4424  
4425  	if (dump_trace)
4426  		perf_event__fprintf_event_update(event, stdout);
4427  
4428  	if (!pevlist || *pevlist == NULL)
4429  		return -EINVAL;
4430  
4431  	evlist = *pevlist;
4432  
4433  	evsel = evlist__id2evsel(evlist, ev->id);
4434  	if (evsel == NULL)
4435  		return -EINVAL;
4436  
4437  	switch (ev->type) {
4438  	case PERF_EVENT_UPDATE__UNIT:
4439  		free((char *)evsel->unit);
4440  		evsel->unit = strdup(ev->unit);
4441  		break;
4442  	case PERF_EVENT_UPDATE__NAME:
4443  		free(evsel->name);
4444  		evsel->name = strdup(ev->name);
4445  		break;
4446  	case PERF_EVENT_UPDATE__SCALE:
4447  		evsel->scale = ev->scale.scale;
4448  		break;
4449  	case PERF_EVENT_UPDATE__CPUS:
4450  		map = cpu_map__new_data(&ev->cpus.cpus);
4451  		if (map) {
4452  			perf_cpu_map__put(evsel->core.own_cpus);
4453  			evsel->core.own_cpus = map;
4454  		} else
4455  			pr_err("failed to get event_update cpus\n");
4456  	default:
4457  		break;
4458  	}
4459  
4460  	return 0;
4461  }
4462  
4463  #ifdef HAVE_LIBTRACEEVENT
perf_event__process_tracing_data(struct perf_session * session,union perf_event * event)4464  int perf_event__process_tracing_data(struct perf_session *session,
4465  				     union perf_event *event)
4466  {
4467  	ssize_t size_read, padding, size = event->tracing_data.size;
4468  	int fd = perf_data__fd(session->data);
4469  	char buf[BUFSIZ];
4470  
4471  	/*
4472  	 * The pipe fd is already in proper place and in any case
4473  	 * we can't move it, and we'd screw the case where we read
4474  	 * 'pipe' data from regular file. The trace_report reads
4475  	 * data from 'fd' so we need to set it directly behind the
4476  	 * event, where the tracing data starts.
4477  	 */
4478  	if (!perf_data__is_pipe(session->data)) {
4479  		off_t offset = lseek(fd, 0, SEEK_CUR);
4480  
4481  		/* setup for reading amidst mmap */
4482  		lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4483  		      SEEK_SET);
4484  	}
4485  
4486  	size_read = trace_report(fd, &session->tevent,
4487  				 session->repipe);
4488  	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4489  
4490  	if (readn(fd, buf, padding) < 0) {
4491  		pr_err("%s: reading input file", __func__);
4492  		return -1;
4493  	}
4494  	if (session->repipe) {
4495  		int retw = write(STDOUT_FILENO, buf, padding);
4496  		if (retw <= 0 || retw != padding) {
4497  			pr_err("%s: repiping tracing data padding", __func__);
4498  			return -1;
4499  		}
4500  	}
4501  
4502  	if (size_read + padding != size) {
4503  		pr_err("%s: tracing data size mismatch", __func__);
4504  		return -1;
4505  	}
4506  
4507  	evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4508  
4509  	return size_read + padding;
4510  }
4511  #endif
4512  
perf_event__process_build_id(struct perf_session * session,union perf_event * event)4513  int perf_event__process_build_id(struct perf_session *session,
4514  				 union perf_event *event)
4515  {
4516  	__event_process_build_id(&event->build_id,
4517  				 event->build_id.filename,
4518  				 session);
4519  	return 0;
4520  }
4521