1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2015 MediaTek Inc.
4 * Author: Leilk Liu <leilk.liu@mediatek.com>
5 */
6
7 #include <linux/clk.h>
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/ioport.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/platform_device.h>
17 #include <linux/platform_data/spi-mt65xx.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/dma-mapping.h>
22
23 #define SPI_CFG0_REG 0x0000
24 #define SPI_CFG1_REG 0x0004
25 #define SPI_TX_SRC_REG 0x0008
26 #define SPI_RX_DST_REG 0x000c
27 #define SPI_TX_DATA_REG 0x0010
28 #define SPI_RX_DATA_REG 0x0014
29 #define SPI_CMD_REG 0x0018
30 #define SPI_STATUS0_REG 0x001c
31 #define SPI_PAD_SEL_REG 0x0024
32 #define SPI_CFG2_REG 0x0028
33 #define SPI_TX_SRC_REG_64 0x002c
34 #define SPI_RX_DST_REG_64 0x0030
35 #define SPI_CFG3_IPM_REG 0x0040
36
37 #define SPI_CFG0_SCK_HIGH_OFFSET 0
38 #define SPI_CFG0_SCK_LOW_OFFSET 8
39 #define SPI_CFG0_CS_HOLD_OFFSET 16
40 #define SPI_CFG0_CS_SETUP_OFFSET 24
41 #define SPI_ADJUST_CFG0_CS_HOLD_OFFSET 0
42 #define SPI_ADJUST_CFG0_CS_SETUP_OFFSET 16
43
44 #define SPI_CFG1_CS_IDLE_OFFSET 0
45 #define SPI_CFG1_PACKET_LOOP_OFFSET 8
46 #define SPI_CFG1_PACKET_LENGTH_OFFSET 16
47 #define SPI_CFG1_GET_TICK_DLY_OFFSET 29
48 #define SPI_CFG1_GET_TICK_DLY_OFFSET_V1 30
49
50 #define SPI_CFG1_GET_TICK_DLY_MASK 0xe0000000
51 #define SPI_CFG1_GET_TICK_DLY_MASK_V1 0xc0000000
52
53 #define SPI_CFG1_CS_IDLE_MASK 0xff
54 #define SPI_CFG1_PACKET_LOOP_MASK 0xff00
55 #define SPI_CFG1_PACKET_LENGTH_MASK 0x3ff0000
56 #define SPI_CFG1_IPM_PACKET_LENGTH_MASK GENMASK(31, 16)
57 #define SPI_CFG2_SCK_HIGH_OFFSET 0
58 #define SPI_CFG2_SCK_LOW_OFFSET 16
59
60 #define SPI_CMD_ACT BIT(0)
61 #define SPI_CMD_RESUME BIT(1)
62 #define SPI_CMD_RST BIT(2)
63 #define SPI_CMD_PAUSE_EN BIT(4)
64 #define SPI_CMD_DEASSERT BIT(5)
65 #define SPI_CMD_SAMPLE_SEL BIT(6)
66 #define SPI_CMD_CS_POL BIT(7)
67 #define SPI_CMD_CPHA BIT(8)
68 #define SPI_CMD_CPOL BIT(9)
69 #define SPI_CMD_RX_DMA BIT(10)
70 #define SPI_CMD_TX_DMA BIT(11)
71 #define SPI_CMD_TXMSBF BIT(12)
72 #define SPI_CMD_RXMSBF BIT(13)
73 #define SPI_CMD_RX_ENDIAN BIT(14)
74 #define SPI_CMD_TX_ENDIAN BIT(15)
75 #define SPI_CMD_FINISH_IE BIT(16)
76 #define SPI_CMD_PAUSE_IE BIT(17)
77 #define SPI_CMD_IPM_NONIDLE_MODE BIT(19)
78 #define SPI_CMD_IPM_SPIM_LOOP BIT(21)
79 #define SPI_CMD_IPM_GET_TICKDLY_OFFSET 22
80
81 #define SPI_CMD_IPM_GET_TICKDLY_MASK GENMASK(24, 22)
82
83 #define PIN_MODE_CFG(x) ((x) / 2)
84
85 #define SPI_CFG3_IPM_HALF_DUPLEX_DIR BIT(2)
86 #define SPI_CFG3_IPM_HALF_DUPLEX_EN BIT(3)
87 #define SPI_CFG3_IPM_XMODE_EN BIT(4)
88 #define SPI_CFG3_IPM_NODATA_FLAG BIT(5)
89 #define SPI_CFG3_IPM_CMD_BYTELEN_OFFSET 8
90 #define SPI_CFG3_IPM_ADDR_BYTELEN_OFFSET 12
91
92 #define SPI_CFG3_IPM_CMD_PIN_MODE_MASK GENMASK(1, 0)
93 #define SPI_CFG3_IPM_CMD_BYTELEN_MASK GENMASK(11, 8)
94 #define SPI_CFG3_IPM_ADDR_BYTELEN_MASK GENMASK(15, 12)
95
96 #define MT8173_SPI_MAX_PAD_SEL 3
97
98 #define MTK_SPI_PAUSE_INT_STATUS 0x2
99
100 #define MTK_SPI_MAX_FIFO_SIZE 32U
101 #define MTK_SPI_PACKET_SIZE 1024
102 #define MTK_SPI_IPM_PACKET_SIZE SZ_64K
103 #define MTK_SPI_IPM_PACKET_LOOP SZ_256
104
105 #define MTK_SPI_IDLE 0
106 #define MTK_SPI_PAUSED 1
107
108 #define MTK_SPI_32BITS_MASK (0xffffffff)
109
110 #define DMA_ADDR_EXT_BITS (36)
111 #define DMA_ADDR_DEF_BITS (32)
112
113 /**
114 * struct mtk_spi_compatible - device data structure
115 * @need_pad_sel: Enable pad (pins) selection in SPI controller
116 * @must_tx: Must explicitly send dummy TX bytes to do RX only transfer
117 * @enhance_timing: Enable adjusting cfg register to enhance time accuracy
118 * @dma_ext: DMA address extension supported
119 * @no_need_unprepare: Don't unprepare the SPI clk during runtime
120 * @ipm_design: Adjust/extend registers to support IPM design IP features
121 */
122 struct mtk_spi_compatible {
123 bool need_pad_sel;
124 bool must_tx;
125 bool enhance_timing;
126 bool dma_ext;
127 bool no_need_unprepare;
128 bool ipm_design;
129 };
130
131 /**
132 * struct mtk_spi - SPI driver instance
133 * @base: Start address of the SPI controller registers
134 * @state: SPI controller state
135 * @pad_num: Number of pad_sel entries
136 * @pad_sel: Groups of pins to select
137 * @parent_clk: Parent of sel_clk
138 * @sel_clk: SPI master mux clock
139 * @spi_clk: Peripheral clock
140 * @spi_hclk: AHB bus clock
141 * @cur_transfer: Currently processed SPI transfer
142 * @xfer_len: Number of bytes to transfer
143 * @num_xfered: Number of transferred bytes
144 * @tx_sgl: TX transfer scatterlist
145 * @rx_sgl: RX transfer scatterlist
146 * @tx_sgl_len: Size of TX DMA transfer
147 * @rx_sgl_len: Size of RX DMA transfer
148 * @dev_comp: Device data structure
149 * @spi_clk_hz: Current SPI clock in Hz
150 * @spimem_done: SPI-MEM operation completion
151 * @use_spimem: Enables SPI-MEM
152 * @dev: Device pointer
153 * @tx_dma: DMA start for SPI-MEM TX
154 * @rx_dma: DMA start for SPI-MEM RX
155 */
156 struct mtk_spi {
157 void __iomem *base;
158 u32 state;
159 int pad_num;
160 u32 *pad_sel;
161 struct clk *parent_clk, *sel_clk, *spi_clk, *spi_hclk;
162 struct spi_transfer *cur_transfer;
163 u32 xfer_len;
164 u32 num_xfered;
165 struct scatterlist *tx_sgl, *rx_sgl;
166 u32 tx_sgl_len, rx_sgl_len;
167 const struct mtk_spi_compatible *dev_comp;
168 u32 spi_clk_hz;
169 struct completion spimem_done;
170 bool use_spimem;
171 struct device *dev;
172 dma_addr_t tx_dma;
173 dma_addr_t rx_dma;
174 };
175
176 static const struct mtk_spi_compatible mtk_common_compat;
177
178 static const struct mtk_spi_compatible mt2712_compat = {
179 .must_tx = true,
180 };
181
182 static const struct mtk_spi_compatible mtk_ipm_compat = {
183 .enhance_timing = true,
184 .dma_ext = true,
185 .ipm_design = true,
186 };
187
188 static const struct mtk_spi_compatible mt6765_compat = {
189 .need_pad_sel = true,
190 .must_tx = true,
191 .enhance_timing = true,
192 .dma_ext = true,
193 };
194
195 static const struct mtk_spi_compatible mt7622_compat = {
196 .must_tx = true,
197 .enhance_timing = true,
198 };
199
200 static const struct mtk_spi_compatible mt8173_compat = {
201 .need_pad_sel = true,
202 .must_tx = true,
203 };
204
205 static const struct mtk_spi_compatible mt8183_compat = {
206 .need_pad_sel = true,
207 .must_tx = true,
208 .enhance_timing = true,
209 };
210
211 static const struct mtk_spi_compatible mt6893_compat = {
212 .need_pad_sel = true,
213 .must_tx = true,
214 .enhance_timing = true,
215 .dma_ext = true,
216 .no_need_unprepare = true,
217 };
218
219 /*
220 * A piece of default chip info unless the platform
221 * supplies it.
222 */
223 static const struct mtk_chip_config mtk_default_chip_info = {
224 .sample_sel = 0,
225 .tick_delay = 0,
226 };
227
228 static const struct of_device_id mtk_spi_of_match[] = {
229 { .compatible = "mediatek,spi-ipm",
230 .data = (void *)&mtk_ipm_compat,
231 },
232 { .compatible = "mediatek,mt2701-spi",
233 .data = (void *)&mtk_common_compat,
234 },
235 { .compatible = "mediatek,mt2712-spi",
236 .data = (void *)&mt2712_compat,
237 },
238 { .compatible = "mediatek,mt6589-spi",
239 .data = (void *)&mtk_common_compat,
240 },
241 { .compatible = "mediatek,mt6765-spi",
242 .data = (void *)&mt6765_compat,
243 },
244 { .compatible = "mediatek,mt7622-spi",
245 .data = (void *)&mt7622_compat,
246 },
247 { .compatible = "mediatek,mt7629-spi",
248 .data = (void *)&mt7622_compat,
249 },
250 { .compatible = "mediatek,mt8135-spi",
251 .data = (void *)&mtk_common_compat,
252 },
253 { .compatible = "mediatek,mt8173-spi",
254 .data = (void *)&mt8173_compat,
255 },
256 { .compatible = "mediatek,mt8183-spi",
257 .data = (void *)&mt8183_compat,
258 },
259 { .compatible = "mediatek,mt8192-spi",
260 .data = (void *)&mt6765_compat,
261 },
262 { .compatible = "mediatek,mt6893-spi",
263 .data = (void *)&mt6893_compat,
264 },
265 {}
266 };
267 MODULE_DEVICE_TABLE(of, mtk_spi_of_match);
268
mtk_spi_reset(struct mtk_spi * mdata)269 static void mtk_spi_reset(struct mtk_spi *mdata)
270 {
271 u32 reg_val;
272
273 /* set the software reset bit in SPI_CMD_REG. */
274 reg_val = readl(mdata->base + SPI_CMD_REG);
275 reg_val |= SPI_CMD_RST;
276 writel(reg_val, mdata->base + SPI_CMD_REG);
277
278 reg_val = readl(mdata->base + SPI_CMD_REG);
279 reg_val &= ~SPI_CMD_RST;
280 writel(reg_val, mdata->base + SPI_CMD_REG);
281 }
282
mtk_spi_set_hw_cs_timing(struct spi_device * spi)283 static int mtk_spi_set_hw_cs_timing(struct spi_device *spi)
284 {
285 struct mtk_spi *mdata = spi_master_get_devdata(spi->master);
286 struct spi_delay *cs_setup = &spi->cs_setup;
287 struct spi_delay *cs_hold = &spi->cs_hold;
288 struct spi_delay *cs_inactive = &spi->cs_inactive;
289 u32 setup, hold, inactive;
290 u32 reg_val;
291 int delay;
292
293 delay = spi_delay_to_ns(cs_setup, NULL);
294 if (delay < 0)
295 return delay;
296 setup = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000;
297
298 delay = spi_delay_to_ns(cs_hold, NULL);
299 if (delay < 0)
300 return delay;
301 hold = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000;
302
303 delay = spi_delay_to_ns(cs_inactive, NULL);
304 if (delay < 0)
305 return delay;
306 inactive = (delay * DIV_ROUND_UP(mdata->spi_clk_hz, 1000000)) / 1000;
307
308 if (hold || setup) {
309 reg_val = readl(mdata->base + SPI_CFG0_REG);
310 if (mdata->dev_comp->enhance_timing) {
311 if (hold) {
312 hold = min_t(u32, hold, 0x10000);
313 reg_val &= ~(0xffff << SPI_ADJUST_CFG0_CS_HOLD_OFFSET);
314 reg_val |= (((hold - 1) & 0xffff)
315 << SPI_ADJUST_CFG0_CS_HOLD_OFFSET);
316 }
317 if (setup) {
318 setup = min_t(u32, setup, 0x10000);
319 reg_val &= ~(0xffff << SPI_ADJUST_CFG0_CS_SETUP_OFFSET);
320 reg_val |= (((setup - 1) & 0xffff)
321 << SPI_ADJUST_CFG0_CS_SETUP_OFFSET);
322 }
323 } else {
324 if (hold) {
325 hold = min_t(u32, hold, 0x100);
326 reg_val &= ~(0xff << SPI_CFG0_CS_HOLD_OFFSET);
327 reg_val |= (((hold - 1) & 0xff) << SPI_CFG0_CS_HOLD_OFFSET);
328 }
329 if (setup) {
330 setup = min_t(u32, setup, 0x100);
331 reg_val &= ~(0xff << SPI_CFG0_CS_SETUP_OFFSET);
332 reg_val |= (((setup - 1) & 0xff)
333 << SPI_CFG0_CS_SETUP_OFFSET);
334 }
335 }
336 writel(reg_val, mdata->base + SPI_CFG0_REG);
337 }
338
339 if (inactive) {
340 inactive = min_t(u32, inactive, 0x100);
341 reg_val = readl(mdata->base + SPI_CFG1_REG);
342 reg_val &= ~SPI_CFG1_CS_IDLE_MASK;
343 reg_val |= (((inactive - 1) & 0xff) << SPI_CFG1_CS_IDLE_OFFSET);
344 writel(reg_val, mdata->base + SPI_CFG1_REG);
345 }
346
347 return 0;
348 }
349
mtk_spi_hw_init(struct spi_master * master,struct spi_device * spi)350 static int mtk_spi_hw_init(struct spi_master *master,
351 struct spi_device *spi)
352 {
353 u16 cpha, cpol;
354 u32 reg_val;
355 struct mtk_chip_config *chip_config = spi->controller_data;
356 struct mtk_spi *mdata = spi_master_get_devdata(master);
357
358 cpha = spi->mode & SPI_CPHA ? 1 : 0;
359 cpol = spi->mode & SPI_CPOL ? 1 : 0;
360
361 reg_val = readl(mdata->base + SPI_CMD_REG);
362 if (mdata->dev_comp->ipm_design) {
363 /* SPI transfer without idle time until packet length done */
364 reg_val |= SPI_CMD_IPM_NONIDLE_MODE;
365 if (spi->mode & SPI_LOOP)
366 reg_val |= SPI_CMD_IPM_SPIM_LOOP;
367 else
368 reg_val &= ~SPI_CMD_IPM_SPIM_LOOP;
369 }
370
371 if (cpha)
372 reg_val |= SPI_CMD_CPHA;
373 else
374 reg_val &= ~SPI_CMD_CPHA;
375 if (cpol)
376 reg_val |= SPI_CMD_CPOL;
377 else
378 reg_val &= ~SPI_CMD_CPOL;
379
380 /* set the mlsbx and mlsbtx */
381 if (spi->mode & SPI_LSB_FIRST) {
382 reg_val &= ~SPI_CMD_TXMSBF;
383 reg_val &= ~SPI_CMD_RXMSBF;
384 } else {
385 reg_val |= SPI_CMD_TXMSBF;
386 reg_val |= SPI_CMD_RXMSBF;
387 }
388
389 /* set the tx/rx endian */
390 #ifdef __LITTLE_ENDIAN
391 reg_val &= ~SPI_CMD_TX_ENDIAN;
392 reg_val &= ~SPI_CMD_RX_ENDIAN;
393 #else
394 reg_val |= SPI_CMD_TX_ENDIAN;
395 reg_val |= SPI_CMD_RX_ENDIAN;
396 #endif
397
398 if (mdata->dev_comp->enhance_timing) {
399 /* set CS polarity */
400 if (spi->mode & SPI_CS_HIGH)
401 reg_val |= SPI_CMD_CS_POL;
402 else
403 reg_val &= ~SPI_CMD_CS_POL;
404
405 if (chip_config->sample_sel)
406 reg_val |= SPI_CMD_SAMPLE_SEL;
407 else
408 reg_val &= ~SPI_CMD_SAMPLE_SEL;
409 }
410
411 /* set finish and pause interrupt always enable */
412 reg_val |= SPI_CMD_FINISH_IE | SPI_CMD_PAUSE_IE;
413
414 /* disable dma mode */
415 reg_val &= ~(SPI_CMD_TX_DMA | SPI_CMD_RX_DMA);
416
417 /* disable deassert mode */
418 reg_val &= ~SPI_CMD_DEASSERT;
419
420 writel(reg_val, mdata->base + SPI_CMD_REG);
421
422 /* pad select */
423 if (mdata->dev_comp->need_pad_sel)
424 writel(mdata->pad_sel[spi_get_chipselect(spi, 0)],
425 mdata->base + SPI_PAD_SEL_REG);
426
427 /* tick delay */
428 if (mdata->dev_comp->enhance_timing) {
429 if (mdata->dev_comp->ipm_design) {
430 reg_val = readl(mdata->base + SPI_CMD_REG);
431 reg_val &= ~SPI_CMD_IPM_GET_TICKDLY_MASK;
432 reg_val |= ((chip_config->tick_delay & 0x7)
433 << SPI_CMD_IPM_GET_TICKDLY_OFFSET);
434 writel(reg_val, mdata->base + SPI_CMD_REG);
435 } else {
436 reg_val = readl(mdata->base + SPI_CFG1_REG);
437 reg_val &= ~SPI_CFG1_GET_TICK_DLY_MASK;
438 reg_val |= ((chip_config->tick_delay & 0x7)
439 << SPI_CFG1_GET_TICK_DLY_OFFSET);
440 writel(reg_val, mdata->base + SPI_CFG1_REG);
441 }
442 } else {
443 reg_val = readl(mdata->base + SPI_CFG1_REG);
444 reg_val &= ~SPI_CFG1_GET_TICK_DLY_MASK_V1;
445 reg_val |= ((chip_config->tick_delay & 0x3)
446 << SPI_CFG1_GET_TICK_DLY_OFFSET_V1);
447 writel(reg_val, mdata->base + SPI_CFG1_REG);
448 }
449
450 /* set hw cs timing */
451 mtk_spi_set_hw_cs_timing(spi);
452 return 0;
453 }
454
mtk_spi_prepare_message(struct spi_master * master,struct spi_message * msg)455 static int mtk_spi_prepare_message(struct spi_master *master,
456 struct spi_message *msg)
457 {
458 return mtk_spi_hw_init(master, msg->spi);
459 }
460
mtk_spi_set_cs(struct spi_device * spi,bool enable)461 static void mtk_spi_set_cs(struct spi_device *spi, bool enable)
462 {
463 u32 reg_val;
464 struct mtk_spi *mdata = spi_master_get_devdata(spi->master);
465
466 if (spi->mode & SPI_CS_HIGH)
467 enable = !enable;
468
469 reg_val = readl(mdata->base + SPI_CMD_REG);
470 if (!enable) {
471 reg_val |= SPI_CMD_PAUSE_EN;
472 writel(reg_val, mdata->base + SPI_CMD_REG);
473 } else {
474 reg_val &= ~SPI_CMD_PAUSE_EN;
475 writel(reg_val, mdata->base + SPI_CMD_REG);
476 mdata->state = MTK_SPI_IDLE;
477 mtk_spi_reset(mdata);
478 }
479 }
480
mtk_spi_prepare_transfer(struct spi_master * master,u32 speed_hz)481 static void mtk_spi_prepare_transfer(struct spi_master *master,
482 u32 speed_hz)
483 {
484 u32 div, sck_time, reg_val;
485 struct mtk_spi *mdata = spi_master_get_devdata(master);
486
487 if (speed_hz < mdata->spi_clk_hz / 2)
488 div = DIV_ROUND_UP(mdata->spi_clk_hz, speed_hz);
489 else
490 div = 1;
491
492 sck_time = (div + 1) / 2;
493
494 if (mdata->dev_comp->enhance_timing) {
495 reg_val = readl(mdata->base + SPI_CFG2_REG);
496 reg_val &= ~(0xffff << SPI_CFG2_SCK_HIGH_OFFSET);
497 reg_val |= (((sck_time - 1) & 0xffff)
498 << SPI_CFG2_SCK_HIGH_OFFSET);
499 reg_val &= ~(0xffff << SPI_CFG2_SCK_LOW_OFFSET);
500 reg_val |= (((sck_time - 1) & 0xffff)
501 << SPI_CFG2_SCK_LOW_OFFSET);
502 writel(reg_val, mdata->base + SPI_CFG2_REG);
503 } else {
504 reg_val = readl(mdata->base + SPI_CFG0_REG);
505 reg_val &= ~(0xff << SPI_CFG0_SCK_HIGH_OFFSET);
506 reg_val |= (((sck_time - 1) & 0xff)
507 << SPI_CFG0_SCK_HIGH_OFFSET);
508 reg_val &= ~(0xff << SPI_CFG0_SCK_LOW_OFFSET);
509 reg_val |= (((sck_time - 1) & 0xff) << SPI_CFG0_SCK_LOW_OFFSET);
510 writel(reg_val, mdata->base + SPI_CFG0_REG);
511 }
512 }
513
mtk_spi_setup_packet(struct spi_master * master)514 static void mtk_spi_setup_packet(struct spi_master *master)
515 {
516 u32 packet_size, packet_loop, reg_val;
517 struct mtk_spi *mdata = spi_master_get_devdata(master);
518
519 if (mdata->dev_comp->ipm_design)
520 packet_size = min_t(u32,
521 mdata->xfer_len,
522 MTK_SPI_IPM_PACKET_SIZE);
523 else
524 packet_size = min_t(u32,
525 mdata->xfer_len,
526 MTK_SPI_PACKET_SIZE);
527
528 packet_loop = mdata->xfer_len / packet_size;
529
530 reg_val = readl(mdata->base + SPI_CFG1_REG);
531 if (mdata->dev_comp->ipm_design)
532 reg_val &= ~SPI_CFG1_IPM_PACKET_LENGTH_MASK;
533 else
534 reg_val &= ~SPI_CFG1_PACKET_LENGTH_MASK;
535 reg_val |= (packet_size - 1) << SPI_CFG1_PACKET_LENGTH_OFFSET;
536 reg_val &= ~SPI_CFG1_PACKET_LOOP_MASK;
537 reg_val |= (packet_loop - 1) << SPI_CFG1_PACKET_LOOP_OFFSET;
538 writel(reg_val, mdata->base + SPI_CFG1_REG);
539 }
540
mtk_spi_enable_transfer(struct spi_master * master)541 static void mtk_spi_enable_transfer(struct spi_master *master)
542 {
543 u32 cmd;
544 struct mtk_spi *mdata = spi_master_get_devdata(master);
545
546 cmd = readl(mdata->base + SPI_CMD_REG);
547 if (mdata->state == MTK_SPI_IDLE)
548 cmd |= SPI_CMD_ACT;
549 else
550 cmd |= SPI_CMD_RESUME;
551 writel(cmd, mdata->base + SPI_CMD_REG);
552 }
553
mtk_spi_get_mult_delta(struct mtk_spi * mdata,u32 xfer_len)554 static int mtk_spi_get_mult_delta(struct mtk_spi *mdata, u32 xfer_len)
555 {
556 u32 mult_delta = 0;
557
558 if (mdata->dev_comp->ipm_design) {
559 if (xfer_len > MTK_SPI_IPM_PACKET_SIZE)
560 mult_delta = xfer_len % MTK_SPI_IPM_PACKET_SIZE;
561 } else {
562 if (xfer_len > MTK_SPI_PACKET_SIZE)
563 mult_delta = xfer_len % MTK_SPI_PACKET_SIZE;
564 }
565
566 return mult_delta;
567 }
568
mtk_spi_update_mdata_len(struct spi_master * master)569 static void mtk_spi_update_mdata_len(struct spi_master *master)
570 {
571 int mult_delta;
572 struct mtk_spi *mdata = spi_master_get_devdata(master);
573
574 if (mdata->tx_sgl_len && mdata->rx_sgl_len) {
575 if (mdata->tx_sgl_len > mdata->rx_sgl_len) {
576 mult_delta = mtk_spi_get_mult_delta(mdata, mdata->rx_sgl_len);
577 mdata->xfer_len = mdata->rx_sgl_len - mult_delta;
578 mdata->rx_sgl_len = mult_delta;
579 mdata->tx_sgl_len -= mdata->xfer_len;
580 } else {
581 mult_delta = mtk_spi_get_mult_delta(mdata, mdata->tx_sgl_len);
582 mdata->xfer_len = mdata->tx_sgl_len - mult_delta;
583 mdata->tx_sgl_len = mult_delta;
584 mdata->rx_sgl_len -= mdata->xfer_len;
585 }
586 } else if (mdata->tx_sgl_len) {
587 mult_delta = mtk_spi_get_mult_delta(mdata, mdata->tx_sgl_len);
588 mdata->xfer_len = mdata->tx_sgl_len - mult_delta;
589 mdata->tx_sgl_len = mult_delta;
590 } else if (mdata->rx_sgl_len) {
591 mult_delta = mtk_spi_get_mult_delta(mdata, mdata->rx_sgl_len);
592 mdata->xfer_len = mdata->rx_sgl_len - mult_delta;
593 mdata->rx_sgl_len = mult_delta;
594 }
595 }
596
mtk_spi_setup_dma_addr(struct spi_master * master,struct spi_transfer * xfer)597 static void mtk_spi_setup_dma_addr(struct spi_master *master,
598 struct spi_transfer *xfer)
599 {
600 struct mtk_spi *mdata = spi_master_get_devdata(master);
601
602 if (mdata->tx_sgl) {
603 writel((u32)(xfer->tx_dma & MTK_SPI_32BITS_MASK),
604 mdata->base + SPI_TX_SRC_REG);
605 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
606 if (mdata->dev_comp->dma_ext)
607 writel((u32)(xfer->tx_dma >> 32),
608 mdata->base + SPI_TX_SRC_REG_64);
609 #endif
610 }
611
612 if (mdata->rx_sgl) {
613 writel((u32)(xfer->rx_dma & MTK_SPI_32BITS_MASK),
614 mdata->base + SPI_RX_DST_REG);
615 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
616 if (mdata->dev_comp->dma_ext)
617 writel((u32)(xfer->rx_dma >> 32),
618 mdata->base + SPI_RX_DST_REG_64);
619 #endif
620 }
621 }
622
mtk_spi_fifo_transfer(struct spi_master * master,struct spi_device * spi,struct spi_transfer * xfer)623 static int mtk_spi_fifo_transfer(struct spi_master *master,
624 struct spi_device *spi,
625 struct spi_transfer *xfer)
626 {
627 int cnt, remainder;
628 u32 reg_val;
629 struct mtk_spi *mdata = spi_master_get_devdata(master);
630
631 mdata->cur_transfer = xfer;
632 mdata->xfer_len = min(MTK_SPI_MAX_FIFO_SIZE, xfer->len);
633 mdata->num_xfered = 0;
634 mtk_spi_prepare_transfer(master, xfer->speed_hz);
635 mtk_spi_setup_packet(master);
636
637 if (xfer->tx_buf) {
638 cnt = xfer->len / 4;
639 iowrite32_rep(mdata->base + SPI_TX_DATA_REG, xfer->tx_buf, cnt);
640 remainder = xfer->len % 4;
641 if (remainder > 0) {
642 reg_val = 0;
643 memcpy(®_val, xfer->tx_buf + (cnt * 4), remainder);
644 writel(reg_val, mdata->base + SPI_TX_DATA_REG);
645 }
646 }
647
648 mtk_spi_enable_transfer(master);
649
650 return 1;
651 }
652
mtk_spi_dma_transfer(struct spi_master * master,struct spi_device * spi,struct spi_transfer * xfer)653 static int mtk_spi_dma_transfer(struct spi_master *master,
654 struct spi_device *spi,
655 struct spi_transfer *xfer)
656 {
657 int cmd;
658 struct mtk_spi *mdata = spi_master_get_devdata(master);
659
660 mdata->tx_sgl = NULL;
661 mdata->rx_sgl = NULL;
662 mdata->tx_sgl_len = 0;
663 mdata->rx_sgl_len = 0;
664 mdata->cur_transfer = xfer;
665 mdata->num_xfered = 0;
666
667 mtk_spi_prepare_transfer(master, xfer->speed_hz);
668
669 cmd = readl(mdata->base + SPI_CMD_REG);
670 if (xfer->tx_buf)
671 cmd |= SPI_CMD_TX_DMA;
672 if (xfer->rx_buf)
673 cmd |= SPI_CMD_RX_DMA;
674 writel(cmd, mdata->base + SPI_CMD_REG);
675
676 if (xfer->tx_buf)
677 mdata->tx_sgl = xfer->tx_sg.sgl;
678 if (xfer->rx_buf)
679 mdata->rx_sgl = xfer->rx_sg.sgl;
680
681 if (mdata->tx_sgl) {
682 xfer->tx_dma = sg_dma_address(mdata->tx_sgl);
683 mdata->tx_sgl_len = sg_dma_len(mdata->tx_sgl);
684 }
685 if (mdata->rx_sgl) {
686 xfer->rx_dma = sg_dma_address(mdata->rx_sgl);
687 mdata->rx_sgl_len = sg_dma_len(mdata->rx_sgl);
688 }
689
690 mtk_spi_update_mdata_len(master);
691 mtk_spi_setup_packet(master);
692 mtk_spi_setup_dma_addr(master, xfer);
693 mtk_spi_enable_transfer(master);
694
695 return 1;
696 }
697
mtk_spi_transfer_one(struct spi_master * master,struct spi_device * spi,struct spi_transfer * xfer)698 static int mtk_spi_transfer_one(struct spi_master *master,
699 struct spi_device *spi,
700 struct spi_transfer *xfer)
701 {
702 struct mtk_spi *mdata = spi_master_get_devdata(spi->master);
703 u32 reg_val = 0;
704
705 /* prepare xfer direction and duplex mode */
706 if (mdata->dev_comp->ipm_design) {
707 if (!xfer->tx_buf || !xfer->rx_buf) {
708 reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_EN;
709 if (xfer->rx_buf)
710 reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_DIR;
711 }
712 writel(reg_val, mdata->base + SPI_CFG3_IPM_REG);
713 }
714
715 if (master->can_dma(master, spi, xfer))
716 return mtk_spi_dma_transfer(master, spi, xfer);
717 else
718 return mtk_spi_fifo_transfer(master, spi, xfer);
719 }
720
mtk_spi_can_dma(struct spi_master * master,struct spi_device * spi,struct spi_transfer * xfer)721 static bool mtk_spi_can_dma(struct spi_master *master,
722 struct spi_device *spi,
723 struct spi_transfer *xfer)
724 {
725 /* Buffers for DMA transactions must be 4-byte aligned */
726 return (xfer->len > MTK_SPI_MAX_FIFO_SIZE &&
727 (unsigned long)xfer->tx_buf % 4 == 0 &&
728 (unsigned long)xfer->rx_buf % 4 == 0);
729 }
730
mtk_spi_setup(struct spi_device * spi)731 static int mtk_spi_setup(struct spi_device *spi)
732 {
733 struct mtk_spi *mdata = spi_master_get_devdata(spi->master);
734
735 if (!spi->controller_data)
736 spi->controller_data = (void *)&mtk_default_chip_info;
737
738 if (mdata->dev_comp->need_pad_sel && spi_get_csgpiod(spi, 0))
739 /* CS de-asserted, gpiolib will handle inversion */
740 gpiod_direction_output(spi_get_csgpiod(spi, 0), 0);
741
742 return 0;
743 }
744
mtk_spi_interrupt(int irq,void * dev_id)745 static irqreturn_t mtk_spi_interrupt(int irq, void *dev_id)
746 {
747 u32 cmd, reg_val, cnt, remainder, len;
748 struct spi_master *master = dev_id;
749 struct mtk_spi *mdata = spi_master_get_devdata(master);
750 struct spi_transfer *trans = mdata->cur_transfer;
751
752 reg_val = readl(mdata->base + SPI_STATUS0_REG);
753 if (reg_val & MTK_SPI_PAUSE_INT_STATUS)
754 mdata->state = MTK_SPI_PAUSED;
755 else
756 mdata->state = MTK_SPI_IDLE;
757
758 /* SPI-MEM ops */
759 if (mdata->use_spimem) {
760 complete(&mdata->spimem_done);
761 return IRQ_HANDLED;
762 }
763
764 if (!master->can_dma(master, NULL, trans)) {
765 if (trans->rx_buf) {
766 cnt = mdata->xfer_len / 4;
767 ioread32_rep(mdata->base + SPI_RX_DATA_REG,
768 trans->rx_buf + mdata->num_xfered, cnt);
769 remainder = mdata->xfer_len % 4;
770 if (remainder > 0) {
771 reg_val = readl(mdata->base + SPI_RX_DATA_REG);
772 memcpy(trans->rx_buf +
773 mdata->num_xfered +
774 (cnt * 4),
775 ®_val,
776 remainder);
777 }
778 }
779
780 mdata->num_xfered += mdata->xfer_len;
781 if (mdata->num_xfered == trans->len) {
782 spi_finalize_current_transfer(master);
783 return IRQ_HANDLED;
784 }
785
786 len = trans->len - mdata->num_xfered;
787 mdata->xfer_len = min(MTK_SPI_MAX_FIFO_SIZE, len);
788 mtk_spi_setup_packet(master);
789
790 cnt = mdata->xfer_len / 4;
791 iowrite32_rep(mdata->base + SPI_TX_DATA_REG,
792 trans->tx_buf + mdata->num_xfered, cnt);
793
794 remainder = mdata->xfer_len % 4;
795 if (remainder > 0) {
796 reg_val = 0;
797 memcpy(®_val,
798 trans->tx_buf + (cnt * 4) + mdata->num_xfered,
799 remainder);
800 writel(reg_val, mdata->base + SPI_TX_DATA_REG);
801 }
802
803 mtk_spi_enable_transfer(master);
804
805 return IRQ_HANDLED;
806 }
807
808 if (mdata->tx_sgl)
809 trans->tx_dma += mdata->xfer_len;
810 if (mdata->rx_sgl)
811 trans->rx_dma += mdata->xfer_len;
812
813 if (mdata->tx_sgl && (mdata->tx_sgl_len == 0)) {
814 mdata->tx_sgl = sg_next(mdata->tx_sgl);
815 if (mdata->tx_sgl) {
816 trans->tx_dma = sg_dma_address(mdata->tx_sgl);
817 mdata->tx_sgl_len = sg_dma_len(mdata->tx_sgl);
818 }
819 }
820 if (mdata->rx_sgl && (mdata->rx_sgl_len == 0)) {
821 mdata->rx_sgl = sg_next(mdata->rx_sgl);
822 if (mdata->rx_sgl) {
823 trans->rx_dma = sg_dma_address(mdata->rx_sgl);
824 mdata->rx_sgl_len = sg_dma_len(mdata->rx_sgl);
825 }
826 }
827
828 if (!mdata->tx_sgl && !mdata->rx_sgl) {
829 /* spi disable dma */
830 cmd = readl(mdata->base + SPI_CMD_REG);
831 cmd &= ~SPI_CMD_TX_DMA;
832 cmd &= ~SPI_CMD_RX_DMA;
833 writel(cmd, mdata->base + SPI_CMD_REG);
834
835 spi_finalize_current_transfer(master);
836 return IRQ_HANDLED;
837 }
838
839 mtk_spi_update_mdata_len(master);
840 mtk_spi_setup_packet(master);
841 mtk_spi_setup_dma_addr(master, trans);
842 mtk_spi_enable_transfer(master);
843
844 return IRQ_HANDLED;
845 }
846
mtk_spi_mem_adjust_op_size(struct spi_mem * mem,struct spi_mem_op * op)847 static int mtk_spi_mem_adjust_op_size(struct spi_mem *mem,
848 struct spi_mem_op *op)
849 {
850 int opcode_len;
851
852 if (op->data.dir != SPI_MEM_NO_DATA) {
853 opcode_len = 1 + op->addr.nbytes + op->dummy.nbytes;
854 if (opcode_len + op->data.nbytes > MTK_SPI_IPM_PACKET_SIZE) {
855 op->data.nbytes = MTK_SPI_IPM_PACKET_SIZE - opcode_len;
856 /* force data buffer dma-aligned. */
857 op->data.nbytes -= op->data.nbytes % 4;
858 }
859 }
860
861 return 0;
862 }
863
mtk_spi_mem_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)864 static bool mtk_spi_mem_supports_op(struct spi_mem *mem,
865 const struct spi_mem_op *op)
866 {
867 if (!spi_mem_default_supports_op(mem, op))
868 return false;
869
870 if (op->addr.nbytes && op->dummy.nbytes &&
871 op->addr.buswidth != op->dummy.buswidth)
872 return false;
873
874 if (op->addr.nbytes + op->dummy.nbytes > 16)
875 return false;
876
877 if (op->data.nbytes > MTK_SPI_IPM_PACKET_SIZE) {
878 if (op->data.nbytes / MTK_SPI_IPM_PACKET_SIZE >
879 MTK_SPI_IPM_PACKET_LOOP ||
880 op->data.nbytes % MTK_SPI_IPM_PACKET_SIZE != 0)
881 return false;
882 }
883
884 return true;
885 }
886
mtk_spi_mem_setup_dma_xfer(struct spi_master * master,const struct spi_mem_op * op)887 static void mtk_spi_mem_setup_dma_xfer(struct spi_master *master,
888 const struct spi_mem_op *op)
889 {
890 struct mtk_spi *mdata = spi_master_get_devdata(master);
891
892 writel((u32)(mdata->tx_dma & MTK_SPI_32BITS_MASK),
893 mdata->base + SPI_TX_SRC_REG);
894 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
895 if (mdata->dev_comp->dma_ext)
896 writel((u32)(mdata->tx_dma >> 32),
897 mdata->base + SPI_TX_SRC_REG_64);
898 #endif
899
900 if (op->data.dir == SPI_MEM_DATA_IN) {
901 writel((u32)(mdata->rx_dma & MTK_SPI_32BITS_MASK),
902 mdata->base + SPI_RX_DST_REG);
903 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
904 if (mdata->dev_comp->dma_ext)
905 writel((u32)(mdata->rx_dma >> 32),
906 mdata->base + SPI_RX_DST_REG_64);
907 #endif
908 }
909 }
910
mtk_spi_transfer_wait(struct spi_mem * mem,const struct spi_mem_op * op)911 static int mtk_spi_transfer_wait(struct spi_mem *mem,
912 const struct spi_mem_op *op)
913 {
914 struct mtk_spi *mdata = spi_master_get_devdata(mem->spi->master);
915 /*
916 * For each byte we wait for 8 cycles of the SPI clock.
917 * Since speed is defined in Hz and we want milliseconds,
918 * so it should be 8 * 1000.
919 */
920 u64 ms = 8000LL;
921
922 if (op->data.dir == SPI_MEM_NO_DATA)
923 ms *= 32; /* prevent we may get 0 for short transfers. */
924 else
925 ms *= op->data.nbytes;
926 ms = div_u64(ms, mem->spi->max_speed_hz);
927 ms += ms + 1000; /* 1s tolerance */
928
929 if (ms > UINT_MAX)
930 ms = UINT_MAX;
931
932 if (!wait_for_completion_timeout(&mdata->spimem_done,
933 msecs_to_jiffies(ms))) {
934 dev_err(mdata->dev, "spi-mem transfer timeout\n");
935 return -ETIMEDOUT;
936 }
937
938 return 0;
939 }
940
mtk_spi_mem_exec_op(struct spi_mem * mem,const struct spi_mem_op * op)941 static int mtk_spi_mem_exec_op(struct spi_mem *mem,
942 const struct spi_mem_op *op)
943 {
944 struct mtk_spi *mdata = spi_master_get_devdata(mem->spi->master);
945 u32 reg_val, nio, tx_size;
946 char *tx_tmp_buf, *rx_tmp_buf;
947 int ret = 0;
948
949 mdata->use_spimem = true;
950 reinit_completion(&mdata->spimem_done);
951
952 mtk_spi_reset(mdata);
953 mtk_spi_hw_init(mem->spi->master, mem->spi);
954 mtk_spi_prepare_transfer(mem->spi->master, mem->spi->max_speed_hz);
955
956 reg_val = readl(mdata->base + SPI_CFG3_IPM_REG);
957 /* opcode byte len */
958 reg_val &= ~SPI_CFG3_IPM_CMD_BYTELEN_MASK;
959 reg_val |= 1 << SPI_CFG3_IPM_CMD_BYTELEN_OFFSET;
960
961 /* addr & dummy byte len */
962 reg_val &= ~SPI_CFG3_IPM_ADDR_BYTELEN_MASK;
963 if (op->addr.nbytes || op->dummy.nbytes)
964 reg_val |= (op->addr.nbytes + op->dummy.nbytes) <<
965 SPI_CFG3_IPM_ADDR_BYTELEN_OFFSET;
966
967 /* data byte len */
968 if (op->data.dir == SPI_MEM_NO_DATA) {
969 reg_val |= SPI_CFG3_IPM_NODATA_FLAG;
970 writel(0, mdata->base + SPI_CFG1_REG);
971 } else {
972 reg_val &= ~SPI_CFG3_IPM_NODATA_FLAG;
973 mdata->xfer_len = op->data.nbytes;
974 mtk_spi_setup_packet(mem->spi->master);
975 }
976
977 if (op->addr.nbytes || op->dummy.nbytes) {
978 if (op->addr.buswidth == 1 || op->dummy.buswidth == 1)
979 reg_val |= SPI_CFG3_IPM_XMODE_EN;
980 else
981 reg_val &= ~SPI_CFG3_IPM_XMODE_EN;
982 }
983
984 if (op->addr.buswidth == 2 ||
985 op->dummy.buswidth == 2 ||
986 op->data.buswidth == 2)
987 nio = 2;
988 else if (op->addr.buswidth == 4 ||
989 op->dummy.buswidth == 4 ||
990 op->data.buswidth == 4)
991 nio = 4;
992 else
993 nio = 1;
994
995 reg_val &= ~SPI_CFG3_IPM_CMD_PIN_MODE_MASK;
996 reg_val |= PIN_MODE_CFG(nio);
997
998 reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_EN;
999 if (op->data.dir == SPI_MEM_DATA_IN)
1000 reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_DIR;
1001 else
1002 reg_val &= ~SPI_CFG3_IPM_HALF_DUPLEX_DIR;
1003 writel(reg_val, mdata->base + SPI_CFG3_IPM_REG);
1004
1005 tx_size = 1 + op->addr.nbytes + op->dummy.nbytes;
1006 if (op->data.dir == SPI_MEM_DATA_OUT)
1007 tx_size += op->data.nbytes;
1008
1009 tx_size = max_t(u32, tx_size, 32);
1010
1011 tx_tmp_buf = kzalloc(tx_size, GFP_KERNEL | GFP_DMA);
1012 if (!tx_tmp_buf) {
1013 mdata->use_spimem = false;
1014 return -ENOMEM;
1015 }
1016
1017 tx_tmp_buf[0] = op->cmd.opcode;
1018
1019 if (op->addr.nbytes) {
1020 int i;
1021
1022 for (i = 0; i < op->addr.nbytes; i++)
1023 tx_tmp_buf[i + 1] = op->addr.val >>
1024 (8 * (op->addr.nbytes - i - 1));
1025 }
1026
1027 if (op->dummy.nbytes)
1028 memset(tx_tmp_buf + op->addr.nbytes + 1,
1029 0xff,
1030 op->dummy.nbytes);
1031
1032 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
1033 memcpy(tx_tmp_buf + op->dummy.nbytes + op->addr.nbytes + 1,
1034 op->data.buf.out,
1035 op->data.nbytes);
1036
1037 mdata->tx_dma = dma_map_single(mdata->dev, tx_tmp_buf,
1038 tx_size, DMA_TO_DEVICE);
1039 if (dma_mapping_error(mdata->dev, mdata->tx_dma)) {
1040 ret = -ENOMEM;
1041 goto err_exit;
1042 }
1043
1044 if (op->data.dir == SPI_MEM_DATA_IN) {
1045 if (!IS_ALIGNED((size_t)op->data.buf.in, 4)) {
1046 rx_tmp_buf = kzalloc(op->data.nbytes,
1047 GFP_KERNEL | GFP_DMA);
1048 if (!rx_tmp_buf) {
1049 ret = -ENOMEM;
1050 goto unmap_tx_dma;
1051 }
1052 } else {
1053 rx_tmp_buf = op->data.buf.in;
1054 }
1055
1056 mdata->rx_dma = dma_map_single(mdata->dev,
1057 rx_tmp_buf,
1058 op->data.nbytes,
1059 DMA_FROM_DEVICE);
1060 if (dma_mapping_error(mdata->dev, mdata->rx_dma)) {
1061 ret = -ENOMEM;
1062 goto kfree_rx_tmp_buf;
1063 }
1064 }
1065
1066 reg_val = readl(mdata->base + SPI_CMD_REG);
1067 reg_val |= SPI_CMD_TX_DMA;
1068 if (op->data.dir == SPI_MEM_DATA_IN)
1069 reg_val |= SPI_CMD_RX_DMA;
1070 writel(reg_val, mdata->base + SPI_CMD_REG);
1071
1072 mtk_spi_mem_setup_dma_xfer(mem->spi->master, op);
1073
1074 mtk_spi_enable_transfer(mem->spi->master);
1075
1076 /* Wait for the interrupt. */
1077 ret = mtk_spi_transfer_wait(mem, op);
1078 if (ret)
1079 goto unmap_rx_dma;
1080
1081 /* spi disable dma */
1082 reg_val = readl(mdata->base + SPI_CMD_REG);
1083 reg_val &= ~SPI_CMD_TX_DMA;
1084 if (op->data.dir == SPI_MEM_DATA_IN)
1085 reg_val &= ~SPI_CMD_RX_DMA;
1086 writel(reg_val, mdata->base + SPI_CMD_REG);
1087
1088 unmap_rx_dma:
1089 if (op->data.dir == SPI_MEM_DATA_IN) {
1090 dma_unmap_single(mdata->dev, mdata->rx_dma,
1091 op->data.nbytes, DMA_FROM_DEVICE);
1092 if (!IS_ALIGNED((size_t)op->data.buf.in, 4))
1093 memcpy(op->data.buf.in, rx_tmp_buf, op->data.nbytes);
1094 }
1095 kfree_rx_tmp_buf:
1096 if (op->data.dir == SPI_MEM_DATA_IN &&
1097 !IS_ALIGNED((size_t)op->data.buf.in, 4))
1098 kfree(rx_tmp_buf);
1099 unmap_tx_dma:
1100 dma_unmap_single(mdata->dev, mdata->tx_dma,
1101 tx_size, DMA_TO_DEVICE);
1102 err_exit:
1103 kfree(tx_tmp_buf);
1104 mdata->use_spimem = false;
1105
1106 return ret;
1107 }
1108
1109 static const struct spi_controller_mem_ops mtk_spi_mem_ops = {
1110 .adjust_op_size = mtk_spi_mem_adjust_op_size,
1111 .supports_op = mtk_spi_mem_supports_op,
1112 .exec_op = mtk_spi_mem_exec_op,
1113 };
1114
mtk_spi_probe(struct platform_device * pdev)1115 static int mtk_spi_probe(struct platform_device *pdev)
1116 {
1117 struct device *dev = &pdev->dev;
1118 struct spi_master *master;
1119 struct mtk_spi *mdata;
1120 int i, irq, ret, addr_bits;
1121
1122 master = devm_spi_alloc_master(dev, sizeof(*mdata));
1123 if (!master)
1124 return dev_err_probe(dev, -ENOMEM, "failed to alloc spi master\n");
1125
1126 master->auto_runtime_pm = true;
1127 master->dev.of_node = dev->of_node;
1128 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1129
1130 master->set_cs = mtk_spi_set_cs;
1131 master->prepare_message = mtk_spi_prepare_message;
1132 master->transfer_one = mtk_spi_transfer_one;
1133 master->can_dma = mtk_spi_can_dma;
1134 master->setup = mtk_spi_setup;
1135 master->set_cs_timing = mtk_spi_set_hw_cs_timing;
1136 master->use_gpio_descriptors = true;
1137
1138 mdata = spi_master_get_devdata(master);
1139 mdata->dev_comp = device_get_match_data(dev);
1140
1141 if (mdata->dev_comp->enhance_timing)
1142 master->mode_bits |= SPI_CS_HIGH;
1143
1144 if (mdata->dev_comp->must_tx)
1145 master->flags = SPI_CONTROLLER_MUST_TX;
1146 if (mdata->dev_comp->ipm_design)
1147 master->mode_bits |= SPI_LOOP | SPI_RX_DUAL | SPI_TX_DUAL |
1148 SPI_RX_QUAD | SPI_TX_QUAD;
1149
1150 if (mdata->dev_comp->ipm_design) {
1151 mdata->dev = dev;
1152 master->mem_ops = &mtk_spi_mem_ops;
1153 init_completion(&mdata->spimem_done);
1154 }
1155
1156 if (mdata->dev_comp->need_pad_sel) {
1157 mdata->pad_num = of_property_count_u32_elems(dev->of_node,
1158 "mediatek,pad-select");
1159 if (mdata->pad_num < 0)
1160 return dev_err_probe(dev, -EINVAL,
1161 "No 'mediatek,pad-select' property\n");
1162
1163 mdata->pad_sel = devm_kmalloc_array(dev, mdata->pad_num,
1164 sizeof(u32), GFP_KERNEL);
1165 if (!mdata->pad_sel)
1166 return -ENOMEM;
1167
1168 for (i = 0; i < mdata->pad_num; i++) {
1169 of_property_read_u32_index(dev->of_node,
1170 "mediatek,pad-select",
1171 i, &mdata->pad_sel[i]);
1172 if (mdata->pad_sel[i] > MT8173_SPI_MAX_PAD_SEL)
1173 return dev_err_probe(dev, -EINVAL,
1174 "wrong pad-sel[%d]: %u\n",
1175 i, mdata->pad_sel[i]);
1176 }
1177 }
1178
1179 platform_set_drvdata(pdev, master);
1180 mdata->base = devm_platform_ioremap_resource(pdev, 0);
1181 if (IS_ERR(mdata->base))
1182 return PTR_ERR(mdata->base);
1183
1184 irq = platform_get_irq(pdev, 0);
1185 if (irq < 0)
1186 return irq;
1187
1188 if (!dev->dma_mask)
1189 dev->dma_mask = &dev->coherent_dma_mask;
1190
1191 if (mdata->dev_comp->ipm_design)
1192 dma_set_max_seg_size(dev, SZ_16M);
1193 else
1194 dma_set_max_seg_size(dev, SZ_256K);
1195
1196 mdata->parent_clk = devm_clk_get(dev, "parent-clk");
1197 if (IS_ERR(mdata->parent_clk))
1198 return dev_err_probe(dev, PTR_ERR(mdata->parent_clk),
1199 "failed to get parent-clk\n");
1200
1201 mdata->sel_clk = devm_clk_get(dev, "sel-clk");
1202 if (IS_ERR(mdata->sel_clk))
1203 return dev_err_probe(dev, PTR_ERR(mdata->sel_clk), "failed to get sel-clk\n");
1204
1205 mdata->spi_clk = devm_clk_get(dev, "spi-clk");
1206 if (IS_ERR(mdata->spi_clk))
1207 return dev_err_probe(dev, PTR_ERR(mdata->spi_clk), "failed to get spi-clk\n");
1208
1209 mdata->spi_hclk = devm_clk_get_optional(dev, "hclk");
1210 if (IS_ERR(mdata->spi_hclk))
1211 return dev_err_probe(dev, PTR_ERR(mdata->spi_hclk), "failed to get hclk\n");
1212
1213 ret = clk_set_parent(mdata->sel_clk, mdata->parent_clk);
1214 if (ret < 0)
1215 return dev_err_probe(dev, ret, "failed to clk_set_parent\n");
1216
1217 ret = clk_prepare_enable(mdata->spi_hclk);
1218 if (ret < 0)
1219 return dev_err_probe(dev, ret, "failed to enable hclk\n");
1220
1221 ret = clk_prepare_enable(mdata->spi_clk);
1222 if (ret < 0) {
1223 clk_disable_unprepare(mdata->spi_hclk);
1224 return dev_err_probe(dev, ret, "failed to enable spi_clk\n");
1225 }
1226
1227 mdata->spi_clk_hz = clk_get_rate(mdata->spi_clk);
1228
1229 if (mdata->dev_comp->no_need_unprepare) {
1230 clk_disable(mdata->spi_clk);
1231 clk_disable(mdata->spi_hclk);
1232 } else {
1233 clk_disable_unprepare(mdata->spi_clk);
1234 clk_disable_unprepare(mdata->spi_hclk);
1235 }
1236
1237 if (mdata->dev_comp->need_pad_sel) {
1238 if (mdata->pad_num != master->num_chipselect)
1239 return dev_err_probe(dev, -EINVAL,
1240 "pad_num does not match num_chipselect(%d != %d)\n",
1241 mdata->pad_num, master->num_chipselect);
1242
1243 if (!master->cs_gpiods && master->num_chipselect > 1)
1244 return dev_err_probe(dev, -EINVAL,
1245 "cs_gpios not specified and num_chipselect > 1\n");
1246 }
1247
1248 if (mdata->dev_comp->dma_ext)
1249 addr_bits = DMA_ADDR_EXT_BITS;
1250 else
1251 addr_bits = DMA_ADDR_DEF_BITS;
1252 ret = dma_set_mask(dev, DMA_BIT_MASK(addr_bits));
1253 if (ret)
1254 dev_notice(dev, "SPI dma_set_mask(%d) failed, ret:%d\n",
1255 addr_bits, ret);
1256
1257 ret = devm_request_irq(dev, irq, mtk_spi_interrupt,
1258 IRQF_TRIGGER_NONE, dev_name(dev), master);
1259 if (ret)
1260 return dev_err_probe(dev, ret, "failed to register irq\n");
1261
1262 pm_runtime_enable(dev);
1263
1264 ret = devm_spi_register_master(dev, master);
1265 if (ret) {
1266 pm_runtime_disable(dev);
1267 return dev_err_probe(dev, ret, "failed to register master\n");
1268 }
1269
1270 return 0;
1271 }
1272
mtk_spi_remove(struct platform_device * pdev)1273 static void mtk_spi_remove(struct platform_device *pdev)
1274 {
1275 struct spi_master *master = platform_get_drvdata(pdev);
1276 struct mtk_spi *mdata = spi_master_get_devdata(master);
1277 int ret;
1278
1279 if (mdata->use_spimem && !completion_done(&mdata->spimem_done))
1280 complete(&mdata->spimem_done);
1281
1282 ret = pm_runtime_get_sync(&pdev->dev);
1283 if (ret < 0) {
1284 dev_warn(&pdev->dev, "Failed to resume hardware (%pe)\n", ERR_PTR(ret));
1285 } else {
1286 /*
1287 * If pm runtime resume failed, clks are disabled and
1288 * unprepared. So don't access the hardware and skip clk
1289 * unpreparing.
1290 */
1291 mtk_spi_reset(mdata);
1292
1293 if (mdata->dev_comp->no_need_unprepare) {
1294 clk_unprepare(mdata->spi_clk);
1295 clk_unprepare(mdata->spi_hclk);
1296 }
1297 }
1298
1299 pm_runtime_put_noidle(&pdev->dev);
1300 pm_runtime_disable(&pdev->dev);
1301 }
1302
1303 #ifdef CONFIG_PM_SLEEP
mtk_spi_suspend(struct device * dev)1304 static int mtk_spi_suspend(struct device *dev)
1305 {
1306 int ret;
1307 struct spi_master *master = dev_get_drvdata(dev);
1308 struct mtk_spi *mdata = spi_master_get_devdata(master);
1309
1310 ret = spi_master_suspend(master);
1311 if (ret)
1312 return ret;
1313
1314 if (!pm_runtime_suspended(dev)) {
1315 clk_disable_unprepare(mdata->spi_clk);
1316 clk_disable_unprepare(mdata->spi_hclk);
1317 }
1318
1319 return 0;
1320 }
1321
mtk_spi_resume(struct device * dev)1322 static int mtk_spi_resume(struct device *dev)
1323 {
1324 int ret;
1325 struct spi_master *master = dev_get_drvdata(dev);
1326 struct mtk_spi *mdata = spi_master_get_devdata(master);
1327
1328 if (!pm_runtime_suspended(dev)) {
1329 ret = clk_prepare_enable(mdata->spi_clk);
1330 if (ret < 0) {
1331 dev_err(dev, "failed to enable spi_clk (%d)\n", ret);
1332 return ret;
1333 }
1334
1335 ret = clk_prepare_enable(mdata->spi_hclk);
1336 if (ret < 0) {
1337 dev_err(dev, "failed to enable spi_hclk (%d)\n", ret);
1338 clk_disable_unprepare(mdata->spi_clk);
1339 return ret;
1340 }
1341 }
1342
1343 ret = spi_master_resume(master);
1344 if (ret < 0) {
1345 clk_disable_unprepare(mdata->spi_clk);
1346 clk_disable_unprepare(mdata->spi_hclk);
1347 }
1348
1349 return ret;
1350 }
1351 #endif /* CONFIG_PM_SLEEP */
1352
1353 #ifdef CONFIG_PM
mtk_spi_runtime_suspend(struct device * dev)1354 static int mtk_spi_runtime_suspend(struct device *dev)
1355 {
1356 struct spi_master *master = dev_get_drvdata(dev);
1357 struct mtk_spi *mdata = spi_master_get_devdata(master);
1358
1359 if (mdata->dev_comp->no_need_unprepare) {
1360 clk_disable(mdata->spi_clk);
1361 clk_disable(mdata->spi_hclk);
1362 } else {
1363 clk_disable_unprepare(mdata->spi_clk);
1364 clk_disable_unprepare(mdata->spi_hclk);
1365 }
1366
1367 return 0;
1368 }
1369
mtk_spi_runtime_resume(struct device * dev)1370 static int mtk_spi_runtime_resume(struct device *dev)
1371 {
1372 struct spi_master *master = dev_get_drvdata(dev);
1373 struct mtk_spi *mdata = spi_master_get_devdata(master);
1374 int ret;
1375
1376 if (mdata->dev_comp->no_need_unprepare) {
1377 ret = clk_enable(mdata->spi_clk);
1378 if (ret < 0) {
1379 dev_err(dev, "failed to enable spi_clk (%d)\n", ret);
1380 return ret;
1381 }
1382 ret = clk_enable(mdata->spi_hclk);
1383 if (ret < 0) {
1384 dev_err(dev, "failed to enable spi_hclk (%d)\n", ret);
1385 clk_disable(mdata->spi_clk);
1386 return ret;
1387 }
1388 } else {
1389 ret = clk_prepare_enable(mdata->spi_clk);
1390 if (ret < 0) {
1391 dev_err(dev, "failed to prepare_enable spi_clk (%d)\n", ret);
1392 return ret;
1393 }
1394
1395 ret = clk_prepare_enable(mdata->spi_hclk);
1396 if (ret < 0) {
1397 dev_err(dev, "failed to prepare_enable spi_hclk (%d)\n", ret);
1398 clk_disable_unprepare(mdata->spi_clk);
1399 return ret;
1400 }
1401 }
1402
1403 return 0;
1404 }
1405 #endif /* CONFIG_PM */
1406
1407 static const struct dev_pm_ops mtk_spi_pm = {
1408 SET_SYSTEM_SLEEP_PM_OPS(mtk_spi_suspend, mtk_spi_resume)
1409 SET_RUNTIME_PM_OPS(mtk_spi_runtime_suspend,
1410 mtk_spi_runtime_resume, NULL)
1411 };
1412
1413 static struct platform_driver mtk_spi_driver = {
1414 .driver = {
1415 .name = "mtk-spi",
1416 .pm = &mtk_spi_pm,
1417 .of_match_table = mtk_spi_of_match,
1418 },
1419 .probe = mtk_spi_probe,
1420 .remove_new = mtk_spi_remove,
1421 };
1422
1423 module_platform_driver(mtk_spi_driver);
1424
1425 MODULE_DESCRIPTION("MTK SPI Controller driver");
1426 MODULE_AUTHOR("Leilk Liu <leilk.liu@mediatek.com>");
1427 MODULE_LICENSE("GPL v2");
1428 MODULE_ALIAS("platform:mtk-spi");
1429