1  // SPDX-License-Identifier: GPL-2.0-only
2  /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
3  #include <linux/mm.h>
4  #include <linux/llist.h>
5  #include <linux/bpf.h>
6  #include <linux/irq_work.h>
7  #include <linux/bpf_mem_alloc.h>
8  #include <linux/memcontrol.h>
9  #include <asm/local.h>
10  
11  /* Any context (including NMI) BPF specific memory allocator.
12   *
13   * Tracing BPF programs can attach to kprobe and fentry. Hence they
14   * run in unknown context where calling plain kmalloc() might not be safe.
15   *
16   * Front-end kmalloc() with per-cpu per-bucket cache of free elements.
17   * Refill this cache asynchronously from irq_work.
18   *
19   * CPU_0 buckets
20   * 16 32 64 96 128 196 256 512 1024 2048 4096
21   * ...
22   * CPU_N buckets
23   * 16 32 64 96 128 196 256 512 1024 2048 4096
24   *
25   * The buckets are prefilled at the start.
26   * BPF programs always run with migration disabled.
27   * It's safe to allocate from cache of the current cpu with irqs disabled.
28   * Free-ing is always done into bucket of the current cpu as well.
29   * irq_work trims extra free elements from buckets with kfree
30   * and refills them with kmalloc, so global kmalloc logic takes care
31   * of freeing objects allocated by one cpu and freed on another.
32   *
33   * Every allocated objected is padded with extra 8 bytes that contains
34   * struct llist_node.
35   */
36  #define LLIST_NODE_SZ sizeof(struct llist_node)
37  
38  /* similar to kmalloc, but sizeof == 8 bucket is gone */
39  static u8 size_index[24] __ro_after_init = {
40  	3,	/* 8 */
41  	3,	/* 16 */
42  	4,	/* 24 */
43  	4,	/* 32 */
44  	5,	/* 40 */
45  	5,	/* 48 */
46  	5,	/* 56 */
47  	5,	/* 64 */
48  	1,	/* 72 */
49  	1,	/* 80 */
50  	1,	/* 88 */
51  	1,	/* 96 */
52  	6,	/* 104 */
53  	6,	/* 112 */
54  	6,	/* 120 */
55  	6,	/* 128 */
56  	2,	/* 136 */
57  	2,	/* 144 */
58  	2,	/* 152 */
59  	2,	/* 160 */
60  	2,	/* 168 */
61  	2,	/* 176 */
62  	2,	/* 184 */
63  	2	/* 192 */
64  };
65  
bpf_mem_cache_idx(size_t size)66  static int bpf_mem_cache_idx(size_t size)
67  {
68  	if (!size || size > 4096)
69  		return -1;
70  
71  	if (size <= 192)
72  		return size_index[(size - 1) / 8] - 1;
73  
74  	return fls(size - 1) - 2;
75  }
76  
77  #define NUM_CACHES 11
78  
79  struct bpf_mem_cache {
80  	/* per-cpu list of free objects of size 'unit_size'.
81  	 * All accesses are done with interrupts disabled and 'active' counter
82  	 * protection with __llist_add() and __llist_del_first().
83  	 */
84  	struct llist_head free_llist;
85  	local_t active;
86  
87  	/* Operations on the free_list from unit_alloc/unit_free/bpf_mem_refill
88  	 * are sequenced by per-cpu 'active' counter. But unit_free() cannot
89  	 * fail. When 'active' is busy the unit_free() will add an object to
90  	 * free_llist_extra.
91  	 */
92  	struct llist_head free_llist_extra;
93  
94  	struct irq_work refill_work;
95  	struct obj_cgroup *objcg;
96  	int unit_size;
97  	/* count of objects in free_llist */
98  	int free_cnt;
99  	int low_watermark, high_watermark, batch;
100  	int percpu_size;
101  	bool draining;
102  	struct bpf_mem_cache *tgt;
103  
104  	/* list of objects to be freed after RCU GP */
105  	struct llist_head free_by_rcu;
106  	struct llist_node *free_by_rcu_tail;
107  	struct llist_head waiting_for_gp;
108  	struct llist_node *waiting_for_gp_tail;
109  	struct rcu_head rcu;
110  	atomic_t call_rcu_in_progress;
111  	struct llist_head free_llist_extra_rcu;
112  
113  	/* list of objects to be freed after RCU tasks trace GP */
114  	struct llist_head free_by_rcu_ttrace;
115  	struct llist_head waiting_for_gp_ttrace;
116  	struct rcu_head rcu_ttrace;
117  	atomic_t call_rcu_ttrace_in_progress;
118  };
119  
120  struct bpf_mem_caches {
121  	struct bpf_mem_cache cache[NUM_CACHES];
122  };
123  
__llist_del_first(struct llist_head * head)124  static struct llist_node notrace *__llist_del_first(struct llist_head *head)
125  {
126  	struct llist_node *entry, *next;
127  
128  	entry = head->first;
129  	if (!entry)
130  		return NULL;
131  	next = entry->next;
132  	head->first = next;
133  	return entry;
134  }
135  
__alloc(struct bpf_mem_cache * c,int node,gfp_t flags)136  static void *__alloc(struct bpf_mem_cache *c, int node, gfp_t flags)
137  {
138  	if (c->percpu_size) {
139  		void **obj = kmalloc_node(c->percpu_size, flags, node);
140  		void *pptr = __alloc_percpu_gfp(c->unit_size, 8, flags);
141  
142  		if (!obj || !pptr) {
143  			free_percpu(pptr);
144  			kfree(obj);
145  			return NULL;
146  		}
147  		obj[1] = pptr;
148  		return obj;
149  	}
150  
151  	return kmalloc_node(c->unit_size, flags | __GFP_ZERO, node);
152  }
153  
get_memcg(const struct bpf_mem_cache * c)154  static struct mem_cgroup *get_memcg(const struct bpf_mem_cache *c)
155  {
156  #ifdef CONFIG_MEMCG_KMEM
157  	if (c->objcg)
158  		return get_mem_cgroup_from_objcg(c->objcg);
159  #endif
160  
161  #ifdef CONFIG_MEMCG
162  	return root_mem_cgroup;
163  #else
164  	return NULL;
165  #endif
166  }
167  
inc_active(struct bpf_mem_cache * c,unsigned long * flags)168  static void inc_active(struct bpf_mem_cache *c, unsigned long *flags)
169  {
170  	if (IS_ENABLED(CONFIG_PREEMPT_RT))
171  		/* In RT irq_work runs in per-cpu kthread, so disable
172  		 * interrupts to avoid preemption and interrupts and
173  		 * reduce the chance of bpf prog executing on this cpu
174  		 * when active counter is busy.
175  		 */
176  		local_irq_save(*flags);
177  	/* alloc_bulk runs from irq_work which will not preempt a bpf
178  	 * program that does unit_alloc/unit_free since IRQs are
179  	 * disabled there. There is no race to increment 'active'
180  	 * counter. It protects free_llist from corruption in case NMI
181  	 * bpf prog preempted this loop.
182  	 */
183  	WARN_ON_ONCE(local_inc_return(&c->active) != 1);
184  }
185  
dec_active(struct bpf_mem_cache * c,unsigned long * flags)186  static void dec_active(struct bpf_mem_cache *c, unsigned long *flags)
187  {
188  	local_dec(&c->active);
189  	if (IS_ENABLED(CONFIG_PREEMPT_RT))
190  		local_irq_restore(*flags);
191  }
192  
add_obj_to_free_list(struct bpf_mem_cache * c,void * obj)193  static void add_obj_to_free_list(struct bpf_mem_cache *c, void *obj)
194  {
195  	unsigned long flags;
196  
197  	inc_active(c, &flags);
198  	__llist_add(obj, &c->free_llist);
199  	c->free_cnt++;
200  	dec_active(c, &flags);
201  }
202  
203  /* Mostly runs from irq_work except __init phase. */
alloc_bulk(struct bpf_mem_cache * c,int cnt,int node,bool atomic)204  static void alloc_bulk(struct bpf_mem_cache *c, int cnt, int node, bool atomic)
205  {
206  	struct mem_cgroup *memcg = NULL, *old_memcg;
207  	gfp_t gfp;
208  	void *obj;
209  	int i;
210  
211  	gfp = __GFP_NOWARN | __GFP_ACCOUNT;
212  	gfp |= atomic ? GFP_NOWAIT : GFP_KERNEL;
213  
214  	for (i = 0; i < cnt; i++) {
215  		/*
216  		 * For every 'c' llist_del_first(&c->free_by_rcu_ttrace); is
217  		 * done only by one CPU == current CPU. Other CPUs might
218  		 * llist_add() and llist_del_all() in parallel.
219  		 */
220  		obj = llist_del_first(&c->free_by_rcu_ttrace);
221  		if (!obj)
222  			break;
223  		add_obj_to_free_list(c, obj);
224  	}
225  	if (i >= cnt)
226  		return;
227  
228  	for (; i < cnt; i++) {
229  		obj = llist_del_first(&c->waiting_for_gp_ttrace);
230  		if (!obj)
231  			break;
232  		add_obj_to_free_list(c, obj);
233  	}
234  	if (i >= cnt)
235  		return;
236  
237  	memcg = get_memcg(c);
238  	old_memcg = set_active_memcg(memcg);
239  	for (; i < cnt; i++) {
240  		/* Allocate, but don't deplete atomic reserves that typical
241  		 * GFP_ATOMIC would do. irq_work runs on this cpu and kmalloc
242  		 * will allocate from the current numa node which is what we
243  		 * want here.
244  		 */
245  		obj = __alloc(c, node, gfp);
246  		if (!obj)
247  			break;
248  		add_obj_to_free_list(c, obj);
249  	}
250  	set_active_memcg(old_memcg);
251  	mem_cgroup_put(memcg);
252  }
253  
free_one(void * obj,bool percpu)254  static void free_one(void *obj, bool percpu)
255  {
256  	if (percpu) {
257  		free_percpu(((void **)obj)[1]);
258  		kfree(obj);
259  		return;
260  	}
261  
262  	kfree(obj);
263  }
264  
free_all(struct llist_node * llnode,bool percpu)265  static int free_all(struct llist_node *llnode, bool percpu)
266  {
267  	struct llist_node *pos, *t;
268  	int cnt = 0;
269  
270  	llist_for_each_safe(pos, t, llnode) {
271  		free_one(pos, percpu);
272  		cnt++;
273  	}
274  	return cnt;
275  }
276  
__free_rcu(struct rcu_head * head)277  static void __free_rcu(struct rcu_head *head)
278  {
279  	struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu_ttrace);
280  
281  	free_all(llist_del_all(&c->waiting_for_gp_ttrace), !!c->percpu_size);
282  	atomic_set(&c->call_rcu_ttrace_in_progress, 0);
283  }
284  
__free_rcu_tasks_trace(struct rcu_head * head)285  static void __free_rcu_tasks_trace(struct rcu_head *head)
286  {
287  	/* If RCU Tasks Trace grace period implies RCU grace period,
288  	 * there is no need to invoke call_rcu().
289  	 */
290  	if (rcu_trace_implies_rcu_gp())
291  		__free_rcu(head);
292  	else
293  		call_rcu(head, __free_rcu);
294  }
295  
enque_to_free(struct bpf_mem_cache * c,void * obj)296  static void enque_to_free(struct bpf_mem_cache *c, void *obj)
297  {
298  	struct llist_node *llnode = obj;
299  
300  	/* bpf_mem_cache is a per-cpu object. Freeing happens in irq_work.
301  	 * Nothing races to add to free_by_rcu_ttrace list.
302  	 */
303  	llist_add(llnode, &c->free_by_rcu_ttrace);
304  }
305  
do_call_rcu_ttrace(struct bpf_mem_cache * c)306  static void do_call_rcu_ttrace(struct bpf_mem_cache *c)
307  {
308  	struct llist_node *llnode, *t;
309  
310  	if (atomic_xchg(&c->call_rcu_ttrace_in_progress, 1)) {
311  		if (unlikely(READ_ONCE(c->draining))) {
312  			llnode = llist_del_all(&c->free_by_rcu_ttrace);
313  			free_all(llnode, !!c->percpu_size);
314  		}
315  		return;
316  	}
317  
318  	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace));
319  	llist_for_each_safe(llnode, t, llist_del_all(&c->free_by_rcu_ttrace))
320  		llist_add(llnode, &c->waiting_for_gp_ttrace);
321  
322  	if (unlikely(READ_ONCE(c->draining))) {
323  		__free_rcu(&c->rcu_ttrace);
324  		return;
325  	}
326  
327  	/* Use call_rcu_tasks_trace() to wait for sleepable progs to finish.
328  	 * If RCU Tasks Trace grace period implies RCU grace period, free
329  	 * these elements directly, else use call_rcu() to wait for normal
330  	 * progs to finish and finally do free_one() on each element.
331  	 */
332  	call_rcu_tasks_trace(&c->rcu_ttrace, __free_rcu_tasks_trace);
333  }
334  
free_bulk(struct bpf_mem_cache * c)335  static void free_bulk(struct bpf_mem_cache *c)
336  {
337  	struct bpf_mem_cache *tgt = c->tgt;
338  	struct llist_node *llnode, *t;
339  	unsigned long flags;
340  	int cnt;
341  
342  	WARN_ON_ONCE(tgt->unit_size != c->unit_size);
343  
344  	do {
345  		inc_active(c, &flags);
346  		llnode = __llist_del_first(&c->free_llist);
347  		if (llnode)
348  			cnt = --c->free_cnt;
349  		else
350  			cnt = 0;
351  		dec_active(c, &flags);
352  		if (llnode)
353  			enque_to_free(tgt, llnode);
354  	} while (cnt > (c->high_watermark + c->low_watermark) / 2);
355  
356  	/* and drain free_llist_extra */
357  	llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra))
358  		enque_to_free(tgt, llnode);
359  	do_call_rcu_ttrace(tgt);
360  }
361  
__free_by_rcu(struct rcu_head * head)362  static void __free_by_rcu(struct rcu_head *head)
363  {
364  	struct bpf_mem_cache *c = container_of(head, struct bpf_mem_cache, rcu);
365  	struct bpf_mem_cache *tgt = c->tgt;
366  	struct llist_node *llnode;
367  
368  	llnode = llist_del_all(&c->waiting_for_gp);
369  	if (!llnode)
370  		goto out;
371  
372  	llist_add_batch(llnode, c->waiting_for_gp_tail, &tgt->free_by_rcu_ttrace);
373  
374  	/* Objects went through regular RCU GP. Send them to RCU tasks trace */
375  	do_call_rcu_ttrace(tgt);
376  out:
377  	atomic_set(&c->call_rcu_in_progress, 0);
378  }
379  
check_free_by_rcu(struct bpf_mem_cache * c)380  static void check_free_by_rcu(struct bpf_mem_cache *c)
381  {
382  	struct llist_node *llnode, *t;
383  	unsigned long flags;
384  
385  	/* drain free_llist_extra_rcu */
386  	if (unlikely(!llist_empty(&c->free_llist_extra_rcu))) {
387  		inc_active(c, &flags);
388  		llist_for_each_safe(llnode, t, llist_del_all(&c->free_llist_extra_rcu))
389  			if (__llist_add(llnode, &c->free_by_rcu))
390  				c->free_by_rcu_tail = llnode;
391  		dec_active(c, &flags);
392  	}
393  
394  	if (llist_empty(&c->free_by_rcu))
395  		return;
396  
397  	if (atomic_xchg(&c->call_rcu_in_progress, 1)) {
398  		/*
399  		 * Instead of kmalloc-ing new rcu_head and triggering 10k
400  		 * call_rcu() to hit rcutree.qhimark and force RCU to notice
401  		 * the overload just ask RCU to hurry up. There could be many
402  		 * objects in free_by_rcu list.
403  		 * This hint reduces memory consumption for an artificial
404  		 * benchmark from 2 Gbyte to 150 Mbyte.
405  		 */
406  		rcu_request_urgent_qs_task(current);
407  		return;
408  	}
409  
410  	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp));
411  
412  	inc_active(c, &flags);
413  	WRITE_ONCE(c->waiting_for_gp.first, __llist_del_all(&c->free_by_rcu));
414  	c->waiting_for_gp_tail = c->free_by_rcu_tail;
415  	dec_active(c, &flags);
416  
417  	if (unlikely(READ_ONCE(c->draining))) {
418  		free_all(llist_del_all(&c->waiting_for_gp), !!c->percpu_size);
419  		atomic_set(&c->call_rcu_in_progress, 0);
420  	} else {
421  		call_rcu_hurry(&c->rcu, __free_by_rcu);
422  	}
423  }
424  
bpf_mem_refill(struct irq_work * work)425  static void bpf_mem_refill(struct irq_work *work)
426  {
427  	struct bpf_mem_cache *c = container_of(work, struct bpf_mem_cache, refill_work);
428  	int cnt;
429  
430  	/* Racy access to free_cnt. It doesn't need to be 100% accurate */
431  	cnt = c->free_cnt;
432  	if (cnt < c->low_watermark)
433  		/* irq_work runs on this cpu and kmalloc will allocate
434  		 * from the current numa node which is what we want here.
435  		 */
436  		alloc_bulk(c, c->batch, NUMA_NO_NODE, true);
437  	else if (cnt > c->high_watermark)
438  		free_bulk(c);
439  
440  	check_free_by_rcu(c);
441  }
442  
irq_work_raise(struct bpf_mem_cache * c)443  static void notrace irq_work_raise(struct bpf_mem_cache *c)
444  {
445  	irq_work_queue(&c->refill_work);
446  }
447  
448  /* For typical bpf map case that uses bpf_mem_cache_alloc and single bucket
449   * the freelist cache will be elem_size * 64 (or less) on each cpu.
450   *
451   * For bpf programs that don't have statically known allocation sizes and
452   * assuming (low_mark + high_mark) / 2 as an average number of elements per
453   * bucket and all buckets are used the total amount of memory in freelists
454   * on each cpu will be:
455   * 64*16 + 64*32 + 64*64 + 64*96 + 64*128 + 64*196 + 64*256 + 32*512 + 16*1024 + 8*2048 + 4*4096
456   * == ~ 116 Kbyte using below heuristic.
457   * Initialized, but unused bpf allocator (not bpf map specific one) will
458   * consume ~ 11 Kbyte per cpu.
459   * Typical case will be between 11K and 116K closer to 11K.
460   * bpf progs can and should share bpf_mem_cache when possible.
461   */
init_refill_work(struct bpf_mem_cache * c)462  static void init_refill_work(struct bpf_mem_cache *c)
463  {
464  	init_irq_work(&c->refill_work, bpf_mem_refill);
465  	if (c->unit_size <= 256) {
466  		c->low_watermark = 32;
467  		c->high_watermark = 96;
468  	} else {
469  		/* When page_size == 4k, order-0 cache will have low_mark == 2
470  		 * and high_mark == 6 with batch alloc of 3 individual pages at
471  		 * a time.
472  		 * 8k allocs and above low == 1, high == 3, batch == 1.
473  		 */
474  		c->low_watermark = max(32 * 256 / c->unit_size, 1);
475  		c->high_watermark = max(96 * 256 / c->unit_size, 3);
476  	}
477  	c->batch = max((c->high_watermark - c->low_watermark) / 4 * 3, 1);
478  }
479  
prefill_mem_cache(struct bpf_mem_cache * c,int cpu)480  static void prefill_mem_cache(struct bpf_mem_cache *c, int cpu)
481  {
482  	/* To avoid consuming memory assume that 1st run of bpf
483  	 * prog won't be doing more than 4 map_update_elem from
484  	 * irq disabled region
485  	 */
486  	alloc_bulk(c, c->unit_size <= 256 ? 4 : 1, cpu_to_node(cpu), false);
487  }
488  
check_obj_size(struct bpf_mem_cache * c,unsigned int idx)489  static int check_obj_size(struct bpf_mem_cache *c, unsigned int idx)
490  {
491  	struct llist_node *first;
492  	unsigned int obj_size;
493  
494  	/* For per-cpu allocator, the size of free objects in free list doesn't
495  	 * match with unit_size and now there is no way to get the size of
496  	 * per-cpu pointer saved in free object, so just skip the checking.
497  	 */
498  	if (c->percpu_size)
499  		return 0;
500  
501  	first = c->free_llist.first;
502  	if (!first)
503  		return 0;
504  
505  	obj_size = ksize(first);
506  	if (obj_size != c->unit_size) {
507  		WARN_ONCE(1, "bpf_mem_cache[%u]: unexpected object size %u, expect %u\n",
508  			  idx, obj_size, c->unit_size);
509  		return -EINVAL;
510  	}
511  	return 0;
512  }
513  
514  /* When size != 0 bpf_mem_cache for each cpu.
515   * This is typical bpf hash map use case when all elements have equal size.
516   *
517   * When size == 0 allocate 11 bpf_mem_cache-s for each cpu, then rely on
518   * kmalloc/kfree. Max allocation size is 4096 in this case.
519   * This is bpf_dynptr and bpf_kptr use case.
520   */
bpf_mem_alloc_init(struct bpf_mem_alloc * ma,int size,bool percpu)521  int bpf_mem_alloc_init(struct bpf_mem_alloc *ma, int size, bool percpu)
522  {
523  	static u16 sizes[NUM_CACHES] = {96, 192, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096};
524  	int cpu, i, err, unit_size, percpu_size = 0;
525  	struct bpf_mem_caches *cc, __percpu *pcc;
526  	struct bpf_mem_cache *c, __percpu *pc;
527  	struct obj_cgroup *objcg = NULL;
528  
529  	if (size) {
530  		pc = __alloc_percpu_gfp(sizeof(*pc), 8, GFP_KERNEL);
531  		if (!pc)
532  			return -ENOMEM;
533  
534  		if (percpu)
535  			/* room for llist_node and per-cpu pointer */
536  			percpu_size = LLIST_NODE_SZ + sizeof(void *);
537  		else
538  			size += LLIST_NODE_SZ; /* room for llist_node */
539  		unit_size = size;
540  
541  #ifdef CONFIG_MEMCG_KMEM
542  		if (memcg_bpf_enabled())
543  			objcg = get_obj_cgroup_from_current();
544  #endif
545  		for_each_possible_cpu(cpu) {
546  			c = per_cpu_ptr(pc, cpu);
547  			c->unit_size = unit_size;
548  			c->objcg = objcg;
549  			c->percpu_size = percpu_size;
550  			c->tgt = c;
551  			init_refill_work(c);
552  			prefill_mem_cache(c, cpu);
553  		}
554  		ma->cache = pc;
555  		return 0;
556  	}
557  
558  	/* size == 0 && percpu is an invalid combination */
559  	if (WARN_ON_ONCE(percpu))
560  		return -EINVAL;
561  
562  	pcc = __alloc_percpu_gfp(sizeof(*cc), 8, GFP_KERNEL);
563  	if (!pcc)
564  		return -ENOMEM;
565  	err = 0;
566  #ifdef CONFIG_MEMCG_KMEM
567  	objcg = get_obj_cgroup_from_current();
568  #endif
569  	for_each_possible_cpu(cpu) {
570  		cc = per_cpu_ptr(pcc, cpu);
571  		for (i = 0; i < NUM_CACHES; i++) {
572  			c = &cc->cache[i];
573  			c->unit_size = sizes[i];
574  			c->objcg = objcg;
575  			c->tgt = c;
576  
577  			init_refill_work(c);
578  			/* Another bpf_mem_cache will be used when allocating
579  			 * c->unit_size in bpf_mem_alloc(), so doesn't prefill
580  			 * for the bpf_mem_cache because these free objects will
581  			 * never be used.
582  			 */
583  			if (i != bpf_mem_cache_idx(c->unit_size))
584  				continue;
585  			prefill_mem_cache(c, cpu);
586  			err = check_obj_size(c, i);
587  			if (err)
588  				goto out;
589  		}
590  	}
591  
592  out:
593  	ma->caches = pcc;
594  	/* refill_work is either zeroed or initialized, so it is safe to
595  	 * call irq_work_sync().
596  	 */
597  	if (err)
598  		bpf_mem_alloc_destroy(ma);
599  	return err;
600  }
601  
drain_mem_cache(struct bpf_mem_cache * c)602  static void drain_mem_cache(struct bpf_mem_cache *c)
603  {
604  	bool percpu = !!c->percpu_size;
605  
606  	/* No progs are using this bpf_mem_cache, but htab_map_free() called
607  	 * bpf_mem_cache_free() for all remaining elements and they can be in
608  	 * free_by_rcu_ttrace or in waiting_for_gp_ttrace lists, so drain those lists now.
609  	 *
610  	 * Except for waiting_for_gp_ttrace list, there are no concurrent operations
611  	 * on these lists, so it is safe to use __llist_del_all().
612  	 */
613  	free_all(llist_del_all(&c->free_by_rcu_ttrace), percpu);
614  	free_all(llist_del_all(&c->waiting_for_gp_ttrace), percpu);
615  	free_all(__llist_del_all(&c->free_llist), percpu);
616  	free_all(__llist_del_all(&c->free_llist_extra), percpu);
617  	free_all(__llist_del_all(&c->free_by_rcu), percpu);
618  	free_all(__llist_del_all(&c->free_llist_extra_rcu), percpu);
619  	free_all(llist_del_all(&c->waiting_for_gp), percpu);
620  }
621  
check_mem_cache(struct bpf_mem_cache * c)622  static void check_mem_cache(struct bpf_mem_cache *c)
623  {
624  	WARN_ON_ONCE(!llist_empty(&c->free_by_rcu_ttrace));
625  	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp_ttrace));
626  	WARN_ON_ONCE(!llist_empty(&c->free_llist));
627  	WARN_ON_ONCE(!llist_empty(&c->free_llist_extra));
628  	WARN_ON_ONCE(!llist_empty(&c->free_by_rcu));
629  	WARN_ON_ONCE(!llist_empty(&c->free_llist_extra_rcu));
630  	WARN_ON_ONCE(!llist_empty(&c->waiting_for_gp));
631  }
632  
check_leaked_objs(struct bpf_mem_alloc * ma)633  static void check_leaked_objs(struct bpf_mem_alloc *ma)
634  {
635  	struct bpf_mem_caches *cc;
636  	struct bpf_mem_cache *c;
637  	int cpu, i;
638  
639  	if (ma->cache) {
640  		for_each_possible_cpu(cpu) {
641  			c = per_cpu_ptr(ma->cache, cpu);
642  			check_mem_cache(c);
643  		}
644  	}
645  	if (ma->caches) {
646  		for_each_possible_cpu(cpu) {
647  			cc = per_cpu_ptr(ma->caches, cpu);
648  			for (i = 0; i < NUM_CACHES; i++) {
649  				c = &cc->cache[i];
650  				check_mem_cache(c);
651  			}
652  		}
653  	}
654  }
655  
free_mem_alloc_no_barrier(struct bpf_mem_alloc * ma)656  static void free_mem_alloc_no_barrier(struct bpf_mem_alloc *ma)
657  {
658  	check_leaked_objs(ma);
659  	free_percpu(ma->cache);
660  	free_percpu(ma->caches);
661  	ma->cache = NULL;
662  	ma->caches = NULL;
663  }
664  
free_mem_alloc(struct bpf_mem_alloc * ma)665  static void free_mem_alloc(struct bpf_mem_alloc *ma)
666  {
667  	/* waiting_for_gp[_ttrace] lists were drained, but RCU callbacks
668  	 * might still execute. Wait for them.
669  	 *
670  	 * rcu_barrier_tasks_trace() doesn't imply synchronize_rcu_tasks_trace(),
671  	 * but rcu_barrier_tasks_trace() and rcu_barrier() below are only used
672  	 * to wait for the pending __free_rcu_tasks_trace() and __free_rcu(),
673  	 * so if call_rcu(head, __free_rcu) is skipped due to
674  	 * rcu_trace_implies_rcu_gp(), it will be OK to skip rcu_barrier() by
675  	 * using rcu_trace_implies_rcu_gp() as well.
676  	 */
677  	rcu_barrier(); /* wait for __free_by_rcu */
678  	rcu_barrier_tasks_trace(); /* wait for __free_rcu */
679  	if (!rcu_trace_implies_rcu_gp())
680  		rcu_barrier();
681  	free_mem_alloc_no_barrier(ma);
682  }
683  
free_mem_alloc_deferred(struct work_struct * work)684  static void free_mem_alloc_deferred(struct work_struct *work)
685  {
686  	struct bpf_mem_alloc *ma = container_of(work, struct bpf_mem_alloc, work);
687  
688  	free_mem_alloc(ma);
689  	kfree(ma);
690  }
691  
destroy_mem_alloc(struct bpf_mem_alloc * ma,int rcu_in_progress)692  static void destroy_mem_alloc(struct bpf_mem_alloc *ma, int rcu_in_progress)
693  {
694  	struct bpf_mem_alloc *copy;
695  
696  	if (!rcu_in_progress) {
697  		/* Fast path. No callbacks are pending, hence no need to do
698  		 * rcu_barrier-s.
699  		 */
700  		free_mem_alloc_no_barrier(ma);
701  		return;
702  	}
703  
704  	copy = kmemdup(ma, sizeof(*ma), GFP_KERNEL);
705  	if (!copy) {
706  		/* Slow path with inline barrier-s */
707  		free_mem_alloc(ma);
708  		return;
709  	}
710  
711  	/* Defer barriers into worker to let the rest of map memory to be freed */
712  	memset(ma, 0, sizeof(*ma));
713  	INIT_WORK(&copy->work, free_mem_alloc_deferred);
714  	queue_work(system_unbound_wq, &copy->work);
715  }
716  
bpf_mem_alloc_destroy(struct bpf_mem_alloc * ma)717  void bpf_mem_alloc_destroy(struct bpf_mem_alloc *ma)
718  {
719  	struct bpf_mem_caches *cc;
720  	struct bpf_mem_cache *c;
721  	int cpu, i, rcu_in_progress;
722  
723  	if (ma->cache) {
724  		rcu_in_progress = 0;
725  		for_each_possible_cpu(cpu) {
726  			c = per_cpu_ptr(ma->cache, cpu);
727  			WRITE_ONCE(c->draining, true);
728  			irq_work_sync(&c->refill_work);
729  			drain_mem_cache(c);
730  			rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
731  			rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
732  		}
733  		/* objcg is the same across cpus */
734  		if (c->objcg)
735  			obj_cgroup_put(c->objcg);
736  		destroy_mem_alloc(ma, rcu_in_progress);
737  	}
738  	if (ma->caches) {
739  		rcu_in_progress = 0;
740  		for_each_possible_cpu(cpu) {
741  			cc = per_cpu_ptr(ma->caches, cpu);
742  			for (i = 0; i < NUM_CACHES; i++) {
743  				c = &cc->cache[i];
744  				WRITE_ONCE(c->draining, true);
745  				irq_work_sync(&c->refill_work);
746  				drain_mem_cache(c);
747  				rcu_in_progress += atomic_read(&c->call_rcu_ttrace_in_progress);
748  				rcu_in_progress += atomic_read(&c->call_rcu_in_progress);
749  			}
750  		}
751  		if (c->objcg)
752  			obj_cgroup_put(c->objcg);
753  		destroy_mem_alloc(ma, rcu_in_progress);
754  	}
755  }
756  
757  /* notrace is necessary here and in other functions to make sure
758   * bpf programs cannot attach to them and cause llist corruptions.
759   */
unit_alloc(struct bpf_mem_cache * c)760  static void notrace *unit_alloc(struct bpf_mem_cache *c)
761  {
762  	struct llist_node *llnode = NULL;
763  	unsigned long flags;
764  	int cnt = 0;
765  
766  	/* Disable irqs to prevent the following race for majority of prog types:
767  	 * prog_A
768  	 *   bpf_mem_alloc
769  	 *      preemption or irq -> prog_B
770  	 *        bpf_mem_alloc
771  	 *
772  	 * but prog_B could be a perf_event NMI prog.
773  	 * Use per-cpu 'active' counter to order free_list access between
774  	 * unit_alloc/unit_free/bpf_mem_refill.
775  	 */
776  	local_irq_save(flags);
777  	if (local_inc_return(&c->active) == 1) {
778  		llnode = __llist_del_first(&c->free_llist);
779  		if (llnode) {
780  			cnt = --c->free_cnt;
781  			*(struct bpf_mem_cache **)llnode = c;
782  		}
783  	}
784  	local_dec(&c->active);
785  	local_irq_restore(flags);
786  
787  	WARN_ON(cnt < 0);
788  
789  	if (cnt < c->low_watermark)
790  		irq_work_raise(c);
791  	return llnode;
792  }
793  
794  /* Though 'ptr' object could have been allocated on a different cpu
795   * add it to the free_llist of the current cpu.
796   * Let kfree() logic deal with it when it's later called from irq_work.
797   */
unit_free(struct bpf_mem_cache * c,void * ptr)798  static void notrace unit_free(struct bpf_mem_cache *c, void *ptr)
799  {
800  	struct llist_node *llnode = ptr - LLIST_NODE_SZ;
801  	unsigned long flags;
802  	int cnt = 0;
803  
804  	BUILD_BUG_ON(LLIST_NODE_SZ > 8);
805  
806  	/*
807  	 * Remember bpf_mem_cache that allocated this object.
808  	 * The hint is not accurate.
809  	 */
810  	c->tgt = *(struct bpf_mem_cache **)llnode;
811  
812  	local_irq_save(flags);
813  	if (local_inc_return(&c->active) == 1) {
814  		__llist_add(llnode, &c->free_llist);
815  		cnt = ++c->free_cnt;
816  	} else {
817  		/* unit_free() cannot fail. Therefore add an object to atomic
818  		 * llist. free_bulk() will drain it. Though free_llist_extra is
819  		 * a per-cpu list we have to use atomic llist_add here, since
820  		 * it also can be interrupted by bpf nmi prog that does another
821  		 * unit_free() into the same free_llist_extra.
822  		 */
823  		llist_add(llnode, &c->free_llist_extra);
824  	}
825  	local_dec(&c->active);
826  	local_irq_restore(flags);
827  
828  	if (cnt > c->high_watermark)
829  		/* free few objects from current cpu into global kmalloc pool */
830  		irq_work_raise(c);
831  }
832  
unit_free_rcu(struct bpf_mem_cache * c,void * ptr)833  static void notrace unit_free_rcu(struct bpf_mem_cache *c, void *ptr)
834  {
835  	struct llist_node *llnode = ptr - LLIST_NODE_SZ;
836  	unsigned long flags;
837  
838  	c->tgt = *(struct bpf_mem_cache **)llnode;
839  
840  	local_irq_save(flags);
841  	if (local_inc_return(&c->active) == 1) {
842  		if (__llist_add(llnode, &c->free_by_rcu))
843  			c->free_by_rcu_tail = llnode;
844  	} else {
845  		llist_add(llnode, &c->free_llist_extra_rcu);
846  	}
847  	local_dec(&c->active);
848  	local_irq_restore(flags);
849  
850  	if (!atomic_read(&c->call_rcu_in_progress))
851  		irq_work_raise(c);
852  }
853  
854  /* Called from BPF program or from sys_bpf syscall.
855   * In both cases migration is disabled.
856   */
bpf_mem_alloc(struct bpf_mem_alloc * ma,size_t size)857  void notrace *bpf_mem_alloc(struct bpf_mem_alloc *ma, size_t size)
858  {
859  	int idx;
860  	void *ret;
861  
862  	if (!size)
863  		return ZERO_SIZE_PTR;
864  
865  	idx = bpf_mem_cache_idx(size + LLIST_NODE_SZ);
866  	if (idx < 0)
867  		return NULL;
868  
869  	ret = unit_alloc(this_cpu_ptr(ma->caches)->cache + idx);
870  	return !ret ? NULL : ret + LLIST_NODE_SZ;
871  }
872  
bpf_mem_free(struct bpf_mem_alloc * ma,void * ptr)873  void notrace bpf_mem_free(struct bpf_mem_alloc *ma, void *ptr)
874  {
875  	int idx;
876  
877  	if (!ptr)
878  		return;
879  
880  	idx = bpf_mem_cache_idx(ksize(ptr - LLIST_NODE_SZ));
881  	if (idx < 0)
882  		return;
883  
884  	unit_free(this_cpu_ptr(ma->caches)->cache + idx, ptr);
885  }
886  
bpf_mem_free_rcu(struct bpf_mem_alloc * ma,void * ptr)887  void notrace bpf_mem_free_rcu(struct bpf_mem_alloc *ma, void *ptr)
888  {
889  	int idx;
890  
891  	if (!ptr)
892  		return;
893  
894  	idx = bpf_mem_cache_idx(ksize(ptr - LLIST_NODE_SZ));
895  	if (idx < 0)
896  		return;
897  
898  	unit_free_rcu(this_cpu_ptr(ma->caches)->cache + idx, ptr);
899  }
900  
bpf_mem_cache_alloc(struct bpf_mem_alloc * ma)901  void notrace *bpf_mem_cache_alloc(struct bpf_mem_alloc *ma)
902  {
903  	void *ret;
904  
905  	ret = unit_alloc(this_cpu_ptr(ma->cache));
906  	return !ret ? NULL : ret + LLIST_NODE_SZ;
907  }
908  
bpf_mem_cache_free(struct bpf_mem_alloc * ma,void * ptr)909  void notrace bpf_mem_cache_free(struct bpf_mem_alloc *ma, void *ptr)
910  {
911  	if (!ptr)
912  		return;
913  
914  	unit_free(this_cpu_ptr(ma->cache), ptr);
915  }
916  
bpf_mem_cache_free_rcu(struct bpf_mem_alloc * ma,void * ptr)917  void notrace bpf_mem_cache_free_rcu(struct bpf_mem_alloc *ma, void *ptr)
918  {
919  	if (!ptr)
920  		return;
921  
922  	unit_free_rcu(this_cpu_ptr(ma->cache), ptr);
923  }
924  
925  /* Directly does a kfree() without putting 'ptr' back to the free_llist
926   * for reuse and without waiting for a rcu_tasks_trace gp.
927   * The caller must first go through the rcu_tasks_trace gp for 'ptr'
928   * before calling bpf_mem_cache_raw_free().
929   * It could be used when the rcu_tasks_trace callback does not have
930   * a hold on the original bpf_mem_alloc object that allocated the
931   * 'ptr'. This should only be used in the uncommon code path.
932   * Otherwise, the bpf_mem_alloc's free_llist cannot be refilled
933   * and may affect performance.
934   */
bpf_mem_cache_raw_free(void * ptr)935  void bpf_mem_cache_raw_free(void *ptr)
936  {
937  	if (!ptr)
938  		return;
939  
940  	kfree(ptr - LLIST_NODE_SZ);
941  }
942  
943  /* When flags == GFP_KERNEL, it signals that the caller will not cause
944   * deadlock when using kmalloc. bpf_mem_cache_alloc_flags() will use
945   * kmalloc if the free_llist is empty.
946   */
bpf_mem_cache_alloc_flags(struct bpf_mem_alloc * ma,gfp_t flags)947  void notrace *bpf_mem_cache_alloc_flags(struct bpf_mem_alloc *ma, gfp_t flags)
948  {
949  	struct bpf_mem_cache *c;
950  	void *ret;
951  
952  	c = this_cpu_ptr(ma->cache);
953  
954  	ret = unit_alloc(c);
955  	if (!ret && flags == GFP_KERNEL) {
956  		struct mem_cgroup *memcg, *old_memcg;
957  
958  		memcg = get_memcg(c);
959  		old_memcg = set_active_memcg(memcg);
960  		ret = __alloc(c, NUMA_NO_NODE, GFP_KERNEL | __GFP_NOWARN | __GFP_ACCOUNT);
961  		set_active_memcg(old_memcg);
962  		mem_cgroup_put(memcg);
963  	}
964  
965  	return !ret ? NULL : ret + LLIST_NODE_SZ;
966  }
967  
bpf_mem_cache_adjust_size(void)968  static __init int bpf_mem_cache_adjust_size(void)
969  {
970  	unsigned int size;
971  
972  	/* Adjusting the indexes in size_index() according to the object_size
973  	 * of underlying slab cache, so bpf_mem_alloc() will select a
974  	 * bpf_mem_cache with unit_size equal to the object_size of
975  	 * the underlying slab cache.
976  	 *
977  	 * The maximal value of KMALLOC_MIN_SIZE and __kmalloc_minalign() is
978  	 * 256-bytes, so only do adjustment for [8-bytes, 192-bytes].
979  	 */
980  	for (size = 192; size >= 8; size -= 8) {
981  		unsigned int kmalloc_size, index;
982  
983  		kmalloc_size = kmalloc_size_roundup(size);
984  		if (kmalloc_size == size)
985  			continue;
986  
987  		if (kmalloc_size <= 192)
988  			index = size_index[(kmalloc_size - 1) / 8];
989  		else
990  			index = fls(kmalloc_size - 1) - 1;
991  		/* Only overwrite if necessary */
992  		if (size_index[(size - 1) / 8] != index)
993  			size_index[(size - 1) / 8] = index;
994  	}
995  
996  	return 0;
997  }
998  subsys_initcall(bpf_mem_cache_adjust_size);
999