1 /*
2 * Copyright 2019 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23
24 #include "amdgpu_ras_eeprom.h"
25 #include "amdgpu.h"
26 #include "amdgpu_ras.h"
27 #include <linux/bits.h>
28 #include "atom.h"
29 #include "amdgpu_eeprom.h"
30 #include "amdgpu_atomfirmware.h"
31 #include <linux/debugfs.h>
32 #include <linux/uaccess.h>
33
34 #include "amdgpu_reset.h"
35
36 /* These are memory addresses as would be seen by one or more EEPROM
37 * chips strung on the I2C bus, usually by manipulating pins 1-3 of a
38 * set of EEPROM devices. They form a continuous memory space.
39 *
40 * The I2C device address includes the device type identifier, 1010b,
41 * which is a reserved value and indicates that this is an I2C EEPROM
42 * device. It also includes the top 3 bits of the 19 bit EEPROM memory
43 * address, namely bits 18, 17, and 16. This makes up the 7 bit
44 * address sent on the I2C bus with bit 0 being the direction bit,
45 * which is not represented here, and sent by the hardware directly.
46 *
47 * For instance,
48 * 50h = 1010000b => device type identifier 1010b, bits 18:16 = 000b, address 0.
49 * 54h = 1010100b => --"--, bits 18:16 = 100b, address 40000h.
50 * 56h = 1010110b => --"--, bits 18:16 = 110b, address 60000h.
51 * Depending on the size of the I2C EEPROM device(s), bits 18:16 may
52 * address memory in a device or a device on the I2C bus, depending on
53 * the status of pins 1-3. See top of amdgpu_eeprom.c.
54 *
55 * The RAS table lives either at address 0 or address 40000h of EEPROM.
56 */
57 #define EEPROM_I2C_MADDR_0 0x0
58 #define EEPROM_I2C_MADDR_4 0x40000
59
60 /*
61 * The 2 macros bellow represent the actual size in bytes that
62 * those entities occupy in the EEPROM memory.
63 * RAS_TABLE_RECORD_SIZE is different than sizeof(eeprom_table_record) which
64 * uses uint64 to store 6b fields such as retired_page.
65 */
66 #define RAS_TABLE_HEADER_SIZE 20
67 #define RAS_TABLE_RECORD_SIZE 24
68
69 /* Table hdr is 'AMDR' */
70 #define RAS_TABLE_HDR_VAL 0x414d4452
71
72 /* Bad GPU tag ‘BADG’ */
73 #define RAS_TABLE_HDR_BAD 0x42414447
74
75 /*
76 * EEPROM Table structure v1
77 * ---------------------------------
78 * | |
79 * | EEPROM TABLE HEADER |
80 * | ( size 20 Bytes ) |
81 * | |
82 * ---------------------------------
83 * | |
84 * | BAD PAGE RECORD AREA |
85 * | |
86 * ---------------------------------
87 */
88
89 /* Assume 2-Mbit size EEPROM and take up the whole space. */
90 #define RAS_TBL_SIZE_BYTES (256 * 1024)
91 #define RAS_TABLE_START 0
92 #define RAS_HDR_START RAS_TABLE_START
93 #define RAS_RECORD_START (RAS_HDR_START + RAS_TABLE_HEADER_SIZE)
94 #define RAS_MAX_RECORD_COUNT ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE) \
95 / RAS_TABLE_RECORD_SIZE)
96
97 /*
98 * EEPROM Table structrue v2.1
99 * ---------------------------------
100 * | |
101 * | EEPROM TABLE HEADER |
102 * | ( size 20 Bytes ) |
103 * | |
104 * ---------------------------------
105 * | |
106 * | EEPROM TABLE RAS INFO |
107 * | (available info size 4 Bytes) |
108 * | ( reserved size 252 Bytes ) |
109 * | |
110 * ---------------------------------
111 * | |
112 * | BAD PAGE RECORD AREA |
113 * | |
114 * ---------------------------------
115 */
116
117 /* EEPROM Table V2_1 */
118 #define RAS_TABLE_V2_1_INFO_SIZE 256
119 #define RAS_TABLE_V2_1_INFO_START RAS_TABLE_HEADER_SIZE
120 #define RAS_RECORD_START_V2_1 (RAS_HDR_START + RAS_TABLE_HEADER_SIZE + \
121 RAS_TABLE_V2_1_INFO_SIZE)
122 #define RAS_MAX_RECORD_COUNT_V2_1 ((RAS_TBL_SIZE_BYTES - RAS_TABLE_HEADER_SIZE - \
123 RAS_TABLE_V2_1_INFO_SIZE) \
124 / RAS_TABLE_RECORD_SIZE)
125
126 /* Given a zero-based index of an EEPROM RAS record, yields the EEPROM
127 * offset off of RAS_TABLE_START. That is, this is something you can
128 * add to control->i2c_address, and then tell I2C layer to read
129 * from/write to there. _N is the so called absolute index,
130 * because it starts right after the table header.
131 */
132 #define RAS_INDEX_TO_OFFSET(_C, _N) ((_C)->ras_record_offset + \
133 (_N) * RAS_TABLE_RECORD_SIZE)
134
135 #define RAS_OFFSET_TO_INDEX(_C, _O) (((_O) - \
136 (_C)->ras_record_offset) / RAS_TABLE_RECORD_SIZE)
137
138 /* Given a 0-based relative record index, 0, 1, 2, ..., etc., off
139 * of "fri", return the absolute record index off of the end of
140 * the table header.
141 */
142 #define RAS_RI_TO_AI(_C, _I) (((_I) + (_C)->ras_fri) % \
143 (_C)->ras_max_record_count)
144
145 #define RAS_NUM_RECS(_tbl_hdr) (((_tbl_hdr)->tbl_size - \
146 RAS_TABLE_HEADER_SIZE) / RAS_TABLE_RECORD_SIZE)
147
148 #define RAS_NUM_RECS_V2_1(_tbl_hdr) (((_tbl_hdr)->tbl_size - \
149 RAS_TABLE_HEADER_SIZE - \
150 RAS_TABLE_V2_1_INFO_SIZE) / RAS_TABLE_RECORD_SIZE)
151
152 #define to_amdgpu_device(x) (container_of(x, struct amdgpu_ras, eeprom_control))->adev
153
__is_ras_eeprom_supported(struct amdgpu_device * adev)154 static bool __is_ras_eeprom_supported(struct amdgpu_device *adev)
155 {
156 switch (adev->ip_versions[MP1_HWIP][0]) {
157 case IP_VERSION(11, 0, 2): /* VEGA20 and ARCTURUS */
158 case IP_VERSION(11, 0, 7): /* Sienna cichlid */
159 case IP_VERSION(13, 0, 0):
160 case IP_VERSION(13, 0, 2): /* Aldebaran */
161 case IP_VERSION(13, 0, 10):
162 return true;
163 case IP_VERSION(13, 0, 6):
164 return (adev->gmc.is_app_apu) ? false : true;
165 default:
166 return false;
167 }
168 }
169
__get_eeprom_i2c_addr(struct amdgpu_device * adev,struct amdgpu_ras_eeprom_control * control)170 static bool __get_eeprom_i2c_addr(struct amdgpu_device *adev,
171 struct amdgpu_ras_eeprom_control *control)
172 {
173 struct atom_context *atom_ctx = adev->mode_info.atom_context;
174 u8 i2c_addr;
175
176 if (!control)
177 return false;
178
179 if (amdgpu_atomfirmware_ras_rom_addr(adev, &i2c_addr)) {
180 /* The address given by VBIOS is an 8-bit, wire-format
181 * address, i.e. the most significant byte.
182 *
183 * Normalize it to a 19-bit EEPROM address. Remove the
184 * device type identifier and make it a 7-bit address;
185 * then make it a 19-bit EEPROM address. See top of
186 * amdgpu_eeprom.c.
187 */
188 i2c_addr = (i2c_addr & 0x0F) >> 1;
189 control->i2c_address = ((u32) i2c_addr) << 16;
190
191 return true;
192 }
193
194 switch (adev->ip_versions[MP1_HWIP][0]) {
195 case IP_VERSION(11, 0, 2):
196 /* VEGA20 and ARCTURUS */
197 if (adev->asic_type == CHIP_VEGA20)
198 control->i2c_address = EEPROM_I2C_MADDR_0;
199 else if (strnstr(atom_ctx->vbios_pn,
200 "D342",
201 sizeof(atom_ctx->vbios_pn)))
202 control->i2c_address = EEPROM_I2C_MADDR_0;
203 else
204 control->i2c_address = EEPROM_I2C_MADDR_4;
205 return true;
206 case IP_VERSION(11, 0, 7):
207 control->i2c_address = EEPROM_I2C_MADDR_0;
208 return true;
209 case IP_VERSION(13, 0, 2):
210 if (strnstr(atom_ctx->vbios_pn, "D673",
211 sizeof(atom_ctx->vbios_pn)))
212 control->i2c_address = EEPROM_I2C_MADDR_4;
213 else
214 control->i2c_address = EEPROM_I2C_MADDR_0;
215 return true;
216 case IP_VERSION(13, 0, 0):
217 case IP_VERSION(13, 0, 6):
218 case IP_VERSION(13, 0, 10):
219 control->i2c_address = EEPROM_I2C_MADDR_4;
220 return true;
221 default:
222 return false;
223 }
224 }
225
226 static void
__encode_table_header_to_buf(struct amdgpu_ras_eeprom_table_header * hdr,unsigned char * buf)227 __encode_table_header_to_buf(struct amdgpu_ras_eeprom_table_header *hdr,
228 unsigned char *buf)
229 {
230 u32 *pp = (uint32_t *)buf;
231
232 pp[0] = cpu_to_le32(hdr->header);
233 pp[1] = cpu_to_le32(hdr->version);
234 pp[2] = cpu_to_le32(hdr->first_rec_offset);
235 pp[3] = cpu_to_le32(hdr->tbl_size);
236 pp[4] = cpu_to_le32(hdr->checksum);
237 }
238
239 static void
__decode_table_header_from_buf(struct amdgpu_ras_eeprom_table_header * hdr,unsigned char * buf)240 __decode_table_header_from_buf(struct amdgpu_ras_eeprom_table_header *hdr,
241 unsigned char *buf)
242 {
243 u32 *pp = (uint32_t *)buf;
244
245 hdr->header = le32_to_cpu(pp[0]);
246 hdr->version = le32_to_cpu(pp[1]);
247 hdr->first_rec_offset = le32_to_cpu(pp[2]);
248 hdr->tbl_size = le32_to_cpu(pp[3]);
249 hdr->checksum = le32_to_cpu(pp[4]);
250 }
251
__write_table_header(struct amdgpu_ras_eeprom_control * control)252 static int __write_table_header(struct amdgpu_ras_eeprom_control *control)
253 {
254 u8 buf[RAS_TABLE_HEADER_SIZE];
255 struct amdgpu_device *adev = to_amdgpu_device(control);
256 int res;
257
258 memset(buf, 0, sizeof(buf));
259 __encode_table_header_to_buf(&control->tbl_hdr, buf);
260
261 /* i2c may be unstable in gpu reset */
262 down_read(&adev->reset_domain->sem);
263 res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus,
264 control->i2c_address +
265 control->ras_header_offset,
266 buf, RAS_TABLE_HEADER_SIZE);
267 up_read(&adev->reset_domain->sem);
268
269 if (res < 0) {
270 DRM_ERROR("Failed to write EEPROM table header:%d", res);
271 } else if (res < RAS_TABLE_HEADER_SIZE) {
272 DRM_ERROR("Short write:%d out of %d\n",
273 res, RAS_TABLE_HEADER_SIZE);
274 res = -EIO;
275 } else {
276 res = 0;
277 }
278
279 return res;
280 }
281
282 static void
__encode_table_ras_info_to_buf(struct amdgpu_ras_eeprom_table_ras_info * rai,unsigned char * buf)283 __encode_table_ras_info_to_buf(struct amdgpu_ras_eeprom_table_ras_info *rai,
284 unsigned char *buf)
285 {
286 u32 *pp = (uint32_t *)buf;
287 u32 tmp;
288
289 tmp = ((uint32_t)(rai->rma_status) & 0xFF) |
290 (((uint32_t)(rai->health_percent) << 8) & 0xFF00) |
291 (((uint32_t)(rai->ecc_page_threshold) << 16) & 0xFFFF0000);
292 pp[0] = cpu_to_le32(tmp);
293 }
294
295 static void
__decode_table_ras_info_from_buf(struct amdgpu_ras_eeprom_table_ras_info * rai,unsigned char * buf)296 __decode_table_ras_info_from_buf(struct amdgpu_ras_eeprom_table_ras_info *rai,
297 unsigned char *buf)
298 {
299 u32 *pp = (uint32_t *)buf;
300 u32 tmp;
301
302 tmp = le32_to_cpu(pp[0]);
303 rai->rma_status = tmp & 0xFF;
304 rai->health_percent = (tmp >> 8) & 0xFF;
305 rai->ecc_page_threshold = (tmp >> 16) & 0xFFFF;
306 }
307
__write_table_ras_info(struct amdgpu_ras_eeprom_control * control)308 static int __write_table_ras_info(struct amdgpu_ras_eeprom_control *control)
309 {
310 struct amdgpu_device *adev = to_amdgpu_device(control);
311 u8 *buf;
312 int res;
313
314 buf = kzalloc(RAS_TABLE_V2_1_INFO_SIZE, GFP_KERNEL);
315 if (!buf) {
316 DRM_ERROR("Failed to alloc buf to write table ras info\n");
317 return -ENOMEM;
318 }
319
320 __encode_table_ras_info_to_buf(&control->tbl_rai, buf);
321
322 /* i2c may be unstable in gpu reset */
323 down_read(&adev->reset_domain->sem);
324 res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus,
325 control->i2c_address +
326 control->ras_info_offset,
327 buf, RAS_TABLE_V2_1_INFO_SIZE);
328 up_read(&adev->reset_domain->sem);
329
330 if (res < 0) {
331 DRM_ERROR("Failed to write EEPROM table ras info:%d", res);
332 } else if (res < RAS_TABLE_V2_1_INFO_SIZE) {
333 DRM_ERROR("Short write:%d out of %d\n",
334 res, RAS_TABLE_V2_1_INFO_SIZE);
335 res = -EIO;
336 } else {
337 res = 0;
338 }
339
340 kfree(buf);
341
342 return res;
343 }
344
__calc_hdr_byte_sum(const struct amdgpu_ras_eeprom_control * control)345 static u8 __calc_hdr_byte_sum(const struct amdgpu_ras_eeprom_control *control)
346 {
347 int ii;
348 u8 *pp, csum;
349 size_t sz;
350
351 /* Header checksum, skip checksum field in the calculation */
352 sz = sizeof(control->tbl_hdr) - sizeof(control->tbl_hdr.checksum);
353 pp = (u8 *) &control->tbl_hdr;
354 csum = 0;
355 for (ii = 0; ii < sz; ii++, pp++)
356 csum += *pp;
357
358 return csum;
359 }
360
__calc_ras_info_byte_sum(const struct amdgpu_ras_eeprom_control * control)361 static u8 __calc_ras_info_byte_sum(const struct amdgpu_ras_eeprom_control *control)
362 {
363 int ii;
364 u8 *pp, csum;
365 size_t sz;
366
367 sz = sizeof(control->tbl_rai);
368 pp = (u8 *) &control->tbl_rai;
369 csum = 0;
370 for (ii = 0; ii < sz; ii++, pp++)
371 csum += *pp;
372
373 return csum;
374 }
375
amdgpu_ras_eeprom_correct_header_tag(struct amdgpu_ras_eeprom_control * control,uint32_t header)376 static int amdgpu_ras_eeprom_correct_header_tag(
377 struct amdgpu_ras_eeprom_control *control,
378 uint32_t header)
379 {
380 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
381 u8 *hh;
382 int res;
383 u8 csum;
384
385 csum = -hdr->checksum;
386
387 hh = (void *) &hdr->header;
388 csum -= (hh[0] + hh[1] + hh[2] + hh[3]);
389 hh = (void *) &header;
390 csum += hh[0] + hh[1] + hh[2] + hh[3];
391 csum = -csum;
392 mutex_lock(&control->ras_tbl_mutex);
393 hdr->header = header;
394 hdr->checksum = csum;
395 res = __write_table_header(control);
396 mutex_unlock(&control->ras_tbl_mutex);
397
398 return res;
399 }
400
401 /**
402 * amdgpu_ras_eeprom_reset_table -- Reset the RAS EEPROM table
403 * @control: pointer to control structure
404 *
405 * Reset the contents of the header of the RAS EEPROM table.
406 * Return 0 on success, -errno on error.
407 */
amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control * control)408 int amdgpu_ras_eeprom_reset_table(struct amdgpu_ras_eeprom_control *control)
409 {
410 struct amdgpu_device *adev = to_amdgpu_device(control);
411 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
412 struct amdgpu_ras_eeprom_table_ras_info *rai = &control->tbl_rai;
413 struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
414 u8 csum;
415 int res;
416
417 mutex_lock(&control->ras_tbl_mutex);
418
419 hdr->header = RAS_TABLE_HDR_VAL;
420 if (adev->umc.ras &&
421 adev->umc.ras->set_eeprom_table_version)
422 adev->umc.ras->set_eeprom_table_version(hdr);
423 else
424 hdr->version = RAS_TABLE_VER_V1;
425
426 if (hdr->version == RAS_TABLE_VER_V2_1) {
427 hdr->first_rec_offset = RAS_RECORD_START_V2_1;
428 hdr->tbl_size = RAS_TABLE_HEADER_SIZE +
429 RAS_TABLE_V2_1_INFO_SIZE;
430 rai->rma_status = GPU_HEALTH_USABLE;
431 /**
432 * GPU health represented as a percentage.
433 * 0 means worst health, 100 means fully health.
434 */
435 rai->health_percent = 100;
436 /* ecc_page_threshold = 0 means disable bad page retirement */
437 rai->ecc_page_threshold = con->bad_page_cnt_threshold;
438 } else {
439 hdr->first_rec_offset = RAS_RECORD_START;
440 hdr->tbl_size = RAS_TABLE_HEADER_SIZE;
441 }
442
443 csum = __calc_hdr_byte_sum(control);
444 if (hdr->version == RAS_TABLE_VER_V2_1)
445 csum += __calc_ras_info_byte_sum(control);
446 csum = -csum;
447 hdr->checksum = csum;
448 res = __write_table_header(control);
449 if (!res && hdr->version > RAS_TABLE_VER_V1)
450 res = __write_table_ras_info(control);
451
452 control->ras_num_recs = 0;
453 control->ras_fri = 0;
454
455 amdgpu_dpm_send_hbm_bad_pages_num(adev, control->ras_num_recs);
456
457 control->bad_channel_bitmap = 0;
458 amdgpu_dpm_send_hbm_bad_channel_flag(adev, control->bad_channel_bitmap);
459 con->update_channel_flag = false;
460
461 amdgpu_ras_debugfs_set_ret_size(control);
462
463 mutex_unlock(&control->ras_tbl_mutex);
464
465 return res;
466 }
467
468 static void
__encode_table_record_to_buf(struct amdgpu_ras_eeprom_control * control,struct eeprom_table_record * record,unsigned char * buf)469 __encode_table_record_to_buf(struct amdgpu_ras_eeprom_control *control,
470 struct eeprom_table_record *record,
471 unsigned char *buf)
472 {
473 __le64 tmp = 0;
474 int i = 0;
475
476 /* Next are all record fields according to EEPROM page spec in LE foramt */
477 buf[i++] = record->err_type;
478
479 buf[i++] = record->bank;
480
481 tmp = cpu_to_le64(record->ts);
482 memcpy(buf + i, &tmp, 8);
483 i += 8;
484
485 tmp = cpu_to_le64((record->offset & 0xffffffffffff));
486 memcpy(buf + i, &tmp, 6);
487 i += 6;
488
489 buf[i++] = record->mem_channel;
490 buf[i++] = record->mcumc_id;
491
492 tmp = cpu_to_le64((record->retired_page & 0xffffffffffff));
493 memcpy(buf + i, &tmp, 6);
494 }
495
496 static void
__decode_table_record_from_buf(struct amdgpu_ras_eeprom_control * control,struct eeprom_table_record * record,unsigned char * buf)497 __decode_table_record_from_buf(struct amdgpu_ras_eeprom_control *control,
498 struct eeprom_table_record *record,
499 unsigned char *buf)
500 {
501 __le64 tmp = 0;
502 int i = 0;
503
504 /* Next are all record fields according to EEPROM page spec in LE foramt */
505 record->err_type = buf[i++];
506
507 record->bank = buf[i++];
508
509 memcpy(&tmp, buf + i, 8);
510 record->ts = le64_to_cpu(tmp);
511 i += 8;
512
513 memcpy(&tmp, buf + i, 6);
514 record->offset = (le64_to_cpu(tmp) & 0xffffffffffff);
515 i += 6;
516
517 record->mem_channel = buf[i++];
518 record->mcumc_id = buf[i++];
519
520 memcpy(&tmp, buf + i, 6);
521 record->retired_page = (le64_to_cpu(tmp) & 0xffffffffffff);
522 }
523
amdgpu_ras_eeprom_check_err_threshold(struct amdgpu_device * adev)524 bool amdgpu_ras_eeprom_check_err_threshold(struct amdgpu_device *adev)
525 {
526 struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
527
528 if (!__is_ras_eeprom_supported(adev) ||
529 !amdgpu_bad_page_threshold)
530 return false;
531
532 /* skip check eeprom table for VEGA20 Gaming */
533 if (!con)
534 return false;
535 else
536 if (!(con->features & BIT(AMDGPU_RAS_BLOCK__UMC)))
537 return false;
538
539 if (con->eeprom_control.tbl_hdr.header == RAS_TABLE_HDR_BAD) {
540 if (amdgpu_bad_page_threshold == -1) {
541 dev_warn(adev->dev, "RAS records:%d exceed threshold:%d",
542 con->eeprom_control.ras_num_recs, con->bad_page_cnt_threshold);
543 dev_warn(adev->dev,
544 "But GPU can be operated due to bad_page_threshold = -1.\n");
545 return false;
546 } else {
547 dev_warn(adev->dev, "This GPU is in BAD status.");
548 dev_warn(adev->dev, "Please retire it or set a larger "
549 "threshold value when reloading driver.\n");
550 return true;
551 }
552 }
553
554 return false;
555 }
556
557 /**
558 * __amdgpu_ras_eeprom_write -- write indexed from buffer to EEPROM
559 * @control: pointer to control structure
560 * @buf: pointer to buffer containing data to write
561 * @fri: start writing at this index
562 * @num: number of records to write
563 *
564 * The caller must hold the table mutex in @control.
565 * Return 0 on success, -errno otherwise.
566 */
__amdgpu_ras_eeprom_write(struct amdgpu_ras_eeprom_control * control,u8 * buf,const u32 fri,const u32 num)567 static int __amdgpu_ras_eeprom_write(struct amdgpu_ras_eeprom_control *control,
568 u8 *buf, const u32 fri, const u32 num)
569 {
570 struct amdgpu_device *adev = to_amdgpu_device(control);
571 u32 buf_size;
572 int res;
573
574 /* i2c may be unstable in gpu reset */
575 down_read(&adev->reset_domain->sem);
576 buf_size = num * RAS_TABLE_RECORD_SIZE;
577 res = amdgpu_eeprom_write(adev->pm.ras_eeprom_i2c_bus,
578 control->i2c_address +
579 RAS_INDEX_TO_OFFSET(control, fri),
580 buf, buf_size);
581 up_read(&adev->reset_domain->sem);
582 if (res < 0) {
583 DRM_ERROR("Writing %d EEPROM table records error:%d",
584 num, res);
585 } else if (res < buf_size) {
586 /* Short write, return error.
587 */
588 DRM_ERROR("Wrote %d records out of %d",
589 res / RAS_TABLE_RECORD_SIZE, num);
590 res = -EIO;
591 } else {
592 res = 0;
593 }
594
595 return res;
596 }
597
598 static int
amdgpu_ras_eeprom_append_table(struct amdgpu_ras_eeprom_control * control,struct eeprom_table_record * record,const u32 num)599 amdgpu_ras_eeprom_append_table(struct amdgpu_ras_eeprom_control *control,
600 struct eeprom_table_record *record,
601 const u32 num)
602 {
603 struct amdgpu_ras *con = amdgpu_ras_get_context(to_amdgpu_device(control));
604 u32 a, b, i;
605 u8 *buf, *pp;
606 int res;
607
608 buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
609 if (!buf)
610 return -ENOMEM;
611
612 /* Encode all of them in one go.
613 */
614 pp = buf;
615 for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) {
616 __encode_table_record_to_buf(control, &record[i], pp);
617
618 /* update bad channel bitmap */
619 if (!(control->bad_channel_bitmap & (1 << record[i].mem_channel))) {
620 control->bad_channel_bitmap |= 1 << record[i].mem_channel;
621 con->update_channel_flag = true;
622 }
623 }
624
625 /* a, first record index to write into.
626 * b, last record index to write into.
627 * a = first index to read (fri) + number of records in the table,
628 * b = a + @num - 1.
629 * Let N = control->ras_max_num_record_count, then we have,
630 * case 0: 0 <= a <= b < N,
631 * just append @num records starting at a;
632 * case 1: 0 <= a < N <= b,
633 * append (N - a) records starting at a, and
634 * append the remainder, b % N + 1, starting at 0.
635 * case 2: 0 <= fri < N <= a <= b, then modulo N we get two subcases,
636 * case 2a: 0 <= a <= b < N
637 * append num records starting at a; and fix fri if b overwrote it,
638 * and since a <= b, if b overwrote it then a must've also,
639 * and if b didn't overwrite it, then a didn't also.
640 * case 2b: 0 <= b < a < N
641 * write num records starting at a, which wraps around 0=N
642 * and overwrite fri unconditionally. Now from case 2a,
643 * this means that b eclipsed fri to overwrite it and wrap
644 * around 0 again, i.e. b = 2N+r pre modulo N, so we unconditionally
645 * set fri = b + 1 (mod N).
646 * Now, since fri is updated in every case, except the trivial case 0,
647 * the number of records present in the table after writing, is,
648 * num_recs - 1 = b - fri (mod N), and we take the positive value,
649 * by adding an arbitrary multiple of N before taking the modulo N
650 * as shown below.
651 */
652 a = control->ras_fri + control->ras_num_recs;
653 b = a + num - 1;
654 if (b < control->ras_max_record_count) {
655 res = __amdgpu_ras_eeprom_write(control, buf, a, num);
656 } else if (a < control->ras_max_record_count) {
657 u32 g0, g1;
658
659 g0 = control->ras_max_record_count - a;
660 g1 = b % control->ras_max_record_count + 1;
661 res = __amdgpu_ras_eeprom_write(control, buf, a, g0);
662 if (res)
663 goto Out;
664 res = __amdgpu_ras_eeprom_write(control,
665 buf + g0 * RAS_TABLE_RECORD_SIZE,
666 0, g1);
667 if (res)
668 goto Out;
669 if (g1 > control->ras_fri)
670 control->ras_fri = g1 % control->ras_max_record_count;
671 } else {
672 a %= control->ras_max_record_count;
673 b %= control->ras_max_record_count;
674
675 if (a <= b) {
676 /* Note that, b - a + 1 = num. */
677 res = __amdgpu_ras_eeprom_write(control, buf, a, num);
678 if (res)
679 goto Out;
680 if (b >= control->ras_fri)
681 control->ras_fri = (b + 1) % control->ras_max_record_count;
682 } else {
683 u32 g0, g1;
684
685 /* b < a, which means, we write from
686 * a to the end of the table, and from
687 * the start of the table to b.
688 */
689 g0 = control->ras_max_record_count - a;
690 g1 = b + 1;
691 res = __amdgpu_ras_eeprom_write(control, buf, a, g0);
692 if (res)
693 goto Out;
694 res = __amdgpu_ras_eeprom_write(control,
695 buf + g0 * RAS_TABLE_RECORD_SIZE,
696 0, g1);
697 if (res)
698 goto Out;
699 control->ras_fri = g1 % control->ras_max_record_count;
700 }
701 }
702 control->ras_num_recs = 1 + (control->ras_max_record_count + b
703 - control->ras_fri)
704 % control->ras_max_record_count;
705 Out:
706 kfree(buf);
707 return res;
708 }
709
710 static int
amdgpu_ras_eeprom_update_header(struct amdgpu_ras_eeprom_control * control)711 amdgpu_ras_eeprom_update_header(struct amdgpu_ras_eeprom_control *control)
712 {
713 struct amdgpu_device *adev = to_amdgpu_device(control);
714 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
715 u8 *buf, *pp, csum;
716 u32 buf_size;
717 int res;
718
719 /* Modify the header if it exceeds.
720 */
721 if (amdgpu_bad_page_threshold != 0 &&
722 control->ras_num_recs >= ras->bad_page_cnt_threshold) {
723 dev_warn(adev->dev,
724 "Saved bad pages %d reaches threshold value %d\n",
725 control->ras_num_recs, ras->bad_page_cnt_threshold);
726 control->tbl_hdr.header = RAS_TABLE_HDR_BAD;
727 if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1) {
728 control->tbl_rai.rma_status = GPU_RETIRED__ECC_REACH_THRESHOLD;
729 control->tbl_rai.health_percent = 0;
730 }
731 }
732
733 if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
734 control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE +
735 RAS_TABLE_V2_1_INFO_SIZE +
736 control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
737 else
738 control->tbl_hdr.tbl_size = RAS_TABLE_HEADER_SIZE +
739 control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
740 control->tbl_hdr.checksum = 0;
741
742 buf_size = control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
743 buf = kcalloc(control->ras_num_recs, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
744 if (!buf) {
745 DRM_ERROR("allocating memory for table of size %d bytes failed\n",
746 control->tbl_hdr.tbl_size);
747 res = -ENOMEM;
748 goto Out;
749 }
750
751 down_read(&adev->reset_domain->sem);
752 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
753 control->i2c_address +
754 control->ras_record_offset,
755 buf, buf_size);
756 up_read(&adev->reset_domain->sem);
757 if (res < 0) {
758 DRM_ERROR("EEPROM failed reading records:%d\n",
759 res);
760 goto Out;
761 } else if (res < buf_size) {
762 DRM_ERROR("EEPROM read %d out of %d bytes\n",
763 res, buf_size);
764 res = -EIO;
765 goto Out;
766 }
767
768 /**
769 * bad page records have been stored in eeprom,
770 * now calculate gpu health percent
771 */
772 if (amdgpu_bad_page_threshold != 0 &&
773 control->tbl_hdr.version == RAS_TABLE_VER_V2_1 &&
774 control->ras_num_recs < ras->bad_page_cnt_threshold)
775 control->tbl_rai.health_percent = ((ras->bad_page_cnt_threshold -
776 control->ras_num_recs) * 100) /
777 ras->bad_page_cnt_threshold;
778
779 /* Recalc the checksum.
780 */
781 csum = 0;
782 for (pp = buf; pp < buf + buf_size; pp++)
783 csum += *pp;
784
785 csum += __calc_hdr_byte_sum(control);
786 if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
787 csum += __calc_ras_info_byte_sum(control);
788 /* avoid sign extension when assigning to "checksum" */
789 csum = -csum;
790 control->tbl_hdr.checksum = csum;
791 res = __write_table_header(control);
792 if (!res && control->tbl_hdr.version > RAS_TABLE_VER_V1)
793 res = __write_table_ras_info(control);
794 Out:
795 kfree(buf);
796 return res;
797 }
798
799 /**
800 * amdgpu_ras_eeprom_append -- append records to the EEPROM RAS table
801 * @control: pointer to control structure
802 * @record: array of records to append
803 * @num: number of records in @record array
804 *
805 * Append @num records to the table, calculate the checksum and write
806 * the table back to EEPROM. The maximum number of records that
807 * can be appended is between 1 and control->ras_max_record_count,
808 * regardless of how many records are already stored in the table.
809 *
810 * Return 0 on success or if EEPROM is not supported, -errno on error.
811 */
amdgpu_ras_eeprom_append(struct amdgpu_ras_eeprom_control * control,struct eeprom_table_record * record,const u32 num)812 int amdgpu_ras_eeprom_append(struct amdgpu_ras_eeprom_control *control,
813 struct eeprom_table_record *record,
814 const u32 num)
815 {
816 struct amdgpu_device *adev = to_amdgpu_device(control);
817 int res;
818
819 if (!__is_ras_eeprom_supported(adev))
820 return 0;
821
822 if (num == 0) {
823 DRM_ERROR("will not append 0 records\n");
824 return -EINVAL;
825 } else if (num > control->ras_max_record_count) {
826 DRM_ERROR("cannot append %d records than the size of table %d\n",
827 num, control->ras_max_record_count);
828 return -EINVAL;
829 }
830
831 mutex_lock(&control->ras_tbl_mutex);
832
833 res = amdgpu_ras_eeprom_append_table(control, record, num);
834 if (!res)
835 res = amdgpu_ras_eeprom_update_header(control);
836 if (!res)
837 amdgpu_ras_debugfs_set_ret_size(control);
838
839 mutex_unlock(&control->ras_tbl_mutex);
840 return res;
841 }
842
843 /**
844 * __amdgpu_ras_eeprom_read -- read indexed from EEPROM into buffer
845 * @control: pointer to control structure
846 * @buf: pointer to buffer to read into
847 * @fri: first record index, start reading at this index, absolute index
848 * @num: number of records to read
849 *
850 * The caller must hold the table mutex in @control.
851 * Return 0 on success, -errno otherwise.
852 */
__amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control * control,u8 * buf,const u32 fri,const u32 num)853 static int __amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control,
854 u8 *buf, const u32 fri, const u32 num)
855 {
856 struct amdgpu_device *adev = to_amdgpu_device(control);
857 u32 buf_size;
858 int res;
859
860 /* i2c may be unstable in gpu reset */
861 down_read(&adev->reset_domain->sem);
862 buf_size = num * RAS_TABLE_RECORD_SIZE;
863 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
864 control->i2c_address +
865 RAS_INDEX_TO_OFFSET(control, fri),
866 buf, buf_size);
867 up_read(&adev->reset_domain->sem);
868 if (res < 0) {
869 DRM_ERROR("Reading %d EEPROM table records error:%d",
870 num, res);
871 } else if (res < buf_size) {
872 /* Short read, return error.
873 */
874 DRM_ERROR("Read %d records out of %d",
875 res / RAS_TABLE_RECORD_SIZE, num);
876 res = -EIO;
877 } else {
878 res = 0;
879 }
880
881 return res;
882 }
883
884 /**
885 * amdgpu_ras_eeprom_read -- read EEPROM
886 * @control: pointer to control structure
887 * @record: array of records to read into
888 * @num: number of records in @record
889 *
890 * Reads num records from the RAS table in EEPROM and
891 * writes the data into @record array.
892 *
893 * Returns 0 on success, -errno on error.
894 */
amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control * control,struct eeprom_table_record * record,const u32 num)895 int amdgpu_ras_eeprom_read(struct amdgpu_ras_eeprom_control *control,
896 struct eeprom_table_record *record,
897 const u32 num)
898 {
899 struct amdgpu_device *adev = to_amdgpu_device(control);
900 struct amdgpu_ras *con = amdgpu_ras_get_context(adev);
901 int i, res;
902 u8 *buf, *pp;
903 u32 g0, g1;
904
905 if (!__is_ras_eeprom_supported(adev))
906 return 0;
907
908 if (num == 0) {
909 DRM_ERROR("will not read 0 records\n");
910 return -EINVAL;
911 } else if (num > control->ras_num_recs) {
912 DRM_ERROR("too many records to read:%d available:%d\n",
913 num, control->ras_num_recs);
914 return -EINVAL;
915 }
916
917 buf = kcalloc(num, RAS_TABLE_RECORD_SIZE, GFP_KERNEL);
918 if (!buf)
919 return -ENOMEM;
920
921 /* Determine how many records to read, from the first record
922 * index, fri, to the end of the table, and from the beginning
923 * of the table, such that the total number of records is
924 * @num, and we handle wrap around when fri > 0 and
925 * fri + num > RAS_MAX_RECORD_COUNT.
926 *
927 * First we compute the index of the last element
928 * which would be fetched from each region,
929 * g0 is in [fri, fri + num - 1], and
930 * g1 is in [0, RAS_MAX_RECORD_COUNT - 1].
931 * Then, if g0 < RAS_MAX_RECORD_COUNT, the index of
932 * the last element to fetch, we set g0 to _the number_
933 * of elements to fetch, @num, since we know that the last
934 * indexed to be fetched does not exceed the table.
935 *
936 * If, however, g0 >= RAS_MAX_RECORD_COUNT, then
937 * we set g0 to the number of elements to read
938 * until the end of the table, and g1 to the number of
939 * elements to read from the beginning of the table.
940 */
941 g0 = control->ras_fri + num - 1;
942 g1 = g0 % control->ras_max_record_count;
943 if (g0 < control->ras_max_record_count) {
944 g0 = num;
945 g1 = 0;
946 } else {
947 g0 = control->ras_max_record_count - control->ras_fri;
948 g1 += 1;
949 }
950
951 mutex_lock(&control->ras_tbl_mutex);
952 res = __amdgpu_ras_eeprom_read(control, buf, control->ras_fri, g0);
953 if (res)
954 goto Out;
955 if (g1) {
956 res = __amdgpu_ras_eeprom_read(control,
957 buf + g0 * RAS_TABLE_RECORD_SIZE,
958 0, g1);
959 if (res)
960 goto Out;
961 }
962
963 res = 0;
964
965 /* Read up everything? Then transform.
966 */
967 pp = buf;
968 for (i = 0; i < num; i++, pp += RAS_TABLE_RECORD_SIZE) {
969 __decode_table_record_from_buf(control, &record[i], pp);
970
971 /* update bad channel bitmap */
972 if (!(control->bad_channel_bitmap & (1 << record[i].mem_channel))) {
973 control->bad_channel_bitmap |= 1 << record[i].mem_channel;
974 con->update_channel_flag = true;
975 }
976 }
977 Out:
978 kfree(buf);
979 mutex_unlock(&control->ras_tbl_mutex);
980
981 return res;
982 }
983
amdgpu_ras_eeprom_max_record_count(struct amdgpu_ras_eeprom_control * control)984 uint32_t amdgpu_ras_eeprom_max_record_count(struct amdgpu_ras_eeprom_control *control)
985 {
986 if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
987 return RAS_MAX_RECORD_COUNT_V2_1;
988 else
989 return RAS_MAX_RECORD_COUNT;
990 }
991
992 static ssize_t
amdgpu_ras_debugfs_eeprom_size_read(struct file * f,char __user * buf,size_t size,loff_t * pos)993 amdgpu_ras_debugfs_eeprom_size_read(struct file *f, char __user *buf,
994 size_t size, loff_t *pos)
995 {
996 struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
997 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
998 struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL;
999 u8 data[50];
1000 int res;
1001
1002 if (!size)
1003 return size;
1004
1005 if (!ras || !control) {
1006 res = snprintf(data, sizeof(data), "Not supported\n");
1007 } else {
1008 res = snprintf(data, sizeof(data), "%d bytes or %d records\n",
1009 RAS_TBL_SIZE_BYTES, control->ras_max_record_count);
1010 }
1011
1012 if (*pos >= res)
1013 return 0;
1014
1015 res -= *pos;
1016 res = min_t(size_t, res, size);
1017
1018 if (copy_to_user(buf, &data[*pos], res))
1019 return -EFAULT;
1020
1021 *pos += res;
1022
1023 return res;
1024 }
1025
1026 const struct file_operations amdgpu_ras_debugfs_eeprom_size_ops = {
1027 .owner = THIS_MODULE,
1028 .read = amdgpu_ras_debugfs_eeprom_size_read,
1029 .write = NULL,
1030 .llseek = default_llseek,
1031 };
1032
1033 static const char *tbl_hdr_str = " Signature Version FirstOffs Size Checksum\n";
1034 static const char *tbl_hdr_fmt = "0x%08X 0x%08X 0x%08X 0x%08X 0x%08X\n";
1035 #define tbl_hdr_fmt_size (5 * (2+8) + 4 + 1)
1036 static const char *rec_hdr_str = "Index Offset ErrType Bank/CU TimeStamp Offs/Addr MemChl MCUMCID RetiredPage\n";
1037 static const char *rec_hdr_fmt = "%5d 0x%05X %7s 0x%02X 0x%016llX 0x%012llX 0x%02X 0x%02X 0x%012llX\n";
1038 #define rec_hdr_fmt_size (5 + 1 + 7 + 1 + 7 + 1 + 7 + 1 + 18 + 1 + 14 + 1 + 6 + 1 + 7 + 1 + 14 + 1)
1039
1040 static const char *record_err_type_str[AMDGPU_RAS_EEPROM_ERR_COUNT] = {
1041 "ignore",
1042 "re",
1043 "ue",
1044 };
1045
amdgpu_ras_debugfs_table_size(struct amdgpu_ras_eeprom_control * control)1046 static loff_t amdgpu_ras_debugfs_table_size(struct amdgpu_ras_eeprom_control *control)
1047 {
1048 return strlen(tbl_hdr_str) + tbl_hdr_fmt_size +
1049 strlen(rec_hdr_str) + rec_hdr_fmt_size * control->ras_num_recs;
1050 }
1051
amdgpu_ras_debugfs_set_ret_size(struct amdgpu_ras_eeprom_control * control)1052 void amdgpu_ras_debugfs_set_ret_size(struct amdgpu_ras_eeprom_control *control)
1053 {
1054 struct amdgpu_ras *ras = container_of(control, struct amdgpu_ras,
1055 eeprom_control);
1056 struct dentry *de = ras->de_ras_eeprom_table;
1057
1058 if (de)
1059 d_inode(de)->i_size = amdgpu_ras_debugfs_table_size(control);
1060 }
1061
amdgpu_ras_debugfs_table_read(struct file * f,char __user * buf,size_t size,loff_t * pos)1062 static ssize_t amdgpu_ras_debugfs_table_read(struct file *f, char __user *buf,
1063 size_t size, loff_t *pos)
1064 {
1065 struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
1066 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1067 struct amdgpu_ras_eeprom_control *control = &ras->eeprom_control;
1068 const size_t orig_size = size;
1069 int res = -EFAULT;
1070 size_t data_len;
1071
1072 mutex_lock(&control->ras_tbl_mutex);
1073
1074 /* We want *pos - data_len > 0, which means there's
1075 * bytes to be printed from data.
1076 */
1077 data_len = strlen(tbl_hdr_str);
1078 if (*pos < data_len) {
1079 data_len -= *pos;
1080 data_len = min_t(size_t, data_len, size);
1081 if (copy_to_user(buf, &tbl_hdr_str[*pos], data_len))
1082 goto Out;
1083 buf += data_len;
1084 size -= data_len;
1085 *pos += data_len;
1086 }
1087
1088 data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size;
1089 if (*pos < data_len && size > 0) {
1090 u8 data[tbl_hdr_fmt_size + 1];
1091 loff_t lpos;
1092
1093 snprintf(data, sizeof(data), tbl_hdr_fmt,
1094 control->tbl_hdr.header,
1095 control->tbl_hdr.version,
1096 control->tbl_hdr.first_rec_offset,
1097 control->tbl_hdr.tbl_size,
1098 control->tbl_hdr.checksum);
1099
1100 data_len -= *pos;
1101 data_len = min_t(size_t, data_len, size);
1102 lpos = *pos - strlen(tbl_hdr_str);
1103 if (copy_to_user(buf, &data[lpos], data_len))
1104 goto Out;
1105 buf += data_len;
1106 size -= data_len;
1107 *pos += data_len;
1108 }
1109
1110 data_len = strlen(tbl_hdr_str) + tbl_hdr_fmt_size + strlen(rec_hdr_str);
1111 if (*pos < data_len && size > 0) {
1112 loff_t lpos;
1113
1114 data_len -= *pos;
1115 data_len = min_t(size_t, data_len, size);
1116 lpos = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size;
1117 if (copy_to_user(buf, &rec_hdr_str[lpos], data_len))
1118 goto Out;
1119 buf += data_len;
1120 size -= data_len;
1121 *pos += data_len;
1122 }
1123
1124 data_len = amdgpu_ras_debugfs_table_size(control);
1125 if (*pos < data_len && size > 0) {
1126 u8 dare[RAS_TABLE_RECORD_SIZE];
1127 u8 data[rec_hdr_fmt_size + 1];
1128 struct eeprom_table_record record;
1129 int s, r;
1130
1131 /* Find the starting record index
1132 */
1133 s = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size -
1134 strlen(rec_hdr_str);
1135 s = s / rec_hdr_fmt_size;
1136 r = *pos - strlen(tbl_hdr_str) - tbl_hdr_fmt_size -
1137 strlen(rec_hdr_str);
1138 r = r % rec_hdr_fmt_size;
1139
1140 for ( ; size > 0 && s < control->ras_num_recs; s++) {
1141 u32 ai = RAS_RI_TO_AI(control, s);
1142 /* Read a single record
1143 */
1144 res = __amdgpu_ras_eeprom_read(control, dare, ai, 1);
1145 if (res)
1146 goto Out;
1147 __decode_table_record_from_buf(control, &record, dare);
1148 snprintf(data, sizeof(data), rec_hdr_fmt,
1149 s,
1150 RAS_INDEX_TO_OFFSET(control, ai),
1151 record_err_type_str[record.err_type],
1152 record.bank,
1153 record.ts,
1154 record.offset,
1155 record.mem_channel,
1156 record.mcumc_id,
1157 record.retired_page);
1158
1159 data_len = min_t(size_t, rec_hdr_fmt_size - r, size);
1160 if (copy_to_user(buf, &data[r], data_len)) {
1161 res = -EFAULT;
1162 goto Out;
1163 }
1164 buf += data_len;
1165 size -= data_len;
1166 *pos += data_len;
1167 r = 0;
1168 }
1169 }
1170 res = 0;
1171 Out:
1172 mutex_unlock(&control->ras_tbl_mutex);
1173 return res < 0 ? res : orig_size - size;
1174 }
1175
1176 static ssize_t
amdgpu_ras_debugfs_eeprom_table_read(struct file * f,char __user * buf,size_t size,loff_t * pos)1177 amdgpu_ras_debugfs_eeprom_table_read(struct file *f, char __user *buf,
1178 size_t size, loff_t *pos)
1179 {
1180 struct amdgpu_device *adev = (struct amdgpu_device *)file_inode(f)->i_private;
1181 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1182 struct amdgpu_ras_eeprom_control *control = ras ? &ras->eeprom_control : NULL;
1183 u8 data[81];
1184 int res;
1185
1186 if (!size)
1187 return size;
1188
1189 if (!ras || !control) {
1190 res = snprintf(data, sizeof(data), "Not supported\n");
1191 if (*pos >= res)
1192 return 0;
1193
1194 res -= *pos;
1195 res = min_t(size_t, res, size);
1196
1197 if (copy_to_user(buf, &data[*pos], res))
1198 return -EFAULT;
1199
1200 *pos += res;
1201
1202 return res;
1203 } else {
1204 return amdgpu_ras_debugfs_table_read(f, buf, size, pos);
1205 }
1206 }
1207
1208 const struct file_operations amdgpu_ras_debugfs_eeprom_table_ops = {
1209 .owner = THIS_MODULE,
1210 .read = amdgpu_ras_debugfs_eeprom_table_read,
1211 .write = NULL,
1212 .llseek = default_llseek,
1213 };
1214
1215 /**
1216 * __verify_ras_table_checksum -- verify the RAS EEPROM table checksum
1217 * @control: pointer to control structure
1218 *
1219 * Check the checksum of the stored in EEPROM RAS table.
1220 *
1221 * Return 0 if the checksum is correct,
1222 * positive if it is not correct, and
1223 * -errno on I/O error.
1224 */
__verify_ras_table_checksum(struct amdgpu_ras_eeprom_control * control)1225 static int __verify_ras_table_checksum(struct amdgpu_ras_eeprom_control *control)
1226 {
1227 struct amdgpu_device *adev = to_amdgpu_device(control);
1228 int buf_size, res;
1229 u8 csum, *buf, *pp;
1230
1231 if (control->tbl_hdr.version == RAS_TABLE_VER_V2_1)
1232 buf_size = RAS_TABLE_HEADER_SIZE +
1233 RAS_TABLE_V2_1_INFO_SIZE +
1234 control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
1235 else
1236 buf_size = RAS_TABLE_HEADER_SIZE +
1237 control->ras_num_recs * RAS_TABLE_RECORD_SIZE;
1238
1239 buf = kzalloc(buf_size, GFP_KERNEL);
1240 if (!buf) {
1241 DRM_ERROR("Out of memory checking RAS table checksum.\n");
1242 return -ENOMEM;
1243 }
1244
1245 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
1246 control->i2c_address +
1247 control->ras_header_offset,
1248 buf, buf_size);
1249 if (res < buf_size) {
1250 DRM_ERROR("Partial read for checksum, res:%d\n", res);
1251 /* On partial reads, return -EIO.
1252 */
1253 if (res >= 0)
1254 res = -EIO;
1255 goto Out;
1256 }
1257
1258 csum = 0;
1259 for (pp = buf; pp < buf + buf_size; pp++)
1260 csum += *pp;
1261 Out:
1262 kfree(buf);
1263 return res < 0 ? res : csum;
1264 }
1265
__read_table_ras_info(struct amdgpu_ras_eeprom_control * control)1266 static int __read_table_ras_info(struct amdgpu_ras_eeprom_control *control)
1267 {
1268 struct amdgpu_ras_eeprom_table_ras_info *rai = &control->tbl_rai;
1269 struct amdgpu_device *adev = to_amdgpu_device(control);
1270 unsigned char *buf;
1271 int res;
1272
1273 buf = kzalloc(RAS_TABLE_V2_1_INFO_SIZE, GFP_KERNEL);
1274 if (!buf) {
1275 DRM_ERROR("Failed to alloc buf to read EEPROM table ras info\n");
1276 return -ENOMEM;
1277 }
1278
1279 /**
1280 * EEPROM table V2_1 supports ras info,
1281 * read EEPROM table ras info
1282 */
1283 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
1284 control->i2c_address + control->ras_info_offset,
1285 buf, RAS_TABLE_V2_1_INFO_SIZE);
1286 if (res < RAS_TABLE_V2_1_INFO_SIZE) {
1287 DRM_ERROR("Failed to read EEPROM table ras info, res:%d", res);
1288 res = res >= 0 ? -EIO : res;
1289 goto Out;
1290 }
1291
1292 __decode_table_ras_info_from_buf(rai, buf);
1293
1294 Out:
1295 kfree(buf);
1296 return res == RAS_TABLE_V2_1_INFO_SIZE ? 0 : res;
1297 }
1298
amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control * control,bool * exceed_err_limit)1299 int amdgpu_ras_eeprom_init(struct amdgpu_ras_eeprom_control *control,
1300 bool *exceed_err_limit)
1301 {
1302 struct amdgpu_device *adev = to_amdgpu_device(control);
1303 unsigned char buf[RAS_TABLE_HEADER_SIZE] = { 0 };
1304 struct amdgpu_ras_eeprom_table_header *hdr = &control->tbl_hdr;
1305 struct amdgpu_ras *ras = amdgpu_ras_get_context(adev);
1306 int res;
1307
1308 *exceed_err_limit = false;
1309
1310 if (!__is_ras_eeprom_supported(adev))
1311 return 0;
1312
1313 /* Verify i2c adapter is initialized */
1314 if (!adev->pm.ras_eeprom_i2c_bus || !adev->pm.ras_eeprom_i2c_bus->algo)
1315 return -ENOENT;
1316
1317 if (!__get_eeprom_i2c_addr(adev, control))
1318 return -EINVAL;
1319
1320 control->ras_header_offset = RAS_HDR_START;
1321 control->ras_info_offset = RAS_TABLE_V2_1_INFO_START;
1322 mutex_init(&control->ras_tbl_mutex);
1323
1324 /* Read the table header from EEPROM address */
1325 res = amdgpu_eeprom_read(adev->pm.ras_eeprom_i2c_bus,
1326 control->i2c_address + control->ras_header_offset,
1327 buf, RAS_TABLE_HEADER_SIZE);
1328 if (res < RAS_TABLE_HEADER_SIZE) {
1329 DRM_ERROR("Failed to read EEPROM table header, res:%d", res);
1330 return res >= 0 ? -EIO : res;
1331 }
1332
1333 __decode_table_header_from_buf(hdr, buf);
1334
1335 if (hdr->version == RAS_TABLE_VER_V2_1) {
1336 control->ras_num_recs = RAS_NUM_RECS_V2_1(hdr);
1337 control->ras_record_offset = RAS_RECORD_START_V2_1;
1338 control->ras_max_record_count = RAS_MAX_RECORD_COUNT_V2_1;
1339 } else {
1340 control->ras_num_recs = RAS_NUM_RECS(hdr);
1341 control->ras_record_offset = RAS_RECORD_START;
1342 control->ras_max_record_count = RAS_MAX_RECORD_COUNT;
1343 }
1344 control->ras_fri = RAS_OFFSET_TO_INDEX(control, hdr->first_rec_offset);
1345
1346 if (hdr->header == RAS_TABLE_HDR_VAL) {
1347 DRM_DEBUG_DRIVER("Found existing EEPROM table with %d records",
1348 control->ras_num_recs);
1349
1350 if (hdr->version == RAS_TABLE_VER_V2_1) {
1351 res = __read_table_ras_info(control);
1352 if (res)
1353 return res;
1354 }
1355
1356 res = __verify_ras_table_checksum(control);
1357 if (res)
1358 DRM_ERROR("RAS table incorrect checksum or error:%d\n",
1359 res);
1360
1361 /* Warn if we are at 90% of the threshold or above
1362 */
1363 if (10 * control->ras_num_recs >= 9 * ras->bad_page_cnt_threshold)
1364 dev_warn(adev->dev, "RAS records:%u exceeds 90%% of threshold:%d",
1365 control->ras_num_recs,
1366 ras->bad_page_cnt_threshold);
1367 } else if (hdr->header == RAS_TABLE_HDR_BAD &&
1368 amdgpu_bad_page_threshold != 0) {
1369 if (hdr->version == RAS_TABLE_VER_V2_1) {
1370 res = __read_table_ras_info(control);
1371 if (res)
1372 return res;
1373 }
1374
1375 res = __verify_ras_table_checksum(control);
1376 if (res)
1377 DRM_ERROR("RAS Table incorrect checksum or error:%d\n",
1378 res);
1379 if (ras->bad_page_cnt_threshold > control->ras_num_recs) {
1380 /* This means that, the threshold was increased since
1381 * the last time the system was booted, and now,
1382 * ras->bad_page_cnt_threshold - control->num_recs > 0,
1383 * so that at least one more record can be saved,
1384 * before the page count threshold is reached.
1385 */
1386 dev_info(adev->dev,
1387 "records:%d threshold:%d, resetting "
1388 "RAS table header signature",
1389 control->ras_num_recs,
1390 ras->bad_page_cnt_threshold);
1391 res = amdgpu_ras_eeprom_correct_header_tag(control,
1392 RAS_TABLE_HDR_VAL);
1393 } else {
1394 dev_err(adev->dev, "RAS records:%d exceed threshold:%d",
1395 control->ras_num_recs, ras->bad_page_cnt_threshold);
1396 if (amdgpu_bad_page_threshold == -1) {
1397 dev_warn(adev->dev, "GPU will be initialized due to bad_page_threshold = -1.");
1398 res = 0;
1399 } else {
1400 *exceed_err_limit = true;
1401 dev_err(adev->dev,
1402 "RAS records:%d exceed threshold:%d, "
1403 "GPU will not be initialized. Replace this GPU or increase the threshold",
1404 control->ras_num_recs, ras->bad_page_cnt_threshold);
1405 }
1406 }
1407 } else {
1408 DRM_INFO("Creating a new EEPROM table");
1409
1410 res = amdgpu_ras_eeprom_reset_table(control);
1411 }
1412
1413 return res < 0 ? res : 0;
1414 }
1415