1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for BCM963xx builtin Ethernet mac
4 *
5 * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
6 */
7 #include <linux/init.h>
8 #include <linux/interrupt.h>
9 #include <linux/module.h>
10 #include <linux/clk.h>
11 #include <linux/etherdevice.h>
12 #include <linux/slab.h>
13 #include <linux/delay.h>
14 #include <linux/ethtool.h>
15 #include <linux/crc32.h>
16 #include <linux/err.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/platform_device.h>
19 #include <linux/if_vlan.h>
20
21 #include <bcm63xx_dev_enet.h>
22 #include "bcm63xx_enet.h"
23
24 static char bcm_enet_driver_name[] = "bcm63xx_enet";
25
26 static int copybreak __read_mostly = 128;
27 module_param(copybreak, int, 0);
28 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
29
30 /* io registers memory shared between all devices */
31 static void __iomem *bcm_enet_shared_base[3];
32
33 /*
34 * io helpers to access mac registers
35 */
enet_readl(struct bcm_enet_priv * priv,u32 off)36 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off)
37 {
38 return bcm_readl(priv->base + off);
39 }
40
enet_writel(struct bcm_enet_priv * priv,u32 val,u32 off)41 static inline void enet_writel(struct bcm_enet_priv *priv,
42 u32 val, u32 off)
43 {
44 bcm_writel(val, priv->base + off);
45 }
46
47 /*
48 * io helpers to access switch registers
49 */
enetsw_readl(struct bcm_enet_priv * priv,u32 off)50 static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off)
51 {
52 return bcm_readl(priv->base + off);
53 }
54
enetsw_writel(struct bcm_enet_priv * priv,u32 val,u32 off)55 static inline void enetsw_writel(struct bcm_enet_priv *priv,
56 u32 val, u32 off)
57 {
58 bcm_writel(val, priv->base + off);
59 }
60
enetsw_readw(struct bcm_enet_priv * priv,u32 off)61 static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off)
62 {
63 return bcm_readw(priv->base + off);
64 }
65
enetsw_writew(struct bcm_enet_priv * priv,u16 val,u32 off)66 static inline void enetsw_writew(struct bcm_enet_priv *priv,
67 u16 val, u32 off)
68 {
69 bcm_writew(val, priv->base + off);
70 }
71
enetsw_readb(struct bcm_enet_priv * priv,u32 off)72 static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off)
73 {
74 return bcm_readb(priv->base + off);
75 }
76
enetsw_writeb(struct bcm_enet_priv * priv,u8 val,u32 off)77 static inline void enetsw_writeb(struct bcm_enet_priv *priv,
78 u8 val, u32 off)
79 {
80 bcm_writeb(val, priv->base + off);
81 }
82
83
84 /* io helpers to access shared registers */
enet_dma_readl(struct bcm_enet_priv * priv,u32 off)85 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off)
86 {
87 return bcm_readl(bcm_enet_shared_base[0] + off);
88 }
89
enet_dma_writel(struct bcm_enet_priv * priv,u32 val,u32 off)90 static inline void enet_dma_writel(struct bcm_enet_priv *priv,
91 u32 val, u32 off)
92 {
93 bcm_writel(val, bcm_enet_shared_base[0] + off);
94 }
95
enet_dmac_readl(struct bcm_enet_priv * priv,u32 off,int chan)96 static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan)
97 {
98 return bcm_readl(bcm_enet_shared_base[1] +
99 bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
100 }
101
enet_dmac_writel(struct bcm_enet_priv * priv,u32 val,u32 off,int chan)102 static inline void enet_dmac_writel(struct bcm_enet_priv *priv,
103 u32 val, u32 off, int chan)
104 {
105 bcm_writel(val, bcm_enet_shared_base[1] +
106 bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
107 }
108
enet_dmas_readl(struct bcm_enet_priv * priv,u32 off,int chan)109 static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan)
110 {
111 return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
112 }
113
enet_dmas_writel(struct bcm_enet_priv * priv,u32 val,u32 off,int chan)114 static inline void enet_dmas_writel(struct bcm_enet_priv *priv,
115 u32 val, u32 off, int chan)
116 {
117 bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
118 }
119
120 /*
121 * write given data into mii register and wait for transfer to end
122 * with timeout (average measured transfer time is 25us)
123 */
do_mdio_op(struct bcm_enet_priv * priv,unsigned int data)124 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data)
125 {
126 int limit;
127
128 /* make sure mii interrupt status is cleared */
129 enet_writel(priv, ENET_IR_MII, ENET_IR_REG);
130
131 enet_writel(priv, data, ENET_MIIDATA_REG);
132 wmb();
133
134 /* busy wait on mii interrupt bit, with timeout */
135 limit = 1000;
136 do {
137 if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII)
138 break;
139 udelay(1);
140 } while (limit-- > 0);
141
142 return (limit < 0) ? 1 : 0;
143 }
144
145 /*
146 * MII internal read callback
147 */
bcm_enet_mdio_read(struct bcm_enet_priv * priv,int mii_id,int regnum)148 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id,
149 int regnum)
150 {
151 u32 tmp, val;
152
153 tmp = regnum << ENET_MIIDATA_REG_SHIFT;
154 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
155 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
156 tmp |= ENET_MIIDATA_OP_READ_MASK;
157
158 if (do_mdio_op(priv, tmp))
159 return -1;
160
161 val = enet_readl(priv, ENET_MIIDATA_REG);
162 val &= 0xffff;
163 return val;
164 }
165
166 /*
167 * MII internal write callback
168 */
bcm_enet_mdio_write(struct bcm_enet_priv * priv,int mii_id,int regnum,u16 value)169 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id,
170 int regnum, u16 value)
171 {
172 u32 tmp;
173
174 tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT;
175 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
176 tmp |= regnum << ENET_MIIDATA_REG_SHIFT;
177 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
178 tmp |= ENET_MIIDATA_OP_WRITE_MASK;
179
180 (void)do_mdio_op(priv, tmp);
181 return 0;
182 }
183
184 /*
185 * MII read callback from phylib
186 */
bcm_enet_mdio_read_phylib(struct mii_bus * bus,int mii_id,int regnum)187 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id,
188 int regnum)
189 {
190 return bcm_enet_mdio_read(bus->priv, mii_id, regnum);
191 }
192
193 /*
194 * MII write callback from phylib
195 */
bcm_enet_mdio_write_phylib(struct mii_bus * bus,int mii_id,int regnum,u16 value)196 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id,
197 int regnum, u16 value)
198 {
199 return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value);
200 }
201
202 /*
203 * MII read callback from mii core
204 */
bcm_enet_mdio_read_mii(struct net_device * dev,int mii_id,int regnum)205 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id,
206 int regnum)
207 {
208 return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum);
209 }
210
211 /*
212 * MII write callback from mii core
213 */
bcm_enet_mdio_write_mii(struct net_device * dev,int mii_id,int regnum,int value)214 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id,
215 int regnum, int value)
216 {
217 bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value);
218 }
219
220 /*
221 * refill rx queue
222 */
bcm_enet_refill_rx(struct net_device * dev,bool napi_mode)223 static int bcm_enet_refill_rx(struct net_device *dev, bool napi_mode)
224 {
225 struct bcm_enet_priv *priv;
226
227 priv = netdev_priv(dev);
228
229 while (priv->rx_desc_count < priv->rx_ring_size) {
230 struct bcm_enet_desc *desc;
231 int desc_idx;
232 u32 len_stat;
233
234 desc_idx = priv->rx_dirty_desc;
235 desc = &priv->rx_desc_cpu[desc_idx];
236
237 if (!priv->rx_buf[desc_idx]) {
238 void *buf;
239
240 if (likely(napi_mode))
241 buf = napi_alloc_frag(priv->rx_frag_size);
242 else
243 buf = netdev_alloc_frag(priv->rx_frag_size);
244 if (unlikely(!buf))
245 break;
246 priv->rx_buf[desc_idx] = buf;
247 desc->address = dma_map_single(&priv->pdev->dev,
248 buf + priv->rx_buf_offset,
249 priv->rx_buf_size,
250 DMA_FROM_DEVICE);
251 }
252
253 len_stat = priv->rx_buf_size << DMADESC_LENGTH_SHIFT;
254 len_stat |= DMADESC_OWNER_MASK;
255 if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
256 len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
257 priv->rx_dirty_desc = 0;
258 } else {
259 priv->rx_dirty_desc++;
260 }
261 wmb();
262 desc->len_stat = len_stat;
263
264 priv->rx_desc_count++;
265
266 /* tell dma engine we allocated one buffer */
267 if (priv->dma_has_sram)
268 enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan));
269 else
270 enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan);
271 }
272
273 /* If rx ring is still empty, set a timer to try allocating
274 * again at a later time. */
275 if (priv->rx_desc_count == 0 && netif_running(dev)) {
276 dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
277 priv->rx_timeout.expires = jiffies + HZ;
278 add_timer(&priv->rx_timeout);
279 }
280
281 return 0;
282 }
283
284 /*
285 * timer callback to defer refill rx queue in case we're OOM
286 */
bcm_enet_refill_rx_timer(struct timer_list * t)287 static void bcm_enet_refill_rx_timer(struct timer_list *t)
288 {
289 struct bcm_enet_priv *priv = from_timer(priv, t, rx_timeout);
290 struct net_device *dev = priv->net_dev;
291
292 spin_lock(&priv->rx_lock);
293 bcm_enet_refill_rx(dev, false);
294 spin_unlock(&priv->rx_lock);
295 }
296
297 /*
298 * extract packet from rx queue
299 */
bcm_enet_receive_queue(struct net_device * dev,int budget)300 static int bcm_enet_receive_queue(struct net_device *dev, int budget)
301 {
302 struct bcm_enet_priv *priv;
303 struct list_head rx_list;
304 struct device *kdev;
305 int processed;
306
307 priv = netdev_priv(dev);
308 INIT_LIST_HEAD(&rx_list);
309 kdev = &priv->pdev->dev;
310 processed = 0;
311
312 /* don't scan ring further than number of refilled
313 * descriptor */
314 if (budget > priv->rx_desc_count)
315 budget = priv->rx_desc_count;
316
317 do {
318 struct bcm_enet_desc *desc;
319 struct sk_buff *skb;
320 int desc_idx;
321 u32 len_stat;
322 unsigned int len;
323 void *buf;
324
325 desc_idx = priv->rx_curr_desc;
326 desc = &priv->rx_desc_cpu[desc_idx];
327
328 /* make sure we actually read the descriptor status at
329 * each loop */
330 rmb();
331
332 len_stat = desc->len_stat;
333
334 /* break if dma ownership belongs to hw */
335 if (len_stat & DMADESC_OWNER_MASK)
336 break;
337
338 processed++;
339 priv->rx_curr_desc++;
340 if (priv->rx_curr_desc == priv->rx_ring_size)
341 priv->rx_curr_desc = 0;
342
343 /* if the packet does not have start of packet _and_
344 * end of packet flag set, then just recycle it */
345 if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) !=
346 (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) {
347 dev->stats.rx_dropped++;
348 continue;
349 }
350
351 /* recycle packet if it's marked as bad */
352 if (!priv->enet_is_sw &&
353 unlikely(len_stat & DMADESC_ERR_MASK)) {
354 dev->stats.rx_errors++;
355
356 if (len_stat & DMADESC_OVSIZE_MASK)
357 dev->stats.rx_length_errors++;
358 if (len_stat & DMADESC_CRC_MASK)
359 dev->stats.rx_crc_errors++;
360 if (len_stat & DMADESC_UNDER_MASK)
361 dev->stats.rx_frame_errors++;
362 if (len_stat & DMADESC_OV_MASK)
363 dev->stats.rx_fifo_errors++;
364 continue;
365 }
366
367 /* valid packet */
368 buf = priv->rx_buf[desc_idx];
369 len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT;
370 /* don't include FCS */
371 len -= 4;
372
373 if (len < copybreak) {
374 skb = napi_alloc_skb(&priv->napi, len);
375 if (unlikely(!skb)) {
376 /* forget packet, just rearm desc */
377 dev->stats.rx_dropped++;
378 continue;
379 }
380
381 dma_sync_single_for_cpu(kdev, desc->address,
382 len, DMA_FROM_DEVICE);
383 memcpy(skb->data, buf + priv->rx_buf_offset, len);
384 dma_sync_single_for_device(kdev, desc->address,
385 len, DMA_FROM_DEVICE);
386 } else {
387 dma_unmap_single(kdev, desc->address,
388 priv->rx_buf_size, DMA_FROM_DEVICE);
389 priv->rx_buf[desc_idx] = NULL;
390
391 skb = build_skb(buf, priv->rx_frag_size);
392 if (unlikely(!skb)) {
393 skb_free_frag(buf);
394 dev->stats.rx_dropped++;
395 continue;
396 }
397 skb_reserve(skb, priv->rx_buf_offset);
398 }
399
400 skb_put(skb, len);
401 skb->protocol = eth_type_trans(skb, dev);
402 dev->stats.rx_packets++;
403 dev->stats.rx_bytes += len;
404 list_add_tail(&skb->list, &rx_list);
405
406 } while (processed < budget);
407
408 netif_receive_skb_list(&rx_list);
409 priv->rx_desc_count -= processed;
410
411 if (processed || !priv->rx_desc_count) {
412 bcm_enet_refill_rx(dev, true);
413
414 /* kick rx dma */
415 enet_dmac_writel(priv, priv->dma_chan_en_mask,
416 ENETDMAC_CHANCFG, priv->rx_chan);
417 }
418
419 return processed;
420 }
421
422
423 /*
424 * try to or force reclaim of transmitted buffers
425 */
bcm_enet_tx_reclaim(struct net_device * dev,int force)426 static int bcm_enet_tx_reclaim(struct net_device *dev, int force)
427 {
428 struct bcm_enet_priv *priv;
429 unsigned int bytes;
430 int released;
431
432 priv = netdev_priv(dev);
433 bytes = 0;
434 released = 0;
435
436 while (priv->tx_desc_count < priv->tx_ring_size) {
437 struct bcm_enet_desc *desc;
438 struct sk_buff *skb;
439
440 /* We run in a bh and fight against start_xmit, which
441 * is called with bh disabled */
442 spin_lock(&priv->tx_lock);
443
444 desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
445
446 if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
447 spin_unlock(&priv->tx_lock);
448 break;
449 }
450
451 /* ensure other field of the descriptor were not read
452 * before we checked ownership */
453 rmb();
454
455 skb = priv->tx_skb[priv->tx_dirty_desc];
456 priv->tx_skb[priv->tx_dirty_desc] = NULL;
457 dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
458 DMA_TO_DEVICE);
459
460 priv->tx_dirty_desc++;
461 if (priv->tx_dirty_desc == priv->tx_ring_size)
462 priv->tx_dirty_desc = 0;
463 priv->tx_desc_count++;
464
465 spin_unlock(&priv->tx_lock);
466
467 if (desc->len_stat & DMADESC_UNDER_MASK)
468 dev->stats.tx_errors++;
469
470 bytes += skb->len;
471 dev_kfree_skb(skb);
472 released++;
473 }
474
475 netdev_completed_queue(dev, released, bytes);
476
477 if (netif_queue_stopped(dev) && released)
478 netif_wake_queue(dev);
479
480 return released;
481 }
482
483 /*
484 * poll func, called by network core
485 */
bcm_enet_poll(struct napi_struct * napi,int budget)486 static int bcm_enet_poll(struct napi_struct *napi, int budget)
487 {
488 struct bcm_enet_priv *priv;
489 struct net_device *dev;
490 int rx_work_done;
491
492 priv = container_of(napi, struct bcm_enet_priv, napi);
493 dev = priv->net_dev;
494
495 /* ack interrupts */
496 enet_dmac_writel(priv, priv->dma_chan_int_mask,
497 ENETDMAC_IR, priv->rx_chan);
498 enet_dmac_writel(priv, priv->dma_chan_int_mask,
499 ENETDMAC_IR, priv->tx_chan);
500
501 /* reclaim sent skb */
502 bcm_enet_tx_reclaim(dev, 0);
503
504 spin_lock(&priv->rx_lock);
505 rx_work_done = bcm_enet_receive_queue(dev, budget);
506 spin_unlock(&priv->rx_lock);
507
508 if (rx_work_done >= budget) {
509 /* rx queue is not yet empty/clean */
510 return rx_work_done;
511 }
512
513 /* no more packet in rx/tx queue, remove device from poll
514 * queue */
515 napi_complete_done(napi, rx_work_done);
516
517 /* restore rx/tx interrupt */
518 enet_dmac_writel(priv, priv->dma_chan_int_mask,
519 ENETDMAC_IRMASK, priv->rx_chan);
520 enet_dmac_writel(priv, priv->dma_chan_int_mask,
521 ENETDMAC_IRMASK, priv->tx_chan);
522
523 return rx_work_done;
524 }
525
526 /*
527 * mac interrupt handler
528 */
bcm_enet_isr_mac(int irq,void * dev_id)529 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id)
530 {
531 struct net_device *dev;
532 struct bcm_enet_priv *priv;
533 u32 stat;
534
535 dev = dev_id;
536 priv = netdev_priv(dev);
537
538 stat = enet_readl(priv, ENET_IR_REG);
539 if (!(stat & ENET_IR_MIB))
540 return IRQ_NONE;
541
542 /* clear & mask interrupt */
543 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
544 enet_writel(priv, 0, ENET_IRMASK_REG);
545
546 /* read mib registers in workqueue */
547 schedule_work(&priv->mib_update_task);
548
549 return IRQ_HANDLED;
550 }
551
552 /*
553 * rx/tx dma interrupt handler
554 */
bcm_enet_isr_dma(int irq,void * dev_id)555 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id)
556 {
557 struct net_device *dev;
558 struct bcm_enet_priv *priv;
559
560 dev = dev_id;
561 priv = netdev_priv(dev);
562
563 /* mask rx/tx interrupts */
564 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
565 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
566
567 napi_schedule(&priv->napi);
568
569 return IRQ_HANDLED;
570 }
571
572 /*
573 * tx request callback
574 */
575 static netdev_tx_t
bcm_enet_start_xmit(struct sk_buff * skb,struct net_device * dev)576 bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
577 {
578 struct bcm_enet_priv *priv;
579 struct bcm_enet_desc *desc;
580 u32 len_stat;
581 netdev_tx_t ret;
582
583 priv = netdev_priv(dev);
584
585 /* lock against tx reclaim */
586 spin_lock(&priv->tx_lock);
587
588 /* make sure the tx hw queue is not full, should not happen
589 * since we stop queue before it's the case */
590 if (unlikely(!priv->tx_desc_count)) {
591 netif_stop_queue(dev);
592 dev_err(&priv->pdev->dev, "xmit called with no tx desc "
593 "available?\n");
594 ret = NETDEV_TX_BUSY;
595 goto out_unlock;
596 }
597
598 /* pad small packets sent on a switch device */
599 if (priv->enet_is_sw && skb->len < 64) {
600 int needed = 64 - skb->len;
601 char *data;
602
603 if (unlikely(skb_tailroom(skb) < needed)) {
604 struct sk_buff *nskb;
605
606 nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
607 if (!nskb) {
608 ret = NETDEV_TX_BUSY;
609 goto out_unlock;
610 }
611 dev_kfree_skb(skb);
612 skb = nskb;
613 }
614 data = skb_put_zero(skb, needed);
615 }
616
617 /* point to the next available desc */
618 desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
619 priv->tx_skb[priv->tx_curr_desc] = skb;
620
621 /* fill descriptor */
622 desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
623 DMA_TO_DEVICE);
624
625 len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
626 len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) |
627 DMADESC_APPEND_CRC |
628 DMADESC_OWNER_MASK;
629
630 priv->tx_curr_desc++;
631 if (priv->tx_curr_desc == priv->tx_ring_size) {
632 priv->tx_curr_desc = 0;
633 len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
634 }
635 priv->tx_desc_count--;
636
637 /* dma might be already polling, make sure we update desc
638 * fields in correct order */
639 wmb();
640 desc->len_stat = len_stat;
641 wmb();
642
643 netdev_sent_queue(dev, skb->len);
644
645 /* kick tx dma */
646 if (!netdev_xmit_more() || !priv->tx_desc_count)
647 enet_dmac_writel(priv, priv->dma_chan_en_mask,
648 ENETDMAC_CHANCFG, priv->tx_chan);
649
650 /* stop queue if no more desc available */
651 if (!priv->tx_desc_count)
652 netif_stop_queue(dev);
653
654 dev->stats.tx_bytes += skb->len;
655 dev->stats.tx_packets++;
656 ret = NETDEV_TX_OK;
657
658 out_unlock:
659 spin_unlock(&priv->tx_lock);
660 return ret;
661 }
662
663 /*
664 * Change the interface's mac address.
665 */
bcm_enet_set_mac_address(struct net_device * dev,void * p)666 static int bcm_enet_set_mac_address(struct net_device *dev, void *p)
667 {
668 struct bcm_enet_priv *priv;
669 struct sockaddr *addr = p;
670 u32 val;
671
672 priv = netdev_priv(dev);
673 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
674
675 /* use perfect match register 0 to store my mac address */
676 val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) |
677 (dev->dev_addr[4] << 8) | dev->dev_addr[5];
678 enet_writel(priv, val, ENET_PML_REG(0));
679
680 val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]);
681 val |= ENET_PMH_DATAVALID_MASK;
682 enet_writel(priv, val, ENET_PMH_REG(0));
683
684 return 0;
685 }
686
687 /*
688 * Change rx mode (promiscuous/allmulti) and update multicast list
689 */
bcm_enet_set_multicast_list(struct net_device * dev)690 static void bcm_enet_set_multicast_list(struct net_device *dev)
691 {
692 struct bcm_enet_priv *priv;
693 struct netdev_hw_addr *ha;
694 u32 val;
695 int i;
696
697 priv = netdev_priv(dev);
698
699 val = enet_readl(priv, ENET_RXCFG_REG);
700
701 if (dev->flags & IFF_PROMISC)
702 val |= ENET_RXCFG_PROMISC_MASK;
703 else
704 val &= ~ENET_RXCFG_PROMISC_MASK;
705
706 /* only 3 perfect match registers left, first one is used for
707 * own mac address */
708 if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3)
709 val |= ENET_RXCFG_ALLMCAST_MASK;
710 else
711 val &= ~ENET_RXCFG_ALLMCAST_MASK;
712
713 /* no need to set perfect match registers if we catch all
714 * multicast */
715 if (val & ENET_RXCFG_ALLMCAST_MASK) {
716 enet_writel(priv, val, ENET_RXCFG_REG);
717 return;
718 }
719
720 i = 0;
721 netdev_for_each_mc_addr(ha, dev) {
722 u8 *dmi_addr;
723 u32 tmp;
724
725 if (i == 3)
726 break;
727 /* update perfect match registers */
728 dmi_addr = ha->addr;
729 tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
730 (dmi_addr[4] << 8) | dmi_addr[5];
731 enet_writel(priv, tmp, ENET_PML_REG(i + 1));
732
733 tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
734 tmp |= ENET_PMH_DATAVALID_MASK;
735 enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1));
736 }
737
738 for (; i < 3; i++) {
739 enet_writel(priv, 0, ENET_PML_REG(i + 1));
740 enet_writel(priv, 0, ENET_PMH_REG(i + 1));
741 }
742
743 enet_writel(priv, val, ENET_RXCFG_REG);
744 }
745
746 /*
747 * set mac duplex parameters
748 */
bcm_enet_set_duplex(struct bcm_enet_priv * priv,int fullduplex)749 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex)
750 {
751 u32 val;
752
753 val = enet_readl(priv, ENET_TXCTL_REG);
754 if (fullduplex)
755 val |= ENET_TXCTL_FD_MASK;
756 else
757 val &= ~ENET_TXCTL_FD_MASK;
758 enet_writel(priv, val, ENET_TXCTL_REG);
759 }
760
761 /*
762 * set mac flow control parameters
763 */
bcm_enet_set_flow(struct bcm_enet_priv * priv,int rx_en,int tx_en)764 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en)
765 {
766 u32 val;
767
768 /* rx flow control (pause frame handling) */
769 val = enet_readl(priv, ENET_RXCFG_REG);
770 if (rx_en)
771 val |= ENET_RXCFG_ENFLOW_MASK;
772 else
773 val &= ~ENET_RXCFG_ENFLOW_MASK;
774 enet_writel(priv, val, ENET_RXCFG_REG);
775
776 if (!priv->dma_has_sram)
777 return;
778
779 /* tx flow control (pause frame generation) */
780 val = enet_dma_readl(priv, ENETDMA_CFG_REG);
781 if (tx_en)
782 val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
783 else
784 val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
785 enet_dma_writel(priv, val, ENETDMA_CFG_REG);
786 }
787
788 /*
789 * link changed callback (from phylib)
790 */
bcm_enet_adjust_phy_link(struct net_device * dev)791 static void bcm_enet_adjust_phy_link(struct net_device *dev)
792 {
793 struct bcm_enet_priv *priv;
794 struct phy_device *phydev;
795 int status_changed;
796
797 priv = netdev_priv(dev);
798 phydev = dev->phydev;
799 status_changed = 0;
800
801 if (priv->old_link != phydev->link) {
802 status_changed = 1;
803 priv->old_link = phydev->link;
804 }
805
806 /* reflect duplex change in mac configuration */
807 if (phydev->link && phydev->duplex != priv->old_duplex) {
808 bcm_enet_set_duplex(priv,
809 (phydev->duplex == DUPLEX_FULL) ? 1 : 0);
810 status_changed = 1;
811 priv->old_duplex = phydev->duplex;
812 }
813
814 /* enable flow control if remote advertise it (trust phylib to
815 * check that duplex is full */
816 if (phydev->link && phydev->pause != priv->old_pause) {
817 int rx_pause_en, tx_pause_en;
818
819 if (phydev->pause) {
820 /* pause was advertised by lpa and us */
821 rx_pause_en = 1;
822 tx_pause_en = 1;
823 } else if (!priv->pause_auto) {
824 /* pause setting overridden by user */
825 rx_pause_en = priv->pause_rx;
826 tx_pause_en = priv->pause_tx;
827 } else {
828 rx_pause_en = 0;
829 tx_pause_en = 0;
830 }
831
832 bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en);
833 status_changed = 1;
834 priv->old_pause = phydev->pause;
835 }
836
837 if (status_changed) {
838 pr_info("%s: link %s", dev->name, phydev->link ?
839 "UP" : "DOWN");
840 if (phydev->link)
841 pr_cont(" - %d/%s - flow control %s", phydev->speed,
842 DUPLEX_FULL == phydev->duplex ? "full" : "half",
843 phydev->pause == 1 ? "rx&tx" : "off");
844
845 pr_cont("\n");
846 }
847 }
848
849 /*
850 * link changed callback (if phylib is not used)
851 */
bcm_enet_adjust_link(struct net_device * dev)852 static void bcm_enet_adjust_link(struct net_device *dev)
853 {
854 struct bcm_enet_priv *priv;
855
856 priv = netdev_priv(dev);
857 bcm_enet_set_duplex(priv, priv->force_duplex_full);
858 bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx);
859 netif_carrier_on(dev);
860
861 pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n",
862 dev->name,
863 priv->force_speed_100 ? 100 : 10,
864 priv->force_duplex_full ? "full" : "half",
865 priv->pause_rx ? "rx" : "off",
866 priv->pause_tx ? "tx" : "off");
867 }
868
bcm_enet_free_rx_buf_ring(struct device * kdev,struct bcm_enet_priv * priv)869 static void bcm_enet_free_rx_buf_ring(struct device *kdev, struct bcm_enet_priv *priv)
870 {
871 int i;
872
873 for (i = 0; i < priv->rx_ring_size; i++) {
874 struct bcm_enet_desc *desc;
875
876 if (!priv->rx_buf[i])
877 continue;
878
879 desc = &priv->rx_desc_cpu[i];
880 dma_unmap_single(kdev, desc->address, priv->rx_buf_size,
881 DMA_FROM_DEVICE);
882 skb_free_frag(priv->rx_buf[i]);
883 }
884 kfree(priv->rx_buf);
885 }
886
887 /*
888 * open callback, allocate dma rings & buffers and start rx operation
889 */
bcm_enet_open(struct net_device * dev)890 static int bcm_enet_open(struct net_device *dev)
891 {
892 struct bcm_enet_priv *priv;
893 struct sockaddr addr;
894 struct device *kdev;
895 struct phy_device *phydev;
896 int i, ret;
897 unsigned int size;
898 char phy_id[MII_BUS_ID_SIZE + 3];
899 void *p;
900 u32 val;
901
902 priv = netdev_priv(dev);
903 kdev = &priv->pdev->dev;
904
905 if (priv->has_phy) {
906 /* connect to PHY */
907 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
908 priv->mii_bus->id, priv->phy_id);
909
910 phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link,
911 PHY_INTERFACE_MODE_MII);
912
913 if (IS_ERR(phydev)) {
914 dev_err(kdev, "could not attach to PHY\n");
915 return PTR_ERR(phydev);
916 }
917
918 /* mask with MAC supported features */
919 phy_support_sym_pause(phydev);
920 phy_set_max_speed(phydev, SPEED_100);
921 phy_set_sym_pause(phydev, priv->pause_rx, priv->pause_rx,
922 priv->pause_auto);
923
924 phy_attached_info(phydev);
925
926 priv->old_link = 0;
927 priv->old_duplex = -1;
928 priv->old_pause = -1;
929 } else {
930 phydev = NULL;
931 }
932
933 /* mask all interrupts and request them */
934 enet_writel(priv, 0, ENET_IRMASK_REG);
935 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
936 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
937
938 ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev);
939 if (ret)
940 goto out_phy_disconnect;
941
942 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 0,
943 dev->name, dev);
944 if (ret)
945 goto out_freeirq;
946
947 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
948 0, dev->name, dev);
949 if (ret)
950 goto out_freeirq_rx;
951
952 /* initialize perfect match registers */
953 for (i = 0; i < 4; i++) {
954 enet_writel(priv, 0, ENET_PML_REG(i));
955 enet_writel(priv, 0, ENET_PMH_REG(i));
956 }
957
958 /* write device mac address */
959 memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN);
960 bcm_enet_set_mac_address(dev, &addr);
961
962 /* allocate rx dma ring */
963 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
964 p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
965 if (!p) {
966 ret = -ENOMEM;
967 goto out_freeirq_tx;
968 }
969
970 priv->rx_desc_alloc_size = size;
971 priv->rx_desc_cpu = p;
972
973 /* allocate tx dma ring */
974 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
975 p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
976 if (!p) {
977 ret = -ENOMEM;
978 goto out_free_rx_ring;
979 }
980
981 priv->tx_desc_alloc_size = size;
982 priv->tx_desc_cpu = p;
983
984 priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
985 GFP_KERNEL);
986 if (!priv->tx_skb) {
987 ret = -ENOMEM;
988 goto out_free_tx_ring;
989 }
990
991 priv->tx_desc_count = priv->tx_ring_size;
992 priv->tx_dirty_desc = 0;
993 priv->tx_curr_desc = 0;
994 spin_lock_init(&priv->tx_lock);
995
996 /* init & fill rx ring with buffers */
997 priv->rx_buf = kcalloc(priv->rx_ring_size, sizeof(void *),
998 GFP_KERNEL);
999 if (!priv->rx_buf) {
1000 ret = -ENOMEM;
1001 goto out_free_tx_skb;
1002 }
1003
1004 priv->rx_desc_count = 0;
1005 priv->rx_dirty_desc = 0;
1006 priv->rx_curr_desc = 0;
1007
1008 /* initialize flow control buffer allocation */
1009 if (priv->dma_has_sram)
1010 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
1011 ENETDMA_BUFALLOC_REG(priv->rx_chan));
1012 else
1013 enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
1014 ENETDMAC_BUFALLOC, priv->rx_chan);
1015
1016 if (bcm_enet_refill_rx(dev, false)) {
1017 dev_err(kdev, "cannot allocate rx buffer queue\n");
1018 ret = -ENOMEM;
1019 goto out;
1020 }
1021
1022 /* write rx & tx ring addresses */
1023 if (priv->dma_has_sram) {
1024 enet_dmas_writel(priv, priv->rx_desc_dma,
1025 ENETDMAS_RSTART_REG, priv->rx_chan);
1026 enet_dmas_writel(priv, priv->tx_desc_dma,
1027 ENETDMAS_RSTART_REG, priv->tx_chan);
1028 } else {
1029 enet_dmac_writel(priv, priv->rx_desc_dma,
1030 ENETDMAC_RSTART, priv->rx_chan);
1031 enet_dmac_writel(priv, priv->tx_desc_dma,
1032 ENETDMAC_RSTART, priv->tx_chan);
1033 }
1034
1035 /* clear remaining state ram for rx & tx channel */
1036 if (priv->dma_has_sram) {
1037 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
1038 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
1039 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
1040 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
1041 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
1042 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
1043 } else {
1044 enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan);
1045 enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan);
1046 }
1047
1048 /* set max rx/tx length */
1049 enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG);
1050 enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG);
1051
1052 /* set dma maximum burst len */
1053 enet_dmac_writel(priv, priv->dma_maxburst,
1054 ENETDMAC_MAXBURST, priv->rx_chan);
1055 enet_dmac_writel(priv, priv->dma_maxburst,
1056 ENETDMAC_MAXBURST, priv->tx_chan);
1057
1058 /* set correct transmit fifo watermark */
1059 enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
1060
1061 /* set flow control low/high threshold to 1/3 / 2/3 */
1062 if (priv->dma_has_sram) {
1063 val = priv->rx_ring_size / 3;
1064 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
1065 val = (priv->rx_ring_size * 2) / 3;
1066 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
1067 } else {
1068 enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan);
1069 enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan);
1070 enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan);
1071 }
1072
1073 /* all set, enable mac and interrupts, start dma engine and
1074 * kick rx dma channel */
1075 wmb();
1076 val = enet_readl(priv, ENET_CTL_REG);
1077 val |= ENET_CTL_ENABLE_MASK;
1078 enet_writel(priv, val, ENET_CTL_REG);
1079 if (priv->dma_has_sram)
1080 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
1081 enet_dmac_writel(priv, priv->dma_chan_en_mask,
1082 ENETDMAC_CHANCFG, priv->rx_chan);
1083
1084 /* watch "mib counters about to overflow" interrupt */
1085 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
1086 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1087
1088 /* watch "packet transferred" interrupt in rx and tx */
1089 enet_dmac_writel(priv, priv->dma_chan_int_mask,
1090 ENETDMAC_IR, priv->rx_chan);
1091 enet_dmac_writel(priv, priv->dma_chan_int_mask,
1092 ENETDMAC_IR, priv->tx_chan);
1093
1094 /* make sure we enable napi before rx interrupt */
1095 napi_enable(&priv->napi);
1096
1097 enet_dmac_writel(priv, priv->dma_chan_int_mask,
1098 ENETDMAC_IRMASK, priv->rx_chan);
1099 enet_dmac_writel(priv, priv->dma_chan_int_mask,
1100 ENETDMAC_IRMASK, priv->tx_chan);
1101
1102 if (phydev)
1103 phy_start(phydev);
1104 else
1105 bcm_enet_adjust_link(dev);
1106
1107 netif_start_queue(dev);
1108 return 0;
1109
1110 out:
1111 bcm_enet_free_rx_buf_ring(kdev, priv);
1112
1113 out_free_tx_skb:
1114 kfree(priv->tx_skb);
1115
1116 out_free_tx_ring:
1117 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1118 priv->tx_desc_cpu, priv->tx_desc_dma);
1119
1120 out_free_rx_ring:
1121 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1122 priv->rx_desc_cpu, priv->rx_desc_dma);
1123
1124 out_freeirq_tx:
1125 free_irq(priv->irq_tx, dev);
1126
1127 out_freeirq_rx:
1128 free_irq(priv->irq_rx, dev);
1129
1130 out_freeirq:
1131 free_irq(dev->irq, dev);
1132
1133 out_phy_disconnect:
1134 if (phydev)
1135 phy_disconnect(phydev);
1136
1137 return ret;
1138 }
1139
1140 /*
1141 * disable mac
1142 */
bcm_enet_disable_mac(struct bcm_enet_priv * priv)1143 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv)
1144 {
1145 int limit;
1146 u32 val;
1147
1148 val = enet_readl(priv, ENET_CTL_REG);
1149 val |= ENET_CTL_DISABLE_MASK;
1150 enet_writel(priv, val, ENET_CTL_REG);
1151
1152 limit = 1000;
1153 do {
1154 u32 val;
1155
1156 val = enet_readl(priv, ENET_CTL_REG);
1157 if (!(val & ENET_CTL_DISABLE_MASK))
1158 break;
1159 udelay(1);
1160 } while (limit--);
1161 }
1162
1163 /*
1164 * disable dma in given channel
1165 */
bcm_enet_disable_dma(struct bcm_enet_priv * priv,int chan)1166 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan)
1167 {
1168 int limit;
1169
1170 enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan);
1171
1172 limit = 1000;
1173 do {
1174 u32 val;
1175
1176 val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan);
1177 if (!(val & ENETDMAC_CHANCFG_EN_MASK))
1178 break;
1179 udelay(1);
1180 } while (limit--);
1181 }
1182
1183 /*
1184 * stop callback
1185 */
bcm_enet_stop(struct net_device * dev)1186 static int bcm_enet_stop(struct net_device *dev)
1187 {
1188 struct bcm_enet_priv *priv;
1189 struct device *kdev;
1190
1191 priv = netdev_priv(dev);
1192 kdev = &priv->pdev->dev;
1193
1194 netif_stop_queue(dev);
1195 napi_disable(&priv->napi);
1196 if (priv->has_phy)
1197 phy_stop(dev->phydev);
1198 del_timer_sync(&priv->rx_timeout);
1199
1200 /* mask all interrupts */
1201 enet_writel(priv, 0, ENET_IRMASK_REG);
1202 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
1203 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
1204
1205 /* make sure no mib update is scheduled */
1206 cancel_work_sync(&priv->mib_update_task);
1207
1208 /* disable dma & mac */
1209 bcm_enet_disable_dma(priv, priv->tx_chan);
1210 bcm_enet_disable_dma(priv, priv->rx_chan);
1211 bcm_enet_disable_mac(priv);
1212
1213 /* force reclaim of all tx buffers */
1214 bcm_enet_tx_reclaim(dev, 1);
1215
1216 /* free the rx buffer ring */
1217 bcm_enet_free_rx_buf_ring(kdev, priv);
1218
1219 /* free remaining allocated memory */
1220 kfree(priv->tx_skb);
1221 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1222 priv->rx_desc_cpu, priv->rx_desc_dma);
1223 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1224 priv->tx_desc_cpu, priv->tx_desc_dma);
1225 free_irq(priv->irq_tx, dev);
1226 free_irq(priv->irq_rx, dev);
1227 free_irq(dev->irq, dev);
1228
1229 /* release phy */
1230 if (priv->has_phy)
1231 phy_disconnect(dev->phydev);
1232
1233 /* reset BQL after forced tx reclaim to prevent kernel panic */
1234 netdev_reset_queue(dev);
1235
1236 return 0;
1237 }
1238
1239 /*
1240 * ethtool callbacks
1241 */
1242 struct bcm_enet_stats {
1243 char stat_string[ETH_GSTRING_LEN];
1244 int sizeof_stat;
1245 int stat_offset;
1246 int mib_reg;
1247 };
1248
1249 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m), \
1250 offsetof(struct bcm_enet_priv, m)
1251 #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m), \
1252 offsetof(struct net_device_stats, m)
1253
1254 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = {
1255 { "rx_packets", DEV_STAT(rx_packets), -1 },
1256 { "tx_packets", DEV_STAT(tx_packets), -1 },
1257 { "rx_bytes", DEV_STAT(rx_bytes), -1 },
1258 { "tx_bytes", DEV_STAT(tx_bytes), -1 },
1259 { "rx_errors", DEV_STAT(rx_errors), -1 },
1260 { "tx_errors", DEV_STAT(tx_errors), -1 },
1261 { "rx_dropped", DEV_STAT(rx_dropped), -1 },
1262 { "tx_dropped", DEV_STAT(tx_dropped), -1 },
1263
1264 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS},
1265 { "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS },
1266 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST },
1267 { "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT },
1268 { "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 },
1269 { "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 },
1270 { "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 },
1271 { "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 },
1272 { "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 },
1273 { "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX },
1274 { "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB },
1275 { "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR },
1276 { "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG },
1277 { "rx_dropped", GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP },
1278 { "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN },
1279 { "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND },
1280 { "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC },
1281 { "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN },
1282 { "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM },
1283 { "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE },
1284 { "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL },
1285
1286 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS },
1287 { "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS },
1288 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST },
1289 { "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT },
1290 { "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 },
1291 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 },
1292 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 },
1293 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 },
1294 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023},
1295 { "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX },
1296 { "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB },
1297 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR },
1298 { "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG },
1299 { "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN },
1300 { "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL },
1301 { "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL },
1302 { "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL },
1303 { "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL },
1304 { "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE },
1305 { "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF },
1306 { "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS },
1307 { "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE },
1308
1309 };
1310
1311 #define BCM_ENET_STATS_LEN ARRAY_SIZE(bcm_enet_gstrings_stats)
1312
1313 static const u32 unused_mib_regs[] = {
1314 ETH_MIB_TX_ALL_OCTETS,
1315 ETH_MIB_TX_ALL_PKTS,
1316 ETH_MIB_RX_ALL_OCTETS,
1317 ETH_MIB_RX_ALL_PKTS,
1318 };
1319
1320
bcm_enet_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)1321 static void bcm_enet_get_drvinfo(struct net_device *netdev,
1322 struct ethtool_drvinfo *drvinfo)
1323 {
1324 strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver));
1325 strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info));
1326 }
1327
bcm_enet_get_sset_count(struct net_device * netdev,int string_set)1328 static int bcm_enet_get_sset_count(struct net_device *netdev,
1329 int string_set)
1330 {
1331 switch (string_set) {
1332 case ETH_SS_STATS:
1333 return BCM_ENET_STATS_LEN;
1334 default:
1335 return -EINVAL;
1336 }
1337 }
1338
bcm_enet_get_strings(struct net_device * netdev,u32 stringset,u8 * data)1339 static void bcm_enet_get_strings(struct net_device *netdev,
1340 u32 stringset, u8 *data)
1341 {
1342 int i;
1343
1344 switch (stringset) {
1345 case ETH_SS_STATS:
1346 for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1347 memcpy(data + i * ETH_GSTRING_LEN,
1348 bcm_enet_gstrings_stats[i].stat_string,
1349 ETH_GSTRING_LEN);
1350 }
1351 break;
1352 }
1353 }
1354
update_mib_counters(struct bcm_enet_priv * priv)1355 static void update_mib_counters(struct bcm_enet_priv *priv)
1356 {
1357 int i;
1358
1359 for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1360 const struct bcm_enet_stats *s;
1361 u32 val;
1362 char *p;
1363
1364 s = &bcm_enet_gstrings_stats[i];
1365 if (s->mib_reg == -1)
1366 continue;
1367
1368 val = enet_readl(priv, ENET_MIB_REG(s->mib_reg));
1369 p = (char *)priv + s->stat_offset;
1370
1371 if (s->sizeof_stat == sizeof(u64))
1372 *(u64 *)p += val;
1373 else
1374 *(u32 *)p += val;
1375 }
1376
1377 /* also empty unused mib counters to make sure mib counter
1378 * overflow interrupt is cleared */
1379 for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++)
1380 (void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i]));
1381 }
1382
bcm_enet_update_mib_counters_defer(struct work_struct * t)1383 static void bcm_enet_update_mib_counters_defer(struct work_struct *t)
1384 {
1385 struct bcm_enet_priv *priv;
1386
1387 priv = container_of(t, struct bcm_enet_priv, mib_update_task);
1388 mutex_lock(&priv->mib_update_lock);
1389 update_mib_counters(priv);
1390 mutex_unlock(&priv->mib_update_lock);
1391
1392 /* reenable mib interrupt */
1393 if (netif_running(priv->net_dev))
1394 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1395 }
1396
bcm_enet_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats * stats,u64 * data)1397 static void bcm_enet_get_ethtool_stats(struct net_device *netdev,
1398 struct ethtool_stats *stats,
1399 u64 *data)
1400 {
1401 struct bcm_enet_priv *priv;
1402 int i;
1403
1404 priv = netdev_priv(netdev);
1405
1406 mutex_lock(&priv->mib_update_lock);
1407 update_mib_counters(priv);
1408
1409 for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1410 const struct bcm_enet_stats *s;
1411 char *p;
1412
1413 s = &bcm_enet_gstrings_stats[i];
1414 if (s->mib_reg == -1)
1415 p = (char *)&netdev->stats;
1416 else
1417 p = (char *)priv;
1418 p += s->stat_offset;
1419 data[i] = (s->sizeof_stat == sizeof(u64)) ?
1420 *(u64 *)p : *(u32 *)p;
1421 }
1422 mutex_unlock(&priv->mib_update_lock);
1423 }
1424
bcm_enet_nway_reset(struct net_device * dev)1425 static int bcm_enet_nway_reset(struct net_device *dev)
1426 {
1427 struct bcm_enet_priv *priv;
1428
1429 priv = netdev_priv(dev);
1430 if (priv->has_phy)
1431 return phy_ethtool_nway_reset(dev);
1432
1433 return -EOPNOTSUPP;
1434 }
1435
bcm_enet_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1436 static int bcm_enet_get_link_ksettings(struct net_device *dev,
1437 struct ethtool_link_ksettings *cmd)
1438 {
1439 struct bcm_enet_priv *priv;
1440 u32 supported, advertising;
1441
1442 priv = netdev_priv(dev);
1443
1444 if (priv->has_phy) {
1445 if (!dev->phydev)
1446 return -ENODEV;
1447
1448 phy_ethtool_ksettings_get(dev->phydev, cmd);
1449
1450 return 0;
1451 } else {
1452 cmd->base.autoneg = 0;
1453 cmd->base.speed = (priv->force_speed_100) ?
1454 SPEED_100 : SPEED_10;
1455 cmd->base.duplex = (priv->force_duplex_full) ?
1456 DUPLEX_FULL : DUPLEX_HALF;
1457 supported = ADVERTISED_10baseT_Half |
1458 ADVERTISED_10baseT_Full |
1459 ADVERTISED_100baseT_Half |
1460 ADVERTISED_100baseT_Full;
1461 advertising = 0;
1462 ethtool_convert_legacy_u32_to_link_mode(
1463 cmd->link_modes.supported, supported);
1464 ethtool_convert_legacy_u32_to_link_mode(
1465 cmd->link_modes.advertising, advertising);
1466 cmd->base.port = PORT_MII;
1467 }
1468 return 0;
1469 }
1470
bcm_enet_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1471 static int bcm_enet_set_link_ksettings(struct net_device *dev,
1472 const struct ethtool_link_ksettings *cmd)
1473 {
1474 struct bcm_enet_priv *priv;
1475
1476 priv = netdev_priv(dev);
1477 if (priv->has_phy) {
1478 if (!dev->phydev)
1479 return -ENODEV;
1480 return phy_ethtool_ksettings_set(dev->phydev, cmd);
1481 } else {
1482
1483 if (cmd->base.autoneg ||
1484 (cmd->base.speed != SPEED_100 &&
1485 cmd->base.speed != SPEED_10) ||
1486 cmd->base.port != PORT_MII)
1487 return -EINVAL;
1488
1489 priv->force_speed_100 =
1490 (cmd->base.speed == SPEED_100) ? 1 : 0;
1491 priv->force_duplex_full =
1492 (cmd->base.duplex == DUPLEX_FULL) ? 1 : 0;
1493
1494 if (netif_running(dev))
1495 bcm_enet_adjust_link(dev);
1496 return 0;
1497 }
1498 }
1499
bcm_enet_get_ringparam(struct net_device * dev,struct ethtool_ringparam * ering)1500 static void bcm_enet_get_ringparam(struct net_device *dev,
1501 struct ethtool_ringparam *ering)
1502 {
1503 struct bcm_enet_priv *priv;
1504
1505 priv = netdev_priv(dev);
1506
1507 /* rx/tx ring is actually only limited by memory */
1508 ering->rx_max_pending = 8192;
1509 ering->tx_max_pending = 8192;
1510 ering->rx_pending = priv->rx_ring_size;
1511 ering->tx_pending = priv->tx_ring_size;
1512 }
1513
bcm_enet_set_ringparam(struct net_device * dev,struct ethtool_ringparam * ering)1514 static int bcm_enet_set_ringparam(struct net_device *dev,
1515 struct ethtool_ringparam *ering)
1516 {
1517 struct bcm_enet_priv *priv;
1518 int was_running;
1519
1520 priv = netdev_priv(dev);
1521
1522 was_running = 0;
1523 if (netif_running(dev)) {
1524 bcm_enet_stop(dev);
1525 was_running = 1;
1526 }
1527
1528 priv->rx_ring_size = ering->rx_pending;
1529 priv->tx_ring_size = ering->tx_pending;
1530
1531 if (was_running) {
1532 int err;
1533
1534 err = bcm_enet_open(dev);
1535 if (err)
1536 dev_close(dev);
1537 else
1538 bcm_enet_set_multicast_list(dev);
1539 }
1540 return 0;
1541 }
1542
bcm_enet_get_pauseparam(struct net_device * dev,struct ethtool_pauseparam * ecmd)1543 static void bcm_enet_get_pauseparam(struct net_device *dev,
1544 struct ethtool_pauseparam *ecmd)
1545 {
1546 struct bcm_enet_priv *priv;
1547
1548 priv = netdev_priv(dev);
1549 ecmd->autoneg = priv->pause_auto;
1550 ecmd->rx_pause = priv->pause_rx;
1551 ecmd->tx_pause = priv->pause_tx;
1552 }
1553
bcm_enet_set_pauseparam(struct net_device * dev,struct ethtool_pauseparam * ecmd)1554 static int bcm_enet_set_pauseparam(struct net_device *dev,
1555 struct ethtool_pauseparam *ecmd)
1556 {
1557 struct bcm_enet_priv *priv;
1558
1559 priv = netdev_priv(dev);
1560
1561 if (priv->has_phy) {
1562 if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) {
1563 /* asymetric pause mode not supported,
1564 * actually possible but integrated PHY has RO
1565 * asym_pause bit */
1566 return -EINVAL;
1567 }
1568 } else {
1569 /* no pause autoneg on direct mii connection */
1570 if (ecmd->autoneg)
1571 return -EINVAL;
1572 }
1573
1574 priv->pause_auto = ecmd->autoneg;
1575 priv->pause_rx = ecmd->rx_pause;
1576 priv->pause_tx = ecmd->tx_pause;
1577
1578 return 0;
1579 }
1580
1581 static const struct ethtool_ops bcm_enet_ethtool_ops = {
1582 .get_strings = bcm_enet_get_strings,
1583 .get_sset_count = bcm_enet_get_sset_count,
1584 .get_ethtool_stats = bcm_enet_get_ethtool_stats,
1585 .nway_reset = bcm_enet_nway_reset,
1586 .get_drvinfo = bcm_enet_get_drvinfo,
1587 .get_link = ethtool_op_get_link,
1588 .get_ringparam = bcm_enet_get_ringparam,
1589 .set_ringparam = bcm_enet_set_ringparam,
1590 .get_pauseparam = bcm_enet_get_pauseparam,
1591 .set_pauseparam = bcm_enet_set_pauseparam,
1592 .get_link_ksettings = bcm_enet_get_link_ksettings,
1593 .set_link_ksettings = bcm_enet_set_link_ksettings,
1594 };
1595
bcm_enet_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1596 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1597 {
1598 struct bcm_enet_priv *priv;
1599
1600 priv = netdev_priv(dev);
1601 if (priv->has_phy) {
1602 if (!dev->phydev)
1603 return -ENODEV;
1604 return phy_mii_ioctl(dev->phydev, rq, cmd);
1605 } else {
1606 struct mii_if_info mii;
1607
1608 mii.dev = dev;
1609 mii.mdio_read = bcm_enet_mdio_read_mii;
1610 mii.mdio_write = bcm_enet_mdio_write_mii;
1611 mii.phy_id = 0;
1612 mii.phy_id_mask = 0x3f;
1613 mii.reg_num_mask = 0x1f;
1614 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
1615 }
1616 }
1617
1618 /*
1619 * adjust mtu, can't be called while device is running
1620 */
bcm_enet_change_mtu(struct net_device * dev,int new_mtu)1621 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu)
1622 {
1623 struct bcm_enet_priv *priv = netdev_priv(dev);
1624 int actual_mtu = new_mtu;
1625
1626 if (netif_running(dev))
1627 return -EBUSY;
1628
1629 /* add ethernet header + vlan tag size */
1630 actual_mtu += VLAN_ETH_HLEN;
1631
1632 /*
1633 * setup maximum size before we get overflow mark in
1634 * descriptor, note that this will not prevent reception of
1635 * big frames, they will be split into multiple buffers
1636 * anyway
1637 */
1638 priv->hw_mtu = actual_mtu;
1639
1640 /*
1641 * align rx buffer size to dma burst len, account FCS since
1642 * it's appended
1643 */
1644 priv->rx_buf_size = ALIGN(actual_mtu + ETH_FCS_LEN,
1645 priv->dma_maxburst * 4);
1646
1647 priv->rx_frag_size = SKB_DATA_ALIGN(priv->rx_buf_offset + priv->rx_buf_size) +
1648 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1649
1650 dev->mtu = new_mtu;
1651 return 0;
1652 }
1653
1654 /*
1655 * preinit hardware to allow mii operation while device is down
1656 */
bcm_enet_hw_preinit(struct bcm_enet_priv * priv)1657 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv)
1658 {
1659 u32 val;
1660 int limit;
1661
1662 /* make sure mac is disabled */
1663 bcm_enet_disable_mac(priv);
1664
1665 /* soft reset mac */
1666 val = ENET_CTL_SRESET_MASK;
1667 enet_writel(priv, val, ENET_CTL_REG);
1668 wmb();
1669
1670 limit = 1000;
1671 do {
1672 val = enet_readl(priv, ENET_CTL_REG);
1673 if (!(val & ENET_CTL_SRESET_MASK))
1674 break;
1675 udelay(1);
1676 } while (limit--);
1677
1678 /* select correct mii interface */
1679 val = enet_readl(priv, ENET_CTL_REG);
1680 if (priv->use_external_mii)
1681 val |= ENET_CTL_EPHYSEL_MASK;
1682 else
1683 val &= ~ENET_CTL_EPHYSEL_MASK;
1684 enet_writel(priv, val, ENET_CTL_REG);
1685
1686 /* turn on mdc clock */
1687 enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
1688 ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
1689
1690 /* set mib counters to self-clear when read */
1691 val = enet_readl(priv, ENET_MIBCTL_REG);
1692 val |= ENET_MIBCTL_RDCLEAR_MASK;
1693 enet_writel(priv, val, ENET_MIBCTL_REG);
1694 }
1695
1696 static const struct net_device_ops bcm_enet_ops = {
1697 .ndo_open = bcm_enet_open,
1698 .ndo_stop = bcm_enet_stop,
1699 .ndo_start_xmit = bcm_enet_start_xmit,
1700 .ndo_set_mac_address = bcm_enet_set_mac_address,
1701 .ndo_set_rx_mode = bcm_enet_set_multicast_list,
1702 .ndo_eth_ioctl = bcm_enet_ioctl,
1703 .ndo_change_mtu = bcm_enet_change_mtu,
1704 };
1705
1706 /*
1707 * allocate netdevice, request register memory and register device.
1708 */
bcm_enet_probe(struct platform_device * pdev)1709 static int bcm_enet_probe(struct platform_device *pdev)
1710 {
1711 struct bcm_enet_priv *priv;
1712 struct net_device *dev;
1713 struct bcm63xx_enet_platform_data *pd;
1714 struct resource *res_irq, *res_irq_rx, *res_irq_tx;
1715 struct mii_bus *bus;
1716 int i, ret;
1717
1718 if (!bcm_enet_shared_base[0])
1719 return -EPROBE_DEFER;
1720
1721 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1722 res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
1723 res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
1724 if (!res_irq || !res_irq_rx || !res_irq_tx)
1725 return -ENODEV;
1726
1727 dev = alloc_etherdev(sizeof(*priv));
1728 if (!dev)
1729 return -ENOMEM;
1730 priv = netdev_priv(dev);
1731
1732 priv->enet_is_sw = false;
1733 priv->dma_maxburst = BCMENET_DMA_MAXBURST;
1734 priv->rx_buf_offset = NET_SKB_PAD;
1735
1736 ret = bcm_enet_change_mtu(dev, dev->mtu);
1737 if (ret)
1738 goto out;
1739
1740 priv->base = devm_platform_ioremap_resource(pdev, 0);
1741 if (IS_ERR(priv->base)) {
1742 ret = PTR_ERR(priv->base);
1743 goto out;
1744 }
1745
1746 dev->irq = priv->irq = res_irq->start;
1747 priv->irq_rx = res_irq_rx->start;
1748 priv->irq_tx = res_irq_tx->start;
1749
1750 priv->mac_clk = devm_clk_get(&pdev->dev, "enet");
1751 if (IS_ERR(priv->mac_clk)) {
1752 ret = PTR_ERR(priv->mac_clk);
1753 goto out;
1754 }
1755 ret = clk_prepare_enable(priv->mac_clk);
1756 if (ret)
1757 goto out;
1758
1759 /* initialize default and fetch platform data */
1760 priv->rx_ring_size = BCMENET_DEF_RX_DESC;
1761 priv->tx_ring_size = BCMENET_DEF_TX_DESC;
1762
1763 pd = dev_get_platdata(&pdev->dev);
1764 if (pd) {
1765 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
1766 priv->has_phy = pd->has_phy;
1767 priv->phy_id = pd->phy_id;
1768 priv->has_phy_interrupt = pd->has_phy_interrupt;
1769 priv->phy_interrupt = pd->phy_interrupt;
1770 priv->use_external_mii = !pd->use_internal_phy;
1771 priv->pause_auto = pd->pause_auto;
1772 priv->pause_rx = pd->pause_rx;
1773 priv->pause_tx = pd->pause_tx;
1774 priv->force_duplex_full = pd->force_duplex_full;
1775 priv->force_speed_100 = pd->force_speed_100;
1776 priv->dma_chan_en_mask = pd->dma_chan_en_mask;
1777 priv->dma_chan_int_mask = pd->dma_chan_int_mask;
1778 priv->dma_chan_width = pd->dma_chan_width;
1779 priv->dma_has_sram = pd->dma_has_sram;
1780 priv->dma_desc_shift = pd->dma_desc_shift;
1781 priv->rx_chan = pd->rx_chan;
1782 priv->tx_chan = pd->tx_chan;
1783 }
1784
1785 if (priv->has_phy && !priv->use_external_mii) {
1786 /* using internal PHY, enable clock */
1787 priv->phy_clk = devm_clk_get(&pdev->dev, "ephy");
1788 if (IS_ERR(priv->phy_clk)) {
1789 ret = PTR_ERR(priv->phy_clk);
1790 priv->phy_clk = NULL;
1791 goto out_disable_clk_mac;
1792 }
1793 ret = clk_prepare_enable(priv->phy_clk);
1794 if (ret)
1795 goto out_disable_clk_mac;
1796 }
1797
1798 /* do minimal hardware init to be able to probe mii bus */
1799 bcm_enet_hw_preinit(priv);
1800
1801 /* MII bus registration */
1802 if (priv->has_phy) {
1803
1804 priv->mii_bus = mdiobus_alloc();
1805 if (!priv->mii_bus) {
1806 ret = -ENOMEM;
1807 goto out_uninit_hw;
1808 }
1809
1810 bus = priv->mii_bus;
1811 bus->name = "bcm63xx_enet MII bus";
1812 bus->parent = &pdev->dev;
1813 bus->priv = priv;
1814 bus->read = bcm_enet_mdio_read_phylib;
1815 bus->write = bcm_enet_mdio_write_phylib;
1816 sprintf(bus->id, "%s-%d", pdev->name, pdev->id);
1817
1818 /* only probe bus where we think the PHY is, because
1819 * the mdio read operation return 0 instead of 0xffff
1820 * if a slave is not present on hw */
1821 bus->phy_mask = ~(1 << priv->phy_id);
1822
1823 if (priv->has_phy_interrupt)
1824 bus->irq[priv->phy_id] = priv->phy_interrupt;
1825
1826 ret = mdiobus_register(bus);
1827 if (ret) {
1828 dev_err(&pdev->dev, "unable to register mdio bus\n");
1829 goto out_free_mdio;
1830 }
1831 } else {
1832
1833 /* run platform code to initialize PHY device */
1834 if (pd && pd->mii_config &&
1835 pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
1836 bcm_enet_mdio_write_mii)) {
1837 dev_err(&pdev->dev, "unable to configure mdio bus\n");
1838 goto out_uninit_hw;
1839 }
1840 }
1841
1842 spin_lock_init(&priv->rx_lock);
1843
1844 /* init rx timeout (used for oom) */
1845 timer_setup(&priv->rx_timeout, bcm_enet_refill_rx_timer, 0);
1846
1847 /* init the mib update lock&work */
1848 mutex_init(&priv->mib_update_lock);
1849 INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);
1850
1851 /* zero mib counters */
1852 for (i = 0; i < ENET_MIB_REG_COUNT; i++)
1853 enet_writel(priv, 0, ENET_MIB_REG(i));
1854
1855 /* register netdevice */
1856 dev->netdev_ops = &bcm_enet_ops;
1857 netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
1858
1859 dev->ethtool_ops = &bcm_enet_ethtool_ops;
1860 /* MTU range: 46 - 2028 */
1861 dev->min_mtu = ETH_ZLEN - ETH_HLEN;
1862 dev->max_mtu = BCMENET_MAX_MTU - VLAN_ETH_HLEN;
1863 SET_NETDEV_DEV(dev, &pdev->dev);
1864
1865 ret = register_netdev(dev);
1866 if (ret)
1867 goto out_unregister_mdio;
1868
1869 netif_carrier_off(dev);
1870 platform_set_drvdata(pdev, dev);
1871 priv->pdev = pdev;
1872 priv->net_dev = dev;
1873
1874 return 0;
1875
1876 out_unregister_mdio:
1877 if (priv->mii_bus)
1878 mdiobus_unregister(priv->mii_bus);
1879
1880 out_free_mdio:
1881 if (priv->mii_bus)
1882 mdiobus_free(priv->mii_bus);
1883
1884 out_uninit_hw:
1885 /* turn off mdc clock */
1886 enet_writel(priv, 0, ENET_MIISC_REG);
1887 clk_disable_unprepare(priv->phy_clk);
1888
1889 out_disable_clk_mac:
1890 clk_disable_unprepare(priv->mac_clk);
1891 out:
1892 free_netdev(dev);
1893 return ret;
1894 }
1895
1896
1897 /*
1898 * exit func, stops hardware and unregisters netdevice
1899 */
bcm_enet_remove(struct platform_device * pdev)1900 static int bcm_enet_remove(struct platform_device *pdev)
1901 {
1902 struct bcm_enet_priv *priv;
1903 struct net_device *dev;
1904
1905 /* stop netdevice */
1906 dev = platform_get_drvdata(pdev);
1907 priv = netdev_priv(dev);
1908 unregister_netdev(dev);
1909
1910 /* turn off mdc clock */
1911 enet_writel(priv, 0, ENET_MIISC_REG);
1912
1913 if (priv->has_phy) {
1914 mdiobus_unregister(priv->mii_bus);
1915 mdiobus_free(priv->mii_bus);
1916 } else {
1917 struct bcm63xx_enet_platform_data *pd;
1918
1919 pd = dev_get_platdata(&pdev->dev);
1920 if (pd && pd->mii_config)
1921 pd->mii_config(dev, 0, bcm_enet_mdio_read_mii,
1922 bcm_enet_mdio_write_mii);
1923 }
1924
1925 /* disable hw block clocks */
1926 clk_disable_unprepare(priv->phy_clk);
1927 clk_disable_unprepare(priv->mac_clk);
1928
1929 free_netdev(dev);
1930 return 0;
1931 }
1932
1933 struct platform_driver bcm63xx_enet_driver = {
1934 .probe = bcm_enet_probe,
1935 .remove = bcm_enet_remove,
1936 .driver = {
1937 .name = "bcm63xx_enet",
1938 .owner = THIS_MODULE,
1939 },
1940 };
1941
1942 /*
1943 * switch mii access callbacks
1944 */
bcmenet_sw_mdio_read(struct bcm_enet_priv * priv,int ext,int phy_id,int location)1945 static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv,
1946 int ext, int phy_id, int location)
1947 {
1948 u32 reg;
1949 int ret;
1950
1951 spin_lock_bh(&priv->enetsw_mdio_lock);
1952 enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1953
1954 reg = ENETSW_MDIOC_RD_MASK |
1955 (phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
1956 (location << ENETSW_MDIOC_REG_SHIFT);
1957
1958 if (ext)
1959 reg |= ENETSW_MDIOC_EXT_MASK;
1960
1961 enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
1962 udelay(50);
1963 ret = enetsw_readw(priv, ENETSW_MDIOD_REG);
1964 spin_unlock_bh(&priv->enetsw_mdio_lock);
1965 return ret;
1966 }
1967
bcmenet_sw_mdio_write(struct bcm_enet_priv * priv,int ext,int phy_id,int location,uint16_t data)1968 static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv,
1969 int ext, int phy_id, int location,
1970 uint16_t data)
1971 {
1972 u32 reg;
1973
1974 spin_lock_bh(&priv->enetsw_mdio_lock);
1975 enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1976
1977 reg = ENETSW_MDIOC_WR_MASK |
1978 (phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
1979 (location << ENETSW_MDIOC_REG_SHIFT);
1980
1981 if (ext)
1982 reg |= ENETSW_MDIOC_EXT_MASK;
1983
1984 reg |= data;
1985
1986 enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
1987 udelay(50);
1988 spin_unlock_bh(&priv->enetsw_mdio_lock);
1989 }
1990
bcm_enet_port_is_rgmii(int portid)1991 static inline int bcm_enet_port_is_rgmii(int portid)
1992 {
1993 return portid >= ENETSW_RGMII_PORT0;
1994 }
1995
1996 /*
1997 * enet sw PHY polling
1998 */
swphy_poll_timer(struct timer_list * t)1999 static void swphy_poll_timer(struct timer_list *t)
2000 {
2001 struct bcm_enet_priv *priv = from_timer(priv, t, swphy_poll);
2002 unsigned int i;
2003
2004 for (i = 0; i < priv->num_ports; i++) {
2005 struct bcm63xx_enetsw_port *port;
2006 int val, j, up, advertise, lpa, speed, duplex, media;
2007 int external_phy = bcm_enet_port_is_rgmii(i);
2008 u8 override;
2009
2010 port = &priv->used_ports[i];
2011 if (!port->used)
2012 continue;
2013
2014 if (port->bypass_link)
2015 continue;
2016
2017 /* dummy read to clear */
2018 for (j = 0; j < 2; j++)
2019 val = bcmenet_sw_mdio_read(priv, external_phy,
2020 port->phy_id, MII_BMSR);
2021
2022 if (val == 0xffff)
2023 continue;
2024
2025 up = (val & BMSR_LSTATUS) ? 1 : 0;
2026 if (!(up ^ priv->sw_port_link[i]))
2027 continue;
2028
2029 priv->sw_port_link[i] = up;
2030
2031 /* link changed */
2032 if (!up) {
2033 dev_info(&priv->pdev->dev, "link DOWN on %s\n",
2034 port->name);
2035 enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2036 ENETSW_PORTOV_REG(i));
2037 enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2038 ENETSW_PTCTRL_TXDIS_MASK,
2039 ENETSW_PTCTRL_REG(i));
2040 continue;
2041 }
2042
2043 advertise = bcmenet_sw_mdio_read(priv, external_phy,
2044 port->phy_id, MII_ADVERTISE);
2045
2046 lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id,
2047 MII_LPA);
2048
2049 /* figure out media and duplex from advertise and LPA values */
2050 media = mii_nway_result(lpa & advertise);
2051 duplex = (media & ADVERTISE_FULL) ? 1 : 0;
2052
2053 if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF))
2054 speed = 100;
2055 else
2056 speed = 10;
2057
2058 if (val & BMSR_ESTATEN) {
2059 advertise = bcmenet_sw_mdio_read(priv, external_phy,
2060 port->phy_id, MII_CTRL1000);
2061
2062 lpa = bcmenet_sw_mdio_read(priv, external_phy,
2063 port->phy_id, MII_STAT1000);
2064
2065 if (advertise & (ADVERTISE_1000FULL | ADVERTISE_1000HALF)
2066 && lpa & (LPA_1000FULL | LPA_1000HALF)) {
2067 speed = 1000;
2068 duplex = (lpa & LPA_1000FULL);
2069 }
2070 }
2071
2072 dev_info(&priv->pdev->dev,
2073 "link UP on %s, %dMbps, %s-duplex\n",
2074 port->name, speed, duplex ? "full" : "half");
2075
2076 override = ENETSW_PORTOV_ENABLE_MASK |
2077 ENETSW_PORTOV_LINKUP_MASK;
2078
2079 if (speed == 1000)
2080 override |= ENETSW_IMPOV_1000_MASK;
2081 else if (speed == 100)
2082 override |= ENETSW_IMPOV_100_MASK;
2083 if (duplex)
2084 override |= ENETSW_IMPOV_FDX_MASK;
2085
2086 enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2087 enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2088 }
2089
2090 priv->swphy_poll.expires = jiffies + HZ;
2091 add_timer(&priv->swphy_poll);
2092 }
2093
2094 /*
2095 * open callback, allocate dma rings & buffers and start rx operation
2096 */
bcm_enetsw_open(struct net_device * dev)2097 static int bcm_enetsw_open(struct net_device *dev)
2098 {
2099 struct bcm_enet_priv *priv;
2100 struct device *kdev;
2101 int i, ret;
2102 unsigned int size;
2103 void *p;
2104 u32 val;
2105
2106 priv = netdev_priv(dev);
2107 kdev = &priv->pdev->dev;
2108
2109 /* mask all interrupts and request them */
2110 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2111 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2112
2113 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma,
2114 0, dev->name, dev);
2115 if (ret)
2116 goto out_freeirq;
2117
2118 if (priv->irq_tx != -1) {
2119 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
2120 0, dev->name, dev);
2121 if (ret)
2122 goto out_freeirq_rx;
2123 }
2124
2125 /* allocate rx dma ring */
2126 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
2127 p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
2128 if (!p) {
2129 dev_err(kdev, "cannot allocate rx ring %u\n", size);
2130 ret = -ENOMEM;
2131 goto out_freeirq_tx;
2132 }
2133
2134 priv->rx_desc_alloc_size = size;
2135 priv->rx_desc_cpu = p;
2136
2137 /* allocate tx dma ring */
2138 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
2139 p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
2140 if (!p) {
2141 dev_err(kdev, "cannot allocate tx ring\n");
2142 ret = -ENOMEM;
2143 goto out_free_rx_ring;
2144 }
2145
2146 priv->tx_desc_alloc_size = size;
2147 priv->tx_desc_cpu = p;
2148
2149 priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
2150 GFP_KERNEL);
2151 if (!priv->tx_skb) {
2152 dev_err(kdev, "cannot allocate tx skb queue\n");
2153 ret = -ENOMEM;
2154 goto out_free_tx_ring;
2155 }
2156
2157 priv->tx_desc_count = priv->tx_ring_size;
2158 priv->tx_dirty_desc = 0;
2159 priv->tx_curr_desc = 0;
2160 spin_lock_init(&priv->tx_lock);
2161
2162 /* init & fill rx ring with buffers */
2163 priv->rx_buf = kcalloc(priv->rx_ring_size, sizeof(void *),
2164 GFP_KERNEL);
2165 if (!priv->rx_buf) {
2166 dev_err(kdev, "cannot allocate rx buffer queue\n");
2167 ret = -ENOMEM;
2168 goto out_free_tx_skb;
2169 }
2170
2171 priv->rx_desc_count = 0;
2172 priv->rx_dirty_desc = 0;
2173 priv->rx_curr_desc = 0;
2174
2175 /* disable all ports */
2176 for (i = 0; i < priv->num_ports; i++) {
2177 enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2178 ENETSW_PORTOV_REG(i));
2179 enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2180 ENETSW_PTCTRL_TXDIS_MASK,
2181 ENETSW_PTCTRL_REG(i));
2182
2183 priv->sw_port_link[i] = 0;
2184 }
2185
2186 /* reset mib */
2187 val = enetsw_readb(priv, ENETSW_GMCR_REG);
2188 val |= ENETSW_GMCR_RST_MIB_MASK;
2189 enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2190 mdelay(1);
2191 val &= ~ENETSW_GMCR_RST_MIB_MASK;
2192 enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2193 mdelay(1);
2194
2195 /* force CPU port state */
2196 val = enetsw_readb(priv, ENETSW_IMPOV_REG);
2197 val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK;
2198 enetsw_writeb(priv, val, ENETSW_IMPOV_REG);
2199
2200 /* enable switch forward engine */
2201 val = enetsw_readb(priv, ENETSW_SWMODE_REG);
2202 val |= ENETSW_SWMODE_FWD_EN_MASK;
2203 enetsw_writeb(priv, val, ENETSW_SWMODE_REG);
2204
2205 /* enable jumbo on all ports */
2206 enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG);
2207 enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG);
2208
2209 /* initialize flow control buffer allocation */
2210 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
2211 ENETDMA_BUFALLOC_REG(priv->rx_chan));
2212
2213 if (bcm_enet_refill_rx(dev, false)) {
2214 dev_err(kdev, "cannot allocate rx buffer queue\n");
2215 ret = -ENOMEM;
2216 goto out;
2217 }
2218
2219 /* write rx & tx ring addresses */
2220 enet_dmas_writel(priv, priv->rx_desc_dma,
2221 ENETDMAS_RSTART_REG, priv->rx_chan);
2222 enet_dmas_writel(priv, priv->tx_desc_dma,
2223 ENETDMAS_RSTART_REG, priv->tx_chan);
2224
2225 /* clear remaining state ram for rx & tx channel */
2226 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
2227 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
2228 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
2229 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
2230 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
2231 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
2232
2233 /* set dma maximum burst len */
2234 enet_dmac_writel(priv, priv->dma_maxburst,
2235 ENETDMAC_MAXBURST, priv->rx_chan);
2236 enet_dmac_writel(priv, priv->dma_maxburst,
2237 ENETDMAC_MAXBURST, priv->tx_chan);
2238
2239 /* set flow control low/high threshold to 1/3 / 2/3 */
2240 val = priv->rx_ring_size / 3;
2241 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
2242 val = (priv->rx_ring_size * 2) / 3;
2243 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
2244
2245 /* all set, enable mac and interrupts, start dma engine and
2246 * kick rx dma channel
2247 */
2248 wmb();
2249 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
2250 enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK,
2251 ENETDMAC_CHANCFG, priv->rx_chan);
2252
2253 /* watch "packet transferred" interrupt in rx and tx */
2254 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2255 ENETDMAC_IR, priv->rx_chan);
2256 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2257 ENETDMAC_IR, priv->tx_chan);
2258
2259 /* make sure we enable napi before rx interrupt */
2260 napi_enable(&priv->napi);
2261
2262 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2263 ENETDMAC_IRMASK, priv->rx_chan);
2264 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2265 ENETDMAC_IRMASK, priv->tx_chan);
2266
2267 netif_carrier_on(dev);
2268 netif_start_queue(dev);
2269
2270 /* apply override config for bypass_link ports here. */
2271 for (i = 0; i < priv->num_ports; i++) {
2272 struct bcm63xx_enetsw_port *port;
2273 u8 override;
2274 port = &priv->used_ports[i];
2275 if (!port->used)
2276 continue;
2277
2278 if (!port->bypass_link)
2279 continue;
2280
2281 override = ENETSW_PORTOV_ENABLE_MASK |
2282 ENETSW_PORTOV_LINKUP_MASK;
2283
2284 switch (port->force_speed) {
2285 case 1000:
2286 override |= ENETSW_IMPOV_1000_MASK;
2287 break;
2288 case 100:
2289 override |= ENETSW_IMPOV_100_MASK;
2290 break;
2291 case 10:
2292 break;
2293 default:
2294 pr_warn("invalid forced speed on port %s: assume 10\n",
2295 port->name);
2296 break;
2297 }
2298
2299 if (port->force_duplex_full)
2300 override |= ENETSW_IMPOV_FDX_MASK;
2301
2302
2303 enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2304 enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2305 }
2306
2307 /* start phy polling timer */
2308 timer_setup(&priv->swphy_poll, swphy_poll_timer, 0);
2309 mod_timer(&priv->swphy_poll, jiffies);
2310 return 0;
2311
2312 out:
2313 bcm_enet_free_rx_buf_ring(kdev, priv);
2314
2315 out_free_tx_skb:
2316 kfree(priv->tx_skb);
2317
2318 out_free_tx_ring:
2319 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2320 priv->tx_desc_cpu, priv->tx_desc_dma);
2321
2322 out_free_rx_ring:
2323 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2324 priv->rx_desc_cpu, priv->rx_desc_dma);
2325
2326 out_freeirq_tx:
2327 if (priv->irq_tx != -1)
2328 free_irq(priv->irq_tx, dev);
2329
2330 out_freeirq_rx:
2331 free_irq(priv->irq_rx, dev);
2332
2333 out_freeirq:
2334 return ret;
2335 }
2336
2337 /* stop callback */
bcm_enetsw_stop(struct net_device * dev)2338 static int bcm_enetsw_stop(struct net_device *dev)
2339 {
2340 struct bcm_enet_priv *priv;
2341 struct device *kdev;
2342
2343 priv = netdev_priv(dev);
2344 kdev = &priv->pdev->dev;
2345
2346 del_timer_sync(&priv->swphy_poll);
2347 netif_stop_queue(dev);
2348 napi_disable(&priv->napi);
2349 del_timer_sync(&priv->rx_timeout);
2350
2351 /* mask all interrupts */
2352 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2353 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2354
2355 /* disable dma & mac */
2356 bcm_enet_disable_dma(priv, priv->tx_chan);
2357 bcm_enet_disable_dma(priv, priv->rx_chan);
2358
2359 /* force reclaim of all tx buffers */
2360 bcm_enet_tx_reclaim(dev, 1);
2361
2362 /* free the rx buffer ring */
2363 bcm_enet_free_rx_buf_ring(kdev, priv);
2364
2365 /* free remaining allocated memory */
2366 kfree(priv->tx_skb);
2367 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2368 priv->rx_desc_cpu, priv->rx_desc_dma);
2369 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2370 priv->tx_desc_cpu, priv->tx_desc_dma);
2371 if (priv->irq_tx != -1)
2372 free_irq(priv->irq_tx, dev);
2373 free_irq(priv->irq_rx, dev);
2374
2375 /* reset BQL after forced tx reclaim to prevent kernel panic */
2376 netdev_reset_queue(dev);
2377
2378 return 0;
2379 }
2380
2381 /* try to sort out phy external status by walking the used_port field
2382 * in the bcm_enet_priv structure. in case the phy address is not
2383 * assigned to any physical port on the switch, assume it is external
2384 * (and yell at the user).
2385 */
bcm_enetsw_phy_is_external(struct bcm_enet_priv * priv,int phy_id)2386 static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id)
2387 {
2388 int i;
2389
2390 for (i = 0; i < priv->num_ports; ++i) {
2391 if (!priv->used_ports[i].used)
2392 continue;
2393 if (priv->used_ports[i].phy_id == phy_id)
2394 return bcm_enet_port_is_rgmii(i);
2395 }
2396
2397 printk_once(KERN_WARNING "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n",
2398 phy_id);
2399 return 1;
2400 }
2401
2402 /* can't use bcmenet_sw_mdio_read directly as we need to sort out
2403 * external/internal status of the given phy_id first.
2404 */
bcm_enetsw_mii_mdio_read(struct net_device * dev,int phy_id,int location)2405 static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id,
2406 int location)
2407 {
2408 struct bcm_enet_priv *priv;
2409
2410 priv = netdev_priv(dev);
2411 return bcmenet_sw_mdio_read(priv,
2412 bcm_enetsw_phy_is_external(priv, phy_id),
2413 phy_id, location);
2414 }
2415
2416 /* can't use bcmenet_sw_mdio_write directly as we need to sort out
2417 * external/internal status of the given phy_id first.
2418 */
bcm_enetsw_mii_mdio_write(struct net_device * dev,int phy_id,int location,int val)2419 static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id,
2420 int location,
2421 int val)
2422 {
2423 struct bcm_enet_priv *priv;
2424
2425 priv = netdev_priv(dev);
2426 bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id),
2427 phy_id, location, val);
2428 }
2429
bcm_enetsw_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2430 static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2431 {
2432 struct mii_if_info mii;
2433
2434 mii.dev = dev;
2435 mii.mdio_read = bcm_enetsw_mii_mdio_read;
2436 mii.mdio_write = bcm_enetsw_mii_mdio_write;
2437 mii.phy_id = 0;
2438 mii.phy_id_mask = 0x3f;
2439 mii.reg_num_mask = 0x1f;
2440 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
2441
2442 }
2443
2444 static const struct net_device_ops bcm_enetsw_ops = {
2445 .ndo_open = bcm_enetsw_open,
2446 .ndo_stop = bcm_enetsw_stop,
2447 .ndo_start_xmit = bcm_enet_start_xmit,
2448 .ndo_change_mtu = bcm_enet_change_mtu,
2449 .ndo_eth_ioctl = bcm_enetsw_ioctl,
2450 };
2451
2452
2453 static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = {
2454 { "rx_packets", DEV_STAT(rx_packets), -1 },
2455 { "tx_packets", DEV_STAT(tx_packets), -1 },
2456 { "rx_bytes", DEV_STAT(rx_bytes), -1 },
2457 { "tx_bytes", DEV_STAT(tx_bytes), -1 },
2458 { "rx_errors", DEV_STAT(rx_errors), -1 },
2459 { "tx_errors", DEV_STAT(tx_errors), -1 },
2460 { "rx_dropped", DEV_STAT(rx_dropped), -1 },
2461 { "tx_dropped", DEV_STAT(tx_dropped), -1 },
2462
2463 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT },
2464 { "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST },
2465 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST },
2466 { "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT },
2467 { "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 },
2468 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 },
2469 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 },
2470 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 },
2471 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023},
2472 { "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max),
2473 ETHSW_MIB_RX_1024_1522 },
2474 { "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047),
2475 ETHSW_MIB_RX_1523_2047 },
2476 { "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095),
2477 ETHSW_MIB_RX_2048_4095 },
2478 { "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191),
2479 ETHSW_MIB_RX_4096_8191 },
2480 { "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728),
2481 ETHSW_MIB_RX_8192_9728 },
2482 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR },
2483 { "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC },
2484 { "tx_dropped", GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP },
2485 { "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND },
2486 { "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE },
2487
2488 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT },
2489 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST },
2490 { "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT },
2491 { "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT },
2492 { "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE },
2493 { "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS },
2494
2495 };
2496
2497 #define BCM_ENETSW_STATS_LEN \
2498 (sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats))
2499
bcm_enetsw_get_strings(struct net_device * netdev,u32 stringset,u8 * data)2500 static void bcm_enetsw_get_strings(struct net_device *netdev,
2501 u32 stringset, u8 *data)
2502 {
2503 int i;
2504
2505 switch (stringset) {
2506 case ETH_SS_STATS:
2507 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2508 memcpy(data + i * ETH_GSTRING_LEN,
2509 bcm_enetsw_gstrings_stats[i].stat_string,
2510 ETH_GSTRING_LEN);
2511 }
2512 break;
2513 }
2514 }
2515
bcm_enetsw_get_sset_count(struct net_device * netdev,int string_set)2516 static int bcm_enetsw_get_sset_count(struct net_device *netdev,
2517 int string_set)
2518 {
2519 switch (string_set) {
2520 case ETH_SS_STATS:
2521 return BCM_ENETSW_STATS_LEN;
2522 default:
2523 return -EINVAL;
2524 }
2525 }
2526
bcm_enetsw_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)2527 static void bcm_enetsw_get_drvinfo(struct net_device *netdev,
2528 struct ethtool_drvinfo *drvinfo)
2529 {
2530 strncpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver));
2531 strncpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info));
2532 }
2533
bcm_enetsw_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats * stats,u64 * data)2534 static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev,
2535 struct ethtool_stats *stats,
2536 u64 *data)
2537 {
2538 struct bcm_enet_priv *priv;
2539 int i;
2540
2541 priv = netdev_priv(netdev);
2542
2543 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2544 const struct bcm_enet_stats *s;
2545 u32 lo, hi;
2546 char *p;
2547 int reg;
2548
2549 s = &bcm_enetsw_gstrings_stats[i];
2550
2551 reg = s->mib_reg;
2552 if (reg == -1)
2553 continue;
2554
2555 lo = enetsw_readl(priv, ENETSW_MIB_REG(reg));
2556 p = (char *)priv + s->stat_offset;
2557
2558 if (s->sizeof_stat == sizeof(u64)) {
2559 hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1));
2560 *(u64 *)p = ((u64)hi << 32 | lo);
2561 } else {
2562 *(u32 *)p = lo;
2563 }
2564 }
2565
2566 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2567 const struct bcm_enet_stats *s;
2568 char *p;
2569
2570 s = &bcm_enetsw_gstrings_stats[i];
2571
2572 if (s->mib_reg == -1)
2573 p = (char *)&netdev->stats + s->stat_offset;
2574 else
2575 p = (char *)priv + s->stat_offset;
2576
2577 data[i] = (s->sizeof_stat == sizeof(u64)) ?
2578 *(u64 *)p : *(u32 *)p;
2579 }
2580 }
2581
bcm_enetsw_get_ringparam(struct net_device * dev,struct ethtool_ringparam * ering)2582 static void bcm_enetsw_get_ringparam(struct net_device *dev,
2583 struct ethtool_ringparam *ering)
2584 {
2585 struct bcm_enet_priv *priv;
2586
2587 priv = netdev_priv(dev);
2588
2589 /* rx/tx ring is actually only limited by memory */
2590 ering->rx_max_pending = 8192;
2591 ering->tx_max_pending = 8192;
2592 ering->rx_mini_max_pending = 0;
2593 ering->rx_jumbo_max_pending = 0;
2594 ering->rx_pending = priv->rx_ring_size;
2595 ering->tx_pending = priv->tx_ring_size;
2596 }
2597
bcm_enetsw_set_ringparam(struct net_device * dev,struct ethtool_ringparam * ering)2598 static int bcm_enetsw_set_ringparam(struct net_device *dev,
2599 struct ethtool_ringparam *ering)
2600 {
2601 struct bcm_enet_priv *priv;
2602 int was_running;
2603
2604 priv = netdev_priv(dev);
2605
2606 was_running = 0;
2607 if (netif_running(dev)) {
2608 bcm_enetsw_stop(dev);
2609 was_running = 1;
2610 }
2611
2612 priv->rx_ring_size = ering->rx_pending;
2613 priv->tx_ring_size = ering->tx_pending;
2614
2615 if (was_running) {
2616 int err;
2617
2618 err = bcm_enetsw_open(dev);
2619 if (err)
2620 dev_close(dev);
2621 }
2622 return 0;
2623 }
2624
2625 static const struct ethtool_ops bcm_enetsw_ethtool_ops = {
2626 .get_strings = bcm_enetsw_get_strings,
2627 .get_sset_count = bcm_enetsw_get_sset_count,
2628 .get_ethtool_stats = bcm_enetsw_get_ethtool_stats,
2629 .get_drvinfo = bcm_enetsw_get_drvinfo,
2630 .get_ringparam = bcm_enetsw_get_ringparam,
2631 .set_ringparam = bcm_enetsw_set_ringparam,
2632 };
2633
2634 /* allocate netdevice, request register memory and register device. */
bcm_enetsw_probe(struct platform_device * pdev)2635 static int bcm_enetsw_probe(struct platform_device *pdev)
2636 {
2637 struct bcm_enet_priv *priv;
2638 struct net_device *dev;
2639 struct bcm63xx_enetsw_platform_data *pd;
2640 struct resource *res_mem;
2641 int ret, irq_rx, irq_tx;
2642
2643 if (!bcm_enet_shared_base[0])
2644 return -EPROBE_DEFER;
2645
2646 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2647 irq_rx = platform_get_irq(pdev, 0);
2648 irq_tx = platform_get_irq(pdev, 1);
2649 if (!res_mem || irq_rx < 0)
2650 return -ENODEV;
2651
2652 dev = alloc_etherdev(sizeof(*priv));
2653 if (!dev)
2654 return -ENOMEM;
2655 priv = netdev_priv(dev);
2656
2657 /* initialize default and fetch platform data */
2658 priv->enet_is_sw = true;
2659 priv->irq_rx = irq_rx;
2660 priv->irq_tx = irq_tx;
2661 priv->rx_ring_size = BCMENET_DEF_RX_DESC;
2662 priv->tx_ring_size = BCMENET_DEF_TX_DESC;
2663 priv->dma_maxburst = BCMENETSW_DMA_MAXBURST;
2664 priv->rx_buf_offset = NET_SKB_PAD + NET_IP_ALIGN;
2665
2666 pd = dev_get_platdata(&pdev->dev);
2667 if (pd) {
2668 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
2669 memcpy(priv->used_ports, pd->used_ports,
2670 sizeof(pd->used_ports));
2671 priv->num_ports = pd->num_ports;
2672 priv->dma_has_sram = pd->dma_has_sram;
2673 priv->dma_chan_en_mask = pd->dma_chan_en_mask;
2674 priv->dma_chan_int_mask = pd->dma_chan_int_mask;
2675 priv->dma_chan_width = pd->dma_chan_width;
2676 }
2677
2678 ret = bcm_enet_change_mtu(dev, dev->mtu);
2679 if (ret)
2680 goto out;
2681
2682 priv->base = devm_ioremap_resource(&pdev->dev, res_mem);
2683 if (IS_ERR(priv->base)) {
2684 ret = PTR_ERR(priv->base);
2685 goto out;
2686 }
2687
2688 priv->mac_clk = devm_clk_get(&pdev->dev, "enetsw");
2689 if (IS_ERR(priv->mac_clk)) {
2690 ret = PTR_ERR(priv->mac_clk);
2691 goto out;
2692 }
2693 ret = clk_prepare_enable(priv->mac_clk);
2694 if (ret)
2695 goto out;
2696
2697 priv->rx_chan = 0;
2698 priv->tx_chan = 1;
2699 spin_lock_init(&priv->rx_lock);
2700
2701 /* init rx timeout (used for oom) */
2702 timer_setup(&priv->rx_timeout, bcm_enet_refill_rx_timer, 0);
2703
2704 /* register netdevice */
2705 dev->netdev_ops = &bcm_enetsw_ops;
2706 netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
2707 dev->ethtool_ops = &bcm_enetsw_ethtool_ops;
2708 SET_NETDEV_DEV(dev, &pdev->dev);
2709
2710 spin_lock_init(&priv->enetsw_mdio_lock);
2711
2712 ret = register_netdev(dev);
2713 if (ret)
2714 goto out_disable_clk;
2715
2716 netif_carrier_off(dev);
2717 platform_set_drvdata(pdev, dev);
2718 priv->pdev = pdev;
2719 priv->net_dev = dev;
2720
2721 return 0;
2722
2723 out_disable_clk:
2724 clk_disable_unprepare(priv->mac_clk);
2725 out:
2726 free_netdev(dev);
2727 return ret;
2728 }
2729
2730
2731 /* exit func, stops hardware and unregisters netdevice */
bcm_enetsw_remove(struct platform_device * pdev)2732 static int bcm_enetsw_remove(struct platform_device *pdev)
2733 {
2734 struct bcm_enet_priv *priv;
2735 struct net_device *dev;
2736
2737 /* stop netdevice */
2738 dev = platform_get_drvdata(pdev);
2739 priv = netdev_priv(dev);
2740 unregister_netdev(dev);
2741
2742 clk_disable_unprepare(priv->mac_clk);
2743
2744 free_netdev(dev);
2745 return 0;
2746 }
2747
2748 struct platform_driver bcm63xx_enetsw_driver = {
2749 .probe = bcm_enetsw_probe,
2750 .remove = bcm_enetsw_remove,
2751 .driver = {
2752 .name = "bcm63xx_enetsw",
2753 .owner = THIS_MODULE,
2754 },
2755 };
2756
2757 /* reserve & remap memory space shared between all macs */
bcm_enet_shared_probe(struct platform_device * pdev)2758 static int bcm_enet_shared_probe(struct platform_device *pdev)
2759 {
2760 void __iomem *p[3];
2761 unsigned int i;
2762
2763 memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base));
2764
2765 for (i = 0; i < 3; i++) {
2766 p[i] = devm_platform_ioremap_resource(pdev, i);
2767 if (IS_ERR(p[i]))
2768 return PTR_ERR(p[i]);
2769 }
2770
2771 memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base));
2772
2773 return 0;
2774 }
2775
bcm_enet_shared_remove(struct platform_device * pdev)2776 static int bcm_enet_shared_remove(struct platform_device *pdev)
2777 {
2778 return 0;
2779 }
2780
2781 /* this "shared" driver is needed because both macs share a single
2782 * address space
2783 */
2784 struct platform_driver bcm63xx_enet_shared_driver = {
2785 .probe = bcm_enet_shared_probe,
2786 .remove = bcm_enet_shared_remove,
2787 .driver = {
2788 .name = "bcm63xx_enet_shared",
2789 .owner = THIS_MODULE,
2790 },
2791 };
2792
2793 static struct platform_driver * const drivers[] = {
2794 &bcm63xx_enet_shared_driver,
2795 &bcm63xx_enet_driver,
2796 &bcm63xx_enetsw_driver,
2797 };
2798
2799 /* entry point */
bcm_enet_init(void)2800 static int __init bcm_enet_init(void)
2801 {
2802 return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2803 }
2804
bcm_enet_exit(void)2805 static void __exit bcm_enet_exit(void)
2806 {
2807 platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2808 }
2809
2810
2811 module_init(bcm_enet_init);
2812 module_exit(bcm_enet_exit);
2813
2814 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver");
2815 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>");
2816 MODULE_LICENSE("GPL");
2817