1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright 2019 Google LLC
4   */
5  
6  /*
7   * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
8   */
9  
10  #define pr_fmt(fmt) "blk-crypto-fallback: " fmt
11  
12  #include <crypto/skcipher.h>
13  #include <linux/blk-crypto.h>
14  #include <linux/blk-crypto-profile.h>
15  #include <linux/blkdev.h>
16  #include <linux/crypto.h>
17  #include <linux/mempool.h>
18  #include <linux/module.h>
19  #include <linux/random.h>
20  #include <linux/scatterlist.h>
21  
22  #include "blk-cgroup.h"
23  #include "blk-crypto-internal.h"
24  
25  static unsigned int num_prealloc_bounce_pg = 32;
26  module_param(num_prealloc_bounce_pg, uint, 0);
27  MODULE_PARM_DESC(num_prealloc_bounce_pg,
28  		 "Number of preallocated bounce pages for the blk-crypto crypto API fallback");
29  
30  static unsigned int blk_crypto_num_keyslots = 100;
31  module_param_named(num_keyslots, blk_crypto_num_keyslots, uint, 0);
32  MODULE_PARM_DESC(num_keyslots,
33  		 "Number of keyslots for the blk-crypto crypto API fallback");
34  
35  static unsigned int num_prealloc_fallback_crypt_ctxs = 128;
36  module_param(num_prealloc_fallback_crypt_ctxs, uint, 0);
37  MODULE_PARM_DESC(num_prealloc_crypt_fallback_ctxs,
38  		 "Number of preallocated bio fallback crypto contexts for blk-crypto to use during crypto API fallback");
39  
40  struct bio_fallback_crypt_ctx {
41  	struct bio_crypt_ctx crypt_ctx;
42  	/*
43  	 * Copy of the bvec_iter when this bio was submitted.
44  	 * We only want to en/decrypt the part of the bio as described by the
45  	 * bvec_iter upon submission because bio might be split before being
46  	 * resubmitted
47  	 */
48  	struct bvec_iter crypt_iter;
49  	union {
50  		struct {
51  			struct work_struct work;
52  			struct bio *bio;
53  		};
54  		struct {
55  			void *bi_private_orig;
56  			bio_end_io_t *bi_end_io_orig;
57  		};
58  	};
59  };
60  
61  static struct kmem_cache *bio_fallback_crypt_ctx_cache;
62  static mempool_t *bio_fallback_crypt_ctx_pool;
63  
64  /*
65   * Allocating a crypto tfm during I/O can deadlock, so we have to preallocate
66   * all of a mode's tfms when that mode starts being used. Since each mode may
67   * need all the keyslots at some point, each mode needs its own tfm for each
68   * keyslot; thus, a keyslot may contain tfms for multiple modes.  However, to
69   * match the behavior of real inline encryption hardware (which only supports a
70   * single encryption context per keyslot), we only allow one tfm per keyslot to
71   * be used at a time - the rest of the unused tfms have their keys cleared.
72   */
73  static DEFINE_MUTEX(tfms_init_lock);
74  static bool tfms_inited[BLK_ENCRYPTION_MODE_MAX];
75  
76  static struct blk_crypto_fallback_keyslot {
77  	enum blk_crypto_mode_num crypto_mode;
78  	struct crypto_skcipher *tfms[BLK_ENCRYPTION_MODE_MAX];
79  } *blk_crypto_keyslots;
80  
81  static struct blk_crypto_profile *blk_crypto_fallback_profile;
82  static struct workqueue_struct *blk_crypto_wq;
83  static mempool_t *blk_crypto_bounce_page_pool;
84  static struct bio_set crypto_bio_split;
85  
86  /*
87   * This is the key we set when evicting a keyslot. This *should* be the all 0's
88   * key, but AES-XTS rejects that key, so we use some random bytes instead.
89   */
90  static u8 blank_key[BLK_CRYPTO_MAX_KEY_SIZE];
91  
blk_crypto_fallback_evict_keyslot(unsigned int slot)92  static void blk_crypto_fallback_evict_keyslot(unsigned int slot)
93  {
94  	struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot];
95  	enum blk_crypto_mode_num crypto_mode = slotp->crypto_mode;
96  	int err;
97  
98  	WARN_ON(slotp->crypto_mode == BLK_ENCRYPTION_MODE_INVALID);
99  
100  	/* Clear the key in the skcipher */
101  	err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], blank_key,
102  				     blk_crypto_modes[crypto_mode].keysize);
103  	WARN_ON(err);
104  	slotp->crypto_mode = BLK_ENCRYPTION_MODE_INVALID;
105  }
106  
107  static int
blk_crypto_fallback_keyslot_program(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)108  blk_crypto_fallback_keyslot_program(struct blk_crypto_profile *profile,
109  				    const struct blk_crypto_key *key,
110  				    unsigned int slot)
111  {
112  	struct blk_crypto_fallback_keyslot *slotp = &blk_crypto_keyslots[slot];
113  	const enum blk_crypto_mode_num crypto_mode =
114  						key->crypto_cfg.crypto_mode;
115  	int err;
116  
117  	if (crypto_mode != slotp->crypto_mode &&
118  	    slotp->crypto_mode != BLK_ENCRYPTION_MODE_INVALID)
119  		blk_crypto_fallback_evict_keyslot(slot);
120  
121  	slotp->crypto_mode = crypto_mode;
122  	err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], key->raw,
123  				     key->size);
124  	if (err) {
125  		blk_crypto_fallback_evict_keyslot(slot);
126  		return err;
127  	}
128  	return 0;
129  }
130  
blk_crypto_fallback_keyslot_evict(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)131  static int blk_crypto_fallback_keyslot_evict(struct blk_crypto_profile *profile,
132  					     const struct blk_crypto_key *key,
133  					     unsigned int slot)
134  {
135  	blk_crypto_fallback_evict_keyslot(slot);
136  	return 0;
137  }
138  
139  static const struct blk_crypto_ll_ops blk_crypto_fallback_ll_ops = {
140  	.keyslot_program        = blk_crypto_fallback_keyslot_program,
141  	.keyslot_evict          = blk_crypto_fallback_keyslot_evict,
142  };
143  
blk_crypto_fallback_encrypt_endio(struct bio * enc_bio)144  static void blk_crypto_fallback_encrypt_endio(struct bio *enc_bio)
145  {
146  	struct bio *src_bio = enc_bio->bi_private;
147  	int i;
148  
149  	for (i = 0; i < enc_bio->bi_vcnt; i++)
150  		mempool_free(enc_bio->bi_io_vec[i].bv_page,
151  			     blk_crypto_bounce_page_pool);
152  
153  	src_bio->bi_status = enc_bio->bi_status;
154  
155  	bio_uninit(enc_bio);
156  	kfree(enc_bio);
157  	bio_endio(src_bio);
158  }
159  
blk_crypto_fallback_clone_bio(struct bio * bio_src)160  static struct bio *blk_crypto_fallback_clone_bio(struct bio *bio_src)
161  {
162  	unsigned int nr_segs = bio_segments(bio_src);
163  	struct bvec_iter iter;
164  	struct bio_vec bv;
165  	struct bio *bio;
166  
167  	bio = bio_kmalloc(nr_segs, GFP_NOIO);
168  	if (!bio)
169  		return NULL;
170  	bio_init(bio, bio_src->bi_bdev, bio->bi_inline_vecs, nr_segs,
171  		 bio_src->bi_opf);
172  	if (bio_flagged(bio_src, BIO_REMAPPED))
173  		bio_set_flag(bio, BIO_REMAPPED);
174  	bio->bi_ioprio		= bio_src->bi_ioprio;
175  	bio->bi_iter.bi_sector	= bio_src->bi_iter.bi_sector;
176  	bio->bi_iter.bi_size	= bio_src->bi_iter.bi_size;
177  
178  	bio_for_each_segment(bv, bio_src, iter)
179  		bio->bi_io_vec[bio->bi_vcnt++] = bv;
180  
181  	bio_clone_blkg_association(bio, bio_src);
182  
183  	return bio;
184  }
185  
186  static bool
blk_crypto_fallback_alloc_cipher_req(struct blk_crypto_keyslot * slot,struct skcipher_request ** ciph_req_ret,struct crypto_wait * wait)187  blk_crypto_fallback_alloc_cipher_req(struct blk_crypto_keyslot *slot,
188  				     struct skcipher_request **ciph_req_ret,
189  				     struct crypto_wait *wait)
190  {
191  	struct skcipher_request *ciph_req;
192  	const struct blk_crypto_fallback_keyslot *slotp;
193  	int keyslot_idx = blk_crypto_keyslot_index(slot);
194  
195  	slotp = &blk_crypto_keyslots[keyslot_idx];
196  	ciph_req = skcipher_request_alloc(slotp->tfms[slotp->crypto_mode],
197  					  GFP_NOIO);
198  	if (!ciph_req)
199  		return false;
200  
201  	skcipher_request_set_callback(ciph_req,
202  				      CRYPTO_TFM_REQ_MAY_BACKLOG |
203  				      CRYPTO_TFM_REQ_MAY_SLEEP,
204  				      crypto_req_done, wait);
205  	*ciph_req_ret = ciph_req;
206  
207  	return true;
208  }
209  
blk_crypto_fallback_split_bio_if_needed(struct bio ** bio_ptr)210  static bool blk_crypto_fallback_split_bio_if_needed(struct bio **bio_ptr)
211  {
212  	struct bio *bio = *bio_ptr;
213  	unsigned int i = 0;
214  	unsigned int num_sectors = 0;
215  	struct bio_vec bv;
216  	struct bvec_iter iter;
217  
218  	bio_for_each_segment(bv, bio, iter) {
219  		num_sectors += bv.bv_len >> SECTOR_SHIFT;
220  		if (++i == BIO_MAX_VECS)
221  			break;
222  	}
223  	if (num_sectors < bio_sectors(bio)) {
224  		struct bio *split_bio;
225  
226  		split_bio = bio_split(bio, num_sectors, GFP_NOIO,
227  				      &crypto_bio_split);
228  		if (!split_bio) {
229  			bio->bi_status = BLK_STS_RESOURCE;
230  			return false;
231  		}
232  		bio_chain(split_bio, bio);
233  		submit_bio_noacct(bio);
234  		*bio_ptr = split_bio;
235  	}
236  
237  	return true;
238  }
239  
240  union blk_crypto_iv {
241  	__le64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
242  	u8 bytes[BLK_CRYPTO_MAX_IV_SIZE];
243  };
244  
blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],union blk_crypto_iv * iv)245  static void blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
246  				 union blk_crypto_iv *iv)
247  {
248  	int i;
249  
250  	for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++)
251  		iv->dun[i] = cpu_to_le64(dun[i]);
252  }
253  
254  /*
255   * The crypto API fallback's encryption routine.
256   * Allocate a bounce bio for encryption, encrypt the input bio using crypto API,
257   * and replace *bio_ptr with the bounce bio. May split input bio if it's too
258   * large. Returns true on success. Returns false and sets bio->bi_status on
259   * error.
260   */
blk_crypto_fallback_encrypt_bio(struct bio ** bio_ptr)261  static bool blk_crypto_fallback_encrypt_bio(struct bio **bio_ptr)
262  {
263  	struct bio *src_bio, *enc_bio;
264  	struct bio_crypt_ctx *bc;
265  	struct blk_crypto_keyslot *slot;
266  	int data_unit_size;
267  	struct skcipher_request *ciph_req = NULL;
268  	DECLARE_CRYPTO_WAIT(wait);
269  	u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
270  	struct scatterlist src, dst;
271  	union blk_crypto_iv iv;
272  	unsigned int i, j;
273  	bool ret = false;
274  	blk_status_t blk_st;
275  
276  	/* Split the bio if it's too big for single page bvec */
277  	if (!blk_crypto_fallback_split_bio_if_needed(bio_ptr))
278  		return false;
279  
280  	src_bio = *bio_ptr;
281  	bc = src_bio->bi_crypt_context;
282  	data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
283  
284  	/* Allocate bounce bio for encryption */
285  	enc_bio = blk_crypto_fallback_clone_bio(src_bio);
286  	if (!enc_bio) {
287  		src_bio->bi_status = BLK_STS_RESOURCE;
288  		return false;
289  	}
290  
291  	/*
292  	 * Get a blk-crypto-fallback keyslot that contains a crypto_skcipher for
293  	 * this bio's algorithm and key.
294  	 */
295  	blk_st = blk_crypto_get_keyslot(blk_crypto_fallback_profile,
296  					bc->bc_key, &slot);
297  	if (blk_st != BLK_STS_OK) {
298  		src_bio->bi_status = blk_st;
299  		goto out_put_enc_bio;
300  	}
301  
302  	/* and then allocate an skcipher_request for it */
303  	if (!blk_crypto_fallback_alloc_cipher_req(slot, &ciph_req, &wait)) {
304  		src_bio->bi_status = BLK_STS_RESOURCE;
305  		goto out_release_keyslot;
306  	}
307  
308  	memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
309  	sg_init_table(&src, 1);
310  	sg_init_table(&dst, 1);
311  
312  	skcipher_request_set_crypt(ciph_req, &src, &dst, data_unit_size,
313  				   iv.bytes);
314  
315  	/* Encrypt each page in the bounce bio */
316  	for (i = 0; i < enc_bio->bi_vcnt; i++) {
317  		struct bio_vec *enc_bvec = &enc_bio->bi_io_vec[i];
318  		struct page *plaintext_page = enc_bvec->bv_page;
319  		struct page *ciphertext_page =
320  			mempool_alloc(blk_crypto_bounce_page_pool, GFP_NOIO);
321  
322  		enc_bvec->bv_page = ciphertext_page;
323  
324  		if (!ciphertext_page) {
325  			src_bio->bi_status = BLK_STS_RESOURCE;
326  			goto out_free_bounce_pages;
327  		}
328  
329  		sg_set_page(&src, plaintext_page, data_unit_size,
330  			    enc_bvec->bv_offset);
331  		sg_set_page(&dst, ciphertext_page, data_unit_size,
332  			    enc_bvec->bv_offset);
333  
334  		/* Encrypt each data unit in this page */
335  		for (j = 0; j < enc_bvec->bv_len; j += data_unit_size) {
336  			blk_crypto_dun_to_iv(curr_dun, &iv);
337  			if (crypto_wait_req(crypto_skcipher_encrypt(ciph_req),
338  					    &wait)) {
339  				i++;
340  				src_bio->bi_status = BLK_STS_IOERR;
341  				goto out_free_bounce_pages;
342  			}
343  			bio_crypt_dun_increment(curr_dun, 1);
344  			src.offset += data_unit_size;
345  			dst.offset += data_unit_size;
346  		}
347  	}
348  
349  	enc_bio->bi_private = src_bio;
350  	enc_bio->bi_end_io = blk_crypto_fallback_encrypt_endio;
351  	*bio_ptr = enc_bio;
352  	ret = true;
353  
354  	enc_bio = NULL;
355  	goto out_free_ciph_req;
356  
357  out_free_bounce_pages:
358  	while (i > 0)
359  		mempool_free(enc_bio->bi_io_vec[--i].bv_page,
360  			     blk_crypto_bounce_page_pool);
361  out_free_ciph_req:
362  	skcipher_request_free(ciph_req);
363  out_release_keyslot:
364  	blk_crypto_put_keyslot(slot);
365  out_put_enc_bio:
366  	if (enc_bio)
367  		bio_uninit(enc_bio);
368  	kfree(enc_bio);
369  	return ret;
370  }
371  
372  /*
373   * The crypto API fallback's main decryption routine.
374   * Decrypts input bio in place, and calls bio_endio on the bio.
375   */
blk_crypto_fallback_decrypt_bio(struct work_struct * work)376  static void blk_crypto_fallback_decrypt_bio(struct work_struct *work)
377  {
378  	struct bio_fallback_crypt_ctx *f_ctx =
379  		container_of(work, struct bio_fallback_crypt_ctx, work);
380  	struct bio *bio = f_ctx->bio;
381  	struct bio_crypt_ctx *bc = &f_ctx->crypt_ctx;
382  	struct blk_crypto_keyslot *slot;
383  	struct skcipher_request *ciph_req = NULL;
384  	DECLARE_CRYPTO_WAIT(wait);
385  	u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
386  	union blk_crypto_iv iv;
387  	struct scatterlist sg;
388  	struct bio_vec bv;
389  	struct bvec_iter iter;
390  	const int data_unit_size = bc->bc_key->crypto_cfg.data_unit_size;
391  	unsigned int i;
392  	blk_status_t blk_st;
393  
394  	/*
395  	 * Get a blk-crypto-fallback keyslot that contains a crypto_skcipher for
396  	 * this bio's algorithm and key.
397  	 */
398  	blk_st = blk_crypto_get_keyslot(blk_crypto_fallback_profile,
399  					bc->bc_key, &slot);
400  	if (blk_st != BLK_STS_OK) {
401  		bio->bi_status = blk_st;
402  		goto out_no_keyslot;
403  	}
404  
405  	/* and then allocate an skcipher_request for it */
406  	if (!blk_crypto_fallback_alloc_cipher_req(slot, &ciph_req, &wait)) {
407  		bio->bi_status = BLK_STS_RESOURCE;
408  		goto out;
409  	}
410  
411  	memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
412  	sg_init_table(&sg, 1);
413  	skcipher_request_set_crypt(ciph_req, &sg, &sg, data_unit_size,
414  				   iv.bytes);
415  
416  	/* Decrypt each segment in the bio */
417  	__bio_for_each_segment(bv, bio, iter, f_ctx->crypt_iter) {
418  		struct page *page = bv.bv_page;
419  
420  		sg_set_page(&sg, page, data_unit_size, bv.bv_offset);
421  
422  		/* Decrypt each data unit in the segment */
423  		for (i = 0; i < bv.bv_len; i += data_unit_size) {
424  			blk_crypto_dun_to_iv(curr_dun, &iv);
425  			if (crypto_wait_req(crypto_skcipher_decrypt(ciph_req),
426  					    &wait)) {
427  				bio->bi_status = BLK_STS_IOERR;
428  				goto out;
429  			}
430  			bio_crypt_dun_increment(curr_dun, 1);
431  			sg.offset += data_unit_size;
432  		}
433  	}
434  
435  out:
436  	skcipher_request_free(ciph_req);
437  	blk_crypto_put_keyslot(slot);
438  out_no_keyslot:
439  	mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
440  	bio_endio(bio);
441  }
442  
443  /**
444   * blk_crypto_fallback_decrypt_endio - queue bio for fallback decryption
445   *
446   * @bio: the bio to queue
447   *
448   * Restore bi_private and bi_end_io, and queue the bio for decryption into a
449   * workqueue, since this function will be called from an atomic context.
450   */
blk_crypto_fallback_decrypt_endio(struct bio * bio)451  static void blk_crypto_fallback_decrypt_endio(struct bio *bio)
452  {
453  	struct bio_fallback_crypt_ctx *f_ctx = bio->bi_private;
454  
455  	bio->bi_private = f_ctx->bi_private_orig;
456  	bio->bi_end_io = f_ctx->bi_end_io_orig;
457  
458  	/* If there was an IO error, don't queue for decrypt. */
459  	if (bio->bi_status) {
460  		mempool_free(f_ctx, bio_fallback_crypt_ctx_pool);
461  		bio_endio(bio);
462  		return;
463  	}
464  
465  	INIT_WORK(&f_ctx->work, blk_crypto_fallback_decrypt_bio);
466  	f_ctx->bio = bio;
467  	queue_work(blk_crypto_wq, &f_ctx->work);
468  }
469  
470  /**
471   * blk_crypto_fallback_bio_prep - Prepare a bio to use fallback en/decryption
472   *
473   * @bio_ptr: pointer to the bio to prepare
474   *
475   * If bio is doing a WRITE operation, this splits the bio into two parts if it's
476   * too big (see blk_crypto_fallback_split_bio_if_needed()). It then allocates a
477   * bounce bio for the first part, encrypts it, and updates bio_ptr to point to
478   * the bounce bio.
479   *
480   * For a READ operation, we mark the bio for decryption by using bi_private and
481   * bi_end_io.
482   *
483   * In either case, this function will make the bio look like a regular bio (i.e.
484   * as if no encryption context was ever specified) for the purposes of the rest
485   * of the stack except for blk-integrity (blk-integrity and blk-crypto are not
486   * currently supported together).
487   *
488   * Return: true on success. Sets bio->bi_status and returns false on error.
489   */
blk_crypto_fallback_bio_prep(struct bio ** bio_ptr)490  bool blk_crypto_fallback_bio_prep(struct bio **bio_ptr)
491  {
492  	struct bio *bio = *bio_ptr;
493  	struct bio_crypt_ctx *bc = bio->bi_crypt_context;
494  	struct bio_fallback_crypt_ctx *f_ctx;
495  
496  	if (WARN_ON_ONCE(!tfms_inited[bc->bc_key->crypto_cfg.crypto_mode])) {
497  		/* User didn't call blk_crypto_start_using_key() first */
498  		bio->bi_status = BLK_STS_IOERR;
499  		return false;
500  	}
501  
502  	if (!__blk_crypto_cfg_supported(blk_crypto_fallback_profile,
503  					&bc->bc_key->crypto_cfg)) {
504  		bio->bi_status = BLK_STS_NOTSUPP;
505  		return false;
506  	}
507  
508  	if (bio_data_dir(bio) == WRITE)
509  		return blk_crypto_fallback_encrypt_bio(bio_ptr);
510  
511  	/*
512  	 * bio READ case: Set up a f_ctx in the bio's bi_private and set the
513  	 * bi_end_io appropriately to trigger decryption when the bio is ended.
514  	 */
515  	f_ctx = mempool_alloc(bio_fallback_crypt_ctx_pool, GFP_NOIO);
516  	f_ctx->crypt_ctx = *bc;
517  	f_ctx->crypt_iter = bio->bi_iter;
518  	f_ctx->bi_private_orig = bio->bi_private;
519  	f_ctx->bi_end_io_orig = bio->bi_end_io;
520  	bio->bi_private = (void *)f_ctx;
521  	bio->bi_end_io = blk_crypto_fallback_decrypt_endio;
522  	bio_crypt_free_ctx(bio);
523  
524  	return true;
525  }
526  
blk_crypto_fallback_evict_key(const struct blk_crypto_key * key)527  int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key)
528  {
529  	return __blk_crypto_evict_key(blk_crypto_fallback_profile, key);
530  }
531  
532  static bool blk_crypto_fallback_inited;
blk_crypto_fallback_init(void)533  static int blk_crypto_fallback_init(void)
534  {
535  	int i;
536  	int err;
537  
538  	if (blk_crypto_fallback_inited)
539  		return 0;
540  
541  	get_random_bytes(blank_key, BLK_CRYPTO_MAX_KEY_SIZE);
542  
543  	err = bioset_init(&crypto_bio_split, 64, 0, 0);
544  	if (err)
545  		goto out;
546  
547  	/* Dynamic allocation is needed because of lockdep_register_key(). */
548  	blk_crypto_fallback_profile =
549  		kzalloc(sizeof(*blk_crypto_fallback_profile), GFP_KERNEL);
550  	if (!blk_crypto_fallback_profile) {
551  		err = -ENOMEM;
552  		goto fail_free_bioset;
553  	}
554  
555  	err = blk_crypto_profile_init(blk_crypto_fallback_profile,
556  				      blk_crypto_num_keyslots);
557  	if (err)
558  		goto fail_free_profile;
559  	err = -ENOMEM;
560  
561  	blk_crypto_fallback_profile->ll_ops = blk_crypto_fallback_ll_ops;
562  	blk_crypto_fallback_profile->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
563  
564  	/* All blk-crypto modes have a crypto API fallback. */
565  	for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++)
566  		blk_crypto_fallback_profile->modes_supported[i] = 0xFFFFFFFF;
567  	blk_crypto_fallback_profile->modes_supported[BLK_ENCRYPTION_MODE_INVALID] = 0;
568  
569  	blk_crypto_wq = alloc_workqueue("blk_crypto_wq",
570  					WQ_UNBOUND | WQ_HIGHPRI |
571  					WQ_MEM_RECLAIM, num_online_cpus());
572  	if (!blk_crypto_wq)
573  		goto fail_destroy_profile;
574  
575  	blk_crypto_keyslots = kcalloc(blk_crypto_num_keyslots,
576  				      sizeof(blk_crypto_keyslots[0]),
577  				      GFP_KERNEL);
578  	if (!blk_crypto_keyslots)
579  		goto fail_free_wq;
580  
581  	blk_crypto_bounce_page_pool =
582  		mempool_create_page_pool(num_prealloc_bounce_pg, 0);
583  	if (!blk_crypto_bounce_page_pool)
584  		goto fail_free_keyslots;
585  
586  	bio_fallback_crypt_ctx_cache = KMEM_CACHE(bio_fallback_crypt_ctx, 0);
587  	if (!bio_fallback_crypt_ctx_cache)
588  		goto fail_free_bounce_page_pool;
589  
590  	bio_fallback_crypt_ctx_pool =
591  		mempool_create_slab_pool(num_prealloc_fallback_crypt_ctxs,
592  					 bio_fallback_crypt_ctx_cache);
593  	if (!bio_fallback_crypt_ctx_pool)
594  		goto fail_free_crypt_ctx_cache;
595  
596  	blk_crypto_fallback_inited = true;
597  
598  	return 0;
599  fail_free_crypt_ctx_cache:
600  	kmem_cache_destroy(bio_fallback_crypt_ctx_cache);
601  fail_free_bounce_page_pool:
602  	mempool_destroy(blk_crypto_bounce_page_pool);
603  fail_free_keyslots:
604  	kfree(blk_crypto_keyslots);
605  fail_free_wq:
606  	destroy_workqueue(blk_crypto_wq);
607  fail_destroy_profile:
608  	blk_crypto_profile_destroy(blk_crypto_fallback_profile);
609  fail_free_profile:
610  	kfree(blk_crypto_fallback_profile);
611  fail_free_bioset:
612  	bioset_exit(&crypto_bio_split);
613  out:
614  	return err;
615  }
616  
617  /*
618   * Prepare blk-crypto-fallback for the specified crypto mode.
619   * Returns -ENOPKG if the needed crypto API support is missing.
620   */
blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num)621  int blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num)
622  {
623  	const char *cipher_str = blk_crypto_modes[mode_num].cipher_str;
624  	struct blk_crypto_fallback_keyslot *slotp;
625  	unsigned int i;
626  	int err = 0;
627  
628  	/*
629  	 * Fast path
630  	 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
631  	 * for each i are visible before we try to access them.
632  	 */
633  	if (likely(smp_load_acquire(&tfms_inited[mode_num])))
634  		return 0;
635  
636  	mutex_lock(&tfms_init_lock);
637  	if (tfms_inited[mode_num])
638  		goto out;
639  
640  	err = blk_crypto_fallback_init();
641  	if (err)
642  		goto out;
643  
644  	for (i = 0; i < blk_crypto_num_keyslots; i++) {
645  		slotp = &blk_crypto_keyslots[i];
646  		slotp->tfms[mode_num] = crypto_alloc_skcipher(cipher_str, 0, 0);
647  		if (IS_ERR(slotp->tfms[mode_num])) {
648  			err = PTR_ERR(slotp->tfms[mode_num]);
649  			if (err == -ENOENT) {
650  				pr_warn_once("Missing crypto API support for \"%s\"\n",
651  					     cipher_str);
652  				err = -ENOPKG;
653  			}
654  			slotp->tfms[mode_num] = NULL;
655  			goto out_free_tfms;
656  		}
657  
658  		crypto_skcipher_set_flags(slotp->tfms[mode_num],
659  					  CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
660  	}
661  
662  	/*
663  	 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
664  	 * for each i are visible before we set tfms_inited[mode_num].
665  	 */
666  	smp_store_release(&tfms_inited[mode_num], true);
667  	goto out;
668  
669  out_free_tfms:
670  	for (i = 0; i < blk_crypto_num_keyslots; i++) {
671  		slotp = &blk_crypto_keyslots[i];
672  		crypto_free_skcipher(slotp->tfms[mode_num]);
673  		slotp->tfms[mode_num] = NULL;
674  	}
675  out:
676  	mutex_unlock(&tfms_init_lock);
677  	return err;
678  }
679