1 /*
2 FUSE: Filesystem in Userspace
3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu>
4
5 This program can be distributed under the terms of the GNU GPL.
6 See the file COPYING.
7 */
8
9 #include "fuse_i.h"
10
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/falloc.h>
19 #include <linux/uio.h>
20 #include <linux/fs.h>
21 #include <linux/filelock.h>
22
fuse_send_open(struct fuse_mount * fm,u64 nodeid,unsigned int open_flags,int opcode,struct fuse_open_out * outargp)23 static int fuse_send_open(struct fuse_mount *fm, u64 nodeid,
24 unsigned int open_flags, int opcode,
25 struct fuse_open_out *outargp)
26 {
27 struct fuse_open_in inarg;
28 FUSE_ARGS(args);
29
30 memset(&inarg, 0, sizeof(inarg));
31 inarg.flags = open_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
32 if (!fm->fc->atomic_o_trunc)
33 inarg.flags &= ~O_TRUNC;
34
35 if (fm->fc->handle_killpriv_v2 &&
36 (inarg.flags & O_TRUNC) && !capable(CAP_FSETID)) {
37 inarg.open_flags |= FUSE_OPEN_KILL_SUIDGID;
38 }
39
40 args.opcode = opcode;
41 args.nodeid = nodeid;
42 args.in_numargs = 1;
43 args.in_args[0].size = sizeof(inarg);
44 args.in_args[0].value = &inarg;
45 args.out_numargs = 1;
46 args.out_args[0].size = sizeof(*outargp);
47 args.out_args[0].value = outargp;
48
49 return fuse_simple_request(fm, &args);
50 }
51
52 struct fuse_release_args {
53 struct fuse_args args;
54 struct fuse_release_in inarg;
55 struct inode *inode;
56 };
57
fuse_file_alloc(struct fuse_mount * fm)58 struct fuse_file *fuse_file_alloc(struct fuse_mount *fm)
59 {
60 struct fuse_file *ff;
61
62 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
63 if (unlikely(!ff))
64 return NULL;
65
66 ff->fm = fm;
67 ff->release_args = kzalloc(sizeof(*ff->release_args),
68 GFP_KERNEL_ACCOUNT);
69 if (!ff->release_args) {
70 kfree(ff);
71 return NULL;
72 }
73
74 INIT_LIST_HEAD(&ff->write_entry);
75 mutex_init(&ff->readdir.lock);
76 refcount_set(&ff->count, 1);
77 RB_CLEAR_NODE(&ff->polled_node);
78 init_waitqueue_head(&ff->poll_wait);
79
80 ff->kh = atomic64_inc_return(&fm->fc->khctr);
81
82 return ff;
83 }
84
fuse_file_free(struct fuse_file * ff)85 void fuse_file_free(struct fuse_file *ff)
86 {
87 kfree(ff->release_args);
88 mutex_destroy(&ff->readdir.lock);
89 kfree(ff);
90 }
91
fuse_file_get(struct fuse_file * ff)92 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
93 {
94 refcount_inc(&ff->count);
95 return ff;
96 }
97
fuse_release_end(struct fuse_mount * fm,struct fuse_args * args,int error)98 static void fuse_release_end(struct fuse_mount *fm, struct fuse_args *args,
99 int error)
100 {
101 struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
102
103 iput(ra->inode);
104 kfree(ra);
105 }
106
fuse_file_put(struct fuse_file * ff,bool sync,bool isdir)107 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
108 {
109 if (refcount_dec_and_test(&ff->count)) {
110 struct fuse_args *args = &ff->release_args->args;
111
112 if (isdir ? ff->fm->fc->no_opendir : ff->fm->fc->no_open) {
113 /* Do nothing when client does not implement 'open' */
114 fuse_release_end(ff->fm, args, 0);
115 } else if (sync) {
116 fuse_simple_request(ff->fm, args);
117 fuse_release_end(ff->fm, args, 0);
118 } else {
119 args->end = fuse_release_end;
120 if (fuse_simple_background(ff->fm, args,
121 GFP_KERNEL | __GFP_NOFAIL))
122 fuse_release_end(ff->fm, args, -ENOTCONN);
123 }
124 kfree(ff);
125 }
126 }
127
fuse_file_open(struct fuse_mount * fm,u64 nodeid,unsigned int open_flags,bool isdir)128 struct fuse_file *fuse_file_open(struct fuse_mount *fm, u64 nodeid,
129 unsigned int open_flags, bool isdir)
130 {
131 struct fuse_conn *fc = fm->fc;
132 struct fuse_file *ff;
133 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
134
135 ff = fuse_file_alloc(fm);
136 if (!ff)
137 return ERR_PTR(-ENOMEM);
138
139 ff->fh = 0;
140 /* Default for no-open */
141 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
142 if (isdir ? !fc->no_opendir : !fc->no_open) {
143 struct fuse_open_out outarg;
144 int err;
145
146 err = fuse_send_open(fm, nodeid, open_flags, opcode, &outarg);
147 if (!err) {
148 ff->fh = outarg.fh;
149 ff->open_flags = outarg.open_flags;
150
151 } else if (err != -ENOSYS) {
152 fuse_file_free(ff);
153 return ERR_PTR(err);
154 } else {
155 if (isdir)
156 fc->no_opendir = 1;
157 else
158 fc->no_open = 1;
159 }
160 }
161
162 if (isdir)
163 ff->open_flags &= ~FOPEN_DIRECT_IO;
164
165 ff->nodeid = nodeid;
166
167 return ff;
168 }
169
fuse_do_open(struct fuse_mount * fm,u64 nodeid,struct file * file,bool isdir)170 int fuse_do_open(struct fuse_mount *fm, u64 nodeid, struct file *file,
171 bool isdir)
172 {
173 struct fuse_file *ff = fuse_file_open(fm, nodeid, file->f_flags, isdir);
174
175 if (!IS_ERR(ff))
176 file->private_data = ff;
177
178 return PTR_ERR_OR_ZERO(ff);
179 }
180 EXPORT_SYMBOL_GPL(fuse_do_open);
181
fuse_link_write_file(struct file * file)182 static void fuse_link_write_file(struct file *file)
183 {
184 struct inode *inode = file_inode(file);
185 struct fuse_inode *fi = get_fuse_inode(inode);
186 struct fuse_file *ff = file->private_data;
187 /*
188 * file may be written through mmap, so chain it onto the
189 * inodes's write_file list
190 */
191 spin_lock(&fi->lock);
192 if (list_empty(&ff->write_entry))
193 list_add(&ff->write_entry, &fi->write_files);
194 spin_unlock(&fi->lock);
195 }
196
fuse_finish_open(struct inode * inode,struct file * file)197 void fuse_finish_open(struct inode *inode, struct file *file)
198 {
199 struct fuse_file *ff = file->private_data;
200 struct fuse_conn *fc = get_fuse_conn(inode);
201
202 if (ff->open_flags & FOPEN_STREAM)
203 stream_open(inode, file);
204 else if (ff->open_flags & FOPEN_NONSEEKABLE)
205 nonseekable_open(inode, file);
206
207 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
208 struct fuse_inode *fi = get_fuse_inode(inode);
209
210 spin_lock(&fi->lock);
211 fi->attr_version = atomic64_inc_return(&fc->attr_version);
212 i_size_write(inode, 0);
213 spin_unlock(&fi->lock);
214 file_update_time(file);
215 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
216 }
217 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
218 fuse_link_write_file(file);
219 }
220
fuse_open_common(struct inode * inode,struct file * file,bool isdir)221 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
222 {
223 struct fuse_mount *fm = get_fuse_mount(inode);
224 struct fuse_conn *fc = fm->fc;
225 int err;
226 bool is_wb_truncate = (file->f_flags & O_TRUNC) &&
227 fc->atomic_o_trunc &&
228 fc->writeback_cache;
229 bool dax_truncate = (file->f_flags & O_TRUNC) &&
230 fc->atomic_o_trunc && FUSE_IS_DAX(inode);
231
232 if (fuse_is_bad(inode))
233 return -EIO;
234
235 err = generic_file_open(inode, file);
236 if (err)
237 return err;
238
239 if (is_wb_truncate || dax_truncate)
240 inode_lock(inode);
241
242 if (dax_truncate) {
243 filemap_invalidate_lock(inode->i_mapping);
244 err = fuse_dax_break_layouts(inode, 0, 0);
245 if (err)
246 goto out_inode_unlock;
247 }
248
249 if (is_wb_truncate || dax_truncate)
250 fuse_set_nowrite(inode);
251
252 err = fuse_do_open(fm, get_node_id(inode), file, isdir);
253 if (!err)
254 fuse_finish_open(inode, file);
255
256 if (is_wb_truncate || dax_truncate)
257 fuse_release_nowrite(inode);
258 if (!err) {
259 struct fuse_file *ff = file->private_data;
260
261 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC))
262 truncate_pagecache(inode, 0);
263 else if (!(ff->open_flags & FOPEN_KEEP_CACHE))
264 invalidate_inode_pages2(inode->i_mapping);
265 }
266 if (dax_truncate)
267 filemap_invalidate_unlock(inode->i_mapping);
268 out_inode_unlock:
269 if (is_wb_truncate || dax_truncate)
270 inode_unlock(inode);
271
272 return err;
273 }
274
fuse_prepare_release(struct fuse_inode * fi,struct fuse_file * ff,unsigned int flags,int opcode)275 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
276 unsigned int flags, int opcode)
277 {
278 struct fuse_conn *fc = ff->fm->fc;
279 struct fuse_release_args *ra = ff->release_args;
280
281 /* Inode is NULL on error path of fuse_create_open() */
282 if (likely(fi)) {
283 spin_lock(&fi->lock);
284 list_del(&ff->write_entry);
285 spin_unlock(&fi->lock);
286 }
287 spin_lock(&fc->lock);
288 if (!RB_EMPTY_NODE(&ff->polled_node))
289 rb_erase(&ff->polled_node, &fc->polled_files);
290 spin_unlock(&fc->lock);
291
292 wake_up_interruptible_all(&ff->poll_wait);
293
294 ra->inarg.fh = ff->fh;
295 ra->inarg.flags = flags;
296 ra->args.in_numargs = 1;
297 ra->args.in_args[0].size = sizeof(struct fuse_release_in);
298 ra->args.in_args[0].value = &ra->inarg;
299 ra->args.opcode = opcode;
300 ra->args.nodeid = ff->nodeid;
301 ra->args.force = true;
302 ra->args.nocreds = true;
303 }
304
fuse_file_release(struct inode * inode,struct fuse_file * ff,unsigned int open_flags,fl_owner_t id,bool isdir)305 void fuse_file_release(struct inode *inode, struct fuse_file *ff,
306 unsigned int open_flags, fl_owner_t id, bool isdir)
307 {
308 struct fuse_inode *fi = get_fuse_inode(inode);
309 struct fuse_release_args *ra = ff->release_args;
310 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
311
312 fuse_prepare_release(fi, ff, open_flags, opcode);
313
314 if (ff->flock) {
315 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
316 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fm->fc, id);
317 }
318 /* Hold inode until release is finished */
319 ra->inode = igrab(inode);
320
321 /*
322 * Normally this will send the RELEASE request, however if
323 * some asynchronous READ or WRITE requests are outstanding,
324 * the sending will be delayed.
325 *
326 * Make the release synchronous if this is a fuseblk mount,
327 * synchronous RELEASE is allowed (and desirable) in this case
328 * because the server can be trusted not to screw up.
329 */
330 fuse_file_put(ff, ff->fm->fc->destroy, isdir);
331 }
332
fuse_release_common(struct file * file,bool isdir)333 void fuse_release_common(struct file *file, bool isdir)
334 {
335 fuse_file_release(file_inode(file), file->private_data, file->f_flags,
336 (fl_owner_t) file, isdir);
337 }
338
fuse_open(struct inode * inode,struct file * file)339 static int fuse_open(struct inode *inode, struct file *file)
340 {
341 return fuse_open_common(inode, file, false);
342 }
343
fuse_release(struct inode * inode,struct file * file)344 static int fuse_release(struct inode *inode, struct file *file)
345 {
346 struct fuse_conn *fc = get_fuse_conn(inode);
347
348 /*
349 * Dirty pages might remain despite write_inode_now() call from
350 * fuse_flush() due to writes racing with the close.
351 */
352 if (fc->writeback_cache)
353 write_inode_now(inode, 1);
354
355 fuse_release_common(file, false);
356
357 /* return value is ignored by VFS */
358 return 0;
359 }
360
fuse_sync_release(struct fuse_inode * fi,struct fuse_file * ff,unsigned int flags)361 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff,
362 unsigned int flags)
363 {
364 WARN_ON(refcount_read(&ff->count) > 1);
365 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
366 /*
367 * iput(NULL) is a no-op and since the refcount is 1 and everything's
368 * synchronous, we are fine with not doing igrab() here"
369 */
370 fuse_file_put(ff, true, false);
371 }
372 EXPORT_SYMBOL_GPL(fuse_sync_release);
373
374 /*
375 * Scramble the ID space with XTEA, so that the value of the files_struct
376 * pointer is not exposed to userspace.
377 */
fuse_lock_owner_id(struct fuse_conn * fc,fl_owner_t id)378 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
379 {
380 u32 *k = fc->scramble_key;
381 u64 v = (unsigned long) id;
382 u32 v0 = v;
383 u32 v1 = v >> 32;
384 u32 sum = 0;
385 int i;
386
387 for (i = 0; i < 32; i++) {
388 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
389 sum += 0x9E3779B9;
390 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
391 }
392
393 return (u64) v0 + ((u64) v1 << 32);
394 }
395
396 struct fuse_writepage_args {
397 struct fuse_io_args ia;
398 struct rb_node writepages_entry;
399 struct list_head queue_entry;
400 struct fuse_writepage_args *next;
401 struct inode *inode;
402 struct fuse_sync_bucket *bucket;
403 };
404
fuse_find_writeback(struct fuse_inode * fi,pgoff_t idx_from,pgoff_t idx_to)405 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
406 pgoff_t idx_from, pgoff_t idx_to)
407 {
408 struct rb_node *n;
409
410 n = fi->writepages.rb_node;
411
412 while (n) {
413 struct fuse_writepage_args *wpa;
414 pgoff_t curr_index;
415
416 wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry);
417 WARN_ON(get_fuse_inode(wpa->inode) != fi);
418 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
419 if (idx_from >= curr_index + wpa->ia.ap.num_pages)
420 n = n->rb_right;
421 else if (idx_to < curr_index)
422 n = n->rb_left;
423 else
424 return wpa;
425 }
426 return NULL;
427 }
428
429 /*
430 * Check if any page in a range is under writeback
431 *
432 * This is currently done by walking the list of writepage requests
433 * for the inode, which can be pretty inefficient.
434 */
fuse_range_is_writeback(struct inode * inode,pgoff_t idx_from,pgoff_t idx_to)435 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
436 pgoff_t idx_to)
437 {
438 struct fuse_inode *fi = get_fuse_inode(inode);
439 bool found;
440
441 spin_lock(&fi->lock);
442 found = fuse_find_writeback(fi, idx_from, idx_to);
443 spin_unlock(&fi->lock);
444
445 return found;
446 }
447
fuse_page_is_writeback(struct inode * inode,pgoff_t index)448 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
449 {
450 return fuse_range_is_writeback(inode, index, index);
451 }
452
453 /*
454 * Wait for page writeback to be completed.
455 *
456 * Since fuse doesn't rely on the VM writeback tracking, this has to
457 * use some other means.
458 */
fuse_wait_on_page_writeback(struct inode * inode,pgoff_t index)459 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
460 {
461 struct fuse_inode *fi = get_fuse_inode(inode);
462
463 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
464 }
465
466 /*
467 * Wait for all pending writepages on the inode to finish.
468 *
469 * This is currently done by blocking further writes with FUSE_NOWRITE
470 * and waiting for all sent writes to complete.
471 *
472 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
473 * could conflict with truncation.
474 */
fuse_sync_writes(struct inode * inode)475 static void fuse_sync_writes(struct inode *inode)
476 {
477 fuse_set_nowrite(inode);
478 fuse_release_nowrite(inode);
479 }
480
fuse_flush(struct file * file,fl_owner_t id)481 static int fuse_flush(struct file *file, fl_owner_t id)
482 {
483 struct inode *inode = file_inode(file);
484 struct fuse_mount *fm = get_fuse_mount(inode);
485 struct fuse_file *ff = file->private_data;
486 struct fuse_flush_in inarg;
487 FUSE_ARGS(args);
488 int err;
489
490 if (fuse_is_bad(inode))
491 return -EIO;
492
493 if (ff->open_flags & FOPEN_NOFLUSH && !fm->fc->writeback_cache)
494 return 0;
495
496 err = write_inode_now(inode, 1);
497 if (err)
498 return err;
499
500 inode_lock(inode);
501 fuse_sync_writes(inode);
502 inode_unlock(inode);
503
504 err = filemap_check_errors(file->f_mapping);
505 if (err)
506 return err;
507
508 err = 0;
509 if (fm->fc->no_flush)
510 goto inval_attr_out;
511
512 memset(&inarg, 0, sizeof(inarg));
513 inarg.fh = ff->fh;
514 inarg.lock_owner = fuse_lock_owner_id(fm->fc, id);
515 args.opcode = FUSE_FLUSH;
516 args.nodeid = get_node_id(inode);
517 args.in_numargs = 1;
518 args.in_args[0].size = sizeof(inarg);
519 args.in_args[0].value = &inarg;
520 args.force = true;
521
522 err = fuse_simple_request(fm, &args);
523 if (err == -ENOSYS) {
524 fm->fc->no_flush = 1;
525 err = 0;
526 }
527
528 inval_attr_out:
529 /*
530 * In memory i_blocks is not maintained by fuse, if writeback cache is
531 * enabled, i_blocks from cached attr may not be accurate.
532 */
533 if (!err && fm->fc->writeback_cache)
534 fuse_invalidate_attr_mask(inode, STATX_BLOCKS);
535 return err;
536 }
537
fuse_fsync_common(struct file * file,loff_t start,loff_t end,int datasync,int opcode)538 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
539 int datasync, int opcode)
540 {
541 struct inode *inode = file->f_mapping->host;
542 struct fuse_mount *fm = get_fuse_mount(inode);
543 struct fuse_file *ff = file->private_data;
544 FUSE_ARGS(args);
545 struct fuse_fsync_in inarg;
546
547 memset(&inarg, 0, sizeof(inarg));
548 inarg.fh = ff->fh;
549 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
550 args.opcode = opcode;
551 args.nodeid = get_node_id(inode);
552 args.in_numargs = 1;
553 args.in_args[0].size = sizeof(inarg);
554 args.in_args[0].value = &inarg;
555 return fuse_simple_request(fm, &args);
556 }
557
fuse_fsync(struct file * file,loff_t start,loff_t end,int datasync)558 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
559 int datasync)
560 {
561 struct inode *inode = file->f_mapping->host;
562 struct fuse_conn *fc = get_fuse_conn(inode);
563 int err;
564
565 if (fuse_is_bad(inode))
566 return -EIO;
567
568 inode_lock(inode);
569
570 /*
571 * Start writeback against all dirty pages of the inode, then
572 * wait for all outstanding writes, before sending the FSYNC
573 * request.
574 */
575 err = file_write_and_wait_range(file, start, end);
576 if (err)
577 goto out;
578
579 fuse_sync_writes(inode);
580
581 /*
582 * Due to implementation of fuse writeback
583 * file_write_and_wait_range() does not catch errors.
584 * We have to do this directly after fuse_sync_writes()
585 */
586 err = file_check_and_advance_wb_err(file);
587 if (err)
588 goto out;
589
590 err = sync_inode_metadata(inode, 1);
591 if (err)
592 goto out;
593
594 if (fc->no_fsync)
595 goto out;
596
597 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
598 if (err == -ENOSYS) {
599 fc->no_fsync = 1;
600 err = 0;
601 }
602 out:
603 inode_unlock(inode);
604
605 return err;
606 }
607
fuse_read_args_fill(struct fuse_io_args * ia,struct file * file,loff_t pos,size_t count,int opcode)608 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
609 size_t count, int opcode)
610 {
611 struct fuse_file *ff = file->private_data;
612 struct fuse_args *args = &ia->ap.args;
613
614 ia->read.in.fh = ff->fh;
615 ia->read.in.offset = pos;
616 ia->read.in.size = count;
617 ia->read.in.flags = file->f_flags;
618 args->opcode = opcode;
619 args->nodeid = ff->nodeid;
620 args->in_numargs = 1;
621 args->in_args[0].size = sizeof(ia->read.in);
622 args->in_args[0].value = &ia->read.in;
623 args->out_argvar = true;
624 args->out_numargs = 1;
625 args->out_args[0].size = count;
626 }
627
fuse_release_user_pages(struct fuse_args_pages * ap,bool should_dirty)628 static void fuse_release_user_pages(struct fuse_args_pages *ap,
629 bool should_dirty)
630 {
631 unsigned int i;
632
633 for (i = 0; i < ap->num_pages; i++) {
634 if (should_dirty)
635 set_page_dirty_lock(ap->pages[i]);
636 put_page(ap->pages[i]);
637 }
638 }
639
fuse_io_release(struct kref * kref)640 static void fuse_io_release(struct kref *kref)
641 {
642 kfree(container_of(kref, struct fuse_io_priv, refcnt));
643 }
644
fuse_get_res_by_io(struct fuse_io_priv * io)645 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
646 {
647 if (io->err)
648 return io->err;
649
650 if (io->bytes >= 0 && io->write)
651 return -EIO;
652
653 return io->bytes < 0 ? io->size : io->bytes;
654 }
655
656 /*
657 * In case of short read, the caller sets 'pos' to the position of
658 * actual end of fuse request in IO request. Otherwise, if bytes_requested
659 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
660 *
661 * An example:
662 * User requested DIO read of 64K. It was split into two 32K fuse requests,
663 * both submitted asynchronously. The first of them was ACKed by userspace as
664 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
665 * second request was ACKed as short, e.g. only 1K was read, resulting in
666 * pos == 33K.
667 *
668 * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
669 * will be equal to the length of the longest contiguous fragment of
670 * transferred data starting from the beginning of IO request.
671 */
fuse_aio_complete(struct fuse_io_priv * io,int err,ssize_t pos)672 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
673 {
674 int left;
675
676 spin_lock(&io->lock);
677 if (err)
678 io->err = io->err ? : err;
679 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
680 io->bytes = pos;
681
682 left = --io->reqs;
683 if (!left && io->blocking)
684 complete(io->done);
685 spin_unlock(&io->lock);
686
687 if (!left && !io->blocking) {
688 ssize_t res = fuse_get_res_by_io(io);
689
690 if (res >= 0) {
691 struct inode *inode = file_inode(io->iocb->ki_filp);
692 struct fuse_conn *fc = get_fuse_conn(inode);
693 struct fuse_inode *fi = get_fuse_inode(inode);
694
695 spin_lock(&fi->lock);
696 fi->attr_version = atomic64_inc_return(&fc->attr_version);
697 spin_unlock(&fi->lock);
698 }
699
700 io->iocb->ki_complete(io->iocb, res);
701 }
702
703 kref_put(&io->refcnt, fuse_io_release);
704 }
705
fuse_io_alloc(struct fuse_io_priv * io,unsigned int npages)706 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
707 unsigned int npages)
708 {
709 struct fuse_io_args *ia;
710
711 ia = kzalloc(sizeof(*ia), GFP_KERNEL);
712 if (ia) {
713 ia->io = io;
714 ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
715 &ia->ap.descs);
716 if (!ia->ap.pages) {
717 kfree(ia);
718 ia = NULL;
719 }
720 }
721 return ia;
722 }
723
fuse_io_free(struct fuse_io_args * ia)724 static void fuse_io_free(struct fuse_io_args *ia)
725 {
726 kfree(ia->ap.pages);
727 kfree(ia);
728 }
729
fuse_aio_complete_req(struct fuse_mount * fm,struct fuse_args * args,int err)730 static void fuse_aio_complete_req(struct fuse_mount *fm, struct fuse_args *args,
731 int err)
732 {
733 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
734 struct fuse_io_priv *io = ia->io;
735 ssize_t pos = -1;
736
737 fuse_release_user_pages(&ia->ap, io->should_dirty);
738
739 if (err) {
740 /* Nothing */
741 } else if (io->write) {
742 if (ia->write.out.size > ia->write.in.size) {
743 err = -EIO;
744 } else if (ia->write.in.size != ia->write.out.size) {
745 pos = ia->write.in.offset - io->offset +
746 ia->write.out.size;
747 }
748 } else {
749 u32 outsize = args->out_args[0].size;
750
751 if (ia->read.in.size != outsize)
752 pos = ia->read.in.offset - io->offset + outsize;
753 }
754
755 fuse_aio_complete(io, err, pos);
756 fuse_io_free(ia);
757 }
758
fuse_async_req_send(struct fuse_mount * fm,struct fuse_io_args * ia,size_t num_bytes)759 static ssize_t fuse_async_req_send(struct fuse_mount *fm,
760 struct fuse_io_args *ia, size_t num_bytes)
761 {
762 ssize_t err;
763 struct fuse_io_priv *io = ia->io;
764
765 spin_lock(&io->lock);
766 kref_get(&io->refcnt);
767 io->size += num_bytes;
768 io->reqs++;
769 spin_unlock(&io->lock);
770
771 ia->ap.args.end = fuse_aio_complete_req;
772 ia->ap.args.may_block = io->should_dirty;
773 err = fuse_simple_background(fm, &ia->ap.args, GFP_KERNEL);
774 if (err)
775 fuse_aio_complete_req(fm, &ia->ap.args, err);
776
777 return num_bytes;
778 }
779
fuse_send_read(struct fuse_io_args * ia,loff_t pos,size_t count,fl_owner_t owner)780 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
781 fl_owner_t owner)
782 {
783 struct file *file = ia->io->iocb->ki_filp;
784 struct fuse_file *ff = file->private_data;
785 struct fuse_mount *fm = ff->fm;
786
787 fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
788 if (owner != NULL) {
789 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
790 ia->read.in.lock_owner = fuse_lock_owner_id(fm->fc, owner);
791 }
792
793 if (ia->io->async)
794 return fuse_async_req_send(fm, ia, count);
795
796 return fuse_simple_request(fm, &ia->ap.args);
797 }
798
fuse_read_update_size(struct inode * inode,loff_t size,u64 attr_ver)799 static void fuse_read_update_size(struct inode *inode, loff_t size,
800 u64 attr_ver)
801 {
802 struct fuse_conn *fc = get_fuse_conn(inode);
803 struct fuse_inode *fi = get_fuse_inode(inode);
804
805 spin_lock(&fi->lock);
806 if (attr_ver >= fi->attr_version && size < inode->i_size &&
807 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
808 fi->attr_version = atomic64_inc_return(&fc->attr_version);
809 i_size_write(inode, size);
810 }
811 spin_unlock(&fi->lock);
812 }
813
fuse_short_read(struct inode * inode,u64 attr_ver,size_t num_read,struct fuse_args_pages * ap)814 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
815 struct fuse_args_pages *ap)
816 {
817 struct fuse_conn *fc = get_fuse_conn(inode);
818
819 /*
820 * If writeback_cache is enabled, a short read means there's a hole in
821 * the file. Some data after the hole is in page cache, but has not
822 * reached the client fs yet. So the hole is not present there.
823 */
824 if (!fc->writeback_cache) {
825 loff_t pos = page_offset(ap->pages[0]) + num_read;
826 fuse_read_update_size(inode, pos, attr_ver);
827 }
828 }
829
fuse_do_readpage(struct file * file,struct page * page)830 static int fuse_do_readpage(struct file *file, struct page *page)
831 {
832 struct inode *inode = page->mapping->host;
833 struct fuse_mount *fm = get_fuse_mount(inode);
834 loff_t pos = page_offset(page);
835 struct fuse_page_desc desc = { .length = PAGE_SIZE };
836 struct fuse_io_args ia = {
837 .ap.args.page_zeroing = true,
838 .ap.args.out_pages = true,
839 .ap.num_pages = 1,
840 .ap.pages = &page,
841 .ap.descs = &desc,
842 };
843 ssize_t res;
844 u64 attr_ver;
845
846 /*
847 * Page writeback can extend beyond the lifetime of the
848 * page-cache page, so make sure we read a properly synced
849 * page.
850 */
851 fuse_wait_on_page_writeback(inode, page->index);
852
853 attr_ver = fuse_get_attr_version(fm->fc);
854
855 /* Don't overflow end offset */
856 if (pos + (desc.length - 1) == LLONG_MAX)
857 desc.length--;
858
859 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
860 res = fuse_simple_request(fm, &ia.ap.args);
861 if (res < 0)
862 return res;
863 /*
864 * Short read means EOF. If file size is larger, truncate it
865 */
866 if (res < desc.length)
867 fuse_short_read(inode, attr_ver, res, &ia.ap);
868
869 SetPageUptodate(page);
870
871 return 0;
872 }
873
fuse_read_folio(struct file * file,struct folio * folio)874 static int fuse_read_folio(struct file *file, struct folio *folio)
875 {
876 struct page *page = &folio->page;
877 struct inode *inode = page->mapping->host;
878 int err;
879
880 err = -EIO;
881 if (fuse_is_bad(inode))
882 goto out;
883
884 err = fuse_do_readpage(file, page);
885 fuse_invalidate_atime(inode);
886 out:
887 unlock_page(page);
888 return err;
889 }
890
fuse_readpages_end(struct fuse_mount * fm,struct fuse_args * args,int err)891 static void fuse_readpages_end(struct fuse_mount *fm, struct fuse_args *args,
892 int err)
893 {
894 int i;
895 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
896 struct fuse_args_pages *ap = &ia->ap;
897 size_t count = ia->read.in.size;
898 size_t num_read = args->out_args[0].size;
899 struct address_space *mapping = NULL;
900
901 for (i = 0; mapping == NULL && i < ap->num_pages; i++)
902 mapping = ap->pages[i]->mapping;
903
904 if (mapping) {
905 struct inode *inode = mapping->host;
906
907 /*
908 * Short read means EOF. If file size is larger, truncate it
909 */
910 if (!err && num_read < count)
911 fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
912
913 fuse_invalidate_atime(inode);
914 }
915
916 for (i = 0; i < ap->num_pages; i++) {
917 struct page *page = ap->pages[i];
918
919 if (!err)
920 SetPageUptodate(page);
921 else
922 SetPageError(page);
923 unlock_page(page);
924 put_page(page);
925 }
926 if (ia->ff)
927 fuse_file_put(ia->ff, false, false);
928
929 fuse_io_free(ia);
930 }
931
fuse_send_readpages(struct fuse_io_args * ia,struct file * file)932 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
933 {
934 struct fuse_file *ff = file->private_data;
935 struct fuse_mount *fm = ff->fm;
936 struct fuse_args_pages *ap = &ia->ap;
937 loff_t pos = page_offset(ap->pages[0]);
938 size_t count = ap->num_pages << PAGE_SHIFT;
939 ssize_t res;
940 int err;
941
942 ap->args.out_pages = true;
943 ap->args.page_zeroing = true;
944 ap->args.page_replace = true;
945
946 /* Don't overflow end offset */
947 if (pos + (count - 1) == LLONG_MAX) {
948 count--;
949 ap->descs[ap->num_pages - 1].length--;
950 }
951 WARN_ON((loff_t) (pos + count) < 0);
952
953 fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
954 ia->read.attr_ver = fuse_get_attr_version(fm->fc);
955 if (fm->fc->async_read) {
956 ia->ff = fuse_file_get(ff);
957 ap->args.end = fuse_readpages_end;
958 err = fuse_simple_background(fm, &ap->args, GFP_KERNEL);
959 if (!err)
960 return;
961 } else {
962 res = fuse_simple_request(fm, &ap->args);
963 err = res < 0 ? res : 0;
964 }
965 fuse_readpages_end(fm, &ap->args, err);
966 }
967
fuse_readahead(struct readahead_control * rac)968 static void fuse_readahead(struct readahead_control *rac)
969 {
970 struct inode *inode = rac->mapping->host;
971 struct fuse_conn *fc = get_fuse_conn(inode);
972 unsigned int i, max_pages, nr_pages = 0;
973
974 if (fuse_is_bad(inode))
975 return;
976
977 max_pages = min_t(unsigned int, fc->max_pages,
978 fc->max_read / PAGE_SIZE);
979
980 for (;;) {
981 struct fuse_io_args *ia;
982 struct fuse_args_pages *ap;
983
984 if (fc->num_background >= fc->congestion_threshold &&
985 rac->ra->async_size >= readahead_count(rac))
986 /*
987 * Congested and only async pages left, so skip the
988 * rest.
989 */
990 break;
991
992 nr_pages = readahead_count(rac) - nr_pages;
993 if (nr_pages > max_pages)
994 nr_pages = max_pages;
995 if (nr_pages == 0)
996 break;
997 ia = fuse_io_alloc(NULL, nr_pages);
998 if (!ia)
999 return;
1000 ap = &ia->ap;
1001 nr_pages = __readahead_batch(rac, ap->pages, nr_pages);
1002 for (i = 0; i < nr_pages; i++) {
1003 fuse_wait_on_page_writeback(inode,
1004 readahead_index(rac) + i);
1005 ap->descs[i].length = PAGE_SIZE;
1006 }
1007 ap->num_pages = nr_pages;
1008 fuse_send_readpages(ia, rac->file);
1009 }
1010 }
1011
fuse_cache_read_iter(struct kiocb * iocb,struct iov_iter * to)1012 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
1013 {
1014 struct inode *inode = iocb->ki_filp->f_mapping->host;
1015 struct fuse_conn *fc = get_fuse_conn(inode);
1016
1017 /*
1018 * In auto invalidate mode, always update attributes on read.
1019 * Otherwise, only update if we attempt to read past EOF (to ensure
1020 * i_size is up to date).
1021 */
1022 if (fc->auto_inval_data ||
1023 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
1024 int err;
1025 err = fuse_update_attributes(inode, iocb->ki_filp, STATX_SIZE);
1026 if (err)
1027 return err;
1028 }
1029
1030 return generic_file_read_iter(iocb, to);
1031 }
1032
fuse_write_args_fill(struct fuse_io_args * ia,struct fuse_file * ff,loff_t pos,size_t count)1033 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1034 loff_t pos, size_t count)
1035 {
1036 struct fuse_args *args = &ia->ap.args;
1037
1038 ia->write.in.fh = ff->fh;
1039 ia->write.in.offset = pos;
1040 ia->write.in.size = count;
1041 args->opcode = FUSE_WRITE;
1042 args->nodeid = ff->nodeid;
1043 args->in_numargs = 2;
1044 if (ff->fm->fc->minor < 9)
1045 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1046 else
1047 args->in_args[0].size = sizeof(ia->write.in);
1048 args->in_args[0].value = &ia->write.in;
1049 args->in_args[1].size = count;
1050 args->out_numargs = 1;
1051 args->out_args[0].size = sizeof(ia->write.out);
1052 args->out_args[0].value = &ia->write.out;
1053 }
1054
fuse_write_flags(struct kiocb * iocb)1055 static unsigned int fuse_write_flags(struct kiocb *iocb)
1056 {
1057 unsigned int flags = iocb->ki_filp->f_flags;
1058
1059 if (iocb_is_dsync(iocb))
1060 flags |= O_DSYNC;
1061 if (iocb->ki_flags & IOCB_SYNC)
1062 flags |= O_SYNC;
1063
1064 return flags;
1065 }
1066
fuse_send_write(struct fuse_io_args * ia,loff_t pos,size_t count,fl_owner_t owner)1067 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1068 size_t count, fl_owner_t owner)
1069 {
1070 struct kiocb *iocb = ia->io->iocb;
1071 struct file *file = iocb->ki_filp;
1072 struct fuse_file *ff = file->private_data;
1073 struct fuse_mount *fm = ff->fm;
1074 struct fuse_write_in *inarg = &ia->write.in;
1075 ssize_t err;
1076
1077 fuse_write_args_fill(ia, ff, pos, count);
1078 inarg->flags = fuse_write_flags(iocb);
1079 if (owner != NULL) {
1080 inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1081 inarg->lock_owner = fuse_lock_owner_id(fm->fc, owner);
1082 }
1083
1084 if (ia->io->async)
1085 return fuse_async_req_send(fm, ia, count);
1086
1087 err = fuse_simple_request(fm, &ia->ap.args);
1088 if (!err && ia->write.out.size > count)
1089 err = -EIO;
1090
1091 return err ?: ia->write.out.size;
1092 }
1093
fuse_write_update_attr(struct inode * inode,loff_t pos,ssize_t written)1094 bool fuse_write_update_attr(struct inode *inode, loff_t pos, ssize_t written)
1095 {
1096 struct fuse_conn *fc = get_fuse_conn(inode);
1097 struct fuse_inode *fi = get_fuse_inode(inode);
1098 bool ret = false;
1099
1100 spin_lock(&fi->lock);
1101 fi->attr_version = atomic64_inc_return(&fc->attr_version);
1102 if (written > 0 && pos > inode->i_size) {
1103 i_size_write(inode, pos);
1104 ret = true;
1105 }
1106 spin_unlock(&fi->lock);
1107
1108 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
1109
1110 return ret;
1111 }
1112
fuse_send_write_pages(struct fuse_io_args * ia,struct kiocb * iocb,struct inode * inode,loff_t pos,size_t count)1113 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1114 struct kiocb *iocb, struct inode *inode,
1115 loff_t pos, size_t count)
1116 {
1117 struct fuse_args_pages *ap = &ia->ap;
1118 struct file *file = iocb->ki_filp;
1119 struct fuse_file *ff = file->private_data;
1120 struct fuse_mount *fm = ff->fm;
1121 unsigned int offset, i;
1122 bool short_write;
1123 int err;
1124
1125 for (i = 0; i < ap->num_pages; i++)
1126 fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1127
1128 fuse_write_args_fill(ia, ff, pos, count);
1129 ia->write.in.flags = fuse_write_flags(iocb);
1130 if (fm->fc->handle_killpriv_v2 && !capable(CAP_FSETID))
1131 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID;
1132
1133 err = fuse_simple_request(fm, &ap->args);
1134 if (!err && ia->write.out.size > count)
1135 err = -EIO;
1136
1137 short_write = ia->write.out.size < count;
1138 offset = ap->descs[0].offset;
1139 count = ia->write.out.size;
1140 for (i = 0; i < ap->num_pages; i++) {
1141 struct page *page = ap->pages[i];
1142
1143 if (err) {
1144 ClearPageUptodate(page);
1145 } else {
1146 if (count >= PAGE_SIZE - offset)
1147 count -= PAGE_SIZE - offset;
1148 else {
1149 if (short_write)
1150 ClearPageUptodate(page);
1151 count = 0;
1152 }
1153 offset = 0;
1154 }
1155 if (ia->write.page_locked && (i == ap->num_pages - 1))
1156 unlock_page(page);
1157 put_page(page);
1158 }
1159
1160 return err;
1161 }
1162
fuse_fill_write_pages(struct fuse_io_args * ia,struct address_space * mapping,struct iov_iter * ii,loff_t pos,unsigned int max_pages)1163 static ssize_t fuse_fill_write_pages(struct fuse_io_args *ia,
1164 struct address_space *mapping,
1165 struct iov_iter *ii, loff_t pos,
1166 unsigned int max_pages)
1167 {
1168 struct fuse_args_pages *ap = &ia->ap;
1169 struct fuse_conn *fc = get_fuse_conn(mapping->host);
1170 unsigned offset = pos & (PAGE_SIZE - 1);
1171 size_t count = 0;
1172 int err;
1173
1174 ap->args.in_pages = true;
1175 ap->descs[0].offset = offset;
1176
1177 do {
1178 size_t tmp;
1179 struct page *page;
1180 pgoff_t index = pos >> PAGE_SHIFT;
1181 size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1182 iov_iter_count(ii));
1183
1184 bytes = min_t(size_t, bytes, fc->max_write - count);
1185
1186 again:
1187 err = -EFAULT;
1188 if (fault_in_iov_iter_readable(ii, bytes))
1189 break;
1190
1191 err = -ENOMEM;
1192 page = grab_cache_page_write_begin(mapping, index);
1193 if (!page)
1194 break;
1195
1196 if (mapping_writably_mapped(mapping))
1197 flush_dcache_page(page);
1198
1199 tmp = copy_page_from_iter_atomic(page, offset, bytes, ii);
1200 flush_dcache_page(page);
1201
1202 if (!tmp) {
1203 unlock_page(page);
1204 put_page(page);
1205 goto again;
1206 }
1207
1208 err = 0;
1209 ap->pages[ap->num_pages] = page;
1210 ap->descs[ap->num_pages].length = tmp;
1211 ap->num_pages++;
1212
1213 count += tmp;
1214 pos += tmp;
1215 offset += tmp;
1216 if (offset == PAGE_SIZE)
1217 offset = 0;
1218
1219 /* If we copied full page, mark it uptodate */
1220 if (tmp == PAGE_SIZE)
1221 SetPageUptodate(page);
1222
1223 if (PageUptodate(page)) {
1224 unlock_page(page);
1225 } else {
1226 ia->write.page_locked = true;
1227 break;
1228 }
1229 if (!fc->big_writes)
1230 break;
1231 } while (iov_iter_count(ii) && count < fc->max_write &&
1232 ap->num_pages < max_pages && offset == 0);
1233
1234 return count > 0 ? count : err;
1235 }
1236
fuse_wr_pages(loff_t pos,size_t len,unsigned int max_pages)1237 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1238 unsigned int max_pages)
1239 {
1240 return min_t(unsigned int,
1241 ((pos + len - 1) >> PAGE_SHIFT) -
1242 (pos >> PAGE_SHIFT) + 1,
1243 max_pages);
1244 }
1245
fuse_perform_write(struct kiocb * iocb,struct iov_iter * ii)1246 static ssize_t fuse_perform_write(struct kiocb *iocb, struct iov_iter *ii)
1247 {
1248 struct address_space *mapping = iocb->ki_filp->f_mapping;
1249 struct inode *inode = mapping->host;
1250 struct fuse_conn *fc = get_fuse_conn(inode);
1251 struct fuse_inode *fi = get_fuse_inode(inode);
1252 loff_t pos = iocb->ki_pos;
1253 int err = 0;
1254 ssize_t res = 0;
1255
1256 if (inode->i_size < pos + iov_iter_count(ii))
1257 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1258
1259 do {
1260 ssize_t count;
1261 struct fuse_io_args ia = {};
1262 struct fuse_args_pages *ap = &ia.ap;
1263 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1264 fc->max_pages);
1265
1266 ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1267 if (!ap->pages) {
1268 err = -ENOMEM;
1269 break;
1270 }
1271
1272 count = fuse_fill_write_pages(&ia, mapping, ii, pos, nr_pages);
1273 if (count <= 0) {
1274 err = count;
1275 } else {
1276 err = fuse_send_write_pages(&ia, iocb, inode,
1277 pos, count);
1278 if (!err) {
1279 size_t num_written = ia.write.out.size;
1280
1281 res += num_written;
1282 pos += num_written;
1283
1284 /* break out of the loop on short write */
1285 if (num_written != count)
1286 err = -EIO;
1287 }
1288 }
1289 kfree(ap->pages);
1290 } while (!err && iov_iter_count(ii));
1291
1292 fuse_write_update_attr(inode, pos, res);
1293 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1294
1295 if (!res)
1296 return err;
1297 iocb->ki_pos += res;
1298 return res;
1299 }
1300
fuse_cache_write_iter(struct kiocb * iocb,struct iov_iter * from)1301 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1302 {
1303 struct file *file = iocb->ki_filp;
1304 struct address_space *mapping = file->f_mapping;
1305 ssize_t written = 0;
1306 struct inode *inode = mapping->host;
1307 ssize_t err;
1308 struct fuse_conn *fc = get_fuse_conn(inode);
1309
1310 if (fc->writeback_cache) {
1311 /* Update size (EOF optimization) and mode (SUID clearing) */
1312 err = fuse_update_attributes(mapping->host, file,
1313 STATX_SIZE | STATX_MODE);
1314 if (err)
1315 return err;
1316
1317 if (fc->handle_killpriv_v2 &&
1318 setattr_should_drop_suidgid(&nop_mnt_idmap,
1319 file_inode(file))) {
1320 goto writethrough;
1321 }
1322
1323 return generic_file_write_iter(iocb, from);
1324 }
1325
1326 writethrough:
1327 inode_lock(inode);
1328
1329 err = generic_write_checks(iocb, from);
1330 if (err <= 0)
1331 goto out;
1332
1333 err = file_remove_privs(file);
1334 if (err)
1335 goto out;
1336
1337 err = file_update_time(file);
1338 if (err)
1339 goto out;
1340
1341 if (iocb->ki_flags & IOCB_DIRECT) {
1342 written = generic_file_direct_write(iocb, from);
1343 if (written < 0 || !iov_iter_count(from))
1344 goto out;
1345 written = direct_write_fallback(iocb, from, written,
1346 fuse_perform_write(iocb, from));
1347 } else {
1348 written = fuse_perform_write(iocb, from);
1349 }
1350 out:
1351 inode_unlock(inode);
1352 if (written > 0)
1353 written = generic_write_sync(iocb, written);
1354
1355 return written ? written : err;
1356 }
1357
fuse_get_user_addr(const struct iov_iter * ii)1358 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1359 {
1360 return (unsigned long)iter_iov(ii)->iov_base + ii->iov_offset;
1361 }
1362
fuse_get_frag_size(const struct iov_iter * ii,size_t max_size)1363 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1364 size_t max_size)
1365 {
1366 return min(iov_iter_single_seg_count(ii), max_size);
1367 }
1368
fuse_get_user_pages(struct fuse_args_pages * ap,struct iov_iter * ii,size_t * nbytesp,int write,unsigned int max_pages)1369 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1370 size_t *nbytesp, int write,
1371 unsigned int max_pages)
1372 {
1373 size_t nbytes = 0; /* # bytes already packed in req */
1374 ssize_t ret = 0;
1375
1376 /* Special case for kernel I/O: can copy directly into the buffer */
1377 if (iov_iter_is_kvec(ii)) {
1378 unsigned long user_addr = fuse_get_user_addr(ii);
1379 size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1380
1381 if (write)
1382 ap->args.in_args[1].value = (void *) user_addr;
1383 else
1384 ap->args.out_args[0].value = (void *) user_addr;
1385
1386 iov_iter_advance(ii, frag_size);
1387 *nbytesp = frag_size;
1388 return 0;
1389 }
1390
1391 while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1392 unsigned npages;
1393 size_t start;
1394 ret = iov_iter_get_pages2(ii, &ap->pages[ap->num_pages],
1395 *nbytesp - nbytes,
1396 max_pages - ap->num_pages,
1397 &start);
1398 if (ret < 0)
1399 break;
1400
1401 nbytes += ret;
1402
1403 ret += start;
1404 npages = DIV_ROUND_UP(ret, PAGE_SIZE);
1405
1406 ap->descs[ap->num_pages].offset = start;
1407 fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1408
1409 ap->num_pages += npages;
1410 ap->descs[ap->num_pages - 1].length -=
1411 (PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1412 }
1413
1414 ap->args.user_pages = true;
1415 if (write)
1416 ap->args.in_pages = true;
1417 else
1418 ap->args.out_pages = true;
1419
1420 *nbytesp = nbytes;
1421
1422 return ret < 0 ? ret : 0;
1423 }
1424
fuse_direct_io(struct fuse_io_priv * io,struct iov_iter * iter,loff_t * ppos,int flags)1425 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1426 loff_t *ppos, int flags)
1427 {
1428 int write = flags & FUSE_DIO_WRITE;
1429 int cuse = flags & FUSE_DIO_CUSE;
1430 struct file *file = io->iocb->ki_filp;
1431 struct address_space *mapping = file->f_mapping;
1432 struct inode *inode = mapping->host;
1433 struct fuse_file *ff = file->private_data;
1434 struct fuse_conn *fc = ff->fm->fc;
1435 size_t nmax = write ? fc->max_write : fc->max_read;
1436 loff_t pos = *ppos;
1437 size_t count = iov_iter_count(iter);
1438 pgoff_t idx_from = pos >> PAGE_SHIFT;
1439 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1440 ssize_t res = 0;
1441 int err = 0;
1442 struct fuse_io_args *ia;
1443 unsigned int max_pages;
1444 bool fopen_direct_io = ff->open_flags & FOPEN_DIRECT_IO;
1445
1446 max_pages = iov_iter_npages(iter, fc->max_pages);
1447 ia = fuse_io_alloc(io, max_pages);
1448 if (!ia)
1449 return -ENOMEM;
1450
1451 if (fopen_direct_io && fc->direct_io_relax) {
1452 res = filemap_write_and_wait_range(mapping, pos, pos + count - 1);
1453 if (res) {
1454 fuse_io_free(ia);
1455 return res;
1456 }
1457 }
1458 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1459 if (!write)
1460 inode_lock(inode);
1461 fuse_sync_writes(inode);
1462 if (!write)
1463 inode_unlock(inode);
1464 }
1465
1466 if (fopen_direct_io && write) {
1467 res = invalidate_inode_pages2_range(mapping, idx_from, idx_to);
1468 if (res) {
1469 fuse_io_free(ia);
1470 return res;
1471 }
1472 }
1473
1474 io->should_dirty = !write && user_backed_iter(iter);
1475 while (count) {
1476 ssize_t nres;
1477 fl_owner_t owner = current->files;
1478 size_t nbytes = min(count, nmax);
1479
1480 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1481 max_pages);
1482 if (err && !nbytes)
1483 break;
1484
1485 if (write) {
1486 if (!capable(CAP_FSETID))
1487 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID;
1488
1489 nres = fuse_send_write(ia, pos, nbytes, owner);
1490 } else {
1491 nres = fuse_send_read(ia, pos, nbytes, owner);
1492 }
1493
1494 if (!io->async || nres < 0) {
1495 fuse_release_user_pages(&ia->ap, io->should_dirty);
1496 fuse_io_free(ia);
1497 }
1498 ia = NULL;
1499 if (nres < 0) {
1500 iov_iter_revert(iter, nbytes);
1501 err = nres;
1502 break;
1503 }
1504 WARN_ON(nres > nbytes);
1505
1506 count -= nres;
1507 res += nres;
1508 pos += nres;
1509 if (nres != nbytes) {
1510 iov_iter_revert(iter, nbytes - nres);
1511 break;
1512 }
1513 if (count) {
1514 max_pages = iov_iter_npages(iter, fc->max_pages);
1515 ia = fuse_io_alloc(io, max_pages);
1516 if (!ia)
1517 break;
1518 }
1519 }
1520 if (ia)
1521 fuse_io_free(ia);
1522 if (res > 0)
1523 *ppos = pos;
1524
1525 return res > 0 ? res : err;
1526 }
1527 EXPORT_SYMBOL_GPL(fuse_direct_io);
1528
__fuse_direct_read(struct fuse_io_priv * io,struct iov_iter * iter,loff_t * ppos)1529 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1530 struct iov_iter *iter,
1531 loff_t *ppos)
1532 {
1533 ssize_t res;
1534 struct inode *inode = file_inode(io->iocb->ki_filp);
1535
1536 res = fuse_direct_io(io, iter, ppos, 0);
1537
1538 fuse_invalidate_atime(inode);
1539
1540 return res;
1541 }
1542
1543 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1544
fuse_direct_read_iter(struct kiocb * iocb,struct iov_iter * to)1545 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1546 {
1547 ssize_t res;
1548
1549 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1550 res = fuse_direct_IO(iocb, to);
1551 } else {
1552 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1553
1554 res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1555 }
1556
1557 return res;
1558 }
1559
fuse_direct_write_extending_i_size(struct kiocb * iocb,struct iov_iter * iter)1560 static bool fuse_direct_write_extending_i_size(struct kiocb *iocb,
1561 struct iov_iter *iter)
1562 {
1563 struct inode *inode = file_inode(iocb->ki_filp);
1564
1565 return iocb->ki_pos + iov_iter_count(iter) > i_size_read(inode);
1566 }
1567
fuse_direct_write_iter(struct kiocb * iocb,struct iov_iter * from)1568 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1569 {
1570 struct inode *inode = file_inode(iocb->ki_filp);
1571 struct file *file = iocb->ki_filp;
1572 struct fuse_file *ff = file->private_data;
1573 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1574 ssize_t res;
1575 bool exclusive_lock =
1576 !(ff->open_flags & FOPEN_PARALLEL_DIRECT_WRITES) ||
1577 iocb->ki_flags & IOCB_APPEND ||
1578 fuse_direct_write_extending_i_size(iocb, from);
1579
1580 /*
1581 * Take exclusive lock if
1582 * - Parallel direct writes are disabled - a user space decision
1583 * - Parallel direct writes are enabled and i_size is being extended.
1584 * This might not be needed at all, but needs further investigation.
1585 */
1586 if (exclusive_lock)
1587 inode_lock(inode);
1588 else {
1589 inode_lock_shared(inode);
1590
1591 /* A race with truncate might have come up as the decision for
1592 * the lock type was done without holding the lock, check again.
1593 */
1594 if (fuse_direct_write_extending_i_size(iocb, from)) {
1595 inode_unlock_shared(inode);
1596 inode_lock(inode);
1597 exclusive_lock = true;
1598 }
1599 }
1600
1601 res = generic_write_checks(iocb, from);
1602 if (res > 0) {
1603 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1604 res = fuse_direct_IO(iocb, from);
1605 } else {
1606 res = fuse_direct_io(&io, from, &iocb->ki_pos,
1607 FUSE_DIO_WRITE);
1608 fuse_write_update_attr(inode, iocb->ki_pos, res);
1609 }
1610 }
1611 if (exclusive_lock)
1612 inode_unlock(inode);
1613 else
1614 inode_unlock_shared(inode);
1615
1616 return res;
1617 }
1618
fuse_file_read_iter(struct kiocb * iocb,struct iov_iter * to)1619 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1620 {
1621 struct file *file = iocb->ki_filp;
1622 struct fuse_file *ff = file->private_data;
1623 struct inode *inode = file_inode(file);
1624
1625 if (fuse_is_bad(inode))
1626 return -EIO;
1627
1628 if (FUSE_IS_DAX(inode))
1629 return fuse_dax_read_iter(iocb, to);
1630
1631 if (!(ff->open_flags & FOPEN_DIRECT_IO))
1632 return fuse_cache_read_iter(iocb, to);
1633 else
1634 return fuse_direct_read_iter(iocb, to);
1635 }
1636
fuse_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1637 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1638 {
1639 struct file *file = iocb->ki_filp;
1640 struct fuse_file *ff = file->private_data;
1641 struct inode *inode = file_inode(file);
1642
1643 if (fuse_is_bad(inode))
1644 return -EIO;
1645
1646 if (FUSE_IS_DAX(inode))
1647 return fuse_dax_write_iter(iocb, from);
1648
1649 if (!(ff->open_flags & FOPEN_DIRECT_IO))
1650 return fuse_cache_write_iter(iocb, from);
1651 else
1652 return fuse_direct_write_iter(iocb, from);
1653 }
1654
fuse_writepage_free(struct fuse_writepage_args * wpa)1655 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1656 {
1657 struct fuse_args_pages *ap = &wpa->ia.ap;
1658 int i;
1659
1660 if (wpa->bucket)
1661 fuse_sync_bucket_dec(wpa->bucket);
1662
1663 for (i = 0; i < ap->num_pages; i++)
1664 __free_page(ap->pages[i]);
1665
1666 if (wpa->ia.ff)
1667 fuse_file_put(wpa->ia.ff, false, false);
1668
1669 kfree(ap->pages);
1670 kfree(wpa);
1671 }
1672
fuse_writepage_finish(struct fuse_mount * fm,struct fuse_writepage_args * wpa)1673 static void fuse_writepage_finish(struct fuse_mount *fm,
1674 struct fuse_writepage_args *wpa)
1675 {
1676 struct fuse_args_pages *ap = &wpa->ia.ap;
1677 struct inode *inode = wpa->inode;
1678 struct fuse_inode *fi = get_fuse_inode(inode);
1679 struct backing_dev_info *bdi = inode_to_bdi(inode);
1680 int i;
1681
1682 for (i = 0; i < ap->num_pages; i++) {
1683 dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1684 dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1685 wb_writeout_inc(&bdi->wb);
1686 }
1687 wake_up(&fi->page_waitq);
1688 }
1689
1690 /* Called under fi->lock, may release and reacquire it */
fuse_send_writepage(struct fuse_mount * fm,struct fuse_writepage_args * wpa,loff_t size)1691 static void fuse_send_writepage(struct fuse_mount *fm,
1692 struct fuse_writepage_args *wpa, loff_t size)
1693 __releases(fi->lock)
1694 __acquires(fi->lock)
1695 {
1696 struct fuse_writepage_args *aux, *next;
1697 struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1698 struct fuse_write_in *inarg = &wpa->ia.write.in;
1699 struct fuse_args *args = &wpa->ia.ap.args;
1700 __u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1701 int err;
1702
1703 fi->writectr++;
1704 if (inarg->offset + data_size <= size) {
1705 inarg->size = data_size;
1706 } else if (inarg->offset < size) {
1707 inarg->size = size - inarg->offset;
1708 } else {
1709 /* Got truncated off completely */
1710 goto out_free;
1711 }
1712
1713 args->in_args[1].size = inarg->size;
1714 args->force = true;
1715 args->nocreds = true;
1716
1717 err = fuse_simple_background(fm, args, GFP_ATOMIC);
1718 if (err == -ENOMEM) {
1719 spin_unlock(&fi->lock);
1720 err = fuse_simple_background(fm, args, GFP_NOFS | __GFP_NOFAIL);
1721 spin_lock(&fi->lock);
1722 }
1723
1724 /* Fails on broken connection only */
1725 if (unlikely(err))
1726 goto out_free;
1727
1728 return;
1729
1730 out_free:
1731 fi->writectr--;
1732 rb_erase(&wpa->writepages_entry, &fi->writepages);
1733 fuse_writepage_finish(fm, wpa);
1734 spin_unlock(&fi->lock);
1735
1736 /* After fuse_writepage_finish() aux request list is private */
1737 for (aux = wpa->next; aux; aux = next) {
1738 next = aux->next;
1739 aux->next = NULL;
1740 fuse_writepage_free(aux);
1741 }
1742
1743 fuse_writepage_free(wpa);
1744 spin_lock(&fi->lock);
1745 }
1746
1747 /*
1748 * If fi->writectr is positive (no truncate or fsync going on) send
1749 * all queued writepage requests.
1750 *
1751 * Called with fi->lock
1752 */
fuse_flush_writepages(struct inode * inode)1753 void fuse_flush_writepages(struct inode *inode)
1754 __releases(fi->lock)
1755 __acquires(fi->lock)
1756 {
1757 struct fuse_mount *fm = get_fuse_mount(inode);
1758 struct fuse_inode *fi = get_fuse_inode(inode);
1759 loff_t crop = i_size_read(inode);
1760 struct fuse_writepage_args *wpa;
1761
1762 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1763 wpa = list_entry(fi->queued_writes.next,
1764 struct fuse_writepage_args, queue_entry);
1765 list_del_init(&wpa->queue_entry);
1766 fuse_send_writepage(fm, wpa, crop);
1767 }
1768 }
1769
fuse_insert_writeback(struct rb_root * root,struct fuse_writepage_args * wpa)1770 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root,
1771 struct fuse_writepage_args *wpa)
1772 {
1773 pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT;
1774 pgoff_t idx_to = idx_from + wpa->ia.ap.num_pages - 1;
1775 struct rb_node **p = &root->rb_node;
1776 struct rb_node *parent = NULL;
1777
1778 WARN_ON(!wpa->ia.ap.num_pages);
1779 while (*p) {
1780 struct fuse_writepage_args *curr;
1781 pgoff_t curr_index;
1782
1783 parent = *p;
1784 curr = rb_entry(parent, struct fuse_writepage_args,
1785 writepages_entry);
1786 WARN_ON(curr->inode != wpa->inode);
1787 curr_index = curr->ia.write.in.offset >> PAGE_SHIFT;
1788
1789 if (idx_from >= curr_index + curr->ia.ap.num_pages)
1790 p = &(*p)->rb_right;
1791 else if (idx_to < curr_index)
1792 p = &(*p)->rb_left;
1793 else
1794 return curr;
1795 }
1796
1797 rb_link_node(&wpa->writepages_entry, parent, p);
1798 rb_insert_color(&wpa->writepages_entry, root);
1799 return NULL;
1800 }
1801
tree_insert(struct rb_root * root,struct fuse_writepage_args * wpa)1802 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa)
1803 {
1804 WARN_ON(fuse_insert_writeback(root, wpa));
1805 }
1806
fuse_writepage_end(struct fuse_mount * fm,struct fuse_args * args,int error)1807 static void fuse_writepage_end(struct fuse_mount *fm, struct fuse_args *args,
1808 int error)
1809 {
1810 struct fuse_writepage_args *wpa =
1811 container_of(args, typeof(*wpa), ia.ap.args);
1812 struct inode *inode = wpa->inode;
1813 struct fuse_inode *fi = get_fuse_inode(inode);
1814 struct fuse_conn *fc = get_fuse_conn(inode);
1815
1816 mapping_set_error(inode->i_mapping, error);
1817 /*
1818 * A writeback finished and this might have updated mtime/ctime on
1819 * server making local mtime/ctime stale. Hence invalidate attrs.
1820 * Do this only if writeback_cache is not enabled. If writeback_cache
1821 * is enabled, we trust local ctime/mtime.
1822 */
1823 if (!fc->writeback_cache)
1824 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODIFY);
1825 spin_lock(&fi->lock);
1826 rb_erase(&wpa->writepages_entry, &fi->writepages);
1827 while (wpa->next) {
1828 struct fuse_mount *fm = get_fuse_mount(inode);
1829 struct fuse_write_in *inarg = &wpa->ia.write.in;
1830 struct fuse_writepage_args *next = wpa->next;
1831
1832 wpa->next = next->next;
1833 next->next = NULL;
1834 next->ia.ff = fuse_file_get(wpa->ia.ff);
1835 tree_insert(&fi->writepages, next);
1836
1837 /*
1838 * Skip fuse_flush_writepages() to make it easy to crop requests
1839 * based on primary request size.
1840 *
1841 * 1st case (trivial): there are no concurrent activities using
1842 * fuse_set/release_nowrite. Then we're on safe side because
1843 * fuse_flush_writepages() would call fuse_send_writepage()
1844 * anyway.
1845 *
1846 * 2nd case: someone called fuse_set_nowrite and it is waiting
1847 * now for completion of all in-flight requests. This happens
1848 * rarely and no more than once per page, so this should be
1849 * okay.
1850 *
1851 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1852 * of fuse_set_nowrite..fuse_release_nowrite section. The fact
1853 * that fuse_set_nowrite returned implies that all in-flight
1854 * requests were completed along with all of their secondary
1855 * requests. Further primary requests are blocked by negative
1856 * writectr. Hence there cannot be any in-flight requests and
1857 * no invocations of fuse_writepage_end() while we're in
1858 * fuse_set_nowrite..fuse_release_nowrite section.
1859 */
1860 fuse_send_writepage(fm, next, inarg->offset + inarg->size);
1861 }
1862 fi->writectr--;
1863 fuse_writepage_finish(fm, wpa);
1864 spin_unlock(&fi->lock);
1865 fuse_writepage_free(wpa);
1866 }
1867
__fuse_write_file_get(struct fuse_inode * fi)1868 static struct fuse_file *__fuse_write_file_get(struct fuse_inode *fi)
1869 {
1870 struct fuse_file *ff;
1871
1872 spin_lock(&fi->lock);
1873 ff = list_first_entry_or_null(&fi->write_files, struct fuse_file,
1874 write_entry);
1875 if (ff)
1876 fuse_file_get(ff);
1877 spin_unlock(&fi->lock);
1878
1879 return ff;
1880 }
1881
fuse_write_file_get(struct fuse_inode * fi)1882 static struct fuse_file *fuse_write_file_get(struct fuse_inode *fi)
1883 {
1884 struct fuse_file *ff = __fuse_write_file_get(fi);
1885 WARN_ON(!ff);
1886 return ff;
1887 }
1888
fuse_write_inode(struct inode * inode,struct writeback_control * wbc)1889 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1890 {
1891 struct fuse_inode *fi = get_fuse_inode(inode);
1892 struct fuse_file *ff;
1893 int err;
1894
1895 /*
1896 * Inode is always written before the last reference is dropped and
1897 * hence this should not be reached from reclaim.
1898 *
1899 * Writing back the inode from reclaim can deadlock if the request
1900 * processing itself needs an allocation. Allocations triggering
1901 * reclaim while serving a request can't be prevented, because it can
1902 * involve any number of unrelated userspace processes.
1903 */
1904 WARN_ON(wbc->for_reclaim);
1905
1906 ff = __fuse_write_file_get(fi);
1907 err = fuse_flush_times(inode, ff);
1908 if (ff)
1909 fuse_file_put(ff, false, false);
1910
1911 return err;
1912 }
1913
fuse_writepage_args_alloc(void)1914 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
1915 {
1916 struct fuse_writepage_args *wpa;
1917 struct fuse_args_pages *ap;
1918
1919 wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
1920 if (wpa) {
1921 ap = &wpa->ia.ap;
1922 ap->num_pages = 0;
1923 ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
1924 if (!ap->pages) {
1925 kfree(wpa);
1926 wpa = NULL;
1927 }
1928 }
1929 return wpa;
1930
1931 }
1932
fuse_writepage_add_to_bucket(struct fuse_conn * fc,struct fuse_writepage_args * wpa)1933 static void fuse_writepage_add_to_bucket(struct fuse_conn *fc,
1934 struct fuse_writepage_args *wpa)
1935 {
1936 if (!fc->sync_fs)
1937 return;
1938
1939 rcu_read_lock();
1940 /* Prevent resurrection of dead bucket in unlikely race with syncfs */
1941 do {
1942 wpa->bucket = rcu_dereference(fc->curr_bucket);
1943 } while (unlikely(!atomic_inc_not_zero(&wpa->bucket->count)));
1944 rcu_read_unlock();
1945 }
1946
fuse_writepage_locked(struct page * page)1947 static int fuse_writepage_locked(struct page *page)
1948 {
1949 struct address_space *mapping = page->mapping;
1950 struct inode *inode = mapping->host;
1951 struct fuse_conn *fc = get_fuse_conn(inode);
1952 struct fuse_inode *fi = get_fuse_inode(inode);
1953 struct fuse_writepage_args *wpa;
1954 struct fuse_args_pages *ap;
1955 struct page *tmp_page;
1956 int error = -ENOMEM;
1957
1958 set_page_writeback(page);
1959
1960 wpa = fuse_writepage_args_alloc();
1961 if (!wpa)
1962 goto err;
1963 ap = &wpa->ia.ap;
1964
1965 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1966 if (!tmp_page)
1967 goto err_free;
1968
1969 error = -EIO;
1970 wpa->ia.ff = fuse_write_file_get(fi);
1971 if (!wpa->ia.ff)
1972 goto err_nofile;
1973
1974 fuse_writepage_add_to_bucket(fc, wpa);
1975 fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0);
1976
1977 copy_highpage(tmp_page, page);
1978 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
1979 wpa->next = NULL;
1980 ap->args.in_pages = true;
1981 ap->num_pages = 1;
1982 ap->pages[0] = tmp_page;
1983 ap->descs[0].offset = 0;
1984 ap->descs[0].length = PAGE_SIZE;
1985 ap->args.end = fuse_writepage_end;
1986 wpa->inode = inode;
1987
1988 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1989 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1990
1991 spin_lock(&fi->lock);
1992 tree_insert(&fi->writepages, wpa);
1993 list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1994 fuse_flush_writepages(inode);
1995 spin_unlock(&fi->lock);
1996
1997 end_page_writeback(page);
1998
1999 return 0;
2000
2001 err_nofile:
2002 __free_page(tmp_page);
2003 err_free:
2004 kfree(wpa);
2005 err:
2006 mapping_set_error(page->mapping, error);
2007 end_page_writeback(page);
2008 return error;
2009 }
2010
fuse_writepage(struct page * page,struct writeback_control * wbc)2011 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
2012 {
2013 struct fuse_conn *fc = get_fuse_conn(page->mapping->host);
2014 int err;
2015
2016 if (fuse_page_is_writeback(page->mapping->host, page->index)) {
2017 /*
2018 * ->writepages() should be called for sync() and friends. We
2019 * should only get here on direct reclaim and then we are
2020 * allowed to skip a page which is already in flight
2021 */
2022 WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
2023
2024 redirty_page_for_writepage(wbc, page);
2025 unlock_page(page);
2026 return 0;
2027 }
2028
2029 if (wbc->sync_mode == WB_SYNC_NONE &&
2030 fc->num_background >= fc->congestion_threshold)
2031 return AOP_WRITEPAGE_ACTIVATE;
2032
2033 err = fuse_writepage_locked(page);
2034 unlock_page(page);
2035
2036 return err;
2037 }
2038
2039 struct fuse_fill_wb_data {
2040 struct fuse_writepage_args *wpa;
2041 struct fuse_file *ff;
2042 struct inode *inode;
2043 struct page **orig_pages;
2044 unsigned int max_pages;
2045 };
2046
fuse_pages_realloc(struct fuse_fill_wb_data * data)2047 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
2048 {
2049 struct fuse_args_pages *ap = &data->wpa->ia.ap;
2050 struct fuse_conn *fc = get_fuse_conn(data->inode);
2051 struct page **pages;
2052 struct fuse_page_desc *descs;
2053 unsigned int npages = min_t(unsigned int,
2054 max_t(unsigned int, data->max_pages * 2,
2055 FUSE_DEFAULT_MAX_PAGES_PER_REQ),
2056 fc->max_pages);
2057 WARN_ON(npages <= data->max_pages);
2058
2059 pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
2060 if (!pages)
2061 return false;
2062
2063 memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
2064 memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
2065 kfree(ap->pages);
2066 ap->pages = pages;
2067 ap->descs = descs;
2068 data->max_pages = npages;
2069
2070 return true;
2071 }
2072
fuse_writepages_send(struct fuse_fill_wb_data * data)2073 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
2074 {
2075 struct fuse_writepage_args *wpa = data->wpa;
2076 struct inode *inode = data->inode;
2077 struct fuse_inode *fi = get_fuse_inode(inode);
2078 int num_pages = wpa->ia.ap.num_pages;
2079 int i;
2080
2081 wpa->ia.ff = fuse_file_get(data->ff);
2082 spin_lock(&fi->lock);
2083 list_add_tail(&wpa->queue_entry, &fi->queued_writes);
2084 fuse_flush_writepages(inode);
2085 spin_unlock(&fi->lock);
2086
2087 for (i = 0; i < num_pages; i++)
2088 end_page_writeback(data->orig_pages[i]);
2089 }
2090
2091 /*
2092 * Check under fi->lock if the page is under writeback, and insert it onto the
2093 * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's
2094 * one already added for a page at this offset. If there's none, then insert
2095 * this new request onto the auxiliary list, otherwise reuse the existing one by
2096 * swapping the new temp page with the old one.
2097 */
fuse_writepage_add(struct fuse_writepage_args * new_wpa,struct page * page)2098 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa,
2099 struct page *page)
2100 {
2101 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
2102 struct fuse_writepage_args *tmp;
2103 struct fuse_writepage_args *old_wpa;
2104 struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
2105
2106 WARN_ON(new_ap->num_pages != 0);
2107 new_ap->num_pages = 1;
2108
2109 spin_lock(&fi->lock);
2110 old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa);
2111 if (!old_wpa) {
2112 spin_unlock(&fi->lock);
2113 return true;
2114 }
2115
2116 for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
2117 pgoff_t curr_index;
2118
2119 WARN_ON(tmp->inode != new_wpa->inode);
2120 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
2121 if (curr_index == page->index) {
2122 WARN_ON(tmp->ia.ap.num_pages != 1);
2123 swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
2124 break;
2125 }
2126 }
2127
2128 if (!tmp) {
2129 new_wpa->next = old_wpa->next;
2130 old_wpa->next = new_wpa;
2131 }
2132
2133 spin_unlock(&fi->lock);
2134
2135 if (tmp) {
2136 struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
2137
2138 dec_wb_stat(&bdi->wb, WB_WRITEBACK);
2139 dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
2140 wb_writeout_inc(&bdi->wb);
2141 fuse_writepage_free(new_wpa);
2142 }
2143
2144 return false;
2145 }
2146
fuse_writepage_need_send(struct fuse_conn * fc,struct page * page,struct fuse_args_pages * ap,struct fuse_fill_wb_data * data)2147 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct page *page,
2148 struct fuse_args_pages *ap,
2149 struct fuse_fill_wb_data *data)
2150 {
2151 WARN_ON(!ap->num_pages);
2152
2153 /*
2154 * Being under writeback is unlikely but possible. For example direct
2155 * read to an mmaped fuse file will set the page dirty twice; once when
2156 * the pages are faulted with get_user_pages(), and then after the read
2157 * completed.
2158 */
2159 if (fuse_page_is_writeback(data->inode, page->index))
2160 return true;
2161
2162 /* Reached max pages */
2163 if (ap->num_pages == fc->max_pages)
2164 return true;
2165
2166 /* Reached max write bytes */
2167 if ((ap->num_pages + 1) * PAGE_SIZE > fc->max_write)
2168 return true;
2169
2170 /* Discontinuity */
2171 if (data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)
2172 return true;
2173
2174 /* Need to grow the pages array? If so, did the expansion fail? */
2175 if (ap->num_pages == data->max_pages && !fuse_pages_realloc(data))
2176 return true;
2177
2178 return false;
2179 }
2180
fuse_writepages_fill(struct folio * folio,struct writeback_control * wbc,void * _data)2181 static int fuse_writepages_fill(struct folio *folio,
2182 struct writeback_control *wbc, void *_data)
2183 {
2184 struct fuse_fill_wb_data *data = _data;
2185 struct fuse_writepage_args *wpa = data->wpa;
2186 struct fuse_args_pages *ap = &wpa->ia.ap;
2187 struct inode *inode = data->inode;
2188 struct fuse_inode *fi = get_fuse_inode(inode);
2189 struct fuse_conn *fc = get_fuse_conn(inode);
2190 struct page *tmp_page;
2191 int err;
2192
2193 if (!data->ff) {
2194 err = -EIO;
2195 data->ff = fuse_write_file_get(fi);
2196 if (!data->ff)
2197 goto out_unlock;
2198 }
2199
2200 if (wpa && fuse_writepage_need_send(fc, &folio->page, ap, data)) {
2201 fuse_writepages_send(data);
2202 data->wpa = NULL;
2203 }
2204
2205 err = -ENOMEM;
2206 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2207 if (!tmp_page)
2208 goto out_unlock;
2209
2210 /*
2211 * The page must not be redirtied until the writeout is completed
2212 * (i.e. userspace has sent a reply to the write request). Otherwise
2213 * there could be more than one temporary page instance for each real
2214 * page.
2215 *
2216 * This is ensured by holding the page lock in page_mkwrite() while
2217 * checking fuse_page_is_writeback(). We already hold the page lock
2218 * since clear_page_dirty_for_io() and keep it held until we add the
2219 * request to the fi->writepages list and increment ap->num_pages.
2220 * After this fuse_page_is_writeback() will indicate that the page is
2221 * under writeback, so we can release the page lock.
2222 */
2223 if (data->wpa == NULL) {
2224 err = -ENOMEM;
2225 wpa = fuse_writepage_args_alloc();
2226 if (!wpa) {
2227 __free_page(tmp_page);
2228 goto out_unlock;
2229 }
2230 fuse_writepage_add_to_bucket(fc, wpa);
2231
2232 data->max_pages = 1;
2233
2234 ap = &wpa->ia.ap;
2235 fuse_write_args_fill(&wpa->ia, data->ff, folio_pos(folio), 0);
2236 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2237 wpa->next = NULL;
2238 ap->args.in_pages = true;
2239 ap->args.end = fuse_writepage_end;
2240 ap->num_pages = 0;
2241 wpa->inode = inode;
2242 }
2243 folio_start_writeback(folio);
2244
2245 copy_highpage(tmp_page, &folio->page);
2246 ap->pages[ap->num_pages] = tmp_page;
2247 ap->descs[ap->num_pages].offset = 0;
2248 ap->descs[ap->num_pages].length = PAGE_SIZE;
2249 data->orig_pages[ap->num_pages] = &folio->page;
2250
2251 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2252 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2253
2254 err = 0;
2255 if (data->wpa) {
2256 /*
2257 * Protected by fi->lock against concurrent access by
2258 * fuse_page_is_writeback().
2259 */
2260 spin_lock(&fi->lock);
2261 ap->num_pages++;
2262 spin_unlock(&fi->lock);
2263 } else if (fuse_writepage_add(wpa, &folio->page)) {
2264 data->wpa = wpa;
2265 } else {
2266 folio_end_writeback(folio);
2267 }
2268 out_unlock:
2269 folio_unlock(folio);
2270
2271 return err;
2272 }
2273
fuse_writepages(struct address_space * mapping,struct writeback_control * wbc)2274 static int fuse_writepages(struct address_space *mapping,
2275 struct writeback_control *wbc)
2276 {
2277 struct inode *inode = mapping->host;
2278 struct fuse_conn *fc = get_fuse_conn(inode);
2279 struct fuse_fill_wb_data data;
2280 int err;
2281
2282 err = -EIO;
2283 if (fuse_is_bad(inode))
2284 goto out;
2285
2286 if (wbc->sync_mode == WB_SYNC_NONE &&
2287 fc->num_background >= fc->congestion_threshold)
2288 return 0;
2289
2290 data.inode = inode;
2291 data.wpa = NULL;
2292 data.ff = NULL;
2293
2294 err = -ENOMEM;
2295 data.orig_pages = kcalloc(fc->max_pages,
2296 sizeof(struct page *),
2297 GFP_NOFS);
2298 if (!data.orig_pages)
2299 goto out;
2300
2301 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2302 if (data.wpa) {
2303 WARN_ON(!data.wpa->ia.ap.num_pages);
2304 fuse_writepages_send(&data);
2305 }
2306 if (data.ff)
2307 fuse_file_put(data.ff, false, false);
2308
2309 kfree(data.orig_pages);
2310 out:
2311 return err;
2312 }
2313
2314 /*
2315 * It's worthy to make sure that space is reserved on disk for the write,
2316 * but how to implement it without killing performance need more thinking.
2317 */
fuse_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)2318 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2319 loff_t pos, unsigned len, struct page **pagep, void **fsdata)
2320 {
2321 pgoff_t index = pos >> PAGE_SHIFT;
2322 struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2323 struct page *page;
2324 loff_t fsize;
2325 int err = -ENOMEM;
2326
2327 WARN_ON(!fc->writeback_cache);
2328
2329 page = grab_cache_page_write_begin(mapping, index);
2330 if (!page)
2331 goto error;
2332
2333 fuse_wait_on_page_writeback(mapping->host, page->index);
2334
2335 if (PageUptodate(page) || len == PAGE_SIZE)
2336 goto success;
2337 /*
2338 * Check if the start this page comes after the end of file, in which
2339 * case the readpage can be optimized away.
2340 */
2341 fsize = i_size_read(mapping->host);
2342 if (fsize <= (pos & PAGE_MASK)) {
2343 size_t off = pos & ~PAGE_MASK;
2344 if (off)
2345 zero_user_segment(page, 0, off);
2346 goto success;
2347 }
2348 err = fuse_do_readpage(file, page);
2349 if (err)
2350 goto cleanup;
2351 success:
2352 *pagep = page;
2353 return 0;
2354
2355 cleanup:
2356 unlock_page(page);
2357 put_page(page);
2358 error:
2359 return err;
2360 }
2361
fuse_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2362 static int fuse_write_end(struct file *file, struct address_space *mapping,
2363 loff_t pos, unsigned len, unsigned copied,
2364 struct page *page, void *fsdata)
2365 {
2366 struct inode *inode = page->mapping->host;
2367
2368 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */
2369 if (!copied)
2370 goto unlock;
2371
2372 pos += copied;
2373 if (!PageUptodate(page)) {
2374 /* Zero any unwritten bytes at the end of the page */
2375 size_t endoff = pos & ~PAGE_MASK;
2376 if (endoff)
2377 zero_user_segment(page, endoff, PAGE_SIZE);
2378 SetPageUptodate(page);
2379 }
2380
2381 if (pos > inode->i_size)
2382 i_size_write(inode, pos);
2383
2384 set_page_dirty(page);
2385
2386 unlock:
2387 unlock_page(page);
2388 put_page(page);
2389
2390 return copied;
2391 }
2392
fuse_launder_folio(struct folio * folio)2393 static int fuse_launder_folio(struct folio *folio)
2394 {
2395 int err = 0;
2396 if (folio_clear_dirty_for_io(folio)) {
2397 struct inode *inode = folio->mapping->host;
2398
2399 /* Serialize with pending writeback for the same page */
2400 fuse_wait_on_page_writeback(inode, folio->index);
2401 err = fuse_writepage_locked(&folio->page);
2402 if (!err)
2403 fuse_wait_on_page_writeback(inode, folio->index);
2404 }
2405 return err;
2406 }
2407
2408 /*
2409 * Write back dirty data/metadata now (there may not be any suitable
2410 * open files later for data)
2411 */
fuse_vma_close(struct vm_area_struct * vma)2412 static void fuse_vma_close(struct vm_area_struct *vma)
2413 {
2414 int err;
2415
2416 err = write_inode_now(vma->vm_file->f_mapping->host, 1);
2417 mapping_set_error(vma->vm_file->f_mapping, err);
2418 }
2419
2420 /*
2421 * Wait for writeback against this page to complete before allowing it
2422 * to be marked dirty again, and hence written back again, possibly
2423 * before the previous writepage completed.
2424 *
2425 * Block here, instead of in ->writepage(), so that the userspace fs
2426 * can only block processes actually operating on the filesystem.
2427 *
2428 * Otherwise unprivileged userspace fs would be able to block
2429 * unrelated:
2430 *
2431 * - page migration
2432 * - sync(2)
2433 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2434 */
fuse_page_mkwrite(struct vm_fault * vmf)2435 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2436 {
2437 struct page *page = vmf->page;
2438 struct inode *inode = file_inode(vmf->vma->vm_file);
2439
2440 file_update_time(vmf->vma->vm_file);
2441 lock_page(page);
2442 if (page->mapping != inode->i_mapping) {
2443 unlock_page(page);
2444 return VM_FAULT_NOPAGE;
2445 }
2446
2447 fuse_wait_on_page_writeback(inode, page->index);
2448 return VM_FAULT_LOCKED;
2449 }
2450
2451 static const struct vm_operations_struct fuse_file_vm_ops = {
2452 .close = fuse_vma_close,
2453 .fault = filemap_fault,
2454 .map_pages = filemap_map_pages,
2455 .page_mkwrite = fuse_page_mkwrite,
2456 };
2457
fuse_file_mmap(struct file * file,struct vm_area_struct * vma)2458 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2459 {
2460 struct fuse_file *ff = file->private_data;
2461 struct fuse_conn *fc = ff->fm->fc;
2462
2463 /* DAX mmap is superior to direct_io mmap */
2464 if (FUSE_IS_DAX(file_inode(file)))
2465 return fuse_dax_mmap(file, vma);
2466
2467 if (ff->open_flags & FOPEN_DIRECT_IO) {
2468 /* Can't provide the coherency needed for MAP_SHARED
2469 * if FUSE_DIRECT_IO_RELAX isn't set.
2470 */
2471 if ((vma->vm_flags & VM_MAYSHARE) && !fc->direct_io_relax)
2472 return -ENODEV;
2473
2474 invalidate_inode_pages2(file->f_mapping);
2475
2476 return generic_file_mmap(file, vma);
2477 }
2478
2479 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2480 fuse_link_write_file(file);
2481
2482 file_accessed(file);
2483 vma->vm_ops = &fuse_file_vm_ops;
2484 return 0;
2485 }
2486
convert_fuse_file_lock(struct fuse_conn * fc,const struct fuse_file_lock * ffl,struct file_lock * fl)2487 static int convert_fuse_file_lock(struct fuse_conn *fc,
2488 const struct fuse_file_lock *ffl,
2489 struct file_lock *fl)
2490 {
2491 switch (ffl->type) {
2492 case F_UNLCK:
2493 break;
2494
2495 case F_RDLCK:
2496 case F_WRLCK:
2497 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2498 ffl->end < ffl->start)
2499 return -EIO;
2500
2501 fl->fl_start = ffl->start;
2502 fl->fl_end = ffl->end;
2503
2504 /*
2505 * Convert pid into init's pid namespace. The locks API will
2506 * translate it into the caller's pid namespace.
2507 */
2508 rcu_read_lock();
2509 fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2510 rcu_read_unlock();
2511 break;
2512
2513 default:
2514 return -EIO;
2515 }
2516 fl->fl_type = ffl->type;
2517 return 0;
2518 }
2519
fuse_lk_fill(struct fuse_args * args,struct file * file,const struct file_lock * fl,int opcode,pid_t pid,int flock,struct fuse_lk_in * inarg)2520 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2521 const struct file_lock *fl, int opcode, pid_t pid,
2522 int flock, struct fuse_lk_in *inarg)
2523 {
2524 struct inode *inode = file_inode(file);
2525 struct fuse_conn *fc = get_fuse_conn(inode);
2526 struct fuse_file *ff = file->private_data;
2527
2528 memset(inarg, 0, sizeof(*inarg));
2529 inarg->fh = ff->fh;
2530 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2531 inarg->lk.start = fl->fl_start;
2532 inarg->lk.end = fl->fl_end;
2533 inarg->lk.type = fl->fl_type;
2534 inarg->lk.pid = pid;
2535 if (flock)
2536 inarg->lk_flags |= FUSE_LK_FLOCK;
2537 args->opcode = opcode;
2538 args->nodeid = get_node_id(inode);
2539 args->in_numargs = 1;
2540 args->in_args[0].size = sizeof(*inarg);
2541 args->in_args[0].value = inarg;
2542 }
2543
fuse_getlk(struct file * file,struct file_lock * fl)2544 static int fuse_getlk(struct file *file, struct file_lock *fl)
2545 {
2546 struct inode *inode = file_inode(file);
2547 struct fuse_mount *fm = get_fuse_mount(inode);
2548 FUSE_ARGS(args);
2549 struct fuse_lk_in inarg;
2550 struct fuse_lk_out outarg;
2551 int err;
2552
2553 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2554 args.out_numargs = 1;
2555 args.out_args[0].size = sizeof(outarg);
2556 args.out_args[0].value = &outarg;
2557 err = fuse_simple_request(fm, &args);
2558 if (!err)
2559 err = convert_fuse_file_lock(fm->fc, &outarg.lk, fl);
2560
2561 return err;
2562 }
2563
fuse_setlk(struct file * file,struct file_lock * fl,int flock)2564 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2565 {
2566 struct inode *inode = file_inode(file);
2567 struct fuse_mount *fm = get_fuse_mount(inode);
2568 FUSE_ARGS(args);
2569 struct fuse_lk_in inarg;
2570 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2571 struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2572 pid_t pid_nr = pid_nr_ns(pid, fm->fc->pid_ns);
2573 int err;
2574
2575 if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2576 /* NLM needs asynchronous locks, which we don't support yet */
2577 return -ENOLCK;
2578 }
2579
2580 /* Unlock on close is handled by the flush method */
2581 if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2582 return 0;
2583
2584 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2585 err = fuse_simple_request(fm, &args);
2586
2587 /* locking is restartable */
2588 if (err == -EINTR)
2589 err = -ERESTARTSYS;
2590
2591 return err;
2592 }
2593
fuse_file_lock(struct file * file,int cmd,struct file_lock * fl)2594 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2595 {
2596 struct inode *inode = file_inode(file);
2597 struct fuse_conn *fc = get_fuse_conn(inode);
2598 int err;
2599
2600 if (cmd == F_CANCELLK) {
2601 err = 0;
2602 } else if (cmd == F_GETLK) {
2603 if (fc->no_lock) {
2604 posix_test_lock(file, fl);
2605 err = 0;
2606 } else
2607 err = fuse_getlk(file, fl);
2608 } else {
2609 if (fc->no_lock)
2610 err = posix_lock_file(file, fl, NULL);
2611 else
2612 err = fuse_setlk(file, fl, 0);
2613 }
2614 return err;
2615 }
2616
fuse_file_flock(struct file * file,int cmd,struct file_lock * fl)2617 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2618 {
2619 struct inode *inode = file_inode(file);
2620 struct fuse_conn *fc = get_fuse_conn(inode);
2621 int err;
2622
2623 if (fc->no_flock) {
2624 err = locks_lock_file_wait(file, fl);
2625 } else {
2626 struct fuse_file *ff = file->private_data;
2627
2628 /* emulate flock with POSIX locks */
2629 ff->flock = true;
2630 err = fuse_setlk(file, fl, 1);
2631 }
2632
2633 return err;
2634 }
2635
fuse_bmap(struct address_space * mapping,sector_t block)2636 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2637 {
2638 struct inode *inode = mapping->host;
2639 struct fuse_mount *fm = get_fuse_mount(inode);
2640 FUSE_ARGS(args);
2641 struct fuse_bmap_in inarg;
2642 struct fuse_bmap_out outarg;
2643 int err;
2644
2645 if (!inode->i_sb->s_bdev || fm->fc->no_bmap)
2646 return 0;
2647
2648 memset(&inarg, 0, sizeof(inarg));
2649 inarg.block = block;
2650 inarg.blocksize = inode->i_sb->s_blocksize;
2651 args.opcode = FUSE_BMAP;
2652 args.nodeid = get_node_id(inode);
2653 args.in_numargs = 1;
2654 args.in_args[0].size = sizeof(inarg);
2655 args.in_args[0].value = &inarg;
2656 args.out_numargs = 1;
2657 args.out_args[0].size = sizeof(outarg);
2658 args.out_args[0].value = &outarg;
2659 err = fuse_simple_request(fm, &args);
2660 if (err == -ENOSYS)
2661 fm->fc->no_bmap = 1;
2662
2663 return err ? 0 : outarg.block;
2664 }
2665
fuse_lseek(struct file * file,loff_t offset,int whence)2666 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2667 {
2668 struct inode *inode = file->f_mapping->host;
2669 struct fuse_mount *fm = get_fuse_mount(inode);
2670 struct fuse_file *ff = file->private_data;
2671 FUSE_ARGS(args);
2672 struct fuse_lseek_in inarg = {
2673 .fh = ff->fh,
2674 .offset = offset,
2675 .whence = whence
2676 };
2677 struct fuse_lseek_out outarg;
2678 int err;
2679
2680 if (fm->fc->no_lseek)
2681 goto fallback;
2682
2683 args.opcode = FUSE_LSEEK;
2684 args.nodeid = ff->nodeid;
2685 args.in_numargs = 1;
2686 args.in_args[0].size = sizeof(inarg);
2687 args.in_args[0].value = &inarg;
2688 args.out_numargs = 1;
2689 args.out_args[0].size = sizeof(outarg);
2690 args.out_args[0].value = &outarg;
2691 err = fuse_simple_request(fm, &args);
2692 if (err) {
2693 if (err == -ENOSYS) {
2694 fm->fc->no_lseek = 1;
2695 goto fallback;
2696 }
2697 return err;
2698 }
2699
2700 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2701
2702 fallback:
2703 err = fuse_update_attributes(inode, file, STATX_SIZE);
2704 if (!err)
2705 return generic_file_llseek(file, offset, whence);
2706 else
2707 return err;
2708 }
2709
fuse_file_llseek(struct file * file,loff_t offset,int whence)2710 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2711 {
2712 loff_t retval;
2713 struct inode *inode = file_inode(file);
2714
2715 switch (whence) {
2716 case SEEK_SET:
2717 case SEEK_CUR:
2718 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2719 retval = generic_file_llseek(file, offset, whence);
2720 break;
2721 case SEEK_END:
2722 inode_lock(inode);
2723 retval = fuse_update_attributes(inode, file, STATX_SIZE);
2724 if (!retval)
2725 retval = generic_file_llseek(file, offset, whence);
2726 inode_unlock(inode);
2727 break;
2728 case SEEK_HOLE:
2729 case SEEK_DATA:
2730 inode_lock(inode);
2731 retval = fuse_lseek(file, offset, whence);
2732 inode_unlock(inode);
2733 break;
2734 default:
2735 retval = -EINVAL;
2736 }
2737
2738 return retval;
2739 }
2740
2741 /*
2742 * All files which have been polled are linked to RB tree
2743 * fuse_conn->polled_files which is indexed by kh. Walk the tree and
2744 * find the matching one.
2745 */
fuse_find_polled_node(struct fuse_conn * fc,u64 kh,struct rb_node ** parent_out)2746 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2747 struct rb_node **parent_out)
2748 {
2749 struct rb_node **link = &fc->polled_files.rb_node;
2750 struct rb_node *last = NULL;
2751
2752 while (*link) {
2753 struct fuse_file *ff;
2754
2755 last = *link;
2756 ff = rb_entry(last, struct fuse_file, polled_node);
2757
2758 if (kh < ff->kh)
2759 link = &last->rb_left;
2760 else if (kh > ff->kh)
2761 link = &last->rb_right;
2762 else
2763 return link;
2764 }
2765
2766 if (parent_out)
2767 *parent_out = last;
2768 return link;
2769 }
2770
2771 /*
2772 * The file is about to be polled. Make sure it's on the polled_files
2773 * RB tree. Note that files once added to the polled_files tree are
2774 * not removed before the file is released. This is because a file
2775 * polled once is likely to be polled again.
2776 */
fuse_register_polled_file(struct fuse_conn * fc,struct fuse_file * ff)2777 static void fuse_register_polled_file(struct fuse_conn *fc,
2778 struct fuse_file *ff)
2779 {
2780 spin_lock(&fc->lock);
2781 if (RB_EMPTY_NODE(&ff->polled_node)) {
2782 struct rb_node **link, *parent;
2783
2784 link = fuse_find_polled_node(fc, ff->kh, &parent);
2785 BUG_ON(*link);
2786 rb_link_node(&ff->polled_node, parent, link);
2787 rb_insert_color(&ff->polled_node, &fc->polled_files);
2788 }
2789 spin_unlock(&fc->lock);
2790 }
2791
fuse_file_poll(struct file * file,poll_table * wait)2792 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
2793 {
2794 struct fuse_file *ff = file->private_data;
2795 struct fuse_mount *fm = ff->fm;
2796 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2797 struct fuse_poll_out outarg;
2798 FUSE_ARGS(args);
2799 int err;
2800
2801 if (fm->fc->no_poll)
2802 return DEFAULT_POLLMASK;
2803
2804 poll_wait(file, &ff->poll_wait, wait);
2805 inarg.events = mangle_poll(poll_requested_events(wait));
2806
2807 /*
2808 * Ask for notification iff there's someone waiting for it.
2809 * The client may ignore the flag and always notify.
2810 */
2811 if (waitqueue_active(&ff->poll_wait)) {
2812 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2813 fuse_register_polled_file(fm->fc, ff);
2814 }
2815
2816 args.opcode = FUSE_POLL;
2817 args.nodeid = ff->nodeid;
2818 args.in_numargs = 1;
2819 args.in_args[0].size = sizeof(inarg);
2820 args.in_args[0].value = &inarg;
2821 args.out_numargs = 1;
2822 args.out_args[0].size = sizeof(outarg);
2823 args.out_args[0].value = &outarg;
2824 err = fuse_simple_request(fm, &args);
2825
2826 if (!err)
2827 return demangle_poll(outarg.revents);
2828 if (err == -ENOSYS) {
2829 fm->fc->no_poll = 1;
2830 return DEFAULT_POLLMASK;
2831 }
2832 return EPOLLERR;
2833 }
2834 EXPORT_SYMBOL_GPL(fuse_file_poll);
2835
2836 /*
2837 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
2838 * wakes up the poll waiters.
2839 */
fuse_notify_poll_wakeup(struct fuse_conn * fc,struct fuse_notify_poll_wakeup_out * outarg)2840 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
2841 struct fuse_notify_poll_wakeup_out *outarg)
2842 {
2843 u64 kh = outarg->kh;
2844 struct rb_node **link;
2845
2846 spin_lock(&fc->lock);
2847
2848 link = fuse_find_polled_node(fc, kh, NULL);
2849 if (*link) {
2850 struct fuse_file *ff;
2851
2852 ff = rb_entry(*link, struct fuse_file, polled_node);
2853 wake_up_interruptible_sync(&ff->poll_wait);
2854 }
2855
2856 spin_unlock(&fc->lock);
2857 return 0;
2858 }
2859
fuse_do_truncate(struct file * file)2860 static void fuse_do_truncate(struct file *file)
2861 {
2862 struct inode *inode = file->f_mapping->host;
2863 struct iattr attr;
2864
2865 attr.ia_valid = ATTR_SIZE;
2866 attr.ia_size = i_size_read(inode);
2867
2868 attr.ia_file = file;
2869 attr.ia_valid |= ATTR_FILE;
2870
2871 fuse_do_setattr(file_dentry(file), &attr, file);
2872 }
2873
fuse_round_up(struct fuse_conn * fc,loff_t off)2874 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
2875 {
2876 return round_up(off, fc->max_pages << PAGE_SHIFT);
2877 }
2878
2879 static ssize_t
fuse_direct_IO(struct kiocb * iocb,struct iov_iter * iter)2880 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2881 {
2882 DECLARE_COMPLETION_ONSTACK(wait);
2883 ssize_t ret = 0;
2884 struct file *file = iocb->ki_filp;
2885 struct fuse_file *ff = file->private_data;
2886 loff_t pos = 0;
2887 struct inode *inode;
2888 loff_t i_size;
2889 size_t count = iov_iter_count(iter), shortened = 0;
2890 loff_t offset = iocb->ki_pos;
2891 struct fuse_io_priv *io;
2892
2893 pos = offset;
2894 inode = file->f_mapping->host;
2895 i_size = i_size_read(inode);
2896
2897 if ((iov_iter_rw(iter) == READ) && (offset >= i_size))
2898 return 0;
2899
2900 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
2901 if (!io)
2902 return -ENOMEM;
2903 spin_lock_init(&io->lock);
2904 kref_init(&io->refcnt);
2905 io->reqs = 1;
2906 io->bytes = -1;
2907 io->size = 0;
2908 io->offset = offset;
2909 io->write = (iov_iter_rw(iter) == WRITE);
2910 io->err = 0;
2911 /*
2912 * By default, we want to optimize all I/Os with async request
2913 * submission to the client filesystem if supported.
2914 */
2915 io->async = ff->fm->fc->async_dio;
2916 io->iocb = iocb;
2917 io->blocking = is_sync_kiocb(iocb);
2918
2919 /* optimization for short read */
2920 if (io->async && !io->write && offset + count > i_size) {
2921 iov_iter_truncate(iter, fuse_round_up(ff->fm->fc, i_size - offset));
2922 shortened = count - iov_iter_count(iter);
2923 count -= shortened;
2924 }
2925
2926 /*
2927 * We cannot asynchronously extend the size of a file.
2928 * In such case the aio will behave exactly like sync io.
2929 */
2930 if ((offset + count > i_size) && io->write)
2931 io->blocking = true;
2932
2933 if (io->async && io->blocking) {
2934 /*
2935 * Additional reference to keep io around after
2936 * calling fuse_aio_complete()
2937 */
2938 kref_get(&io->refcnt);
2939 io->done = &wait;
2940 }
2941
2942 if (iov_iter_rw(iter) == WRITE) {
2943 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
2944 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
2945 } else {
2946 ret = __fuse_direct_read(io, iter, &pos);
2947 }
2948 iov_iter_reexpand(iter, iov_iter_count(iter) + shortened);
2949
2950 if (io->async) {
2951 bool blocking = io->blocking;
2952
2953 fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
2954
2955 /* we have a non-extending, async request, so return */
2956 if (!blocking)
2957 return -EIOCBQUEUED;
2958
2959 wait_for_completion(&wait);
2960 ret = fuse_get_res_by_io(io);
2961 }
2962
2963 kref_put(&io->refcnt, fuse_io_release);
2964
2965 if (iov_iter_rw(iter) == WRITE) {
2966 fuse_write_update_attr(inode, pos, ret);
2967 /* For extending writes we already hold exclusive lock */
2968 if (ret < 0 && offset + count > i_size)
2969 fuse_do_truncate(file);
2970 }
2971
2972 return ret;
2973 }
2974
fuse_writeback_range(struct inode * inode,loff_t start,loff_t end)2975 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
2976 {
2977 int err = filemap_write_and_wait_range(inode->i_mapping, start, LLONG_MAX);
2978
2979 if (!err)
2980 fuse_sync_writes(inode);
2981
2982 return err;
2983 }
2984
fuse_file_fallocate(struct file * file,int mode,loff_t offset,loff_t length)2985 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
2986 loff_t length)
2987 {
2988 struct fuse_file *ff = file->private_data;
2989 struct inode *inode = file_inode(file);
2990 struct fuse_inode *fi = get_fuse_inode(inode);
2991 struct fuse_mount *fm = ff->fm;
2992 FUSE_ARGS(args);
2993 struct fuse_fallocate_in inarg = {
2994 .fh = ff->fh,
2995 .offset = offset,
2996 .length = length,
2997 .mode = mode
2998 };
2999 int err;
3000 bool block_faults = FUSE_IS_DAX(inode) &&
3001 (!(mode & FALLOC_FL_KEEP_SIZE) ||
3002 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)));
3003
3004 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3005 FALLOC_FL_ZERO_RANGE))
3006 return -EOPNOTSUPP;
3007
3008 if (fm->fc->no_fallocate)
3009 return -EOPNOTSUPP;
3010
3011 inode_lock(inode);
3012 if (block_faults) {
3013 filemap_invalidate_lock(inode->i_mapping);
3014 err = fuse_dax_break_layouts(inode, 0, 0);
3015 if (err)
3016 goto out;
3017 }
3018
3019 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) {
3020 loff_t endbyte = offset + length - 1;
3021
3022 err = fuse_writeback_range(inode, offset, endbyte);
3023 if (err)
3024 goto out;
3025 }
3026
3027 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3028 offset + length > i_size_read(inode)) {
3029 err = inode_newsize_ok(inode, offset + length);
3030 if (err)
3031 goto out;
3032 }
3033
3034 err = file_modified(file);
3035 if (err)
3036 goto out;
3037
3038 if (!(mode & FALLOC_FL_KEEP_SIZE))
3039 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3040
3041 args.opcode = FUSE_FALLOCATE;
3042 args.nodeid = ff->nodeid;
3043 args.in_numargs = 1;
3044 args.in_args[0].size = sizeof(inarg);
3045 args.in_args[0].value = &inarg;
3046 err = fuse_simple_request(fm, &args);
3047 if (err == -ENOSYS) {
3048 fm->fc->no_fallocate = 1;
3049 err = -EOPNOTSUPP;
3050 }
3051 if (err)
3052 goto out;
3053
3054 /* we could have extended the file */
3055 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3056 if (fuse_write_update_attr(inode, offset + length, length))
3057 file_update_time(file);
3058 }
3059
3060 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE))
3061 truncate_pagecache_range(inode, offset, offset + length - 1);
3062
3063 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
3064
3065 out:
3066 if (!(mode & FALLOC_FL_KEEP_SIZE))
3067 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3068
3069 if (block_faults)
3070 filemap_invalidate_unlock(inode->i_mapping);
3071
3072 inode_unlock(inode);
3073
3074 fuse_flush_time_update(inode);
3075
3076 return err;
3077 }
3078
__fuse_copy_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len,unsigned int flags)3079 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3080 struct file *file_out, loff_t pos_out,
3081 size_t len, unsigned int flags)
3082 {
3083 struct fuse_file *ff_in = file_in->private_data;
3084 struct fuse_file *ff_out = file_out->private_data;
3085 struct inode *inode_in = file_inode(file_in);
3086 struct inode *inode_out = file_inode(file_out);
3087 struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3088 struct fuse_mount *fm = ff_in->fm;
3089 struct fuse_conn *fc = fm->fc;
3090 FUSE_ARGS(args);
3091 struct fuse_copy_file_range_in inarg = {
3092 .fh_in = ff_in->fh,
3093 .off_in = pos_in,
3094 .nodeid_out = ff_out->nodeid,
3095 .fh_out = ff_out->fh,
3096 .off_out = pos_out,
3097 .len = len,
3098 .flags = flags
3099 };
3100 struct fuse_write_out outarg;
3101 ssize_t err;
3102 /* mark unstable when write-back is not used, and file_out gets
3103 * extended */
3104 bool is_unstable = (!fc->writeback_cache) &&
3105 ((pos_out + len) > inode_out->i_size);
3106
3107 if (fc->no_copy_file_range)
3108 return -EOPNOTSUPP;
3109
3110 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3111 return -EXDEV;
3112
3113 inode_lock(inode_in);
3114 err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1);
3115 inode_unlock(inode_in);
3116 if (err)
3117 return err;
3118
3119 inode_lock(inode_out);
3120
3121 err = file_modified(file_out);
3122 if (err)
3123 goto out;
3124
3125 /*
3126 * Write out dirty pages in the destination file before sending the COPY
3127 * request to userspace. After the request is completed, truncate off
3128 * pages (including partial ones) from the cache that have been copied,
3129 * since these contain stale data at that point.
3130 *
3131 * This should be mostly correct, but if the COPY writes to partial
3132 * pages (at the start or end) and the parts not covered by the COPY are
3133 * written through a memory map after calling fuse_writeback_range(),
3134 * then these partial page modifications will be lost on truncation.
3135 *
3136 * It is unlikely that someone would rely on such mixed style
3137 * modifications. Yet this does give less guarantees than if the
3138 * copying was performed with write(2).
3139 *
3140 * To fix this a mapping->invalidate_lock could be used to prevent new
3141 * faults while the copy is ongoing.
3142 */
3143 err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1);
3144 if (err)
3145 goto out;
3146
3147 if (is_unstable)
3148 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3149
3150 args.opcode = FUSE_COPY_FILE_RANGE;
3151 args.nodeid = ff_in->nodeid;
3152 args.in_numargs = 1;
3153 args.in_args[0].size = sizeof(inarg);
3154 args.in_args[0].value = &inarg;
3155 args.out_numargs = 1;
3156 args.out_args[0].size = sizeof(outarg);
3157 args.out_args[0].value = &outarg;
3158 err = fuse_simple_request(fm, &args);
3159 if (err == -ENOSYS) {
3160 fc->no_copy_file_range = 1;
3161 err = -EOPNOTSUPP;
3162 }
3163 if (err)
3164 goto out;
3165
3166 truncate_inode_pages_range(inode_out->i_mapping,
3167 ALIGN_DOWN(pos_out, PAGE_SIZE),
3168 ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1);
3169
3170 file_update_time(file_out);
3171 fuse_write_update_attr(inode_out, pos_out + outarg.size, outarg.size);
3172
3173 err = outarg.size;
3174 out:
3175 if (is_unstable)
3176 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3177
3178 inode_unlock(inode_out);
3179 file_accessed(file_in);
3180
3181 fuse_flush_time_update(inode_out);
3182
3183 return err;
3184 }
3185
fuse_copy_file_range(struct file * src_file,loff_t src_off,struct file * dst_file,loff_t dst_off,size_t len,unsigned int flags)3186 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3187 struct file *dst_file, loff_t dst_off,
3188 size_t len, unsigned int flags)
3189 {
3190 ssize_t ret;
3191
3192 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3193 len, flags);
3194
3195 if (ret == -EOPNOTSUPP || ret == -EXDEV)
3196 ret = generic_copy_file_range(src_file, src_off, dst_file,
3197 dst_off, len, flags);
3198 return ret;
3199 }
3200
3201 static const struct file_operations fuse_file_operations = {
3202 .llseek = fuse_file_llseek,
3203 .read_iter = fuse_file_read_iter,
3204 .write_iter = fuse_file_write_iter,
3205 .mmap = fuse_file_mmap,
3206 .open = fuse_open,
3207 .flush = fuse_flush,
3208 .release = fuse_release,
3209 .fsync = fuse_fsync,
3210 .lock = fuse_file_lock,
3211 .get_unmapped_area = thp_get_unmapped_area,
3212 .flock = fuse_file_flock,
3213 .splice_read = filemap_splice_read,
3214 .splice_write = iter_file_splice_write,
3215 .unlocked_ioctl = fuse_file_ioctl,
3216 .compat_ioctl = fuse_file_compat_ioctl,
3217 .poll = fuse_file_poll,
3218 .fallocate = fuse_file_fallocate,
3219 .copy_file_range = fuse_copy_file_range,
3220 };
3221
3222 static const struct address_space_operations fuse_file_aops = {
3223 .read_folio = fuse_read_folio,
3224 .readahead = fuse_readahead,
3225 .writepage = fuse_writepage,
3226 .writepages = fuse_writepages,
3227 .launder_folio = fuse_launder_folio,
3228 .dirty_folio = filemap_dirty_folio,
3229 .bmap = fuse_bmap,
3230 .direct_IO = fuse_direct_IO,
3231 .write_begin = fuse_write_begin,
3232 .write_end = fuse_write_end,
3233 };
3234
fuse_init_file_inode(struct inode * inode,unsigned int flags)3235 void fuse_init_file_inode(struct inode *inode, unsigned int flags)
3236 {
3237 struct fuse_inode *fi = get_fuse_inode(inode);
3238
3239 inode->i_fop = &fuse_file_operations;
3240 inode->i_data.a_ops = &fuse_file_aops;
3241
3242 INIT_LIST_HEAD(&fi->write_files);
3243 INIT_LIST_HEAD(&fi->queued_writes);
3244 fi->writectr = 0;
3245 init_waitqueue_head(&fi->page_waitq);
3246 fi->writepages = RB_ROOT;
3247
3248 if (IS_ENABLED(CONFIG_FUSE_DAX))
3249 fuse_dax_inode_init(inode, flags);
3250 }
3251