1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2015, The Linux Foundation. All rights reserved.
4 * Copyright (c) 2019, 2020, Linaro Ltd.
5 */
6
7 #include <linux/debugfs.h>
8 #include <linux/err.h>
9 #include <linux/io.h>
10 #include <linux/module.h>
11 #include <linux/nvmem-consumer.h>
12 #include <linux/of.h>
13 #include <linux/of_address.h>
14 #include <linux/of_platform.h>
15 #include <linux/mfd/syscon.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm.h>
18 #include <linux/regmap.h>
19 #include <linux/slab.h>
20 #include <linux/thermal.h>
21 #include "tsens.h"
22
23 /**
24 * struct tsens_irq_data - IRQ status and temperature violations
25 * @up_viol: upper threshold violated
26 * @up_thresh: upper threshold temperature value
27 * @up_irq_mask: mask register for upper threshold irqs
28 * @up_irq_clear: clear register for uppper threshold irqs
29 * @low_viol: lower threshold violated
30 * @low_thresh: lower threshold temperature value
31 * @low_irq_mask: mask register for lower threshold irqs
32 * @low_irq_clear: clear register for lower threshold irqs
33 * @crit_viol: critical threshold violated
34 * @crit_thresh: critical threshold temperature value
35 * @crit_irq_mask: mask register for critical threshold irqs
36 * @crit_irq_clear: clear register for critical threshold irqs
37 *
38 * Structure containing data about temperature threshold settings and
39 * irq status if they were violated.
40 */
41 struct tsens_irq_data {
42 u32 up_viol;
43 int up_thresh;
44 u32 up_irq_mask;
45 u32 up_irq_clear;
46 u32 low_viol;
47 int low_thresh;
48 u32 low_irq_mask;
49 u32 low_irq_clear;
50 u32 crit_viol;
51 u32 crit_thresh;
52 u32 crit_irq_mask;
53 u32 crit_irq_clear;
54 };
55
qfprom_read(struct device * dev,const char * cname)56 char *qfprom_read(struct device *dev, const char *cname)
57 {
58 struct nvmem_cell *cell;
59 ssize_t data;
60 char *ret;
61
62 cell = nvmem_cell_get(dev, cname);
63 if (IS_ERR(cell))
64 return ERR_CAST(cell);
65
66 ret = nvmem_cell_read(cell, &data);
67 nvmem_cell_put(cell);
68
69 return ret;
70 }
71
72 /*
73 * Use this function on devices where slope and offset calculations
74 * depend on calibration data read from qfprom. On others the slope
75 * and offset values are derived from tz->tzp->slope and tz->tzp->offset
76 * resp.
77 */
compute_intercept_slope(struct tsens_priv * priv,u32 * p1,u32 * p2,u32 mode)78 void compute_intercept_slope(struct tsens_priv *priv, u32 *p1,
79 u32 *p2, u32 mode)
80 {
81 int i;
82 int num, den;
83
84 for (i = 0; i < priv->num_sensors; i++) {
85 dev_dbg(priv->dev,
86 "%s: sensor%d - data_point1:%#x data_point2:%#x\n",
87 __func__, i, p1[i], p2[i]);
88
89 if (!priv->sensor[i].slope)
90 priv->sensor[i].slope = SLOPE_DEFAULT;
91 if (mode == TWO_PT_CALIB) {
92 /*
93 * slope (m) = adc_code2 - adc_code1 (y2 - y1)/
94 * temp_120_degc - temp_30_degc (x2 - x1)
95 */
96 num = p2[i] - p1[i];
97 num *= SLOPE_FACTOR;
98 den = CAL_DEGC_PT2 - CAL_DEGC_PT1;
99 priv->sensor[i].slope = num / den;
100 }
101
102 priv->sensor[i].offset = (p1[i] * SLOPE_FACTOR) -
103 (CAL_DEGC_PT1 *
104 priv->sensor[i].slope);
105 dev_dbg(priv->dev, "%s: offset:%d\n", __func__,
106 priv->sensor[i].offset);
107 }
108 }
109
degc_to_code(int degc,const struct tsens_sensor * s)110 static inline u32 degc_to_code(int degc, const struct tsens_sensor *s)
111 {
112 u64 code = div_u64(((u64)degc * s->slope + s->offset), SLOPE_FACTOR);
113
114 pr_debug("%s: raw_code: 0x%llx, degc:%d\n", __func__, code, degc);
115 return clamp_val(code, THRESHOLD_MIN_ADC_CODE, THRESHOLD_MAX_ADC_CODE);
116 }
117
code_to_degc(u32 adc_code,const struct tsens_sensor * s)118 static inline int code_to_degc(u32 adc_code, const struct tsens_sensor *s)
119 {
120 int degc, num, den;
121
122 num = (adc_code * SLOPE_FACTOR) - s->offset;
123 den = s->slope;
124
125 if (num > 0)
126 degc = num + (den / 2);
127 else if (num < 0)
128 degc = num - (den / 2);
129 else
130 degc = num;
131
132 degc /= den;
133
134 return degc;
135 }
136
137 /**
138 * tsens_hw_to_mC - Return sign-extended temperature in mCelsius.
139 * @s: Pointer to sensor struct
140 * @field: Index into regmap_field array pointing to temperature data
141 *
142 * This function handles temperature returned in ADC code or deciCelsius
143 * depending on IP version.
144 *
145 * Return: Temperature in milliCelsius on success, a negative errno will
146 * be returned in error cases
147 */
tsens_hw_to_mC(const struct tsens_sensor * s,int field)148 static int tsens_hw_to_mC(const struct tsens_sensor *s, int field)
149 {
150 struct tsens_priv *priv = s->priv;
151 u32 resolution;
152 u32 temp = 0;
153 int ret;
154
155 resolution = priv->fields[LAST_TEMP_0].msb -
156 priv->fields[LAST_TEMP_0].lsb;
157
158 ret = regmap_field_read(priv->rf[field], &temp);
159 if (ret)
160 return ret;
161
162 /* Convert temperature from ADC code to milliCelsius */
163 if (priv->feat->adc)
164 return code_to_degc(temp, s) * 1000;
165
166 /* deciCelsius -> milliCelsius along with sign extension */
167 return sign_extend32(temp, resolution) * 100;
168 }
169
170 /**
171 * tsens_mC_to_hw - Convert temperature to hardware register value
172 * @s: Pointer to sensor struct
173 * @temp: temperature in milliCelsius to be programmed to hardware
174 *
175 * This function outputs the value to be written to hardware in ADC code
176 * or deciCelsius depending on IP version.
177 *
178 * Return: ADC code or temperature in deciCelsius.
179 */
tsens_mC_to_hw(const struct tsens_sensor * s,int temp)180 static int tsens_mC_to_hw(const struct tsens_sensor *s, int temp)
181 {
182 struct tsens_priv *priv = s->priv;
183
184 /* milliC to adc code */
185 if (priv->feat->adc)
186 return degc_to_code(temp / 1000, s);
187
188 /* milliC to deciC */
189 return temp / 100;
190 }
191
tsens_version(struct tsens_priv * priv)192 static inline enum tsens_ver tsens_version(struct tsens_priv *priv)
193 {
194 return priv->feat->ver_major;
195 }
196
tsens_set_interrupt_v1(struct tsens_priv * priv,u32 hw_id,enum tsens_irq_type irq_type,bool enable)197 static void tsens_set_interrupt_v1(struct tsens_priv *priv, u32 hw_id,
198 enum tsens_irq_type irq_type, bool enable)
199 {
200 u32 index = 0;
201
202 switch (irq_type) {
203 case UPPER:
204 index = UP_INT_CLEAR_0 + hw_id;
205 break;
206 case LOWER:
207 index = LOW_INT_CLEAR_0 + hw_id;
208 break;
209 case CRITICAL:
210 /* No critical interrupts before v2 */
211 return;
212 }
213 regmap_field_write(priv->rf[index], enable ? 0 : 1);
214 }
215
tsens_set_interrupt_v2(struct tsens_priv * priv,u32 hw_id,enum tsens_irq_type irq_type,bool enable)216 static void tsens_set_interrupt_v2(struct tsens_priv *priv, u32 hw_id,
217 enum tsens_irq_type irq_type, bool enable)
218 {
219 u32 index_mask = 0, index_clear = 0;
220
221 /*
222 * To enable the interrupt flag for a sensor:
223 * - clear the mask bit
224 * To disable the interrupt flag for a sensor:
225 * - Mask further interrupts for this sensor
226 * - Write 1 followed by 0 to clear the interrupt
227 */
228 switch (irq_type) {
229 case UPPER:
230 index_mask = UP_INT_MASK_0 + hw_id;
231 index_clear = UP_INT_CLEAR_0 + hw_id;
232 break;
233 case LOWER:
234 index_mask = LOW_INT_MASK_0 + hw_id;
235 index_clear = LOW_INT_CLEAR_0 + hw_id;
236 break;
237 case CRITICAL:
238 index_mask = CRIT_INT_MASK_0 + hw_id;
239 index_clear = CRIT_INT_CLEAR_0 + hw_id;
240 break;
241 }
242
243 if (enable) {
244 regmap_field_write(priv->rf[index_mask], 0);
245 } else {
246 regmap_field_write(priv->rf[index_mask], 1);
247 regmap_field_write(priv->rf[index_clear], 1);
248 regmap_field_write(priv->rf[index_clear], 0);
249 }
250 }
251
252 /**
253 * tsens_set_interrupt - Set state of an interrupt
254 * @priv: Pointer to tsens controller private data
255 * @hw_id: Hardware ID aka. sensor number
256 * @irq_type: irq_type from enum tsens_irq_type
257 * @enable: false = disable, true = enable
258 *
259 * Call IP-specific function to set state of an interrupt
260 *
261 * Return: void
262 */
tsens_set_interrupt(struct tsens_priv * priv,u32 hw_id,enum tsens_irq_type irq_type,bool enable)263 static void tsens_set_interrupt(struct tsens_priv *priv, u32 hw_id,
264 enum tsens_irq_type irq_type, bool enable)
265 {
266 dev_dbg(priv->dev, "[%u] %s: %s -> %s\n", hw_id, __func__,
267 irq_type ? ((irq_type == 1) ? "UP" : "CRITICAL") : "LOW",
268 enable ? "en" : "dis");
269 if (tsens_version(priv) > VER_1_X)
270 tsens_set_interrupt_v2(priv, hw_id, irq_type, enable);
271 else
272 tsens_set_interrupt_v1(priv, hw_id, irq_type, enable);
273 }
274
275 /**
276 * tsens_threshold_violated - Check if a sensor temperature violated a preset threshold
277 * @priv: Pointer to tsens controller private data
278 * @hw_id: Hardware ID aka. sensor number
279 * @d: Pointer to irq state data
280 *
281 * Return: 0 if threshold was not violated, 1 if it was violated and negative
282 * errno in case of errors
283 */
tsens_threshold_violated(struct tsens_priv * priv,u32 hw_id,struct tsens_irq_data * d)284 static int tsens_threshold_violated(struct tsens_priv *priv, u32 hw_id,
285 struct tsens_irq_data *d)
286 {
287 int ret;
288
289 ret = regmap_field_read(priv->rf[UPPER_STATUS_0 + hw_id], &d->up_viol);
290 if (ret)
291 return ret;
292 ret = regmap_field_read(priv->rf[LOWER_STATUS_0 + hw_id], &d->low_viol);
293 if (ret)
294 return ret;
295
296 if (priv->feat->crit_int) {
297 ret = regmap_field_read(priv->rf[CRITICAL_STATUS_0 + hw_id],
298 &d->crit_viol);
299 if (ret)
300 return ret;
301 }
302
303 if (d->up_viol || d->low_viol || d->crit_viol)
304 return 1;
305
306 return 0;
307 }
308
tsens_read_irq_state(struct tsens_priv * priv,u32 hw_id,const struct tsens_sensor * s,struct tsens_irq_data * d)309 static int tsens_read_irq_state(struct tsens_priv *priv, u32 hw_id,
310 const struct tsens_sensor *s,
311 struct tsens_irq_data *d)
312 {
313 int ret;
314
315 ret = regmap_field_read(priv->rf[UP_INT_CLEAR_0 + hw_id], &d->up_irq_clear);
316 if (ret)
317 return ret;
318 ret = regmap_field_read(priv->rf[LOW_INT_CLEAR_0 + hw_id], &d->low_irq_clear);
319 if (ret)
320 return ret;
321 if (tsens_version(priv) > VER_1_X) {
322 ret = regmap_field_read(priv->rf[UP_INT_MASK_0 + hw_id], &d->up_irq_mask);
323 if (ret)
324 return ret;
325 ret = regmap_field_read(priv->rf[LOW_INT_MASK_0 + hw_id], &d->low_irq_mask);
326 if (ret)
327 return ret;
328 ret = regmap_field_read(priv->rf[CRIT_INT_CLEAR_0 + hw_id],
329 &d->crit_irq_clear);
330 if (ret)
331 return ret;
332 ret = regmap_field_read(priv->rf[CRIT_INT_MASK_0 + hw_id],
333 &d->crit_irq_mask);
334 if (ret)
335 return ret;
336
337 d->crit_thresh = tsens_hw_to_mC(s, CRIT_THRESH_0 + hw_id);
338 } else {
339 /* No mask register on older TSENS */
340 d->up_irq_mask = 0;
341 d->low_irq_mask = 0;
342 d->crit_irq_clear = 0;
343 d->crit_irq_mask = 0;
344 d->crit_thresh = 0;
345 }
346
347 d->up_thresh = tsens_hw_to_mC(s, UP_THRESH_0 + hw_id);
348 d->low_thresh = tsens_hw_to_mC(s, LOW_THRESH_0 + hw_id);
349
350 dev_dbg(priv->dev, "[%u] %s%s: status(%u|%u|%u) | clr(%u|%u|%u) | mask(%u|%u|%u)\n",
351 hw_id, __func__,
352 (d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "",
353 d->low_viol, d->up_viol, d->crit_viol,
354 d->low_irq_clear, d->up_irq_clear, d->crit_irq_clear,
355 d->low_irq_mask, d->up_irq_mask, d->crit_irq_mask);
356 dev_dbg(priv->dev, "[%u] %s%s: thresh: (%d:%d:%d)\n", hw_id, __func__,
357 (d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "",
358 d->low_thresh, d->up_thresh, d->crit_thresh);
359
360 return 0;
361 }
362
masked_irq(u32 hw_id,u32 mask,enum tsens_ver ver)363 static inline u32 masked_irq(u32 hw_id, u32 mask, enum tsens_ver ver)
364 {
365 if (ver > VER_1_X)
366 return mask & (1 << hw_id);
367
368 /* v1, v0.1 don't have a irq mask register */
369 return 0;
370 }
371
372 /**
373 * tsens_critical_irq_thread() - Threaded handler for critical interrupts
374 * @irq: irq number
375 * @data: tsens controller private data
376 *
377 * Check FSM watchdog bark status and clear if needed.
378 * Check all sensors to find ones that violated their critical threshold limits.
379 * Clear and then re-enable the interrupt.
380 *
381 * The level-triggered interrupt might deassert if the temperature returned to
382 * within the threshold limits by the time the handler got scheduled. We
383 * consider the irq to have been handled in that case.
384 *
385 * Return: IRQ_HANDLED
386 */
tsens_critical_irq_thread(int irq,void * data)387 static irqreturn_t tsens_critical_irq_thread(int irq, void *data)
388 {
389 struct tsens_priv *priv = data;
390 struct tsens_irq_data d;
391 int temp, ret, i;
392 u32 wdog_status, wdog_count;
393
394 if (priv->feat->has_watchdog) {
395 ret = regmap_field_read(priv->rf[WDOG_BARK_STATUS],
396 &wdog_status);
397 if (ret)
398 return ret;
399
400 if (wdog_status) {
401 /* Clear WDOG interrupt */
402 regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 1);
403 regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 0);
404 ret = regmap_field_read(priv->rf[WDOG_BARK_COUNT],
405 &wdog_count);
406 if (ret)
407 return ret;
408 if (wdog_count)
409 dev_dbg(priv->dev, "%s: watchdog count: %d\n",
410 __func__, wdog_count);
411
412 /* Fall through to handle critical interrupts if any */
413 }
414 }
415
416 for (i = 0; i < priv->num_sensors; i++) {
417 const struct tsens_sensor *s = &priv->sensor[i];
418 u32 hw_id = s->hw_id;
419
420 if (!s->tzd)
421 continue;
422 if (!tsens_threshold_violated(priv, hw_id, &d))
423 continue;
424 ret = get_temp_tsens_valid(s, &temp);
425 if (ret) {
426 dev_err(priv->dev, "[%u] %s: error reading sensor\n",
427 hw_id, __func__);
428 continue;
429 }
430
431 tsens_read_irq_state(priv, hw_id, s, &d);
432 if (d.crit_viol &&
433 !masked_irq(hw_id, d.crit_irq_mask, tsens_version(priv))) {
434 /* Mask critical interrupts, unused on Linux */
435 tsens_set_interrupt(priv, hw_id, CRITICAL, false);
436 }
437 }
438
439 return IRQ_HANDLED;
440 }
441
442 /**
443 * tsens_irq_thread - Threaded interrupt handler for uplow interrupts
444 * @irq: irq number
445 * @data: tsens controller private data
446 *
447 * Check all sensors to find ones that violated their threshold limits. If the
448 * temperature is still outside the limits, call thermal_zone_device_update() to
449 * update the thresholds, else re-enable the interrupts.
450 *
451 * The level-triggered interrupt might deassert if the temperature returned to
452 * within the threshold limits by the time the handler got scheduled. We
453 * consider the irq to have been handled in that case.
454 *
455 * Return: IRQ_HANDLED
456 */
tsens_irq_thread(int irq,void * data)457 static irqreturn_t tsens_irq_thread(int irq, void *data)
458 {
459 struct tsens_priv *priv = data;
460 struct tsens_irq_data d;
461 bool enable = true, disable = false;
462 unsigned long flags;
463 int temp, ret, i;
464
465 for (i = 0; i < priv->num_sensors; i++) {
466 bool trigger = false;
467 const struct tsens_sensor *s = &priv->sensor[i];
468 u32 hw_id = s->hw_id;
469
470 if (!s->tzd)
471 continue;
472 if (!tsens_threshold_violated(priv, hw_id, &d))
473 continue;
474 ret = get_temp_tsens_valid(s, &temp);
475 if (ret) {
476 dev_err(priv->dev, "[%u] %s: error reading sensor\n",
477 hw_id, __func__);
478 continue;
479 }
480
481 spin_lock_irqsave(&priv->ul_lock, flags);
482
483 tsens_read_irq_state(priv, hw_id, s, &d);
484
485 if (d.up_viol &&
486 !masked_irq(hw_id, d.up_irq_mask, tsens_version(priv))) {
487 tsens_set_interrupt(priv, hw_id, UPPER, disable);
488 if (d.up_thresh > temp) {
489 dev_dbg(priv->dev, "[%u] %s: re-arm upper\n",
490 hw_id, __func__);
491 tsens_set_interrupt(priv, hw_id, UPPER, enable);
492 } else {
493 trigger = true;
494 /* Keep irq masked */
495 }
496 } else if (d.low_viol &&
497 !masked_irq(hw_id, d.low_irq_mask, tsens_version(priv))) {
498 tsens_set_interrupt(priv, hw_id, LOWER, disable);
499 if (d.low_thresh < temp) {
500 dev_dbg(priv->dev, "[%u] %s: re-arm low\n",
501 hw_id, __func__);
502 tsens_set_interrupt(priv, hw_id, LOWER, enable);
503 } else {
504 trigger = true;
505 /* Keep irq masked */
506 }
507 }
508
509 spin_unlock_irqrestore(&priv->ul_lock, flags);
510
511 if (trigger) {
512 dev_dbg(priv->dev, "[%u] %s: TZ update trigger (%d mC)\n",
513 hw_id, __func__, temp);
514 thermal_zone_device_update(s->tzd,
515 THERMAL_EVENT_UNSPECIFIED);
516 } else {
517 dev_dbg(priv->dev, "[%u] %s: no violation: %d\n",
518 hw_id, __func__, temp);
519 }
520
521 if (tsens_version(priv) < VER_0_1) {
522 /* Constraint: There is only 1 interrupt control register for all
523 * 11 temperature sensor. So monitoring more than 1 sensor based
524 * on interrupts will yield inconsistent result. To overcome this
525 * issue we will monitor only sensor 0 which is the master sensor.
526 */
527 break;
528 }
529 }
530
531 return IRQ_HANDLED;
532 }
533
tsens_set_trips(void * _sensor,int low,int high)534 static int tsens_set_trips(void *_sensor, int low, int high)
535 {
536 struct tsens_sensor *s = _sensor;
537 struct tsens_priv *priv = s->priv;
538 struct device *dev = priv->dev;
539 struct tsens_irq_data d;
540 unsigned long flags;
541 int high_val, low_val, cl_high, cl_low;
542 u32 hw_id = s->hw_id;
543
544 if (tsens_version(priv) < VER_0_1) {
545 /* Pre v0.1 IP had a single register for each type of interrupt
546 * and thresholds
547 */
548 hw_id = 0;
549 }
550
551 dev_dbg(dev, "[%u] %s: proposed thresholds: (%d:%d)\n",
552 hw_id, __func__, low, high);
553
554 cl_high = clamp_val(high, -40000, 120000);
555 cl_low = clamp_val(low, -40000, 120000);
556
557 high_val = tsens_mC_to_hw(s, cl_high);
558 low_val = tsens_mC_to_hw(s, cl_low);
559
560 spin_lock_irqsave(&priv->ul_lock, flags);
561
562 tsens_read_irq_state(priv, hw_id, s, &d);
563
564 /* Write the new thresholds and clear the status */
565 regmap_field_write(priv->rf[LOW_THRESH_0 + hw_id], low_val);
566 regmap_field_write(priv->rf[UP_THRESH_0 + hw_id], high_val);
567 tsens_set_interrupt(priv, hw_id, LOWER, true);
568 tsens_set_interrupt(priv, hw_id, UPPER, true);
569
570 spin_unlock_irqrestore(&priv->ul_lock, flags);
571
572 dev_dbg(dev, "[%u] %s: (%d:%d)->(%d:%d)\n",
573 hw_id, __func__, d.low_thresh, d.up_thresh, cl_low, cl_high);
574
575 return 0;
576 }
577
tsens_enable_irq(struct tsens_priv * priv)578 static int tsens_enable_irq(struct tsens_priv *priv)
579 {
580 int ret;
581 int val = tsens_version(priv) > VER_1_X ? 7 : 1;
582
583 ret = regmap_field_write(priv->rf[INT_EN], val);
584 if (ret < 0)
585 dev_err(priv->dev, "%s: failed to enable interrupts\n",
586 __func__);
587
588 return ret;
589 }
590
tsens_disable_irq(struct tsens_priv * priv)591 static void tsens_disable_irq(struct tsens_priv *priv)
592 {
593 regmap_field_write(priv->rf[INT_EN], 0);
594 }
595
get_temp_tsens_valid(const struct tsens_sensor * s,int * temp)596 int get_temp_tsens_valid(const struct tsens_sensor *s, int *temp)
597 {
598 struct tsens_priv *priv = s->priv;
599 int hw_id = s->hw_id;
600 u32 temp_idx = LAST_TEMP_0 + hw_id;
601 u32 valid_idx = VALID_0 + hw_id;
602 u32 valid;
603 int ret;
604
605 /* VER_0 doesn't have VALID bit */
606 if (tsens_version(priv) >= VER_0_1) {
607 ret = regmap_field_read(priv->rf[valid_idx], &valid);
608 if (ret)
609 return ret;
610 while (!valid) {
611 /* Valid bit is 0 for 6 AHB clock cycles.
612 * At 19.2MHz, 1 AHB clock is ~60ns.
613 * We should enter this loop very, very rarely.
614 */
615 ndelay(400);
616 ret = regmap_field_read(priv->rf[valid_idx], &valid);
617 if (ret)
618 return ret;
619 }
620 }
621
622 /* Valid bit is set, OK to read the temperature */
623 *temp = tsens_hw_to_mC(s, temp_idx);
624
625 return 0;
626 }
627
get_temp_common(const struct tsens_sensor * s,int * temp)628 int get_temp_common(const struct tsens_sensor *s, int *temp)
629 {
630 struct tsens_priv *priv = s->priv;
631 int hw_id = s->hw_id;
632 int last_temp = 0, ret, trdy;
633 unsigned long timeout;
634
635 timeout = jiffies + usecs_to_jiffies(TIMEOUT_US);
636 do {
637 if (tsens_version(priv) == VER_0) {
638 ret = regmap_field_read(priv->rf[TRDY], &trdy);
639 if (ret)
640 return ret;
641 if (!trdy)
642 continue;
643 }
644
645 ret = regmap_field_read(priv->rf[LAST_TEMP_0 + hw_id], &last_temp);
646 if (ret)
647 return ret;
648
649 *temp = code_to_degc(last_temp, s) * 1000;
650
651 return 0;
652 } while (time_before(jiffies, timeout));
653
654 return -ETIMEDOUT;
655 }
656
657 #ifdef CONFIG_DEBUG_FS
dbg_sensors_show(struct seq_file * s,void * data)658 static int dbg_sensors_show(struct seq_file *s, void *data)
659 {
660 struct platform_device *pdev = s->private;
661 struct tsens_priv *priv = platform_get_drvdata(pdev);
662 int i;
663
664 seq_printf(s, "max: %2d\nnum: %2d\n\n",
665 priv->feat->max_sensors, priv->num_sensors);
666
667 seq_puts(s, " id slope offset\n--------------------------\n");
668 for (i = 0; i < priv->num_sensors; i++) {
669 seq_printf(s, "%8d %8d %8d\n", priv->sensor[i].hw_id,
670 priv->sensor[i].slope, priv->sensor[i].offset);
671 }
672
673 return 0;
674 }
675
dbg_version_show(struct seq_file * s,void * data)676 static int dbg_version_show(struct seq_file *s, void *data)
677 {
678 struct platform_device *pdev = s->private;
679 struct tsens_priv *priv = platform_get_drvdata(pdev);
680 u32 maj_ver, min_ver, step_ver;
681 int ret;
682
683 if (tsens_version(priv) > VER_0_1) {
684 ret = regmap_field_read(priv->rf[VER_MAJOR], &maj_ver);
685 if (ret)
686 return ret;
687 ret = regmap_field_read(priv->rf[VER_MINOR], &min_ver);
688 if (ret)
689 return ret;
690 ret = regmap_field_read(priv->rf[VER_STEP], &step_ver);
691 if (ret)
692 return ret;
693 seq_printf(s, "%d.%d.%d\n", maj_ver, min_ver, step_ver);
694 } else {
695 seq_puts(s, "0.1.0\n");
696 }
697
698 return 0;
699 }
700
701 DEFINE_SHOW_ATTRIBUTE(dbg_version);
702 DEFINE_SHOW_ATTRIBUTE(dbg_sensors);
703
tsens_debug_init(struct platform_device * pdev)704 static void tsens_debug_init(struct platform_device *pdev)
705 {
706 struct tsens_priv *priv = platform_get_drvdata(pdev);
707 struct dentry *root, *file;
708
709 root = debugfs_lookup("tsens", NULL);
710 if (!root)
711 priv->debug_root = debugfs_create_dir("tsens", NULL);
712 else
713 priv->debug_root = root;
714
715 file = debugfs_lookup("version", priv->debug_root);
716 if (!file)
717 debugfs_create_file("version", 0444, priv->debug_root,
718 pdev, &dbg_version_fops);
719
720 /* A directory for each instance of the TSENS IP */
721 priv->debug = debugfs_create_dir(dev_name(&pdev->dev), priv->debug_root);
722 debugfs_create_file("sensors", 0444, priv->debug, pdev, &dbg_sensors_fops);
723 }
724 #else
tsens_debug_init(struct platform_device * pdev)725 static inline void tsens_debug_init(struct platform_device *pdev) {}
726 #endif
727
728 static const struct regmap_config tsens_config = {
729 .name = "tm",
730 .reg_bits = 32,
731 .val_bits = 32,
732 .reg_stride = 4,
733 };
734
735 static const struct regmap_config tsens_srot_config = {
736 .name = "srot",
737 .reg_bits = 32,
738 .val_bits = 32,
739 .reg_stride = 4,
740 };
741
init_common(struct tsens_priv * priv)742 int __init init_common(struct tsens_priv *priv)
743 {
744 void __iomem *tm_base, *srot_base;
745 struct device *dev = priv->dev;
746 u32 ver_minor;
747 struct resource *res;
748 u32 enabled;
749 int ret, i, j;
750 struct platform_device *op = of_find_device_by_node(priv->dev->of_node);
751
752 if (!op)
753 return -EINVAL;
754
755 if (op->num_resources > 1) {
756 /* DT with separate SROT and TM address space */
757 priv->tm_offset = 0;
758 res = platform_get_resource(op, IORESOURCE_MEM, 1);
759 srot_base = devm_ioremap_resource(dev, res);
760 if (IS_ERR(srot_base)) {
761 ret = PTR_ERR(srot_base);
762 goto err_put_device;
763 }
764
765 priv->srot_map = devm_regmap_init_mmio(dev, srot_base,
766 &tsens_srot_config);
767 if (IS_ERR(priv->srot_map)) {
768 ret = PTR_ERR(priv->srot_map);
769 goto err_put_device;
770 }
771 } else {
772 /* old DTs where SROT and TM were in a contiguous 2K block */
773 priv->tm_offset = 0x1000;
774 }
775
776 if (tsens_version(priv) >= VER_0_1) {
777 res = platform_get_resource(op, IORESOURCE_MEM, 0);
778 tm_base = devm_ioremap_resource(dev, res);
779 if (IS_ERR(tm_base)) {
780 ret = PTR_ERR(tm_base);
781 goto err_put_device;
782 }
783
784 priv->tm_map = devm_regmap_init_mmio(dev, tm_base, &tsens_config);
785 } else { /* VER_0 share the same gcc regs using a syscon */
786 struct device *parent = priv->dev->parent;
787
788 if (parent)
789 priv->tm_map = syscon_node_to_regmap(parent->of_node);
790 }
791
792 if (IS_ERR_OR_NULL(priv->tm_map)) {
793 if (!priv->tm_map)
794 ret = -ENODEV;
795 else
796 ret = PTR_ERR(priv->tm_map);
797 goto err_put_device;
798 }
799
800 /* VER_0 have only tm_map */
801 if (!priv->srot_map)
802 priv->srot_map = priv->tm_map;
803
804 if (tsens_version(priv) > VER_0_1) {
805 for (i = VER_MAJOR; i <= VER_STEP; i++) {
806 priv->rf[i] = devm_regmap_field_alloc(dev, priv->srot_map,
807 priv->fields[i]);
808 if (IS_ERR(priv->rf[i])) {
809 ret = PTR_ERR(priv->rf[i]);
810 goto err_put_device;
811 }
812 }
813 ret = regmap_field_read(priv->rf[VER_MINOR], &ver_minor);
814 if (ret)
815 goto err_put_device;
816 }
817
818 priv->rf[TSENS_EN] = devm_regmap_field_alloc(dev, priv->srot_map,
819 priv->fields[TSENS_EN]);
820 if (IS_ERR(priv->rf[TSENS_EN])) {
821 ret = PTR_ERR(priv->rf[TSENS_EN]);
822 goto err_put_device;
823 }
824 /* in VER_0 TSENS need to be explicitly enabled */
825 if (tsens_version(priv) == VER_0)
826 regmap_field_write(priv->rf[TSENS_EN], 1);
827
828 ret = regmap_field_read(priv->rf[TSENS_EN], &enabled);
829 if (ret)
830 goto err_put_device;
831 if (!enabled) {
832 dev_err(dev, "%s: device not enabled\n", __func__);
833 ret = -ENODEV;
834 goto err_put_device;
835 }
836
837 priv->rf[SENSOR_EN] = devm_regmap_field_alloc(dev, priv->srot_map,
838 priv->fields[SENSOR_EN]);
839 if (IS_ERR(priv->rf[SENSOR_EN])) {
840 ret = PTR_ERR(priv->rf[SENSOR_EN]);
841 goto err_put_device;
842 }
843 priv->rf[INT_EN] = devm_regmap_field_alloc(dev, priv->tm_map,
844 priv->fields[INT_EN]);
845 if (IS_ERR(priv->rf[INT_EN])) {
846 ret = PTR_ERR(priv->rf[INT_EN]);
847 goto err_put_device;
848 }
849
850 priv->rf[TSENS_SW_RST] =
851 devm_regmap_field_alloc(dev, priv->srot_map, priv->fields[TSENS_SW_RST]);
852 if (IS_ERR(priv->rf[TSENS_SW_RST])) {
853 ret = PTR_ERR(priv->rf[TSENS_SW_RST]);
854 goto err_put_device;
855 }
856
857 priv->rf[TRDY] = devm_regmap_field_alloc(dev, priv->tm_map, priv->fields[TRDY]);
858 if (IS_ERR(priv->rf[TRDY])) {
859 ret = PTR_ERR(priv->rf[TRDY]);
860 goto err_put_device;
861 }
862
863 /* This loop might need changes if enum regfield_ids is reordered */
864 for (j = LAST_TEMP_0; j <= UP_THRESH_15; j += 16) {
865 for (i = 0; i < priv->feat->max_sensors; i++) {
866 int idx = j + i;
867
868 priv->rf[idx] = devm_regmap_field_alloc(dev,
869 priv->tm_map,
870 priv->fields[idx]);
871 if (IS_ERR(priv->rf[idx])) {
872 ret = PTR_ERR(priv->rf[idx]);
873 goto err_put_device;
874 }
875 }
876 }
877
878 if (priv->feat->crit_int || tsens_version(priv) < VER_0_1) {
879 /* Loop might need changes if enum regfield_ids is reordered */
880 for (j = CRITICAL_STATUS_0; j <= CRIT_THRESH_15; j += 16) {
881 for (i = 0; i < priv->feat->max_sensors; i++) {
882 int idx = j + i;
883
884 priv->rf[idx] =
885 devm_regmap_field_alloc(dev,
886 priv->tm_map,
887 priv->fields[idx]);
888 if (IS_ERR(priv->rf[idx])) {
889 ret = PTR_ERR(priv->rf[idx]);
890 goto err_put_device;
891 }
892 }
893 }
894 }
895
896 if (tsens_version(priv) > VER_1_X && ver_minor > 2) {
897 /* Watchdog is present only on v2.3+ */
898 priv->feat->has_watchdog = 1;
899 for (i = WDOG_BARK_STATUS; i <= CC_MON_MASK; i++) {
900 priv->rf[i] = devm_regmap_field_alloc(dev, priv->tm_map,
901 priv->fields[i]);
902 if (IS_ERR(priv->rf[i])) {
903 ret = PTR_ERR(priv->rf[i]);
904 goto err_put_device;
905 }
906 }
907 /*
908 * Watchdog is already enabled, unmask the bark.
909 * Disable cycle completion monitoring
910 */
911 regmap_field_write(priv->rf[WDOG_BARK_MASK], 0);
912 regmap_field_write(priv->rf[CC_MON_MASK], 1);
913 }
914
915 spin_lock_init(&priv->ul_lock);
916
917 /* VER_0 interrupt doesn't need to be enabled */
918 if (tsens_version(priv) >= VER_0_1)
919 tsens_enable_irq(priv);
920
921 tsens_debug_init(op);
922
923 err_put_device:
924 put_device(&op->dev);
925 return ret;
926 }
927
tsens_get_temp(void * data,int * temp)928 static int tsens_get_temp(void *data, int *temp)
929 {
930 struct tsens_sensor *s = data;
931 struct tsens_priv *priv = s->priv;
932
933 return priv->ops->get_temp(s, temp);
934 }
935
tsens_get_trend(void * data,int trip,enum thermal_trend * trend)936 static int tsens_get_trend(void *data, int trip, enum thermal_trend *trend)
937 {
938 struct tsens_sensor *s = data;
939 struct tsens_priv *priv = s->priv;
940
941 if (priv->ops->get_trend)
942 return priv->ops->get_trend(s, trend);
943
944 return -ENOTSUPP;
945 }
946
tsens_suspend(struct device * dev)947 static int __maybe_unused tsens_suspend(struct device *dev)
948 {
949 struct tsens_priv *priv = dev_get_drvdata(dev);
950
951 if (priv->ops && priv->ops->suspend)
952 return priv->ops->suspend(priv);
953
954 return 0;
955 }
956
tsens_resume(struct device * dev)957 static int __maybe_unused tsens_resume(struct device *dev)
958 {
959 struct tsens_priv *priv = dev_get_drvdata(dev);
960
961 if (priv->ops && priv->ops->resume)
962 return priv->ops->resume(priv);
963
964 return 0;
965 }
966
967 static SIMPLE_DEV_PM_OPS(tsens_pm_ops, tsens_suspend, tsens_resume);
968
969 static const struct of_device_id tsens_table[] = {
970 {
971 .compatible = "qcom,ipq8064-tsens",
972 .data = &data_8960,
973 }, {
974 .compatible = "qcom,mdm9607-tsens",
975 .data = &data_9607,
976 }, {
977 .compatible = "qcom,msm8916-tsens",
978 .data = &data_8916,
979 }, {
980 .compatible = "qcom,msm8939-tsens",
981 .data = &data_8939,
982 }, {
983 .compatible = "qcom,msm8974-tsens",
984 .data = &data_8974,
985 }, {
986 .compatible = "qcom,msm8976-tsens",
987 .data = &data_8976,
988 }, {
989 .compatible = "qcom,msm8996-tsens",
990 .data = &data_8996,
991 }, {
992 .compatible = "qcom,tsens-v1",
993 .data = &data_tsens_v1,
994 }, {
995 .compatible = "qcom,tsens-v2",
996 .data = &data_tsens_v2,
997 },
998 {}
999 };
1000 MODULE_DEVICE_TABLE(of, tsens_table);
1001
1002 static const struct thermal_zone_of_device_ops tsens_of_ops = {
1003 .get_temp = tsens_get_temp,
1004 .get_trend = tsens_get_trend,
1005 .set_trips = tsens_set_trips,
1006 };
1007
tsens_register_irq(struct tsens_priv * priv,char * irqname,irq_handler_t thread_fn)1008 static int tsens_register_irq(struct tsens_priv *priv, char *irqname,
1009 irq_handler_t thread_fn)
1010 {
1011 struct platform_device *pdev;
1012 int ret, irq;
1013
1014 pdev = of_find_device_by_node(priv->dev->of_node);
1015 if (!pdev)
1016 return -ENODEV;
1017
1018 irq = platform_get_irq_byname(pdev, irqname);
1019 if (irq < 0) {
1020 ret = irq;
1021 /* For old DTs with no IRQ defined */
1022 if (irq == -ENXIO)
1023 ret = 0;
1024 } else {
1025 /* VER_0 interrupt is TRIGGER_RISING, VER_0_1 and up is ONESHOT */
1026 if (tsens_version(priv) == VER_0)
1027 ret = devm_request_threaded_irq(&pdev->dev, irq,
1028 thread_fn, NULL,
1029 IRQF_TRIGGER_RISING,
1030 dev_name(&pdev->dev),
1031 priv);
1032 else
1033 ret = devm_request_threaded_irq(&pdev->dev, irq, NULL,
1034 thread_fn, IRQF_ONESHOT,
1035 dev_name(&pdev->dev),
1036 priv);
1037
1038 if (ret)
1039 dev_err(&pdev->dev, "%s: failed to get irq\n",
1040 __func__);
1041 else
1042 enable_irq_wake(irq);
1043 }
1044
1045 put_device(&pdev->dev);
1046 return ret;
1047 }
1048
tsens_register(struct tsens_priv * priv)1049 static int tsens_register(struct tsens_priv *priv)
1050 {
1051 int i, ret;
1052 struct thermal_zone_device *tzd;
1053
1054 for (i = 0; i < priv->num_sensors; i++) {
1055 priv->sensor[i].priv = priv;
1056 tzd = devm_thermal_zone_of_sensor_register(priv->dev, priv->sensor[i].hw_id,
1057 &priv->sensor[i],
1058 &tsens_of_ops);
1059 if (IS_ERR(tzd))
1060 continue;
1061 priv->sensor[i].tzd = tzd;
1062 if (priv->ops->enable)
1063 priv->ops->enable(priv, i);
1064 }
1065
1066 /* VER_0 require to set MIN and MAX THRESH
1067 * These 2 regs are set using the:
1068 * - CRIT_THRESH_0 for MAX THRESH hardcoded to 120°C
1069 * - CRIT_THRESH_1 for MIN THRESH hardcoded to 0°C
1070 */
1071 if (tsens_version(priv) < VER_0_1) {
1072 regmap_field_write(priv->rf[CRIT_THRESH_0],
1073 tsens_mC_to_hw(priv->sensor, 120000));
1074
1075 regmap_field_write(priv->rf[CRIT_THRESH_1],
1076 tsens_mC_to_hw(priv->sensor, 0));
1077 }
1078
1079 ret = tsens_register_irq(priv, "uplow", tsens_irq_thread);
1080 if (ret < 0)
1081 return ret;
1082
1083 if (priv->feat->crit_int)
1084 ret = tsens_register_irq(priv, "critical",
1085 tsens_critical_irq_thread);
1086
1087 return ret;
1088 }
1089
tsens_probe(struct platform_device * pdev)1090 static int tsens_probe(struct platform_device *pdev)
1091 {
1092 int ret, i;
1093 struct device *dev;
1094 struct device_node *np;
1095 struct tsens_priv *priv;
1096 const struct tsens_plat_data *data;
1097 const struct of_device_id *id;
1098 u32 num_sensors;
1099
1100 if (pdev->dev.of_node)
1101 dev = &pdev->dev;
1102 else
1103 dev = pdev->dev.parent;
1104
1105 np = dev->of_node;
1106
1107 id = of_match_node(tsens_table, np);
1108 if (id)
1109 data = id->data;
1110 else
1111 data = &data_8960;
1112
1113 num_sensors = data->num_sensors;
1114
1115 if (np)
1116 of_property_read_u32(np, "#qcom,sensors", &num_sensors);
1117
1118 if (num_sensors <= 0) {
1119 dev_err(dev, "%s: invalid number of sensors\n", __func__);
1120 return -EINVAL;
1121 }
1122
1123 priv = devm_kzalloc(dev,
1124 struct_size(priv, sensor, num_sensors),
1125 GFP_KERNEL);
1126 if (!priv)
1127 return -ENOMEM;
1128
1129 priv->dev = dev;
1130 priv->num_sensors = num_sensors;
1131 priv->ops = data->ops;
1132 for (i = 0; i < priv->num_sensors; i++) {
1133 if (data->hw_ids)
1134 priv->sensor[i].hw_id = data->hw_ids[i];
1135 else
1136 priv->sensor[i].hw_id = i;
1137 }
1138 priv->feat = data->feat;
1139 priv->fields = data->fields;
1140
1141 platform_set_drvdata(pdev, priv);
1142
1143 if (!priv->ops || !priv->ops->init || !priv->ops->get_temp)
1144 return -EINVAL;
1145
1146 ret = priv->ops->init(priv);
1147 if (ret < 0) {
1148 dev_err(dev, "%s: init failed\n", __func__);
1149 return ret;
1150 }
1151
1152 if (priv->ops->calibrate) {
1153 ret = priv->ops->calibrate(priv);
1154 if (ret < 0) {
1155 if (ret != -EPROBE_DEFER)
1156 dev_err(dev, "%s: calibration failed\n", __func__);
1157 return ret;
1158 }
1159 }
1160
1161 return tsens_register(priv);
1162 }
1163
tsens_remove(struct platform_device * pdev)1164 static int tsens_remove(struct platform_device *pdev)
1165 {
1166 struct tsens_priv *priv = platform_get_drvdata(pdev);
1167
1168 debugfs_remove_recursive(priv->debug_root);
1169 tsens_disable_irq(priv);
1170 if (priv->ops->disable)
1171 priv->ops->disable(priv);
1172
1173 return 0;
1174 }
1175
1176 static struct platform_driver tsens_driver = {
1177 .probe = tsens_probe,
1178 .remove = tsens_remove,
1179 .driver = {
1180 .name = "qcom-tsens",
1181 .pm = &tsens_pm_ops,
1182 .of_match_table = tsens_table,
1183 },
1184 };
1185 module_platform_driver(tsens_driver);
1186
1187 MODULE_LICENSE("GPL v2");
1188 MODULE_DESCRIPTION("QCOM Temperature Sensor driver");
1189 MODULE_ALIAS("platform:qcom-tsens");
1190