1  /*
2   * Interface for the 93C66/56/46/26/06 serial eeprom parts.
3   *
4   * Copyright (c) 1995, 1996 Daniel M. Eischen
5   * All rights reserved.
6   *
7   * Redistribution and use in source and binary forms, with or without
8   * modification, are permitted provided that the following conditions
9   * are met:
10   * 1. Redistributions of source code must retain the above copyright
11   *    notice, this list of conditions, and the following disclaimer,
12   *    without modification.
13   * 2. The name of the author may not be used to endorse or promote products
14   *    derived from this software without specific prior written permission.
15   *
16   * Alternatively, this software may be distributed under the terms of the
17   * GNU General Public License ("GPL").
18   *
19   * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21   * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22   * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
23   * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24   * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25   * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26   * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27   * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28   * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29   * SUCH DAMAGE.
30   *
31   * $Id: //depot/aic7xxx/aic7xxx/aic7xxx_93cx6.c#19 $
32   */
33  
34  /*
35   *   The instruction set of the 93C66/56/46/26/06 chips are as follows:
36   *
37   *               Start  OP	    *
38   *     Function   Bit  Code  Address**  Data     Description
39   *     -------------------------------------------------------------------
40   *     READ        1    10   A5 - A0             Reads data stored in memory,
41   *                                               starting at specified address
42   *     EWEN        1    00   11XXXX              Write enable must precede
43   *                                               all programming modes
44   *     ERASE       1    11   A5 - A0             Erase register A5A4A3A2A1A0
45   *     WRITE       1    01   A5 - A0   D15 - D0  Writes register
46   *     ERAL        1    00   10XXXX              Erase all registers
47   *     WRAL        1    00   01XXXX    D15 - D0  Writes to all registers
48   *     EWDS        1    00   00XXXX              Disables all programming
49   *                                               instructions
50   *     *Note: A value of X for address is a don't care condition.
51   *    **Note: There are 8 address bits for the 93C56/66 chips unlike
52   *	      the 93C46/26/06 chips which have 6 address bits.
53   *
54   *   The 93C46 has a four wire interface: clock, chip select, data in, and
55   *   data out.  In order to perform one of the above functions, you need
56   *   to enable the chip select for a clock period (typically a minimum of
57   *   1 usec, with the clock high and low a minimum of 750 and 250 nsec
58   *   respectively).  While the chip select remains high, you can clock in
59   *   the instructions (above) starting with the start bit, followed by the
60   *   OP code, Address, and Data (if needed).  For the READ instruction, the
61   *   requested 16-bit register contents is read from the data out line but
62   *   is preceded by an initial zero (leading 0, followed by 16-bits, MSB
63   *   first).  The clock cycling from low to high initiates the next data
64   *   bit to be sent from the chip.
65   */
66  
67  #include "aic7xxx_osm.h"
68  #include "aic7xxx_inline.h"
69  #include "aic7xxx_93cx6.h"
70  
71  /*
72   * Right now, we only have to read the SEEPROM.  But we make it easier to
73   * add other 93Cx6 functions.
74   */
75  struct seeprom_cmd {
76  	uint8_t len;
77  	uint8_t bits[11];
78  };
79  
80  /* Short opcodes for the c46 */
81  static const struct seeprom_cmd seeprom_ewen = {9, {1, 0, 0, 1, 1, 0, 0, 0, 0}};
82  static const struct seeprom_cmd seeprom_ewds = {9, {1, 0, 0, 0, 0, 0, 0, 0, 0}};
83  
84  /* Long opcodes for the C56/C66 */
85  static const struct seeprom_cmd seeprom_long_ewen = {11, {1, 0, 0, 1, 1, 0, 0, 0, 0}};
86  static const struct seeprom_cmd seeprom_long_ewds = {11, {1, 0, 0, 0, 0, 0, 0, 0, 0}};
87  
88  /* Common opcodes */
89  static const struct seeprom_cmd seeprom_write = {3, {1, 0, 1}};
90  static const struct seeprom_cmd seeprom_read  = {3, {1, 1, 0}};
91  
92  /*
93   * Wait for the SEERDY to go high; about 800 ns.
94   */
95  #define CLOCK_PULSE(sd, rdy)				\
96  	while ((SEEPROM_STATUS_INB(sd) & rdy) == 0) {	\
97  		;  /* Do nothing */			\
98  	}						\
99  	(void)SEEPROM_INB(sd);	/* Clear clock */
100  
101  /*
102   * Send a START condition and the given command
103   */
104  static void
send_seeprom_cmd(struct seeprom_descriptor * sd,const struct seeprom_cmd * cmd)105  send_seeprom_cmd(struct seeprom_descriptor *sd, const struct seeprom_cmd *cmd)
106  {
107  	uint8_t temp;
108  	int i = 0;
109  
110  	/* Send chip select for one clock cycle. */
111  	temp = sd->sd_MS ^ sd->sd_CS;
112  	SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
113  	CLOCK_PULSE(sd, sd->sd_RDY);
114  
115  	for (i = 0; i < cmd->len; i++) {
116  		if (cmd->bits[i] != 0)
117  			temp ^= sd->sd_DO;
118  		SEEPROM_OUTB(sd, temp);
119  		CLOCK_PULSE(sd, sd->sd_RDY);
120  		SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
121  		CLOCK_PULSE(sd, sd->sd_RDY);
122  		if (cmd->bits[i] != 0)
123  			temp ^= sd->sd_DO;
124  	}
125  }
126  
127  /*
128   * Clear CS put the chip in the reset state, where it can wait for new commands.
129   */
130  static void
reset_seeprom(struct seeprom_descriptor * sd)131  reset_seeprom(struct seeprom_descriptor *sd)
132  {
133  	uint8_t temp;
134  
135  	temp = sd->sd_MS;
136  	SEEPROM_OUTB(sd, temp);
137  	CLOCK_PULSE(sd, sd->sd_RDY);
138  	SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
139  	CLOCK_PULSE(sd, sd->sd_RDY);
140  	SEEPROM_OUTB(sd, temp);
141  	CLOCK_PULSE(sd, sd->sd_RDY);
142  }
143  
144  /*
145   * Read the serial EEPROM and returns 1 if successful and 0 if
146   * not successful.
147   */
148  int
ahc_read_seeprom(struct seeprom_descriptor * sd,uint16_t * buf,u_int start_addr,u_int count)149  ahc_read_seeprom(struct seeprom_descriptor *sd, uint16_t *buf,
150  		 u_int start_addr, u_int count)
151  {
152  	int i = 0;
153  	u_int k = 0;
154  	uint16_t v;
155  	uint8_t temp;
156  
157  	/*
158  	 * Read the requested registers of the seeprom.  The loop
159  	 * will range from 0 to count-1.
160  	 */
161  	for (k = start_addr; k < count + start_addr; k++) {
162  		/*
163  		 * Now we're ready to send the read command followed by the
164  		 * address of the 16-bit register we want to read.
165  		 */
166  		send_seeprom_cmd(sd, &seeprom_read);
167  
168  		/* Send the 6 or 8 bit address (MSB first, LSB last). */
169  		temp = sd->sd_MS ^ sd->sd_CS;
170  		for (i = (sd->sd_chip - 1); i >= 0; i--) {
171  			if ((k & (1 << i)) != 0)
172  				temp ^= sd->sd_DO;
173  			SEEPROM_OUTB(sd, temp);
174  			CLOCK_PULSE(sd, sd->sd_RDY);
175  			SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
176  			CLOCK_PULSE(sd, sd->sd_RDY);
177  			if ((k & (1 << i)) != 0)
178  				temp ^= sd->sd_DO;
179  		}
180  
181  		/*
182  		 * Now read the 16 bit register.  An initial 0 precedes the
183  		 * register contents which begins with bit 15 (MSB) and ends
184  		 * with bit 0 (LSB).  The initial 0 will be shifted off the
185  		 * top of our word as we let the loop run from 0 to 16.
186  		 */
187  		v = 0;
188  		for (i = 16; i >= 0; i--) {
189  			SEEPROM_OUTB(sd, temp);
190  			CLOCK_PULSE(sd, sd->sd_RDY);
191  			v <<= 1;
192  			if (SEEPROM_DATA_INB(sd) & sd->sd_DI)
193  				v |= 1;
194  			SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
195  			CLOCK_PULSE(sd, sd->sd_RDY);
196  		}
197  
198  		buf[k - start_addr] = v;
199  
200  		/* Reset the chip select for the next command cycle. */
201  		reset_seeprom(sd);
202  	}
203  #ifdef AHC_DUMP_EEPROM
204  	printk("\nSerial EEPROM:\n\t");
205  	for (k = 0; k < count; k = k + 1) {
206  		if (((k % 8) == 0) && (k != 0)) {
207  			printk(KERN_CONT "\n\t");
208  		}
209  		printk(KERN_CONT " 0x%x", buf[k]);
210  	}
211  	printk(KERN_CONT "\n");
212  #endif
213  	return (1);
214  }
215  
216  /*
217   * Write the serial EEPROM and return 1 if successful and 0 if
218   * not successful.
219   */
220  int
ahc_write_seeprom(struct seeprom_descriptor * sd,uint16_t * buf,u_int start_addr,u_int count)221  ahc_write_seeprom(struct seeprom_descriptor *sd, uint16_t *buf,
222  		  u_int start_addr, u_int count)
223  {
224  	const struct seeprom_cmd *ewen, *ewds;
225  	uint16_t v;
226  	uint8_t temp;
227  	int i, k;
228  
229  	/* Place the chip into write-enable mode */
230  	if (sd->sd_chip == C46) {
231  		ewen = &seeprom_ewen;
232  		ewds = &seeprom_ewds;
233  	} else if (sd->sd_chip == C56_66) {
234  		ewen = &seeprom_long_ewen;
235  		ewds = &seeprom_long_ewds;
236  	} else {
237  		printk("ahc_write_seeprom: unsupported seeprom type %d\n",
238  		       sd->sd_chip);
239  		return (0);
240  	}
241  
242  	send_seeprom_cmd(sd, ewen);
243  	reset_seeprom(sd);
244  
245  	/* Write all requested data out to the seeprom. */
246  	temp = sd->sd_MS ^ sd->sd_CS;
247  	for (k = start_addr; k < count + start_addr; k++) {
248  		/* Send the write command */
249  		send_seeprom_cmd(sd, &seeprom_write);
250  
251  		/* Send the 6 or 8 bit address (MSB first). */
252  		for (i = (sd->sd_chip - 1); i >= 0; i--) {
253  			if ((k & (1 << i)) != 0)
254  				temp ^= sd->sd_DO;
255  			SEEPROM_OUTB(sd, temp);
256  			CLOCK_PULSE(sd, sd->sd_RDY);
257  			SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
258  			CLOCK_PULSE(sd, sd->sd_RDY);
259  			if ((k & (1 << i)) != 0)
260  				temp ^= sd->sd_DO;
261  		}
262  
263  		/* Write the 16 bit value, MSB first */
264  		v = buf[k - start_addr];
265  		for (i = 15; i >= 0; i--) {
266  			if ((v & (1 << i)) != 0)
267  				temp ^= sd->sd_DO;
268  			SEEPROM_OUTB(sd, temp);
269  			CLOCK_PULSE(sd, sd->sd_RDY);
270  			SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
271  			CLOCK_PULSE(sd, sd->sd_RDY);
272  			if ((v & (1 << i)) != 0)
273  				temp ^= sd->sd_DO;
274  		}
275  
276  		/* Wait for the chip to complete the write */
277  		temp = sd->sd_MS;
278  		SEEPROM_OUTB(sd, temp);
279  		CLOCK_PULSE(sd, sd->sd_RDY);
280  		temp = sd->sd_MS ^ sd->sd_CS;
281  		do {
282  			SEEPROM_OUTB(sd, temp);
283  			CLOCK_PULSE(sd, sd->sd_RDY);
284  			SEEPROM_OUTB(sd, temp ^ sd->sd_CK);
285  			CLOCK_PULSE(sd, sd->sd_RDY);
286  		} while ((SEEPROM_DATA_INB(sd) & sd->sd_DI) == 0);
287  
288  		reset_seeprom(sd);
289  	}
290  
291  	/* Put the chip back into write-protect mode */
292  	send_seeprom_cmd(sd, ewds);
293  	reset_seeprom(sd);
294  
295  	return (1);
296  }
297  
298  int
ahc_verify_cksum(struct seeprom_config * sc)299  ahc_verify_cksum(struct seeprom_config *sc)
300  {
301  	int i;
302  	int maxaddr;
303  	uint32_t checksum;
304  	uint16_t *scarray;
305  
306  	maxaddr = (sizeof(*sc)/2) - 1;
307  	checksum = 0;
308  	scarray = (uint16_t *)sc;
309  
310  	for (i = 0; i < maxaddr; i++)
311  		checksum = checksum + scarray[i];
312  	if (checksum == 0
313  	 || (checksum & 0xFFFF) != sc->checksum) {
314  		return (0);
315  	} else {
316  		return(1);
317  	}
318  }
319