1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * TI EDMA DMA engine driver
4 *
5 * Copyright 2012 Texas Instruments
6 */
7
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/bitmap.h>
11 #include <linux/err.h>
12 #include <linux/init.h>
13 #include <linux/interrupt.h>
14 #include <linux/list.h>
15 #include <linux/module.h>
16 #include <linux/platform_device.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_address.h>
23 #include <linux/of_device.h>
24 #include <linux/pm_runtime.h>
25
26 #include <linux/platform_data/edma.h>
27
28 #include "../dmaengine.h"
29 #include "../virt-dma.h"
30
31 /* Offsets matching "struct edmacc_param" */
32 #define PARM_OPT 0x00
33 #define PARM_SRC 0x04
34 #define PARM_A_B_CNT 0x08
35 #define PARM_DST 0x0c
36 #define PARM_SRC_DST_BIDX 0x10
37 #define PARM_LINK_BCNTRLD 0x14
38 #define PARM_SRC_DST_CIDX 0x18
39 #define PARM_CCNT 0x1c
40
41 #define PARM_SIZE 0x20
42
43 /* Offsets for EDMA CC global channel registers and their shadows */
44 #define SH_ER 0x00 /* 64 bits */
45 #define SH_ECR 0x08 /* 64 bits */
46 #define SH_ESR 0x10 /* 64 bits */
47 #define SH_CER 0x18 /* 64 bits */
48 #define SH_EER 0x20 /* 64 bits */
49 #define SH_EECR 0x28 /* 64 bits */
50 #define SH_EESR 0x30 /* 64 bits */
51 #define SH_SER 0x38 /* 64 bits */
52 #define SH_SECR 0x40 /* 64 bits */
53 #define SH_IER 0x50 /* 64 bits */
54 #define SH_IECR 0x58 /* 64 bits */
55 #define SH_IESR 0x60 /* 64 bits */
56 #define SH_IPR 0x68 /* 64 bits */
57 #define SH_ICR 0x70 /* 64 bits */
58 #define SH_IEVAL 0x78
59 #define SH_QER 0x80
60 #define SH_QEER 0x84
61 #define SH_QEECR 0x88
62 #define SH_QEESR 0x8c
63 #define SH_QSER 0x90
64 #define SH_QSECR 0x94
65 #define SH_SIZE 0x200
66
67 /* Offsets for EDMA CC global registers */
68 #define EDMA_REV 0x0000
69 #define EDMA_CCCFG 0x0004
70 #define EDMA_QCHMAP 0x0200 /* 8 registers */
71 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
72 #define EDMA_QDMAQNUM 0x0260
73 #define EDMA_QUETCMAP 0x0280
74 #define EDMA_QUEPRI 0x0284
75 #define EDMA_EMR 0x0300 /* 64 bits */
76 #define EDMA_EMCR 0x0308 /* 64 bits */
77 #define EDMA_QEMR 0x0310
78 #define EDMA_QEMCR 0x0314
79 #define EDMA_CCERR 0x0318
80 #define EDMA_CCERRCLR 0x031c
81 #define EDMA_EEVAL 0x0320
82 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
83 #define EDMA_QRAE 0x0380 /* 4 registers */
84 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
85 #define EDMA_QSTAT 0x0600 /* 2 registers */
86 #define EDMA_QWMTHRA 0x0620
87 #define EDMA_QWMTHRB 0x0624
88 #define EDMA_CCSTAT 0x0640
89
90 #define EDMA_M 0x1000 /* global channel registers */
91 #define EDMA_ECR 0x1008
92 #define EDMA_ECRH 0x100C
93 #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */
94 #define EDMA_PARM 0x4000 /* PaRAM entries */
95
96 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
97
98 #define EDMA_DCHMAP 0x0100 /* 64 registers */
99
100 /* CCCFG register */
101 #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
102 #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */
103 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
104 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
105 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
106 #define CHMAP_EXIST BIT(24)
107
108 /* CCSTAT register */
109 #define EDMA_CCSTAT_ACTV BIT(4)
110
111 /*
112 * Max of 20 segments per channel to conserve PaRAM slots
113 * Also note that MAX_NR_SG should be at least the no.of periods
114 * that are required for ASoC, otherwise DMA prep calls will
115 * fail. Today davinci-pcm is the only user of this driver and
116 * requires at least 17 slots, so we setup the default to 20.
117 */
118 #define MAX_NR_SG 20
119 #define EDMA_MAX_SLOTS MAX_NR_SG
120 #define EDMA_DESCRIPTORS 16
121
122 #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */
123 #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */
124 #define EDMA_CONT_PARAMS_ANY 1001
125 #define EDMA_CONT_PARAMS_FIXED_EXACT 1002
126 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
127
128 /*
129 * 64bit array registers are split into two 32bit registers:
130 * reg0: channel/event 0-31
131 * reg1: channel/event 32-63
132 *
133 * bit 5 in the channel number tells the array index (0/1)
134 * bit 0-4 (0x1f) is the bit offset within the register
135 */
136 #define EDMA_REG_ARRAY_INDEX(channel) ((channel) >> 5)
137 #define EDMA_CHANNEL_BIT(channel) (BIT((channel) & 0x1f))
138
139 /* PaRAM slots are laid out like this */
140 struct edmacc_param {
141 u32 opt;
142 u32 src;
143 u32 a_b_cnt;
144 u32 dst;
145 u32 src_dst_bidx;
146 u32 link_bcntrld;
147 u32 src_dst_cidx;
148 u32 ccnt;
149 } __packed;
150
151 /* fields in edmacc_param.opt */
152 #define SAM BIT(0)
153 #define DAM BIT(1)
154 #define SYNCDIM BIT(2)
155 #define STATIC BIT(3)
156 #define EDMA_FWID (0x07 << 8)
157 #define TCCMODE BIT(11)
158 #define EDMA_TCC(t) ((t) << 12)
159 #define TCINTEN BIT(20)
160 #define ITCINTEN BIT(21)
161 #define TCCHEN BIT(22)
162 #define ITCCHEN BIT(23)
163
164 struct edma_pset {
165 u32 len;
166 dma_addr_t addr;
167 struct edmacc_param param;
168 };
169
170 struct edma_desc {
171 struct virt_dma_desc vdesc;
172 struct list_head node;
173 enum dma_transfer_direction direction;
174 int cyclic;
175 bool polled;
176 int absync;
177 int pset_nr;
178 struct edma_chan *echan;
179 int processed;
180
181 /*
182 * The following 4 elements are used for residue accounting.
183 *
184 * - processed_stat: the number of SG elements we have traversed
185 * so far to cover accounting. This is updated directly to processed
186 * during edma_callback and is always <= processed, because processed
187 * refers to the number of pending transfer (programmed to EDMA
188 * controller), where as processed_stat tracks number of transfers
189 * accounted for so far.
190 *
191 * - residue: The amount of bytes we have left to transfer for this desc
192 *
193 * - residue_stat: The residue in bytes of data we have covered
194 * so far for accounting. This is updated directly to residue
195 * during callbacks to keep it current.
196 *
197 * - sg_len: Tracks the length of the current intermediate transfer,
198 * this is required to update the residue during intermediate transfer
199 * completion callback.
200 */
201 int processed_stat;
202 u32 sg_len;
203 u32 residue;
204 u32 residue_stat;
205
206 struct edma_pset pset[];
207 };
208
209 struct edma_cc;
210
211 struct edma_tc {
212 struct device_node *node;
213 u16 id;
214 };
215
216 struct edma_chan {
217 struct virt_dma_chan vchan;
218 struct list_head node;
219 struct edma_desc *edesc;
220 struct edma_cc *ecc;
221 struct edma_tc *tc;
222 int ch_num;
223 bool alloced;
224 bool hw_triggered;
225 int slot[EDMA_MAX_SLOTS];
226 int missed;
227 struct dma_slave_config cfg;
228 };
229
230 struct edma_cc {
231 struct device *dev;
232 struct edma_soc_info *info;
233 void __iomem *base;
234 int id;
235 bool legacy_mode;
236
237 /* eDMA3 resource information */
238 unsigned num_channels;
239 unsigned num_qchannels;
240 unsigned num_region;
241 unsigned num_slots;
242 unsigned num_tc;
243 bool chmap_exist;
244 enum dma_event_q default_queue;
245
246 unsigned int ccint;
247 unsigned int ccerrint;
248
249 /*
250 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
251 * in use by Linux or if it is allocated to be used by DSP.
252 */
253 unsigned long *slot_inuse;
254
255 /*
256 * For tracking reserved channels used by DSP.
257 * If the bit is cleared, the channel is allocated to be used by DSP
258 * and Linux must not touch it.
259 */
260 unsigned long *channels_mask;
261
262 struct dma_device dma_slave;
263 struct dma_device *dma_memcpy;
264 struct edma_chan *slave_chans;
265 struct edma_tc *tc_list;
266 int dummy_slot;
267 };
268
269 /* dummy param set used to (re)initialize parameter RAM slots */
270 static const struct edmacc_param dummy_paramset = {
271 .link_bcntrld = 0xffff,
272 .ccnt = 1,
273 };
274
275 #define EDMA_BINDING_LEGACY 0
276 #define EDMA_BINDING_TPCC 1
277 static const u32 edma_binding_type[] = {
278 [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
279 [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
280 };
281
282 static const struct of_device_id edma_of_ids[] = {
283 {
284 .compatible = "ti,edma3",
285 .data = &edma_binding_type[EDMA_BINDING_LEGACY],
286 },
287 {
288 .compatible = "ti,edma3-tpcc",
289 .data = &edma_binding_type[EDMA_BINDING_TPCC],
290 },
291 {}
292 };
293 MODULE_DEVICE_TABLE(of, edma_of_ids);
294
295 static const struct of_device_id edma_tptc_of_ids[] = {
296 { .compatible = "ti,edma3-tptc", },
297 {}
298 };
299 MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
300
edma_read(struct edma_cc * ecc,int offset)301 static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
302 {
303 return (unsigned int)__raw_readl(ecc->base + offset);
304 }
305
edma_write(struct edma_cc * ecc,int offset,int val)306 static inline void edma_write(struct edma_cc *ecc, int offset, int val)
307 {
308 __raw_writel(val, ecc->base + offset);
309 }
310
edma_modify(struct edma_cc * ecc,int offset,unsigned and,unsigned or)311 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
312 unsigned or)
313 {
314 unsigned val = edma_read(ecc, offset);
315
316 val &= and;
317 val |= or;
318 edma_write(ecc, offset, val);
319 }
320
edma_and(struct edma_cc * ecc,int offset,unsigned and)321 static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
322 {
323 unsigned val = edma_read(ecc, offset);
324
325 val &= and;
326 edma_write(ecc, offset, val);
327 }
328
edma_or(struct edma_cc * ecc,int offset,unsigned or)329 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
330 {
331 unsigned val = edma_read(ecc, offset);
332
333 val |= or;
334 edma_write(ecc, offset, val);
335 }
336
edma_read_array(struct edma_cc * ecc,int offset,int i)337 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
338 int i)
339 {
340 return edma_read(ecc, offset + (i << 2));
341 }
342
edma_write_array(struct edma_cc * ecc,int offset,int i,unsigned val)343 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
344 unsigned val)
345 {
346 edma_write(ecc, offset + (i << 2), val);
347 }
348
edma_modify_array(struct edma_cc * ecc,int offset,int i,unsigned and,unsigned or)349 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
350 unsigned and, unsigned or)
351 {
352 edma_modify(ecc, offset + (i << 2), and, or);
353 }
354
edma_or_array2(struct edma_cc * ecc,int offset,int i,int j,unsigned or)355 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
356 unsigned or)
357 {
358 edma_or(ecc, offset + ((i * 2 + j) << 2), or);
359 }
360
edma_write_array2(struct edma_cc * ecc,int offset,int i,int j,unsigned val)361 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
362 int j, unsigned val)
363 {
364 edma_write(ecc, offset + ((i * 2 + j) << 2), val);
365 }
366
edma_shadow0_read_array(struct edma_cc * ecc,int offset,int i)367 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
368 int offset, int i)
369 {
370 return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
371 }
372
edma_shadow0_write(struct edma_cc * ecc,int offset,unsigned val)373 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
374 unsigned val)
375 {
376 edma_write(ecc, EDMA_SHADOW0 + offset, val);
377 }
378
edma_shadow0_write_array(struct edma_cc * ecc,int offset,int i,unsigned val)379 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
380 int i, unsigned val)
381 {
382 edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
383 }
384
edma_param_modify(struct edma_cc * ecc,int offset,int param_no,unsigned and,unsigned or)385 static inline void edma_param_modify(struct edma_cc *ecc, int offset,
386 int param_no, unsigned and, unsigned or)
387 {
388 edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
389 }
390
edma_assign_priority_to_queue(struct edma_cc * ecc,int queue_no,int priority)391 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
392 int priority)
393 {
394 int bit = queue_no * 4;
395
396 edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
397 }
398
edma_set_chmap(struct edma_chan * echan,int slot)399 static void edma_set_chmap(struct edma_chan *echan, int slot)
400 {
401 struct edma_cc *ecc = echan->ecc;
402 int channel = EDMA_CHAN_SLOT(echan->ch_num);
403
404 if (ecc->chmap_exist) {
405 slot = EDMA_CHAN_SLOT(slot);
406 edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
407 }
408 }
409
edma_setup_interrupt(struct edma_chan * echan,bool enable)410 static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
411 {
412 struct edma_cc *ecc = echan->ecc;
413 int channel = EDMA_CHAN_SLOT(echan->ch_num);
414 int idx = EDMA_REG_ARRAY_INDEX(channel);
415 int ch_bit = EDMA_CHANNEL_BIT(channel);
416
417 if (enable) {
418 edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
419 edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit);
420 } else {
421 edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit);
422 }
423 }
424
425 /*
426 * paRAM slot management functions
427 */
edma_write_slot(struct edma_cc * ecc,unsigned slot,const struct edmacc_param * param)428 static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
429 const struct edmacc_param *param)
430 {
431 slot = EDMA_CHAN_SLOT(slot);
432 if (slot >= ecc->num_slots)
433 return;
434 memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
435 }
436
edma_read_slot(struct edma_cc * ecc,unsigned slot,struct edmacc_param * param)437 static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
438 struct edmacc_param *param)
439 {
440 slot = EDMA_CHAN_SLOT(slot);
441 if (slot >= ecc->num_slots)
442 return -EINVAL;
443 memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
444
445 return 0;
446 }
447
448 /**
449 * edma_alloc_slot - allocate DMA parameter RAM
450 * @ecc: pointer to edma_cc struct
451 * @slot: specific slot to allocate; negative for "any unused slot"
452 *
453 * This allocates a parameter RAM slot, initializing it to hold a
454 * dummy transfer. Slots allocated using this routine have not been
455 * mapped to a hardware DMA channel, and will normally be used by
456 * linking to them from a slot associated with a DMA channel.
457 *
458 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
459 * slots may be allocated on behalf of DSP firmware.
460 *
461 * Returns the number of the slot, else negative errno.
462 */
edma_alloc_slot(struct edma_cc * ecc,int slot)463 static int edma_alloc_slot(struct edma_cc *ecc, int slot)
464 {
465 if (slot >= 0) {
466 slot = EDMA_CHAN_SLOT(slot);
467 /* Requesting entry paRAM slot for a HW triggered channel. */
468 if (ecc->chmap_exist && slot < ecc->num_channels)
469 slot = EDMA_SLOT_ANY;
470 }
471
472 if (slot < 0) {
473 if (ecc->chmap_exist)
474 slot = 0;
475 else
476 slot = ecc->num_channels;
477 for (;;) {
478 slot = find_next_zero_bit(ecc->slot_inuse,
479 ecc->num_slots,
480 slot);
481 if (slot == ecc->num_slots)
482 return -ENOMEM;
483 if (!test_and_set_bit(slot, ecc->slot_inuse))
484 break;
485 }
486 } else if (slot >= ecc->num_slots) {
487 return -EINVAL;
488 } else if (test_and_set_bit(slot, ecc->slot_inuse)) {
489 return -EBUSY;
490 }
491
492 edma_write_slot(ecc, slot, &dummy_paramset);
493
494 return EDMA_CTLR_CHAN(ecc->id, slot);
495 }
496
edma_free_slot(struct edma_cc * ecc,unsigned slot)497 static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
498 {
499 slot = EDMA_CHAN_SLOT(slot);
500 if (slot >= ecc->num_slots)
501 return;
502
503 edma_write_slot(ecc, slot, &dummy_paramset);
504 clear_bit(slot, ecc->slot_inuse);
505 }
506
507 /**
508 * edma_link - link one parameter RAM slot to another
509 * @ecc: pointer to edma_cc struct
510 * @from: parameter RAM slot originating the link
511 * @to: parameter RAM slot which is the link target
512 *
513 * The originating slot should not be part of any active DMA transfer.
514 */
edma_link(struct edma_cc * ecc,unsigned from,unsigned to)515 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
516 {
517 if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
518 dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
519
520 from = EDMA_CHAN_SLOT(from);
521 to = EDMA_CHAN_SLOT(to);
522 if (from >= ecc->num_slots || to >= ecc->num_slots)
523 return;
524
525 edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
526 PARM_OFFSET(to));
527 }
528
529 /**
530 * edma_get_position - returns the current transfer point
531 * @ecc: pointer to edma_cc struct
532 * @slot: parameter RAM slot being examined
533 * @dst: true selects the dest position, false the source
534 *
535 * Returns the position of the current active slot
536 */
edma_get_position(struct edma_cc * ecc,unsigned slot,bool dst)537 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
538 bool dst)
539 {
540 u32 offs;
541
542 slot = EDMA_CHAN_SLOT(slot);
543 offs = PARM_OFFSET(slot);
544 offs += dst ? PARM_DST : PARM_SRC;
545
546 return edma_read(ecc, offs);
547 }
548
549 /*
550 * Channels with event associations will be triggered by their hardware
551 * events, and channels without such associations will be triggered by
552 * software. (At this writing there is no interface for using software
553 * triggers except with channels that don't support hardware triggers.)
554 */
edma_start(struct edma_chan * echan)555 static void edma_start(struct edma_chan *echan)
556 {
557 struct edma_cc *ecc = echan->ecc;
558 int channel = EDMA_CHAN_SLOT(echan->ch_num);
559 int idx = EDMA_REG_ARRAY_INDEX(channel);
560 int ch_bit = EDMA_CHANNEL_BIT(channel);
561
562 if (!echan->hw_triggered) {
563 /* EDMA channels without event association */
564 dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
565 edma_shadow0_read_array(ecc, SH_ESR, idx));
566 edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
567 } else {
568 /* EDMA channel with event association */
569 dev_dbg(ecc->dev, "ER%d %08x\n", idx,
570 edma_shadow0_read_array(ecc, SH_ER, idx));
571 /* Clear any pending event or error */
572 edma_write_array(ecc, EDMA_ECR, idx, ch_bit);
573 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
574 /* Clear any SER */
575 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
576 edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit);
577 dev_dbg(ecc->dev, "EER%d %08x\n", idx,
578 edma_shadow0_read_array(ecc, SH_EER, idx));
579 }
580 }
581
edma_stop(struct edma_chan * echan)582 static void edma_stop(struct edma_chan *echan)
583 {
584 struct edma_cc *ecc = echan->ecc;
585 int channel = EDMA_CHAN_SLOT(echan->ch_num);
586 int idx = EDMA_REG_ARRAY_INDEX(channel);
587 int ch_bit = EDMA_CHANNEL_BIT(channel);
588
589 edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit);
590 edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
591 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
592 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
593
594 /* clear possibly pending completion interrupt */
595 edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
596
597 dev_dbg(ecc->dev, "EER%d %08x\n", idx,
598 edma_shadow0_read_array(ecc, SH_EER, idx));
599
600 /* REVISIT: consider guarding against inappropriate event
601 * chaining by overwriting with dummy_paramset.
602 */
603 }
604
605 /*
606 * Temporarily disable EDMA hardware events on the specified channel,
607 * preventing them from triggering new transfers
608 */
edma_pause(struct edma_chan * echan)609 static void edma_pause(struct edma_chan *echan)
610 {
611 int channel = EDMA_CHAN_SLOT(echan->ch_num);
612
613 edma_shadow0_write_array(echan->ecc, SH_EECR,
614 EDMA_REG_ARRAY_INDEX(channel),
615 EDMA_CHANNEL_BIT(channel));
616 }
617
618 /* Re-enable EDMA hardware events on the specified channel. */
edma_resume(struct edma_chan * echan)619 static void edma_resume(struct edma_chan *echan)
620 {
621 int channel = EDMA_CHAN_SLOT(echan->ch_num);
622
623 edma_shadow0_write_array(echan->ecc, SH_EESR,
624 EDMA_REG_ARRAY_INDEX(channel),
625 EDMA_CHANNEL_BIT(channel));
626 }
627
edma_trigger_channel(struct edma_chan * echan)628 static void edma_trigger_channel(struct edma_chan *echan)
629 {
630 struct edma_cc *ecc = echan->ecc;
631 int channel = EDMA_CHAN_SLOT(echan->ch_num);
632 int idx = EDMA_REG_ARRAY_INDEX(channel);
633 int ch_bit = EDMA_CHANNEL_BIT(channel);
634
635 edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
636
637 dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
638 edma_shadow0_read_array(ecc, SH_ESR, idx));
639 }
640
edma_clean_channel(struct edma_chan * echan)641 static void edma_clean_channel(struct edma_chan *echan)
642 {
643 struct edma_cc *ecc = echan->ecc;
644 int channel = EDMA_CHAN_SLOT(echan->ch_num);
645 int idx = EDMA_REG_ARRAY_INDEX(channel);
646 int ch_bit = EDMA_CHANNEL_BIT(channel);
647
648 dev_dbg(ecc->dev, "EMR%d %08x\n", idx,
649 edma_read_array(ecc, EDMA_EMR, idx));
650 edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
651 /* Clear the corresponding EMR bits */
652 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
653 /* Clear any SER */
654 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
655 edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
656 }
657
658 /* Move channel to a specific event queue */
edma_assign_channel_eventq(struct edma_chan * echan,enum dma_event_q eventq_no)659 static void edma_assign_channel_eventq(struct edma_chan *echan,
660 enum dma_event_q eventq_no)
661 {
662 struct edma_cc *ecc = echan->ecc;
663 int channel = EDMA_CHAN_SLOT(echan->ch_num);
664 int bit = (channel & 0x7) * 4;
665
666 /* default to low priority queue */
667 if (eventq_no == EVENTQ_DEFAULT)
668 eventq_no = ecc->default_queue;
669 if (eventq_no >= ecc->num_tc)
670 return;
671
672 eventq_no &= 7;
673 edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
674 eventq_no << bit);
675 }
676
edma_alloc_channel(struct edma_chan * echan,enum dma_event_q eventq_no)677 static int edma_alloc_channel(struct edma_chan *echan,
678 enum dma_event_q eventq_no)
679 {
680 struct edma_cc *ecc = echan->ecc;
681 int channel = EDMA_CHAN_SLOT(echan->ch_num);
682
683 if (!test_bit(echan->ch_num, ecc->channels_mask)) {
684 dev_err(ecc->dev, "Channel%d is reserved, can not be used!\n",
685 echan->ch_num);
686 return -EINVAL;
687 }
688
689 /* ensure access through shadow region 0 */
690 edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel),
691 EDMA_CHANNEL_BIT(channel));
692
693 /* ensure no events are pending */
694 edma_stop(echan);
695
696 edma_setup_interrupt(echan, true);
697
698 edma_assign_channel_eventq(echan, eventq_no);
699
700 return 0;
701 }
702
edma_free_channel(struct edma_chan * echan)703 static void edma_free_channel(struct edma_chan *echan)
704 {
705 /* ensure no events are pending */
706 edma_stop(echan);
707 /* REVISIT should probably take out of shadow region 0 */
708 edma_setup_interrupt(echan, false);
709 }
710
to_edma_chan(struct dma_chan * c)711 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
712 {
713 return container_of(c, struct edma_chan, vchan.chan);
714 }
715
to_edma_desc(struct dma_async_tx_descriptor * tx)716 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
717 {
718 return container_of(tx, struct edma_desc, vdesc.tx);
719 }
720
edma_desc_free(struct virt_dma_desc * vdesc)721 static void edma_desc_free(struct virt_dma_desc *vdesc)
722 {
723 kfree(container_of(vdesc, struct edma_desc, vdesc));
724 }
725
726 /* Dispatch a queued descriptor to the controller (caller holds lock) */
edma_execute(struct edma_chan * echan)727 static void edma_execute(struct edma_chan *echan)
728 {
729 struct edma_cc *ecc = echan->ecc;
730 struct virt_dma_desc *vdesc;
731 struct edma_desc *edesc;
732 struct device *dev = echan->vchan.chan.device->dev;
733 int i, j, left, nslots;
734
735 if (!echan->edesc) {
736 /* Setup is needed for the first transfer */
737 vdesc = vchan_next_desc(&echan->vchan);
738 if (!vdesc)
739 return;
740 list_del(&vdesc->node);
741 echan->edesc = to_edma_desc(&vdesc->tx);
742 }
743
744 edesc = echan->edesc;
745
746 /* Find out how many left */
747 left = edesc->pset_nr - edesc->processed;
748 nslots = min(MAX_NR_SG, left);
749 edesc->sg_len = 0;
750
751 /* Write descriptor PaRAM set(s) */
752 for (i = 0; i < nslots; i++) {
753 j = i + edesc->processed;
754 edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
755 edesc->sg_len += edesc->pset[j].len;
756 dev_vdbg(dev,
757 "\n pset[%d]:\n"
758 " chnum\t%d\n"
759 " slot\t%d\n"
760 " opt\t%08x\n"
761 " src\t%08x\n"
762 " dst\t%08x\n"
763 " abcnt\t%08x\n"
764 " ccnt\t%08x\n"
765 " bidx\t%08x\n"
766 " cidx\t%08x\n"
767 " lkrld\t%08x\n",
768 j, echan->ch_num, echan->slot[i],
769 edesc->pset[j].param.opt,
770 edesc->pset[j].param.src,
771 edesc->pset[j].param.dst,
772 edesc->pset[j].param.a_b_cnt,
773 edesc->pset[j].param.ccnt,
774 edesc->pset[j].param.src_dst_bidx,
775 edesc->pset[j].param.src_dst_cidx,
776 edesc->pset[j].param.link_bcntrld);
777 /* Link to the previous slot if not the last set */
778 if (i != (nslots - 1))
779 edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
780 }
781
782 edesc->processed += nslots;
783
784 /*
785 * If this is either the last set in a set of SG-list transactions
786 * then setup a link to the dummy slot, this results in all future
787 * events being absorbed and that's OK because we're done
788 */
789 if (edesc->processed == edesc->pset_nr) {
790 if (edesc->cyclic)
791 edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
792 else
793 edma_link(ecc, echan->slot[nslots - 1],
794 echan->ecc->dummy_slot);
795 }
796
797 if (echan->missed) {
798 /*
799 * This happens due to setup times between intermediate
800 * transfers in long SG lists which have to be broken up into
801 * transfers of MAX_NR_SG
802 */
803 dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
804 edma_clean_channel(echan);
805 edma_stop(echan);
806 edma_start(echan);
807 edma_trigger_channel(echan);
808 echan->missed = 0;
809 } else if (edesc->processed <= MAX_NR_SG) {
810 dev_dbg(dev, "first transfer starting on channel %d\n",
811 echan->ch_num);
812 edma_start(echan);
813 } else {
814 dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
815 echan->ch_num, edesc->processed);
816 edma_resume(echan);
817 }
818 }
819
edma_terminate_all(struct dma_chan * chan)820 static int edma_terminate_all(struct dma_chan *chan)
821 {
822 struct edma_chan *echan = to_edma_chan(chan);
823 unsigned long flags;
824 LIST_HEAD(head);
825
826 spin_lock_irqsave(&echan->vchan.lock, flags);
827
828 /*
829 * Stop DMA activity: we assume the callback will not be called
830 * after edma_dma() returns (even if it does, it will see
831 * echan->edesc is NULL and exit.)
832 */
833 if (echan->edesc) {
834 edma_stop(echan);
835 /* Move the cyclic channel back to default queue */
836 if (!echan->tc && echan->edesc->cyclic)
837 edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
838
839 vchan_terminate_vdesc(&echan->edesc->vdesc);
840 echan->edesc = NULL;
841 }
842
843 vchan_get_all_descriptors(&echan->vchan, &head);
844 spin_unlock_irqrestore(&echan->vchan.lock, flags);
845 vchan_dma_desc_free_list(&echan->vchan, &head);
846
847 return 0;
848 }
849
edma_synchronize(struct dma_chan * chan)850 static void edma_synchronize(struct dma_chan *chan)
851 {
852 struct edma_chan *echan = to_edma_chan(chan);
853
854 vchan_synchronize(&echan->vchan);
855 }
856
edma_slave_config(struct dma_chan * chan,struct dma_slave_config * cfg)857 static int edma_slave_config(struct dma_chan *chan,
858 struct dma_slave_config *cfg)
859 {
860 struct edma_chan *echan = to_edma_chan(chan);
861
862 if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
863 cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
864 return -EINVAL;
865
866 if (cfg->src_maxburst > chan->device->max_burst ||
867 cfg->dst_maxburst > chan->device->max_burst)
868 return -EINVAL;
869
870 memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
871
872 return 0;
873 }
874
edma_dma_pause(struct dma_chan * chan)875 static int edma_dma_pause(struct dma_chan *chan)
876 {
877 struct edma_chan *echan = to_edma_chan(chan);
878
879 if (!echan->edesc)
880 return -EINVAL;
881
882 edma_pause(echan);
883 return 0;
884 }
885
edma_dma_resume(struct dma_chan * chan)886 static int edma_dma_resume(struct dma_chan *chan)
887 {
888 struct edma_chan *echan = to_edma_chan(chan);
889
890 edma_resume(echan);
891 return 0;
892 }
893
894 /*
895 * A PaRAM set configuration abstraction used by other modes
896 * @chan: Channel who's PaRAM set we're configuring
897 * @pset: PaRAM set to initialize and setup.
898 * @src_addr: Source address of the DMA
899 * @dst_addr: Destination address of the DMA
900 * @burst: In units of dev_width, how much to send
901 * @dev_width: How much is the dev_width
902 * @dma_length: Total length of the DMA transfer
903 * @direction: Direction of the transfer
904 */
edma_config_pset(struct dma_chan * chan,struct edma_pset * epset,dma_addr_t src_addr,dma_addr_t dst_addr,u32 burst,unsigned int acnt,unsigned int dma_length,enum dma_transfer_direction direction)905 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
906 dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
907 unsigned int acnt, unsigned int dma_length,
908 enum dma_transfer_direction direction)
909 {
910 struct edma_chan *echan = to_edma_chan(chan);
911 struct device *dev = chan->device->dev;
912 struct edmacc_param *param = &epset->param;
913 int bcnt, ccnt, cidx;
914 int src_bidx, dst_bidx, src_cidx, dst_cidx;
915 int absync;
916
917 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
918 if (!burst)
919 burst = 1;
920 /*
921 * If the maxburst is equal to the fifo width, use
922 * A-synced transfers. This allows for large contiguous
923 * buffer transfers using only one PaRAM set.
924 */
925 if (burst == 1) {
926 /*
927 * For the A-sync case, bcnt and ccnt are the remainder
928 * and quotient respectively of the division of:
929 * (dma_length / acnt) by (SZ_64K -1). This is so
930 * that in case bcnt over flows, we have ccnt to use.
931 * Note: In A-sync transfer only, bcntrld is used, but it
932 * only applies for sg_dma_len(sg) >= SZ_64K.
933 * In this case, the best way adopted is- bccnt for the
934 * first frame will be the remainder below. Then for
935 * every successive frame, bcnt will be SZ_64K-1. This
936 * is assured as bcntrld = 0xffff in end of function.
937 */
938 absync = false;
939 ccnt = dma_length / acnt / (SZ_64K - 1);
940 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
941 /*
942 * If bcnt is non-zero, we have a remainder and hence an
943 * extra frame to transfer, so increment ccnt.
944 */
945 if (bcnt)
946 ccnt++;
947 else
948 bcnt = SZ_64K - 1;
949 cidx = acnt;
950 } else {
951 /*
952 * If maxburst is greater than the fifo address_width,
953 * use AB-synced transfers where A count is the fifo
954 * address_width and B count is the maxburst. In this
955 * case, we are limited to transfers of C count frames
956 * of (address_width * maxburst) where C count is limited
957 * to SZ_64K-1. This places an upper bound on the length
958 * of an SG segment that can be handled.
959 */
960 absync = true;
961 bcnt = burst;
962 ccnt = dma_length / (acnt * bcnt);
963 if (ccnt > (SZ_64K - 1)) {
964 dev_err(dev, "Exceeded max SG segment size\n");
965 return -EINVAL;
966 }
967 cidx = acnt * bcnt;
968 }
969
970 epset->len = dma_length;
971
972 if (direction == DMA_MEM_TO_DEV) {
973 src_bidx = acnt;
974 src_cidx = cidx;
975 dst_bidx = 0;
976 dst_cidx = 0;
977 epset->addr = src_addr;
978 } else if (direction == DMA_DEV_TO_MEM) {
979 src_bidx = 0;
980 src_cidx = 0;
981 dst_bidx = acnt;
982 dst_cidx = cidx;
983 epset->addr = dst_addr;
984 } else if (direction == DMA_MEM_TO_MEM) {
985 src_bidx = acnt;
986 src_cidx = cidx;
987 dst_bidx = acnt;
988 dst_cidx = cidx;
989 epset->addr = src_addr;
990 } else {
991 dev_err(dev, "%s: direction not implemented yet\n", __func__);
992 return -EINVAL;
993 }
994
995 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
996 /* Configure A or AB synchronized transfers */
997 if (absync)
998 param->opt |= SYNCDIM;
999
1000 param->src = src_addr;
1001 param->dst = dst_addr;
1002
1003 param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1004 param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1005
1006 param->a_b_cnt = bcnt << 16 | acnt;
1007 param->ccnt = ccnt;
1008 /*
1009 * Only time when (bcntrld) auto reload is required is for
1010 * A-sync case, and in this case, a requirement of reload value
1011 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1012 * and then later will be populated by edma_execute.
1013 */
1014 param->link_bcntrld = 0xffffffff;
1015 return absync;
1016 }
1017
edma_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long tx_flags,void * context)1018 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1019 struct dma_chan *chan, struct scatterlist *sgl,
1020 unsigned int sg_len, enum dma_transfer_direction direction,
1021 unsigned long tx_flags, void *context)
1022 {
1023 struct edma_chan *echan = to_edma_chan(chan);
1024 struct device *dev = chan->device->dev;
1025 struct edma_desc *edesc;
1026 dma_addr_t src_addr = 0, dst_addr = 0;
1027 enum dma_slave_buswidth dev_width;
1028 u32 burst;
1029 struct scatterlist *sg;
1030 int i, nslots, ret;
1031
1032 if (unlikely(!echan || !sgl || !sg_len))
1033 return NULL;
1034
1035 if (direction == DMA_DEV_TO_MEM) {
1036 src_addr = echan->cfg.src_addr;
1037 dev_width = echan->cfg.src_addr_width;
1038 burst = echan->cfg.src_maxburst;
1039 } else if (direction == DMA_MEM_TO_DEV) {
1040 dst_addr = echan->cfg.dst_addr;
1041 dev_width = echan->cfg.dst_addr_width;
1042 burst = echan->cfg.dst_maxburst;
1043 } else {
1044 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1045 return NULL;
1046 }
1047
1048 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1049 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1050 return NULL;
1051 }
1052
1053 edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC);
1054 if (!edesc)
1055 return NULL;
1056
1057 edesc->pset_nr = sg_len;
1058 edesc->residue = 0;
1059 edesc->direction = direction;
1060 edesc->echan = echan;
1061
1062 /* Allocate a PaRAM slot, if needed */
1063 nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1064
1065 for (i = 0; i < nslots; i++) {
1066 if (echan->slot[i] < 0) {
1067 echan->slot[i] =
1068 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1069 if (echan->slot[i] < 0) {
1070 kfree(edesc);
1071 dev_err(dev, "%s: Failed to allocate slot\n",
1072 __func__);
1073 return NULL;
1074 }
1075 }
1076 }
1077
1078 /* Configure PaRAM sets for each SG */
1079 for_each_sg(sgl, sg, sg_len, i) {
1080 /* Get address for each SG */
1081 if (direction == DMA_DEV_TO_MEM)
1082 dst_addr = sg_dma_address(sg);
1083 else
1084 src_addr = sg_dma_address(sg);
1085
1086 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1087 dst_addr, burst, dev_width,
1088 sg_dma_len(sg), direction);
1089 if (ret < 0) {
1090 kfree(edesc);
1091 return NULL;
1092 }
1093
1094 edesc->absync = ret;
1095 edesc->residue += sg_dma_len(sg);
1096
1097 if (i == sg_len - 1)
1098 /* Enable completion interrupt */
1099 edesc->pset[i].param.opt |= TCINTEN;
1100 else if (!((i+1) % MAX_NR_SG))
1101 /*
1102 * Enable early completion interrupt for the
1103 * intermediateset. In this case the driver will be
1104 * notified when the paRAM set is submitted to TC. This
1105 * will allow more time to set up the next set of slots.
1106 */
1107 edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1108 }
1109 edesc->residue_stat = edesc->residue;
1110
1111 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1112 }
1113
edma_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long tx_flags)1114 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1115 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1116 size_t len, unsigned long tx_flags)
1117 {
1118 int ret, nslots;
1119 struct edma_desc *edesc;
1120 struct device *dev = chan->device->dev;
1121 struct edma_chan *echan = to_edma_chan(chan);
1122 unsigned int width, pset_len, array_size;
1123
1124 if (unlikely(!echan || !len))
1125 return NULL;
1126
1127 /* Align the array size (acnt block) with the transfer properties */
1128 switch (__ffs((src | dest | len))) {
1129 case 0:
1130 array_size = SZ_32K - 1;
1131 break;
1132 case 1:
1133 array_size = SZ_32K - 2;
1134 break;
1135 default:
1136 array_size = SZ_32K - 4;
1137 break;
1138 }
1139
1140 if (len < SZ_64K) {
1141 /*
1142 * Transfer size less than 64K can be handled with one paRAM
1143 * slot and with one burst.
1144 * ACNT = length
1145 */
1146 width = len;
1147 pset_len = len;
1148 nslots = 1;
1149 } else {
1150 /*
1151 * Transfer size bigger than 64K will be handled with maximum of
1152 * two paRAM slots.
1153 * slot1: (full_length / 32767) times 32767 bytes bursts.
1154 * ACNT = 32767, length1: (full_length / 32767) * 32767
1155 * slot2: the remaining amount of data after slot1.
1156 * ACNT = full_length - length1, length2 = ACNT
1157 *
1158 * When the full_length is a multiple of 32767 one slot can be
1159 * used to complete the transfer.
1160 */
1161 width = array_size;
1162 pset_len = rounddown(len, width);
1163 /* One slot is enough for lengths multiple of (SZ_32K -1) */
1164 if (unlikely(pset_len == len))
1165 nslots = 1;
1166 else
1167 nslots = 2;
1168 }
1169
1170 edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1171 if (!edesc)
1172 return NULL;
1173
1174 edesc->pset_nr = nslots;
1175 edesc->residue = edesc->residue_stat = len;
1176 edesc->direction = DMA_MEM_TO_MEM;
1177 edesc->echan = echan;
1178
1179 ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1180 width, pset_len, DMA_MEM_TO_MEM);
1181 if (ret < 0) {
1182 kfree(edesc);
1183 return NULL;
1184 }
1185
1186 edesc->absync = ret;
1187
1188 edesc->pset[0].param.opt |= ITCCHEN;
1189 if (nslots == 1) {
1190 /* Enable transfer complete interrupt if requested */
1191 if (tx_flags & DMA_PREP_INTERRUPT)
1192 edesc->pset[0].param.opt |= TCINTEN;
1193 } else {
1194 /* Enable transfer complete chaining for the first slot */
1195 edesc->pset[0].param.opt |= TCCHEN;
1196
1197 if (echan->slot[1] < 0) {
1198 echan->slot[1] = edma_alloc_slot(echan->ecc,
1199 EDMA_SLOT_ANY);
1200 if (echan->slot[1] < 0) {
1201 kfree(edesc);
1202 dev_err(dev, "%s: Failed to allocate slot\n",
1203 __func__);
1204 return NULL;
1205 }
1206 }
1207 dest += pset_len;
1208 src += pset_len;
1209 pset_len = width = len % array_size;
1210
1211 ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1212 width, pset_len, DMA_MEM_TO_MEM);
1213 if (ret < 0) {
1214 kfree(edesc);
1215 return NULL;
1216 }
1217
1218 edesc->pset[1].param.opt |= ITCCHEN;
1219 /* Enable transfer complete interrupt if requested */
1220 if (tx_flags & DMA_PREP_INTERRUPT)
1221 edesc->pset[1].param.opt |= TCINTEN;
1222 }
1223
1224 if (!(tx_flags & DMA_PREP_INTERRUPT))
1225 edesc->polled = true;
1226
1227 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1228 }
1229
1230 static struct dma_async_tx_descriptor *
edma_prep_dma_interleaved(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long tx_flags)1231 edma_prep_dma_interleaved(struct dma_chan *chan,
1232 struct dma_interleaved_template *xt,
1233 unsigned long tx_flags)
1234 {
1235 struct device *dev = chan->device->dev;
1236 struct edma_chan *echan = to_edma_chan(chan);
1237 struct edmacc_param *param;
1238 struct edma_desc *edesc;
1239 size_t src_icg, dst_icg;
1240 int src_bidx, dst_bidx;
1241
1242 /* Slave mode is not supported */
1243 if (is_slave_direction(xt->dir))
1244 return NULL;
1245
1246 if (xt->frame_size != 1 || xt->numf == 0)
1247 return NULL;
1248
1249 if (xt->sgl[0].size > SZ_64K || xt->numf > SZ_64K)
1250 return NULL;
1251
1252 src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
1253 if (src_icg) {
1254 src_bidx = src_icg + xt->sgl[0].size;
1255 } else if (xt->src_inc) {
1256 src_bidx = xt->sgl[0].size;
1257 } else {
1258 dev_err(dev, "%s: SRC constant addressing is not supported\n",
1259 __func__);
1260 return NULL;
1261 }
1262
1263 dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
1264 if (dst_icg) {
1265 dst_bidx = dst_icg + xt->sgl[0].size;
1266 } else if (xt->dst_inc) {
1267 dst_bidx = xt->sgl[0].size;
1268 } else {
1269 dev_err(dev, "%s: DST constant addressing is not supported\n",
1270 __func__);
1271 return NULL;
1272 }
1273
1274 if (src_bidx > SZ_64K || dst_bidx > SZ_64K)
1275 return NULL;
1276
1277 edesc = kzalloc(struct_size(edesc, pset, 1), GFP_ATOMIC);
1278 if (!edesc)
1279 return NULL;
1280
1281 edesc->direction = DMA_MEM_TO_MEM;
1282 edesc->echan = echan;
1283 edesc->pset_nr = 1;
1284
1285 param = &edesc->pset[0].param;
1286
1287 param->src = xt->src_start;
1288 param->dst = xt->dst_start;
1289 param->a_b_cnt = xt->numf << 16 | xt->sgl[0].size;
1290 param->ccnt = 1;
1291 param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1292 param->src_dst_cidx = 0;
1293
1294 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1295 param->opt |= ITCCHEN;
1296 /* Enable transfer complete interrupt if requested */
1297 if (tx_flags & DMA_PREP_INTERRUPT)
1298 param->opt |= TCINTEN;
1299 else
1300 edesc->polled = true;
1301
1302 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1303 }
1304
edma_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long tx_flags)1305 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1306 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1307 size_t period_len, enum dma_transfer_direction direction,
1308 unsigned long tx_flags)
1309 {
1310 struct edma_chan *echan = to_edma_chan(chan);
1311 struct device *dev = chan->device->dev;
1312 struct edma_desc *edesc;
1313 dma_addr_t src_addr, dst_addr;
1314 enum dma_slave_buswidth dev_width;
1315 bool use_intermediate = false;
1316 u32 burst;
1317 int i, ret, nslots;
1318
1319 if (unlikely(!echan || !buf_len || !period_len))
1320 return NULL;
1321
1322 if (direction == DMA_DEV_TO_MEM) {
1323 src_addr = echan->cfg.src_addr;
1324 dst_addr = buf_addr;
1325 dev_width = echan->cfg.src_addr_width;
1326 burst = echan->cfg.src_maxburst;
1327 } else if (direction == DMA_MEM_TO_DEV) {
1328 src_addr = buf_addr;
1329 dst_addr = echan->cfg.dst_addr;
1330 dev_width = echan->cfg.dst_addr_width;
1331 burst = echan->cfg.dst_maxburst;
1332 } else {
1333 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1334 return NULL;
1335 }
1336
1337 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1338 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1339 return NULL;
1340 }
1341
1342 if (unlikely(buf_len % period_len)) {
1343 dev_err(dev, "Period should be multiple of Buffer length\n");
1344 return NULL;
1345 }
1346
1347 nslots = (buf_len / period_len) + 1;
1348
1349 /*
1350 * Cyclic DMA users such as audio cannot tolerate delays introduced
1351 * by cases where the number of periods is more than the maximum
1352 * number of SGs the EDMA driver can handle at a time. For DMA types
1353 * such as Slave SGs, such delays are tolerable and synchronized,
1354 * but the synchronization is difficult to achieve with Cyclic and
1355 * cannot be guaranteed, so we error out early.
1356 */
1357 if (nslots > MAX_NR_SG) {
1358 /*
1359 * If the burst and period sizes are the same, we can put
1360 * the full buffer into a single period and activate
1361 * intermediate interrupts. This will produce interrupts
1362 * after each burst, which is also after each desired period.
1363 */
1364 if (burst == period_len) {
1365 period_len = buf_len;
1366 nslots = 2;
1367 use_intermediate = true;
1368 } else {
1369 return NULL;
1370 }
1371 }
1372
1373 edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1374 if (!edesc)
1375 return NULL;
1376
1377 edesc->cyclic = 1;
1378 edesc->pset_nr = nslots;
1379 edesc->residue = edesc->residue_stat = buf_len;
1380 edesc->direction = direction;
1381 edesc->echan = echan;
1382
1383 dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1384 __func__, echan->ch_num, nslots, period_len, buf_len);
1385
1386 for (i = 0; i < nslots; i++) {
1387 /* Allocate a PaRAM slot, if needed */
1388 if (echan->slot[i] < 0) {
1389 echan->slot[i] =
1390 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1391 if (echan->slot[i] < 0) {
1392 kfree(edesc);
1393 dev_err(dev, "%s: Failed to allocate slot\n",
1394 __func__);
1395 return NULL;
1396 }
1397 }
1398
1399 if (i == nslots - 1) {
1400 memcpy(&edesc->pset[i], &edesc->pset[0],
1401 sizeof(edesc->pset[0]));
1402 break;
1403 }
1404
1405 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1406 dst_addr, burst, dev_width, period_len,
1407 direction);
1408 if (ret < 0) {
1409 kfree(edesc);
1410 return NULL;
1411 }
1412
1413 if (direction == DMA_DEV_TO_MEM)
1414 dst_addr += period_len;
1415 else
1416 src_addr += period_len;
1417
1418 dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1419 dev_vdbg(dev,
1420 "\n pset[%d]:\n"
1421 " chnum\t%d\n"
1422 " slot\t%d\n"
1423 " opt\t%08x\n"
1424 " src\t%08x\n"
1425 " dst\t%08x\n"
1426 " abcnt\t%08x\n"
1427 " ccnt\t%08x\n"
1428 " bidx\t%08x\n"
1429 " cidx\t%08x\n"
1430 " lkrld\t%08x\n",
1431 i, echan->ch_num, echan->slot[i],
1432 edesc->pset[i].param.opt,
1433 edesc->pset[i].param.src,
1434 edesc->pset[i].param.dst,
1435 edesc->pset[i].param.a_b_cnt,
1436 edesc->pset[i].param.ccnt,
1437 edesc->pset[i].param.src_dst_bidx,
1438 edesc->pset[i].param.src_dst_cidx,
1439 edesc->pset[i].param.link_bcntrld);
1440
1441 edesc->absync = ret;
1442
1443 /*
1444 * Enable period interrupt only if it is requested
1445 */
1446 if (tx_flags & DMA_PREP_INTERRUPT) {
1447 edesc->pset[i].param.opt |= TCINTEN;
1448
1449 /* Also enable intermediate interrupts if necessary */
1450 if (use_intermediate)
1451 edesc->pset[i].param.opt |= ITCINTEN;
1452 }
1453 }
1454
1455 /* Place the cyclic channel to highest priority queue */
1456 if (!echan->tc)
1457 edma_assign_channel_eventq(echan, EVENTQ_0);
1458
1459 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1460 }
1461
edma_completion_handler(struct edma_chan * echan)1462 static void edma_completion_handler(struct edma_chan *echan)
1463 {
1464 struct device *dev = echan->vchan.chan.device->dev;
1465 struct edma_desc *edesc;
1466
1467 spin_lock(&echan->vchan.lock);
1468 edesc = echan->edesc;
1469 if (edesc) {
1470 if (edesc->cyclic) {
1471 vchan_cyclic_callback(&edesc->vdesc);
1472 spin_unlock(&echan->vchan.lock);
1473 return;
1474 } else if (edesc->processed == edesc->pset_nr) {
1475 edesc->residue = 0;
1476 edma_stop(echan);
1477 vchan_cookie_complete(&edesc->vdesc);
1478 echan->edesc = NULL;
1479
1480 dev_dbg(dev, "Transfer completed on channel %d\n",
1481 echan->ch_num);
1482 } else {
1483 dev_dbg(dev, "Sub transfer completed on channel %d\n",
1484 echan->ch_num);
1485
1486 edma_pause(echan);
1487
1488 /* Update statistics for tx_status */
1489 edesc->residue -= edesc->sg_len;
1490 edesc->residue_stat = edesc->residue;
1491 edesc->processed_stat = edesc->processed;
1492 }
1493 edma_execute(echan);
1494 }
1495
1496 spin_unlock(&echan->vchan.lock);
1497 }
1498
1499 /* eDMA interrupt handler */
dma_irq_handler(int irq,void * data)1500 static irqreturn_t dma_irq_handler(int irq, void *data)
1501 {
1502 struct edma_cc *ecc = data;
1503 int ctlr;
1504 u32 sh_ier;
1505 u32 sh_ipr;
1506 u32 bank;
1507
1508 ctlr = ecc->id;
1509 if (ctlr < 0)
1510 return IRQ_NONE;
1511
1512 dev_vdbg(ecc->dev, "dma_irq_handler\n");
1513
1514 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1515 if (!sh_ipr) {
1516 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1517 if (!sh_ipr)
1518 return IRQ_NONE;
1519 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1520 bank = 1;
1521 } else {
1522 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1523 bank = 0;
1524 }
1525
1526 do {
1527 u32 slot;
1528 u32 channel;
1529
1530 slot = __ffs(sh_ipr);
1531 sh_ipr &= ~(BIT(slot));
1532
1533 if (sh_ier & BIT(slot)) {
1534 channel = (bank << 5) | slot;
1535 /* Clear the corresponding IPR bits */
1536 edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1537 edma_completion_handler(&ecc->slave_chans[channel]);
1538 }
1539 } while (sh_ipr);
1540
1541 edma_shadow0_write(ecc, SH_IEVAL, 1);
1542 return IRQ_HANDLED;
1543 }
1544
edma_error_handler(struct edma_chan * echan)1545 static void edma_error_handler(struct edma_chan *echan)
1546 {
1547 struct edma_cc *ecc = echan->ecc;
1548 struct device *dev = echan->vchan.chan.device->dev;
1549 struct edmacc_param p;
1550 int err;
1551
1552 if (!echan->edesc)
1553 return;
1554
1555 spin_lock(&echan->vchan.lock);
1556
1557 err = edma_read_slot(ecc, echan->slot[0], &p);
1558
1559 /*
1560 * Issue later based on missed flag which will be sure
1561 * to happen as:
1562 * (1) we finished transmitting an intermediate slot and
1563 * edma_execute is coming up.
1564 * (2) or we finished current transfer and issue will
1565 * call edma_execute.
1566 *
1567 * Important note: issuing can be dangerous here and
1568 * lead to some nasty recursion when we are in a NULL
1569 * slot. So we avoid doing so and set the missed flag.
1570 */
1571 if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
1572 dev_dbg(dev, "Error on null slot, setting miss\n");
1573 echan->missed = 1;
1574 } else {
1575 /*
1576 * The slot is already programmed but the event got
1577 * missed, so its safe to issue it here.
1578 */
1579 dev_dbg(dev, "Missed event, TRIGGERING\n");
1580 edma_clean_channel(echan);
1581 edma_stop(echan);
1582 edma_start(echan);
1583 edma_trigger_channel(echan);
1584 }
1585 spin_unlock(&echan->vchan.lock);
1586 }
1587
edma_error_pending(struct edma_cc * ecc)1588 static inline bool edma_error_pending(struct edma_cc *ecc)
1589 {
1590 if (edma_read_array(ecc, EDMA_EMR, 0) ||
1591 edma_read_array(ecc, EDMA_EMR, 1) ||
1592 edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1593 return true;
1594
1595 return false;
1596 }
1597
1598 /* eDMA error interrupt handler */
dma_ccerr_handler(int irq,void * data)1599 static irqreturn_t dma_ccerr_handler(int irq, void *data)
1600 {
1601 struct edma_cc *ecc = data;
1602 int i, j;
1603 int ctlr;
1604 unsigned int cnt = 0;
1605 unsigned int val;
1606
1607 ctlr = ecc->id;
1608 if (ctlr < 0)
1609 return IRQ_NONE;
1610
1611 dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1612
1613 if (!edma_error_pending(ecc)) {
1614 /*
1615 * The registers indicate no pending error event but the irq
1616 * handler has been called.
1617 * Ask eDMA to re-evaluate the error registers.
1618 */
1619 dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
1620 __func__);
1621 edma_write(ecc, EDMA_EEVAL, 1);
1622 return IRQ_NONE;
1623 }
1624
1625 while (1) {
1626 /* Event missed register(s) */
1627 for (j = 0; j < 2; j++) {
1628 unsigned long emr;
1629
1630 val = edma_read_array(ecc, EDMA_EMR, j);
1631 if (!val)
1632 continue;
1633
1634 dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1635 emr = val;
1636 for_each_set_bit(i, &emr, 32) {
1637 int k = (j << 5) + i;
1638
1639 /* Clear the corresponding EMR bits */
1640 edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1641 /* Clear any SER */
1642 edma_shadow0_write_array(ecc, SH_SECR, j,
1643 BIT(i));
1644 edma_error_handler(&ecc->slave_chans[k]);
1645 }
1646 }
1647
1648 val = edma_read(ecc, EDMA_QEMR);
1649 if (val) {
1650 dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1651 /* Not reported, just clear the interrupt reason. */
1652 edma_write(ecc, EDMA_QEMCR, val);
1653 edma_shadow0_write(ecc, SH_QSECR, val);
1654 }
1655
1656 val = edma_read(ecc, EDMA_CCERR);
1657 if (val) {
1658 dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1659 /* Not reported, just clear the interrupt reason. */
1660 edma_write(ecc, EDMA_CCERRCLR, val);
1661 }
1662
1663 if (!edma_error_pending(ecc))
1664 break;
1665 cnt++;
1666 if (cnt > 10)
1667 break;
1668 }
1669 edma_write(ecc, EDMA_EEVAL, 1);
1670 return IRQ_HANDLED;
1671 }
1672
1673 /* Alloc channel resources */
edma_alloc_chan_resources(struct dma_chan * chan)1674 static int edma_alloc_chan_resources(struct dma_chan *chan)
1675 {
1676 struct edma_chan *echan = to_edma_chan(chan);
1677 struct edma_cc *ecc = echan->ecc;
1678 struct device *dev = ecc->dev;
1679 enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1680 int ret;
1681
1682 if (echan->tc) {
1683 eventq_no = echan->tc->id;
1684 } else if (ecc->tc_list) {
1685 /* memcpy channel */
1686 echan->tc = &ecc->tc_list[ecc->info->default_queue];
1687 eventq_no = echan->tc->id;
1688 }
1689
1690 ret = edma_alloc_channel(echan, eventq_no);
1691 if (ret)
1692 return ret;
1693
1694 echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1695 if (echan->slot[0] < 0) {
1696 dev_err(dev, "Entry slot allocation failed for channel %u\n",
1697 EDMA_CHAN_SLOT(echan->ch_num));
1698 ret = echan->slot[0];
1699 goto err_slot;
1700 }
1701
1702 /* Set up channel -> slot mapping for the entry slot */
1703 edma_set_chmap(echan, echan->slot[0]);
1704 echan->alloced = true;
1705
1706 dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1707 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1708 echan->hw_triggered ? "HW" : "SW");
1709
1710 return 0;
1711
1712 err_slot:
1713 edma_free_channel(echan);
1714 return ret;
1715 }
1716
1717 /* Free channel resources */
edma_free_chan_resources(struct dma_chan * chan)1718 static void edma_free_chan_resources(struct dma_chan *chan)
1719 {
1720 struct edma_chan *echan = to_edma_chan(chan);
1721 struct device *dev = echan->ecc->dev;
1722 int i;
1723
1724 /* Terminate transfers */
1725 edma_stop(echan);
1726
1727 vchan_free_chan_resources(&echan->vchan);
1728
1729 /* Free EDMA PaRAM slots */
1730 for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1731 if (echan->slot[i] >= 0) {
1732 edma_free_slot(echan->ecc, echan->slot[i]);
1733 echan->slot[i] = -1;
1734 }
1735 }
1736
1737 /* Set entry slot to the dummy slot */
1738 edma_set_chmap(echan, echan->ecc->dummy_slot);
1739
1740 /* Free EDMA channel */
1741 if (echan->alloced) {
1742 edma_free_channel(echan);
1743 echan->alloced = false;
1744 }
1745
1746 echan->tc = NULL;
1747 echan->hw_triggered = false;
1748
1749 dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1750 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1751 }
1752
1753 /* Send pending descriptor to hardware */
edma_issue_pending(struct dma_chan * chan)1754 static void edma_issue_pending(struct dma_chan *chan)
1755 {
1756 struct edma_chan *echan = to_edma_chan(chan);
1757 unsigned long flags;
1758
1759 spin_lock_irqsave(&echan->vchan.lock, flags);
1760 if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1761 edma_execute(echan);
1762 spin_unlock_irqrestore(&echan->vchan.lock, flags);
1763 }
1764
1765 /*
1766 * This limit exists to avoid a possible infinite loop when waiting for proof
1767 * that a particular transfer is completed. This limit can be hit if there
1768 * are large bursts to/from slow devices or the CPU is never able to catch
1769 * the DMA hardware idle. On an AM335x transferring 48 bytes from the UART
1770 * RX-FIFO, as many as 55 loops have been seen.
1771 */
1772 #define EDMA_MAX_TR_WAIT_LOOPS 1000
1773
edma_residue(struct edma_desc * edesc)1774 static u32 edma_residue(struct edma_desc *edesc)
1775 {
1776 bool dst = edesc->direction == DMA_DEV_TO_MEM;
1777 int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1778 struct edma_chan *echan = edesc->echan;
1779 struct edma_pset *pset = edesc->pset;
1780 dma_addr_t done, pos, pos_old;
1781 int channel = EDMA_CHAN_SLOT(echan->ch_num);
1782 int idx = EDMA_REG_ARRAY_INDEX(channel);
1783 int ch_bit = EDMA_CHANNEL_BIT(channel);
1784 int event_reg;
1785 int i;
1786
1787 /*
1788 * We always read the dst/src position from the first RamPar
1789 * pset. That's the one which is active now.
1790 */
1791 pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1792
1793 /*
1794 * "pos" may represent a transfer request that is still being
1795 * processed by the EDMACC or EDMATC. We will busy wait until
1796 * any one of the situations occurs:
1797 * 1. while and event is pending for the channel
1798 * 2. a position updated
1799 * 3. we hit the loop limit
1800 */
1801 if (is_slave_direction(edesc->direction))
1802 event_reg = SH_ER;
1803 else
1804 event_reg = SH_ESR;
1805
1806 pos_old = pos;
1807 while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) {
1808 pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1809 if (pos != pos_old)
1810 break;
1811
1812 if (!--loop_count) {
1813 dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1814 "%s: timeout waiting for PaRAM update\n",
1815 __func__);
1816 break;
1817 }
1818
1819 cpu_relax();
1820 }
1821
1822 /*
1823 * Cyclic is simple. Just subtract pset[0].addr from pos.
1824 *
1825 * We never update edesc->residue in the cyclic case, so we
1826 * can tell the remaining room to the end of the circular
1827 * buffer.
1828 */
1829 if (edesc->cyclic) {
1830 done = pos - pset->addr;
1831 edesc->residue_stat = edesc->residue - done;
1832 return edesc->residue_stat;
1833 }
1834
1835 /*
1836 * If the position is 0, then EDMA loaded the closing dummy slot, the
1837 * transfer is completed
1838 */
1839 if (!pos)
1840 return 0;
1841 /*
1842 * For SG operation we catch up with the last processed
1843 * status.
1844 */
1845 pset += edesc->processed_stat;
1846
1847 for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1848 /*
1849 * If we are inside this pset address range, we know
1850 * this is the active one. Get the current delta and
1851 * stop walking the psets.
1852 */
1853 if (pos >= pset->addr && pos < pset->addr + pset->len)
1854 return edesc->residue_stat - (pos - pset->addr);
1855
1856 /* Otherwise mark it done and update residue_stat. */
1857 edesc->processed_stat++;
1858 edesc->residue_stat -= pset->len;
1859 }
1860 return edesc->residue_stat;
1861 }
1862
1863 /* Check request completion status */
edma_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)1864 static enum dma_status edma_tx_status(struct dma_chan *chan,
1865 dma_cookie_t cookie,
1866 struct dma_tx_state *txstate)
1867 {
1868 struct edma_chan *echan = to_edma_chan(chan);
1869 struct dma_tx_state txstate_tmp;
1870 enum dma_status ret;
1871 unsigned long flags;
1872
1873 ret = dma_cookie_status(chan, cookie, txstate);
1874
1875 if (ret == DMA_COMPLETE)
1876 return ret;
1877
1878 /* Provide a dummy dma_tx_state for completion checking */
1879 if (!txstate)
1880 txstate = &txstate_tmp;
1881
1882 spin_lock_irqsave(&echan->vchan.lock, flags);
1883 if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
1884 txstate->residue = edma_residue(echan->edesc);
1885 } else {
1886 struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan,
1887 cookie);
1888
1889 if (vdesc)
1890 txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1891 else
1892 txstate->residue = 0;
1893 }
1894
1895 /*
1896 * Mark the cookie completed if the residue is 0 for non cyclic
1897 * transfers
1898 */
1899 if (ret != DMA_COMPLETE && !txstate->residue &&
1900 echan->edesc && echan->edesc->polled &&
1901 echan->edesc->vdesc.tx.cookie == cookie) {
1902 edma_stop(echan);
1903 vchan_cookie_complete(&echan->edesc->vdesc);
1904 echan->edesc = NULL;
1905 edma_execute(echan);
1906 ret = DMA_COMPLETE;
1907 }
1908
1909 spin_unlock_irqrestore(&echan->vchan.lock, flags);
1910
1911 return ret;
1912 }
1913
edma_is_memcpy_channel(int ch_num,s32 * memcpy_channels)1914 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1915 {
1916 if (!memcpy_channels)
1917 return false;
1918 while (*memcpy_channels != -1) {
1919 if (*memcpy_channels == ch_num)
1920 return true;
1921 memcpy_channels++;
1922 }
1923 return false;
1924 }
1925
1926 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1927 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1928 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1929 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1930
edma_dma_init(struct edma_cc * ecc,bool legacy_mode)1931 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1932 {
1933 struct dma_device *s_ddev = &ecc->dma_slave;
1934 struct dma_device *m_ddev = NULL;
1935 s32 *memcpy_channels = ecc->info->memcpy_channels;
1936 int i, j;
1937
1938 dma_cap_zero(s_ddev->cap_mask);
1939 dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1940 dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1941 if (ecc->legacy_mode && !memcpy_channels) {
1942 dev_warn(ecc->dev,
1943 "Legacy memcpy is enabled, things might not work\n");
1944
1945 dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1946 dma_cap_set(DMA_INTERLEAVE, s_ddev->cap_mask);
1947 s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1948 s_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
1949 s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1950 }
1951
1952 s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1953 s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1954 s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1955 s_ddev->device_free_chan_resources = edma_free_chan_resources;
1956 s_ddev->device_issue_pending = edma_issue_pending;
1957 s_ddev->device_tx_status = edma_tx_status;
1958 s_ddev->device_config = edma_slave_config;
1959 s_ddev->device_pause = edma_dma_pause;
1960 s_ddev->device_resume = edma_dma_resume;
1961 s_ddev->device_terminate_all = edma_terminate_all;
1962 s_ddev->device_synchronize = edma_synchronize;
1963
1964 s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1965 s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1966 s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1967 s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1968 s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
1969
1970 s_ddev->dev = ecc->dev;
1971 INIT_LIST_HEAD(&s_ddev->channels);
1972
1973 if (memcpy_channels) {
1974 m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1975 if (!m_ddev) {
1976 dev_warn(ecc->dev, "memcpy is disabled due to OoM\n");
1977 memcpy_channels = NULL;
1978 goto ch_setup;
1979 }
1980 ecc->dma_memcpy = m_ddev;
1981
1982 dma_cap_zero(m_ddev->cap_mask);
1983 dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1984 dma_cap_set(DMA_INTERLEAVE, m_ddev->cap_mask);
1985
1986 m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1987 m_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
1988 m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1989 m_ddev->device_free_chan_resources = edma_free_chan_resources;
1990 m_ddev->device_issue_pending = edma_issue_pending;
1991 m_ddev->device_tx_status = edma_tx_status;
1992 m_ddev->device_config = edma_slave_config;
1993 m_ddev->device_pause = edma_dma_pause;
1994 m_ddev->device_resume = edma_dma_resume;
1995 m_ddev->device_terminate_all = edma_terminate_all;
1996 m_ddev->device_synchronize = edma_synchronize;
1997
1998 m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1999 m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
2000 m_ddev->directions = BIT(DMA_MEM_TO_MEM);
2001 m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2002
2003 m_ddev->dev = ecc->dev;
2004 INIT_LIST_HEAD(&m_ddev->channels);
2005 } else if (!ecc->legacy_mode) {
2006 dev_info(ecc->dev, "memcpy is disabled\n");
2007 }
2008
2009 ch_setup:
2010 for (i = 0; i < ecc->num_channels; i++) {
2011 struct edma_chan *echan = &ecc->slave_chans[i];
2012 echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
2013 echan->ecc = ecc;
2014 echan->vchan.desc_free = edma_desc_free;
2015
2016 if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
2017 vchan_init(&echan->vchan, m_ddev);
2018 else
2019 vchan_init(&echan->vchan, s_ddev);
2020
2021 INIT_LIST_HEAD(&echan->node);
2022 for (j = 0; j < EDMA_MAX_SLOTS; j++)
2023 echan->slot[j] = -1;
2024 }
2025 }
2026
edma_setup_from_hw(struct device * dev,struct edma_soc_info * pdata,struct edma_cc * ecc)2027 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
2028 struct edma_cc *ecc)
2029 {
2030 int i;
2031 u32 value, cccfg;
2032 s8 (*queue_priority_map)[2];
2033
2034 /* Decode the eDMA3 configuration from CCCFG register */
2035 cccfg = edma_read(ecc, EDMA_CCCFG);
2036
2037 value = GET_NUM_REGN(cccfg);
2038 ecc->num_region = BIT(value);
2039
2040 value = GET_NUM_DMACH(cccfg);
2041 ecc->num_channels = BIT(value + 1);
2042
2043 value = GET_NUM_QDMACH(cccfg);
2044 ecc->num_qchannels = value * 2;
2045
2046 value = GET_NUM_PAENTRY(cccfg);
2047 ecc->num_slots = BIT(value + 4);
2048
2049 value = GET_NUM_EVQUE(cccfg);
2050 ecc->num_tc = value + 1;
2051
2052 ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
2053
2054 dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
2055 dev_dbg(dev, "num_region: %u\n", ecc->num_region);
2056 dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
2057 dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
2058 dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
2059 dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
2060 dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
2061
2062 /* Nothing need to be done if queue priority is provided */
2063 if (pdata->queue_priority_mapping)
2064 return 0;
2065
2066 /*
2067 * Configure TC/queue priority as follows:
2068 * Q0 - priority 0
2069 * Q1 - priority 1
2070 * Q2 - priority 2
2071 * ...
2072 * The meaning of priority numbers: 0 highest priority, 7 lowest
2073 * priority. So Q0 is the highest priority queue and the last queue has
2074 * the lowest priority.
2075 */
2076 queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
2077 GFP_KERNEL);
2078 if (!queue_priority_map)
2079 return -ENOMEM;
2080
2081 for (i = 0; i < ecc->num_tc; i++) {
2082 queue_priority_map[i][0] = i;
2083 queue_priority_map[i][1] = i;
2084 }
2085 queue_priority_map[i][0] = -1;
2086 queue_priority_map[i][1] = -1;
2087
2088 pdata->queue_priority_mapping = queue_priority_map;
2089 /* Default queue has the lowest priority */
2090 pdata->default_queue = i - 1;
2091
2092 return 0;
2093 }
2094
2095 #if IS_ENABLED(CONFIG_OF)
edma_xbar_event_map(struct device * dev,struct edma_soc_info * pdata,size_t sz)2096 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
2097 size_t sz)
2098 {
2099 const char pname[] = "ti,edma-xbar-event-map";
2100 struct resource res;
2101 void __iomem *xbar;
2102 s16 (*xbar_chans)[2];
2103 size_t nelm = sz / sizeof(s16);
2104 u32 shift, offset, mux;
2105 int ret, i;
2106
2107 xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
2108 if (!xbar_chans)
2109 return -ENOMEM;
2110
2111 ret = of_address_to_resource(dev->of_node, 1, &res);
2112 if (ret)
2113 return -ENOMEM;
2114
2115 xbar = devm_ioremap(dev, res.start, resource_size(&res));
2116 if (!xbar)
2117 return -ENOMEM;
2118
2119 ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
2120 nelm);
2121 if (ret)
2122 return -EIO;
2123
2124 /* Invalidate last entry for the other user of this mess */
2125 nelm >>= 1;
2126 xbar_chans[nelm][0] = -1;
2127 xbar_chans[nelm][1] = -1;
2128
2129 for (i = 0; i < nelm; i++) {
2130 shift = (xbar_chans[i][1] & 0x03) << 3;
2131 offset = xbar_chans[i][1] & 0xfffffffc;
2132 mux = readl(xbar + offset);
2133 mux &= ~(0xff << shift);
2134 mux |= xbar_chans[i][0] << shift;
2135 writel(mux, (xbar + offset));
2136 }
2137
2138 pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2139 return 0;
2140 }
2141
edma_setup_info_from_dt(struct device * dev,bool legacy_mode)2142 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2143 bool legacy_mode)
2144 {
2145 struct edma_soc_info *info;
2146 struct property *prop;
2147 int sz, ret;
2148
2149 info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2150 if (!info)
2151 return ERR_PTR(-ENOMEM);
2152
2153 if (legacy_mode) {
2154 prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2155 &sz);
2156 if (prop) {
2157 ret = edma_xbar_event_map(dev, info, sz);
2158 if (ret)
2159 return ERR_PTR(ret);
2160 }
2161 return info;
2162 }
2163
2164 /* Get the list of channels allocated to be used for memcpy */
2165 prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2166 if (prop) {
2167 const char pname[] = "ti,edma-memcpy-channels";
2168 size_t nelm = sz / sizeof(s32);
2169 s32 *memcpy_ch;
2170
2171 memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2172 GFP_KERNEL);
2173 if (!memcpy_ch)
2174 return ERR_PTR(-ENOMEM);
2175
2176 ret = of_property_read_u32_array(dev->of_node, pname,
2177 (u32 *)memcpy_ch, nelm);
2178 if (ret)
2179 return ERR_PTR(ret);
2180
2181 memcpy_ch[nelm] = -1;
2182 info->memcpy_channels = memcpy_ch;
2183 }
2184
2185 prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2186 &sz);
2187 if (prop) {
2188 const char pname[] = "ti,edma-reserved-slot-ranges";
2189 u32 (*tmp)[2];
2190 s16 (*rsv_slots)[2];
2191 size_t nelm = sz / sizeof(*tmp);
2192 struct edma_rsv_info *rsv_info;
2193 int i;
2194
2195 if (!nelm)
2196 return info;
2197
2198 tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2199 if (!tmp)
2200 return ERR_PTR(-ENOMEM);
2201
2202 rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2203 if (!rsv_info) {
2204 kfree(tmp);
2205 return ERR_PTR(-ENOMEM);
2206 }
2207
2208 rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2209 GFP_KERNEL);
2210 if (!rsv_slots) {
2211 kfree(tmp);
2212 return ERR_PTR(-ENOMEM);
2213 }
2214
2215 ret = of_property_read_u32_array(dev->of_node, pname,
2216 (u32 *)tmp, nelm * 2);
2217 if (ret) {
2218 kfree(tmp);
2219 return ERR_PTR(ret);
2220 }
2221
2222 for (i = 0; i < nelm; i++) {
2223 rsv_slots[i][0] = tmp[i][0];
2224 rsv_slots[i][1] = tmp[i][1];
2225 }
2226 rsv_slots[nelm][0] = -1;
2227 rsv_slots[nelm][1] = -1;
2228
2229 info->rsv = rsv_info;
2230 info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2231
2232 kfree(tmp);
2233 }
2234
2235 return info;
2236 }
2237
of_edma_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)2238 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2239 struct of_dma *ofdma)
2240 {
2241 struct edma_cc *ecc = ofdma->of_dma_data;
2242 struct dma_chan *chan = NULL;
2243 struct edma_chan *echan;
2244 int i;
2245
2246 if (!ecc || dma_spec->args_count < 1)
2247 return NULL;
2248
2249 for (i = 0; i < ecc->num_channels; i++) {
2250 echan = &ecc->slave_chans[i];
2251 if (echan->ch_num == dma_spec->args[0]) {
2252 chan = &echan->vchan.chan;
2253 break;
2254 }
2255 }
2256
2257 if (!chan)
2258 return NULL;
2259
2260 if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2261 goto out;
2262
2263 if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2264 dma_spec->args[1] < echan->ecc->num_tc) {
2265 echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2266 goto out;
2267 }
2268
2269 return NULL;
2270 out:
2271 /* The channel is going to be used as HW synchronized */
2272 echan->hw_triggered = true;
2273 return dma_get_slave_channel(chan);
2274 }
2275 #else
edma_setup_info_from_dt(struct device * dev,bool legacy_mode)2276 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2277 bool legacy_mode)
2278 {
2279 return ERR_PTR(-EINVAL);
2280 }
2281
of_edma_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)2282 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2283 struct of_dma *ofdma)
2284 {
2285 return NULL;
2286 }
2287 #endif
2288
2289 static bool edma_filter_fn(struct dma_chan *chan, void *param);
2290
edma_probe(struct platform_device * pdev)2291 static int edma_probe(struct platform_device *pdev)
2292 {
2293 struct edma_soc_info *info = pdev->dev.platform_data;
2294 s8 (*queue_priority_mapping)[2];
2295 const s16 (*reserved)[2];
2296 int i, irq;
2297 char *irq_name;
2298 struct resource *mem;
2299 struct device_node *node = pdev->dev.of_node;
2300 struct device *dev = &pdev->dev;
2301 struct edma_cc *ecc;
2302 bool legacy_mode = true;
2303 int ret;
2304
2305 if (node) {
2306 const struct of_device_id *match;
2307
2308 match = of_match_node(edma_of_ids, node);
2309 if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
2310 legacy_mode = false;
2311
2312 info = edma_setup_info_from_dt(dev, legacy_mode);
2313 if (IS_ERR(info)) {
2314 dev_err(dev, "failed to get DT data\n");
2315 return PTR_ERR(info);
2316 }
2317 }
2318
2319 if (!info)
2320 return -ENODEV;
2321
2322 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2323 if (ret)
2324 return ret;
2325
2326 ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2327 if (!ecc)
2328 return -ENOMEM;
2329
2330 ecc->dev = dev;
2331 ecc->id = pdev->id;
2332 ecc->legacy_mode = legacy_mode;
2333 /* When booting with DT the pdev->id is -1 */
2334 if (ecc->id < 0)
2335 ecc->id = 0;
2336
2337 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2338 if (!mem) {
2339 dev_dbg(dev, "mem resource not found, using index 0\n");
2340 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2341 if (!mem) {
2342 dev_err(dev, "no mem resource?\n");
2343 return -ENODEV;
2344 }
2345 }
2346 ecc->base = devm_ioremap_resource(dev, mem);
2347 if (IS_ERR(ecc->base))
2348 return PTR_ERR(ecc->base);
2349
2350 platform_set_drvdata(pdev, ecc);
2351
2352 pm_runtime_enable(dev);
2353 ret = pm_runtime_get_sync(dev);
2354 if (ret < 0) {
2355 dev_err(dev, "pm_runtime_get_sync() failed\n");
2356 pm_runtime_disable(dev);
2357 return ret;
2358 }
2359
2360 /* Get eDMA3 configuration from IP */
2361 ret = edma_setup_from_hw(dev, info, ecc);
2362 if (ret)
2363 goto err_disable_pm;
2364
2365 /* Allocate memory based on the information we got from the IP */
2366 ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2367 sizeof(*ecc->slave_chans), GFP_KERNEL);
2368
2369 ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2370 sizeof(unsigned long), GFP_KERNEL);
2371
2372 ecc->channels_mask = devm_kcalloc(dev,
2373 BITS_TO_LONGS(ecc->num_channels),
2374 sizeof(unsigned long), GFP_KERNEL);
2375 if (!ecc->slave_chans || !ecc->slot_inuse || !ecc->channels_mask) {
2376 ret = -ENOMEM;
2377 goto err_disable_pm;
2378 }
2379
2380 /* Mark all channels available initially */
2381 bitmap_fill(ecc->channels_mask, ecc->num_channels);
2382
2383 ecc->default_queue = info->default_queue;
2384
2385 if (info->rsv) {
2386 /* Set the reserved slots in inuse list */
2387 reserved = info->rsv->rsv_slots;
2388 if (reserved) {
2389 for (i = 0; reserved[i][0] != -1; i++)
2390 bitmap_set(ecc->slot_inuse, reserved[i][0],
2391 reserved[i][1]);
2392 }
2393
2394 /* Clear channels not usable for Linux */
2395 reserved = info->rsv->rsv_chans;
2396 if (reserved) {
2397 for (i = 0; reserved[i][0] != -1; i++)
2398 bitmap_clear(ecc->channels_mask, reserved[i][0],
2399 reserved[i][1]);
2400 }
2401 }
2402
2403 for (i = 0; i < ecc->num_slots; i++) {
2404 /* Reset only unused - not reserved - paRAM slots */
2405 if (!test_bit(i, ecc->slot_inuse))
2406 edma_write_slot(ecc, i, &dummy_paramset);
2407 }
2408
2409 irq = platform_get_irq_byname(pdev, "edma3_ccint");
2410 if (irq < 0 && node)
2411 irq = irq_of_parse_and_map(node, 0);
2412
2413 if (irq >= 0) {
2414 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2415 dev_name(dev));
2416 ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2417 ecc);
2418 if (ret) {
2419 dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2420 goto err_disable_pm;
2421 }
2422 ecc->ccint = irq;
2423 }
2424
2425 irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2426 if (irq < 0 && node)
2427 irq = irq_of_parse_and_map(node, 2);
2428
2429 if (irq >= 0) {
2430 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2431 dev_name(dev));
2432 ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2433 ecc);
2434 if (ret) {
2435 dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2436 goto err_disable_pm;
2437 }
2438 ecc->ccerrint = irq;
2439 }
2440
2441 ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2442 if (ecc->dummy_slot < 0) {
2443 dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2444 ret = ecc->dummy_slot;
2445 goto err_disable_pm;
2446 }
2447
2448 queue_priority_mapping = info->queue_priority_mapping;
2449
2450 if (!ecc->legacy_mode) {
2451 int lowest_priority = 0;
2452 unsigned int array_max;
2453 struct of_phandle_args tc_args;
2454
2455 ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2456 sizeof(*ecc->tc_list), GFP_KERNEL);
2457 if (!ecc->tc_list) {
2458 ret = -ENOMEM;
2459 goto err_reg1;
2460 }
2461
2462 for (i = 0;; i++) {
2463 ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2464 1, i, &tc_args);
2465 if (ret || i == ecc->num_tc)
2466 break;
2467
2468 ecc->tc_list[i].node = tc_args.np;
2469 ecc->tc_list[i].id = i;
2470 queue_priority_mapping[i][1] = tc_args.args[0];
2471 if (queue_priority_mapping[i][1] > lowest_priority) {
2472 lowest_priority = queue_priority_mapping[i][1];
2473 info->default_queue = i;
2474 }
2475 }
2476
2477 /* See if we have optional dma-channel-mask array */
2478 array_max = DIV_ROUND_UP(ecc->num_channels, BITS_PER_TYPE(u32));
2479 ret = of_property_read_variable_u32_array(node,
2480 "dma-channel-mask",
2481 (u32 *)ecc->channels_mask,
2482 1, array_max);
2483 if (ret > 0 && ret != array_max)
2484 dev_warn(dev, "dma-channel-mask is not complete.\n");
2485 else if (ret == -EOVERFLOW || ret == -ENODATA)
2486 dev_warn(dev,
2487 "dma-channel-mask is out of range or empty\n");
2488 }
2489
2490 /* Event queue priority mapping */
2491 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2492 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2493 queue_priority_mapping[i][1]);
2494
2495 edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0);
2496 edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0);
2497 edma_write_array(ecc, EDMA_QRAE, 0, 0x0);
2498
2499 ecc->info = info;
2500
2501 /* Init the dma device and channels */
2502 edma_dma_init(ecc, legacy_mode);
2503
2504 for (i = 0; i < ecc->num_channels; i++) {
2505 /* Do not touch reserved channels */
2506 if (!test_bit(i, ecc->channels_mask))
2507 continue;
2508
2509 /* Assign all channels to the default queue */
2510 edma_assign_channel_eventq(&ecc->slave_chans[i],
2511 info->default_queue);
2512 /* Set entry slot to the dummy slot */
2513 edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2514 }
2515
2516 ecc->dma_slave.filter.map = info->slave_map;
2517 ecc->dma_slave.filter.mapcnt = info->slavecnt;
2518 ecc->dma_slave.filter.fn = edma_filter_fn;
2519
2520 ret = dma_async_device_register(&ecc->dma_slave);
2521 if (ret) {
2522 dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2523 goto err_reg1;
2524 }
2525
2526 if (ecc->dma_memcpy) {
2527 ret = dma_async_device_register(ecc->dma_memcpy);
2528 if (ret) {
2529 dev_err(dev, "memcpy ddev registration failed (%d)\n",
2530 ret);
2531 dma_async_device_unregister(&ecc->dma_slave);
2532 goto err_reg1;
2533 }
2534 }
2535
2536 if (node)
2537 of_dma_controller_register(node, of_edma_xlate, ecc);
2538
2539 dev_info(dev, "TI EDMA DMA engine driver\n");
2540
2541 return 0;
2542
2543 err_reg1:
2544 edma_free_slot(ecc, ecc->dummy_slot);
2545 err_disable_pm:
2546 pm_runtime_put_sync(dev);
2547 pm_runtime_disable(dev);
2548 return ret;
2549 }
2550
edma_cleanupp_vchan(struct dma_device * dmadev)2551 static void edma_cleanupp_vchan(struct dma_device *dmadev)
2552 {
2553 struct edma_chan *echan, *_echan;
2554
2555 list_for_each_entry_safe(echan, _echan,
2556 &dmadev->channels, vchan.chan.device_node) {
2557 list_del(&echan->vchan.chan.device_node);
2558 tasklet_kill(&echan->vchan.task);
2559 }
2560 }
2561
edma_remove(struct platform_device * pdev)2562 static int edma_remove(struct platform_device *pdev)
2563 {
2564 struct device *dev = &pdev->dev;
2565 struct edma_cc *ecc = dev_get_drvdata(dev);
2566
2567 devm_free_irq(dev, ecc->ccint, ecc);
2568 devm_free_irq(dev, ecc->ccerrint, ecc);
2569
2570 edma_cleanupp_vchan(&ecc->dma_slave);
2571
2572 if (dev->of_node)
2573 of_dma_controller_free(dev->of_node);
2574 dma_async_device_unregister(&ecc->dma_slave);
2575 if (ecc->dma_memcpy)
2576 dma_async_device_unregister(ecc->dma_memcpy);
2577 edma_free_slot(ecc, ecc->dummy_slot);
2578 pm_runtime_put_sync(dev);
2579 pm_runtime_disable(dev);
2580
2581 return 0;
2582 }
2583
2584 #ifdef CONFIG_PM_SLEEP
edma_pm_suspend(struct device * dev)2585 static int edma_pm_suspend(struct device *dev)
2586 {
2587 struct edma_cc *ecc = dev_get_drvdata(dev);
2588 struct edma_chan *echan = ecc->slave_chans;
2589 int i;
2590
2591 for (i = 0; i < ecc->num_channels; i++) {
2592 if (echan[i].alloced)
2593 edma_setup_interrupt(&echan[i], false);
2594 }
2595
2596 return 0;
2597 }
2598
edma_pm_resume(struct device * dev)2599 static int edma_pm_resume(struct device *dev)
2600 {
2601 struct edma_cc *ecc = dev_get_drvdata(dev);
2602 struct edma_chan *echan = ecc->slave_chans;
2603 int i;
2604 s8 (*queue_priority_mapping)[2];
2605
2606 /* re initialize dummy slot to dummy param set */
2607 edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
2608
2609 queue_priority_mapping = ecc->info->queue_priority_mapping;
2610
2611 /* Event queue priority mapping */
2612 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2613 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2614 queue_priority_mapping[i][1]);
2615
2616 for (i = 0; i < ecc->num_channels; i++) {
2617 if (echan[i].alloced) {
2618 /* ensure access through shadow region 0 */
2619 edma_or_array2(ecc, EDMA_DRAE, 0,
2620 EDMA_REG_ARRAY_INDEX(i),
2621 EDMA_CHANNEL_BIT(i));
2622
2623 edma_setup_interrupt(&echan[i], true);
2624
2625 /* Set up channel -> slot mapping for the entry slot */
2626 edma_set_chmap(&echan[i], echan[i].slot[0]);
2627 }
2628 }
2629
2630 return 0;
2631 }
2632 #endif
2633
2634 static const struct dev_pm_ops edma_pm_ops = {
2635 SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2636 };
2637
2638 static struct platform_driver edma_driver = {
2639 .probe = edma_probe,
2640 .remove = edma_remove,
2641 .driver = {
2642 .name = "edma",
2643 .pm = &edma_pm_ops,
2644 .of_match_table = edma_of_ids,
2645 },
2646 };
2647
edma_tptc_probe(struct platform_device * pdev)2648 static int edma_tptc_probe(struct platform_device *pdev)
2649 {
2650 pm_runtime_enable(&pdev->dev);
2651 return pm_runtime_get_sync(&pdev->dev);
2652 }
2653
2654 static struct platform_driver edma_tptc_driver = {
2655 .probe = edma_tptc_probe,
2656 .driver = {
2657 .name = "edma3-tptc",
2658 .of_match_table = edma_tptc_of_ids,
2659 },
2660 };
2661
edma_filter_fn(struct dma_chan * chan,void * param)2662 static bool edma_filter_fn(struct dma_chan *chan, void *param)
2663 {
2664 bool match = false;
2665
2666 if (chan->device->dev->driver == &edma_driver.driver) {
2667 struct edma_chan *echan = to_edma_chan(chan);
2668 unsigned ch_req = *(unsigned *)param;
2669 if (ch_req == echan->ch_num) {
2670 /* The channel is going to be used as HW synchronized */
2671 echan->hw_triggered = true;
2672 match = true;
2673 }
2674 }
2675 return match;
2676 }
2677
edma_init(void)2678 static int edma_init(void)
2679 {
2680 int ret;
2681
2682 ret = platform_driver_register(&edma_tptc_driver);
2683 if (ret)
2684 return ret;
2685
2686 return platform_driver_register(&edma_driver);
2687 }
2688 subsys_initcall(edma_init);
2689
edma_exit(void)2690 static void __exit edma_exit(void)
2691 {
2692 platform_driver_unregister(&edma_driver);
2693 platform_driver_unregister(&edma_tptc_driver);
2694 }
2695 module_exit(edma_exit);
2696
2697 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2698 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2699 MODULE_LICENSE("GPL v2");
2700