1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * sata_mv.c - Marvell SATA support
4 *
5 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
6 * Copyright 2005: EMC Corporation, all rights reserved.
7 * Copyright 2005 Red Hat, Inc. All rights reserved.
8 *
9 * Originally written by Brett Russ.
10 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
11 *
12 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
13 */
14
15 /*
16 * sata_mv TODO list:
17 *
18 * --> Develop a low-power-consumption strategy, and implement it.
19 *
20 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
21 *
22 * --> [Experiment, Marvell value added] Is it possible to use target
23 * mode to cross-connect two Linux boxes with Marvell cards? If so,
24 * creating LibATA target mode support would be very interesting.
25 *
26 * Target mode, for those without docs, is the ability to directly
27 * connect two SATA ports.
28 */
29
30 /*
31 * 80x1-B2 errata PCI#11:
32 *
33 * Users of the 6041/6081 Rev.B2 chips (current is C0)
34 * should be careful to insert those cards only onto PCI-X bus #0,
35 * and only in device slots 0..7, not higher. The chips may not
36 * work correctly otherwise (note: this is a pretty rare condition).
37 */
38
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/pci.h>
42 #include <linux/init.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/dmapool.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/device.h>
49 #include <linux/clk.h>
50 #include <linux/phy/phy.h>
51 #include <linux/platform_device.h>
52 #include <linux/ata_platform.h>
53 #include <linux/mbus.h>
54 #include <linux/bitops.h>
55 #include <linux/gfp.h>
56 #include <linux/of.h>
57 #include <linux/of_irq.h>
58 #include <scsi/scsi_host.h>
59 #include <scsi/scsi_cmnd.h>
60 #include <scsi/scsi_device.h>
61 #include <linux/libata.h>
62
63 #define DRV_NAME "sata_mv"
64 #define DRV_VERSION "1.28"
65
66 /*
67 * module options
68 */
69
70 #ifdef CONFIG_PCI
71 static int msi;
72 module_param(msi, int, S_IRUGO);
73 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
74 #endif
75
76 static int irq_coalescing_io_count;
77 module_param(irq_coalescing_io_count, int, S_IRUGO);
78 MODULE_PARM_DESC(irq_coalescing_io_count,
79 "IRQ coalescing I/O count threshold (0..255)");
80
81 static int irq_coalescing_usecs;
82 module_param(irq_coalescing_usecs, int, S_IRUGO);
83 MODULE_PARM_DESC(irq_coalescing_usecs,
84 "IRQ coalescing time threshold in usecs");
85
86 enum {
87 /* BAR's are enumerated in terms of pci_resource_start() terms */
88 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
89 MV_IO_BAR = 2, /* offset 0x18: IO space */
90 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
91
92 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
93 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
94
95 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
96 COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */
97 MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
98 MAX_COAL_IO_COUNT = 255, /* completed I/O count */
99
100 MV_PCI_REG_BASE = 0,
101
102 /*
103 * Per-chip ("all ports") interrupt coalescing feature.
104 * This is only for GEN_II / GEN_IIE hardware.
105 *
106 * Coalescing defers the interrupt until either the IO_THRESHOLD
107 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
108 */
109 COAL_REG_BASE = 0x18000,
110 IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08),
111 ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */
112
113 IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc),
114 IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
115
116 /*
117 * Registers for the (unused here) transaction coalescing feature:
118 */
119 TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88),
120 TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c),
121
122 SATAHC0_REG_BASE = 0x20000,
123 FLASH_CTL = 0x1046c,
124 GPIO_PORT_CTL = 0x104f0,
125 RESET_CFG = 0x180d8,
126
127 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
128 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
129 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
130 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
131
132 MV_MAX_Q_DEPTH = 32,
133 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
134
135 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
136 * CRPB needs alignment on a 256B boundary. Size == 256B
137 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
138 */
139 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
140 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
141 MV_MAX_SG_CT = 256,
142 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
143
144 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
145 MV_PORT_HC_SHIFT = 2,
146 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
147 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
148 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
149
150 /* Host Flags */
151 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
152
153 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
154
155 MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
156
157 MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
158 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
159
160 MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN,
161
162 CRQB_FLAG_READ = (1 << 0),
163 CRQB_TAG_SHIFT = 1,
164 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
165 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
166 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
167 CRQB_CMD_ADDR_SHIFT = 8,
168 CRQB_CMD_CS = (0x2 << 11),
169 CRQB_CMD_LAST = (1 << 15),
170
171 CRPB_FLAG_STATUS_SHIFT = 8,
172 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
173 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
174
175 EPRD_FLAG_END_OF_TBL = (1 << 31),
176
177 /* PCI interface registers */
178
179 MV_PCI_COMMAND = 0xc00,
180 MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */
181 MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
182
183 PCI_MAIN_CMD_STS = 0xd30,
184 STOP_PCI_MASTER = (1 << 2),
185 PCI_MASTER_EMPTY = (1 << 3),
186 GLOB_SFT_RST = (1 << 4),
187
188 MV_PCI_MODE = 0xd00,
189 MV_PCI_MODE_MASK = 0x30,
190
191 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
192 MV_PCI_DISC_TIMER = 0xd04,
193 MV_PCI_MSI_TRIGGER = 0xc38,
194 MV_PCI_SERR_MASK = 0xc28,
195 MV_PCI_XBAR_TMOUT = 0x1d04,
196 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
197 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
198 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
199 MV_PCI_ERR_COMMAND = 0x1d50,
200
201 PCI_IRQ_CAUSE = 0x1d58,
202 PCI_IRQ_MASK = 0x1d5c,
203 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
204
205 PCIE_IRQ_CAUSE = 0x1900,
206 PCIE_IRQ_MASK = 0x1910,
207 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
208
209 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
210 PCI_HC_MAIN_IRQ_CAUSE = 0x1d60,
211 PCI_HC_MAIN_IRQ_MASK = 0x1d64,
212 SOC_HC_MAIN_IRQ_CAUSE = 0x20020,
213 SOC_HC_MAIN_IRQ_MASK = 0x20024,
214 ERR_IRQ = (1 << 0), /* shift by (2 * port #) */
215 DONE_IRQ = (1 << 1), /* shift by (2 * port #) */
216 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
217 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
218 DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
219 DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */
220 PCI_ERR = (1 << 18),
221 TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */
222 TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */
223 PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
224 PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */
225 ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */
226 GPIO_INT = (1 << 22),
227 SELF_INT = (1 << 23),
228 TWSI_INT = (1 << 24),
229 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
230 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
231 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
232
233 /* SATAHC registers */
234 HC_CFG = 0x00,
235
236 HC_IRQ_CAUSE = 0x14,
237 DMA_IRQ = (1 << 0), /* shift by port # */
238 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
239 DEV_IRQ = (1 << 8), /* shift by port # */
240
241 /*
242 * Per-HC (Host-Controller) interrupt coalescing feature.
243 * This is present on all chip generations.
244 *
245 * Coalescing defers the interrupt until either the IO_THRESHOLD
246 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
247 */
248 HC_IRQ_COAL_IO_THRESHOLD = 0x000c,
249 HC_IRQ_COAL_TIME_THRESHOLD = 0x0010,
250
251 SOC_LED_CTRL = 0x2c,
252 SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */
253 SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */
254 /* with dev activity LED */
255
256 /* Shadow block registers */
257 SHD_BLK = 0x100,
258 SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */
259
260 /* SATA registers */
261 SATA_STATUS = 0x300, /* ctrl, err regs follow status */
262 SATA_ACTIVE = 0x350,
263 FIS_IRQ_CAUSE = 0x364,
264 FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */
265
266 LTMODE = 0x30c, /* requires read-after-write */
267 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
268
269 PHY_MODE2 = 0x330,
270 PHY_MODE3 = 0x310,
271
272 PHY_MODE4 = 0x314, /* requires read-after-write */
273 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
274 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
275 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
276 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
277
278 SATA_IFCTL = 0x344,
279 SATA_TESTCTL = 0x348,
280 SATA_IFSTAT = 0x34c,
281 VENDOR_UNIQUE_FIS = 0x35c,
282
283 FISCFG = 0x360,
284 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
285 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
286
287 PHY_MODE9_GEN2 = 0x398,
288 PHY_MODE9_GEN1 = 0x39c,
289 PHYCFG_OFS = 0x3a0, /* only in 65n devices */
290
291 MV5_PHY_MODE = 0x74,
292 MV5_LTMODE = 0x30,
293 MV5_PHY_CTL = 0x0C,
294 SATA_IFCFG = 0x050,
295 LP_PHY_CTL = 0x058,
296 LP_PHY_CTL_PIN_PU_PLL = (1 << 0),
297 LP_PHY_CTL_PIN_PU_RX = (1 << 1),
298 LP_PHY_CTL_PIN_PU_TX = (1 << 2),
299 LP_PHY_CTL_GEN_TX_3G = (1 << 5),
300 LP_PHY_CTL_GEN_RX_3G = (1 << 9),
301
302 MV_M2_PREAMP_MASK = 0x7e0,
303
304 /* Port registers */
305 EDMA_CFG = 0,
306 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
307 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
308 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
309 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
310 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
311 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
312 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
313
314 EDMA_ERR_IRQ_CAUSE = 0x8,
315 EDMA_ERR_IRQ_MASK = 0xc,
316 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
317 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
318 EDMA_ERR_DEV = (1 << 2), /* device error */
319 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
320 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
321 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
322 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
323 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
324 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
325 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
326 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
327 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
328 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
329 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
330
331 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
332 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
333 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
334 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
335 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
336
337 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
338
339 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
340 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
341 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
342 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
343 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
344 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
345
346 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
347
348 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
349 EDMA_ERR_OVERRUN_5 = (1 << 5),
350 EDMA_ERR_UNDERRUN_5 = (1 << 6),
351
352 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
353 EDMA_ERR_LNK_CTRL_RX_1 |
354 EDMA_ERR_LNK_CTRL_RX_3 |
355 EDMA_ERR_LNK_CTRL_TX,
356
357 EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
358 EDMA_ERR_PRD_PAR |
359 EDMA_ERR_DEV_DCON |
360 EDMA_ERR_DEV_CON |
361 EDMA_ERR_SERR |
362 EDMA_ERR_SELF_DIS |
363 EDMA_ERR_CRQB_PAR |
364 EDMA_ERR_CRPB_PAR |
365 EDMA_ERR_INTRL_PAR |
366 EDMA_ERR_IORDY |
367 EDMA_ERR_LNK_CTRL_RX_2 |
368 EDMA_ERR_LNK_DATA_RX |
369 EDMA_ERR_LNK_DATA_TX |
370 EDMA_ERR_TRANS_PROTO,
371
372 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
373 EDMA_ERR_PRD_PAR |
374 EDMA_ERR_DEV_DCON |
375 EDMA_ERR_DEV_CON |
376 EDMA_ERR_OVERRUN_5 |
377 EDMA_ERR_UNDERRUN_5 |
378 EDMA_ERR_SELF_DIS_5 |
379 EDMA_ERR_CRQB_PAR |
380 EDMA_ERR_CRPB_PAR |
381 EDMA_ERR_INTRL_PAR |
382 EDMA_ERR_IORDY,
383
384 EDMA_REQ_Q_BASE_HI = 0x10,
385 EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */
386
387 EDMA_REQ_Q_OUT_PTR = 0x18,
388 EDMA_REQ_Q_PTR_SHIFT = 5,
389
390 EDMA_RSP_Q_BASE_HI = 0x1c,
391 EDMA_RSP_Q_IN_PTR = 0x20,
392 EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */
393 EDMA_RSP_Q_PTR_SHIFT = 3,
394
395 EDMA_CMD = 0x28, /* EDMA command register */
396 EDMA_EN = (1 << 0), /* enable EDMA */
397 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
398 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
399
400 EDMA_STATUS = 0x30, /* EDMA engine status */
401 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
402 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
403
404 EDMA_IORDY_TMOUT = 0x34,
405 EDMA_ARB_CFG = 0x38,
406
407 EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */
408 EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */
409
410 BMDMA_CMD = 0x224, /* bmdma command register */
411 BMDMA_STATUS = 0x228, /* bmdma status register */
412 BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */
413 BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */
414
415 /* Host private flags (hp_flags) */
416 MV_HP_FLAG_MSI = (1 << 0),
417 MV_HP_ERRATA_50XXB0 = (1 << 1),
418 MV_HP_ERRATA_50XXB2 = (1 << 2),
419 MV_HP_ERRATA_60X1B2 = (1 << 3),
420 MV_HP_ERRATA_60X1C0 = (1 << 4),
421 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
422 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
423 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
424 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
425 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
426 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
427 MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */
428 MV_HP_FIX_LP_PHY_CTL = (1 << 13), /* fix speed in LP_PHY_CTL ? */
429
430 /* Port private flags (pp_flags) */
431 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
432 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
433 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
434 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
435 MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */
436 };
437
438 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
439 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
440 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
441 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
442 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
443
444 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
445 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
446
447 enum {
448 /* DMA boundary 0xffff is required by the s/g splitting
449 * we need on /length/ in mv_fill-sg().
450 */
451 MV_DMA_BOUNDARY = 0xffffU,
452
453 /* mask of register bits containing lower 32 bits
454 * of EDMA request queue DMA address
455 */
456 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
457
458 /* ditto, for response queue */
459 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
460 };
461
462 enum chip_type {
463 chip_504x,
464 chip_508x,
465 chip_5080,
466 chip_604x,
467 chip_608x,
468 chip_6042,
469 chip_7042,
470 chip_soc,
471 };
472
473 /* Command ReQuest Block: 32B */
474 struct mv_crqb {
475 __le32 sg_addr;
476 __le32 sg_addr_hi;
477 __le16 ctrl_flags;
478 __le16 ata_cmd[11];
479 };
480
481 struct mv_crqb_iie {
482 __le32 addr;
483 __le32 addr_hi;
484 __le32 flags;
485 __le32 len;
486 __le32 ata_cmd[4];
487 };
488
489 /* Command ResPonse Block: 8B */
490 struct mv_crpb {
491 __le16 id;
492 __le16 flags;
493 __le32 tmstmp;
494 };
495
496 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
497 struct mv_sg {
498 __le32 addr;
499 __le32 flags_size;
500 __le32 addr_hi;
501 __le32 reserved;
502 };
503
504 /*
505 * We keep a local cache of a few frequently accessed port
506 * registers here, to avoid having to read them (very slow)
507 * when switching between EDMA and non-EDMA modes.
508 */
509 struct mv_cached_regs {
510 u32 fiscfg;
511 u32 ltmode;
512 u32 haltcond;
513 u32 unknown_rsvd;
514 };
515
516 struct mv_port_priv {
517 struct mv_crqb *crqb;
518 dma_addr_t crqb_dma;
519 struct mv_crpb *crpb;
520 dma_addr_t crpb_dma;
521 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
522 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
523
524 unsigned int req_idx;
525 unsigned int resp_idx;
526
527 u32 pp_flags;
528 struct mv_cached_regs cached;
529 unsigned int delayed_eh_pmp_map;
530 };
531
532 struct mv_port_signal {
533 u32 amps;
534 u32 pre;
535 };
536
537 struct mv_host_priv {
538 u32 hp_flags;
539 unsigned int board_idx;
540 u32 main_irq_mask;
541 struct mv_port_signal signal[8];
542 const struct mv_hw_ops *ops;
543 int n_ports;
544 void __iomem *base;
545 void __iomem *main_irq_cause_addr;
546 void __iomem *main_irq_mask_addr;
547 u32 irq_cause_offset;
548 u32 irq_mask_offset;
549 u32 unmask_all_irqs;
550
551 /*
552 * Needed on some devices that require their clocks to be enabled.
553 * These are optional: if the platform device does not have any
554 * clocks, they won't be used. Also, if the underlying hardware
555 * does not support the common clock framework (CONFIG_HAVE_CLK=n),
556 * all the clock operations become no-ops (see clk.h).
557 */
558 struct clk *clk;
559 struct clk **port_clks;
560 /*
561 * Some devices have a SATA PHY which can be enabled/disabled
562 * in order to save power. These are optional: if the platform
563 * devices does not have any phy, they won't be used.
564 */
565 struct phy **port_phys;
566 /*
567 * These consistent DMA memory pools give us guaranteed
568 * alignment for hardware-accessed data structures,
569 * and less memory waste in accomplishing the alignment.
570 */
571 struct dma_pool *crqb_pool;
572 struct dma_pool *crpb_pool;
573 struct dma_pool *sg_tbl_pool;
574 };
575
576 struct mv_hw_ops {
577 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
578 unsigned int port);
579 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
580 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
581 void __iomem *mmio);
582 int (*reset_hc)(struct ata_host *host, void __iomem *mmio,
583 unsigned int n_hc);
584 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
585 void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
586 };
587
588 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
589 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
590 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
591 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
592 static int mv_port_start(struct ata_port *ap);
593 static void mv_port_stop(struct ata_port *ap);
594 static int mv_qc_defer(struct ata_queued_cmd *qc);
595 static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc);
596 static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc);
597 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
598 static int mv_hardreset(struct ata_link *link, unsigned int *class,
599 unsigned long deadline);
600 static void mv_eh_freeze(struct ata_port *ap);
601 static void mv_eh_thaw(struct ata_port *ap);
602 static void mv6_dev_config(struct ata_device *dev);
603
604 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
605 unsigned int port);
606 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
607 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
608 void __iomem *mmio);
609 static int mv5_reset_hc(struct ata_host *host, void __iomem *mmio,
610 unsigned int n_hc);
611 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
612 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
613
614 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
615 unsigned int port);
616 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
617 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
618 void __iomem *mmio);
619 static int mv6_reset_hc(struct ata_host *host, void __iomem *mmio,
620 unsigned int n_hc);
621 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
622 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
623 void __iomem *mmio);
624 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
625 void __iomem *mmio);
626 static int mv_soc_reset_hc(struct ata_host *host,
627 void __iomem *mmio, unsigned int n_hc);
628 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
629 void __iomem *mmio);
630 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
631 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
632 void __iomem *mmio, unsigned int port);
633 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
634 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
635 unsigned int port_no);
636 static int mv_stop_edma(struct ata_port *ap);
637 static int mv_stop_edma_engine(void __iomem *port_mmio);
638 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
639
640 static void mv_pmp_select(struct ata_port *ap, int pmp);
641 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
642 unsigned long deadline);
643 static int mv_softreset(struct ata_link *link, unsigned int *class,
644 unsigned long deadline);
645 static void mv_pmp_error_handler(struct ata_port *ap);
646 static void mv_process_crpb_entries(struct ata_port *ap,
647 struct mv_port_priv *pp);
648
649 static void mv_sff_irq_clear(struct ata_port *ap);
650 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
651 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
652 static void mv_bmdma_start(struct ata_queued_cmd *qc);
653 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
654 static u8 mv_bmdma_status(struct ata_port *ap);
655 static u8 mv_sff_check_status(struct ata_port *ap);
656
657 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
658 * because we have to allow room for worst case splitting of
659 * PRDs for 64K boundaries in mv_fill_sg().
660 */
661 #ifdef CONFIG_PCI
662 static const struct scsi_host_template mv5_sht = {
663 ATA_BASE_SHT(DRV_NAME),
664 .sg_tablesize = MV_MAX_SG_CT / 2,
665 .dma_boundary = MV_DMA_BOUNDARY,
666 };
667 #endif
668 static const struct scsi_host_template mv6_sht = {
669 __ATA_BASE_SHT(DRV_NAME),
670 .can_queue = MV_MAX_Q_DEPTH - 1,
671 .sg_tablesize = MV_MAX_SG_CT / 2,
672 .dma_boundary = MV_DMA_BOUNDARY,
673 .sdev_groups = ata_ncq_sdev_groups,
674 .change_queue_depth = ata_scsi_change_queue_depth,
675 .tag_alloc_policy = BLK_TAG_ALLOC_RR,
676 .slave_configure = ata_scsi_slave_config
677 };
678
679 static struct ata_port_operations mv5_ops = {
680 .inherits = &ata_sff_port_ops,
681
682 .lost_interrupt = ATA_OP_NULL,
683
684 .qc_defer = mv_qc_defer,
685 .qc_prep = mv_qc_prep,
686 .qc_issue = mv_qc_issue,
687
688 .freeze = mv_eh_freeze,
689 .thaw = mv_eh_thaw,
690 .hardreset = mv_hardreset,
691
692 .scr_read = mv5_scr_read,
693 .scr_write = mv5_scr_write,
694
695 .port_start = mv_port_start,
696 .port_stop = mv_port_stop,
697 };
698
699 static struct ata_port_operations mv6_ops = {
700 .inherits = &ata_bmdma_port_ops,
701
702 .lost_interrupt = ATA_OP_NULL,
703
704 .qc_defer = mv_qc_defer,
705 .qc_prep = mv_qc_prep,
706 .qc_issue = mv_qc_issue,
707
708 .dev_config = mv6_dev_config,
709
710 .freeze = mv_eh_freeze,
711 .thaw = mv_eh_thaw,
712 .hardreset = mv_hardreset,
713 .softreset = mv_softreset,
714 .pmp_hardreset = mv_pmp_hardreset,
715 .pmp_softreset = mv_softreset,
716 .error_handler = mv_pmp_error_handler,
717
718 .scr_read = mv_scr_read,
719 .scr_write = mv_scr_write,
720
721 .sff_check_status = mv_sff_check_status,
722 .sff_irq_clear = mv_sff_irq_clear,
723 .check_atapi_dma = mv_check_atapi_dma,
724 .bmdma_setup = mv_bmdma_setup,
725 .bmdma_start = mv_bmdma_start,
726 .bmdma_stop = mv_bmdma_stop,
727 .bmdma_status = mv_bmdma_status,
728
729 .port_start = mv_port_start,
730 .port_stop = mv_port_stop,
731 };
732
733 static struct ata_port_operations mv_iie_ops = {
734 .inherits = &mv6_ops,
735 .dev_config = ATA_OP_NULL,
736 .qc_prep = mv_qc_prep_iie,
737 };
738
739 static const struct ata_port_info mv_port_info[] = {
740 { /* chip_504x */
741 .flags = MV_GEN_I_FLAGS,
742 .pio_mask = ATA_PIO4,
743 .udma_mask = ATA_UDMA6,
744 .port_ops = &mv5_ops,
745 },
746 { /* chip_508x */
747 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
748 .pio_mask = ATA_PIO4,
749 .udma_mask = ATA_UDMA6,
750 .port_ops = &mv5_ops,
751 },
752 { /* chip_5080 */
753 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
754 .pio_mask = ATA_PIO4,
755 .udma_mask = ATA_UDMA6,
756 .port_ops = &mv5_ops,
757 },
758 { /* chip_604x */
759 .flags = MV_GEN_II_FLAGS,
760 .pio_mask = ATA_PIO4,
761 .udma_mask = ATA_UDMA6,
762 .port_ops = &mv6_ops,
763 },
764 { /* chip_608x */
765 .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
766 .pio_mask = ATA_PIO4,
767 .udma_mask = ATA_UDMA6,
768 .port_ops = &mv6_ops,
769 },
770 { /* chip_6042 */
771 .flags = MV_GEN_IIE_FLAGS,
772 .pio_mask = ATA_PIO4,
773 .udma_mask = ATA_UDMA6,
774 .port_ops = &mv_iie_ops,
775 },
776 { /* chip_7042 */
777 .flags = MV_GEN_IIE_FLAGS,
778 .pio_mask = ATA_PIO4,
779 .udma_mask = ATA_UDMA6,
780 .port_ops = &mv_iie_ops,
781 },
782 { /* chip_soc */
783 .flags = MV_GEN_IIE_FLAGS,
784 .pio_mask = ATA_PIO4,
785 .udma_mask = ATA_UDMA6,
786 .port_ops = &mv_iie_ops,
787 },
788 };
789
790 static const struct pci_device_id mv_pci_tbl[] = {
791 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
792 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
793 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
794 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
795 /* RocketRAID 1720/174x have different identifiers */
796 { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
797 { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
798 { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
799
800 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
801 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
802 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
803 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
804 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
805
806 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
807
808 /* Adaptec 1430SA */
809 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
810
811 /* Marvell 7042 support */
812 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
813
814 /* Highpoint RocketRAID PCIe series */
815 { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
816 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
817
818 { } /* terminate list */
819 };
820
821 static const struct mv_hw_ops mv5xxx_ops = {
822 .phy_errata = mv5_phy_errata,
823 .enable_leds = mv5_enable_leds,
824 .read_preamp = mv5_read_preamp,
825 .reset_hc = mv5_reset_hc,
826 .reset_flash = mv5_reset_flash,
827 .reset_bus = mv5_reset_bus,
828 };
829
830 static const struct mv_hw_ops mv6xxx_ops = {
831 .phy_errata = mv6_phy_errata,
832 .enable_leds = mv6_enable_leds,
833 .read_preamp = mv6_read_preamp,
834 .reset_hc = mv6_reset_hc,
835 .reset_flash = mv6_reset_flash,
836 .reset_bus = mv_reset_pci_bus,
837 };
838
839 static const struct mv_hw_ops mv_soc_ops = {
840 .phy_errata = mv6_phy_errata,
841 .enable_leds = mv_soc_enable_leds,
842 .read_preamp = mv_soc_read_preamp,
843 .reset_hc = mv_soc_reset_hc,
844 .reset_flash = mv_soc_reset_flash,
845 .reset_bus = mv_soc_reset_bus,
846 };
847
848 static const struct mv_hw_ops mv_soc_65n_ops = {
849 .phy_errata = mv_soc_65n_phy_errata,
850 .enable_leds = mv_soc_enable_leds,
851 .reset_hc = mv_soc_reset_hc,
852 .reset_flash = mv_soc_reset_flash,
853 .reset_bus = mv_soc_reset_bus,
854 };
855
856 /*
857 * Functions
858 */
859
writelfl(unsigned long data,void __iomem * addr)860 static inline void writelfl(unsigned long data, void __iomem *addr)
861 {
862 writel(data, addr);
863 (void) readl(addr); /* flush to avoid PCI posted write */
864 }
865
mv_hc_from_port(unsigned int port)866 static inline unsigned int mv_hc_from_port(unsigned int port)
867 {
868 return port >> MV_PORT_HC_SHIFT;
869 }
870
mv_hardport_from_port(unsigned int port)871 static inline unsigned int mv_hardport_from_port(unsigned int port)
872 {
873 return port & MV_PORT_MASK;
874 }
875
876 /*
877 * Consolidate some rather tricky bit shift calculations.
878 * This is hot-path stuff, so not a function.
879 * Simple code, with two return values, so macro rather than inline.
880 *
881 * port is the sole input, in range 0..7.
882 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
883 * hardport is the other output, in range 0..3.
884 *
885 * Note that port and hardport may be the same variable in some cases.
886 */
887 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
888 { \
889 shift = mv_hc_from_port(port) * HC_SHIFT; \
890 hardport = mv_hardport_from_port(port); \
891 shift += hardport * 2; \
892 }
893
mv_hc_base(void __iomem * base,unsigned int hc)894 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
895 {
896 return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
897 }
898
mv_hc_base_from_port(void __iomem * base,unsigned int port)899 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
900 unsigned int port)
901 {
902 return mv_hc_base(base, mv_hc_from_port(port));
903 }
904
mv_port_base(void __iomem * base,unsigned int port)905 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
906 {
907 return mv_hc_base_from_port(base, port) +
908 MV_SATAHC_ARBTR_REG_SZ +
909 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
910 }
911
mv5_phy_base(void __iomem * mmio,unsigned int port)912 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
913 {
914 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
915 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
916
917 return hc_mmio + ofs;
918 }
919
mv_host_base(struct ata_host * host)920 static inline void __iomem *mv_host_base(struct ata_host *host)
921 {
922 struct mv_host_priv *hpriv = host->private_data;
923 return hpriv->base;
924 }
925
mv_ap_base(struct ata_port * ap)926 static inline void __iomem *mv_ap_base(struct ata_port *ap)
927 {
928 return mv_port_base(mv_host_base(ap->host), ap->port_no);
929 }
930
mv_get_hc_count(unsigned long port_flags)931 static inline int mv_get_hc_count(unsigned long port_flags)
932 {
933 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
934 }
935
936 /**
937 * mv_save_cached_regs - (re-)initialize cached port registers
938 * @ap: the port whose registers we are caching
939 *
940 * Initialize the local cache of port registers,
941 * so that reading them over and over again can
942 * be avoided on the hotter paths of this driver.
943 * This saves a few microseconds each time we switch
944 * to/from EDMA mode to perform (eg.) a drive cache flush.
945 */
mv_save_cached_regs(struct ata_port * ap)946 static void mv_save_cached_regs(struct ata_port *ap)
947 {
948 void __iomem *port_mmio = mv_ap_base(ap);
949 struct mv_port_priv *pp = ap->private_data;
950
951 pp->cached.fiscfg = readl(port_mmio + FISCFG);
952 pp->cached.ltmode = readl(port_mmio + LTMODE);
953 pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
954 pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
955 }
956
957 /**
958 * mv_write_cached_reg - write to a cached port register
959 * @addr: hardware address of the register
960 * @old: pointer to cached value of the register
961 * @new: new value for the register
962 *
963 * Write a new value to a cached register,
964 * but only if the value is different from before.
965 */
mv_write_cached_reg(void __iomem * addr,u32 * old,u32 new)966 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
967 {
968 if (new != *old) {
969 unsigned long laddr;
970 *old = new;
971 /*
972 * Workaround for 88SX60x1-B2 FEr SATA#13:
973 * Read-after-write is needed to prevent generating 64-bit
974 * write cycles on the PCI bus for SATA interface registers
975 * at offsets ending in 0x4 or 0xc.
976 *
977 * Looks like a lot of fuss, but it avoids an unnecessary
978 * +1 usec read-after-write delay for unaffected registers.
979 */
980 laddr = (unsigned long)addr & 0xffff;
981 if (laddr >= 0x300 && laddr <= 0x33c) {
982 laddr &= 0x000f;
983 if (laddr == 0x4 || laddr == 0xc) {
984 writelfl(new, addr); /* read after write */
985 return;
986 }
987 }
988 writel(new, addr); /* unaffected by the errata */
989 }
990 }
991
mv_set_edma_ptrs(void __iomem * port_mmio,struct mv_host_priv * hpriv,struct mv_port_priv * pp)992 static void mv_set_edma_ptrs(void __iomem *port_mmio,
993 struct mv_host_priv *hpriv,
994 struct mv_port_priv *pp)
995 {
996 u32 index;
997
998 /*
999 * initialize request queue
1000 */
1001 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
1002 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
1003
1004 WARN_ON(pp->crqb_dma & 0x3ff);
1005 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
1006 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
1007 port_mmio + EDMA_REQ_Q_IN_PTR);
1008 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
1009
1010 /*
1011 * initialize response queue
1012 */
1013 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
1014 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
1015
1016 WARN_ON(pp->crpb_dma & 0xff);
1017 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1018 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
1019 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
1020 port_mmio + EDMA_RSP_Q_OUT_PTR);
1021 }
1022
mv_write_main_irq_mask(u32 mask,struct mv_host_priv * hpriv)1023 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1024 {
1025 /*
1026 * When writing to the main_irq_mask in hardware,
1027 * we must ensure exclusivity between the interrupt coalescing bits
1028 * and the corresponding individual port DONE_IRQ bits.
1029 *
1030 * Note that this register is really an "IRQ enable" register,
1031 * not an "IRQ mask" register as Marvell's naming might suggest.
1032 */
1033 if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1034 mask &= ~DONE_IRQ_0_3;
1035 if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1036 mask &= ~DONE_IRQ_4_7;
1037 writelfl(mask, hpriv->main_irq_mask_addr);
1038 }
1039
mv_set_main_irq_mask(struct ata_host * host,u32 disable_bits,u32 enable_bits)1040 static void mv_set_main_irq_mask(struct ata_host *host,
1041 u32 disable_bits, u32 enable_bits)
1042 {
1043 struct mv_host_priv *hpriv = host->private_data;
1044 u32 old_mask, new_mask;
1045
1046 old_mask = hpriv->main_irq_mask;
1047 new_mask = (old_mask & ~disable_bits) | enable_bits;
1048 if (new_mask != old_mask) {
1049 hpriv->main_irq_mask = new_mask;
1050 mv_write_main_irq_mask(new_mask, hpriv);
1051 }
1052 }
1053
mv_enable_port_irqs(struct ata_port * ap,unsigned int port_bits)1054 static void mv_enable_port_irqs(struct ata_port *ap,
1055 unsigned int port_bits)
1056 {
1057 unsigned int shift, hardport, port = ap->port_no;
1058 u32 disable_bits, enable_bits;
1059
1060 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1061
1062 disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1063 enable_bits = port_bits << shift;
1064 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1065 }
1066
mv_clear_and_enable_port_irqs(struct ata_port * ap,void __iomem * port_mmio,unsigned int port_irqs)1067 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1068 void __iomem *port_mmio,
1069 unsigned int port_irqs)
1070 {
1071 struct mv_host_priv *hpriv = ap->host->private_data;
1072 int hardport = mv_hardport_from_port(ap->port_no);
1073 void __iomem *hc_mmio = mv_hc_base_from_port(
1074 mv_host_base(ap->host), ap->port_no);
1075 u32 hc_irq_cause;
1076
1077 /* clear EDMA event indicators, if any */
1078 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1079
1080 /* clear pending irq events */
1081 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1082 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1083
1084 /* clear FIS IRQ Cause */
1085 if (IS_GEN_IIE(hpriv))
1086 writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1087
1088 mv_enable_port_irqs(ap, port_irqs);
1089 }
1090
mv_set_irq_coalescing(struct ata_host * host,unsigned int count,unsigned int usecs)1091 static void mv_set_irq_coalescing(struct ata_host *host,
1092 unsigned int count, unsigned int usecs)
1093 {
1094 struct mv_host_priv *hpriv = host->private_data;
1095 void __iomem *mmio = hpriv->base, *hc_mmio;
1096 u32 coal_enable = 0;
1097 unsigned long flags;
1098 unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1099 const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1100 ALL_PORTS_COAL_DONE;
1101
1102 /* Disable IRQ coalescing if either threshold is zero */
1103 if (!usecs || !count) {
1104 clks = count = 0;
1105 } else {
1106 /* Respect maximum limits of the hardware */
1107 clks = usecs * COAL_CLOCKS_PER_USEC;
1108 if (clks > MAX_COAL_TIME_THRESHOLD)
1109 clks = MAX_COAL_TIME_THRESHOLD;
1110 if (count > MAX_COAL_IO_COUNT)
1111 count = MAX_COAL_IO_COUNT;
1112 }
1113
1114 spin_lock_irqsave(&host->lock, flags);
1115 mv_set_main_irq_mask(host, coal_disable, 0);
1116
1117 if (is_dual_hc && !IS_GEN_I(hpriv)) {
1118 /*
1119 * GEN_II/GEN_IIE with dual host controllers:
1120 * one set of global thresholds for the entire chip.
1121 */
1122 writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD);
1123 writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1124 /* clear leftover coal IRQ bit */
1125 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1126 if (count)
1127 coal_enable = ALL_PORTS_COAL_DONE;
1128 clks = count = 0; /* force clearing of regular regs below */
1129 }
1130
1131 /*
1132 * All chips: independent thresholds for each HC on the chip.
1133 */
1134 hc_mmio = mv_hc_base_from_port(mmio, 0);
1135 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1136 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1137 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1138 if (count)
1139 coal_enable |= PORTS_0_3_COAL_DONE;
1140 if (is_dual_hc) {
1141 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1142 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1143 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1144 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1145 if (count)
1146 coal_enable |= PORTS_4_7_COAL_DONE;
1147 }
1148
1149 mv_set_main_irq_mask(host, 0, coal_enable);
1150 spin_unlock_irqrestore(&host->lock, flags);
1151 }
1152
1153 /*
1154 * mv_start_edma - Enable eDMA engine
1155 * @pp: port private data
1156 *
1157 * Verify the local cache of the eDMA state is accurate with a
1158 * WARN_ON.
1159 *
1160 * LOCKING:
1161 * Inherited from caller.
1162 */
mv_start_edma(struct ata_port * ap,void __iomem * port_mmio,struct mv_port_priv * pp,u8 protocol)1163 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1164 struct mv_port_priv *pp, u8 protocol)
1165 {
1166 int want_ncq = (protocol == ATA_PROT_NCQ);
1167
1168 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1169 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1170 if (want_ncq != using_ncq)
1171 mv_stop_edma(ap);
1172 }
1173 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1174 struct mv_host_priv *hpriv = ap->host->private_data;
1175
1176 mv_edma_cfg(ap, want_ncq, 1);
1177
1178 mv_set_edma_ptrs(port_mmio, hpriv, pp);
1179 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1180
1181 writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1182 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1183 }
1184 }
1185
mv_wait_for_edma_empty_idle(struct ata_port * ap)1186 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1187 {
1188 void __iomem *port_mmio = mv_ap_base(ap);
1189 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1190 const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1191 int i;
1192
1193 /*
1194 * Wait for the EDMA engine to finish transactions in progress.
1195 * No idea what a good "timeout" value might be, but measurements
1196 * indicate that it often requires hundreds of microseconds
1197 * with two drives in-use. So we use the 15msec value above
1198 * as a rough guess at what even more drives might require.
1199 */
1200 for (i = 0; i < timeout; ++i) {
1201 u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1202 if ((edma_stat & empty_idle) == empty_idle)
1203 break;
1204 udelay(per_loop);
1205 }
1206 /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1207 }
1208
1209 /**
1210 * mv_stop_edma_engine - Disable eDMA engine
1211 * @port_mmio: io base address
1212 *
1213 * LOCKING:
1214 * Inherited from caller.
1215 */
mv_stop_edma_engine(void __iomem * port_mmio)1216 static int mv_stop_edma_engine(void __iomem *port_mmio)
1217 {
1218 int i;
1219
1220 /* Disable eDMA. The disable bit auto clears. */
1221 writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1222
1223 /* Wait for the chip to confirm eDMA is off. */
1224 for (i = 10000; i > 0; i--) {
1225 u32 reg = readl(port_mmio + EDMA_CMD);
1226 if (!(reg & EDMA_EN))
1227 return 0;
1228 udelay(10);
1229 }
1230 return -EIO;
1231 }
1232
mv_stop_edma(struct ata_port * ap)1233 static int mv_stop_edma(struct ata_port *ap)
1234 {
1235 void __iomem *port_mmio = mv_ap_base(ap);
1236 struct mv_port_priv *pp = ap->private_data;
1237 int err = 0;
1238
1239 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1240 return 0;
1241 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1242 mv_wait_for_edma_empty_idle(ap);
1243 if (mv_stop_edma_engine(port_mmio)) {
1244 ata_port_err(ap, "Unable to stop eDMA\n");
1245 err = -EIO;
1246 }
1247 mv_edma_cfg(ap, 0, 0);
1248 return err;
1249 }
1250
mv_dump_mem(struct device * dev,void __iomem * start,unsigned bytes)1251 static void mv_dump_mem(struct device *dev, void __iomem *start, unsigned bytes)
1252 {
1253 int b, w, o;
1254 unsigned char linebuf[38];
1255
1256 for (b = 0; b < bytes; ) {
1257 for (w = 0, o = 0; b < bytes && w < 4; w++) {
1258 o += scnprintf(linebuf + o, sizeof(linebuf) - o,
1259 "%08x ", readl(start + b));
1260 b += sizeof(u32);
1261 }
1262 dev_dbg(dev, "%s: %p: %s\n",
1263 __func__, start + b, linebuf);
1264 }
1265 }
1266
mv_dump_pci_cfg(struct pci_dev * pdev,unsigned bytes)1267 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1268 {
1269 int b, w, o;
1270 u32 dw = 0;
1271 unsigned char linebuf[38];
1272
1273 for (b = 0; b < bytes; ) {
1274 for (w = 0, o = 0; b < bytes && w < 4; w++) {
1275 (void) pci_read_config_dword(pdev, b, &dw);
1276 o += snprintf(linebuf + o, sizeof(linebuf) - o,
1277 "%08x ", dw);
1278 b += sizeof(u32);
1279 }
1280 dev_dbg(&pdev->dev, "%s: %02x: %s\n",
1281 __func__, b, linebuf);
1282 }
1283 }
1284
mv_dump_all_regs(void __iomem * mmio_base,struct pci_dev * pdev)1285 static void mv_dump_all_regs(void __iomem *mmio_base,
1286 struct pci_dev *pdev)
1287 {
1288 void __iomem *hc_base;
1289 void __iomem *port_base;
1290 int start_port, num_ports, p, start_hc, num_hcs, hc;
1291
1292 start_hc = start_port = 0;
1293 num_ports = 8; /* should be benign for 4 port devs */
1294 num_hcs = 2;
1295 dev_dbg(&pdev->dev,
1296 "%s: All registers for port(s) %u-%u:\n", __func__,
1297 start_port, num_ports > 1 ? num_ports - 1 : start_port);
1298
1299 dev_dbg(&pdev->dev, "%s: PCI config space regs:\n", __func__);
1300 mv_dump_pci_cfg(pdev, 0x68);
1301
1302 dev_dbg(&pdev->dev, "%s: PCI regs:\n", __func__);
1303 mv_dump_mem(&pdev->dev, mmio_base+0xc00, 0x3c);
1304 mv_dump_mem(&pdev->dev, mmio_base+0xd00, 0x34);
1305 mv_dump_mem(&pdev->dev, mmio_base+0xf00, 0x4);
1306 mv_dump_mem(&pdev->dev, mmio_base+0x1d00, 0x6c);
1307 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1308 hc_base = mv_hc_base(mmio_base, hc);
1309 dev_dbg(&pdev->dev, "%s: HC regs (HC %i):\n", __func__, hc);
1310 mv_dump_mem(&pdev->dev, hc_base, 0x1c);
1311 }
1312 for (p = start_port; p < start_port + num_ports; p++) {
1313 port_base = mv_port_base(mmio_base, p);
1314 dev_dbg(&pdev->dev, "%s: EDMA regs (port %i):\n", __func__, p);
1315 mv_dump_mem(&pdev->dev, port_base, 0x54);
1316 dev_dbg(&pdev->dev, "%s: SATA regs (port %i):\n", __func__, p);
1317 mv_dump_mem(&pdev->dev, port_base+0x300, 0x60);
1318 }
1319 }
1320
mv_scr_offset(unsigned int sc_reg_in)1321 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1322 {
1323 unsigned int ofs;
1324
1325 switch (sc_reg_in) {
1326 case SCR_STATUS:
1327 case SCR_CONTROL:
1328 case SCR_ERROR:
1329 ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1330 break;
1331 case SCR_ACTIVE:
1332 ofs = SATA_ACTIVE; /* active is not with the others */
1333 break;
1334 default:
1335 ofs = 0xffffffffU;
1336 break;
1337 }
1338 return ofs;
1339 }
1340
mv_scr_read(struct ata_link * link,unsigned int sc_reg_in,u32 * val)1341 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1342 {
1343 unsigned int ofs = mv_scr_offset(sc_reg_in);
1344
1345 if (ofs != 0xffffffffU) {
1346 *val = readl(mv_ap_base(link->ap) + ofs);
1347 return 0;
1348 } else
1349 return -EINVAL;
1350 }
1351
mv_scr_write(struct ata_link * link,unsigned int sc_reg_in,u32 val)1352 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1353 {
1354 unsigned int ofs = mv_scr_offset(sc_reg_in);
1355
1356 if (ofs != 0xffffffffU) {
1357 void __iomem *addr = mv_ap_base(link->ap) + ofs;
1358 struct mv_host_priv *hpriv = link->ap->host->private_data;
1359 if (sc_reg_in == SCR_CONTROL) {
1360 /*
1361 * Workaround for 88SX60x1 FEr SATA#26:
1362 *
1363 * COMRESETs have to take care not to accidentally
1364 * put the drive to sleep when writing SCR_CONTROL.
1365 * Setting bits 12..15 prevents this problem.
1366 *
1367 * So if we see an outbound COMMRESET, set those bits.
1368 * Ditto for the followup write that clears the reset.
1369 *
1370 * The proprietary driver does this for
1371 * all chip versions, and so do we.
1372 */
1373 if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1374 val |= 0xf000;
1375
1376 if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) {
1377 void __iomem *lp_phy_addr =
1378 mv_ap_base(link->ap) + LP_PHY_CTL;
1379 /*
1380 * Set PHY speed according to SControl speed.
1381 */
1382 u32 lp_phy_val =
1383 LP_PHY_CTL_PIN_PU_PLL |
1384 LP_PHY_CTL_PIN_PU_RX |
1385 LP_PHY_CTL_PIN_PU_TX;
1386
1387 if ((val & 0xf0) != 0x10)
1388 lp_phy_val |=
1389 LP_PHY_CTL_GEN_TX_3G |
1390 LP_PHY_CTL_GEN_RX_3G;
1391
1392 writelfl(lp_phy_val, lp_phy_addr);
1393 }
1394 }
1395 writelfl(val, addr);
1396 return 0;
1397 } else
1398 return -EINVAL;
1399 }
1400
mv6_dev_config(struct ata_device * adev)1401 static void mv6_dev_config(struct ata_device *adev)
1402 {
1403 /*
1404 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1405 *
1406 * Gen-II does not support NCQ over a port multiplier
1407 * (no FIS-based switching).
1408 */
1409 if (adev->flags & ATA_DFLAG_NCQ) {
1410 if (sata_pmp_attached(adev->link->ap)) {
1411 adev->flags &= ~ATA_DFLAG_NCQ;
1412 ata_dev_info(adev,
1413 "NCQ disabled for command-based switching\n");
1414 }
1415 }
1416 }
1417
mv_qc_defer(struct ata_queued_cmd * qc)1418 static int mv_qc_defer(struct ata_queued_cmd *qc)
1419 {
1420 struct ata_link *link = qc->dev->link;
1421 struct ata_port *ap = link->ap;
1422 struct mv_port_priv *pp = ap->private_data;
1423
1424 /*
1425 * Don't allow new commands if we're in a delayed EH state
1426 * for NCQ and/or FIS-based switching.
1427 */
1428 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1429 return ATA_DEFER_PORT;
1430
1431 /* PIO commands need exclusive link: no other commands [DMA or PIO]
1432 * can run concurrently.
1433 * set excl_link when we want to send a PIO command in DMA mode
1434 * or a non-NCQ command in NCQ mode.
1435 * When we receive a command from that link, and there are no
1436 * outstanding commands, mark a flag to clear excl_link and let
1437 * the command go through.
1438 */
1439 if (unlikely(ap->excl_link)) {
1440 if (link == ap->excl_link) {
1441 if (ap->nr_active_links)
1442 return ATA_DEFER_PORT;
1443 qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1444 return 0;
1445 } else
1446 return ATA_DEFER_PORT;
1447 }
1448
1449 /*
1450 * If the port is completely idle, then allow the new qc.
1451 */
1452 if (ap->nr_active_links == 0)
1453 return 0;
1454
1455 /*
1456 * The port is operating in host queuing mode (EDMA) with NCQ
1457 * enabled, allow multiple NCQ commands. EDMA also allows
1458 * queueing multiple DMA commands but libata core currently
1459 * doesn't allow it.
1460 */
1461 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1462 (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1463 if (ata_is_ncq(qc->tf.protocol))
1464 return 0;
1465 else {
1466 ap->excl_link = link;
1467 return ATA_DEFER_PORT;
1468 }
1469 }
1470
1471 return ATA_DEFER_PORT;
1472 }
1473
mv_config_fbs(struct ata_port * ap,int want_ncq,int want_fbs)1474 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1475 {
1476 struct mv_port_priv *pp = ap->private_data;
1477 void __iomem *port_mmio;
1478
1479 u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg;
1480 u32 ltmode, *old_ltmode = &pp->cached.ltmode;
1481 u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1482
1483 ltmode = *old_ltmode & ~LTMODE_BIT8;
1484 haltcond = *old_haltcond | EDMA_ERR_DEV;
1485
1486 if (want_fbs) {
1487 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1488 ltmode = *old_ltmode | LTMODE_BIT8;
1489 if (want_ncq)
1490 haltcond &= ~EDMA_ERR_DEV;
1491 else
1492 fiscfg |= FISCFG_WAIT_DEV_ERR;
1493 } else {
1494 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1495 }
1496
1497 port_mmio = mv_ap_base(ap);
1498 mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1499 mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1500 mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1501 }
1502
mv_60x1_errata_sata25(struct ata_port * ap,int want_ncq)1503 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1504 {
1505 struct mv_host_priv *hpriv = ap->host->private_data;
1506 u32 old, new;
1507
1508 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1509 old = readl(hpriv->base + GPIO_PORT_CTL);
1510 if (want_ncq)
1511 new = old | (1 << 22);
1512 else
1513 new = old & ~(1 << 22);
1514 if (new != old)
1515 writel(new, hpriv->base + GPIO_PORT_CTL);
1516 }
1517
1518 /*
1519 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1520 * @ap: Port being initialized
1521 *
1522 * There are two DMA modes on these chips: basic DMA, and EDMA.
1523 *
1524 * Bit-0 of the "EDMA RESERVED" register enables/disables use
1525 * of basic DMA on the GEN_IIE versions of the chips.
1526 *
1527 * This bit survives EDMA resets, and must be set for basic DMA
1528 * to function, and should be cleared when EDMA is active.
1529 */
mv_bmdma_enable_iie(struct ata_port * ap,int enable_bmdma)1530 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1531 {
1532 struct mv_port_priv *pp = ap->private_data;
1533 u32 new, *old = &pp->cached.unknown_rsvd;
1534
1535 if (enable_bmdma)
1536 new = *old | 1;
1537 else
1538 new = *old & ~1;
1539 mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1540 }
1541
1542 /*
1543 * SOC chips have an issue whereby the HDD LEDs don't always blink
1544 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1545 * of the SOC takes care of it, generating a steady blink rate when
1546 * any drive on the chip is active.
1547 *
1548 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1549 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1550 *
1551 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1552 * LED operation works then, and provides better (more accurate) feedback.
1553 *
1554 * Note that this code assumes that an SOC never has more than one HC onboard.
1555 */
mv_soc_led_blink_enable(struct ata_port * ap)1556 static void mv_soc_led_blink_enable(struct ata_port *ap)
1557 {
1558 struct ata_host *host = ap->host;
1559 struct mv_host_priv *hpriv = host->private_data;
1560 void __iomem *hc_mmio;
1561 u32 led_ctrl;
1562
1563 if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1564 return;
1565 hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1566 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1567 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1568 writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1569 }
1570
mv_soc_led_blink_disable(struct ata_port * ap)1571 static void mv_soc_led_blink_disable(struct ata_port *ap)
1572 {
1573 struct ata_host *host = ap->host;
1574 struct mv_host_priv *hpriv = host->private_data;
1575 void __iomem *hc_mmio;
1576 u32 led_ctrl;
1577 unsigned int port;
1578
1579 if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1580 return;
1581
1582 /* disable led-blink only if no ports are using NCQ */
1583 for (port = 0; port < hpriv->n_ports; port++) {
1584 struct ata_port *this_ap = host->ports[port];
1585 struct mv_port_priv *pp = this_ap->private_data;
1586
1587 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1588 return;
1589 }
1590
1591 hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1592 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1593 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1594 writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1595 }
1596
mv_edma_cfg(struct ata_port * ap,int want_ncq,int want_edma)1597 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1598 {
1599 u32 cfg;
1600 struct mv_port_priv *pp = ap->private_data;
1601 struct mv_host_priv *hpriv = ap->host->private_data;
1602 void __iomem *port_mmio = mv_ap_base(ap);
1603
1604 /* set up non-NCQ EDMA configuration */
1605 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
1606 pp->pp_flags &=
1607 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1608
1609 if (IS_GEN_I(hpriv))
1610 cfg |= (1 << 8); /* enab config burst size mask */
1611
1612 else if (IS_GEN_II(hpriv)) {
1613 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1614 mv_60x1_errata_sata25(ap, want_ncq);
1615
1616 } else if (IS_GEN_IIE(hpriv)) {
1617 int want_fbs = sata_pmp_attached(ap);
1618 /*
1619 * Possible future enhancement:
1620 *
1621 * The chip can use FBS with non-NCQ, if we allow it,
1622 * But first we need to have the error handling in place
1623 * for this mode (datasheet section 7.3.15.4.2.3).
1624 * So disallow non-NCQ FBS for now.
1625 */
1626 want_fbs &= want_ncq;
1627
1628 mv_config_fbs(ap, want_ncq, want_fbs);
1629
1630 if (want_fbs) {
1631 pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1632 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1633 }
1634
1635 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
1636 if (want_edma) {
1637 cfg |= (1 << 22); /* enab 4-entry host queue cache */
1638 if (!IS_SOC(hpriv))
1639 cfg |= (1 << 18); /* enab early completion */
1640 }
1641 if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1642 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1643 mv_bmdma_enable_iie(ap, !want_edma);
1644
1645 if (IS_SOC(hpriv)) {
1646 if (want_ncq)
1647 mv_soc_led_blink_enable(ap);
1648 else
1649 mv_soc_led_blink_disable(ap);
1650 }
1651 }
1652
1653 if (want_ncq) {
1654 cfg |= EDMA_CFG_NCQ;
1655 pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
1656 }
1657
1658 writelfl(cfg, port_mmio + EDMA_CFG);
1659 }
1660
mv_port_free_dma_mem(struct ata_port * ap)1661 static void mv_port_free_dma_mem(struct ata_port *ap)
1662 {
1663 struct mv_host_priv *hpriv = ap->host->private_data;
1664 struct mv_port_priv *pp = ap->private_data;
1665 int tag;
1666
1667 if (pp->crqb) {
1668 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1669 pp->crqb = NULL;
1670 }
1671 if (pp->crpb) {
1672 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1673 pp->crpb = NULL;
1674 }
1675 /*
1676 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1677 * For later hardware, we have one unique sg_tbl per NCQ tag.
1678 */
1679 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1680 if (pp->sg_tbl[tag]) {
1681 if (tag == 0 || !IS_GEN_I(hpriv))
1682 dma_pool_free(hpriv->sg_tbl_pool,
1683 pp->sg_tbl[tag],
1684 pp->sg_tbl_dma[tag]);
1685 pp->sg_tbl[tag] = NULL;
1686 }
1687 }
1688 }
1689
1690 /**
1691 * mv_port_start - Port specific init/start routine.
1692 * @ap: ATA channel to manipulate
1693 *
1694 * Allocate and point to DMA memory, init port private memory,
1695 * zero indices.
1696 *
1697 * LOCKING:
1698 * Inherited from caller.
1699 */
mv_port_start(struct ata_port * ap)1700 static int mv_port_start(struct ata_port *ap)
1701 {
1702 struct device *dev = ap->host->dev;
1703 struct mv_host_priv *hpriv = ap->host->private_data;
1704 struct mv_port_priv *pp;
1705 unsigned long flags;
1706 int tag;
1707
1708 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1709 if (!pp)
1710 return -ENOMEM;
1711 ap->private_data = pp;
1712
1713 pp->crqb = dma_pool_zalloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1714 if (!pp->crqb)
1715 return -ENOMEM;
1716
1717 pp->crpb = dma_pool_zalloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1718 if (!pp->crpb)
1719 goto out_port_free_dma_mem;
1720
1721 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1722 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1723 ap->flags |= ATA_FLAG_AN;
1724 /*
1725 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1726 * For later hardware, we need one unique sg_tbl per NCQ tag.
1727 */
1728 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1729 if (tag == 0 || !IS_GEN_I(hpriv)) {
1730 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1731 GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1732 if (!pp->sg_tbl[tag])
1733 goto out_port_free_dma_mem;
1734 } else {
1735 pp->sg_tbl[tag] = pp->sg_tbl[0];
1736 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1737 }
1738 }
1739
1740 spin_lock_irqsave(ap->lock, flags);
1741 mv_save_cached_regs(ap);
1742 mv_edma_cfg(ap, 0, 0);
1743 spin_unlock_irqrestore(ap->lock, flags);
1744
1745 return 0;
1746
1747 out_port_free_dma_mem:
1748 mv_port_free_dma_mem(ap);
1749 return -ENOMEM;
1750 }
1751
1752 /**
1753 * mv_port_stop - Port specific cleanup/stop routine.
1754 * @ap: ATA channel to manipulate
1755 *
1756 * Stop DMA, cleanup port memory.
1757 *
1758 * LOCKING:
1759 * This routine uses the host lock to protect the DMA stop.
1760 */
mv_port_stop(struct ata_port * ap)1761 static void mv_port_stop(struct ata_port *ap)
1762 {
1763 unsigned long flags;
1764
1765 spin_lock_irqsave(ap->lock, flags);
1766 mv_stop_edma(ap);
1767 mv_enable_port_irqs(ap, 0);
1768 spin_unlock_irqrestore(ap->lock, flags);
1769 mv_port_free_dma_mem(ap);
1770 }
1771
1772 /**
1773 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1774 * @qc: queued command whose SG list to source from
1775 *
1776 * Populate the SG list and mark the last entry.
1777 *
1778 * LOCKING:
1779 * Inherited from caller.
1780 */
mv_fill_sg(struct ata_queued_cmd * qc)1781 static void mv_fill_sg(struct ata_queued_cmd *qc)
1782 {
1783 struct mv_port_priv *pp = qc->ap->private_data;
1784 struct scatterlist *sg;
1785 struct mv_sg *mv_sg, *last_sg = NULL;
1786 unsigned int si;
1787
1788 mv_sg = pp->sg_tbl[qc->hw_tag];
1789 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1790 dma_addr_t addr = sg_dma_address(sg);
1791 u32 sg_len = sg_dma_len(sg);
1792
1793 while (sg_len) {
1794 u32 offset = addr & 0xffff;
1795 u32 len = sg_len;
1796
1797 if (offset + len > 0x10000)
1798 len = 0x10000 - offset;
1799
1800 mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1801 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1802 mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1803 mv_sg->reserved = 0;
1804
1805 sg_len -= len;
1806 addr += len;
1807
1808 last_sg = mv_sg;
1809 mv_sg++;
1810 }
1811 }
1812
1813 if (likely(last_sg))
1814 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1815 mb(); /* ensure data structure is visible to the chipset */
1816 }
1817
mv_crqb_pack_cmd(__le16 * cmdw,u8 data,u8 addr,unsigned last)1818 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1819 {
1820 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1821 (last ? CRQB_CMD_LAST : 0);
1822 *cmdw = cpu_to_le16(tmp);
1823 }
1824
1825 /**
1826 * mv_sff_irq_clear - Clear hardware interrupt after DMA.
1827 * @ap: Port associated with this ATA transaction.
1828 *
1829 * We need this only for ATAPI bmdma transactions,
1830 * as otherwise we experience spurious interrupts
1831 * after libata-sff handles the bmdma interrupts.
1832 */
mv_sff_irq_clear(struct ata_port * ap)1833 static void mv_sff_irq_clear(struct ata_port *ap)
1834 {
1835 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1836 }
1837
1838 /**
1839 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1840 * @qc: queued command to check for chipset/DMA compatibility.
1841 *
1842 * The bmdma engines cannot handle speculative data sizes
1843 * (bytecount under/over flow). So only allow DMA for
1844 * data transfer commands with known data sizes.
1845 *
1846 * LOCKING:
1847 * Inherited from caller.
1848 */
mv_check_atapi_dma(struct ata_queued_cmd * qc)1849 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1850 {
1851 struct scsi_cmnd *scmd = qc->scsicmd;
1852
1853 if (scmd) {
1854 switch (scmd->cmnd[0]) {
1855 case READ_6:
1856 case READ_10:
1857 case READ_12:
1858 case WRITE_6:
1859 case WRITE_10:
1860 case WRITE_12:
1861 case GPCMD_READ_CD:
1862 case GPCMD_SEND_DVD_STRUCTURE:
1863 case GPCMD_SEND_CUE_SHEET:
1864 return 0; /* DMA is safe */
1865 }
1866 }
1867 return -EOPNOTSUPP; /* use PIO instead */
1868 }
1869
1870 /**
1871 * mv_bmdma_setup - Set up BMDMA transaction
1872 * @qc: queued command to prepare DMA for.
1873 *
1874 * LOCKING:
1875 * Inherited from caller.
1876 */
mv_bmdma_setup(struct ata_queued_cmd * qc)1877 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1878 {
1879 struct ata_port *ap = qc->ap;
1880 void __iomem *port_mmio = mv_ap_base(ap);
1881 struct mv_port_priv *pp = ap->private_data;
1882
1883 mv_fill_sg(qc);
1884
1885 /* clear all DMA cmd bits */
1886 writel(0, port_mmio + BMDMA_CMD);
1887
1888 /* load PRD table addr. */
1889 writel((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16,
1890 port_mmio + BMDMA_PRD_HIGH);
1891 writelfl(pp->sg_tbl_dma[qc->hw_tag],
1892 port_mmio + BMDMA_PRD_LOW);
1893
1894 /* issue r/w command */
1895 ap->ops->sff_exec_command(ap, &qc->tf);
1896 }
1897
1898 /**
1899 * mv_bmdma_start - Start a BMDMA transaction
1900 * @qc: queued command to start DMA on.
1901 *
1902 * LOCKING:
1903 * Inherited from caller.
1904 */
mv_bmdma_start(struct ata_queued_cmd * qc)1905 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1906 {
1907 struct ata_port *ap = qc->ap;
1908 void __iomem *port_mmio = mv_ap_base(ap);
1909 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1910 u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1911
1912 /* start host DMA transaction */
1913 writelfl(cmd, port_mmio + BMDMA_CMD);
1914 }
1915
1916 /**
1917 * mv_bmdma_stop_ap - Stop BMDMA transfer
1918 * @ap: port to stop
1919 *
1920 * Clears the ATA_DMA_START flag in the bmdma control register
1921 *
1922 * LOCKING:
1923 * Inherited from caller.
1924 */
mv_bmdma_stop_ap(struct ata_port * ap)1925 static void mv_bmdma_stop_ap(struct ata_port *ap)
1926 {
1927 void __iomem *port_mmio = mv_ap_base(ap);
1928 u32 cmd;
1929
1930 /* clear start/stop bit */
1931 cmd = readl(port_mmio + BMDMA_CMD);
1932 if (cmd & ATA_DMA_START) {
1933 cmd &= ~ATA_DMA_START;
1934 writelfl(cmd, port_mmio + BMDMA_CMD);
1935
1936 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1937 ata_sff_dma_pause(ap);
1938 }
1939 }
1940
mv_bmdma_stop(struct ata_queued_cmd * qc)1941 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1942 {
1943 mv_bmdma_stop_ap(qc->ap);
1944 }
1945
1946 /**
1947 * mv_bmdma_status - Read BMDMA status
1948 * @ap: port for which to retrieve DMA status.
1949 *
1950 * Read and return equivalent of the sff BMDMA status register.
1951 *
1952 * LOCKING:
1953 * Inherited from caller.
1954 */
mv_bmdma_status(struct ata_port * ap)1955 static u8 mv_bmdma_status(struct ata_port *ap)
1956 {
1957 void __iomem *port_mmio = mv_ap_base(ap);
1958 u32 reg, status;
1959
1960 /*
1961 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1962 * and the ATA_DMA_INTR bit doesn't exist.
1963 */
1964 reg = readl(port_mmio + BMDMA_STATUS);
1965 if (reg & ATA_DMA_ACTIVE)
1966 status = ATA_DMA_ACTIVE;
1967 else if (reg & ATA_DMA_ERR)
1968 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1969 else {
1970 /*
1971 * Just because DMA_ACTIVE is 0 (DMA completed),
1972 * this does _not_ mean the device is "done".
1973 * So we should not yet be signalling ATA_DMA_INTR
1974 * in some cases. Eg. DSM/TRIM, and perhaps others.
1975 */
1976 mv_bmdma_stop_ap(ap);
1977 if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1978 status = 0;
1979 else
1980 status = ATA_DMA_INTR;
1981 }
1982 return status;
1983 }
1984
mv_rw_multi_errata_sata24(struct ata_queued_cmd * qc)1985 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1986 {
1987 struct ata_taskfile *tf = &qc->tf;
1988 /*
1989 * Workaround for 88SX60x1 FEr SATA#24.
1990 *
1991 * Chip may corrupt WRITEs if multi_count >= 4kB.
1992 * Note that READs are unaffected.
1993 *
1994 * It's not clear if this errata really means "4K bytes",
1995 * or if it always happens for multi_count > 7
1996 * regardless of device sector_size.
1997 *
1998 * So, for safety, any write with multi_count > 7
1999 * gets converted here into a regular PIO write instead:
2000 */
2001 if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
2002 if (qc->dev->multi_count > 7) {
2003 switch (tf->command) {
2004 case ATA_CMD_WRITE_MULTI:
2005 tf->command = ATA_CMD_PIO_WRITE;
2006 break;
2007 case ATA_CMD_WRITE_MULTI_FUA_EXT:
2008 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
2009 fallthrough;
2010 case ATA_CMD_WRITE_MULTI_EXT:
2011 tf->command = ATA_CMD_PIO_WRITE_EXT;
2012 break;
2013 }
2014 }
2015 }
2016 }
2017
2018 /**
2019 * mv_qc_prep - Host specific command preparation.
2020 * @qc: queued command to prepare
2021 *
2022 * This routine simply redirects to the general purpose routine
2023 * if command is not DMA. Else, it handles prep of the CRQB
2024 * (command request block), does some sanity checking, and calls
2025 * the SG load routine.
2026 *
2027 * LOCKING:
2028 * Inherited from caller.
2029 */
mv_qc_prep(struct ata_queued_cmd * qc)2030 static enum ata_completion_errors mv_qc_prep(struct ata_queued_cmd *qc)
2031 {
2032 struct ata_port *ap = qc->ap;
2033 struct mv_port_priv *pp = ap->private_data;
2034 __le16 *cw;
2035 struct ata_taskfile *tf = &qc->tf;
2036 u16 flags = 0;
2037 unsigned in_index;
2038
2039 switch (tf->protocol) {
2040 case ATA_PROT_DMA:
2041 if (tf->command == ATA_CMD_DSM)
2042 return AC_ERR_OK;
2043 fallthrough;
2044 case ATA_PROT_NCQ:
2045 break; /* continue below */
2046 case ATA_PROT_PIO:
2047 mv_rw_multi_errata_sata24(qc);
2048 return AC_ERR_OK;
2049 default:
2050 return AC_ERR_OK;
2051 }
2052
2053 /* Fill in command request block
2054 */
2055 if (!(tf->flags & ATA_TFLAG_WRITE))
2056 flags |= CRQB_FLAG_READ;
2057 WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2058 flags |= qc->hw_tag << CRQB_TAG_SHIFT;
2059 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2060
2061 /* get current queue index from software */
2062 in_index = pp->req_idx;
2063
2064 pp->crqb[in_index].sg_addr =
2065 cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
2066 pp->crqb[in_index].sg_addr_hi =
2067 cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
2068 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2069
2070 cw = &pp->crqb[in_index].ata_cmd[0];
2071
2072 /* Sadly, the CRQB cannot accommodate all registers--there are
2073 * only 11 bytes...so we must pick and choose required
2074 * registers based on the command. So, we drop feature and
2075 * hob_feature for [RW] DMA commands, but they are needed for
2076 * NCQ. NCQ will drop hob_nsect, which is not needed there
2077 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2078 */
2079 switch (tf->command) {
2080 case ATA_CMD_READ:
2081 case ATA_CMD_READ_EXT:
2082 case ATA_CMD_WRITE:
2083 case ATA_CMD_WRITE_EXT:
2084 case ATA_CMD_WRITE_FUA_EXT:
2085 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2086 break;
2087 case ATA_CMD_FPDMA_READ:
2088 case ATA_CMD_FPDMA_WRITE:
2089 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2090 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2091 break;
2092 default:
2093 /* The only other commands EDMA supports in non-queued and
2094 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2095 * of which are defined/used by Linux. If we get here, this
2096 * driver needs work.
2097 */
2098 ata_port_err(ap, "%s: unsupported command: %.2x\n", __func__,
2099 tf->command);
2100 return AC_ERR_INVALID;
2101 }
2102 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2103 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2104 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2105 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2106 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2107 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2108 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2109 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2110 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
2111
2112 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2113 return AC_ERR_OK;
2114 mv_fill_sg(qc);
2115
2116 return AC_ERR_OK;
2117 }
2118
2119 /**
2120 * mv_qc_prep_iie - Host specific command preparation.
2121 * @qc: queued command to prepare
2122 *
2123 * This routine simply redirects to the general purpose routine
2124 * if command is not DMA. Else, it handles prep of the CRQB
2125 * (command request block), does some sanity checking, and calls
2126 * the SG load routine.
2127 *
2128 * LOCKING:
2129 * Inherited from caller.
2130 */
mv_qc_prep_iie(struct ata_queued_cmd * qc)2131 static enum ata_completion_errors mv_qc_prep_iie(struct ata_queued_cmd *qc)
2132 {
2133 struct ata_port *ap = qc->ap;
2134 struct mv_port_priv *pp = ap->private_data;
2135 struct mv_crqb_iie *crqb;
2136 struct ata_taskfile *tf = &qc->tf;
2137 unsigned in_index;
2138 u32 flags = 0;
2139
2140 if ((tf->protocol != ATA_PROT_DMA) &&
2141 (tf->protocol != ATA_PROT_NCQ))
2142 return AC_ERR_OK;
2143 if (tf->command == ATA_CMD_DSM)
2144 return AC_ERR_OK; /* use bmdma for this */
2145
2146 /* Fill in Gen IIE command request block */
2147 if (!(tf->flags & ATA_TFLAG_WRITE))
2148 flags |= CRQB_FLAG_READ;
2149
2150 WARN_ON(MV_MAX_Q_DEPTH <= qc->hw_tag);
2151 flags |= qc->hw_tag << CRQB_TAG_SHIFT;
2152 flags |= qc->hw_tag << CRQB_HOSTQ_SHIFT;
2153 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2154
2155 /* get current queue index from software */
2156 in_index = pp->req_idx;
2157
2158 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2159 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->hw_tag] & 0xffffffff);
2160 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->hw_tag] >> 16) >> 16);
2161 crqb->flags = cpu_to_le32(flags);
2162
2163 crqb->ata_cmd[0] = cpu_to_le32(
2164 (tf->command << 16) |
2165 (tf->feature << 24)
2166 );
2167 crqb->ata_cmd[1] = cpu_to_le32(
2168 (tf->lbal << 0) |
2169 (tf->lbam << 8) |
2170 (tf->lbah << 16) |
2171 (tf->device << 24)
2172 );
2173 crqb->ata_cmd[2] = cpu_to_le32(
2174 (tf->hob_lbal << 0) |
2175 (tf->hob_lbam << 8) |
2176 (tf->hob_lbah << 16) |
2177 (tf->hob_feature << 24)
2178 );
2179 crqb->ata_cmd[3] = cpu_to_le32(
2180 (tf->nsect << 0) |
2181 (tf->hob_nsect << 8)
2182 );
2183
2184 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2185 return AC_ERR_OK;
2186 mv_fill_sg(qc);
2187
2188 return AC_ERR_OK;
2189 }
2190
2191 /**
2192 * mv_sff_check_status - fetch device status, if valid
2193 * @ap: ATA port to fetch status from
2194 *
2195 * When using command issue via mv_qc_issue_fis(),
2196 * the initial ATA_BUSY state does not show up in the
2197 * ATA status (shadow) register. This can confuse libata!
2198 *
2199 * So we have a hook here to fake ATA_BUSY for that situation,
2200 * until the first time a BUSY, DRQ, or ERR bit is seen.
2201 *
2202 * The rest of the time, it simply returns the ATA status register.
2203 */
mv_sff_check_status(struct ata_port * ap)2204 static u8 mv_sff_check_status(struct ata_port *ap)
2205 {
2206 u8 stat = ioread8(ap->ioaddr.status_addr);
2207 struct mv_port_priv *pp = ap->private_data;
2208
2209 if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2210 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2211 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2212 else
2213 stat = ATA_BUSY;
2214 }
2215 return stat;
2216 }
2217
2218 /**
2219 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2220 * @ap: ATA port to send a FIS
2221 * @fis: fis to be sent
2222 * @nwords: number of 32-bit words in the fis
2223 */
mv_send_fis(struct ata_port * ap,u32 * fis,int nwords)2224 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2225 {
2226 void __iomem *port_mmio = mv_ap_base(ap);
2227 u32 ifctl, old_ifctl, ifstat;
2228 int i, timeout = 200, final_word = nwords - 1;
2229
2230 /* Initiate FIS transmission mode */
2231 old_ifctl = readl(port_mmio + SATA_IFCTL);
2232 ifctl = 0x100 | (old_ifctl & 0xf);
2233 writelfl(ifctl, port_mmio + SATA_IFCTL);
2234
2235 /* Send all words of the FIS except for the final word */
2236 for (i = 0; i < final_word; ++i)
2237 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2238
2239 /* Flag end-of-transmission, and then send the final word */
2240 writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2241 writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2242
2243 /*
2244 * Wait for FIS transmission to complete.
2245 * This typically takes just a single iteration.
2246 */
2247 do {
2248 ifstat = readl(port_mmio + SATA_IFSTAT);
2249 } while (!(ifstat & 0x1000) && --timeout);
2250
2251 /* Restore original port configuration */
2252 writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2253
2254 /* See if it worked */
2255 if ((ifstat & 0x3000) != 0x1000) {
2256 ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
2257 __func__, ifstat);
2258 return AC_ERR_OTHER;
2259 }
2260 return 0;
2261 }
2262
2263 /**
2264 * mv_qc_issue_fis - Issue a command directly as a FIS
2265 * @qc: queued command to start
2266 *
2267 * Note that the ATA shadow registers are not updated
2268 * after command issue, so the device will appear "READY"
2269 * if polled, even while it is BUSY processing the command.
2270 *
2271 * So we use a status hook to fake ATA_BUSY until the drive changes state.
2272 *
2273 * Note: we don't get updated shadow regs on *completion*
2274 * of non-data commands. So avoid sending them via this function,
2275 * as they will appear to have completed immediately.
2276 *
2277 * GEN_IIE has special registers that we could get the result tf from,
2278 * but earlier chipsets do not. For now, we ignore those registers.
2279 */
mv_qc_issue_fis(struct ata_queued_cmd * qc)2280 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2281 {
2282 struct ata_port *ap = qc->ap;
2283 struct mv_port_priv *pp = ap->private_data;
2284 struct ata_link *link = qc->dev->link;
2285 u32 fis[5];
2286 int err = 0;
2287
2288 ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2289 err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2290 if (err)
2291 return err;
2292
2293 switch (qc->tf.protocol) {
2294 case ATAPI_PROT_PIO:
2295 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2296 fallthrough;
2297 case ATAPI_PROT_NODATA:
2298 ap->hsm_task_state = HSM_ST_FIRST;
2299 break;
2300 case ATA_PROT_PIO:
2301 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2302 if (qc->tf.flags & ATA_TFLAG_WRITE)
2303 ap->hsm_task_state = HSM_ST_FIRST;
2304 else
2305 ap->hsm_task_state = HSM_ST;
2306 break;
2307 default:
2308 ap->hsm_task_state = HSM_ST_LAST;
2309 break;
2310 }
2311
2312 if (qc->tf.flags & ATA_TFLAG_POLLING)
2313 ata_sff_queue_pio_task(link, 0);
2314 return 0;
2315 }
2316
2317 /**
2318 * mv_qc_issue - Initiate a command to the host
2319 * @qc: queued command to start
2320 *
2321 * This routine simply redirects to the general purpose routine
2322 * if command is not DMA. Else, it sanity checks our local
2323 * caches of the request producer/consumer indices then enables
2324 * DMA and bumps the request producer index.
2325 *
2326 * LOCKING:
2327 * Inherited from caller.
2328 */
mv_qc_issue(struct ata_queued_cmd * qc)2329 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2330 {
2331 static int limit_warnings = 10;
2332 struct ata_port *ap = qc->ap;
2333 void __iomem *port_mmio = mv_ap_base(ap);
2334 struct mv_port_priv *pp = ap->private_data;
2335 u32 in_index;
2336 unsigned int port_irqs;
2337
2338 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2339
2340 switch (qc->tf.protocol) {
2341 case ATA_PROT_DMA:
2342 if (qc->tf.command == ATA_CMD_DSM) {
2343 if (!ap->ops->bmdma_setup) /* no bmdma on GEN_I */
2344 return AC_ERR_OTHER;
2345 break; /* use bmdma for this */
2346 }
2347 fallthrough;
2348 case ATA_PROT_NCQ:
2349 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2350 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2351 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2352
2353 /* Write the request in pointer to kick the EDMA to life */
2354 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2355 port_mmio + EDMA_REQ_Q_IN_PTR);
2356 return 0;
2357
2358 case ATA_PROT_PIO:
2359 /*
2360 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2361 *
2362 * Someday, we might implement special polling workarounds
2363 * for these, but it all seems rather unnecessary since we
2364 * normally use only DMA for commands which transfer more
2365 * than a single block of data.
2366 *
2367 * Much of the time, this could just work regardless.
2368 * So for now, just log the incident, and allow the attempt.
2369 */
2370 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2371 --limit_warnings;
2372 ata_link_warn(qc->dev->link, DRV_NAME
2373 ": attempting PIO w/multiple DRQ: "
2374 "this may fail due to h/w errata\n");
2375 }
2376 fallthrough;
2377 case ATA_PROT_NODATA:
2378 case ATAPI_PROT_PIO:
2379 case ATAPI_PROT_NODATA:
2380 if (ap->flags & ATA_FLAG_PIO_POLLING)
2381 qc->tf.flags |= ATA_TFLAG_POLLING;
2382 break;
2383 }
2384
2385 if (qc->tf.flags & ATA_TFLAG_POLLING)
2386 port_irqs = ERR_IRQ; /* mask device interrupt when polling */
2387 else
2388 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
2389
2390 /*
2391 * We're about to send a non-EDMA capable command to the
2392 * port. Turn off EDMA so there won't be problems accessing
2393 * shadow block, etc registers.
2394 */
2395 mv_stop_edma(ap);
2396 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2397 mv_pmp_select(ap, qc->dev->link->pmp);
2398
2399 if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2400 struct mv_host_priv *hpriv = ap->host->private_data;
2401 /*
2402 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2403 *
2404 * After any NCQ error, the READ_LOG_EXT command
2405 * from libata-eh *must* use mv_qc_issue_fis().
2406 * Otherwise it might fail, due to chip errata.
2407 *
2408 * Rather than special-case it, we'll just *always*
2409 * use this method here for READ_LOG_EXT, making for
2410 * easier testing.
2411 */
2412 if (IS_GEN_II(hpriv))
2413 return mv_qc_issue_fis(qc);
2414 }
2415 return ata_bmdma_qc_issue(qc);
2416 }
2417
mv_get_active_qc(struct ata_port * ap)2418 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2419 {
2420 struct mv_port_priv *pp = ap->private_data;
2421 struct ata_queued_cmd *qc;
2422
2423 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2424 return NULL;
2425 qc = ata_qc_from_tag(ap, ap->link.active_tag);
2426 if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2427 return qc;
2428 return NULL;
2429 }
2430
mv_pmp_error_handler(struct ata_port * ap)2431 static void mv_pmp_error_handler(struct ata_port *ap)
2432 {
2433 unsigned int pmp, pmp_map;
2434 struct mv_port_priv *pp = ap->private_data;
2435
2436 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2437 /*
2438 * Perform NCQ error analysis on failed PMPs
2439 * before we freeze the port entirely.
2440 *
2441 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2442 */
2443 pmp_map = pp->delayed_eh_pmp_map;
2444 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2445 for (pmp = 0; pmp_map != 0; pmp++) {
2446 unsigned int this_pmp = (1 << pmp);
2447 if (pmp_map & this_pmp) {
2448 struct ata_link *link = &ap->pmp_link[pmp];
2449 pmp_map &= ~this_pmp;
2450 ata_eh_analyze_ncq_error(link);
2451 }
2452 }
2453 ata_port_freeze(ap);
2454 }
2455 sata_pmp_error_handler(ap);
2456 }
2457
mv_get_err_pmp_map(struct ata_port * ap)2458 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2459 {
2460 void __iomem *port_mmio = mv_ap_base(ap);
2461
2462 return readl(port_mmio + SATA_TESTCTL) >> 16;
2463 }
2464
mv_pmp_eh_prep(struct ata_port * ap,unsigned int pmp_map)2465 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2466 {
2467 unsigned int pmp;
2468
2469 /*
2470 * Initialize EH info for PMPs which saw device errors
2471 */
2472 for (pmp = 0; pmp_map != 0; pmp++) {
2473 unsigned int this_pmp = (1 << pmp);
2474 if (pmp_map & this_pmp) {
2475 struct ata_link *link = &ap->pmp_link[pmp];
2476 struct ata_eh_info *ehi = &link->eh_info;
2477
2478 pmp_map &= ~this_pmp;
2479 ata_ehi_clear_desc(ehi);
2480 ata_ehi_push_desc(ehi, "dev err");
2481 ehi->err_mask |= AC_ERR_DEV;
2482 ehi->action |= ATA_EH_RESET;
2483 ata_link_abort(link);
2484 }
2485 }
2486 }
2487
mv_req_q_empty(struct ata_port * ap)2488 static int mv_req_q_empty(struct ata_port *ap)
2489 {
2490 void __iomem *port_mmio = mv_ap_base(ap);
2491 u32 in_ptr, out_ptr;
2492
2493 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2494 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2495 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2496 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2497 return (in_ptr == out_ptr); /* 1 == queue_is_empty */
2498 }
2499
mv_handle_fbs_ncq_dev_err(struct ata_port * ap)2500 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2501 {
2502 struct mv_port_priv *pp = ap->private_data;
2503 int failed_links;
2504 unsigned int old_map, new_map;
2505
2506 /*
2507 * Device error during FBS+NCQ operation:
2508 *
2509 * Set a port flag to prevent further I/O being enqueued.
2510 * Leave the EDMA running to drain outstanding commands from this port.
2511 * Perform the post-mortem/EH only when all responses are complete.
2512 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2513 */
2514 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2515 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2516 pp->delayed_eh_pmp_map = 0;
2517 }
2518 old_map = pp->delayed_eh_pmp_map;
2519 new_map = old_map | mv_get_err_pmp_map(ap);
2520
2521 if (old_map != new_map) {
2522 pp->delayed_eh_pmp_map = new_map;
2523 mv_pmp_eh_prep(ap, new_map & ~old_map);
2524 }
2525 failed_links = hweight16(new_map);
2526
2527 ata_port_info(ap,
2528 "%s: pmp_map=%04x qc_map=%04llx failed_links=%d nr_active_links=%d\n",
2529 __func__, pp->delayed_eh_pmp_map,
2530 ap->qc_active, failed_links,
2531 ap->nr_active_links);
2532
2533 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2534 mv_process_crpb_entries(ap, pp);
2535 mv_stop_edma(ap);
2536 mv_eh_freeze(ap);
2537 ata_port_info(ap, "%s: done\n", __func__);
2538 return 1; /* handled */
2539 }
2540 ata_port_info(ap, "%s: waiting\n", __func__);
2541 return 1; /* handled */
2542 }
2543
mv_handle_fbs_non_ncq_dev_err(struct ata_port * ap)2544 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2545 {
2546 /*
2547 * Possible future enhancement:
2548 *
2549 * FBS+non-NCQ operation is not yet implemented.
2550 * See related notes in mv_edma_cfg().
2551 *
2552 * Device error during FBS+non-NCQ operation:
2553 *
2554 * We need to snapshot the shadow registers for each failed command.
2555 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2556 */
2557 return 0; /* not handled */
2558 }
2559
mv_handle_dev_err(struct ata_port * ap,u32 edma_err_cause)2560 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2561 {
2562 struct mv_port_priv *pp = ap->private_data;
2563
2564 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2565 return 0; /* EDMA was not active: not handled */
2566 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2567 return 0; /* FBS was not active: not handled */
2568
2569 if (!(edma_err_cause & EDMA_ERR_DEV))
2570 return 0; /* non DEV error: not handled */
2571 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2572 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2573 return 0; /* other problems: not handled */
2574
2575 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2576 /*
2577 * EDMA should NOT have self-disabled for this case.
2578 * If it did, then something is wrong elsewhere,
2579 * and we cannot handle it here.
2580 */
2581 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2582 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2583 __func__, edma_err_cause, pp->pp_flags);
2584 return 0; /* not handled */
2585 }
2586 return mv_handle_fbs_ncq_dev_err(ap);
2587 } else {
2588 /*
2589 * EDMA should have self-disabled for this case.
2590 * If it did not, then something is wrong elsewhere,
2591 * and we cannot handle it here.
2592 */
2593 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2594 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2595 __func__, edma_err_cause, pp->pp_flags);
2596 return 0; /* not handled */
2597 }
2598 return mv_handle_fbs_non_ncq_dev_err(ap);
2599 }
2600 return 0; /* not handled */
2601 }
2602
mv_unexpected_intr(struct ata_port * ap,int edma_was_enabled)2603 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2604 {
2605 struct ata_eh_info *ehi = &ap->link.eh_info;
2606 char *when = "idle";
2607
2608 ata_ehi_clear_desc(ehi);
2609 if (edma_was_enabled) {
2610 when = "EDMA enabled";
2611 } else {
2612 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2613 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2614 when = "polling";
2615 }
2616 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2617 ehi->err_mask |= AC_ERR_OTHER;
2618 ehi->action |= ATA_EH_RESET;
2619 ata_port_freeze(ap);
2620 }
2621
2622 /**
2623 * mv_err_intr - Handle error interrupts on the port
2624 * @ap: ATA channel to manipulate
2625 *
2626 * Most cases require a full reset of the chip's state machine,
2627 * which also performs a COMRESET.
2628 * Also, if the port disabled DMA, update our cached copy to match.
2629 *
2630 * LOCKING:
2631 * Inherited from caller.
2632 */
mv_err_intr(struct ata_port * ap)2633 static void mv_err_intr(struct ata_port *ap)
2634 {
2635 void __iomem *port_mmio = mv_ap_base(ap);
2636 u32 edma_err_cause, eh_freeze_mask, serr = 0;
2637 u32 fis_cause = 0;
2638 struct mv_port_priv *pp = ap->private_data;
2639 struct mv_host_priv *hpriv = ap->host->private_data;
2640 unsigned int action = 0, err_mask = 0;
2641 struct ata_eh_info *ehi = &ap->link.eh_info;
2642 struct ata_queued_cmd *qc;
2643 int abort = 0;
2644
2645 /*
2646 * Read and clear the SError and err_cause bits.
2647 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2648 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2649 */
2650 sata_scr_read(&ap->link, SCR_ERROR, &serr);
2651 sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2652
2653 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2654 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2655 fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2656 writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2657 }
2658 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2659
2660 if (edma_err_cause & EDMA_ERR_DEV) {
2661 /*
2662 * Device errors during FIS-based switching operation
2663 * require special handling.
2664 */
2665 if (mv_handle_dev_err(ap, edma_err_cause))
2666 return;
2667 }
2668
2669 qc = mv_get_active_qc(ap);
2670 ata_ehi_clear_desc(ehi);
2671 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2672 edma_err_cause, pp->pp_flags);
2673
2674 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2675 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2676 if (fis_cause & FIS_IRQ_CAUSE_AN) {
2677 u32 ec = edma_err_cause &
2678 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2679 sata_async_notification(ap);
2680 if (!ec)
2681 return; /* Just an AN; no need for the nukes */
2682 ata_ehi_push_desc(ehi, "SDB notify");
2683 }
2684 }
2685 /*
2686 * All generations share these EDMA error cause bits:
2687 */
2688 if (edma_err_cause & EDMA_ERR_DEV) {
2689 err_mask |= AC_ERR_DEV;
2690 action |= ATA_EH_RESET;
2691 ata_ehi_push_desc(ehi, "dev error");
2692 }
2693 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2694 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2695 EDMA_ERR_INTRL_PAR)) {
2696 err_mask |= AC_ERR_ATA_BUS;
2697 action |= ATA_EH_RESET;
2698 ata_ehi_push_desc(ehi, "parity error");
2699 }
2700 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2701 ata_ehi_hotplugged(ehi);
2702 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2703 "dev disconnect" : "dev connect");
2704 action |= ATA_EH_RESET;
2705 }
2706
2707 /*
2708 * Gen-I has a different SELF_DIS bit,
2709 * different FREEZE bits, and no SERR bit:
2710 */
2711 if (IS_GEN_I(hpriv)) {
2712 eh_freeze_mask = EDMA_EH_FREEZE_5;
2713 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2714 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2715 ata_ehi_push_desc(ehi, "EDMA self-disable");
2716 }
2717 } else {
2718 eh_freeze_mask = EDMA_EH_FREEZE;
2719 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2720 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2721 ata_ehi_push_desc(ehi, "EDMA self-disable");
2722 }
2723 if (edma_err_cause & EDMA_ERR_SERR) {
2724 ata_ehi_push_desc(ehi, "SError=%08x", serr);
2725 err_mask |= AC_ERR_ATA_BUS;
2726 action |= ATA_EH_RESET;
2727 }
2728 }
2729
2730 if (!err_mask) {
2731 err_mask = AC_ERR_OTHER;
2732 action |= ATA_EH_RESET;
2733 }
2734
2735 ehi->serror |= serr;
2736 ehi->action |= action;
2737
2738 if (qc)
2739 qc->err_mask |= err_mask;
2740 else
2741 ehi->err_mask |= err_mask;
2742
2743 if (err_mask == AC_ERR_DEV) {
2744 /*
2745 * Cannot do ata_port_freeze() here,
2746 * because it would kill PIO access,
2747 * which is needed for further diagnosis.
2748 */
2749 mv_eh_freeze(ap);
2750 abort = 1;
2751 } else if (edma_err_cause & eh_freeze_mask) {
2752 /*
2753 * Note to self: ata_port_freeze() calls ata_port_abort()
2754 */
2755 ata_port_freeze(ap);
2756 } else {
2757 abort = 1;
2758 }
2759
2760 if (abort) {
2761 if (qc)
2762 ata_link_abort(qc->dev->link);
2763 else
2764 ata_port_abort(ap);
2765 }
2766 }
2767
mv_process_crpb_response(struct ata_port * ap,struct mv_crpb * response,unsigned int tag,int ncq_enabled)2768 static bool mv_process_crpb_response(struct ata_port *ap,
2769 struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2770 {
2771 u8 ata_status;
2772 u16 edma_status = le16_to_cpu(response->flags);
2773
2774 /*
2775 * edma_status from a response queue entry:
2776 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2777 * MSB is saved ATA status from command completion.
2778 */
2779 if (!ncq_enabled) {
2780 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2781 if (err_cause) {
2782 /*
2783 * Error will be seen/handled by
2784 * mv_err_intr(). So do nothing at all here.
2785 */
2786 return false;
2787 }
2788 }
2789 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2790 if (!ac_err_mask(ata_status))
2791 return true;
2792 /* else: leave it for mv_err_intr() */
2793 return false;
2794 }
2795
mv_process_crpb_entries(struct ata_port * ap,struct mv_port_priv * pp)2796 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2797 {
2798 void __iomem *port_mmio = mv_ap_base(ap);
2799 struct mv_host_priv *hpriv = ap->host->private_data;
2800 u32 in_index;
2801 bool work_done = false;
2802 u32 done_mask = 0;
2803 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2804
2805 /* Get the hardware queue position index */
2806 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2807 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2808
2809 /* Process new responses from since the last time we looked */
2810 while (in_index != pp->resp_idx) {
2811 unsigned int tag;
2812 struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2813
2814 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2815
2816 if (IS_GEN_I(hpriv)) {
2817 /* 50xx: no NCQ, only one command active at a time */
2818 tag = ap->link.active_tag;
2819 } else {
2820 /* Gen II/IIE: get command tag from CRPB entry */
2821 tag = le16_to_cpu(response->id) & 0x1f;
2822 }
2823 if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2824 done_mask |= 1 << tag;
2825 work_done = true;
2826 }
2827
2828 if (work_done) {
2829 ata_qc_complete_multiple(ap, ata_qc_get_active(ap) ^ done_mask);
2830
2831 /* Update the software queue position index in hardware */
2832 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2833 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2834 port_mmio + EDMA_RSP_Q_OUT_PTR);
2835 }
2836 }
2837
mv_port_intr(struct ata_port * ap,u32 port_cause)2838 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2839 {
2840 struct mv_port_priv *pp;
2841 int edma_was_enabled;
2842
2843 /*
2844 * Grab a snapshot of the EDMA_EN flag setting,
2845 * so that we have a consistent view for this port,
2846 * even if something we call of our routines changes it.
2847 */
2848 pp = ap->private_data;
2849 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2850 /*
2851 * Process completed CRPB response(s) before other events.
2852 */
2853 if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2854 mv_process_crpb_entries(ap, pp);
2855 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2856 mv_handle_fbs_ncq_dev_err(ap);
2857 }
2858 /*
2859 * Handle chip-reported errors, or continue on to handle PIO.
2860 */
2861 if (unlikely(port_cause & ERR_IRQ)) {
2862 mv_err_intr(ap);
2863 } else if (!edma_was_enabled) {
2864 struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2865 if (qc)
2866 ata_bmdma_port_intr(ap, qc);
2867 else
2868 mv_unexpected_intr(ap, edma_was_enabled);
2869 }
2870 }
2871
2872 /**
2873 * mv_host_intr - Handle all interrupts on the given host controller
2874 * @host: host specific structure
2875 * @main_irq_cause: Main interrupt cause register for the chip.
2876 *
2877 * LOCKING:
2878 * Inherited from caller.
2879 */
mv_host_intr(struct ata_host * host,u32 main_irq_cause)2880 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2881 {
2882 struct mv_host_priv *hpriv = host->private_data;
2883 void __iomem *mmio = hpriv->base, *hc_mmio;
2884 unsigned int handled = 0, port;
2885
2886 /* If asserted, clear the "all ports" IRQ coalescing bit */
2887 if (main_irq_cause & ALL_PORTS_COAL_DONE)
2888 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2889
2890 for (port = 0; port < hpriv->n_ports; port++) {
2891 struct ata_port *ap = host->ports[port];
2892 unsigned int p, shift, hardport, port_cause;
2893
2894 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2895 /*
2896 * Each hc within the host has its own hc_irq_cause register,
2897 * where the interrupting ports bits get ack'd.
2898 */
2899 if (hardport == 0) { /* first port on this hc ? */
2900 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2901 u32 port_mask, ack_irqs;
2902 /*
2903 * Skip this entire hc if nothing pending for any ports
2904 */
2905 if (!hc_cause) {
2906 port += MV_PORTS_PER_HC - 1;
2907 continue;
2908 }
2909 /*
2910 * We don't need/want to read the hc_irq_cause register,
2911 * because doing so hurts performance, and
2912 * main_irq_cause already gives us everything we need.
2913 *
2914 * But we do have to *write* to the hc_irq_cause to ack
2915 * the ports that we are handling this time through.
2916 *
2917 * This requires that we create a bitmap for those
2918 * ports which interrupted us, and use that bitmap
2919 * to ack (only) those ports via hc_irq_cause.
2920 */
2921 ack_irqs = 0;
2922 if (hc_cause & PORTS_0_3_COAL_DONE)
2923 ack_irqs = HC_COAL_IRQ;
2924 for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2925 if ((port + p) >= hpriv->n_ports)
2926 break;
2927 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2928 if (hc_cause & port_mask)
2929 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2930 }
2931 hc_mmio = mv_hc_base_from_port(mmio, port);
2932 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2933 handled = 1;
2934 }
2935 /*
2936 * Handle interrupts signalled for this port:
2937 */
2938 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2939 if (port_cause)
2940 mv_port_intr(ap, port_cause);
2941 }
2942 return handled;
2943 }
2944
mv_pci_error(struct ata_host * host,void __iomem * mmio)2945 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2946 {
2947 struct mv_host_priv *hpriv = host->private_data;
2948 struct ata_port *ap;
2949 struct ata_queued_cmd *qc;
2950 struct ata_eh_info *ehi;
2951 unsigned int i, err_mask, printed = 0;
2952 u32 err_cause;
2953
2954 err_cause = readl(mmio + hpriv->irq_cause_offset);
2955
2956 dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
2957
2958 dev_dbg(host->dev, "%s: All regs @ PCI error\n", __func__);
2959 mv_dump_all_regs(mmio, to_pci_dev(host->dev));
2960
2961 writelfl(0, mmio + hpriv->irq_cause_offset);
2962
2963 for (i = 0; i < host->n_ports; i++) {
2964 ap = host->ports[i];
2965 if (!ata_link_offline(&ap->link)) {
2966 ehi = &ap->link.eh_info;
2967 ata_ehi_clear_desc(ehi);
2968 if (!printed++)
2969 ata_ehi_push_desc(ehi,
2970 "PCI err cause 0x%08x", err_cause);
2971 err_mask = AC_ERR_HOST_BUS;
2972 ehi->action = ATA_EH_RESET;
2973 qc = ata_qc_from_tag(ap, ap->link.active_tag);
2974 if (qc)
2975 qc->err_mask |= err_mask;
2976 else
2977 ehi->err_mask |= err_mask;
2978
2979 ata_port_freeze(ap);
2980 }
2981 }
2982 return 1; /* handled */
2983 }
2984
2985 /**
2986 * mv_interrupt - Main interrupt event handler
2987 * @irq: unused
2988 * @dev_instance: private data; in this case the host structure
2989 *
2990 * Read the read only register to determine if any host
2991 * controllers have pending interrupts. If so, call lower level
2992 * routine to handle. Also check for PCI errors which are only
2993 * reported here.
2994 *
2995 * LOCKING:
2996 * This routine holds the host lock while processing pending
2997 * interrupts.
2998 */
mv_interrupt(int irq,void * dev_instance)2999 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
3000 {
3001 struct ata_host *host = dev_instance;
3002 struct mv_host_priv *hpriv = host->private_data;
3003 unsigned int handled = 0;
3004 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
3005 u32 main_irq_cause, pending_irqs;
3006
3007 spin_lock(&host->lock);
3008
3009 /* for MSI: block new interrupts while in here */
3010 if (using_msi)
3011 mv_write_main_irq_mask(0, hpriv);
3012
3013 main_irq_cause = readl(hpriv->main_irq_cause_addr);
3014 pending_irqs = main_irq_cause & hpriv->main_irq_mask;
3015 /*
3016 * Deal with cases where we either have nothing pending, or have read
3017 * a bogus register value which can indicate HW removal or PCI fault.
3018 */
3019 if (pending_irqs && main_irq_cause != 0xffffffffU) {
3020 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
3021 handled = mv_pci_error(host, hpriv->base);
3022 else
3023 handled = mv_host_intr(host, pending_irqs);
3024 }
3025
3026 /* for MSI: unmask; interrupt cause bits will retrigger now */
3027 if (using_msi)
3028 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
3029
3030 spin_unlock(&host->lock);
3031
3032 return IRQ_RETVAL(handled);
3033 }
3034
mv5_scr_offset(unsigned int sc_reg_in)3035 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3036 {
3037 unsigned int ofs;
3038
3039 switch (sc_reg_in) {
3040 case SCR_STATUS:
3041 case SCR_ERROR:
3042 case SCR_CONTROL:
3043 ofs = sc_reg_in * sizeof(u32);
3044 break;
3045 default:
3046 ofs = 0xffffffffU;
3047 break;
3048 }
3049 return ofs;
3050 }
3051
mv5_scr_read(struct ata_link * link,unsigned int sc_reg_in,u32 * val)3052 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3053 {
3054 struct mv_host_priv *hpriv = link->ap->host->private_data;
3055 void __iomem *mmio = hpriv->base;
3056 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3057 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3058
3059 if (ofs != 0xffffffffU) {
3060 *val = readl(addr + ofs);
3061 return 0;
3062 } else
3063 return -EINVAL;
3064 }
3065
mv5_scr_write(struct ata_link * link,unsigned int sc_reg_in,u32 val)3066 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3067 {
3068 struct mv_host_priv *hpriv = link->ap->host->private_data;
3069 void __iomem *mmio = hpriv->base;
3070 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3071 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3072
3073 if (ofs != 0xffffffffU) {
3074 writelfl(val, addr + ofs);
3075 return 0;
3076 } else
3077 return -EINVAL;
3078 }
3079
mv5_reset_bus(struct ata_host * host,void __iomem * mmio)3080 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3081 {
3082 struct pci_dev *pdev = to_pci_dev(host->dev);
3083 int early_5080;
3084
3085 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3086
3087 if (!early_5080) {
3088 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3089 tmp |= (1 << 0);
3090 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3091 }
3092
3093 mv_reset_pci_bus(host, mmio);
3094 }
3095
mv5_reset_flash(struct mv_host_priv * hpriv,void __iomem * mmio)3096 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3097 {
3098 writel(0x0fcfffff, mmio + FLASH_CTL);
3099 }
3100
mv5_read_preamp(struct mv_host_priv * hpriv,int idx,void __iomem * mmio)3101 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3102 void __iomem *mmio)
3103 {
3104 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3105 u32 tmp;
3106
3107 tmp = readl(phy_mmio + MV5_PHY_MODE);
3108
3109 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
3110 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
3111 }
3112
mv5_enable_leds(struct mv_host_priv * hpriv,void __iomem * mmio)3113 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3114 {
3115 u32 tmp;
3116
3117 writel(0, mmio + GPIO_PORT_CTL);
3118
3119 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3120
3121 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3122 tmp |= ~(1 << 0);
3123 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3124 }
3125
mv5_phy_errata(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port)3126 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3127 unsigned int port)
3128 {
3129 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3130 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3131 u32 tmp;
3132 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3133
3134 if (fix_apm_sq) {
3135 tmp = readl(phy_mmio + MV5_LTMODE);
3136 tmp |= (1 << 19);
3137 writel(tmp, phy_mmio + MV5_LTMODE);
3138
3139 tmp = readl(phy_mmio + MV5_PHY_CTL);
3140 tmp &= ~0x3;
3141 tmp |= 0x1;
3142 writel(tmp, phy_mmio + MV5_PHY_CTL);
3143 }
3144
3145 tmp = readl(phy_mmio + MV5_PHY_MODE);
3146 tmp &= ~mask;
3147 tmp |= hpriv->signal[port].pre;
3148 tmp |= hpriv->signal[port].amps;
3149 writel(tmp, phy_mmio + MV5_PHY_MODE);
3150 }
3151
3152
3153 #undef ZERO
3154 #define ZERO(reg) writel(0, port_mmio + (reg))
mv5_reset_hc_port(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port)3155 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3156 unsigned int port)
3157 {
3158 void __iomem *port_mmio = mv_port_base(mmio, port);
3159
3160 mv_reset_channel(hpriv, mmio, port);
3161
3162 ZERO(0x028); /* command */
3163 writel(0x11f, port_mmio + EDMA_CFG);
3164 ZERO(0x004); /* timer */
3165 ZERO(0x008); /* irq err cause */
3166 ZERO(0x00c); /* irq err mask */
3167 ZERO(0x010); /* rq bah */
3168 ZERO(0x014); /* rq inp */
3169 ZERO(0x018); /* rq outp */
3170 ZERO(0x01c); /* respq bah */
3171 ZERO(0x024); /* respq outp */
3172 ZERO(0x020); /* respq inp */
3173 ZERO(0x02c); /* test control */
3174 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3175 }
3176 #undef ZERO
3177
3178 #define ZERO(reg) writel(0, hc_mmio + (reg))
mv5_reset_one_hc(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int hc)3179 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3180 unsigned int hc)
3181 {
3182 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3183 u32 tmp;
3184
3185 ZERO(0x00c);
3186 ZERO(0x010);
3187 ZERO(0x014);
3188 ZERO(0x018);
3189
3190 tmp = readl(hc_mmio + 0x20);
3191 tmp &= 0x1c1c1c1c;
3192 tmp |= 0x03030303;
3193 writel(tmp, hc_mmio + 0x20);
3194 }
3195 #undef ZERO
3196
mv5_reset_hc(struct ata_host * host,void __iomem * mmio,unsigned int n_hc)3197 static int mv5_reset_hc(struct ata_host *host, void __iomem *mmio,
3198 unsigned int n_hc)
3199 {
3200 struct mv_host_priv *hpriv = host->private_data;
3201 unsigned int hc, port;
3202
3203 for (hc = 0; hc < n_hc; hc++) {
3204 for (port = 0; port < MV_PORTS_PER_HC; port++)
3205 mv5_reset_hc_port(hpriv, mmio,
3206 (hc * MV_PORTS_PER_HC) + port);
3207
3208 mv5_reset_one_hc(hpriv, mmio, hc);
3209 }
3210
3211 return 0;
3212 }
3213
3214 #undef ZERO
3215 #define ZERO(reg) writel(0, mmio + (reg))
mv_reset_pci_bus(struct ata_host * host,void __iomem * mmio)3216 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3217 {
3218 struct mv_host_priv *hpriv = host->private_data;
3219 u32 tmp;
3220
3221 tmp = readl(mmio + MV_PCI_MODE);
3222 tmp &= 0xff00ffff;
3223 writel(tmp, mmio + MV_PCI_MODE);
3224
3225 ZERO(MV_PCI_DISC_TIMER);
3226 ZERO(MV_PCI_MSI_TRIGGER);
3227 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3228 ZERO(MV_PCI_SERR_MASK);
3229 ZERO(hpriv->irq_cause_offset);
3230 ZERO(hpriv->irq_mask_offset);
3231 ZERO(MV_PCI_ERR_LOW_ADDRESS);
3232 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3233 ZERO(MV_PCI_ERR_ATTRIBUTE);
3234 ZERO(MV_PCI_ERR_COMMAND);
3235 }
3236 #undef ZERO
3237
mv6_reset_flash(struct mv_host_priv * hpriv,void __iomem * mmio)3238 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3239 {
3240 u32 tmp;
3241
3242 mv5_reset_flash(hpriv, mmio);
3243
3244 tmp = readl(mmio + GPIO_PORT_CTL);
3245 tmp &= 0x3;
3246 tmp |= (1 << 5) | (1 << 6);
3247 writel(tmp, mmio + GPIO_PORT_CTL);
3248 }
3249
3250 /*
3251 * mv6_reset_hc - Perform the 6xxx global soft reset
3252 * @mmio: base address of the HBA
3253 *
3254 * This routine only applies to 6xxx parts.
3255 *
3256 * LOCKING:
3257 * Inherited from caller.
3258 */
mv6_reset_hc(struct ata_host * host,void __iomem * mmio,unsigned int n_hc)3259 static int mv6_reset_hc(struct ata_host *host, void __iomem *mmio,
3260 unsigned int n_hc)
3261 {
3262 void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3263 int i, rc = 0;
3264 u32 t;
3265
3266 /* Following procedure defined in PCI "main command and status
3267 * register" table.
3268 */
3269 t = readl(reg);
3270 writel(t | STOP_PCI_MASTER, reg);
3271
3272 for (i = 0; i < 1000; i++) {
3273 udelay(1);
3274 t = readl(reg);
3275 if (PCI_MASTER_EMPTY & t)
3276 break;
3277 }
3278 if (!(PCI_MASTER_EMPTY & t)) {
3279 dev_err(host->dev, "PCI master won't flush\n");
3280 rc = 1;
3281 goto done;
3282 }
3283
3284 /* set reset */
3285 i = 5;
3286 do {
3287 writel(t | GLOB_SFT_RST, reg);
3288 t = readl(reg);
3289 udelay(1);
3290 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
3291
3292 if (!(GLOB_SFT_RST & t)) {
3293 dev_err(host->dev, "can't set global reset\n");
3294 rc = 1;
3295 goto done;
3296 }
3297
3298 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3299 i = 5;
3300 do {
3301 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3302 t = readl(reg);
3303 udelay(1);
3304 } while ((GLOB_SFT_RST & t) && (i-- > 0));
3305
3306 if (GLOB_SFT_RST & t) {
3307 dev_err(host->dev, "can't clear global reset\n");
3308 rc = 1;
3309 }
3310 done:
3311 return rc;
3312 }
3313
mv6_read_preamp(struct mv_host_priv * hpriv,int idx,void __iomem * mmio)3314 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3315 void __iomem *mmio)
3316 {
3317 void __iomem *port_mmio;
3318 u32 tmp;
3319
3320 tmp = readl(mmio + RESET_CFG);
3321 if ((tmp & (1 << 0)) == 0) {
3322 hpriv->signal[idx].amps = 0x7 << 8;
3323 hpriv->signal[idx].pre = 0x1 << 5;
3324 return;
3325 }
3326
3327 port_mmio = mv_port_base(mmio, idx);
3328 tmp = readl(port_mmio + PHY_MODE2);
3329
3330 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3331 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3332 }
3333
mv6_enable_leds(struct mv_host_priv * hpriv,void __iomem * mmio)3334 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3335 {
3336 writel(0x00000060, mmio + GPIO_PORT_CTL);
3337 }
3338
mv6_phy_errata(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port)3339 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3340 unsigned int port)
3341 {
3342 void __iomem *port_mmio = mv_port_base(mmio, port);
3343
3344 u32 hp_flags = hpriv->hp_flags;
3345 int fix_phy_mode2 =
3346 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3347 int fix_phy_mode4 =
3348 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3349 u32 m2, m3;
3350
3351 if (fix_phy_mode2) {
3352 m2 = readl(port_mmio + PHY_MODE2);
3353 m2 &= ~(1 << 16);
3354 m2 |= (1 << 31);
3355 writel(m2, port_mmio + PHY_MODE2);
3356
3357 udelay(200);
3358
3359 m2 = readl(port_mmio + PHY_MODE2);
3360 m2 &= ~((1 << 16) | (1 << 31));
3361 writel(m2, port_mmio + PHY_MODE2);
3362
3363 udelay(200);
3364 }
3365
3366 /*
3367 * Gen-II/IIe PHY_MODE3 errata RM#2:
3368 * Achieves better receiver noise performance than the h/w default:
3369 */
3370 m3 = readl(port_mmio + PHY_MODE3);
3371 m3 = (m3 & 0x1f) | (0x5555601 << 5);
3372
3373 /* Guideline 88F5182 (GL# SATA-S11) */
3374 if (IS_SOC(hpriv))
3375 m3 &= ~0x1c;
3376
3377 if (fix_phy_mode4) {
3378 u32 m4 = readl(port_mmio + PHY_MODE4);
3379 /*
3380 * Enforce reserved-bit restrictions on GenIIe devices only.
3381 * For earlier chipsets, force only the internal config field
3382 * (workaround for errata FEr SATA#10 part 1).
3383 */
3384 if (IS_GEN_IIE(hpriv))
3385 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3386 else
3387 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3388 writel(m4, port_mmio + PHY_MODE4);
3389 }
3390 /*
3391 * Workaround for 60x1-B2 errata SATA#13:
3392 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3393 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3394 * Or ensure we use writelfl() when writing PHY_MODE4.
3395 */
3396 writel(m3, port_mmio + PHY_MODE3);
3397
3398 /* Revert values of pre-emphasis and signal amps to the saved ones */
3399 m2 = readl(port_mmio + PHY_MODE2);
3400
3401 m2 &= ~MV_M2_PREAMP_MASK;
3402 m2 |= hpriv->signal[port].amps;
3403 m2 |= hpriv->signal[port].pre;
3404 m2 &= ~(1 << 16);
3405
3406 /* according to mvSata 3.6.1, some IIE values are fixed */
3407 if (IS_GEN_IIE(hpriv)) {
3408 m2 &= ~0xC30FF01F;
3409 m2 |= 0x0000900F;
3410 }
3411
3412 writel(m2, port_mmio + PHY_MODE2);
3413 }
3414
3415 /* TODO: use the generic LED interface to configure the SATA Presence */
3416 /* & Acitivy LEDs on the board */
mv_soc_enable_leds(struct mv_host_priv * hpriv,void __iomem * mmio)3417 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3418 void __iomem *mmio)
3419 {
3420 return;
3421 }
3422
mv_soc_read_preamp(struct mv_host_priv * hpriv,int idx,void __iomem * mmio)3423 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3424 void __iomem *mmio)
3425 {
3426 void __iomem *port_mmio;
3427 u32 tmp;
3428
3429 port_mmio = mv_port_base(mmio, idx);
3430 tmp = readl(port_mmio + PHY_MODE2);
3431
3432 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3433 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3434 }
3435
3436 #undef ZERO
3437 #define ZERO(reg) writel(0, port_mmio + (reg))
mv_soc_reset_hc_port(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port)3438 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3439 void __iomem *mmio, unsigned int port)
3440 {
3441 void __iomem *port_mmio = mv_port_base(mmio, port);
3442
3443 mv_reset_channel(hpriv, mmio, port);
3444
3445 ZERO(0x028); /* command */
3446 writel(0x101f, port_mmio + EDMA_CFG);
3447 ZERO(0x004); /* timer */
3448 ZERO(0x008); /* irq err cause */
3449 ZERO(0x00c); /* irq err mask */
3450 ZERO(0x010); /* rq bah */
3451 ZERO(0x014); /* rq inp */
3452 ZERO(0x018); /* rq outp */
3453 ZERO(0x01c); /* respq bah */
3454 ZERO(0x024); /* respq outp */
3455 ZERO(0x020); /* respq inp */
3456 ZERO(0x02c); /* test control */
3457 writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3458 }
3459
3460 #undef ZERO
3461
3462 #define ZERO(reg) writel(0, hc_mmio + (reg))
mv_soc_reset_one_hc(struct mv_host_priv * hpriv,void __iomem * mmio)3463 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3464 void __iomem *mmio)
3465 {
3466 void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3467
3468 ZERO(0x00c);
3469 ZERO(0x010);
3470 ZERO(0x014);
3471
3472 }
3473
3474 #undef ZERO
3475
mv_soc_reset_hc(struct ata_host * host,void __iomem * mmio,unsigned int n_hc)3476 static int mv_soc_reset_hc(struct ata_host *host,
3477 void __iomem *mmio, unsigned int n_hc)
3478 {
3479 struct mv_host_priv *hpriv = host->private_data;
3480 unsigned int port;
3481
3482 for (port = 0; port < hpriv->n_ports; port++)
3483 mv_soc_reset_hc_port(hpriv, mmio, port);
3484
3485 mv_soc_reset_one_hc(hpriv, mmio);
3486
3487 return 0;
3488 }
3489
mv_soc_reset_flash(struct mv_host_priv * hpriv,void __iomem * mmio)3490 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3491 void __iomem *mmio)
3492 {
3493 return;
3494 }
3495
mv_soc_reset_bus(struct ata_host * host,void __iomem * mmio)3496 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3497 {
3498 return;
3499 }
3500
mv_soc_65n_phy_errata(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port)3501 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3502 void __iomem *mmio, unsigned int port)
3503 {
3504 void __iomem *port_mmio = mv_port_base(mmio, port);
3505 u32 reg;
3506
3507 reg = readl(port_mmio + PHY_MODE3);
3508 reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
3509 reg |= (0x1 << 27);
3510 reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
3511 reg |= (0x1 << 29);
3512 writel(reg, port_mmio + PHY_MODE3);
3513
3514 reg = readl(port_mmio + PHY_MODE4);
3515 reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3516 reg |= (0x1 << 16);
3517 writel(reg, port_mmio + PHY_MODE4);
3518
3519 reg = readl(port_mmio + PHY_MODE9_GEN2);
3520 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3521 reg |= 0x8;
3522 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3523 writel(reg, port_mmio + PHY_MODE9_GEN2);
3524
3525 reg = readl(port_mmio + PHY_MODE9_GEN1);
3526 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3527 reg |= 0x8;
3528 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3529 writel(reg, port_mmio + PHY_MODE9_GEN1);
3530 }
3531
3532 /*
3533 * soc_is_65 - check if the soc is 65 nano device
3534 *
3535 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3536 * register, this register should contain non-zero value and it exists only
3537 * in the 65 nano devices, when reading it from older devices we get 0.
3538 */
soc_is_65n(struct mv_host_priv * hpriv)3539 static bool soc_is_65n(struct mv_host_priv *hpriv)
3540 {
3541 void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3542
3543 if (readl(port0_mmio + PHYCFG_OFS))
3544 return true;
3545 return false;
3546 }
3547
mv_setup_ifcfg(void __iomem * port_mmio,int want_gen2i)3548 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3549 {
3550 u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3551
3552 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
3553 if (want_gen2i)
3554 ifcfg |= (1 << 7); /* enable gen2i speed */
3555 writelfl(ifcfg, port_mmio + SATA_IFCFG);
3556 }
3557
mv_reset_channel(struct mv_host_priv * hpriv,void __iomem * mmio,unsigned int port_no)3558 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3559 unsigned int port_no)
3560 {
3561 void __iomem *port_mmio = mv_port_base(mmio, port_no);
3562
3563 /*
3564 * The datasheet warns against setting EDMA_RESET when EDMA is active
3565 * (but doesn't say what the problem might be). So we first try
3566 * to disable the EDMA engine before doing the EDMA_RESET operation.
3567 */
3568 mv_stop_edma_engine(port_mmio);
3569 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3570
3571 if (!IS_GEN_I(hpriv)) {
3572 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3573 mv_setup_ifcfg(port_mmio, 1);
3574 }
3575 /*
3576 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3577 * link, and physical layers. It resets all SATA interface registers
3578 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3579 */
3580 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3581 udelay(25); /* allow reset propagation */
3582 writelfl(0, port_mmio + EDMA_CMD);
3583
3584 hpriv->ops->phy_errata(hpriv, mmio, port_no);
3585
3586 if (IS_GEN_I(hpriv))
3587 usleep_range(500, 1000);
3588 }
3589
mv_pmp_select(struct ata_port * ap,int pmp)3590 static void mv_pmp_select(struct ata_port *ap, int pmp)
3591 {
3592 if (sata_pmp_supported(ap)) {
3593 void __iomem *port_mmio = mv_ap_base(ap);
3594 u32 reg = readl(port_mmio + SATA_IFCTL);
3595 int old = reg & 0xf;
3596
3597 if (old != pmp) {
3598 reg = (reg & ~0xf) | pmp;
3599 writelfl(reg, port_mmio + SATA_IFCTL);
3600 }
3601 }
3602 }
3603
mv_pmp_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3604 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3605 unsigned long deadline)
3606 {
3607 mv_pmp_select(link->ap, sata_srst_pmp(link));
3608 return sata_std_hardreset(link, class, deadline);
3609 }
3610
mv_softreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3611 static int mv_softreset(struct ata_link *link, unsigned int *class,
3612 unsigned long deadline)
3613 {
3614 mv_pmp_select(link->ap, sata_srst_pmp(link));
3615 return ata_sff_softreset(link, class, deadline);
3616 }
3617
mv_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)3618 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3619 unsigned long deadline)
3620 {
3621 struct ata_port *ap = link->ap;
3622 struct mv_host_priv *hpriv = ap->host->private_data;
3623 struct mv_port_priv *pp = ap->private_data;
3624 void __iomem *mmio = hpriv->base;
3625 int rc, attempts = 0, extra = 0;
3626 u32 sstatus;
3627 bool online;
3628
3629 mv_reset_channel(hpriv, mmio, ap->port_no);
3630 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3631 pp->pp_flags &=
3632 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3633
3634 /* Workaround for errata FEr SATA#10 (part 2) */
3635 do {
3636 const unsigned int *timing =
3637 sata_ehc_deb_timing(&link->eh_context);
3638
3639 rc = sata_link_hardreset(link, timing, deadline + extra,
3640 &online, NULL);
3641 rc = online ? -EAGAIN : rc;
3642 if (rc)
3643 return rc;
3644 sata_scr_read(link, SCR_STATUS, &sstatus);
3645 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3646 /* Force 1.5gb/s link speed and try again */
3647 mv_setup_ifcfg(mv_ap_base(ap), 0);
3648 if (time_after(jiffies + HZ, deadline))
3649 extra = HZ; /* only extend it once, max */
3650 }
3651 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3652 mv_save_cached_regs(ap);
3653 mv_edma_cfg(ap, 0, 0);
3654
3655 return rc;
3656 }
3657
mv_eh_freeze(struct ata_port * ap)3658 static void mv_eh_freeze(struct ata_port *ap)
3659 {
3660 mv_stop_edma(ap);
3661 mv_enable_port_irqs(ap, 0);
3662 }
3663
mv_eh_thaw(struct ata_port * ap)3664 static void mv_eh_thaw(struct ata_port *ap)
3665 {
3666 struct mv_host_priv *hpriv = ap->host->private_data;
3667 unsigned int port = ap->port_no;
3668 unsigned int hardport = mv_hardport_from_port(port);
3669 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3670 void __iomem *port_mmio = mv_ap_base(ap);
3671 u32 hc_irq_cause;
3672
3673 /* clear EDMA errors on this port */
3674 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3675
3676 /* clear pending irq events */
3677 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3678 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3679
3680 mv_enable_port_irqs(ap, ERR_IRQ);
3681 }
3682
3683 /**
3684 * mv_port_init - Perform some early initialization on a single port.
3685 * @port: libata data structure storing shadow register addresses
3686 * @port_mmio: base address of the port
3687 *
3688 * Initialize shadow register mmio addresses, clear outstanding
3689 * interrupts on the port, and unmask interrupts for the future
3690 * start of the port.
3691 *
3692 * LOCKING:
3693 * Inherited from caller.
3694 */
mv_port_init(struct ata_ioports * port,void __iomem * port_mmio)3695 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
3696 {
3697 void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3698
3699 /* PIO related setup
3700 */
3701 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3702 port->error_addr =
3703 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3704 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3705 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3706 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3707 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3708 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3709 port->status_addr =
3710 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3711 /* special case: control/altstatus doesn't have ATA_REG_ address */
3712 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3713
3714 /* Clear any currently outstanding port interrupt conditions */
3715 serr = port_mmio + mv_scr_offset(SCR_ERROR);
3716 writelfl(readl(serr), serr);
3717 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3718
3719 /* unmask all non-transient EDMA error interrupts */
3720 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3721 }
3722
mv_in_pcix_mode(struct ata_host * host)3723 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3724 {
3725 struct mv_host_priv *hpriv = host->private_data;
3726 void __iomem *mmio = hpriv->base;
3727 u32 reg;
3728
3729 if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3730 return 0; /* not PCI-X capable */
3731 reg = readl(mmio + MV_PCI_MODE);
3732 if ((reg & MV_PCI_MODE_MASK) == 0)
3733 return 0; /* conventional PCI mode */
3734 return 1; /* chip is in PCI-X mode */
3735 }
3736
mv_pci_cut_through_okay(struct ata_host * host)3737 static int mv_pci_cut_through_okay(struct ata_host *host)
3738 {
3739 struct mv_host_priv *hpriv = host->private_data;
3740 void __iomem *mmio = hpriv->base;
3741 u32 reg;
3742
3743 if (!mv_in_pcix_mode(host)) {
3744 reg = readl(mmio + MV_PCI_COMMAND);
3745 if (reg & MV_PCI_COMMAND_MRDTRIG)
3746 return 0; /* not okay */
3747 }
3748 return 1; /* okay */
3749 }
3750
mv_60x1b2_errata_pci7(struct ata_host * host)3751 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3752 {
3753 struct mv_host_priv *hpriv = host->private_data;
3754 void __iomem *mmio = hpriv->base;
3755
3756 /* workaround for 60x1-B2 errata PCI#7 */
3757 if (mv_in_pcix_mode(host)) {
3758 u32 reg = readl(mmio + MV_PCI_COMMAND);
3759 writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3760 }
3761 }
3762
mv_chip_id(struct ata_host * host,unsigned int board_idx)3763 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3764 {
3765 struct pci_dev *pdev = to_pci_dev(host->dev);
3766 struct mv_host_priv *hpriv = host->private_data;
3767 u32 hp_flags = hpriv->hp_flags;
3768
3769 switch (board_idx) {
3770 case chip_5080:
3771 hpriv->ops = &mv5xxx_ops;
3772 hp_flags |= MV_HP_GEN_I;
3773
3774 switch (pdev->revision) {
3775 case 0x1:
3776 hp_flags |= MV_HP_ERRATA_50XXB0;
3777 break;
3778 case 0x3:
3779 hp_flags |= MV_HP_ERRATA_50XXB2;
3780 break;
3781 default:
3782 dev_warn(&pdev->dev,
3783 "Applying 50XXB2 workarounds to unknown rev\n");
3784 hp_flags |= MV_HP_ERRATA_50XXB2;
3785 break;
3786 }
3787 break;
3788
3789 case chip_504x:
3790 case chip_508x:
3791 hpriv->ops = &mv5xxx_ops;
3792 hp_flags |= MV_HP_GEN_I;
3793
3794 switch (pdev->revision) {
3795 case 0x0:
3796 hp_flags |= MV_HP_ERRATA_50XXB0;
3797 break;
3798 case 0x3:
3799 hp_flags |= MV_HP_ERRATA_50XXB2;
3800 break;
3801 default:
3802 dev_warn(&pdev->dev,
3803 "Applying B2 workarounds to unknown rev\n");
3804 hp_flags |= MV_HP_ERRATA_50XXB2;
3805 break;
3806 }
3807 break;
3808
3809 case chip_604x:
3810 case chip_608x:
3811 hpriv->ops = &mv6xxx_ops;
3812 hp_flags |= MV_HP_GEN_II;
3813
3814 switch (pdev->revision) {
3815 case 0x7:
3816 mv_60x1b2_errata_pci7(host);
3817 hp_flags |= MV_HP_ERRATA_60X1B2;
3818 break;
3819 case 0x9:
3820 hp_flags |= MV_HP_ERRATA_60X1C0;
3821 break;
3822 default:
3823 dev_warn(&pdev->dev,
3824 "Applying B2 workarounds to unknown rev\n");
3825 hp_flags |= MV_HP_ERRATA_60X1B2;
3826 break;
3827 }
3828 break;
3829
3830 case chip_7042:
3831 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3832 if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3833 (pdev->device == 0x2300 || pdev->device == 0x2310))
3834 {
3835 /*
3836 * Highpoint RocketRAID PCIe 23xx series cards:
3837 *
3838 * Unconfigured drives are treated as "Legacy"
3839 * by the BIOS, and it overwrites sector 8 with
3840 * a "Lgcy" metadata block prior to Linux boot.
3841 *
3842 * Configured drives (RAID or JBOD) leave sector 8
3843 * alone, but instead overwrite a high numbered
3844 * sector for the RAID metadata. This sector can
3845 * be determined exactly, by truncating the physical
3846 * drive capacity to a nice even GB value.
3847 *
3848 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3849 *
3850 * Warn the user, lest they think we're just buggy.
3851 */
3852 dev_warn(&pdev->dev, "Highpoint RocketRAID"
3853 " BIOS CORRUPTS DATA on all attached drives,"
3854 " regardless of if/how they are configured."
3855 " BEWARE!\n");
3856 dev_warn(&pdev->dev, "For data safety, do not"
3857 " use sectors 8-9 on \"Legacy\" drives,"
3858 " and avoid the final two gigabytes on"
3859 " all RocketRAID BIOS initialized drives.\n");
3860 }
3861 fallthrough;
3862 case chip_6042:
3863 hpriv->ops = &mv6xxx_ops;
3864 hp_flags |= MV_HP_GEN_IIE;
3865 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3866 hp_flags |= MV_HP_CUT_THROUGH;
3867
3868 switch (pdev->revision) {
3869 case 0x2: /* Rev.B0: the first/only public release */
3870 hp_flags |= MV_HP_ERRATA_60X1C0;
3871 break;
3872 default:
3873 dev_warn(&pdev->dev,
3874 "Applying 60X1C0 workarounds to unknown rev\n");
3875 hp_flags |= MV_HP_ERRATA_60X1C0;
3876 break;
3877 }
3878 break;
3879 case chip_soc:
3880 if (soc_is_65n(hpriv))
3881 hpriv->ops = &mv_soc_65n_ops;
3882 else
3883 hpriv->ops = &mv_soc_ops;
3884 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3885 MV_HP_ERRATA_60X1C0;
3886 break;
3887
3888 default:
3889 dev_alert(host->dev, "BUG: invalid board index %u\n", board_idx);
3890 return -EINVAL;
3891 }
3892
3893 hpriv->hp_flags = hp_flags;
3894 if (hp_flags & MV_HP_PCIE) {
3895 hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
3896 hpriv->irq_mask_offset = PCIE_IRQ_MASK;
3897 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
3898 } else {
3899 hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
3900 hpriv->irq_mask_offset = PCI_IRQ_MASK;
3901 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
3902 }
3903
3904 return 0;
3905 }
3906
3907 /**
3908 * mv_init_host - Perform some early initialization of the host.
3909 * @host: ATA host to initialize
3910 *
3911 * If possible, do an early global reset of the host. Then do
3912 * our port init and clear/unmask all/relevant host interrupts.
3913 *
3914 * LOCKING:
3915 * Inherited from caller.
3916 */
mv_init_host(struct ata_host * host)3917 static int mv_init_host(struct ata_host *host)
3918 {
3919 int rc = 0, n_hc, port, hc;
3920 struct mv_host_priv *hpriv = host->private_data;
3921 void __iomem *mmio = hpriv->base;
3922
3923 rc = mv_chip_id(host, hpriv->board_idx);
3924 if (rc)
3925 goto done;
3926
3927 if (IS_SOC(hpriv)) {
3928 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3929 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK;
3930 } else {
3931 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3932 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK;
3933 }
3934
3935 /* initialize shadow irq mask with register's value */
3936 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3937
3938 /* global interrupt mask: 0 == mask everything */
3939 mv_set_main_irq_mask(host, ~0, 0);
3940
3941 n_hc = mv_get_hc_count(host->ports[0]->flags);
3942
3943 for (port = 0; port < host->n_ports; port++)
3944 if (hpriv->ops->read_preamp)
3945 hpriv->ops->read_preamp(hpriv, port, mmio);
3946
3947 rc = hpriv->ops->reset_hc(host, mmio, n_hc);
3948 if (rc)
3949 goto done;
3950
3951 hpriv->ops->reset_flash(hpriv, mmio);
3952 hpriv->ops->reset_bus(host, mmio);
3953 hpriv->ops->enable_leds(hpriv, mmio);
3954
3955 for (port = 0; port < host->n_ports; port++) {
3956 struct ata_port *ap = host->ports[port];
3957 void __iomem *port_mmio = mv_port_base(mmio, port);
3958
3959 mv_port_init(&ap->ioaddr, port_mmio);
3960 }
3961
3962 for (hc = 0; hc < n_hc; hc++) {
3963 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3964
3965 dev_dbg(host->dev, "HC%i: HC config=0x%08x HC IRQ cause "
3966 "(before clear)=0x%08x\n", hc,
3967 readl(hc_mmio + HC_CFG),
3968 readl(hc_mmio + HC_IRQ_CAUSE));
3969
3970 /* Clear any currently outstanding hc interrupt conditions */
3971 writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3972 }
3973
3974 if (!IS_SOC(hpriv)) {
3975 /* Clear any currently outstanding host interrupt conditions */
3976 writelfl(0, mmio + hpriv->irq_cause_offset);
3977
3978 /* and unmask interrupt generation for host regs */
3979 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3980 }
3981
3982 /*
3983 * enable only global host interrupts for now.
3984 * The per-port interrupts get done later as ports are set up.
3985 */
3986 mv_set_main_irq_mask(host, 0, PCI_ERR);
3987 mv_set_irq_coalescing(host, irq_coalescing_io_count,
3988 irq_coalescing_usecs);
3989 done:
3990 return rc;
3991 }
3992
mv_create_dma_pools(struct mv_host_priv * hpriv,struct device * dev)3993 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3994 {
3995 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3996 MV_CRQB_Q_SZ, 0);
3997 if (!hpriv->crqb_pool)
3998 return -ENOMEM;
3999
4000 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
4001 MV_CRPB_Q_SZ, 0);
4002 if (!hpriv->crpb_pool)
4003 return -ENOMEM;
4004
4005 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
4006 MV_SG_TBL_SZ, 0);
4007 if (!hpriv->sg_tbl_pool)
4008 return -ENOMEM;
4009
4010 return 0;
4011 }
4012
mv_conf_mbus_windows(struct mv_host_priv * hpriv,const struct mbus_dram_target_info * dram)4013 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
4014 const struct mbus_dram_target_info *dram)
4015 {
4016 int i;
4017
4018 for (i = 0; i < 4; i++) {
4019 writel(0, hpriv->base + WINDOW_CTRL(i));
4020 writel(0, hpriv->base + WINDOW_BASE(i));
4021 }
4022
4023 for (i = 0; i < dram->num_cs; i++) {
4024 const struct mbus_dram_window *cs = dram->cs + i;
4025
4026 writel(((cs->size - 1) & 0xffff0000) |
4027 (cs->mbus_attr << 8) |
4028 (dram->mbus_dram_target_id << 4) | 1,
4029 hpriv->base + WINDOW_CTRL(i));
4030 writel(cs->base, hpriv->base + WINDOW_BASE(i));
4031 }
4032 }
4033
4034 /**
4035 * mv_platform_probe - handle a positive probe of an soc Marvell
4036 * host
4037 * @pdev: platform device found
4038 *
4039 * LOCKING:
4040 * Inherited from caller.
4041 */
mv_platform_probe(struct platform_device * pdev)4042 static int mv_platform_probe(struct platform_device *pdev)
4043 {
4044 const struct mv_sata_platform_data *mv_platform_data;
4045 const struct mbus_dram_target_info *dram;
4046 const struct ata_port_info *ppi[] =
4047 { &mv_port_info[chip_soc], NULL };
4048 struct ata_host *host;
4049 struct mv_host_priv *hpriv;
4050 struct resource *res;
4051 int n_ports = 0, irq = 0;
4052 int rc;
4053 int port;
4054
4055 ata_print_version_once(&pdev->dev, DRV_VERSION);
4056
4057 /*
4058 * Simple resource validation ..
4059 */
4060 if (unlikely(pdev->num_resources != 1)) {
4061 dev_err(&pdev->dev, "invalid number of resources\n");
4062 return -EINVAL;
4063 }
4064
4065 /*
4066 * Get the register base first
4067 */
4068 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4069 if (res == NULL)
4070 return -EINVAL;
4071
4072 /* allocate host */
4073 if (pdev->dev.of_node) {
4074 rc = of_property_read_u32(pdev->dev.of_node, "nr-ports",
4075 &n_ports);
4076 if (rc) {
4077 dev_err(&pdev->dev,
4078 "error parsing nr-ports property: %d\n", rc);
4079 return rc;
4080 }
4081
4082 if (n_ports <= 0) {
4083 dev_err(&pdev->dev, "nr-ports must be positive: %d\n",
4084 n_ports);
4085 return -EINVAL;
4086 }
4087
4088 irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
4089 } else {
4090 mv_platform_data = dev_get_platdata(&pdev->dev);
4091 n_ports = mv_platform_data->n_ports;
4092 irq = platform_get_irq(pdev, 0);
4093 }
4094 if (irq < 0)
4095 return irq;
4096 if (!irq)
4097 return -EINVAL;
4098
4099 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4100 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4101
4102 if (!host || !hpriv)
4103 return -ENOMEM;
4104 hpriv->port_clks = devm_kcalloc(&pdev->dev,
4105 n_ports, sizeof(struct clk *),
4106 GFP_KERNEL);
4107 if (!hpriv->port_clks)
4108 return -ENOMEM;
4109 hpriv->port_phys = devm_kcalloc(&pdev->dev,
4110 n_ports, sizeof(struct phy *),
4111 GFP_KERNEL);
4112 if (!hpriv->port_phys)
4113 return -ENOMEM;
4114 host->private_data = hpriv;
4115 hpriv->board_idx = chip_soc;
4116
4117 host->iomap = NULL;
4118 hpriv->base = devm_ioremap(&pdev->dev, res->start,
4119 resource_size(res));
4120 if (!hpriv->base)
4121 return -ENOMEM;
4122
4123 hpriv->base -= SATAHC0_REG_BASE;
4124
4125 hpriv->clk = clk_get(&pdev->dev, NULL);
4126 if (IS_ERR(hpriv->clk))
4127 dev_notice(&pdev->dev, "cannot get optional clkdev\n");
4128 else
4129 clk_prepare_enable(hpriv->clk);
4130
4131 for (port = 0; port < n_ports; port++) {
4132 char port_number[16];
4133 sprintf(port_number, "%d", port);
4134 hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
4135 if (!IS_ERR(hpriv->port_clks[port]))
4136 clk_prepare_enable(hpriv->port_clks[port]);
4137
4138 sprintf(port_number, "port%d", port);
4139 hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev,
4140 port_number);
4141 if (IS_ERR(hpriv->port_phys[port])) {
4142 rc = PTR_ERR(hpriv->port_phys[port]);
4143 hpriv->port_phys[port] = NULL;
4144 if (rc != -EPROBE_DEFER)
4145 dev_warn(&pdev->dev, "error getting phy %d", rc);
4146
4147 /* Cleanup only the initialized ports */
4148 hpriv->n_ports = port;
4149 goto err;
4150 } else
4151 phy_power_on(hpriv->port_phys[port]);
4152 }
4153
4154 /* All the ports have been initialized */
4155 hpriv->n_ports = n_ports;
4156
4157 /*
4158 * (Re-)program MBUS remapping windows if we are asked to.
4159 */
4160 dram = mv_mbus_dram_info();
4161 if (dram)
4162 mv_conf_mbus_windows(hpriv, dram);
4163
4164 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4165 if (rc)
4166 goto err;
4167
4168 /*
4169 * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
4170 * updated in the LP_PHY_CTL register.
4171 */
4172 if (pdev->dev.of_node &&
4173 of_device_is_compatible(pdev->dev.of_node,
4174 "marvell,armada-370-sata"))
4175 hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL;
4176
4177 /* initialize adapter */
4178 rc = mv_init_host(host);
4179 if (rc)
4180 goto err;
4181
4182 dev_info(&pdev->dev, "slots %u ports %d\n",
4183 (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
4184
4185 rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
4186 if (!rc)
4187 return 0;
4188
4189 err:
4190 if (!IS_ERR(hpriv->clk)) {
4191 clk_disable_unprepare(hpriv->clk);
4192 clk_put(hpriv->clk);
4193 }
4194 for (port = 0; port < hpriv->n_ports; port++) {
4195 if (!IS_ERR(hpriv->port_clks[port])) {
4196 clk_disable_unprepare(hpriv->port_clks[port]);
4197 clk_put(hpriv->port_clks[port]);
4198 }
4199 phy_power_off(hpriv->port_phys[port]);
4200 }
4201
4202 return rc;
4203 }
4204
4205 /*
4206 *
4207 * mv_platform_remove - unplug a platform interface
4208 * @pdev: platform device
4209 *
4210 * A platform bus SATA device has been unplugged. Perform the needed
4211 * cleanup. Also called on module unload for any active devices.
4212 */
mv_platform_remove(struct platform_device * pdev)4213 static void mv_platform_remove(struct platform_device *pdev)
4214 {
4215 struct ata_host *host = platform_get_drvdata(pdev);
4216 struct mv_host_priv *hpriv = host->private_data;
4217 int port;
4218 ata_host_detach(host);
4219
4220 if (!IS_ERR(hpriv->clk)) {
4221 clk_disable_unprepare(hpriv->clk);
4222 clk_put(hpriv->clk);
4223 }
4224 for (port = 0; port < host->n_ports; port++) {
4225 if (!IS_ERR(hpriv->port_clks[port])) {
4226 clk_disable_unprepare(hpriv->port_clks[port]);
4227 clk_put(hpriv->port_clks[port]);
4228 }
4229 phy_power_off(hpriv->port_phys[port]);
4230 }
4231 }
4232
4233 #ifdef CONFIG_PM_SLEEP
mv_platform_suspend(struct platform_device * pdev,pm_message_t state)4234 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4235 {
4236 struct ata_host *host = platform_get_drvdata(pdev);
4237
4238 if (host)
4239 ata_host_suspend(host, state);
4240 return 0;
4241 }
4242
mv_platform_resume(struct platform_device * pdev)4243 static int mv_platform_resume(struct platform_device *pdev)
4244 {
4245 struct ata_host *host = platform_get_drvdata(pdev);
4246 const struct mbus_dram_target_info *dram;
4247 int ret;
4248
4249 if (host) {
4250 struct mv_host_priv *hpriv = host->private_data;
4251
4252 /*
4253 * (Re-)program MBUS remapping windows if we are asked to.
4254 */
4255 dram = mv_mbus_dram_info();
4256 if (dram)
4257 mv_conf_mbus_windows(hpriv, dram);
4258
4259 /* initialize adapter */
4260 ret = mv_init_host(host);
4261 if (ret) {
4262 dev_err(&pdev->dev, "Error during HW init\n");
4263 return ret;
4264 }
4265 ata_host_resume(host);
4266 }
4267
4268 return 0;
4269 }
4270 #else
4271 #define mv_platform_suspend NULL
4272 #define mv_platform_resume NULL
4273 #endif
4274
4275 #ifdef CONFIG_OF
4276 static const struct of_device_id mv_sata_dt_ids[] = {
4277 { .compatible = "marvell,armada-370-sata", },
4278 { .compatible = "marvell,orion-sata", },
4279 { /* sentinel */ }
4280 };
4281 MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
4282 #endif
4283
4284 static struct platform_driver mv_platform_driver = {
4285 .probe = mv_platform_probe,
4286 .remove_new = mv_platform_remove,
4287 .suspend = mv_platform_suspend,
4288 .resume = mv_platform_resume,
4289 .driver = {
4290 .name = DRV_NAME,
4291 .of_match_table = of_match_ptr(mv_sata_dt_ids),
4292 },
4293 };
4294
4295
4296 #ifdef CONFIG_PCI
4297 static int mv_pci_init_one(struct pci_dev *pdev,
4298 const struct pci_device_id *ent);
4299 #ifdef CONFIG_PM_SLEEP
4300 static int mv_pci_device_resume(struct pci_dev *pdev);
4301 #endif
4302
4303
4304 static struct pci_driver mv_pci_driver = {
4305 .name = DRV_NAME,
4306 .id_table = mv_pci_tbl,
4307 .probe = mv_pci_init_one,
4308 .remove = ata_pci_remove_one,
4309 #ifdef CONFIG_PM_SLEEP
4310 .suspend = ata_pci_device_suspend,
4311 .resume = mv_pci_device_resume,
4312 #endif
4313
4314 };
4315
4316 /**
4317 * mv_print_info - Dump key info to kernel log for perusal.
4318 * @host: ATA host to print info about
4319 *
4320 * FIXME: complete this.
4321 *
4322 * LOCKING:
4323 * Inherited from caller.
4324 */
mv_print_info(struct ata_host * host)4325 static void mv_print_info(struct ata_host *host)
4326 {
4327 struct pci_dev *pdev = to_pci_dev(host->dev);
4328 struct mv_host_priv *hpriv = host->private_data;
4329 u8 scc;
4330 const char *scc_s, *gen;
4331
4332 /* Use this to determine the HW stepping of the chip so we know
4333 * what errata to workaround
4334 */
4335 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4336 if (scc == 0)
4337 scc_s = "SCSI";
4338 else if (scc == 0x01)
4339 scc_s = "RAID";
4340 else
4341 scc_s = "?";
4342
4343 if (IS_GEN_I(hpriv))
4344 gen = "I";
4345 else if (IS_GEN_II(hpriv))
4346 gen = "II";
4347 else if (IS_GEN_IIE(hpriv))
4348 gen = "IIE";
4349 else
4350 gen = "?";
4351
4352 dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4353 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4354 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4355 }
4356
4357 /**
4358 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
4359 * @pdev: PCI device found
4360 * @ent: PCI device ID entry for the matched host
4361 *
4362 * LOCKING:
4363 * Inherited from caller.
4364 */
mv_pci_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)4365 static int mv_pci_init_one(struct pci_dev *pdev,
4366 const struct pci_device_id *ent)
4367 {
4368 unsigned int board_idx = (unsigned int)ent->driver_data;
4369 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4370 struct ata_host *host;
4371 struct mv_host_priv *hpriv;
4372 int n_ports, port, rc;
4373
4374 ata_print_version_once(&pdev->dev, DRV_VERSION);
4375
4376 /* allocate host */
4377 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4378
4379 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4380 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4381 if (!host || !hpriv)
4382 return -ENOMEM;
4383 host->private_data = hpriv;
4384 hpriv->n_ports = n_ports;
4385 hpriv->board_idx = board_idx;
4386
4387 /* acquire resources */
4388 rc = pcim_enable_device(pdev);
4389 if (rc)
4390 return rc;
4391
4392 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4393 if (rc == -EBUSY)
4394 pcim_pin_device(pdev);
4395 if (rc)
4396 return rc;
4397 host->iomap = pcim_iomap_table(pdev);
4398 hpriv->base = host->iomap[MV_PRIMARY_BAR];
4399
4400 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4401 if (rc) {
4402 dev_err(&pdev->dev, "DMA enable failed\n");
4403 return rc;
4404 }
4405
4406 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4407 if (rc)
4408 return rc;
4409
4410 for (port = 0; port < host->n_ports; port++) {
4411 struct ata_port *ap = host->ports[port];
4412 void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4413 unsigned int offset = port_mmio - hpriv->base;
4414
4415 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4416 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4417 }
4418
4419 /* initialize adapter */
4420 rc = mv_init_host(host);
4421 if (rc)
4422 return rc;
4423
4424 /* Enable message-switched interrupts, if requested */
4425 if (msi && pci_enable_msi(pdev) == 0)
4426 hpriv->hp_flags |= MV_HP_FLAG_MSI;
4427
4428 mv_dump_pci_cfg(pdev, 0x68);
4429 mv_print_info(host);
4430
4431 pci_set_master(pdev);
4432 pci_try_set_mwi(pdev);
4433 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4434 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4435 }
4436
4437 #ifdef CONFIG_PM_SLEEP
mv_pci_device_resume(struct pci_dev * pdev)4438 static int mv_pci_device_resume(struct pci_dev *pdev)
4439 {
4440 struct ata_host *host = pci_get_drvdata(pdev);
4441 int rc;
4442
4443 rc = ata_pci_device_do_resume(pdev);
4444 if (rc)
4445 return rc;
4446
4447 /* initialize adapter */
4448 rc = mv_init_host(host);
4449 if (rc)
4450 return rc;
4451
4452 ata_host_resume(host);
4453
4454 return 0;
4455 }
4456 #endif
4457 #endif
4458
mv_init(void)4459 static int __init mv_init(void)
4460 {
4461 int rc = -ENODEV;
4462 #ifdef CONFIG_PCI
4463 rc = pci_register_driver(&mv_pci_driver);
4464 if (rc < 0)
4465 return rc;
4466 #endif
4467 rc = platform_driver_register(&mv_platform_driver);
4468
4469 #ifdef CONFIG_PCI
4470 if (rc < 0)
4471 pci_unregister_driver(&mv_pci_driver);
4472 #endif
4473 return rc;
4474 }
4475
mv_exit(void)4476 static void __exit mv_exit(void)
4477 {
4478 #ifdef CONFIG_PCI
4479 pci_unregister_driver(&mv_pci_driver);
4480 #endif
4481 platform_driver_unregister(&mv_platform_driver);
4482 }
4483
4484 MODULE_AUTHOR("Brett Russ");
4485 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4486 MODULE_LICENSE("GPL v2");
4487 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4488 MODULE_VERSION(DRV_VERSION);
4489 MODULE_ALIAS("platform:" DRV_NAME);
4490
4491 module_init(mv_init);
4492 module_exit(mv_exit);
4493