1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Driver for AMBA serial ports
4 *
5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6 *
7 * Copyright 1999 ARM Limited
8 * Copyright (C) 2000 Deep Blue Solutions Ltd.
9 * Copyright (C) 2010 ST-Ericsson SA
10 *
11 * This is a generic driver for ARM AMBA-type serial ports. They
12 * have a lot of 16550-like features, but are not register compatible.
13 * Note that although they do have CTS, DCD and DSR inputs, they do
14 * not have an RI input, nor do they have DTR or RTS outputs. If
15 * required, these have to be supplied via some other means (eg, GPIO)
16 * and hooked into this driver.
17 */
18
19 #include <linux/module.h>
20 #include <linux/ioport.h>
21 #include <linux/init.h>
22 #include <linux/console.h>
23 #include <linux/platform_device.h>
24 #include <linux/sysrq.h>
25 #include <linux/device.h>
26 #include <linux/tty.h>
27 #include <linux/tty_flip.h>
28 #include <linux/serial_core.h>
29 #include <linux/serial.h>
30 #include <linux/amba/bus.h>
31 #include <linux/amba/serial.h>
32 #include <linux/clk.h>
33 #include <linux/slab.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/scatterlist.h>
37 #include <linux/delay.h>
38 #include <linux/types.h>
39 #include <linux/of.h>
40 #include <linux/pinctrl/consumer.h>
41 #include <linux/sizes.h>
42 #include <linux/io.h>
43 #include <linux/acpi.h>
44
45 #define UART_NR 14
46
47 #define SERIAL_AMBA_MAJOR 204
48 #define SERIAL_AMBA_MINOR 64
49 #define SERIAL_AMBA_NR UART_NR
50
51 #define AMBA_ISR_PASS_LIMIT 256
52
53 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
54 #define UART_DUMMY_DR_RX (1 << 16)
55
56 enum {
57 REG_DR,
58 REG_ST_DMAWM,
59 REG_ST_TIMEOUT,
60 REG_FR,
61 REG_LCRH_RX,
62 REG_LCRH_TX,
63 REG_IBRD,
64 REG_FBRD,
65 REG_CR,
66 REG_IFLS,
67 REG_IMSC,
68 REG_RIS,
69 REG_MIS,
70 REG_ICR,
71 REG_DMACR,
72 REG_ST_XFCR,
73 REG_ST_XON1,
74 REG_ST_XON2,
75 REG_ST_XOFF1,
76 REG_ST_XOFF2,
77 REG_ST_ITCR,
78 REG_ST_ITIP,
79 REG_ST_ABCR,
80 REG_ST_ABIMSC,
81
82 /* The size of the array - must be last */
83 REG_ARRAY_SIZE,
84 };
85
86 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
87 [REG_DR] = UART01x_DR,
88 [REG_FR] = UART01x_FR,
89 [REG_LCRH_RX] = UART011_LCRH,
90 [REG_LCRH_TX] = UART011_LCRH,
91 [REG_IBRD] = UART011_IBRD,
92 [REG_FBRD] = UART011_FBRD,
93 [REG_CR] = UART011_CR,
94 [REG_IFLS] = UART011_IFLS,
95 [REG_IMSC] = UART011_IMSC,
96 [REG_RIS] = UART011_RIS,
97 [REG_MIS] = UART011_MIS,
98 [REG_ICR] = UART011_ICR,
99 [REG_DMACR] = UART011_DMACR,
100 };
101
102 /* There is by now at least one vendor with differing details, so handle it */
103 struct vendor_data {
104 const u16 *reg_offset;
105 unsigned int ifls;
106 unsigned int fr_busy;
107 unsigned int fr_dsr;
108 unsigned int fr_cts;
109 unsigned int fr_ri;
110 unsigned int inv_fr;
111 bool access_32b;
112 bool oversampling;
113 bool dma_threshold;
114 bool cts_event_workaround;
115 bool always_enabled;
116 bool fixed_options;
117
118 unsigned int (*get_fifosize)(struct amba_device *dev);
119 };
120
get_fifosize_arm(struct amba_device * dev)121 static unsigned int get_fifosize_arm(struct amba_device *dev)
122 {
123 return amba_rev(dev) < 3 ? 16 : 32;
124 }
125
126 static struct vendor_data vendor_arm = {
127 .reg_offset = pl011_std_offsets,
128 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
129 .fr_busy = UART01x_FR_BUSY,
130 .fr_dsr = UART01x_FR_DSR,
131 .fr_cts = UART01x_FR_CTS,
132 .fr_ri = UART011_FR_RI,
133 .oversampling = false,
134 .dma_threshold = false,
135 .cts_event_workaround = false,
136 .always_enabled = false,
137 .fixed_options = false,
138 .get_fifosize = get_fifosize_arm,
139 };
140
141 static const struct vendor_data vendor_sbsa = {
142 .reg_offset = pl011_std_offsets,
143 .fr_busy = UART01x_FR_BUSY,
144 .fr_dsr = UART01x_FR_DSR,
145 .fr_cts = UART01x_FR_CTS,
146 .fr_ri = UART011_FR_RI,
147 .access_32b = true,
148 .oversampling = false,
149 .dma_threshold = false,
150 .cts_event_workaround = false,
151 .always_enabled = true,
152 .fixed_options = true,
153 };
154
155 #ifdef CONFIG_ACPI_SPCR_TABLE
156 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
157 .reg_offset = pl011_std_offsets,
158 .fr_busy = UART011_FR_TXFE,
159 .fr_dsr = UART01x_FR_DSR,
160 .fr_cts = UART01x_FR_CTS,
161 .fr_ri = UART011_FR_RI,
162 .inv_fr = UART011_FR_TXFE,
163 .access_32b = true,
164 .oversampling = false,
165 .dma_threshold = false,
166 .cts_event_workaround = false,
167 .always_enabled = true,
168 .fixed_options = true,
169 };
170 #endif
171
172 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
173 [REG_DR] = UART01x_DR,
174 [REG_ST_DMAWM] = ST_UART011_DMAWM,
175 [REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
176 [REG_FR] = UART01x_FR,
177 [REG_LCRH_RX] = ST_UART011_LCRH_RX,
178 [REG_LCRH_TX] = ST_UART011_LCRH_TX,
179 [REG_IBRD] = UART011_IBRD,
180 [REG_FBRD] = UART011_FBRD,
181 [REG_CR] = UART011_CR,
182 [REG_IFLS] = UART011_IFLS,
183 [REG_IMSC] = UART011_IMSC,
184 [REG_RIS] = UART011_RIS,
185 [REG_MIS] = UART011_MIS,
186 [REG_ICR] = UART011_ICR,
187 [REG_DMACR] = UART011_DMACR,
188 [REG_ST_XFCR] = ST_UART011_XFCR,
189 [REG_ST_XON1] = ST_UART011_XON1,
190 [REG_ST_XON2] = ST_UART011_XON2,
191 [REG_ST_XOFF1] = ST_UART011_XOFF1,
192 [REG_ST_XOFF2] = ST_UART011_XOFF2,
193 [REG_ST_ITCR] = ST_UART011_ITCR,
194 [REG_ST_ITIP] = ST_UART011_ITIP,
195 [REG_ST_ABCR] = ST_UART011_ABCR,
196 [REG_ST_ABIMSC] = ST_UART011_ABIMSC,
197 };
198
get_fifosize_st(struct amba_device * dev)199 static unsigned int get_fifosize_st(struct amba_device *dev)
200 {
201 return 64;
202 }
203
204 static struct vendor_data vendor_st = {
205 .reg_offset = pl011_st_offsets,
206 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
207 .fr_busy = UART01x_FR_BUSY,
208 .fr_dsr = UART01x_FR_DSR,
209 .fr_cts = UART01x_FR_CTS,
210 .fr_ri = UART011_FR_RI,
211 .oversampling = true,
212 .dma_threshold = true,
213 .cts_event_workaround = true,
214 .always_enabled = false,
215 .fixed_options = false,
216 .get_fifosize = get_fifosize_st,
217 };
218
219 /* Deals with DMA transactions */
220
221 struct pl011_sgbuf {
222 struct scatterlist sg;
223 char *buf;
224 };
225
226 struct pl011_dmarx_data {
227 struct dma_chan *chan;
228 struct completion complete;
229 bool use_buf_b;
230 struct pl011_sgbuf sgbuf_a;
231 struct pl011_sgbuf sgbuf_b;
232 dma_cookie_t cookie;
233 bool running;
234 struct timer_list timer;
235 unsigned int last_residue;
236 unsigned long last_jiffies;
237 bool auto_poll_rate;
238 unsigned int poll_rate;
239 unsigned int poll_timeout;
240 };
241
242 struct pl011_dmatx_data {
243 struct dma_chan *chan;
244 struct scatterlist sg;
245 char *buf;
246 bool queued;
247 };
248
249 /*
250 * We wrap our port structure around the generic uart_port.
251 */
252 struct uart_amba_port {
253 struct uart_port port;
254 const u16 *reg_offset;
255 struct clk *clk;
256 const struct vendor_data *vendor;
257 unsigned int dmacr; /* dma control reg */
258 unsigned int im; /* interrupt mask */
259 unsigned int old_status;
260 unsigned int fifosize; /* vendor-specific */
261 unsigned int fixed_baud; /* vendor-set fixed baud rate */
262 char type[12];
263 bool rs485_tx_started;
264 unsigned int rs485_tx_drain_interval; /* usecs */
265 #ifdef CONFIG_DMA_ENGINE
266 /* DMA stuff */
267 bool using_tx_dma;
268 bool using_rx_dma;
269 struct pl011_dmarx_data dmarx;
270 struct pl011_dmatx_data dmatx;
271 bool dma_probed;
272 #endif
273 };
274
275 static unsigned int pl011_tx_empty(struct uart_port *port);
276
pl011_reg_to_offset(const struct uart_amba_port * uap,unsigned int reg)277 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
278 unsigned int reg)
279 {
280 return uap->reg_offset[reg];
281 }
282
pl011_read(const struct uart_amba_port * uap,unsigned int reg)283 static unsigned int pl011_read(const struct uart_amba_port *uap,
284 unsigned int reg)
285 {
286 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
287
288 return (uap->port.iotype == UPIO_MEM32) ?
289 readl_relaxed(addr) : readw_relaxed(addr);
290 }
291
pl011_write(unsigned int val,const struct uart_amba_port * uap,unsigned int reg)292 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
293 unsigned int reg)
294 {
295 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
296
297 if (uap->port.iotype == UPIO_MEM32)
298 writel_relaxed(val, addr);
299 else
300 writew_relaxed(val, addr);
301 }
302
303 /*
304 * Reads up to 256 characters from the FIFO or until it's empty and
305 * inserts them into the TTY layer. Returns the number of characters
306 * read from the FIFO.
307 */
pl011_fifo_to_tty(struct uart_amba_port * uap)308 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
309 {
310 unsigned int ch, fifotaken;
311 int sysrq;
312 u16 status;
313 u8 flag;
314
315 for (fifotaken = 0; fifotaken != 256; fifotaken++) {
316 status = pl011_read(uap, REG_FR);
317 if (status & UART01x_FR_RXFE)
318 break;
319
320 /* Take chars from the FIFO and update status */
321 ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
322 flag = TTY_NORMAL;
323 uap->port.icount.rx++;
324
325 if (unlikely(ch & UART_DR_ERROR)) {
326 if (ch & UART011_DR_BE) {
327 ch &= ~(UART011_DR_FE | UART011_DR_PE);
328 uap->port.icount.brk++;
329 if (uart_handle_break(&uap->port))
330 continue;
331 } else if (ch & UART011_DR_PE)
332 uap->port.icount.parity++;
333 else if (ch & UART011_DR_FE)
334 uap->port.icount.frame++;
335 if (ch & UART011_DR_OE)
336 uap->port.icount.overrun++;
337
338 ch &= uap->port.read_status_mask;
339
340 if (ch & UART011_DR_BE)
341 flag = TTY_BREAK;
342 else if (ch & UART011_DR_PE)
343 flag = TTY_PARITY;
344 else if (ch & UART011_DR_FE)
345 flag = TTY_FRAME;
346 }
347
348 spin_unlock(&uap->port.lock);
349 sysrq = uart_handle_sysrq_char(&uap->port, ch & 255);
350 spin_lock(&uap->port.lock);
351
352 if (!sysrq)
353 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
354 }
355
356 return fifotaken;
357 }
358
359
360 /*
361 * All the DMA operation mode stuff goes inside this ifdef.
362 * This assumes that you have a generic DMA device interface,
363 * no custom DMA interfaces are supported.
364 */
365 #ifdef CONFIG_DMA_ENGINE
366
367 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
368
pl011_sgbuf_init(struct dma_chan * chan,struct pl011_sgbuf * sg,enum dma_data_direction dir)369 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
370 enum dma_data_direction dir)
371 {
372 dma_addr_t dma_addr;
373
374 sg->buf = dma_alloc_coherent(chan->device->dev,
375 PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
376 if (!sg->buf)
377 return -ENOMEM;
378
379 sg_init_table(&sg->sg, 1);
380 sg_set_page(&sg->sg, phys_to_page(dma_addr),
381 PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
382 sg_dma_address(&sg->sg) = dma_addr;
383 sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
384
385 return 0;
386 }
387
pl011_sgbuf_free(struct dma_chan * chan,struct pl011_sgbuf * sg,enum dma_data_direction dir)388 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
389 enum dma_data_direction dir)
390 {
391 if (sg->buf) {
392 dma_free_coherent(chan->device->dev,
393 PL011_DMA_BUFFER_SIZE, sg->buf,
394 sg_dma_address(&sg->sg));
395 }
396 }
397
pl011_dma_probe(struct uart_amba_port * uap)398 static void pl011_dma_probe(struct uart_amba_port *uap)
399 {
400 /* DMA is the sole user of the platform data right now */
401 struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
402 struct device *dev = uap->port.dev;
403 struct dma_slave_config tx_conf = {
404 .dst_addr = uap->port.mapbase +
405 pl011_reg_to_offset(uap, REG_DR),
406 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
407 .direction = DMA_MEM_TO_DEV,
408 .dst_maxburst = uap->fifosize >> 1,
409 .device_fc = false,
410 };
411 struct dma_chan *chan;
412 dma_cap_mask_t mask;
413
414 uap->dma_probed = true;
415 chan = dma_request_chan(dev, "tx");
416 if (IS_ERR(chan)) {
417 if (PTR_ERR(chan) == -EPROBE_DEFER) {
418 uap->dma_probed = false;
419 return;
420 }
421
422 /* We need platform data */
423 if (!plat || !plat->dma_filter) {
424 dev_info(uap->port.dev, "no DMA platform data\n");
425 return;
426 }
427
428 /* Try to acquire a generic DMA engine slave TX channel */
429 dma_cap_zero(mask);
430 dma_cap_set(DMA_SLAVE, mask);
431
432 chan = dma_request_channel(mask, plat->dma_filter,
433 plat->dma_tx_param);
434 if (!chan) {
435 dev_err(uap->port.dev, "no TX DMA channel!\n");
436 return;
437 }
438 }
439
440 dmaengine_slave_config(chan, &tx_conf);
441 uap->dmatx.chan = chan;
442
443 dev_info(uap->port.dev, "DMA channel TX %s\n",
444 dma_chan_name(uap->dmatx.chan));
445
446 /* Optionally make use of an RX channel as well */
447 chan = dma_request_slave_channel(dev, "rx");
448
449 if (!chan && plat && plat->dma_rx_param) {
450 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
451
452 if (!chan) {
453 dev_err(uap->port.dev, "no RX DMA channel!\n");
454 return;
455 }
456 }
457
458 if (chan) {
459 struct dma_slave_config rx_conf = {
460 .src_addr = uap->port.mapbase +
461 pl011_reg_to_offset(uap, REG_DR),
462 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
463 .direction = DMA_DEV_TO_MEM,
464 .src_maxburst = uap->fifosize >> 2,
465 .device_fc = false,
466 };
467 struct dma_slave_caps caps;
468
469 /*
470 * Some DMA controllers provide information on their capabilities.
471 * If the controller does, check for suitable residue processing
472 * otherwise assime all is well.
473 */
474 if (0 == dma_get_slave_caps(chan, &caps)) {
475 if (caps.residue_granularity ==
476 DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
477 dma_release_channel(chan);
478 dev_info(uap->port.dev,
479 "RX DMA disabled - no residue processing\n");
480 return;
481 }
482 }
483 dmaengine_slave_config(chan, &rx_conf);
484 uap->dmarx.chan = chan;
485
486 uap->dmarx.auto_poll_rate = false;
487 if (plat && plat->dma_rx_poll_enable) {
488 /* Set poll rate if specified. */
489 if (plat->dma_rx_poll_rate) {
490 uap->dmarx.auto_poll_rate = false;
491 uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
492 } else {
493 /*
494 * 100 ms defaults to poll rate if not
495 * specified. This will be adjusted with
496 * the baud rate at set_termios.
497 */
498 uap->dmarx.auto_poll_rate = true;
499 uap->dmarx.poll_rate = 100;
500 }
501 /* 3 secs defaults poll_timeout if not specified. */
502 if (plat->dma_rx_poll_timeout)
503 uap->dmarx.poll_timeout =
504 plat->dma_rx_poll_timeout;
505 else
506 uap->dmarx.poll_timeout = 3000;
507 } else if (!plat && dev->of_node) {
508 uap->dmarx.auto_poll_rate = of_property_read_bool(
509 dev->of_node, "auto-poll");
510 if (uap->dmarx.auto_poll_rate) {
511 u32 x;
512
513 if (0 == of_property_read_u32(dev->of_node,
514 "poll-rate-ms", &x))
515 uap->dmarx.poll_rate = x;
516 else
517 uap->dmarx.poll_rate = 100;
518 if (0 == of_property_read_u32(dev->of_node,
519 "poll-timeout-ms", &x))
520 uap->dmarx.poll_timeout = x;
521 else
522 uap->dmarx.poll_timeout = 3000;
523 }
524 }
525 dev_info(uap->port.dev, "DMA channel RX %s\n",
526 dma_chan_name(uap->dmarx.chan));
527 }
528 }
529
pl011_dma_remove(struct uart_amba_port * uap)530 static void pl011_dma_remove(struct uart_amba_port *uap)
531 {
532 if (uap->dmatx.chan)
533 dma_release_channel(uap->dmatx.chan);
534 if (uap->dmarx.chan)
535 dma_release_channel(uap->dmarx.chan);
536 }
537
538 /* Forward declare these for the refill routine */
539 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
540 static void pl011_start_tx_pio(struct uart_amba_port *uap);
541
542 /*
543 * The current DMA TX buffer has been sent.
544 * Try to queue up another DMA buffer.
545 */
pl011_dma_tx_callback(void * data)546 static void pl011_dma_tx_callback(void *data)
547 {
548 struct uart_amba_port *uap = data;
549 struct pl011_dmatx_data *dmatx = &uap->dmatx;
550 unsigned long flags;
551 u16 dmacr;
552
553 spin_lock_irqsave(&uap->port.lock, flags);
554 if (uap->dmatx.queued)
555 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
556 DMA_TO_DEVICE);
557
558 dmacr = uap->dmacr;
559 uap->dmacr = dmacr & ~UART011_TXDMAE;
560 pl011_write(uap->dmacr, uap, REG_DMACR);
561
562 /*
563 * If TX DMA was disabled, it means that we've stopped the DMA for
564 * some reason (eg, XOFF received, or we want to send an X-char.)
565 *
566 * Note: we need to be careful here of a potential race between DMA
567 * and the rest of the driver - if the driver disables TX DMA while
568 * a TX buffer completing, we must update the tx queued status to
569 * get further refills (hence we check dmacr).
570 */
571 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
572 uart_circ_empty(&uap->port.state->xmit)) {
573 uap->dmatx.queued = false;
574 spin_unlock_irqrestore(&uap->port.lock, flags);
575 return;
576 }
577
578 if (pl011_dma_tx_refill(uap) <= 0)
579 /*
580 * We didn't queue a DMA buffer for some reason, but we
581 * have data pending to be sent. Re-enable the TX IRQ.
582 */
583 pl011_start_tx_pio(uap);
584
585 spin_unlock_irqrestore(&uap->port.lock, flags);
586 }
587
588 /*
589 * Try to refill the TX DMA buffer.
590 * Locking: called with port lock held and IRQs disabled.
591 * Returns:
592 * 1 if we queued up a TX DMA buffer.
593 * 0 if we didn't want to handle this by DMA
594 * <0 on error
595 */
pl011_dma_tx_refill(struct uart_amba_port * uap)596 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
597 {
598 struct pl011_dmatx_data *dmatx = &uap->dmatx;
599 struct dma_chan *chan = dmatx->chan;
600 struct dma_device *dma_dev = chan->device;
601 struct dma_async_tx_descriptor *desc;
602 struct circ_buf *xmit = &uap->port.state->xmit;
603 unsigned int count;
604
605 /*
606 * Try to avoid the overhead involved in using DMA if the
607 * transaction fits in the first half of the FIFO, by using
608 * the standard interrupt handling. This ensures that we
609 * issue a uart_write_wakeup() at the appropriate time.
610 */
611 count = uart_circ_chars_pending(xmit);
612 if (count < (uap->fifosize >> 1)) {
613 uap->dmatx.queued = false;
614 return 0;
615 }
616
617 /*
618 * Bodge: don't send the last character by DMA, as this
619 * will prevent XON from notifying us to restart DMA.
620 */
621 count -= 1;
622
623 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
624 if (count > PL011_DMA_BUFFER_SIZE)
625 count = PL011_DMA_BUFFER_SIZE;
626
627 if (xmit->tail < xmit->head)
628 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
629 else {
630 size_t first = UART_XMIT_SIZE - xmit->tail;
631 size_t second;
632
633 if (first > count)
634 first = count;
635 second = count - first;
636
637 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
638 if (second)
639 memcpy(&dmatx->buf[first], &xmit->buf[0], second);
640 }
641
642 dmatx->sg.length = count;
643
644 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
645 uap->dmatx.queued = false;
646 dev_dbg(uap->port.dev, "unable to map TX DMA\n");
647 return -EBUSY;
648 }
649
650 desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
651 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
652 if (!desc) {
653 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
654 uap->dmatx.queued = false;
655 /*
656 * If DMA cannot be used right now, we complete this
657 * transaction via IRQ and let the TTY layer retry.
658 */
659 dev_dbg(uap->port.dev, "TX DMA busy\n");
660 return -EBUSY;
661 }
662
663 /* Some data to go along to the callback */
664 desc->callback = pl011_dma_tx_callback;
665 desc->callback_param = uap;
666
667 /* All errors should happen at prepare time */
668 dmaengine_submit(desc);
669
670 /* Fire the DMA transaction */
671 dma_dev->device_issue_pending(chan);
672
673 uap->dmacr |= UART011_TXDMAE;
674 pl011_write(uap->dmacr, uap, REG_DMACR);
675 uap->dmatx.queued = true;
676
677 /*
678 * Now we know that DMA will fire, so advance the ring buffer
679 * with the stuff we just dispatched.
680 */
681 uart_xmit_advance(&uap->port, count);
682
683 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
684 uart_write_wakeup(&uap->port);
685
686 return 1;
687 }
688
689 /*
690 * We received a transmit interrupt without a pending X-char but with
691 * pending characters.
692 * Locking: called with port lock held and IRQs disabled.
693 * Returns:
694 * false if we want to use PIO to transmit
695 * true if we queued a DMA buffer
696 */
pl011_dma_tx_irq(struct uart_amba_port * uap)697 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
698 {
699 if (!uap->using_tx_dma)
700 return false;
701
702 /*
703 * If we already have a TX buffer queued, but received a
704 * TX interrupt, it will be because we've just sent an X-char.
705 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
706 */
707 if (uap->dmatx.queued) {
708 uap->dmacr |= UART011_TXDMAE;
709 pl011_write(uap->dmacr, uap, REG_DMACR);
710 uap->im &= ~UART011_TXIM;
711 pl011_write(uap->im, uap, REG_IMSC);
712 return true;
713 }
714
715 /*
716 * We don't have a TX buffer queued, so try to queue one.
717 * If we successfully queued a buffer, mask the TX IRQ.
718 */
719 if (pl011_dma_tx_refill(uap) > 0) {
720 uap->im &= ~UART011_TXIM;
721 pl011_write(uap->im, uap, REG_IMSC);
722 return true;
723 }
724 return false;
725 }
726
727 /*
728 * Stop the DMA transmit (eg, due to received XOFF).
729 * Locking: called with port lock held and IRQs disabled.
730 */
pl011_dma_tx_stop(struct uart_amba_port * uap)731 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
732 {
733 if (uap->dmatx.queued) {
734 uap->dmacr &= ~UART011_TXDMAE;
735 pl011_write(uap->dmacr, uap, REG_DMACR);
736 }
737 }
738
739 /*
740 * Try to start a DMA transmit, or in the case of an XON/OFF
741 * character queued for send, try to get that character out ASAP.
742 * Locking: called with port lock held and IRQs disabled.
743 * Returns:
744 * false if we want the TX IRQ to be enabled
745 * true if we have a buffer queued
746 */
pl011_dma_tx_start(struct uart_amba_port * uap)747 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
748 {
749 u16 dmacr;
750
751 if (!uap->using_tx_dma)
752 return false;
753
754 if (!uap->port.x_char) {
755 /* no X-char, try to push chars out in DMA mode */
756 bool ret = true;
757
758 if (!uap->dmatx.queued) {
759 if (pl011_dma_tx_refill(uap) > 0) {
760 uap->im &= ~UART011_TXIM;
761 pl011_write(uap->im, uap, REG_IMSC);
762 } else
763 ret = false;
764 } else if (!(uap->dmacr & UART011_TXDMAE)) {
765 uap->dmacr |= UART011_TXDMAE;
766 pl011_write(uap->dmacr, uap, REG_DMACR);
767 }
768 return ret;
769 }
770
771 /*
772 * We have an X-char to send. Disable DMA to prevent it loading
773 * the TX fifo, and then see if we can stuff it into the FIFO.
774 */
775 dmacr = uap->dmacr;
776 uap->dmacr &= ~UART011_TXDMAE;
777 pl011_write(uap->dmacr, uap, REG_DMACR);
778
779 if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
780 /*
781 * No space in the FIFO, so enable the transmit interrupt
782 * so we know when there is space. Note that once we've
783 * loaded the character, we should just re-enable DMA.
784 */
785 return false;
786 }
787
788 pl011_write(uap->port.x_char, uap, REG_DR);
789 uap->port.icount.tx++;
790 uap->port.x_char = 0;
791
792 /* Success - restore the DMA state */
793 uap->dmacr = dmacr;
794 pl011_write(dmacr, uap, REG_DMACR);
795
796 return true;
797 }
798
799 /*
800 * Flush the transmit buffer.
801 * Locking: called with port lock held and IRQs disabled.
802 */
pl011_dma_flush_buffer(struct uart_port * port)803 static void pl011_dma_flush_buffer(struct uart_port *port)
804 __releases(&uap->port.lock)
805 __acquires(&uap->port.lock)
806 {
807 struct uart_amba_port *uap =
808 container_of(port, struct uart_amba_port, port);
809
810 if (!uap->using_tx_dma)
811 return;
812
813 dmaengine_terminate_async(uap->dmatx.chan);
814
815 if (uap->dmatx.queued) {
816 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
817 DMA_TO_DEVICE);
818 uap->dmatx.queued = false;
819 uap->dmacr &= ~UART011_TXDMAE;
820 pl011_write(uap->dmacr, uap, REG_DMACR);
821 }
822 }
823
824 static void pl011_dma_rx_callback(void *data);
825
pl011_dma_rx_trigger_dma(struct uart_amba_port * uap)826 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
827 {
828 struct dma_chan *rxchan = uap->dmarx.chan;
829 struct pl011_dmarx_data *dmarx = &uap->dmarx;
830 struct dma_async_tx_descriptor *desc;
831 struct pl011_sgbuf *sgbuf;
832
833 if (!rxchan)
834 return -EIO;
835
836 /* Start the RX DMA job */
837 sgbuf = uap->dmarx.use_buf_b ?
838 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
839 desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
840 DMA_DEV_TO_MEM,
841 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
842 /*
843 * If the DMA engine is busy and cannot prepare a
844 * channel, no big deal, the driver will fall back
845 * to interrupt mode as a result of this error code.
846 */
847 if (!desc) {
848 uap->dmarx.running = false;
849 dmaengine_terminate_all(rxchan);
850 return -EBUSY;
851 }
852
853 /* Some data to go along to the callback */
854 desc->callback = pl011_dma_rx_callback;
855 desc->callback_param = uap;
856 dmarx->cookie = dmaengine_submit(desc);
857 dma_async_issue_pending(rxchan);
858
859 uap->dmacr |= UART011_RXDMAE;
860 pl011_write(uap->dmacr, uap, REG_DMACR);
861 uap->dmarx.running = true;
862
863 uap->im &= ~UART011_RXIM;
864 pl011_write(uap->im, uap, REG_IMSC);
865
866 return 0;
867 }
868
869 /*
870 * This is called when either the DMA job is complete, or
871 * the FIFO timeout interrupt occurred. This must be called
872 * with the port spinlock uap->port.lock held.
873 */
pl011_dma_rx_chars(struct uart_amba_port * uap,u32 pending,bool use_buf_b,bool readfifo)874 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
875 u32 pending, bool use_buf_b,
876 bool readfifo)
877 {
878 struct tty_port *port = &uap->port.state->port;
879 struct pl011_sgbuf *sgbuf = use_buf_b ?
880 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
881 int dma_count = 0;
882 u32 fifotaken = 0; /* only used for vdbg() */
883
884 struct pl011_dmarx_data *dmarx = &uap->dmarx;
885 int dmataken = 0;
886
887 if (uap->dmarx.poll_rate) {
888 /* The data can be taken by polling */
889 dmataken = sgbuf->sg.length - dmarx->last_residue;
890 /* Recalculate the pending size */
891 if (pending >= dmataken)
892 pending -= dmataken;
893 }
894
895 /* Pick the remain data from the DMA */
896 if (pending) {
897
898 /*
899 * First take all chars in the DMA pipe, then look in the FIFO.
900 * Note that tty_insert_flip_buf() tries to take as many chars
901 * as it can.
902 */
903 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
904 pending);
905
906 uap->port.icount.rx += dma_count;
907 if (dma_count < pending)
908 dev_warn(uap->port.dev,
909 "couldn't insert all characters (TTY is full?)\n");
910 }
911
912 /* Reset the last_residue for Rx DMA poll */
913 if (uap->dmarx.poll_rate)
914 dmarx->last_residue = sgbuf->sg.length;
915
916 /*
917 * Only continue with trying to read the FIFO if all DMA chars have
918 * been taken first.
919 */
920 if (dma_count == pending && readfifo) {
921 /* Clear any error flags */
922 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
923 UART011_FEIS, uap, REG_ICR);
924
925 /*
926 * If we read all the DMA'd characters, and we had an
927 * incomplete buffer, that could be due to an rx error, or
928 * maybe we just timed out. Read any pending chars and check
929 * the error status.
930 *
931 * Error conditions will only occur in the FIFO, these will
932 * trigger an immediate interrupt and stop the DMA job, so we
933 * will always find the error in the FIFO, never in the DMA
934 * buffer.
935 */
936 fifotaken = pl011_fifo_to_tty(uap);
937 }
938
939 dev_vdbg(uap->port.dev,
940 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
941 dma_count, fifotaken);
942 tty_flip_buffer_push(port);
943 }
944
pl011_dma_rx_irq(struct uart_amba_port * uap)945 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
946 {
947 struct pl011_dmarx_data *dmarx = &uap->dmarx;
948 struct dma_chan *rxchan = dmarx->chan;
949 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
950 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
951 size_t pending;
952 struct dma_tx_state state;
953 enum dma_status dmastat;
954
955 /*
956 * Pause the transfer so we can trust the current counter,
957 * do this before we pause the PL011 block, else we may
958 * overflow the FIFO.
959 */
960 if (dmaengine_pause(rxchan))
961 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
962 dmastat = rxchan->device->device_tx_status(rxchan,
963 dmarx->cookie, &state);
964 if (dmastat != DMA_PAUSED)
965 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
966
967 /* Disable RX DMA - incoming data will wait in the FIFO */
968 uap->dmacr &= ~UART011_RXDMAE;
969 pl011_write(uap->dmacr, uap, REG_DMACR);
970 uap->dmarx.running = false;
971
972 pending = sgbuf->sg.length - state.residue;
973 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
974 /* Then we terminate the transfer - we now know our residue */
975 dmaengine_terminate_all(rxchan);
976
977 /*
978 * This will take the chars we have so far and insert
979 * into the framework.
980 */
981 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
982
983 /* Switch buffer & re-trigger DMA job */
984 dmarx->use_buf_b = !dmarx->use_buf_b;
985 if (pl011_dma_rx_trigger_dma(uap)) {
986 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
987 "fall back to interrupt mode\n");
988 uap->im |= UART011_RXIM;
989 pl011_write(uap->im, uap, REG_IMSC);
990 }
991 }
992
pl011_dma_rx_callback(void * data)993 static void pl011_dma_rx_callback(void *data)
994 {
995 struct uart_amba_port *uap = data;
996 struct pl011_dmarx_data *dmarx = &uap->dmarx;
997 struct dma_chan *rxchan = dmarx->chan;
998 bool lastbuf = dmarx->use_buf_b;
999 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1000 &dmarx->sgbuf_b : &dmarx->sgbuf_a;
1001 size_t pending;
1002 struct dma_tx_state state;
1003 int ret;
1004
1005 /*
1006 * This completion interrupt occurs typically when the
1007 * RX buffer is totally stuffed but no timeout has yet
1008 * occurred. When that happens, we just want the RX
1009 * routine to flush out the secondary DMA buffer while
1010 * we immediately trigger the next DMA job.
1011 */
1012 spin_lock_irq(&uap->port.lock);
1013 /*
1014 * Rx data can be taken by the UART interrupts during
1015 * the DMA irq handler. So we check the residue here.
1016 */
1017 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1018 pending = sgbuf->sg.length - state.residue;
1019 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1020 /* Then we terminate the transfer - we now know our residue */
1021 dmaengine_terminate_all(rxchan);
1022
1023 uap->dmarx.running = false;
1024 dmarx->use_buf_b = !lastbuf;
1025 ret = pl011_dma_rx_trigger_dma(uap);
1026
1027 pl011_dma_rx_chars(uap, pending, lastbuf, false);
1028 spin_unlock_irq(&uap->port.lock);
1029 /*
1030 * Do this check after we picked the DMA chars so we don't
1031 * get some IRQ immediately from RX.
1032 */
1033 if (ret) {
1034 dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1035 "fall back to interrupt mode\n");
1036 uap->im |= UART011_RXIM;
1037 pl011_write(uap->im, uap, REG_IMSC);
1038 }
1039 }
1040
1041 /*
1042 * Stop accepting received characters, when we're shutting down or
1043 * suspending this port.
1044 * Locking: called with port lock held and IRQs disabled.
1045 */
pl011_dma_rx_stop(struct uart_amba_port * uap)1046 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1047 {
1048 if (!uap->using_rx_dma)
1049 return;
1050
1051 /* FIXME. Just disable the DMA enable */
1052 uap->dmacr &= ~UART011_RXDMAE;
1053 pl011_write(uap->dmacr, uap, REG_DMACR);
1054 }
1055
1056 /*
1057 * Timer handler for Rx DMA polling.
1058 * Every polling, It checks the residue in the dma buffer and transfer
1059 * data to the tty. Also, last_residue is updated for the next polling.
1060 */
pl011_dma_rx_poll(struct timer_list * t)1061 static void pl011_dma_rx_poll(struct timer_list *t)
1062 {
1063 struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1064 struct tty_port *port = &uap->port.state->port;
1065 struct pl011_dmarx_data *dmarx = &uap->dmarx;
1066 struct dma_chan *rxchan = uap->dmarx.chan;
1067 unsigned long flags;
1068 unsigned int dmataken = 0;
1069 unsigned int size = 0;
1070 struct pl011_sgbuf *sgbuf;
1071 int dma_count;
1072 struct dma_tx_state state;
1073
1074 sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1075 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1076 if (likely(state.residue < dmarx->last_residue)) {
1077 dmataken = sgbuf->sg.length - dmarx->last_residue;
1078 size = dmarx->last_residue - state.residue;
1079 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1080 size);
1081 if (dma_count == size)
1082 dmarx->last_residue = state.residue;
1083 dmarx->last_jiffies = jiffies;
1084 }
1085 tty_flip_buffer_push(port);
1086
1087 /*
1088 * If no data is received in poll_timeout, the driver will fall back
1089 * to interrupt mode. We will retrigger DMA at the first interrupt.
1090 */
1091 if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1092 > uap->dmarx.poll_timeout) {
1093
1094 spin_lock_irqsave(&uap->port.lock, flags);
1095 pl011_dma_rx_stop(uap);
1096 uap->im |= UART011_RXIM;
1097 pl011_write(uap->im, uap, REG_IMSC);
1098 spin_unlock_irqrestore(&uap->port.lock, flags);
1099
1100 uap->dmarx.running = false;
1101 dmaengine_terminate_all(rxchan);
1102 del_timer(&uap->dmarx.timer);
1103 } else {
1104 mod_timer(&uap->dmarx.timer,
1105 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1106 }
1107 }
1108
pl011_dma_startup(struct uart_amba_port * uap)1109 static void pl011_dma_startup(struct uart_amba_port *uap)
1110 {
1111 int ret;
1112
1113 if (!uap->dma_probed)
1114 pl011_dma_probe(uap);
1115
1116 if (!uap->dmatx.chan)
1117 return;
1118
1119 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1120 if (!uap->dmatx.buf) {
1121 dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1122 uap->port.fifosize = uap->fifosize;
1123 return;
1124 }
1125
1126 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1127
1128 /* The DMA buffer is now the FIFO the TTY subsystem can use */
1129 uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1130 uap->using_tx_dma = true;
1131
1132 if (!uap->dmarx.chan)
1133 goto skip_rx;
1134
1135 /* Allocate and map DMA RX buffers */
1136 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1137 DMA_FROM_DEVICE);
1138 if (ret) {
1139 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1140 "RX buffer A", ret);
1141 goto skip_rx;
1142 }
1143
1144 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1145 DMA_FROM_DEVICE);
1146 if (ret) {
1147 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1148 "RX buffer B", ret);
1149 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1150 DMA_FROM_DEVICE);
1151 goto skip_rx;
1152 }
1153
1154 uap->using_rx_dma = true;
1155
1156 skip_rx:
1157 /* Turn on DMA error (RX/TX will be enabled on demand) */
1158 uap->dmacr |= UART011_DMAONERR;
1159 pl011_write(uap->dmacr, uap, REG_DMACR);
1160
1161 /*
1162 * ST Micro variants has some specific dma burst threshold
1163 * compensation. Set this to 16 bytes, so burst will only
1164 * be issued above/below 16 bytes.
1165 */
1166 if (uap->vendor->dma_threshold)
1167 pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1168 uap, REG_ST_DMAWM);
1169
1170 if (uap->using_rx_dma) {
1171 if (pl011_dma_rx_trigger_dma(uap))
1172 dev_dbg(uap->port.dev, "could not trigger initial "
1173 "RX DMA job, fall back to interrupt mode\n");
1174 if (uap->dmarx.poll_rate) {
1175 timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1176 mod_timer(&uap->dmarx.timer,
1177 jiffies +
1178 msecs_to_jiffies(uap->dmarx.poll_rate));
1179 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1180 uap->dmarx.last_jiffies = jiffies;
1181 }
1182 }
1183 }
1184
pl011_dma_shutdown(struct uart_amba_port * uap)1185 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1186 {
1187 if (!(uap->using_tx_dma || uap->using_rx_dma))
1188 return;
1189
1190 /* Disable RX and TX DMA */
1191 while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1192 cpu_relax();
1193
1194 spin_lock_irq(&uap->port.lock);
1195 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1196 pl011_write(uap->dmacr, uap, REG_DMACR);
1197 spin_unlock_irq(&uap->port.lock);
1198
1199 if (uap->using_tx_dma) {
1200 /* In theory, this should already be done by pl011_dma_flush_buffer */
1201 dmaengine_terminate_all(uap->dmatx.chan);
1202 if (uap->dmatx.queued) {
1203 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1204 DMA_TO_DEVICE);
1205 uap->dmatx.queued = false;
1206 }
1207
1208 kfree(uap->dmatx.buf);
1209 uap->using_tx_dma = false;
1210 }
1211
1212 if (uap->using_rx_dma) {
1213 dmaengine_terminate_all(uap->dmarx.chan);
1214 /* Clean up the RX DMA */
1215 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1216 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1217 if (uap->dmarx.poll_rate)
1218 del_timer_sync(&uap->dmarx.timer);
1219 uap->using_rx_dma = false;
1220 }
1221 }
1222
pl011_dma_rx_available(struct uart_amba_port * uap)1223 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1224 {
1225 return uap->using_rx_dma;
1226 }
1227
pl011_dma_rx_running(struct uart_amba_port * uap)1228 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1229 {
1230 return uap->using_rx_dma && uap->dmarx.running;
1231 }
1232
1233 #else
1234 /* Blank functions if the DMA engine is not available */
pl011_dma_remove(struct uart_amba_port * uap)1235 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1236 {
1237 }
1238
pl011_dma_startup(struct uart_amba_port * uap)1239 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1240 {
1241 }
1242
pl011_dma_shutdown(struct uart_amba_port * uap)1243 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1244 {
1245 }
1246
pl011_dma_tx_irq(struct uart_amba_port * uap)1247 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1248 {
1249 return false;
1250 }
1251
pl011_dma_tx_stop(struct uart_amba_port * uap)1252 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1253 {
1254 }
1255
pl011_dma_tx_start(struct uart_amba_port * uap)1256 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1257 {
1258 return false;
1259 }
1260
pl011_dma_rx_irq(struct uart_amba_port * uap)1261 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1262 {
1263 }
1264
pl011_dma_rx_stop(struct uart_amba_port * uap)1265 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1266 {
1267 }
1268
pl011_dma_rx_trigger_dma(struct uart_amba_port * uap)1269 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1270 {
1271 return -EIO;
1272 }
1273
pl011_dma_rx_available(struct uart_amba_port * uap)1274 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1275 {
1276 return false;
1277 }
1278
pl011_dma_rx_running(struct uart_amba_port * uap)1279 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1280 {
1281 return false;
1282 }
1283
1284 #define pl011_dma_flush_buffer NULL
1285 #endif
1286
pl011_rs485_tx_stop(struct uart_amba_port * uap)1287 static void pl011_rs485_tx_stop(struct uart_amba_port *uap)
1288 {
1289 /*
1290 * To be on the safe side only time out after twice as many iterations
1291 * as fifo size.
1292 */
1293 const int MAX_TX_DRAIN_ITERS = uap->port.fifosize * 2;
1294 struct uart_port *port = &uap->port;
1295 int i = 0;
1296 u32 cr;
1297
1298 /* Wait until hardware tx queue is empty */
1299 while (!pl011_tx_empty(port)) {
1300 if (i > MAX_TX_DRAIN_ITERS) {
1301 dev_warn(port->dev,
1302 "timeout while draining hardware tx queue\n");
1303 break;
1304 }
1305
1306 udelay(uap->rs485_tx_drain_interval);
1307 i++;
1308 }
1309
1310 if (port->rs485.delay_rts_after_send)
1311 mdelay(port->rs485.delay_rts_after_send);
1312
1313 cr = pl011_read(uap, REG_CR);
1314
1315 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1316 cr &= ~UART011_CR_RTS;
1317 else
1318 cr |= UART011_CR_RTS;
1319
1320 /* Disable the transmitter and reenable the transceiver */
1321 cr &= ~UART011_CR_TXE;
1322 cr |= UART011_CR_RXE;
1323 pl011_write(cr, uap, REG_CR);
1324
1325 uap->rs485_tx_started = false;
1326 }
1327
pl011_stop_tx(struct uart_port * port)1328 static void pl011_stop_tx(struct uart_port *port)
1329 {
1330 struct uart_amba_port *uap =
1331 container_of(port, struct uart_amba_port, port);
1332
1333 uap->im &= ~UART011_TXIM;
1334 pl011_write(uap->im, uap, REG_IMSC);
1335 pl011_dma_tx_stop(uap);
1336
1337 if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1338 pl011_rs485_tx_stop(uap);
1339 }
1340
1341 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1342
1343 /* Start TX with programmed I/O only (no DMA) */
pl011_start_tx_pio(struct uart_amba_port * uap)1344 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1345 {
1346 if (pl011_tx_chars(uap, false)) {
1347 uap->im |= UART011_TXIM;
1348 pl011_write(uap->im, uap, REG_IMSC);
1349 }
1350 }
1351
pl011_start_tx(struct uart_port * port)1352 static void pl011_start_tx(struct uart_port *port)
1353 {
1354 struct uart_amba_port *uap =
1355 container_of(port, struct uart_amba_port, port);
1356
1357 if (!pl011_dma_tx_start(uap))
1358 pl011_start_tx_pio(uap);
1359 }
1360
pl011_stop_rx(struct uart_port * port)1361 static void pl011_stop_rx(struct uart_port *port)
1362 {
1363 struct uart_amba_port *uap =
1364 container_of(port, struct uart_amba_port, port);
1365
1366 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1367 UART011_PEIM|UART011_BEIM|UART011_OEIM);
1368 pl011_write(uap->im, uap, REG_IMSC);
1369
1370 pl011_dma_rx_stop(uap);
1371 }
1372
pl011_throttle_rx(struct uart_port * port)1373 static void pl011_throttle_rx(struct uart_port *port)
1374 {
1375 unsigned long flags;
1376
1377 spin_lock_irqsave(&port->lock, flags);
1378 pl011_stop_rx(port);
1379 spin_unlock_irqrestore(&port->lock, flags);
1380 }
1381
pl011_enable_ms(struct uart_port * port)1382 static void pl011_enable_ms(struct uart_port *port)
1383 {
1384 struct uart_amba_port *uap =
1385 container_of(port, struct uart_amba_port, port);
1386
1387 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1388 pl011_write(uap->im, uap, REG_IMSC);
1389 }
1390
pl011_rx_chars(struct uart_amba_port * uap)1391 static void pl011_rx_chars(struct uart_amba_port *uap)
1392 __releases(&uap->port.lock)
1393 __acquires(&uap->port.lock)
1394 {
1395 pl011_fifo_to_tty(uap);
1396
1397 spin_unlock(&uap->port.lock);
1398 tty_flip_buffer_push(&uap->port.state->port);
1399 /*
1400 * If we were temporarily out of DMA mode for a while,
1401 * attempt to switch back to DMA mode again.
1402 */
1403 if (pl011_dma_rx_available(uap)) {
1404 if (pl011_dma_rx_trigger_dma(uap)) {
1405 dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1406 "fall back to interrupt mode again\n");
1407 uap->im |= UART011_RXIM;
1408 pl011_write(uap->im, uap, REG_IMSC);
1409 } else {
1410 #ifdef CONFIG_DMA_ENGINE
1411 /* Start Rx DMA poll */
1412 if (uap->dmarx.poll_rate) {
1413 uap->dmarx.last_jiffies = jiffies;
1414 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1415 mod_timer(&uap->dmarx.timer,
1416 jiffies +
1417 msecs_to_jiffies(uap->dmarx.poll_rate));
1418 }
1419 #endif
1420 }
1421 }
1422 spin_lock(&uap->port.lock);
1423 }
1424
pl011_tx_char(struct uart_amba_port * uap,unsigned char c,bool from_irq)1425 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1426 bool from_irq)
1427 {
1428 if (unlikely(!from_irq) &&
1429 pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1430 return false; /* unable to transmit character */
1431
1432 pl011_write(c, uap, REG_DR);
1433 uap->port.icount.tx++;
1434
1435 return true;
1436 }
1437
pl011_rs485_tx_start(struct uart_amba_port * uap)1438 static void pl011_rs485_tx_start(struct uart_amba_port *uap)
1439 {
1440 struct uart_port *port = &uap->port;
1441 u32 cr;
1442
1443 /* Enable transmitter */
1444 cr = pl011_read(uap, REG_CR);
1445 cr |= UART011_CR_TXE;
1446
1447 /* Disable receiver if half-duplex */
1448 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
1449 cr &= ~UART011_CR_RXE;
1450
1451 if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
1452 cr &= ~UART011_CR_RTS;
1453 else
1454 cr |= UART011_CR_RTS;
1455
1456 pl011_write(cr, uap, REG_CR);
1457
1458 if (port->rs485.delay_rts_before_send)
1459 mdelay(port->rs485.delay_rts_before_send);
1460
1461 uap->rs485_tx_started = true;
1462 }
1463
1464 /* Returns true if tx interrupts have to be (kept) enabled */
pl011_tx_chars(struct uart_amba_port * uap,bool from_irq)1465 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1466 {
1467 struct circ_buf *xmit = &uap->port.state->xmit;
1468 int count = uap->fifosize >> 1;
1469
1470 if ((uap->port.rs485.flags & SER_RS485_ENABLED) &&
1471 !uap->rs485_tx_started)
1472 pl011_rs485_tx_start(uap);
1473
1474 if (uap->port.x_char) {
1475 if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1476 return true;
1477 uap->port.x_char = 0;
1478 --count;
1479 }
1480 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1481 pl011_stop_tx(&uap->port);
1482 return false;
1483 }
1484
1485 /* If we are using DMA mode, try to send some characters. */
1486 if (pl011_dma_tx_irq(uap))
1487 return true;
1488
1489 do {
1490 if (likely(from_irq) && count-- == 0)
1491 break;
1492
1493 if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1494 break;
1495
1496 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1497 } while (!uart_circ_empty(xmit));
1498
1499 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1500 uart_write_wakeup(&uap->port);
1501
1502 if (uart_circ_empty(xmit)) {
1503 pl011_stop_tx(&uap->port);
1504 return false;
1505 }
1506 return true;
1507 }
1508
pl011_modem_status(struct uart_amba_port * uap)1509 static void pl011_modem_status(struct uart_amba_port *uap)
1510 {
1511 unsigned int status, delta;
1512
1513 status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1514
1515 delta = status ^ uap->old_status;
1516 uap->old_status = status;
1517
1518 if (!delta)
1519 return;
1520
1521 if (delta & UART01x_FR_DCD)
1522 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1523
1524 if (delta & uap->vendor->fr_dsr)
1525 uap->port.icount.dsr++;
1526
1527 if (delta & uap->vendor->fr_cts)
1528 uart_handle_cts_change(&uap->port,
1529 status & uap->vendor->fr_cts);
1530
1531 wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1532 }
1533
check_apply_cts_event_workaround(struct uart_amba_port * uap)1534 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1535 {
1536 if (!uap->vendor->cts_event_workaround)
1537 return;
1538
1539 /* workaround to make sure that all bits are unlocked.. */
1540 pl011_write(0x00, uap, REG_ICR);
1541
1542 /*
1543 * WA: introduce 26ns(1 uart clk) delay before W1C;
1544 * single apb access will incur 2 pclk(133.12Mhz) delay,
1545 * so add 2 dummy reads
1546 */
1547 pl011_read(uap, REG_ICR);
1548 pl011_read(uap, REG_ICR);
1549 }
1550
pl011_int(int irq,void * dev_id)1551 static irqreturn_t pl011_int(int irq, void *dev_id)
1552 {
1553 struct uart_amba_port *uap = dev_id;
1554 unsigned long flags;
1555 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1556 int handled = 0;
1557
1558 spin_lock_irqsave(&uap->port.lock, flags);
1559 status = pl011_read(uap, REG_RIS) & uap->im;
1560 if (status) {
1561 do {
1562 check_apply_cts_event_workaround(uap);
1563
1564 pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1565 UART011_RXIS),
1566 uap, REG_ICR);
1567
1568 if (status & (UART011_RTIS|UART011_RXIS)) {
1569 if (pl011_dma_rx_running(uap))
1570 pl011_dma_rx_irq(uap);
1571 else
1572 pl011_rx_chars(uap);
1573 }
1574 if (status & (UART011_DSRMIS|UART011_DCDMIS|
1575 UART011_CTSMIS|UART011_RIMIS))
1576 pl011_modem_status(uap);
1577 if (status & UART011_TXIS)
1578 pl011_tx_chars(uap, true);
1579
1580 if (pass_counter-- == 0)
1581 break;
1582
1583 status = pl011_read(uap, REG_RIS) & uap->im;
1584 } while (status != 0);
1585 handled = 1;
1586 }
1587
1588 spin_unlock_irqrestore(&uap->port.lock, flags);
1589
1590 return IRQ_RETVAL(handled);
1591 }
1592
pl011_tx_empty(struct uart_port * port)1593 static unsigned int pl011_tx_empty(struct uart_port *port)
1594 {
1595 struct uart_amba_port *uap =
1596 container_of(port, struct uart_amba_port, port);
1597
1598 /* Allow feature register bits to be inverted to work around errata */
1599 unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1600
1601 return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1602 0 : TIOCSER_TEMT;
1603 }
1604
pl011_get_mctrl(struct uart_port * port)1605 static unsigned int pl011_get_mctrl(struct uart_port *port)
1606 {
1607 struct uart_amba_port *uap =
1608 container_of(port, struct uart_amba_port, port);
1609 unsigned int result = 0;
1610 unsigned int status = pl011_read(uap, REG_FR);
1611
1612 #define TIOCMBIT(uartbit, tiocmbit) \
1613 if (status & uartbit) \
1614 result |= tiocmbit
1615
1616 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1617 TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1618 TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1619 TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1620 #undef TIOCMBIT
1621 return result;
1622 }
1623
pl011_set_mctrl(struct uart_port * port,unsigned int mctrl)1624 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1625 {
1626 struct uart_amba_port *uap =
1627 container_of(port, struct uart_amba_port, port);
1628 unsigned int cr;
1629
1630 cr = pl011_read(uap, REG_CR);
1631
1632 #define TIOCMBIT(tiocmbit, uartbit) \
1633 if (mctrl & tiocmbit) \
1634 cr |= uartbit; \
1635 else \
1636 cr &= ~uartbit
1637
1638 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1639 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1640 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1641 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1642 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1643
1644 if (port->status & UPSTAT_AUTORTS) {
1645 /* We need to disable auto-RTS if we want to turn RTS off */
1646 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1647 }
1648 #undef TIOCMBIT
1649
1650 pl011_write(cr, uap, REG_CR);
1651 }
1652
pl011_break_ctl(struct uart_port * port,int break_state)1653 static void pl011_break_ctl(struct uart_port *port, int break_state)
1654 {
1655 struct uart_amba_port *uap =
1656 container_of(port, struct uart_amba_port, port);
1657 unsigned long flags;
1658 unsigned int lcr_h;
1659
1660 spin_lock_irqsave(&uap->port.lock, flags);
1661 lcr_h = pl011_read(uap, REG_LCRH_TX);
1662 if (break_state == -1)
1663 lcr_h |= UART01x_LCRH_BRK;
1664 else
1665 lcr_h &= ~UART01x_LCRH_BRK;
1666 pl011_write(lcr_h, uap, REG_LCRH_TX);
1667 spin_unlock_irqrestore(&uap->port.lock, flags);
1668 }
1669
1670 #ifdef CONFIG_CONSOLE_POLL
1671
pl011_quiesce_irqs(struct uart_port * port)1672 static void pl011_quiesce_irqs(struct uart_port *port)
1673 {
1674 struct uart_amba_port *uap =
1675 container_of(port, struct uart_amba_port, port);
1676
1677 pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1678 /*
1679 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1680 * we simply mask it. start_tx() will unmask it.
1681 *
1682 * Note we can race with start_tx(), and if the race happens, the
1683 * polling user might get another interrupt just after we clear it.
1684 * But it should be OK and can happen even w/o the race, e.g.
1685 * controller immediately got some new data and raised the IRQ.
1686 *
1687 * And whoever uses polling routines assumes that it manages the device
1688 * (including tx queue), so we're also fine with start_tx()'s caller
1689 * side.
1690 */
1691 pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1692 REG_IMSC);
1693 }
1694
pl011_get_poll_char(struct uart_port * port)1695 static int pl011_get_poll_char(struct uart_port *port)
1696 {
1697 struct uart_amba_port *uap =
1698 container_of(port, struct uart_amba_port, port);
1699 unsigned int status;
1700
1701 /*
1702 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1703 * debugger.
1704 */
1705 pl011_quiesce_irqs(port);
1706
1707 status = pl011_read(uap, REG_FR);
1708 if (status & UART01x_FR_RXFE)
1709 return NO_POLL_CHAR;
1710
1711 return pl011_read(uap, REG_DR);
1712 }
1713
pl011_put_poll_char(struct uart_port * port,unsigned char ch)1714 static void pl011_put_poll_char(struct uart_port *port,
1715 unsigned char ch)
1716 {
1717 struct uart_amba_port *uap =
1718 container_of(port, struct uart_amba_port, port);
1719
1720 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1721 cpu_relax();
1722
1723 pl011_write(ch, uap, REG_DR);
1724 }
1725
1726 #endif /* CONFIG_CONSOLE_POLL */
1727
pl011_hwinit(struct uart_port * port)1728 static int pl011_hwinit(struct uart_port *port)
1729 {
1730 struct uart_amba_port *uap =
1731 container_of(port, struct uart_amba_port, port);
1732 int retval;
1733
1734 /* Optionaly enable pins to be muxed in and configured */
1735 pinctrl_pm_select_default_state(port->dev);
1736
1737 /*
1738 * Try to enable the clock producer.
1739 */
1740 retval = clk_prepare_enable(uap->clk);
1741 if (retval)
1742 return retval;
1743
1744 uap->port.uartclk = clk_get_rate(uap->clk);
1745
1746 /* Clear pending error and receive interrupts */
1747 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1748 UART011_FEIS | UART011_RTIS | UART011_RXIS,
1749 uap, REG_ICR);
1750
1751 /*
1752 * Save interrupts enable mask, and enable RX interrupts in case if
1753 * the interrupt is used for NMI entry.
1754 */
1755 uap->im = pl011_read(uap, REG_IMSC);
1756 pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1757
1758 if (dev_get_platdata(uap->port.dev)) {
1759 struct amba_pl011_data *plat;
1760
1761 plat = dev_get_platdata(uap->port.dev);
1762 if (plat->init)
1763 plat->init();
1764 }
1765 return 0;
1766 }
1767
pl011_split_lcrh(const struct uart_amba_port * uap)1768 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1769 {
1770 return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1771 pl011_reg_to_offset(uap, REG_LCRH_TX);
1772 }
1773
pl011_write_lcr_h(struct uart_amba_port * uap,unsigned int lcr_h)1774 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1775 {
1776 pl011_write(lcr_h, uap, REG_LCRH_RX);
1777 if (pl011_split_lcrh(uap)) {
1778 int i;
1779 /*
1780 * Wait 10 PCLKs before writing LCRH_TX register,
1781 * to get this delay write read only register 10 times
1782 */
1783 for (i = 0; i < 10; ++i)
1784 pl011_write(0xff, uap, REG_MIS);
1785 pl011_write(lcr_h, uap, REG_LCRH_TX);
1786 }
1787 }
1788
pl011_allocate_irq(struct uart_amba_port * uap)1789 static int pl011_allocate_irq(struct uart_amba_port *uap)
1790 {
1791 pl011_write(uap->im, uap, REG_IMSC);
1792
1793 return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1794 }
1795
1796 /*
1797 * Enable interrupts, only timeouts when using DMA
1798 * if initial RX DMA job failed, start in interrupt mode
1799 * as well.
1800 */
pl011_enable_interrupts(struct uart_amba_port * uap)1801 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1802 {
1803 unsigned long flags;
1804 unsigned int i;
1805
1806 spin_lock_irqsave(&uap->port.lock, flags);
1807
1808 /* Clear out any spuriously appearing RX interrupts */
1809 pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1810
1811 /*
1812 * RXIS is asserted only when the RX FIFO transitions from below
1813 * to above the trigger threshold. If the RX FIFO is already
1814 * full to the threshold this can't happen and RXIS will now be
1815 * stuck off. Drain the RX FIFO explicitly to fix this:
1816 */
1817 for (i = 0; i < uap->fifosize * 2; ++i) {
1818 if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1819 break;
1820
1821 pl011_read(uap, REG_DR);
1822 }
1823
1824 uap->im = UART011_RTIM;
1825 if (!pl011_dma_rx_running(uap))
1826 uap->im |= UART011_RXIM;
1827 pl011_write(uap->im, uap, REG_IMSC);
1828 spin_unlock_irqrestore(&uap->port.lock, flags);
1829 }
1830
pl011_unthrottle_rx(struct uart_port * port)1831 static void pl011_unthrottle_rx(struct uart_port *port)
1832 {
1833 struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port);
1834 unsigned long flags;
1835
1836 spin_lock_irqsave(&uap->port.lock, flags);
1837
1838 uap->im = UART011_RTIM;
1839 if (!pl011_dma_rx_running(uap))
1840 uap->im |= UART011_RXIM;
1841
1842 pl011_write(uap->im, uap, REG_IMSC);
1843
1844 spin_unlock_irqrestore(&uap->port.lock, flags);
1845 }
1846
pl011_startup(struct uart_port * port)1847 static int pl011_startup(struct uart_port *port)
1848 {
1849 struct uart_amba_port *uap =
1850 container_of(port, struct uart_amba_port, port);
1851 unsigned int cr;
1852 int retval;
1853
1854 retval = pl011_hwinit(port);
1855 if (retval)
1856 goto clk_dis;
1857
1858 retval = pl011_allocate_irq(uap);
1859 if (retval)
1860 goto clk_dis;
1861
1862 pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1863
1864 spin_lock_irq(&uap->port.lock);
1865
1866 cr = pl011_read(uap, REG_CR);
1867 cr &= UART011_CR_RTS | UART011_CR_DTR;
1868 cr |= UART01x_CR_UARTEN | UART011_CR_RXE;
1869
1870 if (!(port->rs485.flags & SER_RS485_ENABLED))
1871 cr |= UART011_CR_TXE;
1872
1873 pl011_write(cr, uap, REG_CR);
1874
1875 spin_unlock_irq(&uap->port.lock);
1876
1877 /*
1878 * initialise the old status of the modem signals
1879 */
1880 uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1881
1882 /* Startup DMA */
1883 pl011_dma_startup(uap);
1884
1885 pl011_enable_interrupts(uap);
1886
1887 return 0;
1888
1889 clk_dis:
1890 clk_disable_unprepare(uap->clk);
1891 return retval;
1892 }
1893
sbsa_uart_startup(struct uart_port * port)1894 static int sbsa_uart_startup(struct uart_port *port)
1895 {
1896 struct uart_amba_port *uap =
1897 container_of(port, struct uart_amba_port, port);
1898 int retval;
1899
1900 retval = pl011_hwinit(port);
1901 if (retval)
1902 return retval;
1903
1904 retval = pl011_allocate_irq(uap);
1905 if (retval)
1906 return retval;
1907
1908 /* The SBSA UART does not support any modem status lines. */
1909 uap->old_status = 0;
1910
1911 pl011_enable_interrupts(uap);
1912
1913 return 0;
1914 }
1915
pl011_shutdown_channel(struct uart_amba_port * uap,unsigned int lcrh)1916 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1917 unsigned int lcrh)
1918 {
1919 unsigned long val;
1920
1921 val = pl011_read(uap, lcrh);
1922 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1923 pl011_write(val, uap, lcrh);
1924 }
1925
1926 /*
1927 * disable the port. It should not disable RTS and DTR.
1928 * Also RTS and DTR state should be preserved to restore
1929 * it during startup().
1930 */
pl011_disable_uart(struct uart_amba_port * uap)1931 static void pl011_disable_uart(struct uart_amba_port *uap)
1932 {
1933 unsigned int cr;
1934
1935 uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1936 spin_lock_irq(&uap->port.lock);
1937 cr = pl011_read(uap, REG_CR);
1938 cr &= UART011_CR_RTS | UART011_CR_DTR;
1939 cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1940 pl011_write(cr, uap, REG_CR);
1941 spin_unlock_irq(&uap->port.lock);
1942
1943 /*
1944 * disable break condition and fifos
1945 */
1946 pl011_shutdown_channel(uap, REG_LCRH_RX);
1947 if (pl011_split_lcrh(uap))
1948 pl011_shutdown_channel(uap, REG_LCRH_TX);
1949 }
1950
pl011_disable_interrupts(struct uart_amba_port * uap)1951 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1952 {
1953 spin_lock_irq(&uap->port.lock);
1954
1955 /* mask all interrupts and clear all pending ones */
1956 uap->im = 0;
1957 pl011_write(uap->im, uap, REG_IMSC);
1958 pl011_write(0xffff, uap, REG_ICR);
1959
1960 spin_unlock_irq(&uap->port.lock);
1961 }
1962
pl011_shutdown(struct uart_port * port)1963 static void pl011_shutdown(struct uart_port *port)
1964 {
1965 struct uart_amba_port *uap =
1966 container_of(port, struct uart_amba_port, port);
1967
1968 pl011_disable_interrupts(uap);
1969
1970 pl011_dma_shutdown(uap);
1971
1972 if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1973 pl011_rs485_tx_stop(uap);
1974
1975 free_irq(uap->port.irq, uap);
1976
1977 pl011_disable_uart(uap);
1978
1979 /*
1980 * Shut down the clock producer
1981 */
1982 clk_disable_unprepare(uap->clk);
1983 /* Optionally let pins go into sleep states */
1984 pinctrl_pm_select_sleep_state(port->dev);
1985
1986 if (dev_get_platdata(uap->port.dev)) {
1987 struct amba_pl011_data *plat;
1988
1989 plat = dev_get_platdata(uap->port.dev);
1990 if (plat->exit)
1991 plat->exit();
1992 }
1993
1994 if (uap->port.ops->flush_buffer)
1995 uap->port.ops->flush_buffer(port);
1996 }
1997
sbsa_uart_shutdown(struct uart_port * port)1998 static void sbsa_uart_shutdown(struct uart_port *port)
1999 {
2000 struct uart_amba_port *uap =
2001 container_of(port, struct uart_amba_port, port);
2002
2003 pl011_disable_interrupts(uap);
2004
2005 free_irq(uap->port.irq, uap);
2006
2007 if (uap->port.ops->flush_buffer)
2008 uap->port.ops->flush_buffer(port);
2009 }
2010
2011 static void
pl011_setup_status_masks(struct uart_port * port,struct ktermios * termios)2012 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
2013 {
2014 port->read_status_mask = UART011_DR_OE | 255;
2015 if (termios->c_iflag & INPCK)
2016 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
2017 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
2018 port->read_status_mask |= UART011_DR_BE;
2019
2020 /*
2021 * Characters to ignore
2022 */
2023 port->ignore_status_mask = 0;
2024 if (termios->c_iflag & IGNPAR)
2025 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
2026 if (termios->c_iflag & IGNBRK) {
2027 port->ignore_status_mask |= UART011_DR_BE;
2028 /*
2029 * If we're ignoring parity and break indicators,
2030 * ignore overruns too (for real raw support).
2031 */
2032 if (termios->c_iflag & IGNPAR)
2033 port->ignore_status_mask |= UART011_DR_OE;
2034 }
2035
2036 /*
2037 * Ignore all characters if CREAD is not set.
2038 */
2039 if ((termios->c_cflag & CREAD) == 0)
2040 port->ignore_status_mask |= UART_DUMMY_DR_RX;
2041 }
2042
2043 static void
pl011_set_termios(struct uart_port * port,struct ktermios * termios,const struct ktermios * old)2044 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
2045 const struct ktermios *old)
2046 {
2047 struct uart_amba_port *uap =
2048 container_of(port, struct uart_amba_port, port);
2049 unsigned int lcr_h, old_cr;
2050 unsigned long flags;
2051 unsigned int baud, quot, clkdiv;
2052 unsigned int bits;
2053
2054 if (uap->vendor->oversampling)
2055 clkdiv = 8;
2056 else
2057 clkdiv = 16;
2058
2059 /*
2060 * Ask the core to calculate the divisor for us.
2061 */
2062 baud = uart_get_baud_rate(port, termios, old, 0,
2063 port->uartclk / clkdiv);
2064 #ifdef CONFIG_DMA_ENGINE
2065 /*
2066 * Adjust RX DMA polling rate with baud rate if not specified.
2067 */
2068 if (uap->dmarx.auto_poll_rate)
2069 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
2070 #endif
2071
2072 if (baud > port->uartclk/16)
2073 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
2074 else
2075 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
2076
2077 switch (termios->c_cflag & CSIZE) {
2078 case CS5:
2079 lcr_h = UART01x_LCRH_WLEN_5;
2080 break;
2081 case CS6:
2082 lcr_h = UART01x_LCRH_WLEN_6;
2083 break;
2084 case CS7:
2085 lcr_h = UART01x_LCRH_WLEN_7;
2086 break;
2087 default: // CS8
2088 lcr_h = UART01x_LCRH_WLEN_8;
2089 break;
2090 }
2091 if (termios->c_cflag & CSTOPB)
2092 lcr_h |= UART01x_LCRH_STP2;
2093 if (termios->c_cflag & PARENB) {
2094 lcr_h |= UART01x_LCRH_PEN;
2095 if (!(termios->c_cflag & PARODD))
2096 lcr_h |= UART01x_LCRH_EPS;
2097 if (termios->c_cflag & CMSPAR)
2098 lcr_h |= UART011_LCRH_SPS;
2099 }
2100 if (uap->fifosize > 1)
2101 lcr_h |= UART01x_LCRH_FEN;
2102
2103 bits = tty_get_frame_size(termios->c_cflag);
2104
2105 spin_lock_irqsave(&port->lock, flags);
2106
2107 /*
2108 * Update the per-port timeout.
2109 */
2110 uart_update_timeout(port, termios->c_cflag, baud);
2111
2112 /*
2113 * Calculate the approximated time it takes to transmit one character
2114 * with the given baud rate. We use this as the poll interval when we
2115 * wait for the tx queue to empty.
2116 */
2117 uap->rs485_tx_drain_interval = DIV_ROUND_UP(bits * 1000 * 1000, baud);
2118
2119 pl011_setup_status_masks(port, termios);
2120
2121 if (UART_ENABLE_MS(port, termios->c_cflag))
2122 pl011_enable_ms(port);
2123
2124 if (port->rs485.flags & SER_RS485_ENABLED)
2125 termios->c_cflag &= ~CRTSCTS;
2126
2127 old_cr = pl011_read(uap, REG_CR);
2128
2129 if (termios->c_cflag & CRTSCTS) {
2130 if (old_cr & UART011_CR_RTS)
2131 old_cr |= UART011_CR_RTSEN;
2132
2133 old_cr |= UART011_CR_CTSEN;
2134 port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2135 } else {
2136 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2137 port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2138 }
2139
2140 if (uap->vendor->oversampling) {
2141 if (baud > port->uartclk / 16)
2142 old_cr |= ST_UART011_CR_OVSFACT;
2143 else
2144 old_cr &= ~ST_UART011_CR_OVSFACT;
2145 }
2146
2147 /*
2148 * Workaround for the ST Micro oversampling variants to
2149 * increase the bitrate slightly, by lowering the divisor,
2150 * to avoid delayed sampling of start bit at high speeds,
2151 * else we see data corruption.
2152 */
2153 if (uap->vendor->oversampling) {
2154 if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2155 quot -= 1;
2156 else if ((baud > 3250000) && (quot > 2))
2157 quot -= 2;
2158 }
2159 /* Set baud rate */
2160 pl011_write(quot & 0x3f, uap, REG_FBRD);
2161 pl011_write(quot >> 6, uap, REG_IBRD);
2162
2163 /*
2164 * ----------v----------v----------v----------v-----
2165 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2166 * REG_FBRD & REG_IBRD.
2167 * ----------^----------^----------^----------^-----
2168 */
2169 pl011_write_lcr_h(uap, lcr_h);
2170
2171 /*
2172 * Receive was disabled by pl011_disable_uart during shutdown.
2173 * Need to reenable receive if you need to use a tty_driver
2174 * returns from tty_find_polling_driver() after a port shutdown.
2175 */
2176 old_cr |= UART011_CR_RXE;
2177 pl011_write(old_cr, uap, REG_CR);
2178
2179 spin_unlock_irqrestore(&port->lock, flags);
2180 }
2181
2182 static void
sbsa_uart_set_termios(struct uart_port * port,struct ktermios * termios,const struct ktermios * old)2183 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2184 const struct ktermios *old)
2185 {
2186 struct uart_amba_port *uap =
2187 container_of(port, struct uart_amba_port, port);
2188 unsigned long flags;
2189
2190 tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2191
2192 /* The SBSA UART only supports 8n1 without hardware flow control. */
2193 termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2194 termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2195 termios->c_cflag |= CS8 | CLOCAL;
2196
2197 spin_lock_irqsave(&port->lock, flags);
2198 uart_update_timeout(port, CS8, uap->fixed_baud);
2199 pl011_setup_status_masks(port, termios);
2200 spin_unlock_irqrestore(&port->lock, flags);
2201 }
2202
pl011_type(struct uart_port * port)2203 static const char *pl011_type(struct uart_port *port)
2204 {
2205 struct uart_amba_port *uap =
2206 container_of(port, struct uart_amba_port, port);
2207 return uap->port.type == PORT_AMBA ? uap->type : NULL;
2208 }
2209
2210 /*
2211 * Configure/autoconfigure the port.
2212 */
pl011_config_port(struct uart_port * port,int flags)2213 static void pl011_config_port(struct uart_port *port, int flags)
2214 {
2215 if (flags & UART_CONFIG_TYPE)
2216 port->type = PORT_AMBA;
2217 }
2218
2219 /*
2220 * verify the new serial_struct (for TIOCSSERIAL).
2221 */
pl011_verify_port(struct uart_port * port,struct serial_struct * ser)2222 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2223 {
2224 int ret = 0;
2225 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2226 ret = -EINVAL;
2227 if (ser->irq < 0 || ser->irq >= nr_irqs)
2228 ret = -EINVAL;
2229 if (ser->baud_base < 9600)
2230 ret = -EINVAL;
2231 if (port->mapbase != (unsigned long) ser->iomem_base)
2232 ret = -EINVAL;
2233 return ret;
2234 }
2235
pl011_rs485_config(struct uart_port * port,struct ktermios * termios,struct serial_rs485 * rs485)2236 static int pl011_rs485_config(struct uart_port *port, struct ktermios *termios,
2237 struct serial_rs485 *rs485)
2238 {
2239 struct uart_amba_port *uap =
2240 container_of(port, struct uart_amba_port, port);
2241
2242 if (port->rs485.flags & SER_RS485_ENABLED)
2243 pl011_rs485_tx_stop(uap);
2244
2245 /* Make sure auto RTS is disabled */
2246 if (rs485->flags & SER_RS485_ENABLED) {
2247 u32 cr = pl011_read(uap, REG_CR);
2248
2249 cr &= ~UART011_CR_RTSEN;
2250 pl011_write(cr, uap, REG_CR);
2251 port->status &= ~UPSTAT_AUTORTS;
2252 }
2253
2254 return 0;
2255 }
2256
2257 static const struct uart_ops amba_pl011_pops = {
2258 .tx_empty = pl011_tx_empty,
2259 .set_mctrl = pl011_set_mctrl,
2260 .get_mctrl = pl011_get_mctrl,
2261 .stop_tx = pl011_stop_tx,
2262 .start_tx = pl011_start_tx,
2263 .stop_rx = pl011_stop_rx,
2264 .throttle = pl011_throttle_rx,
2265 .unthrottle = pl011_unthrottle_rx,
2266 .enable_ms = pl011_enable_ms,
2267 .break_ctl = pl011_break_ctl,
2268 .startup = pl011_startup,
2269 .shutdown = pl011_shutdown,
2270 .flush_buffer = pl011_dma_flush_buffer,
2271 .set_termios = pl011_set_termios,
2272 .type = pl011_type,
2273 .config_port = pl011_config_port,
2274 .verify_port = pl011_verify_port,
2275 #ifdef CONFIG_CONSOLE_POLL
2276 .poll_init = pl011_hwinit,
2277 .poll_get_char = pl011_get_poll_char,
2278 .poll_put_char = pl011_put_poll_char,
2279 #endif
2280 };
2281
sbsa_uart_set_mctrl(struct uart_port * port,unsigned int mctrl)2282 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2283 {
2284 }
2285
sbsa_uart_get_mctrl(struct uart_port * port)2286 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2287 {
2288 return 0;
2289 }
2290
2291 static const struct uart_ops sbsa_uart_pops = {
2292 .tx_empty = pl011_tx_empty,
2293 .set_mctrl = sbsa_uart_set_mctrl,
2294 .get_mctrl = sbsa_uart_get_mctrl,
2295 .stop_tx = pl011_stop_tx,
2296 .start_tx = pl011_start_tx,
2297 .stop_rx = pl011_stop_rx,
2298 .startup = sbsa_uart_startup,
2299 .shutdown = sbsa_uart_shutdown,
2300 .set_termios = sbsa_uart_set_termios,
2301 .type = pl011_type,
2302 .config_port = pl011_config_port,
2303 .verify_port = pl011_verify_port,
2304 #ifdef CONFIG_CONSOLE_POLL
2305 .poll_init = pl011_hwinit,
2306 .poll_get_char = pl011_get_poll_char,
2307 .poll_put_char = pl011_put_poll_char,
2308 #endif
2309 };
2310
2311 static struct uart_amba_port *amba_ports[UART_NR];
2312
2313 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2314
pl011_console_putchar(struct uart_port * port,unsigned char ch)2315 static void pl011_console_putchar(struct uart_port *port, unsigned char ch)
2316 {
2317 struct uart_amba_port *uap =
2318 container_of(port, struct uart_amba_port, port);
2319
2320 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2321 cpu_relax();
2322 pl011_write(ch, uap, REG_DR);
2323 }
2324
2325 static void
pl011_console_write(struct console * co,const char * s,unsigned int count)2326 pl011_console_write(struct console *co, const char *s, unsigned int count)
2327 {
2328 struct uart_amba_port *uap = amba_ports[co->index];
2329 unsigned int old_cr = 0, new_cr;
2330 unsigned long flags;
2331 int locked = 1;
2332
2333 clk_enable(uap->clk);
2334
2335 local_irq_save(flags);
2336 if (uap->port.sysrq)
2337 locked = 0;
2338 else if (oops_in_progress)
2339 locked = spin_trylock(&uap->port.lock);
2340 else
2341 spin_lock(&uap->port.lock);
2342
2343 /*
2344 * First save the CR then disable the interrupts
2345 */
2346 if (!uap->vendor->always_enabled) {
2347 old_cr = pl011_read(uap, REG_CR);
2348 new_cr = old_cr & ~UART011_CR_CTSEN;
2349 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2350 pl011_write(new_cr, uap, REG_CR);
2351 }
2352
2353 uart_console_write(&uap->port, s, count, pl011_console_putchar);
2354
2355 /*
2356 * Finally, wait for transmitter to become empty and restore the
2357 * TCR. Allow feature register bits to be inverted to work around
2358 * errata.
2359 */
2360 while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2361 & uap->vendor->fr_busy)
2362 cpu_relax();
2363 if (!uap->vendor->always_enabled)
2364 pl011_write(old_cr, uap, REG_CR);
2365
2366 if (locked)
2367 spin_unlock(&uap->port.lock);
2368 local_irq_restore(flags);
2369
2370 clk_disable(uap->clk);
2371 }
2372
pl011_console_get_options(struct uart_amba_port * uap,int * baud,int * parity,int * bits)2373 static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2374 int *parity, int *bits)
2375 {
2376 if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2377 unsigned int lcr_h, ibrd, fbrd;
2378
2379 lcr_h = pl011_read(uap, REG_LCRH_TX);
2380
2381 *parity = 'n';
2382 if (lcr_h & UART01x_LCRH_PEN) {
2383 if (lcr_h & UART01x_LCRH_EPS)
2384 *parity = 'e';
2385 else
2386 *parity = 'o';
2387 }
2388
2389 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2390 *bits = 7;
2391 else
2392 *bits = 8;
2393
2394 ibrd = pl011_read(uap, REG_IBRD);
2395 fbrd = pl011_read(uap, REG_FBRD);
2396
2397 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2398
2399 if (uap->vendor->oversampling) {
2400 if (pl011_read(uap, REG_CR)
2401 & ST_UART011_CR_OVSFACT)
2402 *baud *= 2;
2403 }
2404 }
2405 }
2406
pl011_console_setup(struct console * co,char * options)2407 static int pl011_console_setup(struct console *co, char *options)
2408 {
2409 struct uart_amba_port *uap;
2410 int baud = 38400;
2411 int bits = 8;
2412 int parity = 'n';
2413 int flow = 'n';
2414 int ret;
2415
2416 /*
2417 * Check whether an invalid uart number has been specified, and
2418 * if so, search for the first available port that does have
2419 * console support.
2420 */
2421 if (co->index >= UART_NR)
2422 co->index = 0;
2423 uap = amba_ports[co->index];
2424 if (!uap)
2425 return -ENODEV;
2426
2427 /* Allow pins to be muxed in and configured */
2428 pinctrl_pm_select_default_state(uap->port.dev);
2429
2430 ret = clk_prepare(uap->clk);
2431 if (ret)
2432 return ret;
2433
2434 if (dev_get_platdata(uap->port.dev)) {
2435 struct amba_pl011_data *plat;
2436
2437 plat = dev_get_platdata(uap->port.dev);
2438 if (plat->init)
2439 plat->init();
2440 }
2441
2442 uap->port.uartclk = clk_get_rate(uap->clk);
2443
2444 if (uap->vendor->fixed_options) {
2445 baud = uap->fixed_baud;
2446 } else {
2447 if (options)
2448 uart_parse_options(options,
2449 &baud, &parity, &bits, &flow);
2450 else
2451 pl011_console_get_options(uap, &baud, &parity, &bits);
2452 }
2453
2454 return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2455 }
2456
2457 /**
2458 * pl011_console_match - non-standard console matching
2459 * @co: registering console
2460 * @name: name from console command line
2461 * @idx: index from console command line
2462 * @options: ptr to option string from console command line
2463 *
2464 * Only attempts to match console command lines of the form:
2465 * console=pl011,mmio|mmio32,<addr>[,<options>]
2466 * console=pl011,0x<addr>[,<options>]
2467 * This form is used to register an initial earlycon boot console and
2468 * replace it with the amba_console at pl011 driver init.
2469 *
2470 * Performs console setup for a match (as required by interface)
2471 * If no <options> are specified, then assume the h/w is already setup.
2472 *
2473 * Returns 0 if console matches; otherwise non-zero to use default matching
2474 */
pl011_console_match(struct console * co,char * name,int idx,char * options)2475 static int pl011_console_match(struct console *co, char *name, int idx,
2476 char *options)
2477 {
2478 unsigned char iotype;
2479 resource_size_t addr;
2480 int i;
2481
2482 /*
2483 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2484 * have a distinct console name, so make sure we check for that.
2485 * The actual implementation of the erratum occurs in the probe
2486 * function.
2487 */
2488 if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2489 return -ENODEV;
2490
2491 if (uart_parse_earlycon(options, &iotype, &addr, &options))
2492 return -ENODEV;
2493
2494 if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2495 return -ENODEV;
2496
2497 /* try to match the port specified on the command line */
2498 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2499 struct uart_port *port;
2500
2501 if (!amba_ports[i])
2502 continue;
2503
2504 port = &amba_ports[i]->port;
2505
2506 if (port->mapbase != addr)
2507 continue;
2508
2509 co->index = i;
2510 port->cons = co;
2511 return pl011_console_setup(co, options);
2512 }
2513
2514 return -ENODEV;
2515 }
2516
2517 static struct uart_driver amba_reg;
2518 static struct console amba_console = {
2519 .name = "ttyAMA",
2520 .write = pl011_console_write,
2521 .device = uart_console_device,
2522 .setup = pl011_console_setup,
2523 .match = pl011_console_match,
2524 .flags = CON_PRINTBUFFER | CON_ANYTIME,
2525 .index = -1,
2526 .data = &amba_reg,
2527 };
2528
2529 #define AMBA_CONSOLE (&amba_console)
2530
qdf2400_e44_putc(struct uart_port * port,unsigned char c)2531 static void qdf2400_e44_putc(struct uart_port *port, unsigned char c)
2532 {
2533 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2534 cpu_relax();
2535 writel(c, port->membase + UART01x_DR);
2536 while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2537 cpu_relax();
2538 }
2539
qdf2400_e44_early_write(struct console * con,const char * s,unsigned n)2540 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2541 {
2542 struct earlycon_device *dev = con->data;
2543
2544 uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2545 }
2546
pl011_putc(struct uart_port * port,unsigned char c)2547 static void pl011_putc(struct uart_port *port, unsigned char c)
2548 {
2549 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2550 cpu_relax();
2551 if (port->iotype == UPIO_MEM32)
2552 writel(c, port->membase + UART01x_DR);
2553 else
2554 writeb(c, port->membase + UART01x_DR);
2555 while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2556 cpu_relax();
2557 }
2558
pl011_early_write(struct console * con,const char * s,unsigned n)2559 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2560 {
2561 struct earlycon_device *dev = con->data;
2562
2563 uart_console_write(&dev->port, s, n, pl011_putc);
2564 }
2565
2566 #ifdef CONFIG_CONSOLE_POLL
pl011_getc(struct uart_port * port)2567 static int pl011_getc(struct uart_port *port)
2568 {
2569 if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2570 return NO_POLL_CHAR;
2571
2572 if (port->iotype == UPIO_MEM32)
2573 return readl(port->membase + UART01x_DR);
2574 else
2575 return readb(port->membase + UART01x_DR);
2576 }
2577
pl011_early_read(struct console * con,char * s,unsigned int n)2578 static int pl011_early_read(struct console *con, char *s, unsigned int n)
2579 {
2580 struct earlycon_device *dev = con->data;
2581 int ch, num_read = 0;
2582
2583 while (num_read < n) {
2584 ch = pl011_getc(&dev->port);
2585 if (ch == NO_POLL_CHAR)
2586 break;
2587
2588 s[num_read++] = ch;
2589 }
2590
2591 return num_read;
2592 }
2593 #else
2594 #define pl011_early_read NULL
2595 #endif
2596
2597 /*
2598 * On non-ACPI systems, earlycon is enabled by specifying
2599 * "earlycon=pl011,<address>" on the kernel command line.
2600 *
2601 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2602 * by specifying only "earlycon" on the command line. Because it requires
2603 * SPCR, the console starts after ACPI is parsed, which is later than a
2604 * traditional early console.
2605 *
2606 * To get the traditional early console that starts before ACPI is parsed,
2607 * specify the full "earlycon=pl011,<address>" option.
2608 */
pl011_early_console_setup(struct earlycon_device * device,const char * opt)2609 static int __init pl011_early_console_setup(struct earlycon_device *device,
2610 const char *opt)
2611 {
2612 if (!device->port.membase)
2613 return -ENODEV;
2614
2615 device->con->write = pl011_early_write;
2616 device->con->read = pl011_early_read;
2617
2618 return 0;
2619 }
2620 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2621 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2622
2623 /*
2624 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2625 * Erratum 44, traditional earlycon can be enabled by specifying
2626 * "earlycon=qdf2400_e44,<address>". Any options are ignored.
2627 *
2628 * Alternatively, you can just specify "earlycon", and the early console
2629 * will be enabled with the information from the SPCR table. In this
2630 * case, the SPCR code will detect the need for the E44 work-around,
2631 * and set the console name to "qdf2400_e44".
2632 */
2633 static int __init
qdf2400_e44_early_console_setup(struct earlycon_device * device,const char * opt)2634 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2635 const char *opt)
2636 {
2637 if (!device->port.membase)
2638 return -ENODEV;
2639
2640 device->con->write = qdf2400_e44_early_write;
2641 return 0;
2642 }
2643 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2644
2645 #else
2646 #define AMBA_CONSOLE NULL
2647 #endif
2648
2649 static struct uart_driver amba_reg = {
2650 .owner = THIS_MODULE,
2651 .driver_name = "ttyAMA",
2652 .dev_name = "ttyAMA",
2653 .major = SERIAL_AMBA_MAJOR,
2654 .minor = SERIAL_AMBA_MINOR,
2655 .nr = UART_NR,
2656 .cons = AMBA_CONSOLE,
2657 };
2658
pl011_probe_dt_alias(int index,struct device * dev)2659 static int pl011_probe_dt_alias(int index, struct device *dev)
2660 {
2661 struct device_node *np;
2662 static bool seen_dev_with_alias = false;
2663 static bool seen_dev_without_alias = false;
2664 int ret = index;
2665
2666 if (!IS_ENABLED(CONFIG_OF))
2667 return ret;
2668
2669 np = dev->of_node;
2670 if (!np)
2671 return ret;
2672
2673 ret = of_alias_get_id(np, "serial");
2674 if (ret < 0) {
2675 seen_dev_without_alias = true;
2676 ret = index;
2677 } else {
2678 seen_dev_with_alias = true;
2679 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2680 dev_warn(dev, "requested serial port %d not available.\n", ret);
2681 ret = index;
2682 }
2683 }
2684
2685 if (seen_dev_with_alias && seen_dev_without_alias)
2686 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2687
2688 return ret;
2689 }
2690
2691 /* unregisters the driver also if no more ports are left */
pl011_unregister_port(struct uart_amba_port * uap)2692 static void pl011_unregister_port(struct uart_amba_port *uap)
2693 {
2694 int i;
2695 bool busy = false;
2696
2697 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2698 if (amba_ports[i] == uap)
2699 amba_ports[i] = NULL;
2700 else if (amba_ports[i])
2701 busy = true;
2702 }
2703 pl011_dma_remove(uap);
2704 if (!busy)
2705 uart_unregister_driver(&amba_reg);
2706 }
2707
pl011_find_free_port(void)2708 static int pl011_find_free_port(void)
2709 {
2710 int i;
2711
2712 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2713 if (amba_ports[i] == NULL)
2714 return i;
2715
2716 return -EBUSY;
2717 }
2718
pl011_get_rs485_mode(struct uart_amba_port * uap)2719 static int pl011_get_rs485_mode(struct uart_amba_port *uap)
2720 {
2721 struct uart_port *port = &uap->port;
2722 int ret;
2723
2724 ret = uart_get_rs485_mode(port);
2725 if (ret)
2726 return ret;
2727
2728 return 0;
2729 }
2730
pl011_setup_port(struct device * dev,struct uart_amba_port * uap,struct resource * mmiobase,int index)2731 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2732 struct resource *mmiobase, int index)
2733 {
2734 void __iomem *base;
2735 int ret;
2736
2737 base = devm_ioremap_resource(dev, mmiobase);
2738 if (IS_ERR(base))
2739 return PTR_ERR(base);
2740
2741 index = pl011_probe_dt_alias(index, dev);
2742
2743 uap->port.dev = dev;
2744 uap->port.mapbase = mmiobase->start;
2745 uap->port.membase = base;
2746 uap->port.fifosize = uap->fifosize;
2747 uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2748 uap->port.flags = UPF_BOOT_AUTOCONF;
2749 uap->port.line = index;
2750
2751 ret = pl011_get_rs485_mode(uap);
2752 if (ret)
2753 return ret;
2754
2755 amba_ports[index] = uap;
2756
2757 return 0;
2758 }
2759
pl011_register_port(struct uart_amba_port * uap)2760 static int pl011_register_port(struct uart_amba_port *uap)
2761 {
2762 int ret, i;
2763
2764 /* Ensure interrupts from this UART are masked and cleared */
2765 pl011_write(0, uap, REG_IMSC);
2766 pl011_write(0xffff, uap, REG_ICR);
2767
2768 if (!amba_reg.state) {
2769 ret = uart_register_driver(&amba_reg);
2770 if (ret < 0) {
2771 dev_err(uap->port.dev,
2772 "Failed to register AMBA-PL011 driver\n");
2773 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2774 if (amba_ports[i] == uap)
2775 amba_ports[i] = NULL;
2776 return ret;
2777 }
2778 }
2779
2780 ret = uart_add_one_port(&amba_reg, &uap->port);
2781 if (ret)
2782 pl011_unregister_port(uap);
2783
2784 return ret;
2785 }
2786
2787 static const struct serial_rs485 pl011_rs485_supported = {
2788 .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2789 SER_RS485_RX_DURING_TX,
2790 .delay_rts_before_send = 1,
2791 .delay_rts_after_send = 1,
2792 };
2793
pl011_probe(struct amba_device * dev,const struct amba_id * id)2794 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2795 {
2796 struct uart_amba_port *uap;
2797 struct vendor_data *vendor = id->data;
2798 int portnr, ret;
2799 u32 val;
2800
2801 portnr = pl011_find_free_port();
2802 if (portnr < 0)
2803 return portnr;
2804
2805 uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2806 GFP_KERNEL);
2807 if (!uap)
2808 return -ENOMEM;
2809
2810 uap->clk = devm_clk_get(&dev->dev, NULL);
2811 if (IS_ERR(uap->clk))
2812 return PTR_ERR(uap->clk);
2813
2814 uap->reg_offset = vendor->reg_offset;
2815 uap->vendor = vendor;
2816 uap->fifosize = vendor->get_fifosize(dev);
2817 uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2818 uap->port.irq = dev->irq[0];
2819 uap->port.ops = &amba_pl011_pops;
2820 uap->port.rs485_config = pl011_rs485_config;
2821 uap->port.rs485_supported = pl011_rs485_supported;
2822 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2823
2824 if (device_property_read_u32(&dev->dev, "reg-io-width", &val) == 0) {
2825 switch (val) {
2826 case 1:
2827 uap->port.iotype = UPIO_MEM;
2828 break;
2829 case 4:
2830 uap->port.iotype = UPIO_MEM32;
2831 break;
2832 default:
2833 dev_warn(&dev->dev, "unsupported reg-io-width (%d)\n",
2834 val);
2835 return -EINVAL;
2836 }
2837 }
2838
2839 ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2840 if (ret)
2841 return ret;
2842
2843 amba_set_drvdata(dev, uap);
2844
2845 return pl011_register_port(uap);
2846 }
2847
pl011_remove(struct amba_device * dev)2848 static void pl011_remove(struct amba_device *dev)
2849 {
2850 struct uart_amba_port *uap = amba_get_drvdata(dev);
2851
2852 uart_remove_one_port(&amba_reg, &uap->port);
2853 pl011_unregister_port(uap);
2854 }
2855
2856 #ifdef CONFIG_PM_SLEEP
pl011_suspend(struct device * dev)2857 static int pl011_suspend(struct device *dev)
2858 {
2859 struct uart_amba_port *uap = dev_get_drvdata(dev);
2860
2861 if (!uap)
2862 return -EINVAL;
2863
2864 return uart_suspend_port(&amba_reg, &uap->port);
2865 }
2866
pl011_resume(struct device * dev)2867 static int pl011_resume(struct device *dev)
2868 {
2869 struct uart_amba_port *uap = dev_get_drvdata(dev);
2870
2871 if (!uap)
2872 return -EINVAL;
2873
2874 return uart_resume_port(&amba_reg, &uap->port);
2875 }
2876 #endif
2877
2878 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2879
sbsa_uart_probe(struct platform_device * pdev)2880 static int sbsa_uart_probe(struct platform_device *pdev)
2881 {
2882 struct uart_amba_port *uap;
2883 struct resource *r;
2884 int portnr, ret;
2885 int baudrate;
2886
2887 /*
2888 * Check the mandatory baud rate parameter in the DT node early
2889 * so that we can easily exit with the error.
2890 */
2891 if (pdev->dev.of_node) {
2892 struct device_node *np = pdev->dev.of_node;
2893
2894 ret = of_property_read_u32(np, "current-speed", &baudrate);
2895 if (ret)
2896 return ret;
2897 } else {
2898 baudrate = 115200;
2899 }
2900
2901 portnr = pl011_find_free_port();
2902 if (portnr < 0)
2903 return portnr;
2904
2905 uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2906 GFP_KERNEL);
2907 if (!uap)
2908 return -ENOMEM;
2909
2910 ret = platform_get_irq(pdev, 0);
2911 if (ret < 0)
2912 return ret;
2913 uap->port.irq = ret;
2914
2915 #ifdef CONFIG_ACPI_SPCR_TABLE
2916 if (qdf2400_e44_present) {
2917 dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2918 uap->vendor = &vendor_qdt_qdf2400_e44;
2919 } else
2920 #endif
2921 uap->vendor = &vendor_sbsa;
2922
2923 uap->reg_offset = uap->vendor->reg_offset;
2924 uap->fifosize = 32;
2925 uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2926 uap->port.ops = &sbsa_uart_pops;
2927 uap->fixed_baud = baudrate;
2928
2929 snprintf(uap->type, sizeof(uap->type), "SBSA");
2930
2931 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2932
2933 ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2934 if (ret)
2935 return ret;
2936
2937 platform_set_drvdata(pdev, uap);
2938
2939 return pl011_register_port(uap);
2940 }
2941
sbsa_uart_remove(struct platform_device * pdev)2942 static int sbsa_uart_remove(struct platform_device *pdev)
2943 {
2944 struct uart_amba_port *uap = platform_get_drvdata(pdev);
2945
2946 uart_remove_one_port(&amba_reg, &uap->port);
2947 pl011_unregister_port(uap);
2948 return 0;
2949 }
2950
2951 static const struct of_device_id sbsa_uart_of_match[] = {
2952 { .compatible = "arm,sbsa-uart", },
2953 {},
2954 };
2955 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2956
2957 static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
2958 { "ARMH0011", 0 },
2959 { "ARMHB000", 0 },
2960 {},
2961 };
2962 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2963
2964 static struct platform_driver arm_sbsa_uart_platform_driver = {
2965 .probe = sbsa_uart_probe,
2966 .remove = sbsa_uart_remove,
2967 .driver = {
2968 .name = "sbsa-uart",
2969 .pm = &pl011_dev_pm_ops,
2970 .of_match_table = of_match_ptr(sbsa_uart_of_match),
2971 .acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2972 .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2973 },
2974 };
2975
2976 static const struct amba_id pl011_ids[] = {
2977 {
2978 .id = 0x00041011,
2979 .mask = 0x000fffff,
2980 .data = &vendor_arm,
2981 },
2982 {
2983 .id = 0x00380802,
2984 .mask = 0x00ffffff,
2985 .data = &vendor_st,
2986 },
2987 { 0, 0 },
2988 };
2989
2990 MODULE_DEVICE_TABLE(amba, pl011_ids);
2991
2992 static struct amba_driver pl011_driver = {
2993 .drv = {
2994 .name = "uart-pl011",
2995 .pm = &pl011_dev_pm_ops,
2996 .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2997 },
2998 .id_table = pl011_ids,
2999 .probe = pl011_probe,
3000 .remove = pl011_remove,
3001 };
3002
pl011_init(void)3003 static int __init pl011_init(void)
3004 {
3005 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
3006
3007 if (platform_driver_register(&arm_sbsa_uart_platform_driver))
3008 pr_warn("could not register SBSA UART platform driver\n");
3009 return amba_driver_register(&pl011_driver);
3010 }
3011
pl011_exit(void)3012 static void __exit pl011_exit(void)
3013 {
3014 platform_driver_unregister(&arm_sbsa_uart_platform_driver);
3015 amba_driver_unregister(&pl011_driver);
3016 }
3017
3018 /*
3019 * While this can be a module, if builtin it's most likely the console
3020 * So let's leave module_exit but move module_init to an earlier place
3021 */
3022 arch_initcall(pl011_init);
3023 module_exit(pl011_exit);
3024
3025 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
3026 MODULE_DESCRIPTION("ARM AMBA serial port driver");
3027 MODULE_LICENSE("GPL");
3028