1  // SPDX-License-Identifier: GPL-2.0
2  #include <linux/moduleloader.h>
3  #include <linux/workqueue.h>
4  #include <linux/netdevice.h>
5  #include <linux/filter.h>
6  #include <linux/cache.h>
7  #include <linux/if_vlan.h>
8  
9  #include <asm/cacheflush.h>
10  #include <asm/ptrace.h>
11  
12  #include "bpf_jit_32.h"
13  
is_simm13(unsigned int value)14  static inline bool is_simm13(unsigned int value)
15  {
16  	return value + 0x1000 < 0x2000;
17  }
18  
19  #define SEEN_DATAREF 1 /* might call external helpers */
20  #define SEEN_XREG    2 /* ebx is used */
21  #define SEEN_MEM     4 /* use mem[] for temporary storage */
22  
23  #define S13(X)		((X) & 0x1fff)
24  #define IMMED		0x00002000
25  #define RD(X)		((X) << 25)
26  #define RS1(X)		((X) << 14)
27  #define RS2(X)		((X))
28  #define OP(X)		((X) << 30)
29  #define OP2(X)		((X) << 22)
30  #define OP3(X)		((X) << 19)
31  #define COND(X)		((X) << 25)
32  #define F1(X)		OP(X)
33  #define F2(X, Y)	(OP(X) | OP2(Y))
34  #define F3(X, Y)	(OP(X) | OP3(Y))
35  
36  #define CONDN		COND(0x0)
37  #define CONDE		COND(0x1)
38  #define CONDLE		COND(0x2)
39  #define CONDL		COND(0x3)
40  #define CONDLEU		COND(0x4)
41  #define CONDCS		COND(0x5)
42  #define CONDNEG		COND(0x6)
43  #define CONDVC		COND(0x7)
44  #define CONDA		COND(0x8)
45  #define CONDNE		COND(0x9)
46  #define CONDG		COND(0xa)
47  #define CONDGE		COND(0xb)
48  #define CONDGU		COND(0xc)
49  #define CONDCC		COND(0xd)
50  #define CONDPOS		COND(0xe)
51  #define CONDVS		COND(0xf)
52  
53  #define CONDGEU		CONDCC
54  #define CONDLU		CONDCS
55  
56  #define WDISP22(X)	(((X) >> 2) & 0x3fffff)
57  
58  #define BA		(F2(0, 2) | CONDA)
59  #define BGU		(F2(0, 2) | CONDGU)
60  #define BLEU		(F2(0, 2) | CONDLEU)
61  #define BGEU		(F2(0, 2) | CONDGEU)
62  #define BLU		(F2(0, 2) | CONDLU)
63  #define BE		(F2(0, 2) | CONDE)
64  #define BNE		(F2(0, 2) | CONDNE)
65  
66  #define BE_PTR		BE
67  
68  #define SETHI(K, REG)	\
69  	(F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
70  #define OR_LO(K, REG)	\
71  	(F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
72  
73  #define ADD		F3(2, 0x00)
74  #define AND		F3(2, 0x01)
75  #define ANDCC		F3(2, 0x11)
76  #define OR		F3(2, 0x02)
77  #define XOR		F3(2, 0x03)
78  #define SUB		F3(2, 0x04)
79  #define SUBCC		F3(2, 0x14)
80  #define MUL		F3(2, 0x0a)	/* umul */
81  #define DIV		F3(2, 0x0e)	/* udiv */
82  #define SLL		F3(2, 0x25)
83  #define SRL		F3(2, 0x26)
84  #define JMPL		F3(2, 0x38)
85  #define CALL		F1(1)
86  #define BR		F2(0, 0x01)
87  #define RD_Y		F3(2, 0x28)
88  #define WR_Y		F3(2, 0x30)
89  
90  #define LD32		F3(3, 0x00)
91  #define LD8		F3(3, 0x01)
92  #define LD16		F3(3, 0x02)
93  #define LD64		F3(3, 0x0b)
94  #define ST32		F3(3, 0x04)
95  
96  #define LDPTR		LD32
97  #define BASE_STACKFRAME	96
98  
99  #define LD32I		(LD32 | IMMED)
100  #define LD8I		(LD8 | IMMED)
101  #define LD16I		(LD16 | IMMED)
102  #define LD64I		(LD64 | IMMED)
103  #define LDPTRI		(LDPTR | IMMED)
104  #define ST32I		(ST32 | IMMED)
105  
106  #define emit_nop()		\
107  do {				\
108  	*prog++ = SETHI(0, G0);	\
109  } while (0)
110  
111  #define emit_neg()					\
112  do {	/* sub %g0, r_A, r_A */				\
113  	*prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A);	\
114  } while (0)
115  
116  #define emit_reg_move(FROM, TO)				\
117  do {	/* or %g0, FROM, TO */				\
118  	*prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO);	\
119  } while (0)
120  
121  #define emit_clear(REG)					\
122  do {	/* or %g0, %g0, REG */				\
123  	*prog++ = OR | RS1(G0) | RS2(G0) | RD(REG);	\
124  } while (0)
125  
126  #define emit_set_const(K, REG)					\
127  do {	/* sethi %hi(K), REG */					\
128  	*prog++ = SETHI(K, REG);				\
129  	/* or REG, %lo(K), REG */				\
130  	*prog++ = OR_LO(K, REG);				\
131  } while (0)
132  
133  	/* Emit
134  	 *
135  	 *	OP	r_A, r_X, r_A
136  	 */
137  #define emit_alu_X(OPCODE)					\
138  do {								\
139  	seen |= SEEN_XREG;					\
140  	*prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A);	\
141  } while (0)
142  
143  	/* Emit either:
144  	 *
145  	 *	OP	r_A, K, r_A
146  	 *
147  	 * or
148  	 *
149  	 *	sethi	%hi(K), r_TMP
150  	 *	or	r_TMP, %lo(K), r_TMP
151  	 *	OP	r_A, r_TMP, r_A
152  	 *
153  	 * depending upon whether K fits in a signed 13-bit
154  	 * immediate instruction field.  Emit nothing if K
155  	 * is zero.
156  	 */
157  #define emit_alu_K(OPCODE, K)					\
158  do {								\
159  	if (K || OPCODE == AND || OPCODE == MUL) {		\
160  		unsigned int _insn = OPCODE;			\
161  		_insn |= RS1(r_A) | RD(r_A);			\
162  		if (is_simm13(K)) {				\
163  			*prog++ = _insn | IMMED | S13(K);	\
164  		} else {					\
165  			emit_set_const(K, r_TMP);		\
166  			*prog++ = _insn | RS2(r_TMP);		\
167  		}						\
168  	}							\
169  } while (0)
170  
171  #define emit_loadimm(K, DEST)						\
172  do {									\
173  	if (is_simm13(K)) {						\
174  		/* or %g0, K, DEST */					\
175  		*prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST);	\
176  	} else {							\
177  		emit_set_const(K, DEST);				\
178  	}								\
179  } while (0)
180  
181  #define emit_loadptr(BASE, STRUCT, FIELD, DEST)				\
182  do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
183  	BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(void *));	\
184  	*prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST);		\
185  } while (0)
186  
187  #define emit_load32(BASE, STRUCT, FIELD, DEST)				\
188  do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
189  	BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(u32));	\
190  	*prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST);		\
191  } while (0)
192  
193  #define emit_load16(BASE, STRUCT, FIELD, DEST)				\
194  do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
195  	BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(u16));	\
196  	*prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST);		\
197  } while (0)
198  
199  #define __emit_load8(BASE, STRUCT, FIELD, DEST)				\
200  do {	unsigned int _off = offsetof(STRUCT, FIELD);			\
201  	*prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST);		\
202  } while (0)
203  
204  #define emit_load8(BASE, STRUCT, FIELD, DEST)				\
205  do {	BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(u8));	\
206  	__emit_load8(BASE, STRUCT, FIELD, DEST);			\
207  } while (0)
208  
209  #define BIAS (-4)
210  
211  #define emit_ldmem(OFF, DEST)						\
212  do {	*prog++ = LD32I | RS1(SP) | S13(BIAS - (OFF)) | RD(DEST);	\
213  } while (0)
214  
215  #define emit_stmem(OFF, SRC)						\
216  do {	*prog++ = ST32I | RS1(SP) | S13(BIAS - (OFF)) | RD(SRC);	\
217  } while (0)
218  
219  #ifdef CONFIG_SMP
220  #define emit_load_cpu(REG)						\
221  	emit_load32(G6, struct thread_info, cpu, REG)
222  #else
223  #define emit_load_cpu(REG)	emit_clear(REG)
224  #endif
225  
226  #define emit_skb_loadptr(FIELD, DEST) \
227  	emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
228  #define emit_skb_load32(FIELD, DEST) \
229  	emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
230  #define emit_skb_load16(FIELD, DEST) \
231  	emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
232  #define __emit_skb_load8(FIELD, DEST) \
233  	__emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
234  #define emit_skb_load8(FIELD, DEST) \
235  	emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
236  
237  #define emit_jmpl(BASE, IMM_OFF, LREG) \
238  	*prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
239  
240  #define emit_call(FUNC)					\
241  do {	void *_here = image + addrs[i] - 8;		\
242  	unsigned int _off = (void *)(FUNC) - _here;	\
243  	*prog++ = CALL | (((_off) >> 2) & 0x3fffffff);	\
244  	emit_nop();					\
245  } while (0)
246  
247  #define emit_branch(BR_OPC, DEST)			\
248  do {	unsigned int _here = addrs[i] - 8;		\
249  	*prog++ = BR_OPC | WDISP22((DEST) - _here);	\
250  } while (0)
251  
252  #define emit_branch_off(BR_OPC, OFF)			\
253  do {	*prog++ = BR_OPC | WDISP22(OFF);		\
254  } while (0)
255  
256  #define emit_jump(DEST)		emit_branch(BA, DEST)
257  
258  #define emit_read_y(REG)	*prog++ = RD_Y | RD(REG)
259  #define emit_write_y(REG)	*prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
260  
261  #define emit_cmp(R1, R2) \
262  	*prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
263  
264  #define emit_cmpi(R1, IMM) \
265  	*prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
266  
267  #define emit_btst(R1, R2) \
268  	*prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
269  
270  #define emit_btsti(R1, IMM) \
271  	*prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
272  
273  #define emit_sub(R1, R2, R3) \
274  	*prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
275  
276  #define emit_subi(R1, IMM, R3) \
277  	*prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
278  
279  #define emit_add(R1, R2, R3) \
280  	*prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
281  
282  #define emit_addi(R1, IMM, R3) \
283  	*prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
284  
285  #define emit_and(R1, R2, R3) \
286  	*prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3))
287  
288  #define emit_andi(R1, IMM, R3) \
289  	*prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3))
290  
291  #define emit_alloc_stack(SZ) \
292  	*prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
293  
294  #define emit_release_stack(SZ) \
295  	*prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
296  
297  /* A note about branch offset calculations.  The addrs[] array,
298   * indexed by BPF instruction, records the address after all the
299   * sparc instructions emitted for that BPF instruction.
300   *
301   * The most common case is to emit a branch at the end of such
302   * a code sequence.  So this would be two instructions, the
303   * branch and it's delay slot.
304   *
305   * Therefore by default the branch emitters calculate the branch
306   * offset field as:
307   *
308   *	destination - (addrs[i] - 8)
309   *
310   * This "addrs[i] - 8" is the address of the branch itself or
311   * what "." would be in assembler notation.  The "8" part is
312   * how we take into consideration the branch and it's delay
313   * slot mentioned above.
314   *
315   * Sometimes we need to emit a branch earlier in the code
316   * sequence.  And in these situations we adjust "destination"
317   * to accommodate this difference.  For example, if we needed
318   * to emit a branch (and it's delay slot) right before the
319   * final instruction emitted for a BPF opcode, we'd use
320   * "destination + 4" instead of just plain "destination" above.
321   *
322   * This is why you see all of these funny emit_branch() and
323   * emit_jump() calls with adjusted offsets.
324   */
325  
bpf_jit_compile(struct bpf_prog * fp)326  void bpf_jit_compile(struct bpf_prog *fp)
327  {
328  	unsigned int cleanup_addr, proglen, oldproglen = 0;
329  	u32 temp[8], *prog, *func, seen = 0, pass;
330  	const struct sock_filter *filter = fp->insns;
331  	int i, flen = fp->len, pc_ret0 = -1;
332  	unsigned int *addrs;
333  	void *image;
334  
335  	if (!bpf_jit_enable)
336  		return;
337  
338  	addrs = kmalloc_array(flen, sizeof(*addrs), GFP_KERNEL);
339  	if (addrs == NULL)
340  		return;
341  
342  	/* Before first pass, make a rough estimation of addrs[]
343  	 * each bpf instruction is translated to less than 64 bytes
344  	 */
345  	for (proglen = 0, i = 0; i < flen; i++) {
346  		proglen += 64;
347  		addrs[i] = proglen;
348  	}
349  	cleanup_addr = proglen; /* epilogue address */
350  	image = NULL;
351  	for (pass = 0; pass < 10; pass++) {
352  		u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
353  
354  		/* no prologue/epilogue for trivial filters (RET something) */
355  		proglen = 0;
356  		prog = temp;
357  
358  		/* Prologue */
359  		if (seen_or_pass0) {
360  			if (seen_or_pass0 & SEEN_MEM) {
361  				unsigned int sz = BASE_STACKFRAME;
362  				sz += BPF_MEMWORDS * sizeof(u32);
363  				emit_alloc_stack(sz);
364  			}
365  
366  			/* Make sure we dont leek kernel memory. */
367  			if (seen_or_pass0 & SEEN_XREG)
368  				emit_clear(r_X);
369  
370  			/* If this filter needs to access skb data,
371  			 * load %o4 and %o5 with:
372  			 *  %o4 = skb->len - skb->data_len
373  			 *  %o5 = skb->data
374  			 * And also back up %o7 into r_saved_O7 so we can
375  			 * invoke the stubs using 'call'.
376  			 */
377  			if (seen_or_pass0 & SEEN_DATAREF) {
378  				emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
379  				emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
380  				emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
381  				emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
382  			}
383  		}
384  		emit_reg_move(O7, r_saved_O7);
385  
386  		/* Make sure we dont leak kernel information to the user. */
387  		if (bpf_needs_clear_a(&filter[0]))
388  			emit_clear(r_A); /* A = 0 */
389  
390  		for (i = 0; i < flen; i++) {
391  			unsigned int K = filter[i].k;
392  			unsigned int t_offset;
393  			unsigned int f_offset;
394  			u32 t_op, f_op;
395  			u16 code = bpf_anc_helper(&filter[i]);
396  			int ilen;
397  
398  			switch (code) {
399  			case BPF_ALU | BPF_ADD | BPF_X:	/* A += X; */
400  				emit_alu_X(ADD);
401  				break;
402  			case BPF_ALU | BPF_ADD | BPF_K:	/* A += K; */
403  				emit_alu_K(ADD, K);
404  				break;
405  			case BPF_ALU | BPF_SUB | BPF_X:	/* A -= X; */
406  				emit_alu_X(SUB);
407  				break;
408  			case BPF_ALU | BPF_SUB | BPF_K:	/* A -= K */
409  				emit_alu_K(SUB, K);
410  				break;
411  			case BPF_ALU | BPF_AND | BPF_X:	/* A &= X */
412  				emit_alu_X(AND);
413  				break;
414  			case BPF_ALU | BPF_AND | BPF_K:	/* A &= K */
415  				emit_alu_K(AND, K);
416  				break;
417  			case BPF_ALU | BPF_OR | BPF_X:	/* A |= X */
418  				emit_alu_X(OR);
419  				break;
420  			case BPF_ALU | BPF_OR | BPF_K:	/* A |= K */
421  				emit_alu_K(OR, K);
422  				break;
423  			case BPF_ANC | SKF_AD_ALU_XOR_X: /* A ^= X; */
424  			case BPF_ALU | BPF_XOR | BPF_X:
425  				emit_alu_X(XOR);
426  				break;
427  			case BPF_ALU | BPF_XOR | BPF_K:	/* A ^= K */
428  				emit_alu_K(XOR, K);
429  				break;
430  			case BPF_ALU | BPF_LSH | BPF_X:	/* A <<= X */
431  				emit_alu_X(SLL);
432  				break;
433  			case BPF_ALU | BPF_LSH | BPF_K:	/* A <<= K */
434  				emit_alu_K(SLL, K);
435  				break;
436  			case BPF_ALU | BPF_RSH | BPF_X:	/* A >>= X */
437  				emit_alu_X(SRL);
438  				break;
439  			case BPF_ALU | BPF_RSH | BPF_K:	/* A >>= K */
440  				emit_alu_K(SRL, K);
441  				break;
442  			case BPF_ALU | BPF_MUL | BPF_X:	/* A *= X; */
443  				emit_alu_X(MUL);
444  				break;
445  			case BPF_ALU | BPF_MUL | BPF_K:	/* A *= K */
446  				emit_alu_K(MUL, K);
447  				break;
448  			case BPF_ALU | BPF_DIV | BPF_K:	/* A /= K with K != 0*/
449  				if (K == 1)
450  					break;
451  				emit_write_y(G0);
452  				/* The Sparc v8 architecture requires
453  				 * three instructions between a %y
454  				 * register write and the first use.
455  				 */
456  				emit_nop();
457  				emit_nop();
458  				emit_nop();
459  				emit_alu_K(DIV, K);
460  				break;
461  			case BPF_ALU | BPF_DIV | BPF_X:	/* A /= X; */
462  				emit_cmpi(r_X, 0);
463  				if (pc_ret0 > 0) {
464  					t_offset = addrs[pc_ret0 - 1];
465  					emit_branch(BE, t_offset + 20);
466  					emit_nop(); /* delay slot */
467  				} else {
468  					emit_branch_off(BNE, 16);
469  					emit_nop();
470  					emit_jump(cleanup_addr + 20);
471  					emit_clear(r_A);
472  				}
473  				emit_write_y(G0);
474  				/* The Sparc v8 architecture requires
475  				 * three instructions between a %y
476  				 * register write and the first use.
477  				 */
478  				emit_nop();
479  				emit_nop();
480  				emit_nop();
481  				emit_alu_X(DIV);
482  				break;
483  			case BPF_ALU | BPF_NEG:
484  				emit_neg();
485  				break;
486  			case BPF_RET | BPF_K:
487  				if (!K) {
488  					if (pc_ret0 == -1)
489  						pc_ret0 = i;
490  					emit_clear(r_A);
491  				} else {
492  					emit_loadimm(K, r_A);
493  				}
494  				fallthrough;
495  			case BPF_RET | BPF_A:
496  				if (seen_or_pass0) {
497  					if (i != flen - 1) {
498  						emit_jump(cleanup_addr);
499  						emit_nop();
500  						break;
501  					}
502  					if (seen_or_pass0 & SEEN_MEM) {
503  						unsigned int sz = BASE_STACKFRAME;
504  						sz += BPF_MEMWORDS * sizeof(u32);
505  						emit_release_stack(sz);
506  					}
507  				}
508  				/* jmpl %r_saved_O7 + 8, %g0 */
509  				emit_jmpl(r_saved_O7, 8, G0);
510  				emit_reg_move(r_A, O0); /* delay slot */
511  				break;
512  			case BPF_MISC | BPF_TAX:
513  				seen |= SEEN_XREG;
514  				emit_reg_move(r_A, r_X);
515  				break;
516  			case BPF_MISC | BPF_TXA:
517  				seen |= SEEN_XREG;
518  				emit_reg_move(r_X, r_A);
519  				break;
520  			case BPF_ANC | SKF_AD_CPU:
521  				emit_load_cpu(r_A);
522  				break;
523  			case BPF_ANC | SKF_AD_PROTOCOL:
524  				emit_skb_load16(protocol, r_A);
525  				break;
526  			case BPF_ANC | SKF_AD_PKTTYPE:
527  				__emit_skb_load8(__pkt_type_offset, r_A);
528  				emit_andi(r_A, PKT_TYPE_MAX, r_A);
529  				emit_alu_K(SRL, 5);
530  				break;
531  			case BPF_ANC | SKF_AD_IFINDEX:
532  				emit_skb_loadptr(dev, r_A);
533  				emit_cmpi(r_A, 0);
534  				emit_branch(BE_PTR, cleanup_addr + 4);
535  				emit_nop();
536  				emit_load32(r_A, struct net_device, ifindex, r_A);
537  				break;
538  			case BPF_ANC | SKF_AD_MARK:
539  				emit_skb_load32(mark, r_A);
540  				break;
541  			case BPF_ANC | SKF_AD_QUEUE:
542  				emit_skb_load16(queue_mapping, r_A);
543  				break;
544  			case BPF_ANC | SKF_AD_HATYPE:
545  				emit_skb_loadptr(dev, r_A);
546  				emit_cmpi(r_A, 0);
547  				emit_branch(BE_PTR, cleanup_addr + 4);
548  				emit_nop();
549  				emit_load16(r_A, struct net_device, type, r_A);
550  				break;
551  			case BPF_ANC | SKF_AD_RXHASH:
552  				emit_skb_load32(hash, r_A);
553  				break;
554  			case BPF_ANC | SKF_AD_VLAN_TAG:
555  				emit_skb_load16(vlan_tci, r_A);
556  				break;
557  			case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
558  				emit_skb_load32(vlan_all, r_A);
559  				emit_cmpi(r_A, 0);
560  				emit_branch_off(BE, 12);
561  				emit_nop();
562  				emit_loadimm(1, r_A);
563  				break;
564  			case BPF_LD | BPF_W | BPF_LEN:
565  				emit_skb_load32(len, r_A);
566  				break;
567  			case BPF_LDX | BPF_W | BPF_LEN:
568  				emit_skb_load32(len, r_X);
569  				break;
570  			case BPF_LD | BPF_IMM:
571  				emit_loadimm(K, r_A);
572  				break;
573  			case BPF_LDX | BPF_IMM:
574  				emit_loadimm(K, r_X);
575  				break;
576  			case BPF_LD | BPF_MEM:
577  				seen |= SEEN_MEM;
578  				emit_ldmem(K * 4, r_A);
579  				break;
580  			case BPF_LDX | BPF_MEM:
581  				seen |= SEEN_MEM | SEEN_XREG;
582  				emit_ldmem(K * 4, r_X);
583  				break;
584  			case BPF_ST:
585  				seen |= SEEN_MEM;
586  				emit_stmem(K * 4, r_A);
587  				break;
588  			case BPF_STX:
589  				seen |= SEEN_MEM | SEEN_XREG;
590  				emit_stmem(K * 4, r_X);
591  				break;
592  
593  #define CHOOSE_LOAD_FUNC(K, func) \
594  	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
595  
596  			case BPF_LD | BPF_W | BPF_ABS:
597  				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
598  common_load:			seen |= SEEN_DATAREF;
599  				emit_loadimm(K, r_OFF);
600  				emit_call(func);
601  				break;
602  			case BPF_LD | BPF_H | BPF_ABS:
603  				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
604  				goto common_load;
605  			case BPF_LD | BPF_B | BPF_ABS:
606  				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
607  				goto common_load;
608  			case BPF_LDX | BPF_B | BPF_MSH:
609  				func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
610  				goto common_load;
611  			case BPF_LD | BPF_W | BPF_IND:
612  				func = bpf_jit_load_word;
613  common_load_ind:		seen |= SEEN_DATAREF | SEEN_XREG;
614  				if (K) {
615  					if (is_simm13(K)) {
616  						emit_addi(r_X, K, r_OFF);
617  					} else {
618  						emit_loadimm(K, r_TMP);
619  						emit_add(r_X, r_TMP, r_OFF);
620  					}
621  				} else {
622  					emit_reg_move(r_X, r_OFF);
623  				}
624  				emit_call(func);
625  				break;
626  			case BPF_LD | BPF_H | BPF_IND:
627  				func = bpf_jit_load_half;
628  				goto common_load_ind;
629  			case BPF_LD | BPF_B | BPF_IND:
630  				func = bpf_jit_load_byte;
631  				goto common_load_ind;
632  			case BPF_JMP | BPF_JA:
633  				emit_jump(addrs[i + K]);
634  				emit_nop();
635  				break;
636  
637  #define COND_SEL(CODE, TOP, FOP)	\
638  	case CODE:			\
639  		t_op = TOP;		\
640  		f_op = FOP;		\
641  		goto cond_branch
642  
643  			COND_SEL(BPF_JMP | BPF_JGT | BPF_K, BGU, BLEU);
644  			COND_SEL(BPF_JMP | BPF_JGE | BPF_K, BGEU, BLU);
645  			COND_SEL(BPF_JMP | BPF_JEQ | BPF_K, BE, BNE);
646  			COND_SEL(BPF_JMP | BPF_JSET | BPF_K, BNE, BE);
647  			COND_SEL(BPF_JMP | BPF_JGT | BPF_X, BGU, BLEU);
648  			COND_SEL(BPF_JMP | BPF_JGE | BPF_X, BGEU, BLU);
649  			COND_SEL(BPF_JMP | BPF_JEQ | BPF_X, BE, BNE);
650  			COND_SEL(BPF_JMP | BPF_JSET | BPF_X, BNE, BE);
651  
652  cond_branch:			f_offset = addrs[i + filter[i].jf];
653  				t_offset = addrs[i + filter[i].jt];
654  
655  				/* same targets, can avoid doing the test :) */
656  				if (filter[i].jt == filter[i].jf) {
657  					emit_jump(t_offset);
658  					emit_nop();
659  					break;
660  				}
661  
662  				switch (code) {
663  				case BPF_JMP | BPF_JGT | BPF_X:
664  				case BPF_JMP | BPF_JGE | BPF_X:
665  				case BPF_JMP | BPF_JEQ | BPF_X:
666  					seen |= SEEN_XREG;
667  					emit_cmp(r_A, r_X);
668  					break;
669  				case BPF_JMP | BPF_JSET | BPF_X:
670  					seen |= SEEN_XREG;
671  					emit_btst(r_A, r_X);
672  					break;
673  				case BPF_JMP | BPF_JEQ | BPF_K:
674  				case BPF_JMP | BPF_JGT | BPF_K:
675  				case BPF_JMP | BPF_JGE | BPF_K:
676  					if (is_simm13(K)) {
677  						emit_cmpi(r_A, K);
678  					} else {
679  						emit_loadimm(K, r_TMP);
680  						emit_cmp(r_A, r_TMP);
681  					}
682  					break;
683  				case BPF_JMP | BPF_JSET | BPF_K:
684  					if (is_simm13(K)) {
685  						emit_btsti(r_A, K);
686  					} else {
687  						emit_loadimm(K, r_TMP);
688  						emit_btst(r_A, r_TMP);
689  					}
690  					break;
691  				}
692  				if (filter[i].jt != 0) {
693  					if (filter[i].jf)
694  						t_offset += 8;
695  					emit_branch(t_op, t_offset);
696  					emit_nop(); /* delay slot */
697  					if (filter[i].jf) {
698  						emit_jump(f_offset);
699  						emit_nop();
700  					}
701  					break;
702  				}
703  				emit_branch(f_op, f_offset);
704  				emit_nop(); /* delay slot */
705  				break;
706  
707  			default:
708  				/* hmm, too complex filter, give up with jit compiler */
709  				goto out;
710  			}
711  			ilen = (void *) prog - (void *) temp;
712  			if (image) {
713  				if (unlikely(proglen + ilen > oldproglen)) {
714  					pr_err("bpb_jit_compile fatal error\n");
715  					kfree(addrs);
716  					module_memfree(image);
717  					return;
718  				}
719  				memcpy(image + proglen, temp, ilen);
720  			}
721  			proglen += ilen;
722  			addrs[i] = proglen;
723  			prog = temp;
724  		}
725  		/* last bpf instruction is always a RET :
726  		 * use it to give the cleanup instruction(s) addr
727  		 */
728  		cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
729  		if (seen_or_pass0 & SEEN_MEM)
730  			cleanup_addr -= 4; /* add %sp, X, %sp; */
731  
732  		if (image) {
733  			if (proglen != oldproglen)
734  				pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
735  				       proglen, oldproglen);
736  			break;
737  		}
738  		if (proglen == oldproglen) {
739  			image = module_alloc(proglen);
740  			if (!image)
741  				goto out;
742  		}
743  		oldproglen = proglen;
744  	}
745  
746  	if (bpf_jit_enable > 1)
747  		bpf_jit_dump(flen, proglen, pass + 1, image);
748  
749  	if (image) {
750  		fp->bpf_func = (void *)image;
751  		fp->jited = 1;
752  	}
753  out:
754  	kfree(addrs);
755  	return;
756  }
757  
bpf_jit_free(struct bpf_prog * fp)758  void bpf_jit_free(struct bpf_prog *fp)
759  {
760  	if (fp->jited)
761  		module_memfree(fp->bpf_func);
762  
763  	bpf_prog_unlock_free(fp);
764  }
765