1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // flexcan.c - FLEXCAN CAN controller driver
4 //
5 // Copyright (c) 2005-2006 Varma Electronics Oy
6 // Copyright (c) 2009 Sascha Hauer, Pengutronix
7 // Copyright (c) 2010-2017 Pengutronix, Marc Kleine-Budde <kernel@pengutronix.de>
8 // Copyright (c) 2014 David Jander, Protonic Holland
9 //
10 // Based on code originally by Andrey Volkov <avolkov@varma-el.com>
11
12 #include <linux/netdevice.h>
13 #include <linux/can.h>
14 #include <linux/can/dev.h>
15 #include <linux/can/error.h>
16 #include <linux/can/led.h>
17 #include <linux/can/rx-offload.h>
18 #include <linux/clk.h>
19 #include <linux/delay.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/platform_device.h>
26 #include <linux/regulator/consumer.h>
27
28 #define DRV_NAME "flexcan"
29
30 /* 8 for RX fifo and 2 error handling */
31 #define FLEXCAN_NAPI_WEIGHT (8 + 2)
32
33 /* FLEXCAN module configuration register (CANMCR) bits */
34 #define FLEXCAN_MCR_MDIS BIT(31)
35 #define FLEXCAN_MCR_FRZ BIT(30)
36 #define FLEXCAN_MCR_FEN BIT(29)
37 #define FLEXCAN_MCR_HALT BIT(28)
38 #define FLEXCAN_MCR_NOT_RDY BIT(27)
39 #define FLEXCAN_MCR_WAK_MSK BIT(26)
40 #define FLEXCAN_MCR_SOFTRST BIT(25)
41 #define FLEXCAN_MCR_FRZ_ACK BIT(24)
42 #define FLEXCAN_MCR_SUPV BIT(23)
43 #define FLEXCAN_MCR_SLF_WAK BIT(22)
44 #define FLEXCAN_MCR_WRN_EN BIT(21)
45 #define FLEXCAN_MCR_LPM_ACK BIT(20)
46 #define FLEXCAN_MCR_WAK_SRC BIT(19)
47 #define FLEXCAN_MCR_DOZE BIT(18)
48 #define FLEXCAN_MCR_SRX_DIS BIT(17)
49 #define FLEXCAN_MCR_IRMQ BIT(16)
50 #define FLEXCAN_MCR_LPRIO_EN BIT(13)
51 #define FLEXCAN_MCR_AEN BIT(12)
52 /* MCR_MAXMB: maximum used MBs is MAXMB + 1 */
53 #define FLEXCAN_MCR_MAXMB(x) ((x) & 0x7f)
54 #define FLEXCAN_MCR_IDAM_A (0x0 << 8)
55 #define FLEXCAN_MCR_IDAM_B (0x1 << 8)
56 #define FLEXCAN_MCR_IDAM_C (0x2 << 8)
57 #define FLEXCAN_MCR_IDAM_D (0x3 << 8)
58
59 /* FLEXCAN control register (CANCTRL) bits */
60 #define FLEXCAN_CTRL_PRESDIV(x) (((x) & 0xff) << 24)
61 #define FLEXCAN_CTRL_RJW(x) (((x) & 0x03) << 22)
62 #define FLEXCAN_CTRL_PSEG1(x) (((x) & 0x07) << 19)
63 #define FLEXCAN_CTRL_PSEG2(x) (((x) & 0x07) << 16)
64 #define FLEXCAN_CTRL_BOFF_MSK BIT(15)
65 #define FLEXCAN_CTRL_ERR_MSK BIT(14)
66 #define FLEXCAN_CTRL_CLK_SRC BIT(13)
67 #define FLEXCAN_CTRL_LPB BIT(12)
68 #define FLEXCAN_CTRL_TWRN_MSK BIT(11)
69 #define FLEXCAN_CTRL_RWRN_MSK BIT(10)
70 #define FLEXCAN_CTRL_SMP BIT(7)
71 #define FLEXCAN_CTRL_BOFF_REC BIT(6)
72 #define FLEXCAN_CTRL_TSYN BIT(5)
73 #define FLEXCAN_CTRL_LBUF BIT(4)
74 #define FLEXCAN_CTRL_LOM BIT(3)
75 #define FLEXCAN_CTRL_PROPSEG(x) ((x) & 0x07)
76 #define FLEXCAN_CTRL_ERR_BUS (FLEXCAN_CTRL_ERR_MSK)
77 #define FLEXCAN_CTRL_ERR_STATE \
78 (FLEXCAN_CTRL_TWRN_MSK | FLEXCAN_CTRL_RWRN_MSK | \
79 FLEXCAN_CTRL_BOFF_MSK)
80 #define FLEXCAN_CTRL_ERR_ALL \
81 (FLEXCAN_CTRL_ERR_BUS | FLEXCAN_CTRL_ERR_STATE)
82
83 /* FLEXCAN control register 2 (CTRL2) bits */
84 #define FLEXCAN_CTRL2_ECRWRE BIT(29)
85 #define FLEXCAN_CTRL2_WRMFRZ BIT(28)
86 #define FLEXCAN_CTRL2_RFFN(x) (((x) & 0x0f) << 24)
87 #define FLEXCAN_CTRL2_TASD(x) (((x) & 0x1f) << 19)
88 #define FLEXCAN_CTRL2_MRP BIT(18)
89 #define FLEXCAN_CTRL2_RRS BIT(17)
90 #define FLEXCAN_CTRL2_EACEN BIT(16)
91
92 /* FLEXCAN memory error control register (MECR) bits */
93 #define FLEXCAN_MECR_ECRWRDIS BIT(31)
94 #define FLEXCAN_MECR_HANCEI_MSK BIT(19)
95 #define FLEXCAN_MECR_FANCEI_MSK BIT(18)
96 #define FLEXCAN_MECR_CEI_MSK BIT(16)
97 #define FLEXCAN_MECR_HAERRIE BIT(15)
98 #define FLEXCAN_MECR_FAERRIE BIT(14)
99 #define FLEXCAN_MECR_EXTERRIE BIT(13)
100 #define FLEXCAN_MECR_RERRDIS BIT(9)
101 #define FLEXCAN_MECR_ECCDIS BIT(8)
102 #define FLEXCAN_MECR_NCEFAFRZ BIT(7)
103
104 /* FLEXCAN error and status register (ESR) bits */
105 #define FLEXCAN_ESR_TWRN_INT BIT(17)
106 #define FLEXCAN_ESR_RWRN_INT BIT(16)
107 #define FLEXCAN_ESR_BIT1_ERR BIT(15)
108 #define FLEXCAN_ESR_BIT0_ERR BIT(14)
109 #define FLEXCAN_ESR_ACK_ERR BIT(13)
110 #define FLEXCAN_ESR_CRC_ERR BIT(12)
111 #define FLEXCAN_ESR_FRM_ERR BIT(11)
112 #define FLEXCAN_ESR_STF_ERR BIT(10)
113 #define FLEXCAN_ESR_TX_WRN BIT(9)
114 #define FLEXCAN_ESR_RX_WRN BIT(8)
115 #define FLEXCAN_ESR_IDLE BIT(7)
116 #define FLEXCAN_ESR_TXRX BIT(6)
117 #define FLEXCAN_EST_FLT_CONF_SHIFT (4)
118 #define FLEXCAN_ESR_FLT_CONF_MASK (0x3 << FLEXCAN_EST_FLT_CONF_SHIFT)
119 #define FLEXCAN_ESR_FLT_CONF_ACTIVE (0x0 << FLEXCAN_EST_FLT_CONF_SHIFT)
120 #define FLEXCAN_ESR_FLT_CONF_PASSIVE (0x1 << FLEXCAN_EST_FLT_CONF_SHIFT)
121 #define FLEXCAN_ESR_BOFF_INT BIT(2)
122 #define FLEXCAN_ESR_ERR_INT BIT(1)
123 #define FLEXCAN_ESR_WAK_INT BIT(0)
124 #define FLEXCAN_ESR_ERR_BUS \
125 (FLEXCAN_ESR_BIT1_ERR | FLEXCAN_ESR_BIT0_ERR | \
126 FLEXCAN_ESR_ACK_ERR | FLEXCAN_ESR_CRC_ERR | \
127 FLEXCAN_ESR_FRM_ERR | FLEXCAN_ESR_STF_ERR)
128 #define FLEXCAN_ESR_ERR_STATE \
129 (FLEXCAN_ESR_TWRN_INT | FLEXCAN_ESR_RWRN_INT | FLEXCAN_ESR_BOFF_INT)
130 #define FLEXCAN_ESR_ERR_ALL \
131 (FLEXCAN_ESR_ERR_BUS | FLEXCAN_ESR_ERR_STATE)
132 #define FLEXCAN_ESR_ALL_INT \
133 (FLEXCAN_ESR_TWRN_INT | FLEXCAN_ESR_RWRN_INT | \
134 FLEXCAN_ESR_BOFF_INT | FLEXCAN_ESR_ERR_INT)
135
136 /* FLEXCAN interrupt flag register (IFLAG) bits */
137 /* Errata ERR005829 step7: Reserve first valid MB */
138 #define FLEXCAN_TX_MB_RESERVED_OFF_FIFO 8
139 #define FLEXCAN_TX_MB_OFF_FIFO 9
140 #define FLEXCAN_TX_MB_RESERVED_OFF_TIMESTAMP 0
141 #define FLEXCAN_TX_MB_OFF_TIMESTAMP 1
142 #define FLEXCAN_RX_MB_OFF_TIMESTAMP_FIRST (FLEXCAN_TX_MB_OFF_TIMESTAMP + 1)
143 #define FLEXCAN_RX_MB_OFF_TIMESTAMP_LAST 63
144 #define FLEXCAN_IFLAG_MB(x) BIT(x)
145 #define FLEXCAN_IFLAG_RX_FIFO_OVERFLOW BIT(7)
146 #define FLEXCAN_IFLAG_RX_FIFO_WARN BIT(6)
147 #define FLEXCAN_IFLAG_RX_FIFO_AVAILABLE BIT(5)
148
149 /* FLEXCAN message buffers */
150 #define FLEXCAN_MB_CODE_MASK (0xf << 24)
151 #define FLEXCAN_MB_CODE_RX_BUSY_BIT (0x1 << 24)
152 #define FLEXCAN_MB_CODE_RX_INACTIVE (0x0 << 24)
153 #define FLEXCAN_MB_CODE_RX_EMPTY (0x4 << 24)
154 #define FLEXCAN_MB_CODE_RX_FULL (0x2 << 24)
155 #define FLEXCAN_MB_CODE_RX_OVERRUN (0x6 << 24)
156 #define FLEXCAN_MB_CODE_RX_RANSWER (0xa << 24)
157
158 #define FLEXCAN_MB_CODE_TX_INACTIVE (0x8 << 24)
159 #define FLEXCAN_MB_CODE_TX_ABORT (0x9 << 24)
160 #define FLEXCAN_MB_CODE_TX_DATA (0xc << 24)
161 #define FLEXCAN_MB_CODE_TX_TANSWER (0xe << 24)
162
163 #define FLEXCAN_MB_CNT_SRR BIT(22)
164 #define FLEXCAN_MB_CNT_IDE BIT(21)
165 #define FLEXCAN_MB_CNT_RTR BIT(20)
166 #define FLEXCAN_MB_CNT_LENGTH(x) (((x) & 0xf) << 16)
167 #define FLEXCAN_MB_CNT_TIMESTAMP(x) ((x) & 0xffff)
168
169 #define FLEXCAN_TIMEOUT_US (50)
170
171 /* FLEXCAN hardware feature flags
172 *
173 * Below is some version info we got:
174 * SOC Version IP-Version Glitch- [TR]WRN_INT IRQ Err Memory err RTR re-
175 * Filter? connected? Passive detection ception in MB
176 * MX25 FlexCAN2 03.00.00.00 no no no no no
177 * MX28 FlexCAN2 03.00.04.00 yes yes no no no
178 * MX35 FlexCAN2 03.00.00.00 no no no no no
179 * MX53 FlexCAN2 03.00.00.00 yes no no no no
180 * MX6s FlexCAN3 10.00.12.00 yes yes no no yes
181 * VF610 FlexCAN3 ? no yes no yes yes?
182 * LS1021A FlexCAN2 03.00.04.00 no yes no no yes
183 *
184 * Some SOCs do not have the RX_WARN & TX_WARN interrupt line connected.
185 */
186 #define FLEXCAN_QUIRK_BROKEN_WERR_STATE BIT(1) /* [TR]WRN_INT not connected */
187 #define FLEXCAN_QUIRK_DISABLE_RXFG BIT(2) /* Disable RX FIFO Global mask */
188 #define FLEXCAN_QUIRK_ENABLE_EACEN_RRS BIT(3) /* Enable EACEN and RRS bit in ctrl2 */
189 #define FLEXCAN_QUIRK_DISABLE_MECR BIT(4) /* Disable Memory error detection */
190 #define FLEXCAN_QUIRK_USE_OFF_TIMESTAMP BIT(5) /* Use timestamp based offloading */
191 #define FLEXCAN_QUIRK_BROKEN_PERR_STATE BIT(6) /* No interrupt for error passive */
192 #define FLEXCAN_QUIRK_DEFAULT_BIG_ENDIAN BIT(7) /* default to BE register access */
193
194 /* Structure of the message buffer */
195 struct flexcan_mb {
196 u32 can_ctrl;
197 u32 can_id;
198 u32 data[2];
199 };
200
201 /* Structure of the hardware registers */
202 struct flexcan_regs {
203 u32 mcr; /* 0x00 */
204 u32 ctrl; /* 0x04 */
205 u32 timer; /* 0x08 */
206 u32 _reserved1; /* 0x0c */
207 u32 rxgmask; /* 0x10 */
208 u32 rx14mask; /* 0x14 */
209 u32 rx15mask; /* 0x18 */
210 u32 ecr; /* 0x1c */
211 u32 esr; /* 0x20 */
212 u32 imask2; /* 0x24 */
213 u32 imask1; /* 0x28 */
214 u32 iflag2; /* 0x2c */
215 u32 iflag1; /* 0x30 */
216 union { /* 0x34 */
217 u32 gfwr_mx28; /* MX28, MX53 */
218 u32 ctrl2; /* MX6, VF610 */
219 };
220 u32 esr2; /* 0x38 */
221 u32 imeur; /* 0x3c */
222 u32 lrfr; /* 0x40 */
223 u32 crcr; /* 0x44 */
224 u32 rxfgmask; /* 0x48 */
225 u32 rxfir; /* 0x4c */
226 u32 _reserved3[12]; /* 0x50 */
227 struct flexcan_mb mb[64]; /* 0x80 */
228 /* FIFO-mode:
229 * MB
230 * 0x080...0x08f 0 RX message buffer
231 * 0x090...0x0df 1-5 reserverd
232 * 0x0e0...0x0ff 6-7 8 entry ID table
233 * (mx25, mx28, mx35, mx53)
234 * 0x0e0...0x2df 6-7..37 8..128 entry ID table
235 * size conf'ed via ctrl2::RFFN
236 * (mx6, vf610)
237 */
238 u32 _reserved4[256]; /* 0x480 */
239 u32 rximr[64]; /* 0x880 */
240 u32 _reserved5[24]; /* 0x980 */
241 u32 gfwr_mx6; /* 0x9e0 - MX6 */
242 u32 _reserved6[63]; /* 0x9e4 */
243 u32 mecr; /* 0xae0 */
244 u32 erriar; /* 0xae4 */
245 u32 erridpr; /* 0xae8 */
246 u32 errippr; /* 0xaec */
247 u32 rerrar; /* 0xaf0 */
248 u32 rerrdr; /* 0xaf4 */
249 u32 rerrsynr; /* 0xaf8 */
250 u32 errsr; /* 0xafc */
251 };
252
253 struct flexcan_devtype_data {
254 u32 quirks; /* quirks needed for different IP cores */
255 };
256
257 struct flexcan_priv {
258 struct can_priv can;
259 struct can_rx_offload offload;
260
261 struct flexcan_regs __iomem *regs;
262 struct flexcan_mb __iomem *tx_mb;
263 struct flexcan_mb __iomem *tx_mb_reserved;
264 u8 tx_mb_idx;
265 u32 reg_ctrl_default;
266 u32 reg_imask1_default;
267 u32 reg_imask2_default;
268
269 struct clk *clk_ipg;
270 struct clk *clk_per;
271 const struct flexcan_devtype_data *devtype_data;
272 struct regulator *reg_xceiver;
273
274 /* Read and Write APIs */
275 u32 (*read)(void __iomem *addr);
276 void (*write)(u32 val, void __iomem *addr);
277 };
278
279 static const struct flexcan_devtype_data fsl_p1010_devtype_data = {
280 .quirks = FLEXCAN_QUIRK_BROKEN_WERR_STATE |
281 FLEXCAN_QUIRK_BROKEN_PERR_STATE |
282 FLEXCAN_QUIRK_DEFAULT_BIG_ENDIAN,
283 };
284
285 static const struct flexcan_devtype_data fsl_imx25_devtype_data = {
286 .quirks = FLEXCAN_QUIRK_BROKEN_WERR_STATE |
287 FLEXCAN_QUIRK_BROKEN_PERR_STATE,
288 };
289
290 static const struct flexcan_devtype_data fsl_imx28_devtype_data = {
291 .quirks = FLEXCAN_QUIRK_BROKEN_PERR_STATE,
292 };
293
294 static const struct flexcan_devtype_data fsl_imx6q_devtype_data = {
295 .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS |
296 FLEXCAN_QUIRK_USE_OFF_TIMESTAMP | FLEXCAN_QUIRK_BROKEN_PERR_STATE,
297 };
298
299 static const struct flexcan_devtype_data fsl_vf610_devtype_data = {
300 .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS |
301 FLEXCAN_QUIRK_DISABLE_MECR | FLEXCAN_QUIRK_USE_OFF_TIMESTAMP |
302 FLEXCAN_QUIRK_BROKEN_PERR_STATE,
303 };
304
305 static const struct flexcan_devtype_data fsl_ls1021a_r2_devtype_data = {
306 .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS |
307 FLEXCAN_QUIRK_DISABLE_MECR | FLEXCAN_QUIRK_BROKEN_PERR_STATE |
308 FLEXCAN_QUIRK_USE_OFF_TIMESTAMP,
309 };
310
311 static const struct can_bittiming_const flexcan_bittiming_const = {
312 .name = DRV_NAME,
313 .tseg1_min = 4,
314 .tseg1_max = 16,
315 .tseg2_min = 2,
316 .tseg2_max = 8,
317 .sjw_max = 4,
318 .brp_min = 1,
319 .brp_max = 256,
320 .brp_inc = 1,
321 };
322
323 /* FlexCAN module is essentially modelled as a little-endian IP in most
324 * SoCs, i.e the registers as well as the message buffer areas are
325 * implemented in a little-endian fashion.
326 *
327 * However there are some SoCs (e.g. LS1021A) which implement the FlexCAN
328 * module in a big-endian fashion (i.e the registers as well as the
329 * message buffer areas are implemented in a big-endian way).
330 *
331 * In addition, the FlexCAN module can be found on SoCs having ARM or
332 * PPC cores. So, we need to abstract off the register read/write
333 * functions, ensuring that these cater to all the combinations of module
334 * endianness and underlying CPU endianness.
335 */
flexcan_read_be(void __iomem * addr)336 static inline u32 flexcan_read_be(void __iomem *addr)
337 {
338 return ioread32be(addr);
339 }
340
flexcan_write_be(u32 val,void __iomem * addr)341 static inline void flexcan_write_be(u32 val, void __iomem *addr)
342 {
343 iowrite32be(val, addr);
344 }
345
flexcan_read_le(void __iomem * addr)346 static inline u32 flexcan_read_le(void __iomem *addr)
347 {
348 return ioread32(addr);
349 }
350
flexcan_write_le(u32 val,void __iomem * addr)351 static inline void flexcan_write_le(u32 val, void __iomem *addr)
352 {
353 iowrite32(val, addr);
354 }
355
flexcan_error_irq_enable(const struct flexcan_priv * priv)356 static inline void flexcan_error_irq_enable(const struct flexcan_priv *priv)
357 {
358 struct flexcan_regs __iomem *regs = priv->regs;
359 u32 reg_ctrl = (priv->reg_ctrl_default | FLEXCAN_CTRL_ERR_MSK);
360
361 priv->write(reg_ctrl, ®s->ctrl);
362 }
363
flexcan_error_irq_disable(const struct flexcan_priv * priv)364 static inline void flexcan_error_irq_disable(const struct flexcan_priv *priv)
365 {
366 struct flexcan_regs __iomem *regs = priv->regs;
367 u32 reg_ctrl = (priv->reg_ctrl_default & ~FLEXCAN_CTRL_ERR_MSK);
368
369 priv->write(reg_ctrl, ®s->ctrl);
370 }
371
flexcan_transceiver_enable(const struct flexcan_priv * priv)372 static inline int flexcan_transceiver_enable(const struct flexcan_priv *priv)
373 {
374 if (!priv->reg_xceiver)
375 return 0;
376
377 return regulator_enable(priv->reg_xceiver);
378 }
379
flexcan_transceiver_disable(const struct flexcan_priv * priv)380 static inline int flexcan_transceiver_disable(const struct flexcan_priv *priv)
381 {
382 if (!priv->reg_xceiver)
383 return 0;
384
385 return regulator_disable(priv->reg_xceiver);
386 }
387
flexcan_chip_enable(struct flexcan_priv * priv)388 static int flexcan_chip_enable(struct flexcan_priv *priv)
389 {
390 struct flexcan_regs __iomem *regs = priv->regs;
391 unsigned int timeout = FLEXCAN_TIMEOUT_US / 10;
392 u32 reg;
393
394 reg = priv->read(®s->mcr);
395 reg &= ~FLEXCAN_MCR_MDIS;
396 priv->write(reg, ®s->mcr);
397
398 while (timeout-- && (priv->read(®s->mcr) & FLEXCAN_MCR_LPM_ACK))
399 udelay(10);
400
401 if (priv->read(®s->mcr) & FLEXCAN_MCR_LPM_ACK)
402 return -ETIMEDOUT;
403
404 return 0;
405 }
406
flexcan_chip_disable(struct flexcan_priv * priv)407 static int flexcan_chip_disable(struct flexcan_priv *priv)
408 {
409 struct flexcan_regs __iomem *regs = priv->regs;
410 unsigned int timeout = FLEXCAN_TIMEOUT_US / 10;
411 u32 reg;
412
413 reg = priv->read(®s->mcr);
414 reg |= FLEXCAN_MCR_MDIS;
415 priv->write(reg, ®s->mcr);
416
417 while (timeout-- && !(priv->read(®s->mcr) & FLEXCAN_MCR_LPM_ACK))
418 udelay(10);
419
420 if (!(priv->read(®s->mcr) & FLEXCAN_MCR_LPM_ACK))
421 return -ETIMEDOUT;
422
423 return 0;
424 }
425
flexcan_chip_freeze(struct flexcan_priv * priv)426 static int flexcan_chip_freeze(struct flexcan_priv *priv)
427 {
428 struct flexcan_regs __iomem *regs = priv->regs;
429 unsigned int timeout = 1000 * 1000 * 10 / priv->can.bittiming.bitrate;
430 u32 reg;
431
432 reg = priv->read(®s->mcr);
433 reg |= FLEXCAN_MCR_HALT;
434 priv->write(reg, ®s->mcr);
435
436 while (timeout-- && !(priv->read(®s->mcr) & FLEXCAN_MCR_FRZ_ACK))
437 udelay(100);
438
439 if (!(priv->read(®s->mcr) & FLEXCAN_MCR_FRZ_ACK))
440 return -ETIMEDOUT;
441
442 return 0;
443 }
444
flexcan_chip_unfreeze(struct flexcan_priv * priv)445 static int flexcan_chip_unfreeze(struct flexcan_priv *priv)
446 {
447 struct flexcan_regs __iomem *regs = priv->regs;
448 unsigned int timeout = FLEXCAN_TIMEOUT_US / 10;
449 u32 reg;
450
451 reg = priv->read(®s->mcr);
452 reg &= ~FLEXCAN_MCR_HALT;
453 priv->write(reg, ®s->mcr);
454
455 while (timeout-- && (priv->read(®s->mcr) & FLEXCAN_MCR_FRZ_ACK))
456 udelay(10);
457
458 if (priv->read(®s->mcr) & FLEXCAN_MCR_FRZ_ACK)
459 return -ETIMEDOUT;
460
461 return 0;
462 }
463
flexcan_chip_softreset(struct flexcan_priv * priv)464 static int flexcan_chip_softreset(struct flexcan_priv *priv)
465 {
466 struct flexcan_regs __iomem *regs = priv->regs;
467 unsigned int timeout = FLEXCAN_TIMEOUT_US / 10;
468
469 priv->write(FLEXCAN_MCR_SOFTRST, ®s->mcr);
470 while (timeout-- && (priv->read(®s->mcr) & FLEXCAN_MCR_SOFTRST))
471 udelay(10);
472
473 if (priv->read(®s->mcr) & FLEXCAN_MCR_SOFTRST)
474 return -ETIMEDOUT;
475
476 return 0;
477 }
478
__flexcan_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)479 static int __flexcan_get_berr_counter(const struct net_device *dev,
480 struct can_berr_counter *bec)
481 {
482 const struct flexcan_priv *priv = netdev_priv(dev);
483 struct flexcan_regs __iomem *regs = priv->regs;
484 u32 reg = priv->read(®s->ecr);
485
486 bec->txerr = (reg >> 0) & 0xff;
487 bec->rxerr = (reg >> 8) & 0xff;
488
489 return 0;
490 }
491
flexcan_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)492 static int flexcan_get_berr_counter(const struct net_device *dev,
493 struct can_berr_counter *bec)
494 {
495 const struct flexcan_priv *priv = netdev_priv(dev);
496 int err;
497
498 err = clk_prepare_enable(priv->clk_ipg);
499 if (err)
500 return err;
501
502 err = clk_prepare_enable(priv->clk_per);
503 if (err)
504 goto out_disable_ipg;
505
506 err = __flexcan_get_berr_counter(dev, bec);
507
508 clk_disable_unprepare(priv->clk_per);
509 out_disable_ipg:
510 clk_disable_unprepare(priv->clk_ipg);
511
512 return err;
513 }
514
flexcan_start_xmit(struct sk_buff * skb,struct net_device * dev)515 static netdev_tx_t flexcan_start_xmit(struct sk_buff *skb, struct net_device *dev)
516 {
517 const struct flexcan_priv *priv = netdev_priv(dev);
518 struct can_frame *cf = (struct can_frame *)skb->data;
519 u32 can_id;
520 u32 data;
521 u32 ctrl = FLEXCAN_MB_CODE_TX_DATA | (cf->can_dlc << 16);
522
523 if (can_dropped_invalid_skb(dev, skb))
524 return NETDEV_TX_OK;
525
526 netif_stop_queue(dev);
527
528 if (cf->can_id & CAN_EFF_FLAG) {
529 can_id = cf->can_id & CAN_EFF_MASK;
530 ctrl |= FLEXCAN_MB_CNT_IDE | FLEXCAN_MB_CNT_SRR;
531 } else {
532 can_id = (cf->can_id & CAN_SFF_MASK) << 18;
533 }
534
535 if (cf->can_id & CAN_RTR_FLAG)
536 ctrl |= FLEXCAN_MB_CNT_RTR;
537
538 if (cf->can_dlc > 0) {
539 data = be32_to_cpup((__be32 *)&cf->data[0]);
540 priv->write(data, &priv->tx_mb->data[0]);
541 }
542 if (cf->can_dlc > 4) {
543 data = be32_to_cpup((__be32 *)&cf->data[4]);
544 priv->write(data, &priv->tx_mb->data[1]);
545 }
546
547 can_put_echo_skb(skb, dev, 0);
548
549 priv->write(can_id, &priv->tx_mb->can_id);
550 priv->write(ctrl, &priv->tx_mb->can_ctrl);
551
552 /* Errata ERR005829 step8:
553 * Write twice INACTIVE(0x8) code to first MB.
554 */
555 priv->write(FLEXCAN_MB_CODE_TX_INACTIVE,
556 &priv->tx_mb_reserved->can_ctrl);
557 priv->write(FLEXCAN_MB_CODE_TX_INACTIVE,
558 &priv->tx_mb_reserved->can_ctrl);
559
560 return NETDEV_TX_OK;
561 }
562
flexcan_irq_bus_err(struct net_device * dev,u32 reg_esr)563 static void flexcan_irq_bus_err(struct net_device *dev, u32 reg_esr)
564 {
565 struct flexcan_priv *priv = netdev_priv(dev);
566 struct sk_buff *skb;
567 struct can_frame *cf;
568 bool rx_errors = false, tx_errors = false;
569
570 skb = alloc_can_err_skb(dev, &cf);
571 if (unlikely(!skb))
572 return;
573
574 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
575
576 if (reg_esr & FLEXCAN_ESR_BIT1_ERR) {
577 netdev_dbg(dev, "BIT1_ERR irq\n");
578 cf->data[2] |= CAN_ERR_PROT_BIT1;
579 tx_errors = true;
580 }
581 if (reg_esr & FLEXCAN_ESR_BIT0_ERR) {
582 netdev_dbg(dev, "BIT0_ERR irq\n");
583 cf->data[2] |= CAN_ERR_PROT_BIT0;
584 tx_errors = true;
585 }
586 if (reg_esr & FLEXCAN_ESR_ACK_ERR) {
587 netdev_dbg(dev, "ACK_ERR irq\n");
588 cf->can_id |= CAN_ERR_ACK;
589 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
590 tx_errors = true;
591 }
592 if (reg_esr & FLEXCAN_ESR_CRC_ERR) {
593 netdev_dbg(dev, "CRC_ERR irq\n");
594 cf->data[2] |= CAN_ERR_PROT_BIT;
595 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
596 rx_errors = true;
597 }
598 if (reg_esr & FLEXCAN_ESR_FRM_ERR) {
599 netdev_dbg(dev, "FRM_ERR irq\n");
600 cf->data[2] |= CAN_ERR_PROT_FORM;
601 rx_errors = true;
602 }
603 if (reg_esr & FLEXCAN_ESR_STF_ERR) {
604 netdev_dbg(dev, "STF_ERR irq\n");
605 cf->data[2] |= CAN_ERR_PROT_STUFF;
606 rx_errors = true;
607 }
608
609 priv->can.can_stats.bus_error++;
610 if (rx_errors)
611 dev->stats.rx_errors++;
612 if (tx_errors)
613 dev->stats.tx_errors++;
614
615 can_rx_offload_irq_queue_err_skb(&priv->offload, skb);
616 }
617
flexcan_irq_state(struct net_device * dev,u32 reg_esr)618 static void flexcan_irq_state(struct net_device *dev, u32 reg_esr)
619 {
620 struct flexcan_priv *priv = netdev_priv(dev);
621 struct sk_buff *skb;
622 struct can_frame *cf;
623 enum can_state new_state, rx_state, tx_state;
624 int flt;
625 struct can_berr_counter bec;
626
627 flt = reg_esr & FLEXCAN_ESR_FLT_CONF_MASK;
628 if (likely(flt == FLEXCAN_ESR_FLT_CONF_ACTIVE)) {
629 tx_state = unlikely(reg_esr & FLEXCAN_ESR_TX_WRN) ?
630 CAN_STATE_ERROR_WARNING : CAN_STATE_ERROR_ACTIVE;
631 rx_state = unlikely(reg_esr & FLEXCAN_ESR_RX_WRN) ?
632 CAN_STATE_ERROR_WARNING : CAN_STATE_ERROR_ACTIVE;
633 new_state = max(tx_state, rx_state);
634 } else {
635 __flexcan_get_berr_counter(dev, &bec);
636 new_state = flt == FLEXCAN_ESR_FLT_CONF_PASSIVE ?
637 CAN_STATE_ERROR_PASSIVE : CAN_STATE_BUS_OFF;
638 rx_state = bec.rxerr >= bec.txerr ? new_state : 0;
639 tx_state = bec.rxerr <= bec.txerr ? new_state : 0;
640 }
641
642 /* state hasn't changed */
643 if (likely(new_state == priv->can.state))
644 return;
645
646 skb = alloc_can_err_skb(dev, &cf);
647 if (unlikely(!skb))
648 return;
649
650 can_change_state(dev, cf, tx_state, rx_state);
651
652 if (unlikely(new_state == CAN_STATE_BUS_OFF))
653 can_bus_off(dev);
654
655 can_rx_offload_irq_queue_err_skb(&priv->offload, skb);
656 }
657
rx_offload_to_priv(struct can_rx_offload * offload)658 static inline struct flexcan_priv *rx_offload_to_priv(struct can_rx_offload *offload)
659 {
660 return container_of(offload, struct flexcan_priv, offload);
661 }
662
flexcan_mailbox_read(struct can_rx_offload * offload,struct can_frame * cf,u32 * timestamp,unsigned int n)663 static unsigned int flexcan_mailbox_read(struct can_rx_offload *offload,
664 struct can_frame *cf,
665 u32 *timestamp, unsigned int n)
666 {
667 struct flexcan_priv *priv = rx_offload_to_priv(offload);
668 struct flexcan_regs __iomem *regs = priv->regs;
669 struct flexcan_mb __iomem *mb = ®s->mb[n];
670 u32 reg_ctrl, reg_id, reg_iflag1;
671
672 if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) {
673 u32 code;
674
675 do {
676 reg_ctrl = priv->read(&mb->can_ctrl);
677 } while (reg_ctrl & FLEXCAN_MB_CODE_RX_BUSY_BIT);
678
679 /* is this MB empty? */
680 code = reg_ctrl & FLEXCAN_MB_CODE_MASK;
681 if ((code != FLEXCAN_MB_CODE_RX_FULL) &&
682 (code != FLEXCAN_MB_CODE_RX_OVERRUN))
683 return 0;
684
685 if (code == FLEXCAN_MB_CODE_RX_OVERRUN) {
686 /* This MB was overrun, we lost data */
687 offload->dev->stats.rx_over_errors++;
688 offload->dev->stats.rx_errors++;
689 }
690 } else {
691 reg_iflag1 = priv->read(®s->iflag1);
692 if (!(reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_AVAILABLE))
693 return 0;
694
695 reg_ctrl = priv->read(&mb->can_ctrl);
696 }
697
698 /* increase timstamp to full 32 bit */
699 *timestamp = reg_ctrl << 16;
700
701 reg_id = priv->read(&mb->can_id);
702 if (reg_ctrl & FLEXCAN_MB_CNT_IDE)
703 cf->can_id = ((reg_id >> 0) & CAN_EFF_MASK) | CAN_EFF_FLAG;
704 else
705 cf->can_id = (reg_id >> 18) & CAN_SFF_MASK;
706
707 if (reg_ctrl & FLEXCAN_MB_CNT_RTR)
708 cf->can_id |= CAN_RTR_FLAG;
709 cf->can_dlc = get_can_dlc((reg_ctrl >> 16) & 0xf);
710
711 *(__be32 *)(cf->data + 0) = cpu_to_be32(priv->read(&mb->data[0]));
712 *(__be32 *)(cf->data + 4) = cpu_to_be32(priv->read(&mb->data[1]));
713
714 /* mark as read */
715 if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) {
716 /* Clear IRQ */
717 if (n < 32)
718 priv->write(BIT(n), ®s->iflag1);
719 else
720 priv->write(BIT(n - 32), ®s->iflag2);
721 } else {
722 priv->write(FLEXCAN_IFLAG_RX_FIFO_AVAILABLE, ®s->iflag1);
723 priv->read(®s->timer);
724 }
725
726 return 1;
727 }
728
729
flexcan_read_reg_iflag_rx(struct flexcan_priv * priv)730 static inline u64 flexcan_read_reg_iflag_rx(struct flexcan_priv *priv)
731 {
732 struct flexcan_regs __iomem *regs = priv->regs;
733 u32 iflag1, iflag2;
734
735 iflag2 = priv->read(®s->iflag2) & priv->reg_imask2_default;
736 iflag1 = priv->read(®s->iflag1) & priv->reg_imask1_default &
737 ~FLEXCAN_IFLAG_MB(priv->tx_mb_idx);
738
739 return (u64)iflag2 << 32 | iflag1;
740 }
741
flexcan_irq(int irq,void * dev_id)742 static irqreturn_t flexcan_irq(int irq, void *dev_id)
743 {
744 struct net_device *dev = dev_id;
745 struct net_device_stats *stats = &dev->stats;
746 struct flexcan_priv *priv = netdev_priv(dev);
747 struct flexcan_regs __iomem *regs = priv->regs;
748 irqreturn_t handled = IRQ_NONE;
749 u32 reg_iflag1, reg_esr;
750 enum can_state last_state = priv->can.state;
751
752 reg_iflag1 = priv->read(®s->iflag1);
753
754 /* reception interrupt */
755 if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) {
756 u64 reg_iflag;
757 int ret;
758
759 while ((reg_iflag = flexcan_read_reg_iflag_rx(priv))) {
760 handled = IRQ_HANDLED;
761 ret = can_rx_offload_irq_offload_timestamp(&priv->offload,
762 reg_iflag);
763 if (!ret)
764 break;
765 }
766 } else {
767 if (reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_AVAILABLE) {
768 handled = IRQ_HANDLED;
769 can_rx_offload_irq_offload_fifo(&priv->offload);
770 }
771
772 /* FIFO overflow interrupt */
773 if (reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_OVERFLOW) {
774 handled = IRQ_HANDLED;
775 priv->write(FLEXCAN_IFLAG_RX_FIFO_OVERFLOW,
776 ®s->iflag1);
777 dev->stats.rx_over_errors++;
778 dev->stats.rx_errors++;
779 }
780 }
781
782 /* transmission complete interrupt */
783 if (reg_iflag1 & FLEXCAN_IFLAG_MB(priv->tx_mb_idx)) {
784 handled = IRQ_HANDLED;
785 stats->tx_bytes += can_get_echo_skb(dev, 0);
786 stats->tx_packets++;
787 can_led_event(dev, CAN_LED_EVENT_TX);
788
789 /* after sending a RTR frame MB is in RX mode */
790 priv->write(FLEXCAN_MB_CODE_TX_INACTIVE,
791 &priv->tx_mb->can_ctrl);
792 priv->write(FLEXCAN_IFLAG_MB(priv->tx_mb_idx), ®s->iflag1);
793 netif_wake_queue(dev);
794 }
795
796 reg_esr = priv->read(®s->esr);
797
798 /* ACK all bus error and state change IRQ sources */
799 if (reg_esr & FLEXCAN_ESR_ALL_INT) {
800 handled = IRQ_HANDLED;
801 priv->write(reg_esr & FLEXCAN_ESR_ALL_INT, ®s->esr);
802 }
803
804 /* state change interrupt or broken error state quirk fix is enabled */
805 if ((reg_esr & FLEXCAN_ESR_ERR_STATE) ||
806 (priv->devtype_data->quirks & (FLEXCAN_QUIRK_BROKEN_WERR_STATE |
807 FLEXCAN_QUIRK_BROKEN_PERR_STATE)))
808 flexcan_irq_state(dev, reg_esr);
809
810 /* bus error IRQ - handle if bus error reporting is activated */
811 if ((reg_esr & FLEXCAN_ESR_ERR_BUS) &&
812 (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
813 flexcan_irq_bus_err(dev, reg_esr);
814
815 /* availability of error interrupt among state transitions in case
816 * bus error reporting is de-activated and
817 * FLEXCAN_QUIRK_BROKEN_PERR_STATE is enabled:
818 * +--------------------------------------------------------------+
819 * | +----------------------------------------------+ [stopped / |
820 * | | | sleeping] -+
821 * +-+-> active <-> warning <-> passive -> bus off -+
822 * ___________^^^^^^^^^^^^_______________________________
823 * disabled(1) enabled disabled
824 *
825 * (1): enabled if FLEXCAN_QUIRK_BROKEN_WERR_STATE is enabled
826 */
827 if ((last_state != priv->can.state) &&
828 (priv->devtype_data->quirks & FLEXCAN_QUIRK_BROKEN_PERR_STATE) &&
829 !(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) {
830 switch (priv->can.state) {
831 case CAN_STATE_ERROR_ACTIVE:
832 if (priv->devtype_data->quirks &
833 FLEXCAN_QUIRK_BROKEN_WERR_STATE)
834 flexcan_error_irq_enable(priv);
835 else
836 flexcan_error_irq_disable(priv);
837 break;
838
839 case CAN_STATE_ERROR_WARNING:
840 flexcan_error_irq_enable(priv);
841 break;
842
843 case CAN_STATE_ERROR_PASSIVE:
844 case CAN_STATE_BUS_OFF:
845 flexcan_error_irq_disable(priv);
846 break;
847
848 default:
849 break;
850 }
851 }
852
853 return handled;
854 }
855
flexcan_set_bittiming(struct net_device * dev)856 static void flexcan_set_bittiming(struct net_device *dev)
857 {
858 const struct flexcan_priv *priv = netdev_priv(dev);
859 const struct can_bittiming *bt = &priv->can.bittiming;
860 struct flexcan_regs __iomem *regs = priv->regs;
861 u32 reg;
862
863 reg = priv->read(®s->ctrl);
864 reg &= ~(FLEXCAN_CTRL_PRESDIV(0xff) |
865 FLEXCAN_CTRL_RJW(0x3) |
866 FLEXCAN_CTRL_PSEG1(0x7) |
867 FLEXCAN_CTRL_PSEG2(0x7) |
868 FLEXCAN_CTRL_PROPSEG(0x7) |
869 FLEXCAN_CTRL_LPB |
870 FLEXCAN_CTRL_SMP |
871 FLEXCAN_CTRL_LOM);
872
873 reg |= FLEXCAN_CTRL_PRESDIV(bt->brp - 1) |
874 FLEXCAN_CTRL_PSEG1(bt->phase_seg1 - 1) |
875 FLEXCAN_CTRL_PSEG2(bt->phase_seg2 - 1) |
876 FLEXCAN_CTRL_RJW(bt->sjw - 1) |
877 FLEXCAN_CTRL_PROPSEG(bt->prop_seg - 1);
878
879 if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
880 reg |= FLEXCAN_CTRL_LPB;
881 if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
882 reg |= FLEXCAN_CTRL_LOM;
883 if (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
884 reg |= FLEXCAN_CTRL_SMP;
885
886 netdev_dbg(dev, "writing ctrl=0x%08x\n", reg);
887 priv->write(reg, ®s->ctrl);
888
889 /* print chip status */
890 netdev_dbg(dev, "%s: mcr=0x%08x ctrl=0x%08x\n", __func__,
891 priv->read(®s->mcr), priv->read(®s->ctrl));
892 }
893
894 /* flexcan_chip_start
895 *
896 * this functions is entered with clocks enabled
897 *
898 */
flexcan_chip_start(struct net_device * dev)899 static int flexcan_chip_start(struct net_device *dev)
900 {
901 struct flexcan_priv *priv = netdev_priv(dev);
902 struct flexcan_regs __iomem *regs = priv->regs;
903 u32 reg_mcr, reg_ctrl, reg_ctrl2, reg_mecr;
904 int err, i;
905
906 /* enable module */
907 err = flexcan_chip_enable(priv);
908 if (err)
909 return err;
910
911 /* soft reset */
912 err = flexcan_chip_softreset(priv);
913 if (err)
914 goto out_chip_disable;
915
916 flexcan_set_bittiming(dev);
917
918 /* MCR
919 *
920 * enable freeze
921 * enable fifo
922 * halt now
923 * only supervisor access
924 * enable warning int
925 * disable local echo
926 * enable individual RX masking
927 * choose format C
928 * set max mailbox number
929 */
930 reg_mcr = priv->read(®s->mcr);
931 reg_mcr &= ~FLEXCAN_MCR_MAXMB(0xff);
932 reg_mcr |= FLEXCAN_MCR_FRZ | FLEXCAN_MCR_HALT | FLEXCAN_MCR_SUPV |
933 FLEXCAN_MCR_WRN_EN | FLEXCAN_MCR_SRX_DIS | FLEXCAN_MCR_IRMQ |
934 FLEXCAN_MCR_IDAM_C;
935
936 if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) {
937 reg_mcr &= ~FLEXCAN_MCR_FEN;
938 reg_mcr |= FLEXCAN_MCR_MAXMB(priv->offload.mb_last);
939 } else {
940 reg_mcr |= FLEXCAN_MCR_FEN |
941 FLEXCAN_MCR_MAXMB(priv->tx_mb_idx);
942 }
943 netdev_dbg(dev, "%s: writing mcr=0x%08x", __func__, reg_mcr);
944 priv->write(reg_mcr, ®s->mcr);
945
946 /* CTRL
947 *
948 * disable timer sync feature
949 *
950 * disable auto busoff recovery
951 * transmit lowest buffer first
952 *
953 * enable tx and rx warning interrupt
954 * enable bus off interrupt
955 * (== FLEXCAN_CTRL_ERR_STATE)
956 */
957 reg_ctrl = priv->read(®s->ctrl);
958 reg_ctrl &= ~FLEXCAN_CTRL_TSYN;
959 reg_ctrl |= FLEXCAN_CTRL_BOFF_REC | FLEXCAN_CTRL_LBUF |
960 FLEXCAN_CTRL_ERR_STATE;
961
962 /* enable the "error interrupt" (FLEXCAN_CTRL_ERR_MSK),
963 * on most Flexcan cores, too. Otherwise we don't get
964 * any error warning or passive interrupts.
965 */
966 if (priv->devtype_data->quirks & FLEXCAN_QUIRK_BROKEN_WERR_STATE ||
967 priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
968 reg_ctrl |= FLEXCAN_CTRL_ERR_MSK;
969 else
970 reg_ctrl &= ~FLEXCAN_CTRL_ERR_MSK;
971
972 /* save for later use */
973 priv->reg_ctrl_default = reg_ctrl;
974 /* leave interrupts disabled for now */
975 reg_ctrl &= ~FLEXCAN_CTRL_ERR_ALL;
976 netdev_dbg(dev, "%s: writing ctrl=0x%08x", __func__, reg_ctrl);
977 priv->write(reg_ctrl, ®s->ctrl);
978
979 if ((priv->devtype_data->quirks & FLEXCAN_QUIRK_ENABLE_EACEN_RRS)) {
980 reg_ctrl2 = priv->read(®s->ctrl2);
981 reg_ctrl2 |= FLEXCAN_CTRL2_EACEN | FLEXCAN_CTRL2_RRS;
982 priv->write(reg_ctrl2, ®s->ctrl2);
983 }
984
985 /* clear and invalidate all mailboxes first */
986 for (i = priv->tx_mb_idx; i < ARRAY_SIZE(regs->mb); i++) {
987 priv->write(FLEXCAN_MB_CODE_RX_INACTIVE,
988 ®s->mb[i].can_ctrl);
989 }
990
991 if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) {
992 for (i = priv->offload.mb_first; i <= priv->offload.mb_last; i++)
993 priv->write(FLEXCAN_MB_CODE_RX_EMPTY,
994 ®s->mb[i].can_ctrl);
995 }
996
997 /* Errata ERR005829: mark first TX mailbox as INACTIVE */
998 priv->write(FLEXCAN_MB_CODE_TX_INACTIVE,
999 &priv->tx_mb_reserved->can_ctrl);
1000
1001 /* mark TX mailbox as INACTIVE */
1002 priv->write(FLEXCAN_MB_CODE_TX_INACTIVE,
1003 &priv->tx_mb->can_ctrl);
1004
1005 /* acceptance mask/acceptance code (accept everything) */
1006 priv->write(0x0, ®s->rxgmask);
1007 priv->write(0x0, ®s->rx14mask);
1008 priv->write(0x0, ®s->rx15mask);
1009
1010 if (priv->devtype_data->quirks & FLEXCAN_QUIRK_DISABLE_RXFG)
1011 priv->write(0x0, ®s->rxfgmask);
1012
1013 /* clear acceptance filters */
1014 for (i = 0; i < ARRAY_SIZE(regs->mb); i++)
1015 priv->write(0, ®s->rximr[i]);
1016
1017 /* On Vybrid, disable memory error detection interrupts
1018 * and freeze mode.
1019 * This also works around errata e5295 which generates
1020 * false positive memory errors and put the device in
1021 * freeze mode.
1022 */
1023 if (priv->devtype_data->quirks & FLEXCAN_QUIRK_DISABLE_MECR) {
1024 /* Follow the protocol as described in "Detection
1025 * and Correction of Memory Errors" to write to
1026 * MECR register
1027 */
1028 reg_ctrl2 = priv->read(®s->ctrl2);
1029 reg_ctrl2 |= FLEXCAN_CTRL2_ECRWRE;
1030 priv->write(reg_ctrl2, ®s->ctrl2);
1031
1032 reg_mecr = priv->read(®s->mecr);
1033 reg_mecr &= ~FLEXCAN_MECR_ECRWRDIS;
1034 priv->write(reg_mecr, ®s->mecr);
1035 reg_mecr &= ~(FLEXCAN_MECR_NCEFAFRZ | FLEXCAN_MECR_HANCEI_MSK |
1036 FLEXCAN_MECR_FANCEI_MSK);
1037 priv->write(reg_mecr, ®s->mecr);
1038 }
1039
1040 err = flexcan_transceiver_enable(priv);
1041 if (err)
1042 goto out_chip_disable;
1043
1044 /* synchronize with the can bus */
1045 err = flexcan_chip_unfreeze(priv);
1046 if (err)
1047 goto out_transceiver_disable;
1048
1049 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1050
1051 /* enable interrupts atomically */
1052 disable_irq(dev->irq);
1053 priv->write(priv->reg_ctrl_default, ®s->ctrl);
1054 priv->write(priv->reg_imask1_default, ®s->imask1);
1055 priv->write(priv->reg_imask2_default, ®s->imask2);
1056 enable_irq(dev->irq);
1057
1058 /* print chip status */
1059 netdev_dbg(dev, "%s: reading mcr=0x%08x ctrl=0x%08x\n", __func__,
1060 priv->read(®s->mcr), priv->read(®s->ctrl));
1061
1062 return 0;
1063
1064 out_transceiver_disable:
1065 flexcan_transceiver_disable(priv);
1066 out_chip_disable:
1067 flexcan_chip_disable(priv);
1068 return err;
1069 }
1070
1071 /* flexcan_chip_stop
1072 *
1073 * this functions is entered with clocks enabled
1074 */
flexcan_chip_stop(struct net_device * dev)1075 static void flexcan_chip_stop(struct net_device *dev)
1076 {
1077 struct flexcan_priv *priv = netdev_priv(dev);
1078 struct flexcan_regs __iomem *regs = priv->regs;
1079
1080 /* freeze + disable module */
1081 flexcan_chip_freeze(priv);
1082 flexcan_chip_disable(priv);
1083
1084 /* Disable all interrupts */
1085 priv->write(0, ®s->imask2);
1086 priv->write(0, ®s->imask1);
1087 priv->write(priv->reg_ctrl_default & ~FLEXCAN_CTRL_ERR_ALL,
1088 ®s->ctrl);
1089
1090 flexcan_transceiver_disable(priv);
1091 priv->can.state = CAN_STATE_STOPPED;
1092 }
1093
flexcan_open(struct net_device * dev)1094 static int flexcan_open(struct net_device *dev)
1095 {
1096 struct flexcan_priv *priv = netdev_priv(dev);
1097 int err;
1098
1099 err = clk_prepare_enable(priv->clk_ipg);
1100 if (err)
1101 return err;
1102
1103 err = clk_prepare_enable(priv->clk_per);
1104 if (err)
1105 goto out_disable_ipg;
1106
1107 err = open_candev(dev);
1108 if (err)
1109 goto out_disable_per;
1110
1111 err = request_irq(dev->irq, flexcan_irq, IRQF_SHARED, dev->name, dev);
1112 if (err)
1113 goto out_close;
1114
1115 /* start chip and queuing */
1116 err = flexcan_chip_start(dev);
1117 if (err)
1118 goto out_free_irq;
1119
1120 can_led_event(dev, CAN_LED_EVENT_OPEN);
1121
1122 can_rx_offload_enable(&priv->offload);
1123 netif_start_queue(dev);
1124
1125 return 0;
1126
1127 out_free_irq:
1128 free_irq(dev->irq, dev);
1129 out_close:
1130 close_candev(dev);
1131 out_disable_per:
1132 clk_disable_unprepare(priv->clk_per);
1133 out_disable_ipg:
1134 clk_disable_unprepare(priv->clk_ipg);
1135
1136 return err;
1137 }
1138
flexcan_close(struct net_device * dev)1139 static int flexcan_close(struct net_device *dev)
1140 {
1141 struct flexcan_priv *priv = netdev_priv(dev);
1142
1143 netif_stop_queue(dev);
1144 can_rx_offload_disable(&priv->offload);
1145 flexcan_chip_stop(dev);
1146
1147 free_irq(dev->irq, dev);
1148 clk_disable_unprepare(priv->clk_per);
1149 clk_disable_unprepare(priv->clk_ipg);
1150
1151 close_candev(dev);
1152
1153 can_led_event(dev, CAN_LED_EVENT_STOP);
1154
1155 return 0;
1156 }
1157
flexcan_set_mode(struct net_device * dev,enum can_mode mode)1158 static int flexcan_set_mode(struct net_device *dev, enum can_mode mode)
1159 {
1160 int err;
1161
1162 switch (mode) {
1163 case CAN_MODE_START:
1164 err = flexcan_chip_start(dev);
1165 if (err)
1166 return err;
1167
1168 netif_wake_queue(dev);
1169 break;
1170
1171 default:
1172 return -EOPNOTSUPP;
1173 }
1174
1175 return 0;
1176 }
1177
1178 static const struct net_device_ops flexcan_netdev_ops = {
1179 .ndo_open = flexcan_open,
1180 .ndo_stop = flexcan_close,
1181 .ndo_start_xmit = flexcan_start_xmit,
1182 .ndo_change_mtu = can_change_mtu,
1183 };
1184
register_flexcandev(struct net_device * dev)1185 static int register_flexcandev(struct net_device *dev)
1186 {
1187 struct flexcan_priv *priv = netdev_priv(dev);
1188 struct flexcan_regs __iomem *regs = priv->regs;
1189 u32 reg, err;
1190
1191 err = clk_prepare_enable(priv->clk_ipg);
1192 if (err)
1193 return err;
1194
1195 err = clk_prepare_enable(priv->clk_per);
1196 if (err)
1197 goto out_disable_ipg;
1198
1199 /* select "bus clock", chip must be disabled */
1200 err = flexcan_chip_disable(priv);
1201 if (err)
1202 goto out_disable_per;
1203 reg = priv->read(®s->ctrl);
1204 reg |= FLEXCAN_CTRL_CLK_SRC;
1205 priv->write(reg, ®s->ctrl);
1206
1207 err = flexcan_chip_enable(priv);
1208 if (err)
1209 goto out_chip_disable;
1210
1211 /* set freeze, halt and activate FIFO, restrict register access */
1212 reg = priv->read(®s->mcr);
1213 reg |= FLEXCAN_MCR_FRZ | FLEXCAN_MCR_HALT |
1214 FLEXCAN_MCR_FEN | FLEXCAN_MCR_SUPV;
1215 priv->write(reg, ®s->mcr);
1216
1217 /* Currently we only support newer versions of this core
1218 * featuring a RX hardware FIFO (although this driver doesn't
1219 * make use of it on some cores). Older cores, found on some
1220 * Coldfire derivates are not tested.
1221 */
1222 reg = priv->read(®s->mcr);
1223 if (!(reg & FLEXCAN_MCR_FEN)) {
1224 netdev_err(dev, "Could not enable RX FIFO, unsupported core\n");
1225 err = -ENODEV;
1226 goto out_chip_disable;
1227 }
1228
1229 err = register_candev(dev);
1230
1231 /* disable core and turn off clocks */
1232 out_chip_disable:
1233 flexcan_chip_disable(priv);
1234 out_disable_per:
1235 clk_disable_unprepare(priv->clk_per);
1236 out_disable_ipg:
1237 clk_disable_unprepare(priv->clk_ipg);
1238
1239 return err;
1240 }
1241
unregister_flexcandev(struct net_device * dev)1242 static void unregister_flexcandev(struct net_device *dev)
1243 {
1244 unregister_candev(dev);
1245 }
1246
1247 static const struct of_device_id flexcan_of_match[] = {
1248 { .compatible = "fsl,imx6q-flexcan", .data = &fsl_imx6q_devtype_data, },
1249 { .compatible = "fsl,imx28-flexcan", .data = &fsl_imx28_devtype_data, },
1250 { .compatible = "fsl,imx53-flexcan", .data = &fsl_imx25_devtype_data, },
1251 { .compatible = "fsl,imx35-flexcan", .data = &fsl_imx25_devtype_data, },
1252 { .compatible = "fsl,imx25-flexcan", .data = &fsl_imx25_devtype_data, },
1253 { .compatible = "fsl,p1010-flexcan", .data = &fsl_p1010_devtype_data, },
1254 { .compatible = "fsl,vf610-flexcan", .data = &fsl_vf610_devtype_data, },
1255 { .compatible = "fsl,ls1021ar2-flexcan", .data = &fsl_ls1021a_r2_devtype_data, },
1256 { /* sentinel */ },
1257 };
1258 MODULE_DEVICE_TABLE(of, flexcan_of_match);
1259
1260 static const struct platform_device_id flexcan_id_table[] = {
1261 { .name = "flexcan", .driver_data = (kernel_ulong_t)&fsl_p1010_devtype_data, },
1262 { /* sentinel */ },
1263 };
1264 MODULE_DEVICE_TABLE(platform, flexcan_id_table);
1265
flexcan_probe(struct platform_device * pdev)1266 static int flexcan_probe(struct platform_device *pdev)
1267 {
1268 const struct of_device_id *of_id;
1269 const struct flexcan_devtype_data *devtype_data;
1270 struct net_device *dev;
1271 struct flexcan_priv *priv;
1272 struct regulator *reg_xceiver;
1273 struct resource *mem;
1274 struct clk *clk_ipg = NULL, *clk_per = NULL;
1275 struct flexcan_regs __iomem *regs;
1276 int err, irq;
1277 u32 clock_freq = 0;
1278
1279 reg_xceiver = devm_regulator_get(&pdev->dev, "xceiver");
1280 if (PTR_ERR(reg_xceiver) == -EPROBE_DEFER)
1281 return -EPROBE_DEFER;
1282 else if (IS_ERR(reg_xceiver))
1283 reg_xceiver = NULL;
1284
1285 if (pdev->dev.of_node)
1286 of_property_read_u32(pdev->dev.of_node,
1287 "clock-frequency", &clock_freq);
1288
1289 if (!clock_freq) {
1290 clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1291 if (IS_ERR(clk_ipg)) {
1292 dev_err(&pdev->dev, "no ipg clock defined\n");
1293 return PTR_ERR(clk_ipg);
1294 }
1295
1296 clk_per = devm_clk_get(&pdev->dev, "per");
1297 if (IS_ERR(clk_per)) {
1298 dev_err(&pdev->dev, "no per clock defined\n");
1299 return PTR_ERR(clk_per);
1300 }
1301 clock_freq = clk_get_rate(clk_per);
1302 }
1303
1304 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1305 irq = platform_get_irq(pdev, 0);
1306 if (irq <= 0)
1307 return -ENODEV;
1308
1309 regs = devm_ioremap_resource(&pdev->dev, mem);
1310 if (IS_ERR(regs))
1311 return PTR_ERR(regs);
1312
1313 of_id = of_match_device(flexcan_of_match, &pdev->dev);
1314 if (of_id) {
1315 devtype_data = of_id->data;
1316 } else if (platform_get_device_id(pdev)->driver_data) {
1317 devtype_data = (struct flexcan_devtype_data *)
1318 platform_get_device_id(pdev)->driver_data;
1319 } else {
1320 return -ENODEV;
1321 }
1322
1323 dev = alloc_candev(sizeof(struct flexcan_priv), 1);
1324 if (!dev)
1325 return -ENOMEM;
1326
1327 platform_set_drvdata(pdev, dev);
1328 SET_NETDEV_DEV(dev, &pdev->dev);
1329
1330 dev->netdev_ops = &flexcan_netdev_ops;
1331 dev->irq = irq;
1332 dev->flags |= IFF_ECHO;
1333
1334 priv = netdev_priv(dev);
1335
1336 if (of_property_read_bool(pdev->dev.of_node, "big-endian") ||
1337 devtype_data->quirks & FLEXCAN_QUIRK_DEFAULT_BIG_ENDIAN) {
1338 priv->read = flexcan_read_be;
1339 priv->write = flexcan_write_be;
1340 } else {
1341 priv->read = flexcan_read_le;
1342 priv->write = flexcan_write_le;
1343 }
1344
1345 priv->can.clock.freq = clock_freq;
1346 priv->can.bittiming_const = &flexcan_bittiming_const;
1347 priv->can.do_set_mode = flexcan_set_mode;
1348 priv->can.do_get_berr_counter = flexcan_get_berr_counter;
1349 priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1350 CAN_CTRLMODE_LISTENONLY | CAN_CTRLMODE_3_SAMPLES |
1351 CAN_CTRLMODE_BERR_REPORTING;
1352 priv->regs = regs;
1353 priv->clk_ipg = clk_ipg;
1354 priv->clk_per = clk_per;
1355 priv->devtype_data = devtype_data;
1356 priv->reg_xceiver = reg_xceiver;
1357
1358 if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) {
1359 priv->tx_mb_idx = FLEXCAN_TX_MB_OFF_TIMESTAMP;
1360 priv->tx_mb_reserved = ®s->mb[FLEXCAN_TX_MB_RESERVED_OFF_TIMESTAMP];
1361 } else {
1362 priv->tx_mb_idx = FLEXCAN_TX_MB_OFF_FIFO;
1363 priv->tx_mb_reserved = ®s->mb[FLEXCAN_TX_MB_RESERVED_OFF_FIFO];
1364 }
1365 priv->tx_mb = ®s->mb[priv->tx_mb_idx];
1366
1367 priv->reg_imask1_default = FLEXCAN_IFLAG_MB(priv->tx_mb_idx);
1368 priv->reg_imask2_default = 0;
1369
1370 priv->offload.mailbox_read = flexcan_mailbox_read;
1371
1372 if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) {
1373 u64 imask;
1374
1375 priv->offload.mb_first = FLEXCAN_RX_MB_OFF_TIMESTAMP_FIRST;
1376 priv->offload.mb_last = FLEXCAN_RX_MB_OFF_TIMESTAMP_LAST;
1377
1378 imask = GENMASK_ULL(priv->offload.mb_last, priv->offload.mb_first);
1379 priv->reg_imask1_default |= imask;
1380 priv->reg_imask2_default |= imask >> 32;
1381
1382 err = can_rx_offload_add_timestamp(dev, &priv->offload);
1383 } else {
1384 priv->reg_imask1_default |= FLEXCAN_IFLAG_RX_FIFO_OVERFLOW |
1385 FLEXCAN_IFLAG_RX_FIFO_AVAILABLE;
1386 err = can_rx_offload_add_fifo(dev, &priv->offload, FLEXCAN_NAPI_WEIGHT);
1387 }
1388 if (err)
1389 goto failed_offload;
1390
1391 err = register_flexcandev(dev);
1392 if (err) {
1393 dev_err(&pdev->dev, "registering netdev failed\n");
1394 goto failed_register;
1395 }
1396
1397 devm_can_led_init(dev);
1398
1399 dev_info(&pdev->dev, "device registered (reg_base=%p, irq=%d)\n",
1400 priv->regs, dev->irq);
1401
1402 return 0;
1403
1404 failed_offload:
1405 failed_register:
1406 free_candev(dev);
1407 return err;
1408 }
1409
flexcan_remove(struct platform_device * pdev)1410 static int flexcan_remove(struct platform_device *pdev)
1411 {
1412 struct net_device *dev = platform_get_drvdata(pdev);
1413 struct flexcan_priv *priv = netdev_priv(dev);
1414
1415 unregister_flexcandev(dev);
1416 can_rx_offload_del(&priv->offload);
1417 free_candev(dev);
1418
1419 return 0;
1420 }
1421
flexcan_suspend(struct device * device)1422 static int __maybe_unused flexcan_suspend(struct device *device)
1423 {
1424 struct net_device *dev = dev_get_drvdata(device);
1425 struct flexcan_priv *priv = netdev_priv(dev);
1426 int err;
1427
1428 if (netif_running(dev)) {
1429 err = flexcan_chip_disable(priv);
1430 if (err)
1431 return err;
1432 netif_stop_queue(dev);
1433 netif_device_detach(dev);
1434 }
1435 priv->can.state = CAN_STATE_SLEEPING;
1436
1437 return 0;
1438 }
1439
flexcan_resume(struct device * device)1440 static int __maybe_unused flexcan_resume(struct device *device)
1441 {
1442 struct net_device *dev = dev_get_drvdata(device);
1443 struct flexcan_priv *priv = netdev_priv(dev);
1444 int err;
1445
1446 priv->can.state = CAN_STATE_ERROR_ACTIVE;
1447 if (netif_running(dev)) {
1448 netif_device_attach(dev);
1449 netif_start_queue(dev);
1450 err = flexcan_chip_enable(priv);
1451 if (err)
1452 return err;
1453 }
1454 return 0;
1455 }
1456
1457 static SIMPLE_DEV_PM_OPS(flexcan_pm_ops, flexcan_suspend, flexcan_resume);
1458
1459 static struct platform_driver flexcan_driver = {
1460 .driver = {
1461 .name = DRV_NAME,
1462 .pm = &flexcan_pm_ops,
1463 .of_match_table = flexcan_of_match,
1464 },
1465 .probe = flexcan_probe,
1466 .remove = flexcan_remove,
1467 .id_table = flexcan_id_table,
1468 };
1469
1470 module_platform_driver(flexcan_driver);
1471
1472 MODULE_AUTHOR("Sascha Hauer <kernel@pengutronix.de>, "
1473 "Marc Kleine-Budde <kernel@pengutronix.de>");
1474 MODULE_LICENSE("GPL v2");
1475 MODULE_DESCRIPTION("CAN port driver for flexcan based chip");
1476