1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * adv7604 - Analog Devices ADV7604 video decoder driver
4   *
5   * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6   *
7   */
8  
9  /*
10   * References (c = chapter, p = page):
11   * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
12   *		Revision 2.5, June 2010
13   * REF_02 - Analog devices, Register map documentation, Documentation of
14   *		the register maps, Software manual, Rev. F, June 2010
15   * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
16   */
17  
18  #include <linux/delay.h>
19  #include <linux/gpio/consumer.h>
20  #include <linux/hdmi.h>
21  #include <linux/i2c.h>
22  #include <linux/kernel.h>
23  #include <linux/module.h>
24  #include <linux/of_graph.h>
25  #include <linux/slab.h>
26  #include <linux/v4l2-dv-timings.h>
27  #include <linux/videodev2.h>
28  #include <linux/workqueue.h>
29  #include <linux/regmap.h>
30  #include <linux/interrupt.h>
31  
32  #include <media/i2c/adv7604.h>
33  #include <media/cec.h>
34  #include <media/v4l2-ctrls.h>
35  #include <media/v4l2-device.h>
36  #include <media/v4l2-event.h>
37  #include <media/v4l2-dv-timings.h>
38  #include <media/v4l2-fwnode.h>
39  
40  static int debug;
41  module_param(debug, int, 0644);
42  MODULE_PARM_DESC(debug, "debug level (0-2)");
43  
44  MODULE_DESCRIPTION("Analog Devices ADV7604/10/11/12 video decoder driver");
45  MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
46  MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
47  MODULE_LICENSE("GPL");
48  
49  /* ADV7604 system clock frequency */
50  #define ADV76XX_FSC (28636360)
51  
52  #define ADV76XX_RGB_OUT					(1 << 1)
53  
54  #define ADV76XX_OP_FORMAT_SEL_8BIT			(0 << 0)
55  #define ADV7604_OP_FORMAT_SEL_10BIT			(1 << 0)
56  #define ADV76XX_OP_FORMAT_SEL_12BIT			(2 << 0)
57  
58  #define ADV76XX_OP_MODE_SEL_SDR_422			(0 << 5)
59  #define ADV7604_OP_MODE_SEL_DDR_422			(1 << 5)
60  #define ADV76XX_OP_MODE_SEL_SDR_444			(2 << 5)
61  #define ADV7604_OP_MODE_SEL_DDR_444			(3 << 5)
62  #define ADV76XX_OP_MODE_SEL_SDR_422_2X			(4 << 5)
63  #define ADV7604_OP_MODE_SEL_ADI_CM			(5 << 5)
64  
65  #define ADV76XX_OP_CH_SEL_GBR				(0 << 5)
66  #define ADV76XX_OP_CH_SEL_GRB				(1 << 5)
67  #define ADV76XX_OP_CH_SEL_BGR				(2 << 5)
68  #define ADV76XX_OP_CH_SEL_RGB				(3 << 5)
69  #define ADV76XX_OP_CH_SEL_BRG				(4 << 5)
70  #define ADV76XX_OP_CH_SEL_RBG				(5 << 5)
71  
72  #define ADV76XX_OP_SWAP_CB_CR				(1 << 0)
73  
74  #define ADV76XX_MAX_ADDRS (3)
75  
76  #define ADV76XX_MAX_EDID_BLOCKS 4
77  
78  enum adv76xx_type {
79  	ADV7604,
80  	ADV7611, // including ADV7610
81  	ADV7612,
82  };
83  
84  struct adv76xx_reg_seq {
85  	unsigned int reg;
86  	u8 val;
87  };
88  
89  struct adv76xx_format_info {
90  	u32 code;
91  	u8 op_ch_sel;
92  	bool rgb_out;
93  	bool swap_cb_cr;
94  	u8 op_format_sel;
95  };
96  
97  struct adv76xx_cfg_read_infoframe {
98  	const char *desc;
99  	u8 present_mask;
100  	u8 head_addr;
101  	u8 payload_addr;
102  };
103  
104  struct adv76xx_chip_info {
105  	enum adv76xx_type type;
106  
107  	bool has_afe;
108  	unsigned int max_port;
109  	unsigned int num_dv_ports;
110  
111  	unsigned int edid_enable_reg;
112  	unsigned int edid_status_reg;
113  	unsigned int edid_segment_reg;
114  	unsigned int edid_segment_mask;
115  	unsigned int edid_spa_loc_reg;
116  	unsigned int edid_spa_loc_msb_mask;
117  	unsigned int edid_spa_port_b_reg;
118  	unsigned int lcf_reg;
119  
120  	unsigned int cable_det_mask;
121  	unsigned int tdms_lock_mask;
122  	unsigned int fmt_change_digital_mask;
123  	unsigned int cp_csc;
124  
125  	unsigned int cec_irq_status;
126  	unsigned int cec_rx_enable;
127  	unsigned int cec_rx_enable_mask;
128  	bool cec_irq_swap;
129  
130  	const struct adv76xx_format_info *formats;
131  	unsigned int nformats;
132  
133  	void (*set_termination)(struct v4l2_subdev *sd, bool enable);
134  	void (*setup_irqs)(struct v4l2_subdev *sd);
135  	unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
136  	unsigned int (*read_cable_det)(struct v4l2_subdev *sd);
137  
138  	/* 0 = AFE, 1 = HDMI */
139  	const struct adv76xx_reg_seq *recommended_settings[2];
140  	unsigned int num_recommended_settings[2];
141  
142  	unsigned long page_mask;
143  
144  	/* Masks for timings */
145  	unsigned int linewidth_mask;
146  	unsigned int field0_height_mask;
147  	unsigned int field1_height_mask;
148  	unsigned int hfrontporch_mask;
149  	unsigned int hsync_mask;
150  	unsigned int hbackporch_mask;
151  	unsigned int field0_vfrontporch_mask;
152  	unsigned int field1_vfrontporch_mask;
153  	unsigned int field0_vsync_mask;
154  	unsigned int field1_vsync_mask;
155  	unsigned int field0_vbackporch_mask;
156  	unsigned int field1_vbackporch_mask;
157  };
158  
159  /*
160   **********************************************************************
161   *
162   *  Arrays with configuration parameters for the ADV7604
163   *
164   **********************************************************************
165   */
166  
167  struct adv76xx_state {
168  	const struct adv76xx_chip_info *info;
169  	struct adv76xx_platform_data pdata;
170  
171  	struct gpio_desc *hpd_gpio[4];
172  	struct gpio_desc *reset_gpio;
173  
174  	struct v4l2_subdev sd;
175  	struct media_pad pads[ADV76XX_PAD_MAX];
176  	unsigned int source_pad;
177  
178  	struct v4l2_ctrl_handler hdl;
179  
180  	enum adv76xx_pad selected_input;
181  
182  	struct v4l2_dv_timings timings;
183  	const struct adv76xx_format_info *format;
184  
185  	struct {
186  		u8 edid[ADV76XX_MAX_EDID_BLOCKS * 128];
187  		u32 present;
188  		unsigned blocks;
189  	} edid;
190  	u16 spa_port_a[2];
191  	struct v4l2_fract aspect_ratio;
192  	u32 rgb_quantization_range;
193  	struct delayed_work delayed_work_enable_hotplug;
194  	bool restart_stdi_once;
195  
196  	/* CEC */
197  	struct cec_adapter *cec_adap;
198  	u8   cec_addr[ADV76XX_MAX_ADDRS];
199  	u8   cec_valid_addrs;
200  	bool cec_enabled_adap;
201  
202  	/* i2c clients */
203  	struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
204  
205  	/* Regmaps */
206  	struct regmap *regmap[ADV76XX_PAGE_MAX];
207  
208  	/* controls */
209  	struct v4l2_ctrl *detect_tx_5v_ctrl;
210  	struct v4l2_ctrl *analog_sampling_phase_ctrl;
211  	struct v4l2_ctrl *free_run_color_manual_ctrl;
212  	struct v4l2_ctrl *free_run_color_ctrl;
213  	struct v4l2_ctrl *rgb_quantization_range_ctrl;
214  };
215  
adv76xx_has_afe(struct adv76xx_state * state)216  static bool adv76xx_has_afe(struct adv76xx_state *state)
217  {
218  	return state->info->has_afe;
219  }
220  
221  /* Unsupported timings. This device cannot support 720p30. */
222  static const struct v4l2_dv_timings adv76xx_timings_exceptions[] = {
223  	V4L2_DV_BT_CEA_1280X720P30,
224  	{ }
225  };
226  
adv76xx_check_dv_timings(const struct v4l2_dv_timings * t,void * hdl)227  static bool adv76xx_check_dv_timings(const struct v4l2_dv_timings *t, void *hdl)
228  {
229  	int i;
230  
231  	for (i = 0; adv76xx_timings_exceptions[i].bt.width; i++)
232  		if (v4l2_match_dv_timings(t, adv76xx_timings_exceptions + i, 0, false))
233  			return false;
234  	return true;
235  }
236  
237  struct adv76xx_video_standards {
238  	struct v4l2_dv_timings timings;
239  	u8 vid_std;
240  	u8 v_freq;
241  };
242  
243  /* sorted by number of lines */
244  static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
245  	/* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
246  	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
247  	{ V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
248  	{ V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
249  	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
250  	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
251  	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
252  	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
253  	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
254  	/* TODO add 1920x1080P60_RB (CVT timing) */
255  	{ },
256  };
257  
258  /* sorted by number of lines */
259  static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
260  	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
261  	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
262  	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
263  	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
264  	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
265  	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
266  	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
267  	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
268  	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
269  	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
270  	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
271  	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
272  	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
273  	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
274  	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
275  	{ V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
276  	{ V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
277  	{ V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
278  	{ V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
279  	{ V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
280  	/* TODO add 1600X1200P60_RB (not a DMT timing) */
281  	{ V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
282  	{ V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
283  	{ },
284  };
285  
286  /* sorted by number of lines */
287  static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
288  	{ V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
289  	{ V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
290  	{ V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
291  	{ V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
292  	{ V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
293  	{ V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
294  	{ V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
295  	{ V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
296  	{ V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
297  	{ },
298  };
299  
300  /* sorted by number of lines */
301  static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
302  	{ V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
303  	{ V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
304  	{ V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
305  	{ V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
306  	{ V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
307  	{ V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
308  	{ V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
309  	{ V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
310  	{ V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
311  	{ V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
312  	{ V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
313  	{ V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
314  	{ V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
315  	{ V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
316  	{ V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
317  	{ },
318  };
319  
320  static const struct v4l2_event adv76xx_ev_fmt = {
321  	.type = V4L2_EVENT_SOURCE_CHANGE,
322  	.u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
323  };
324  
325  /* ----------------------------------------------------------------------- */
326  
to_state(struct v4l2_subdev * sd)327  static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
328  {
329  	return container_of(sd, struct adv76xx_state, sd);
330  }
331  
htotal(const struct v4l2_bt_timings * t)332  static inline unsigned htotal(const struct v4l2_bt_timings *t)
333  {
334  	return V4L2_DV_BT_FRAME_WIDTH(t);
335  }
336  
vtotal(const struct v4l2_bt_timings * t)337  static inline unsigned vtotal(const struct v4l2_bt_timings *t)
338  {
339  	return V4L2_DV_BT_FRAME_HEIGHT(t);
340  }
341  
342  /* ----------------------------------------------------------------------- */
343  
adv76xx_read_check(struct adv76xx_state * state,int client_page,u8 reg)344  static int adv76xx_read_check(struct adv76xx_state *state,
345  			     int client_page, u8 reg)
346  {
347  	struct i2c_client *client = state->i2c_clients[client_page];
348  	int err;
349  	unsigned int val;
350  
351  	err = regmap_read(state->regmap[client_page], reg, &val);
352  
353  	if (err) {
354  		v4l_err(client, "error reading %02x, %02x\n",
355  				client->addr, reg);
356  		return err;
357  	}
358  	return val;
359  }
360  
361  /* adv76xx_write_block(): Write raw data with a maximum of I2C_SMBUS_BLOCK_MAX
362   * size to one or more registers.
363   *
364   * A value of zero will be returned on success, a negative errno will
365   * be returned in error cases.
366   */
adv76xx_write_block(struct adv76xx_state * state,int client_page,unsigned int init_reg,const void * val,size_t val_len)367  static int adv76xx_write_block(struct adv76xx_state *state, int client_page,
368  			      unsigned int init_reg, const void *val,
369  			      size_t val_len)
370  {
371  	struct regmap *regmap = state->regmap[client_page];
372  
373  	if (val_len > I2C_SMBUS_BLOCK_MAX)
374  		val_len = I2C_SMBUS_BLOCK_MAX;
375  
376  	return regmap_raw_write(regmap, init_reg, val, val_len);
377  }
378  
379  /* ----------------------------------------------------------------------- */
380  
io_read(struct v4l2_subdev * sd,u8 reg)381  static inline int io_read(struct v4l2_subdev *sd, u8 reg)
382  {
383  	struct adv76xx_state *state = to_state(sd);
384  
385  	return adv76xx_read_check(state, ADV76XX_PAGE_IO, reg);
386  }
387  
io_write(struct v4l2_subdev * sd,u8 reg,u8 val)388  static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
389  {
390  	struct adv76xx_state *state = to_state(sd);
391  
392  	return regmap_write(state->regmap[ADV76XX_PAGE_IO], reg, val);
393  }
394  
io_write_clr_set(struct v4l2_subdev * sd,u8 reg,u8 mask,u8 val)395  static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
396  				   u8 val)
397  {
398  	return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
399  }
400  
avlink_read(struct v4l2_subdev * sd,u8 reg)401  static inline int __always_unused avlink_read(struct v4l2_subdev *sd, u8 reg)
402  {
403  	struct adv76xx_state *state = to_state(sd);
404  
405  	return adv76xx_read_check(state, ADV7604_PAGE_AVLINK, reg);
406  }
407  
avlink_write(struct v4l2_subdev * sd,u8 reg,u8 val)408  static inline int __always_unused avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
409  {
410  	struct adv76xx_state *state = to_state(sd);
411  
412  	return regmap_write(state->regmap[ADV7604_PAGE_AVLINK], reg, val);
413  }
414  
cec_read(struct v4l2_subdev * sd,u8 reg)415  static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
416  {
417  	struct adv76xx_state *state = to_state(sd);
418  
419  	return adv76xx_read_check(state, ADV76XX_PAGE_CEC, reg);
420  }
421  
cec_write(struct v4l2_subdev * sd,u8 reg,u8 val)422  static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
423  {
424  	struct adv76xx_state *state = to_state(sd);
425  
426  	return regmap_write(state->regmap[ADV76XX_PAGE_CEC], reg, val);
427  }
428  
cec_write_clr_set(struct v4l2_subdev * sd,u8 reg,u8 mask,u8 val)429  static inline int cec_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask,
430  				   u8 val)
431  {
432  	return cec_write(sd, reg, (cec_read(sd, reg) & ~mask) | val);
433  }
434  
infoframe_read(struct v4l2_subdev * sd,u8 reg)435  static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
436  {
437  	struct adv76xx_state *state = to_state(sd);
438  
439  	return adv76xx_read_check(state, ADV76XX_PAGE_INFOFRAME, reg);
440  }
441  
infoframe_write(struct v4l2_subdev * sd,u8 reg,u8 val)442  static inline int __always_unused infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
443  {
444  	struct adv76xx_state *state = to_state(sd);
445  
446  	return regmap_write(state->regmap[ADV76XX_PAGE_INFOFRAME], reg, val);
447  }
448  
afe_read(struct v4l2_subdev * sd,u8 reg)449  static inline int __always_unused afe_read(struct v4l2_subdev *sd, u8 reg)
450  {
451  	struct adv76xx_state *state = to_state(sd);
452  
453  	return adv76xx_read_check(state, ADV76XX_PAGE_AFE, reg);
454  }
455  
afe_write(struct v4l2_subdev * sd,u8 reg,u8 val)456  static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
457  {
458  	struct adv76xx_state *state = to_state(sd);
459  
460  	return regmap_write(state->regmap[ADV76XX_PAGE_AFE], reg, val);
461  }
462  
rep_read(struct v4l2_subdev * sd,u8 reg)463  static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
464  {
465  	struct adv76xx_state *state = to_state(sd);
466  
467  	return adv76xx_read_check(state, ADV76XX_PAGE_REP, reg);
468  }
469  
rep_write(struct v4l2_subdev * sd,u8 reg,u8 val)470  static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
471  {
472  	struct adv76xx_state *state = to_state(sd);
473  
474  	return regmap_write(state->regmap[ADV76XX_PAGE_REP], reg, val);
475  }
476  
rep_write_clr_set(struct v4l2_subdev * sd,u8 reg,u8 mask,u8 val)477  static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
478  {
479  	return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
480  }
481  
edid_read(struct v4l2_subdev * sd,u8 reg)482  static inline int __always_unused edid_read(struct v4l2_subdev *sd, u8 reg)
483  {
484  	struct adv76xx_state *state = to_state(sd);
485  
486  	return adv76xx_read_check(state, ADV76XX_PAGE_EDID, reg);
487  }
488  
edid_write(struct v4l2_subdev * sd,u8 reg,u8 val)489  static inline int __always_unused edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
490  {
491  	struct adv76xx_state *state = to_state(sd);
492  
493  	return regmap_write(state->regmap[ADV76XX_PAGE_EDID], reg, val);
494  }
495  
edid_write_block(struct v4l2_subdev * sd,unsigned int total_len,const u8 * val)496  static inline int edid_write_block(struct v4l2_subdev *sd,
497  					unsigned int total_len, const u8 *val)
498  {
499  	struct adv76xx_state *state = to_state(sd);
500  	int err = 0;
501  	int i = 0;
502  	int len = 0;
503  
504  	v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n",
505  				__func__, total_len);
506  
507  	while (!err && i < total_len) {
508  		len = (total_len - i) > I2C_SMBUS_BLOCK_MAX ?
509  				I2C_SMBUS_BLOCK_MAX :
510  				(total_len - i);
511  
512  		err = adv76xx_write_block(state, ADV76XX_PAGE_EDID,
513  				i, val + i, len);
514  		i += len;
515  	}
516  
517  	return err;
518  }
519  
adv76xx_set_hpd(struct adv76xx_state * state,unsigned int hpd)520  static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
521  {
522  	const struct adv76xx_chip_info *info = state->info;
523  	unsigned int i;
524  
525  	if (info->type == ADV7604) {
526  		for (i = 0; i < state->info->num_dv_ports; ++i)
527  			gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));
528  	} else {
529  		for (i = 0; i < state->info->num_dv_ports; ++i)
530  			io_write_clr_set(&state->sd, 0x20, 0x80 >> i,
531  					 (!!(hpd & BIT(i))) << (7 - i));
532  	}
533  
534  	v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
535  }
536  
adv76xx_delayed_work_enable_hotplug(struct work_struct * work)537  static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
538  {
539  	struct delayed_work *dwork = to_delayed_work(work);
540  	struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
541  						delayed_work_enable_hotplug);
542  	struct v4l2_subdev *sd = &state->sd;
543  
544  	v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
545  
546  	adv76xx_set_hpd(state, state->edid.present);
547  }
548  
hdmi_read(struct v4l2_subdev * sd,u8 reg)549  static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
550  {
551  	struct adv76xx_state *state = to_state(sd);
552  
553  	return adv76xx_read_check(state, ADV76XX_PAGE_HDMI, reg);
554  }
555  
hdmi_read16(struct v4l2_subdev * sd,u8 reg,u16 mask)556  static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
557  {
558  	return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
559  }
560  
hdmi_write(struct v4l2_subdev * sd,u8 reg,u8 val)561  static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
562  {
563  	struct adv76xx_state *state = to_state(sd);
564  
565  	return regmap_write(state->regmap[ADV76XX_PAGE_HDMI], reg, val);
566  }
567  
hdmi_write_clr_set(struct v4l2_subdev * sd,u8 reg,u8 mask,u8 val)568  static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
569  {
570  	return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
571  }
572  
test_write(struct v4l2_subdev * sd,u8 reg,u8 val)573  static inline int __always_unused test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
574  {
575  	struct adv76xx_state *state = to_state(sd);
576  
577  	return regmap_write(state->regmap[ADV76XX_PAGE_TEST], reg, val);
578  }
579  
cp_read(struct v4l2_subdev * sd,u8 reg)580  static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
581  {
582  	struct adv76xx_state *state = to_state(sd);
583  
584  	return adv76xx_read_check(state, ADV76XX_PAGE_CP, reg);
585  }
586  
cp_read16(struct v4l2_subdev * sd,u8 reg,u16 mask)587  static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
588  {
589  	return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
590  }
591  
cp_write(struct v4l2_subdev * sd,u8 reg,u8 val)592  static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
593  {
594  	struct adv76xx_state *state = to_state(sd);
595  
596  	return regmap_write(state->regmap[ADV76XX_PAGE_CP], reg, val);
597  }
598  
cp_write_clr_set(struct v4l2_subdev * sd,u8 reg,u8 mask,u8 val)599  static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
600  {
601  	return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
602  }
603  
vdp_read(struct v4l2_subdev * sd,u8 reg)604  static inline int __always_unused vdp_read(struct v4l2_subdev *sd, u8 reg)
605  {
606  	struct adv76xx_state *state = to_state(sd);
607  
608  	return adv76xx_read_check(state, ADV7604_PAGE_VDP, reg);
609  }
610  
vdp_write(struct v4l2_subdev * sd,u8 reg,u8 val)611  static inline int __always_unused vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
612  {
613  	struct adv76xx_state *state = to_state(sd);
614  
615  	return regmap_write(state->regmap[ADV7604_PAGE_VDP], reg, val);
616  }
617  
618  #define ADV76XX_REG(page, offset)	(((page) << 8) | (offset))
619  #define ADV76XX_REG_SEQ_TERM		0xffff
620  
621  #ifdef CONFIG_VIDEO_ADV_DEBUG
adv76xx_read_reg(struct v4l2_subdev * sd,unsigned int reg)622  static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
623  {
624  	struct adv76xx_state *state = to_state(sd);
625  	unsigned int page = reg >> 8;
626  	unsigned int val;
627  	int err;
628  
629  	if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
630  		return -EINVAL;
631  
632  	reg &= 0xff;
633  	err = regmap_read(state->regmap[page], reg, &val);
634  
635  	return err ? err : val;
636  }
637  #endif
638  
adv76xx_write_reg(struct v4l2_subdev * sd,unsigned int reg,u8 val)639  static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
640  {
641  	struct adv76xx_state *state = to_state(sd);
642  	unsigned int page = reg >> 8;
643  
644  	if (page >= ADV76XX_PAGE_MAX || !(BIT(page) & state->info->page_mask))
645  		return -EINVAL;
646  
647  	reg &= 0xff;
648  
649  	return regmap_write(state->regmap[page], reg, val);
650  }
651  
adv76xx_write_reg_seq(struct v4l2_subdev * sd,const struct adv76xx_reg_seq * reg_seq)652  static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
653  				  const struct adv76xx_reg_seq *reg_seq)
654  {
655  	unsigned int i;
656  
657  	for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
658  		adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
659  }
660  
661  /* -----------------------------------------------------------------------------
662   * Format helpers
663   */
664  
665  static const struct adv76xx_format_info adv7604_formats[] = {
666  	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
667  	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
668  	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
669  	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
670  	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
671  	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
672  	{ MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
673  	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
674  	{ MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
675  	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
676  	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
677  	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
678  	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
679  	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
680  	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
681  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
682  	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
683  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
684  	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
685  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
686  	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
687  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
688  	{ MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
689  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
690  	{ MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
691  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
692  	{ MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
693  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
694  	{ MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
695  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
696  	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
697  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
698  	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
699  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
700  	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
701  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
702  	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
703  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
704  };
705  
706  static const struct adv76xx_format_info adv7611_formats[] = {
707  	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
708  	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
709  	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
710  	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
711  	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
712  	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
713  	{ MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
714  	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
715  	{ MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
716  	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
717  	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
718  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
719  	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
720  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
721  	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
722  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
723  	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
724  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
725  	{ MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
726  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
727  	{ MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
728  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
729  	{ MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
730  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
731  	{ MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
732  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
733  };
734  
735  static const struct adv76xx_format_info adv7612_formats[] = {
736  	{ MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
737  	  ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
738  	{ MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
739  	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
740  	{ MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
741  	  ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
742  	{ MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
743  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
744  	{ MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
745  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
746  	{ MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
747  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
748  	{ MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
749  	  ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
750  };
751  
752  static const struct adv76xx_format_info *
adv76xx_format_info(struct adv76xx_state * state,u32 code)753  adv76xx_format_info(struct adv76xx_state *state, u32 code)
754  {
755  	unsigned int i;
756  
757  	for (i = 0; i < state->info->nformats; ++i) {
758  		if (state->info->formats[i].code == code)
759  			return &state->info->formats[i];
760  	}
761  
762  	return NULL;
763  }
764  
765  /* ----------------------------------------------------------------------- */
766  
is_analog_input(struct v4l2_subdev * sd)767  static inline bool is_analog_input(struct v4l2_subdev *sd)
768  {
769  	struct adv76xx_state *state = to_state(sd);
770  
771  	return state->selected_input == ADV7604_PAD_VGA_RGB ||
772  	       state->selected_input == ADV7604_PAD_VGA_COMP;
773  }
774  
is_digital_input(struct v4l2_subdev * sd)775  static inline bool is_digital_input(struct v4l2_subdev *sd)
776  {
777  	struct adv76xx_state *state = to_state(sd);
778  
779  	return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
780  	       state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
781  	       state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
782  	       state->selected_input == ADV7604_PAD_HDMI_PORT_D;
783  }
784  
785  static const struct v4l2_dv_timings_cap adv7604_timings_cap_analog = {
786  	.type = V4L2_DV_BT_656_1120,
787  	/* keep this initialization for compatibility with GCC < 4.4.6 */
788  	.reserved = { 0 },
789  	V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 170000000,
790  		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
791  			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
792  		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
793  			V4L2_DV_BT_CAP_CUSTOM)
794  };
795  
796  static const struct v4l2_dv_timings_cap adv76xx_timings_cap_digital = {
797  	.type = V4L2_DV_BT_656_1120,
798  	/* keep this initialization for compatibility with GCC < 4.4.6 */
799  	.reserved = { 0 },
800  	V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 25000000, 225000000,
801  		V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
802  			V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT,
803  		V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING |
804  			V4L2_DV_BT_CAP_CUSTOM)
805  };
806  
807  /*
808   * Return the DV timings capabilities for the requested sink pad. As a special
809   * case, pad value -1 returns the capabilities for the currently selected input.
810   */
811  static const struct v4l2_dv_timings_cap *
adv76xx_get_dv_timings_cap(struct v4l2_subdev * sd,int pad)812  adv76xx_get_dv_timings_cap(struct v4l2_subdev *sd, int pad)
813  {
814  	if (pad == -1) {
815  		struct adv76xx_state *state = to_state(sd);
816  
817  		pad = state->selected_input;
818  	}
819  
820  	switch (pad) {
821  	case ADV76XX_PAD_HDMI_PORT_A:
822  	case ADV7604_PAD_HDMI_PORT_B:
823  	case ADV7604_PAD_HDMI_PORT_C:
824  	case ADV7604_PAD_HDMI_PORT_D:
825  		return &adv76xx_timings_cap_digital;
826  
827  	case ADV7604_PAD_VGA_RGB:
828  	case ADV7604_PAD_VGA_COMP:
829  	default:
830  		return &adv7604_timings_cap_analog;
831  	}
832  }
833  
834  
835  /* ----------------------------------------------------------------------- */
836  
837  #ifdef CONFIG_VIDEO_ADV_DEBUG
adv76xx_inv_register(struct v4l2_subdev * sd)838  static void adv76xx_inv_register(struct v4l2_subdev *sd)
839  {
840  	v4l2_info(sd, "0x000-0x0ff: IO Map\n");
841  	v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
842  	v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
843  	v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
844  	v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
845  	v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
846  	v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
847  	v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
848  	v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
849  	v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
850  	v4l2_info(sd, "0xa00-0xaff: Test Map\n");
851  	v4l2_info(sd, "0xb00-0xbff: CP Map\n");
852  	v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
853  }
854  
adv76xx_g_register(struct v4l2_subdev * sd,struct v4l2_dbg_register * reg)855  static int adv76xx_g_register(struct v4l2_subdev *sd,
856  					struct v4l2_dbg_register *reg)
857  {
858  	int ret;
859  
860  	ret = adv76xx_read_reg(sd, reg->reg);
861  	if (ret < 0) {
862  		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
863  		adv76xx_inv_register(sd);
864  		return ret;
865  	}
866  
867  	reg->size = 1;
868  	reg->val = ret;
869  
870  	return 0;
871  }
872  
adv76xx_s_register(struct v4l2_subdev * sd,const struct v4l2_dbg_register * reg)873  static int adv76xx_s_register(struct v4l2_subdev *sd,
874  					const struct v4l2_dbg_register *reg)
875  {
876  	int ret;
877  
878  	ret = adv76xx_write_reg(sd, reg->reg, reg->val);
879  	if (ret < 0) {
880  		v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
881  		adv76xx_inv_register(sd);
882  		return ret;
883  	}
884  
885  	return 0;
886  }
887  #endif
888  
adv7604_read_cable_det(struct v4l2_subdev * sd)889  static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
890  {
891  	u8 value = io_read(sd, 0x6f);
892  
893  	return ((value & 0x10) >> 4)
894  	     | ((value & 0x08) >> 2)
895  	     | ((value & 0x04) << 0)
896  	     | ((value & 0x02) << 2);
897  }
898  
adv7611_read_cable_det(struct v4l2_subdev * sd)899  static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
900  {
901  	u8 value = io_read(sd, 0x6f);
902  
903  	return value & 1;
904  }
905  
adv7612_read_cable_det(struct v4l2_subdev * sd)906  static unsigned int adv7612_read_cable_det(struct v4l2_subdev *sd)
907  {
908  	/*  Reads CABLE_DET_A_RAW. For input B support, need to
909  	 *  account for bit 7 [MSB] of 0x6a (ie. CABLE_DET_B_RAW)
910  	 */
911  	u8 value = io_read(sd, 0x6f);
912  
913  	return value & 1;
914  }
915  
adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev * sd)916  static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
917  {
918  	struct adv76xx_state *state = to_state(sd);
919  	const struct adv76xx_chip_info *info = state->info;
920  	u16 cable_det = info->read_cable_det(sd);
921  
922  	return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, cable_det);
923  }
924  
find_and_set_predefined_video_timings(struct v4l2_subdev * sd,u8 prim_mode,const struct adv76xx_video_standards * predef_vid_timings,const struct v4l2_dv_timings * timings)925  static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
926  		u8 prim_mode,
927  		const struct adv76xx_video_standards *predef_vid_timings,
928  		const struct v4l2_dv_timings *timings)
929  {
930  	int i;
931  
932  	for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
933  		if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
934  				is_digital_input(sd) ? 250000 : 1000000, false))
935  			continue;
936  		io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
937  		io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
938  				prim_mode); /* v_freq and prim mode */
939  		return 0;
940  	}
941  
942  	return -1;
943  }
944  
configure_predefined_video_timings(struct v4l2_subdev * sd,struct v4l2_dv_timings * timings)945  static int configure_predefined_video_timings(struct v4l2_subdev *sd,
946  		struct v4l2_dv_timings *timings)
947  {
948  	struct adv76xx_state *state = to_state(sd);
949  	int err;
950  
951  	v4l2_dbg(1, debug, sd, "%s", __func__);
952  
953  	if (adv76xx_has_afe(state)) {
954  		/* reset to default values */
955  		io_write(sd, 0x16, 0x43);
956  		io_write(sd, 0x17, 0x5a);
957  	}
958  	/* disable embedded syncs for auto graphics mode */
959  	cp_write_clr_set(sd, 0x81, 0x10, 0x00);
960  	cp_write(sd, 0x8f, 0x00);
961  	cp_write(sd, 0x90, 0x00);
962  	cp_write(sd, 0xa2, 0x00);
963  	cp_write(sd, 0xa3, 0x00);
964  	cp_write(sd, 0xa4, 0x00);
965  	cp_write(sd, 0xa5, 0x00);
966  	cp_write(sd, 0xa6, 0x00);
967  	cp_write(sd, 0xa7, 0x00);
968  	cp_write(sd, 0xab, 0x00);
969  	cp_write(sd, 0xac, 0x00);
970  
971  	if (is_analog_input(sd)) {
972  		err = find_and_set_predefined_video_timings(sd,
973  				0x01, adv7604_prim_mode_comp, timings);
974  		if (err)
975  			err = find_and_set_predefined_video_timings(sd,
976  					0x02, adv7604_prim_mode_gr, timings);
977  	} else if (is_digital_input(sd)) {
978  		err = find_and_set_predefined_video_timings(sd,
979  				0x05, adv76xx_prim_mode_hdmi_comp, timings);
980  		if (err)
981  			err = find_and_set_predefined_video_timings(sd,
982  					0x06, adv76xx_prim_mode_hdmi_gr, timings);
983  	} else {
984  		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
985  				__func__, state->selected_input);
986  		err = -1;
987  	}
988  
989  
990  	return err;
991  }
992  
configure_custom_video_timings(struct v4l2_subdev * sd,const struct v4l2_bt_timings * bt)993  static void configure_custom_video_timings(struct v4l2_subdev *sd,
994  		const struct v4l2_bt_timings *bt)
995  {
996  	struct adv76xx_state *state = to_state(sd);
997  	u32 width = htotal(bt);
998  	u32 height = vtotal(bt);
999  	u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
1000  	u16 cp_start_eav = width - bt->hfrontporch;
1001  	u16 cp_start_vbi = height - bt->vfrontporch;
1002  	u16 cp_end_vbi = bt->vsync + bt->vbackporch;
1003  	u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
1004  		((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
1005  	const u8 pll[2] = {
1006  		0xc0 | ((width >> 8) & 0x1f),
1007  		width & 0xff
1008  	};
1009  
1010  	v4l2_dbg(2, debug, sd, "%s\n", __func__);
1011  
1012  	if (is_analog_input(sd)) {
1013  		/* auto graphics */
1014  		io_write(sd, 0x00, 0x07); /* video std */
1015  		io_write(sd, 0x01, 0x02); /* prim mode */
1016  		/* enable embedded syncs for auto graphics mode */
1017  		cp_write_clr_set(sd, 0x81, 0x10, 0x10);
1018  
1019  		/* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
1020  		/* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
1021  		/* IO-map reg. 0x16 and 0x17 should be written in sequence */
1022  		if (regmap_raw_write(state->regmap[ADV76XX_PAGE_IO],
1023  					0x16, pll, 2))
1024  			v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
1025  
1026  		/* active video - horizontal timing */
1027  		cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
1028  		cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
1029  				   ((cp_start_eav >> 8) & 0x0f));
1030  		cp_write(sd, 0xa4, cp_start_eav & 0xff);
1031  
1032  		/* active video - vertical timing */
1033  		cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
1034  		cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
1035  				   ((cp_end_vbi >> 8) & 0xf));
1036  		cp_write(sd, 0xa7, cp_end_vbi & 0xff);
1037  	} else if (is_digital_input(sd)) {
1038  		/* set default prim_mode/vid_std for HDMI
1039  		   according to [REF_03, c. 4.2] */
1040  		io_write(sd, 0x00, 0x02); /* video std */
1041  		io_write(sd, 0x01, 0x06); /* prim mode */
1042  	} else {
1043  		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1044  				__func__, state->selected_input);
1045  	}
1046  
1047  	cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
1048  	cp_write(sd, 0x90, ch1_fr_ll & 0xff);
1049  	cp_write(sd, 0xab, (height >> 4) & 0xff);
1050  	cp_write(sd, 0xac, (height & 0x0f) << 4);
1051  }
1052  
adv76xx_set_offset(struct v4l2_subdev * sd,bool auto_offset,u16 offset_a,u16 offset_b,u16 offset_c)1053  static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1054  {
1055  	struct adv76xx_state *state = to_state(sd);
1056  	u8 offset_buf[4];
1057  
1058  	if (auto_offset) {
1059  		offset_a = 0x3ff;
1060  		offset_b = 0x3ff;
1061  		offset_c = 0x3ff;
1062  	}
1063  
1064  	v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
1065  			__func__, auto_offset ? "Auto" : "Manual",
1066  			offset_a, offset_b, offset_c);
1067  
1068  	offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
1069  	offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
1070  	offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
1071  	offset_buf[3] = offset_c & 0x0ff;
1072  
1073  	/* Registers must be written in this order with no i2c access in between */
1074  	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1075  			0x77, offset_buf, 4))
1076  		v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
1077  }
1078  
adv76xx_set_gain(struct v4l2_subdev * sd,bool auto_gain,u16 gain_a,u16 gain_b,u16 gain_c)1079  static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1080  {
1081  	struct adv76xx_state *state = to_state(sd);
1082  	u8 gain_buf[4];
1083  	u8 gain_man = 1;
1084  	u8 agc_mode_man = 1;
1085  
1086  	if (auto_gain) {
1087  		gain_man = 0;
1088  		agc_mode_man = 0;
1089  		gain_a = 0x100;
1090  		gain_b = 0x100;
1091  		gain_c = 0x100;
1092  	}
1093  
1094  	v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1095  			__func__, auto_gain ? "Auto" : "Manual",
1096  			gain_a, gain_b, gain_c);
1097  
1098  	gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
1099  	gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
1100  	gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
1101  	gain_buf[3] = ((gain_c & 0x0ff));
1102  
1103  	/* Registers must be written in this order with no i2c access in between */
1104  	if (regmap_raw_write(state->regmap[ADV76XX_PAGE_CP],
1105  			     0x73, gain_buf, 4))
1106  		v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
1107  }
1108  
set_rgb_quantization_range(struct v4l2_subdev * sd)1109  static void set_rgb_quantization_range(struct v4l2_subdev *sd)
1110  {
1111  	struct adv76xx_state *state = to_state(sd);
1112  	bool rgb_output = io_read(sd, 0x02) & 0x02;
1113  	bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1114  	u8 y = HDMI_COLORSPACE_RGB;
1115  
1116  	if (hdmi_signal && (io_read(sd, 0x60) & 1))
1117  		y = infoframe_read(sd, 0x01) >> 5;
1118  
1119  	v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1120  			__func__, state->rgb_quantization_range,
1121  			rgb_output, hdmi_signal);
1122  
1123  	adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
1124  	adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1125  	io_write_clr_set(sd, 0x02, 0x04, rgb_output ? 0 : 4);
1126  
1127  	switch (state->rgb_quantization_range) {
1128  	case V4L2_DV_RGB_RANGE_AUTO:
1129  		if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1130  			/* Receiving analog RGB signal
1131  			 * Set RGB full range (0-255) */
1132  			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1133  			break;
1134  		}
1135  
1136  		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1137  			/* Receiving analog YPbPr signal
1138  			 * Set automode */
1139  			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1140  			break;
1141  		}
1142  
1143  		if (hdmi_signal) {
1144  			/* Receiving HDMI signal
1145  			 * Set automode */
1146  			io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1147  			break;
1148  		}
1149  
1150  		/* Receiving DVI-D signal
1151  		 * ADV7604 selects RGB limited range regardless of
1152  		 * input format (CE/IT) in automatic mode */
1153  		if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1154  			/* RGB limited range (16-235) */
1155  			io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1156  		} else {
1157  			/* RGB full range (0-255) */
1158  			io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1159  
1160  			if (is_digital_input(sd) && rgb_output) {
1161  				adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1162  			} else {
1163  				adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1164  				adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1165  			}
1166  		}
1167  		break;
1168  	case V4L2_DV_RGB_RANGE_LIMITED:
1169  		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1170  			/* YCrCb limited range (16-235) */
1171  			io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1172  			break;
1173  		}
1174  
1175  		if (y != HDMI_COLORSPACE_RGB)
1176  			break;
1177  
1178  		/* RGB limited range (16-235) */
1179  		io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1180  
1181  		break;
1182  	case V4L2_DV_RGB_RANGE_FULL:
1183  		if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1184  			/* YCrCb full range (0-255) */
1185  			io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1186  			break;
1187  		}
1188  
1189  		if (y != HDMI_COLORSPACE_RGB)
1190  			break;
1191  
1192  		/* RGB full range (0-255) */
1193  		io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1194  
1195  		if (is_analog_input(sd) || hdmi_signal)
1196  			break;
1197  
1198  		/* Adjust gain/offset for DVI-D signals only */
1199  		if (rgb_output) {
1200  			adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1201  		} else {
1202  			adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1203  			adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1204  		}
1205  		break;
1206  	}
1207  }
1208  
adv76xx_s_ctrl(struct v4l2_ctrl * ctrl)1209  static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1210  {
1211  	struct v4l2_subdev *sd =
1212  		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1213  
1214  	struct adv76xx_state *state = to_state(sd);
1215  
1216  	switch (ctrl->id) {
1217  	case V4L2_CID_BRIGHTNESS:
1218  		cp_write(sd, 0x3c, ctrl->val);
1219  		return 0;
1220  	case V4L2_CID_CONTRAST:
1221  		cp_write(sd, 0x3a, ctrl->val);
1222  		return 0;
1223  	case V4L2_CID_SATURATION:
1224  		cp_write(sd, 0x3b, ctrl->val);
1225  		return 0;
1226  	case V4L2_CID_HUE:
1227  		cp_write(sd, 0x3d, ctrl->val);
1228  		return 0;
1229  	case  V4L2_CID_DV_RX_RGB_RANGE:
1230  		state->rgb_quantization_range = ctrl->val;
1231  		set_rgb_quantization_range(sd);
1232  		return 0;
1233  	case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1234  		if (!adv76xx_has_afe(state))
1235  			return -EINVAL;
1236  		/* Set the analog sampling phase. This is needed to find the
1237  		   best sampling phase for analog video: an application or
1238  		   driver has to try a number of phases and analyze the picture
1239  		   quality before settling on the best performing phase. */
1240  		afe_write(sd, 0xc8, ctrl->val);
1241  		return 0;
1242  	case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
1243  		/* Use the default blue color for free running mode,
1244  		   or supply your own. */
1245  		cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1246  		return 0;
1247  	case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
1248  		cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
1249  		cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
1250  		cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
1251  		return 0;
1252  	}
1253  	return -EINVAL;
1254  }
1255  
adv76xx_g_volatile_ctrl(struct v4l2_ctrl * ctrl)1256  static int adv76xx_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1257  {
1258  	struct v4l2_subdev *sd =
1259  		&container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1260  
1261  	if (ctrl->id == V4L2_CID_DV_RX_IT_CONTENT_TYPE) {
1262  		ctrl->val = V4L2_DV_IT_CONTENT_TYPE_NO_ITC;
1263  		if ((io_read(sd, 0x60) & 1) && (infoframe_read(sd, 0x03) & 0x80))
1264  			ctrl->val = (infoframe_read(sd, 0x05) >> 4) & 3;
1265  		return 0;
1266  	}
1267  	return -EINVAL;
1268  }
1269  
1270  /* ----------------------------------------------------------------------- */
1271  
no_power(struct v4l2_subdev * sd)1272  static inline bool no_power(struct v4l2_subdev *sd)
1273  {
1274  	/* Entire chip or CP powered off */
1275  	return io_read(sd, 0x0c) & 0x24;
1276  }
1277  
no_signal_tmds(struct v4l2_subdev * sd)1278  static inline bool no_signal_tmds(struct v4l2_subdev *sd)
1279  {
1280  	struct adv76xx_state *state = to_state(sd);
1281  
1282  	return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1283  }
1284  
no_lock_tmds(struct v4l2_subdev * sd)1285  static inline bool no_lock_tmds(struct v4l2_subdev *sd)
1286  {
1287  	struct adv76xx_state *state = to_state(sd);
1288  	const struct adv76xx_chip_info *info = state->info;
1289  
1290  	return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1291  }
1292  
is_hdmi(struct v4l2_subdev * sd)1293  static inline bool is_hdmi(struct v4l2_subdev *sd)
1294  {
1295  	return hdmi_read(sd, 0x05) & 0x80;
1296  }
1297  
no_lock_sspd(struct v4l2_subdev * sd)1298  static inline bool no_lock_sspd(struct v4l2_subdev *sd)
1299  {
1300  	struct adv76xx_state *state = to_state(sd);
1301  
1302  	/*
1303  	 * Chips without a AFE don't expose registers for the SSPD, so just assume
1304  	 * that we have a lock.
1305  	 */
1306  	if (adv76xx_has_afe(state))
1307  		return false;
1308  
1309  	/* TODO channel 2 */
1310  	return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
1311  }
1312  
no_lock_stdi(struct v4l2_subdev * sd)1313  static inline bool no_lock_stdi(struct v4l2_subdev *sd)
1314  {
1315  	/* TODO channel 2 */
1316  	return !(cp_read(sd, 0xb1) & 0x80);
1317  }
1318  
no_signal(struct v4l2_subdev * sd)1319  static inline bool no_signal(struct v4l2_subdev *sd)
1320  {
1321  	bool ret;
1322  
1323  	ret = no_power(sd);
1324  
1325  	ret |= no_lock_stdi(sd);
1326  	ret |= no_lock_sspd(sd);
1327  
1328  	if (is_digital_input(sd)) {
1329  		ret |= no_lock_tmds(sd);
1330  		ret |= no_signal_tmds(sd);
1331  	}
1332  
1333  	return ret;
1334  }
1335  
no_lock_cp(struct v4l2_subdev * sd)1336  static inline bool no_lock_cp(struct v4l2_subdev *sd)
1337  {
1338  	struct adv76xx_state *state = to_state(sd);
1339  
1340  	if (!adv76xx_has_afe(state))
1341  		return false;
1342  
1343  	/* CP has detected a non standard number of lines on the incoming
1344  	   video compared to what it is configured to receive by s_dv_timings */
1345  	return io_read(sd, 0x12) & 0x01;
1346  }
1347  
in_free_run(struct v4l2_subdev * sd)1348  static inline bool in_free_run(struct v4l2_subdev *sd)
1349  {
1350  	return cp_read(sd, 0xff) & 0x10;
1351  }
1352  
adv76xx_g_input_status(struct v4l2_subdev * sd,u32 * status)1353  static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1354  {
1355  	*status = 0;
1356  	*status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
1357  	*status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1358  	if (!in_free_run(sd) && no_lock_cp(sd))
1359  		*status |= is_digital_input(sd) ?
1360  			   V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1361  
1362  	v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
1363  
1364  	return 0;
1365  }
1366  
1367  /* ----------------------------------------------------------------------- */
1368  
1369  struct stdi_readback {
1370  	u16 bl, lcf, lcvs;
1371  	u8 hs_pol, vs_pol;
1372  	bool interlaced;
1373  };
1374  
stdi2dv_timings(struct v4l2_subdev * sd,struct stdi_readback * stdi,struct v4l2_dv_timings * timings)1375  static int stdi2dv_timings(struct v4l2_subdev *sd,
1376  		struct stdi_readback *stdi,
1377  		struct v4l2_dv_timings *timings)
1378  {
1379  	struct adv76xx_state *state = to_state(sd);
1380  	u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1381  	u32 pix_clk;
1382  	int i;
1383  
1384  	for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
1385  		const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt;
1386  
1387  		if (!v4l2_valid_dv_timings(&v4l2_dv_timings_presets[i],
1388  					   adv76xx_get_dv_timings_cap(sd, -1),
1389  					   adv76xx_check_dv_timings, NULL))
1390  			continue;
1391  		if (vtotal(bt) != stdi->lcf + 1)
1392  			continue;
1393  		if (bt->vsync != stdi->lcvs)
1394  			continue;
1395  
1396  		pix_clk = hfreq * htotal(bt);
1397  
1398  		if ((pix_clk < bt->pixelclock + 1000000) &&
1399  		    (pix_clk > bt->pixelclock - 1000000)) {
1400  			*timings = v4l2_dv_timings_presets[i];
1401  			return 0;
1402  		}
1403  	}
1404  
1405  	if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs, 0,
1406  			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1407  			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1408  			false, timings))
1409  		return 0;
1410  	if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
1411  			(stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1412  			(stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1413  			false, state->aspect_ratio, timings))
1414  		return 0;
1415  
1416  	v4l2_dbg(2, debug, sd,
1417  		"%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1418  		__func__, stdi->lcvs, stdi->lcf, stdi->bl,
1419  		stdi->hs_pol, stdi->vs_pol);
1420  	return -1;
1421  }
1422  
1423  
read_stdi(struct v4l2_subdev * sd,struct stdi_readback * stdi)1424  static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
1425  {
1426  	struct adv76xx_state *state = to_state(sd);
1427  	const struct adv76xx_chip_info *info = state->info;
1428  	u8 polarity;
1429  
1430  	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1431  		v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
1432  		return -1;
1433  	}
1434  
1435  	/* read STDI */
1436  	stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1437  	stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1438  	stdi->lcvs = cp_read(sd, 0xb3) >> 3;
1439  	stdi->interlaced = io_read(sd, 0x12) & 0x10;
1440  
1441  	if (adv76xx_has_afe(state)) {
1442  		/* read SSPD */
1443  		polarity = cp_read(sd, 0xb5);
1444  		if ((polarity & 0x03) == 0x01) {
1445  			stdi->hs_pol = polarity & 0x10
1446  				     ? (polarity & 0x08 ? '+' : '-') : 'x';
1447  			stdi->vs_pol = polarity & 0x40
1448  				     ? (polarity & 0x20 ? '+' : '-') : 'x';
1449  		} else {
1450  			stdi->hs_pol = 'x';
1451  			stdi->vs_pol = 'x';
1452  		}
1453  	} else {
1454  		polarity = hdmi_read(sd, 0x05);
1455  		stdi->hs_pol = polarity & 0x20 ? '+' : '-';
1456  		stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1457  	}
1458  
1459  	if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1460  		v4l2_dbg(2, debug, sd,
1461  			"%s: signal lost during readout of STDI/SSPD\n", __func__);
1462  		return -1;
1463  	}
1464  
1465  	if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
1466  		v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
1467  		memset(stdi, 0, sizeof(struct stdi_readback));
1468  		return -1;
1469  	}
1470  
1471  	v4l2_dbg(2, debug, sd,
1472  		"%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1473  		__func__, stdi->lcf, stdi->bl, stdi->lcvs,
1474  		stdi->hs_pol, stdi->vs_pol,
1475  		stdi->interlaced ? "interlaced" : "progressive");
1476  
1477  	return 0;
1478  }
1479  
adv76xx_enum_dv_timings(struct v4l2_subdev * sd,struct v4l2_enum_dv_timings * timings)1480  static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1481  			struct v4l2_enum_dv_timings *timings)
1482  {
1483  	struct adv76xx_state *state = to_state(sd);
1484  
1485  	if (timings->pad >= state->source_pad)
1486  		return -EINVAL;
1487  
1488  	return v4l2_enum_dv_timings_cap(timings,
1489  		adv76xx_get_dv_timings_cap(sd, timings->pad),
1490  		adv76xx_check_dv_timings, NULL);
1491  }
1492  
adv76xx_dv_timings_cap(struct v4l2_subdev * sd,struct v4l2_dv_timings_cap * cap)1493  static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1494  			struct v4l2_dv_timings_cap *cap)
1495  {
1496  	struct adv76xx_state *state = to_state(sd);
1497  	unsigned int pad = cap->pad;
1498  
1499  	if (cap->pad >= state->source_pad)
1500  		return -EINVAL;
1501  
1502  	*cap = *adv76xx_get_dv_timings_cap(sd, pad);
1503  	cap->pad = pad;
1504  
1505  	return 0;
1506  }
1507  
1508  /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1509     if the format is listed in adv76xx_timings[] */
adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev * sd,struct v4l2_dv_timings * timings)1510  static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1511  		struct v4l2_dv_timings *timings)
1512  {
1513  	v4l2_find_dv_timings_cap(timings, adv76xx_get_dv_timings_cap(sd, -1),
1514  				 is_digital_input(sd) ? 250000 : 1000000,
1515  				 adv76xx_check_dv_timings, NULL);
1516  }
1517  
adv7604_read_hdmi_pixelclock(struct v4l2_subdev * sd)1518  static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1519  {
1520  	int a, b;
1521  
1522  	a = hdmi_read(sd, 0x06);
1523  	b = hdmi_read(sd, 0x3b);
1524  	if (a < 0 || b < 0)
1525  		return 0;
1526  
1527  	return a * 1000000 + ((b & 0x30) >> 4) * 250000;
1528  }
1529  
adv7611_read_hdmi_pixelclock(struct v4l2_subdev * sd)1530  static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1531  {
1532  	int a, b;
1533  
1534  	a = hdmi_read(sd, 0x51);
1535  	b = hdmi_read(sd, 0x52);
1536  	if (a < 0 || b < 0)
1537  		return 0;
1538  
1539  	return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
1540  }
1541  
adv76xx_read_hdmi_pixelclock(struct v4l2_subdev * sd)1542  static unsigned int adv76xx_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1543  {
1544  	struct adv76xx_state *state = to_state(sd);
1545  	const struct adv76xx_chip_info *info = state->info;
1546  	unsigned int freq, bits_per_channel, pixelrepetition;
1547  
1548  	freq = info->read_hdmi_pixelclock(sd);
1549  	if (is_hdmi(sd)) {
1550  		/* adjust for deep color mode and pixel repetition */
1551  		bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;
1552  		pixelrepetition = (hdmi_read(sd, 0x05) & 0x0f) + 1;
1553  
1554  		freq = freq * 8 / bits_per_channel / pixelrepetition;
1555  	}
1556  
1557  	return freq;
1558  }
1559  
adv76xx_query_dv_timings(struct v4l2_subdev * sd,struct v4l2_dv_timings * timings)1560  static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1561  			struct v4l2_dv_timings *timings)
1562  {
1563  	struct adv76xx_state *state = to_state(sd);
1564  	const struct adv76xx_chip_info *info = state->info;
1565  	struct v4l2_bt_timings *bt = &timings->bt;
1566  	struct stdi_readback stdi;
1567  
1568  	if (!timings)
1569  		return -EINVAL;
1570  
1571  	memset(timings, 0, sizeof(struct v4l2_dv_timings));
1572  
1573  	if (no_signal(sd)) {
1574  		state->restart_stdi_once = true;
1575  		v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
1576  		return -ENOLINK;
1577  	}
1578  
1579  	/* read STDI */
1580  	if (read_stdi(sd, &stdi)) {
1581  		v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
1582  		return -ENOLINK;
1583  	}
1584  	bt->interlaced = stdi.interlaced ?
1585  		V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1586  
1587  	if (is_digital_input(sd)) {
1588  		bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1589  		u8 vic = 0;
1590  		u32 w, h;
1591  
1592  		w = hdmi_read16(sd, 0x07, info->linewidth_mask);
1593  		h = hdmi_read16(sd, 0x09, info->field0_height_mask);
1594  
1595  		if (hdmi_signal && (io_read(sd, 0x60) & 1))
1596  			vic = infoframe_read(sd, 0x04);
1597  
1598  		if (vic && v4l2_find_dv_timings_cea861_vic(timings, vic) &&
1599  		    bt->width == w && bt->height == h)
1600  			goto found;
1601  
1602  		timings->type = V4L2_DV_BT_656_1120;
1603  
1604  		bt->width = w;
1605  		bt->height = h;
1606  		bt->pixelclock = adv76xx_read_hdmi_pixelclock(sd);
1607  		bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
1608  		bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
1609  		bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
1610  		bt->vfrontporch = hdmi_read16(sd, 0x2a,
1611  			info->field0_vfrontporch_mask) / 2;
1612  		bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
1613  		bt->vbackporch = hdmi_read16(sd, 0x32,
1614  			info->field0_vbackporch_mask) / 2;
1615  		bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
1616  			((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
1617  		if (bt->interlaced == V4L2_DV_INTERLACED) {
1618  			bt->height += hdmi_read16(sd, 0x0b,
1619  				info->field1_height_mask);
1620  			bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
1621  				info->field1_vfrontporch_mask) / 2;
1622  			bt->il_vsync = hdmi_read16(sd, 0x30,
1623  				info->field1_vsync_mask) / 2;
1624  			bt->il_vbackporch = hdmi_read16(sd, 0x34,
1625  				info->field1_vbackporch_mask) / 2;
1626  		}
1627  		adv76xx_fill_optional_dv_timings_fields(sd, timings);
1628  	} else {
1629  		/* find format
1630  		 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1631  		 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1632  		 */
1633  		if (!stdi2dv_timings(sd, &stdi, timings))
1634  			goto found;
1635  		stdi.lcvs += 1;
1636  		v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
1637  		if (!stdi2dv_timings(sd, &stdi, timings))
1638  			goto found;
1639  		stdi.lcvs -= 2;
1640  		v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
1641  		if (stdi2dv_timings(sd, &stdi, timings)) {
1642  			/*
1643  			 * The STDI block may measure wrong values, especially
1644  			 * for lcvs and lcf. If the driver can not find any
1645  			 * valid timing, the STDI block is restarted to measure
1646  			 * the video timings again. The function will return an
1647  			 * error, but the restart of STDI will generate a new
1648  			 * STDI interrupt and the format detection process will
1649  			 * restart.
1650  			 */
1651  			if (state->restart_stdi_once) {
1652  				v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
1653  				/* TODO restart STDI for Sync Channel 2 */
1654  				/* enter one-shot mode */
1655  				cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1656  				/* trigger STDI restart */
1657  				cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1658  				/* reset to continuous mode */
1659  				cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1660  				state->restart_stdi_once = false;
1661  				return -ENOLINK;
1662  			}
1663  			v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
1664  			return -ERANGE;
1665  		}
1666  		state->restart_stdi_once = true;
1667  	}
1668  found:
1669  
1670  	if (no_signal(sd)) {
1671  		v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
1672  		memset(timings, 0, sizeof(struct v4l2_dv_timings));
1673  		return -ENOLINK;
1674  	}
1675  
1676  	if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1677  			(is_digital_input(sd) && bt->pixelclock > 225000000)) {
1678  		v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1679  				__func__, (u32)bt->pixelclock);
1680  		return -ERANGE;
1681  	}
1682  
1683  	if (debug > 1)
1684  		v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1685  				      timings, true);
1686  
1687  	return 0;
1688  }
1689  
adv76xx_s_dv_timings(struct v4l2_subdev * sd,struct v4l2_dv_timings * timings)1690  static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1691  		struct v4l2_dv_timings *timings)
1692  {
1693  	struct adv76xx_state *state = to_state(sd);
1694  	struct v4l2_bt_timings *bt;
1695  	int err;
1696  
1697  	if (!timings)
1698  		return -EINVAL;
1699  
1700  	if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) {
1701  		v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
1702  		return 0;
1703  	}
1704  
1705  	bt = &timings->bt;
1706  
1707  	if (!v4l2_valid_dv_timings(timings, adv76xx_get_dv_timings_cap(sd, -1),
1708  				   adv76xx_check_dv_timings, NULL))
1709  		return -ERANGE;
1710  
1711  	adv76xx_fill_optional_dv_timings_fields(sd, timings);
1712  
1713  	state->timings = *timings;
1714  
1715  	cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1716  
1717  	/* Use prim_mode and vid_std when available */
1718  	err = configure_predefined_video_timings(sd, timings);
1719  	if (err) {
1720  		/* custom settings when the video format
1721  		 does not have prim_mode/vid_std */
1722  		configure_custom_video_timings(sd, bt);
1723  	}
1724  
1725  	set_rgb_quantization_range(sd);
1726  
1727  	if (debug > 1)
1728  		v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1729  				      timings, true);
1730  	return 0;
1731  }
1732  
adv76xx_g_dv_timings(struct v4l2_subdev * sd,struct v4l2_dv_timings * timings)1733  static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1734  		struct v4l2_dv_timings *timings)
1735  {
1736  	struct adv76xx_state *state = to_state(sd);
1737  
1738  	*timings = state->timings;
1739  	return 0;
1740  }
1741  
adv7604_set_termination(struct v4l2_subdev * sd,bool enable)1742  static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
1743  {
1744  	hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
1745  }
1746  
adv7611_set_termination(struct v4l2_subdev * sd,bool enable)1747  static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
1748  {
1749  	hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
1750  }
1751  
enable_input(struct v4l2_subdev * sd)1752  static void enable_input(struct v4l2_subdev *sd)
1753  {
1754  	struct adv76xx_state *state = to_state(sd);
1755  
1756  	if (is_analog_input(sd)) {
1757  		io_write(sd, 0x15, 0xb0);   /* Disable Tristate of Pins (no audio) */
1758  	} else if (is_digital_input(sd)) {
1759  		hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1760  		state->info->set_termination(sd, true);
1761  		io_write(sd, 0x15, 0xa0);   /* Disable Tristate of Pins */
1762  		hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1763  	} else {
1764  		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1765  				__func__, state->selected_input);
1766  	}
1767  }
1768  
disable_input(struct v4l2_subdev * sd)1769  static void disable_input(struct v4l2_subdev *sd)
1770  {
1771  	struct adv76xx_state *state = to_state(sd);
1772  
1773  	hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1774  	msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1775  	io_write(sd, 0x15, 0xbe);   /* Tristate all outputs from video core */
1776  	state->info->set_termination(sd, false);
1777  }
1778  
select_input(struct v4l2_subdev * sd)1779  static void select_input(struct v4l2_subdev *sd)
1780  {
1781  	struct adv76xx_state *state = to_state(sd);
1782  	const struct adv76xx_chip_info *info = state->info;
1783  
1784  	if (is_analog_input(sd)) {
1785  		adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1786  
1787  		afe_write(sd, 0x00, 0x08); /* power up ADC */
1788  		afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
1789  		afe_write(sd, 0xc8, 0x00); /* phase control */
1790  	} else if (is_digital_input(sd)) {
1791  		hdmi_write(sd, 0x00, state->selected_input & 0x03);
1792  
1793  		adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1794  
1795  		if (adv76xx_has_afe(state)) {
1796  			afe_write(sd, 0x00, 0xff); /* power down ADC */
1797  			afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
1798  			afe_write(sd, 0xc8, 0x40); /* phase control */
1799  		}
1800  
1801  		cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
1802  		cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
1803  		cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1804  	} else {
1805  		v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1806  				__func__, state->selected_input);
1807  	}
1808  
1809  	/* Enable video adjustment (contrast, saturation, brightness and hue) */
1810  	cp_write_clr_set(sd, 0x3e, 0x80, 0x80);
1811  }
1812  
adv76xx_s_routing(struct v4l2_subdev * sd,u32 input,u32 output,u32 config)1813  static int adv76xx_s_routing(struct v4l2_subdev *sd,
1814  		u32 input, u32 output, u32 config)
1815  {
1816  	struct adv76xx_state *state = to_state(sd);
1817  
1818  	v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
1819  			__func__, input, state->selected_input);
1820  
1821  	if (input == state->selected_input)
1822  		return 0;
1823  
1824  	if (input > state->info->max_port)
1825  		return -EINVAL;
1826  
1827  	state->selected_input = input;
1828  
1829  	disable_input(sd);
1830  	select_input(sd);
1831  	enable_input(sd);
1832  
1833  	v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
1834  
1835  	return 0;
1836  }
1837  
adv76xx_enum_mbus_code(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_mbus_code_enum * code)1838  static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1839  				  struct v4l2_subdev_state *sd_state,
1840  				  struct v4l2_subdev_mbus_code_enum *code)
1841  {
1842  	struct adv76xx_state *state = to_state(sd);
1843  
1844  	if (code->index >= state->info->nformats)
1845  		return -EINVAL;
1846  
1847  	code->code = state->info->formats[code->index].code;
1848  
1849  	return 0;
1850  }
1851  
adv76xx_fill_format(struct adv76xx_state * state,struct v4l2_mbus_framefmt * format)1852  static void adv76xx_fill_format(struct adv76xx_state *state,
1853  				struct v4l2_mbus_framefmt *format)
1854  {
1855  	memset(format, 0, sizeof(*format));
1856  
1857  	format->width = state->timings.bt.width;
1858  	format->height = state->timings.bt.height;
1859  	format->field = V4L2_FIELD_NONE;
1860  	format->colorspace = V4L2_COLORSPACE_SRGB;
1861  
1862  	if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1863  		format->colorspace = (state->timings.bt.height <= 576) ?
1864  			V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1865  }
1866  
1867  /*
1868   * Compute the op_ch_sel value required to obtain on the bus the component order
1869   * corresponding to the selected format taking into account bus reordering
1870   * applied by the board at the output of the device.
1871   *
1872   * The following table gives the op_ch_value from the format component order
1873   * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1874   * adv76xx_bus_order value in row).
1875   *
1876   *           |	GBR(0)	GRB(1)	BGR(2)	RGB(3)	BRG(4)	RBG(5)
1877   * ----------+-------------------------------------------------
1878   * RGB (NOP) |	GBR	GRB	BGR	RGB	BRG	RBG
1879   * GRB (1-2) |	BGR	RGB	GBR	GRB	RBG	BRG
1880   * RBG (2-3) |	GRB	GBR	BRG	RBG	BGR	RGB
1881   * BGR (1-3) |	RBG	BRG	RGB	BGR	GRB	GBR
1882   * BRG (ROR) |	BRG	RBG	GRB	GBR	RGB	BGR
1883   * GBR (ROL) |	RGB	BGR	RBG	BRG	GBR	GRB
1884   */
adv76xx_op_ch_sel(struct adv76xx_state * state)1885  static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1886  {
1887  #define _SEL(a,b,c,d,e,f)	{ \
1888  	ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
1889  	ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1890  #define _BUS(x)			[ADV7604_BUS_ORDER_##x]
1891  
1892  	static const unsigned int op_ch_sel[6][6] = {
1893  		_BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
1894  		_BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
1895  		_BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
1896  		_BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
1897  		_BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
1898  		_BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
1899  	};
1900  
1901  	return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
1902  }
1903  
adv76xx_setup_format(struct adv76xx_state * state)1904  static void adv76xx_setup_format(struct adv76xx_state *state)
1905  {
1906  	struct v4l2_subdev *sd = &state->sd;
1907  
1908  	io_write_clr_set(sd, 0x02, 0x02,
1909  			state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1910  	io_write(sd, 0x03, state->format->op_format_sel |
1911  		 state->pdata.op_format_mode_sel);
1912  	io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1913  	io_write_clr_set(sd, 0x05, 0x01,
1914  			state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1915  	set_rgb_quantization_range(sd);
1916  }
1917  
adv76xx_get_format(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * format)1918  static int adv76xx_get_format(struct v4l2_subdev *sd,
1919  			      struct v4l2_subdev_state *sd_state,
1920  			      struct v4l2_subdev_format *format)
1921  {
1922  	struct adv76xx_state *state = to_state(sd);
1923  
1924  	if (format->pad != state->source_pad)
1925  		return -EINVAL;
1926  
1927  	adv76xx_fill_format(state, &format->format);
1928  
1929  	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1930  		struct v4l2_mbus_framefmt *fmt;
1931  
1932  		fmt = v4l2_subdev_get_try_format(sd, sd_state, format->pad);
1933  		format->format.code = fmt->code;
1934  	} else {
1935  		format->format.code = state->format->code;
1936  	}
1937  
1938  	return 0;
1939  }
1940  
adv76xx_get_selection(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_selection * sel)1941  static int adv76xx_get_selection(struct v4l2_subdev *sd,
1942  				 struct v4l2_subdev_state *sd_state,
1943  				 struct v4l2_subdev_selection *sel)
1944  {
1945  	struct adv76xx_state *state = to_state(sd);
1946  
1947  	if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE)
1948  		return -EINVAL;
1949  	/* Only CROP, CROP_DEFAULT and CROP_BOUNDS are supported */
1950  	if (sel->target > V4L2_SEL_TGT_CROP_BOUNDS)
1951  		return -EINVAL;
1952  
1953  	sel->r.left	= 0;
1954  	sel->r.top	= 0;
1955  	sel->r.width	= state->timings.bt.width;
1956  	sel->r.height	= state->timings.bt.height;
1957  
1958  	return 0;
1959  }
1960  
adv76xx_set_format(struct v4l2_subdev * sd,struct v4l2_subdev_state * sd_state,struct v4l2_subdev_format * format)1961  static int adv76xx_set_format(struct v4l2_subdev *sd,
1962  			      struct v4l2_subdev_state *sd_state,
1963  			      struct v4l2_subdev_format *format)
1964  {
1965  	struct adv76xx_state *state = to_state(sd);
1966  	const struct adv76xx_format_info *info;
1967  
1968  	if (format->pad != state->source_pad)
1969  		return -EINVAL;
1970  
1971  	info = adv76xx_format_info(state, format->format.code);
1972  	if (!info)
1973  		info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1974  
1975  	adv76xx_fill_format(state, &format->format);
1976  	format->format.code = info->code;
1977  
1978  	if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1979  		struct v4l2_mbus_framefmt *fmt;
1980  
1981  		fmt = v4l2_subdev_get_try_format(sd, sd_state, format->pad);
1982  		fmt->code = format->format.code;
1983  	} else {
1984  		state->format = info;
1985  		adv76xx_setup_format(state);
1986  	}
1987  
1988  	return 0;
1989  }
1990  
1991  #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
adv76xx_cec_tx_raw_status(struct v4l2_subdev * sd,u8 tx_raw_status)1992  static void adv76xx_cec_tx_raw_status(struct v4l2_subdev *sd, u8 tx_raw_status)
1993  {
1994  	struct adv76xx_state *state = to_state(sd);
1995  
1996  	if ((cec_read(sd, 0x11) & 0x01) == 0) {
1997  		v4l2_dbg(1, debug, sd, "%s: tx raw: tx disabled\n", __func__);
1998  		return;
1999  	}
2000  
2001  	if (tx_raw_status & 0x02) {
2002  		v4l2_dbg(1, debug, sd, "%s: tx raw: arbitration lost\n",
2003  			 __func__);
2004  		cec_transmit_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST,
2005  				  1, 0, 0, 0);
2006  		return;
2007  	}
2008  	if (tx_raw_status & 0x04) {
2009  		u8 status;
2010  		u8 nack_cnt;
2011  		u8 low_drive_cnt;
2012  
2013  		v4l2_dbg(1, debug, sd, "%s: tx raw: retry failed\n", __func__);
2014  		/*
2015  		 * We set this status bit since this hardware performs
2016  		 * retransmissions.
2017  		 */
2018  		status = CEC_TX_STATUS_MAX_RETRIES;
2019  		nack_cnt = cec_read(sd, 0x14) & 0xf;
2020  		if (nack_cnt)
2021  			status |= CEC_TX_STATUS_NACK;
2022  		low_drive_cnt = cec_read(sd, 0x14) >> 4;
2023  		if (low_drive_cnt)
2024  			status |= CEC_TX_STATUS_LOW_DRIVE;
2025  		cec_transmit_done(state->cec_adap, status,
2026  				  0, nack_cnt, low_drive_cnt, 0);
2027  		return;
2028  	}
2029  	if (tx_raw_status & 0x01) {
2030  		v4l2_dbg(1, debug, sd, "%s: tx raw: ready ok\n", __func__);
2031  		cec_transmit_done(state->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0);
2032  		return;
2033  	}
2034  }
2035  
adv76xx_cec_isr(struct v4l2_subdev * sd,bool * handled)2036  static void adv76xx_cec_isr(struct v4l2_subdev *sd, bool *handled)
2037  {
2038  	struct adv76xx_state *state = to_state(sd);
2039  	const struct adv76xx_chip_info *info = state->info;
2040  	u8 cec_irq;
2041  
2042  	/* cec controller */
2043  	cec_irq = io_read(sd, info->cec_irq_status) & 0x0f;
2044  	if (!cec_irq)
2045  		return;
2046  
2047  	v4l2_dbg(1, debug, sd, "%s: cec: irq 0x%x\n", __func__, cec_irq);
2048  	adv76xx_cec_tx_raw_status(sd, cec_irq);
2049  	if (cec_irq & 0x08) {
2050  		struct cec_msg msg;
2051  
2052  		msg.len = cec_read(sd, 0x25) & 0x1f;
2053  		if (msg.len > CEC_MAX_MSG_SIZE)
2054  			msg.len = CEC_MAX_MSG_SIZE;
2055  
2056  		if (msg.len) {
2057  			u8 i;
2058  
2059  			for (i = 0; i < msg.len; i++)
2060  				msg.msg[i] = cec_read(sd, i + 0x15);
2061  			cec_write(sd, info->cec_rx_enable,
2062  				  info->cec_rx_enable_mask); /* re-enable rx */
2063  			cec_received_msg(state->cec_adap, &msg);
2064  		}
2065  	}
2066  
2067  	if (info->cec_irq_swap) {
2068  		/*
2069  		 * Note: the bit order is swapped between 0x4d and 0x4e
2070  		 * on adv7604
2071  		 */
2072  		cec_irq = ((cec_irq & 0x08) >> 3) | ((cec_irq & 0x04) >> 1) |
2073  			  ((cec_irq & 0x02) << 1) | ((cec_irq & 0x01) << 3);
2074  	}
2075  	io_write(sd, info->cec_irq_status + 1, cec_irq);
2076  
2077  	if (handled)
2078  		*handled = true;
2079  }
2080  
adv76xx_cec_adap_enable(struct cec_adapter * adap,bool enable)2081  static int adv76xx_cec_adap_enable(struct cec_adapter *adap, bool enable)
2082  {
2083  	struct adv76xx_state *state = cec_get_drvdata(adap);
2084  	const struct adv76xx_chip_info *info = state->info;
2085  	struct v4l2_subdev *sd = &state->sd;
2086  
2087  	if (!state->cec_enabled_adap && enable) {
2088  		cec_write_clr_set(sd, 0x2a, 0x01, 0x01); /* power up cec */
2089  		cec_write(sd, 0x2c, 0x01);	/* cec soft reset */
2090  		cec_write_clr_set(sd, 0x11, 0x01, 0); /* initially disable tx */
2091  		/* enabled irqs: */
2092  		/* tx: ready */
2093  		/* tx: arbitration lost */
2094  		/* tx: retry timeout */
2095  		/* rx: ready */
2096  		io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x0f);
2097  		cec_write(sd, info->cec_rx_enable, info->cec_rx_enable_mask);
2098  	} else if (state->cec_enabled_adap && !enable) {
2099  		/* disable cec interrupts */
2100  		io_write_clr_set(sd, info->cec_irq_status + 3, 0x0f, 0x00);
2101  		/* disable address mask 1-3 */
2102  		cec_write_clr_set(sd, 0x27, 0x70, 0x00);
2103  		/* power down cec section */
2104  		cec_write_clr_set(sd, 0x2a, 0x01, 0x00);
2105  		state->cec_valid_addrs = 0;
2106  	}
2107  	state->cec_enabled_adap = enable;
2108  	adv76xx_s_detect_tx_5v_ctrl(sd);
2109  	return 0;
2110  }
2111  
adv76xx_cec_adap_log_addr(struct cec_adapter * adap,u8 addr)2112  static int adv76xx_cec_adap_log_addr(struct cec_adapter *adap, u8 addr)
2113  {
2114  	struct adv76xx_state *state = cec_get_drvdata(adap);
2115  	struct v4l2_subdev *sd = &state->sd;
2116  	unsigned int i, free_idx = ADV76XX_MAX_ADDRS;
2117  
2118  	if (!state->cec_enabled_adap)
2119  		return addr == CEC_LOG_ADDR_INVALID ? 0 : -EIO;
2120  
2121  	if (addr == CEC_LOG_ADDR_INVALID) {
2122  		cec_write_clr_set(sd, 0x27, 0x70, 0);
2123  		state->cec_valid_addrs = 0;
2124  		return 0;
2125  	}
2126  
2127  	for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2128  		bool is_valid = state->cec_valid_addrs & (1 << i);
2129  
2130  		if (free_idx == ADV76XX_MAX_ADDRS && !is_valid)
2131  			free_idx = i;
2132  		if (is_valid && state->cec_addr[i] == addr)
2133  			return 0;
2134  	}
2135  	if (i == ADV76XX_MAX_ADDRS) {
2136  		i = free_idx;
2137  		if (i == ADV76XX_MAX_ADDRS)
2138  			return -ENXIO;
2139  	}
2140  	state->cec_addr[i] = addr;
2141  	state->cec_valid_addrs |= 1 << i;
2142  
2143  	switch (i) {
2144  	case 0:
2145  		/* enable address mask 0 */
2146  		cec_write_clr_set(sd, 0x27, 0x10, 0x10);
2147  		/* set address for mask 0 */
2148  		cec_write_clr_set(sd, 0x28, 0x0f, addr);
2149  		break;
2150  	case 1:
2151  		/* enable address mask 1 */
2152  		cec_write_clr_set(sd, 0x27, 0x20, 0x20);
2153  		/* set address for mask 1 */
2154  		cec_write_clr_set(sd, 0x28, 0xf0, addr << 4);
2155  		break;
2156  	case 2:
2157  		/* enable address mask 2 */
2158  		cec_write_clr_set(sd, 0x27, 0x40, 0x40);
2159  		/* set address for mask 1 */
2160  		cec_write_clr_set(sd, 0x29, 0x0f, addr);
2161  		break;
2162  	}
2163  	return 0;
2164  }
2165  
adv76xx_cec_adap_transmit(struct cec_adapter * adap,u8 attempts,u32 signal_free_time,struct cec_msg * msg)2166  static int adv76xx_cec_adap_transmit(struct cec_adapter *adap, u8 attempts,
2167  				     u32 signal_free_time, struct cec_msg *msg)
2168  {
2169  	struct adv76xx_state *state = cec_get_drvdata(adap);
2170  	struct v4l2_subdev *sd = &state->sd;
2171  	u8 len = msg->len;
2172  	unsigned int i;
2173  
2174  	/*
2175  	 * The number of retries is the number of attempts - 1, but retry
2176  	 * at least once. It's not clear if a value of 0 is allowed, so
2177  	 * let's do at least one retry.
2178  	 */
2179  	cec_write_clr_set(sd, 0x12, 0x70, max(1, attempts - 1) << 4);
2180  
2181  	if (len > 16) {
2182  		v4l2_err(sd, "%s: len exceeded 16 (%d)\n", __func__, len);
2183  		return -EINVAL;
2184  	}
2185  
2186  	/* write data */
2187  	for (i = 0; i < len; i++)
2188  		cec_write(sd, i, msg->msg[i]);
2189  
2190  	/* set length (data + header) */
2191  	cec_write(sd, 0x10, len);
2192  	/* start transmit, enable tx */
2193  	cec_write(sd, 0x11, 0x01);
2194  	return 0;
2195  }
2196  
2197  static const struct cec_adap_ops adv76xx_cec_adap_ops = {
2198  	.adap_enable = adv76xx_cec_adap_enable,
2199  	.adap_log_addr = adv76xx_cec_adap_log_addr,
2200  	.adap_transmit = adv76xx_cec_adap_transmit,
2201  };
2202  #endif
2203  
adv76xx_isr(struct v4l2_subdev * sd,u32 status,bool * handled)2204  static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
2205  {
2206  	struct adv76xx_state *state = to_state(sd);
2207  	const struct adv76xx_chip_info *info = state->info;
2208  	const u8 irq_reg_0x43 = io_read(sd, 0x43);
2209  	const u8 irq_reg_0x6b = io_read(sd, 0x6b);
2210  	const u8 irq_reg_0x70 = io_read(sd, 0x70);
2211  	u8 fmt_change_digital;
2212  	u8 fmt_change;
2213  	u8 tx_5v;
2214  
2215  	if (irq_reg_0x43)
2216  		io_write(sd, 0x44, irq_reg_0x43);
2217  	if (irq_reg_0x70)
2218  		io_write(sd, 0x71, irq_reg_0x70);
2219  	if (irq_reg_0x6b)
2220  		io_write(sd, 0x6c, irq_reg_0x6b);
2221  
2222  	v4l2_dbg(2, debug, sd, "%s: ", __func__);
2223  
2224  	/* format change */
2225  	fmt_change = irq_reg_0x43 & 0x98;
2226  	fmt_change_digital = is_digital_input(sd)
2227  			   ? irq_reg_0x6b & info->fmt_change_digital_mask
2228  			   : 0;
2229  
2230  	if (fmt_change || fmt_change_digital) {
2231  		v4l2_dbg(1, debug, sd,
2232  			"%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
2233  			__func__, fmt_change, fmt_change_digital);
2234  
2235  		v4l2_subdev_notify_event(sd, &adv76xx_ev_fmt);
2236  
2237  		if (handled)
2238  			*handled = true;
2239  	}
2240  	/* HDMI/DVI mode */
2241  	if (irq_reg_0x6b & 0x01) {
2242  		v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
2243  			(io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
2244  		set_rgb_quantization_range(sd);
2245  		if (handled)
2246  			*handled = true;
2247  	}
2248  
2249  #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
2250  	/* cec */
2251  	adv76xx_cec_isr(sd, handled);
2252  #endif
2253  
2254  	/* tx 5v detect */
2255  	tx_5v = irq_reg_0x70 & info->cable_det_mask;
2256  	if (tx_5v) {
2257  		v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
2258  		adv76xx_s_detect_tx_5v_ctrl(sd);
2259  		if (handled)
2260  			*handled = true;
2261  	}
2262  	return 0;
2263  }
2264  
adv76xx_irq_handler(int irq,void * dev_id)2265  static irqreturn_t adv76xx_irq_handler(int irq, void *dev_id)
2266  {
2267  	struct adv76xx_state *state = dev_id;
2268  	bool handled = false;
2269  
2270  	adv76xx_isr(&state->sd, 0, &handled);
2271  
2272  	return handled ? IRQ_HANDLED : IRQ_NONE;
2273  }
2274  
adv76xx_get_edid(struct v4l2_subdev * sd,struct v4l2_edid * edid)2275  static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2276  {
2277  	struct adv76xx_state *state = to_state(sd);
2278  	u8 *data = NULL;
2279  
2280  	memset(edid->reserved, 0, sizeof(edid->reserved));
2281  
2282  	switch (edid->pad) {
2283  	case ADV76XX_PAD_HDMI_PORT_A:
2284  	case ADV7604_PAD_HDMI_PORT_B:
2285  	case ADV7604_PAD_HDMI_PORT_C:
2286  	case ADV7604_PAD_HDMI_PORT_D:
2287  		if (state->edid.present & (1 << edid->pad))
2288  			data = state->edid.edid;
2289  		break;
2290  	default:
2291  		return -EINVAL;
2292  	}
2293  
2294  	if (edid->start_block == 0 && edid->blocks == 0) {
2295  		edid->blocks = data ? state->edid.blocks : 0;
2296  		return 0;
2297  	}
2298  
2299  	if (!data)
2300  		return -ENODATA;
2301  
2302  	if (edid->start_block >= state->edid.blocks)
2303  		return -EINVAL;
2304  
2305  	if (edid->start_block + edid->blocks > state->edid.blocks)
2306  		edid->blocks = state->edid.blocks - edid->start_block;
2307  
2308  	memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);
2309  
2310  	return 0;
2311  }
2312  
adv76xx_set_edid(struct v4l2_subdev * sd,struct v4l2_edid * edid)2313  static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2314  {
2315  	struct adv76xx_state *state = to_state(sd);
2316  	const struct adv76xx_chip_info *info = state->info;
2317  	unsigned int spa_loc;
2318  	u16 pa, parent_pa;
2319  	int err;
2320  	int i;
2321  
2322  	memset(edid->reserved, 0, sizeof(edid->reserved));
2323  
2324  	if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2325  		return -EINVAL;
2326  	if (edid->start_block != 0)
2327  		return -EINVAL;
2328  	if (edid->blocks == 0) {
2329  		/* Disable hotplug and I2C access to EDID RAM from DDC port */
2330  		state->edid.present &= ~(1 << edid->pad);
2331  		adv76xx_set_hpd(state, state->edid.present);
2332  		rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2333  
2334  		/* Fall back to a 16:9 aspect ratio */
2335  		state->aspect_ratio.numerator = 16;
2336  		state->aspect_ratio.denominator = 9;
2337  
2338  		if (!state->edid.present) {
2339  			state->edid.blocks = 0;
2340  			cec_phys_addr_invalidate(state->cec_adap);
2341  		}
2342  
2343  		v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
2344  				__func__, edid->pad, state->edid.present);
2345  		return 0;
2346  	}
2347  	if (edid->blocks > ADV76XX_MAX_EDID_BLOCKS) {
2348  		edid->blocks = ADV76XX_MAX_EDID_BLOCKS;
2349  		return -E2BIG;
2350  	}
2351  
2352  	pa = v4l2_get_edid_phys_addr(edid->edid, edid->blocks * 128, &spa_loc);
2353  	err = v4l2_phys_addr_validate(pa, &parent_pa, NULL);
2354  	if (err)
2355  		return err;
2356  
2357  	if (!spa_loc) {
2358  		/*
2359  		 * There is no SPA, so just set spa_loc to 128 and pa to whatever
2360  		 * data is there.
2361  		 */
2362  		spa_loc = 128;
2363  		pa = (edid->edid[spa_loc] << 8) | edid->edid[spa_loc + 1];
2364  	}
2365  
2366  	v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
2367  			__func__, edid->pad, state->edid.present);
2368  
2369  	/* Disable hotplug and I2C access to EDID RAM from DDC port */
2370  	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2371  	adv76xx_set_hpd(state, 0);
2372  	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2373  
2374  	switch (edid->pad) {
2375  	case ADV76XX_PAD_HDMI_PORT_A:
2376  		state->spa_port_a[0] = pa >> 8;
2377  		state->spa_port_a[1] = pa & 0xff;
2378  		break;
2379  	case ADV7604_PAD_HDMI_PORT_B:
2380  		rep_write(sd, info->edid_spa_port_b_reg, pa >> 8);
2381  		rep_write(sd, info->edid_spa_port_b_reg + 1, pa & 0xff);
2382  		break;
2383  	case ADV7604_PAD_HDMI_PORT_C:
2384  		rep_write(sd, info->edid_spa_port_b_reg + 2, pa >> 8);
2385  		rep_write(sd, info->edid_spa_port_b_reg + 3, pa & 0xff);
2386  		break;
2387  	case ADV7604_PAD_HDMI_PORT_D:
2388  		rep_write(sd, info->edid_spa_port_b_reg + 4, pa >> 8);
2389  		rep_write(sd, info->edid_spa_port_b_reg + 5, pa & 0xff);
2390  		break;
2391  	default:
2392  		return -EINVAL;
2393  	}
2394  
2395  	if (info->edid_spa_loc_reg) {
2396  		u8 mask = info->edid_spa_loc_msb_mask;
2397  
2398  		rep_write(sd, info->edid_spa_loc_reg, spa_loc & 0xff);
2399  		rep_write_clr_set(sd, info->edid_spa_loc_reg + 1,
2400  				  mask, (spa_loc & 0x100) ? mask : 0);
2401  	}
2402  
2403  	edid->edid[spa_loc] = state->spa_port_a[0];
2404  	edid->edid[spa_loc + 1] = state->spa_port_a[1];
2405  
2406  	memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
2407  	state->edid.blocks = edid->blocks;
2408  	state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
2409  			edid->edid[0x16]);
2410  	state->edid.present |= 1 << edid->pad;
2411  
2412  	rep_write_clr_set(sd, info->edid_segment_reg,
2413  			  info->edid_segment_mask, 0);
2414  	err = edid_write_block(sd, 128 * min(edid->blocks, 2U), state->edid.edid);
2415  	if (err < 0) {
2416  		v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2417  		return err;
2418  	}
2419  	if (edid->blocks > 2) {
2420  		rep_write_clr_set(sd, info->edid_segment_reg,
2421  				  info->edid_segment_mask,
2422  				  info->edid_segment_mask);
2423  		err = edid_write_block(sd, 128 * (edid->blocks - 2),
2424  				       state->edid.edid + 256);
2425  		if (err < 0) {
2426  			v4l2_err(sd, "error %d writing edid pad %d\n",
2427  				 err, edid->pad);
2428  			return err;
2429  		}
2430  	}
2431  
2432  	/* adv76xx calculates the checksums and enables I2C access to internal
2433  	   EDID RAM from DDC port. */
2434  	rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2435  
2436  	for (i = 0; i < 1000; i++) {
2437  		if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2438  			break;
2439  		mdelay(1);
2440  	}
2441  	if (i == 1000) {
2442  		v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
2443  		return -EIO;
2444  	}
2445  	cec_s_phys_addr(state->cec_adap, parent_pa, false);
2446  
2447  	/* enable hotplug after 100 ms */
2448  	schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10);
2449  	return 0;
2450  }
2451  
2452  /*********** avi info frame CEA-861-E **************/
2453  
2454  static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
2455  	{ "AVI", 0x01, 0xe0, 0x00 },
2456  	{ "Audio", 0x02, 0xe3, 0x1c },
2457  	{ "SDP", 0x04, 0xe6, 0x2a },
2458  	{ "Vendor", 0x10, 0xec, 0x54 }
2459  };
2460  
adv76xx_read_infoframe(struct v4l2_subdev * sd,int index,union hdmi_infoframe * frame)2461  static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
2462  				  union hdmi_infoframe *frame)
2463  {
2464  	uint8_t buffer[32];
2465  	u8 len;
2466  	int i;
2467  
2468  	if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
2469  		v4l2_info(sd, "%s infoframe not received\n",
2470  			  adv76xx_cri[index].desc);
2471  		return -ENOENT;
2472  	}
2473  
2474  	for (i = 0; i < 3; i++)
2475  		buffer[i] = infoframe_read(sd,
2476  					   adv76xx_cri[index].head_addr + i);
2477  
2478  	len = buffer[2] + 1;
2479  
2480  	if (len + 3 > sizeof(buffer)) {
2481  		v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
2482  			 adv76xx_cri[index].desc, len);
2483  		return -ENOENT;
2484  	}
2485  
2486  	for (i = 0; i < len; i++)
2487  		buffer[i + 3] = infoframe_read(sd,
2488  				       adv76xx_cri[index].payload_addr + i);
2489  
2490  	if (hdmi_infoframe_unpack(frame, buffer, len + 3) < 0) {
2491  		v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
2492  			 adv76xx_cri[index].desc);
2493  		return -ENOENT;
2494  	}
2495  	return 0;
2496  }
2497  
adv76xx_log_infoframes(struct v4l2_subdev * sd)2498  static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
2499  {
2500  	int i;
2501  
2502  	if (!is_hdmi(sd)) {
2503  		v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2504  		return;
2505  	}
2506  
2507  	for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
2508  		union hdmi_infoframe frame;
2509  		struct i2c_client *client = v4l2_get_subdevdata(sd);
2510  
2511  		if (!adv76xx_read_infoframe(sd, i, &frame))
2512  			hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
2513  	}
2514  }
2515  
adv76xx_log_status(struct v4l2_subdev * sd)2516  static int adv76xx_log_status(struct v4l2_subdev *sd)
2517  {
2518  	struct adv76xx_state *state = to_state(sd);
2519  	const struct adv76xx_chip_info *info = state->info;
2520  	struct v4l2_dv_timings timings;
2521  	struct stdi_readback stdi;
2522  	u8 reg_io_0x02 = io_read(sd, 0x02);
2523  	u8 edid_enabled;
2524  	u8 cable_det;
2525  
2526  	static const char * const csc_coeff_sel_rb[16] = {
2527  		"bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2528  		"reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2529  		"reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2530  		"reserved", "reserved", "reserved", "reserved", "manual"
2531  	};
2532  	static const char * const input_color_space_txt[16] = {
2533  		"RGB limited range (16-235)", "RGB full range (0-255)",
2534  		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2535  		"xvYCC Bt.601", "xvYCC Bt.709",
2536  		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2537  		"invalid", "invalid", "invalid", "invalid", "invalid",
2538  		"invalid", "invalid", "automatic"
2539  	};
2540  	static const char * const hdmi_color_space_txt[16] = {
2541  		"RGB limited range (16-235)", "RGB full range (0-255)",
2542  		"YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2543  		"xvYCC Bt.601", "xvYCC Bt.709",
2544  		"YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2545  		"sYCC", "opYCC 601", "opRGB", "invalid", "invalid",
2546  		"invalid", "invalid", "invalid"
2547  	};
2548  	static const char * const rgb_quantization_range_txt[] = {
2549  		"Automatic",
2550  		"RGB limited range (16-235)",
2551  		"RGB full range (0-255)",
2552  	};
2553  	static const char * const deep_color_mode_txt[4] = {
2554  		"8-bits per channel",
2555  		"10-bits per channel",
2556  		"12-bits per channel",
2557  		"16-bits per channel (not supported)"
2558  	};
2559  
2560  	v4l2_info(sd, "-----Chip status-----\n");
2561  	v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2562  	edid_enabled = rep_read(sd, info->edid_status_reg);
2563  	v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2564  			((edid_enabled & 0x01) ? "Yes" : "No"),
2565  			((edid_enabled & 0x02) ? "Yes" : "No"),
2566  			((edid_enabled & 0x04) ? "Yes" : "No"),
2567  			((edid_enabled & 0x08) ? "Yes" : "No"));
2568  	v4l2_info(sd, "CEC: %s\n", state->cec_enabled_adap ?
2569  			"enabled" : "disabled");
2570  	if (state->cec_enabled_adap) {
2571  		int i;
2572  
2573  		for (i = 0; i < ADV76XX_MAX_ADDRS; i++) {
2574  			bool is_valid = state->cec_valid_addrs & (1 << i);
2575  
2576  			if (is_valid)
2577  				v4l2_info(sd, "CEC Logical Address: 0x%x\n",
2578  					  state->cec_addr[i]);
2579  		}
2580  	}
2581  
2582  	v4l2_info(sd, "-----Signal status-----\n");
2583  	cable_det = info->read_cable_det(sd);
2584  	v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2585  			((cable_det & 0x01) ? "Yes" : "No"),
2586  			((cable_det & 0x02) ? "Yes" : "No"),
2587  			((cable_det & 0x04) ? "Yes" : "No"),
2588  			((cable_det & 0x08) ? "Yes" : "No"));
2589  	v4l2_info(sd, "TMDS signal detected: %s\n",
2590  			no_signal_tmds(sd) ? "false" : "true");
2591  	v4l2_info(sd, "TMDS signal locked: %s\n",
2592  			no_lock_tmds(sd) ? "false" : "true");
2593  	v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
2594  	v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
2595  	v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
2596  	v4l2_info(sd, "CP free run: %s\n",
2597  			(in_free_run(sd)) ? "on" : "off");
2598  	v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2599  			io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
2600  			(io_read(sd, 0x01) & 0x70) >> 4);
2601  
2602  	v4l2_info(sd, "-----Video Timings-----\n");
2603  	if (read_stdi(sd, &stdi))
2604  		v4l2_info(sd, "STDI: not locked\n");
2605  	else
2606  		v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
2607  				stdi.lcf, stdi.bl, stdi.lcvs,
2608  				stdi.interlaced ? "interlaced" : "progressive",
2609  				stdi.hs_pol, stdi.vs_pol);
2610  	if (adv76xx_query_dv_timings(sd, &timings))
2611  		v4l2_info(sd, "No video detected\n");
2612  	else
2613  		v4l2_print_dv_timings(sd->name, "Detected format: ",
2614  				      &timings, true);
2615  	v4l2_print_dv_timings(sd->name, "Configured format: ",
2616  			      &state->timings, true);
2617  
2618  	if (no_signal(sd))
2619  		return 0;
2620  
2621  	v4l2_info(sd, "-----Color space-----\n");
2622  	v4l2_info(sd, "RGB quantization range ctrl: %s\n",
2623  			rgb_quantization_range_txt[state->rgb_quantization_range]);
2624  	v4l2_info(sd, "Input color space: %s\n",
2625  			input_color_space_txt[reg_io_0x02 >> 4]);
2626  	v4l2_info(sd, "Output color space: %s %s, alt-gamma %s\n",
2627  			(reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
2628  			(((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2629  				"(16-235)" : "(0-255)",
2630  			(reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2631  	v4l2_info(sd, "Color space conversion: %s\n",
2632  			csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2633  
2634  	if (!is_digital_input(sd))
2635  		return 0;
2636  
2637  	v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2638  	v4l2_info(sd, "Digital video port selected: %c\n",
2639  			(hdmi_read(sd, 0x00) & 0x03) + 'A');
2640  	v4l2_info(sd, "HDCP encrypted content: %s\n",
2641  			(hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2642  	v4l2_info(sd, "HDCP keys read: %s%s\n",
2643  			(hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
2644  			(hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2645  	if (is_hdmi(sd)) {
2646  		bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
2647  		bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
2648  		bool audio_mute = io_read(sd, 0x65) & 0x40;
2649  
2650  		v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
2651  				audio_pll_locked ? "locked" : "not locked",
2652  				audio_sample_packet_detect ? "detected" : "not detected",
2653  				audio_mute ? "muted" : "enabled");
2654  		if (audio_pll_locked && audio_sample_packet_detect) {
2655  			v4l2_info(sd, "Audio format: %s\n",
2656  					(hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
2657  		}
2658  		v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
2659  				(hdmi_read(sd, 0x5c) << 8) +
2660  				(hdmi_read(sd, 0x5d) & 0xf0));
2661  		v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
2662  				(hdmi_read(sd, 0x5e) << 8) +
2663  				hdmi_read(sd, 0x5f));
2664  		v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");
2665  
2666  		v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2667  		v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2668  
2669  		adv76xx_log_infoframes(sd);
2670  	}
2671  
2672  	return 0;
2673  }
2674  
adv76xx_subscribe_event(struct v4l2_subdev * sd,struct v4l2_fh * fh,struct v4l2_event_subscription * sub)2675  static int adv76xx_subscribe_event(struct v4l2_subdev *sd,
2676  				   struct v4l2_fh *fh,
2677  				   struct v4l2_event_subscription *sub)
2678  {
2679  	switch (sub->type) {
2680  	case V4L2_EVENT_SOURCE_CHANGE:
2681  		return v4l2_src_change_event_subdev_subscribe(sd, fh, sub);
2682  	case V4L2_EVENT_CTRL:
2683  		return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub);
2684  	default:
2685  		return -EINVAL;
2686  	}
2687  }
2688  
adv76xx_registered(struct v4l2_subdev * sd)2689  static int adv76xx_registered(struct v4l2_subdev *sd)
2690  {
2691  	struct adv76xx_state *state = to_state(sd);
2692  	struct i2c_client *client = v4l2_get_subdevdata(sd);
2693  	int err;
2694  
2695  	err = cec_register_adapter(state->cec_adap, &client->dev);
2696  	if (err)
2697  		cec_delete_adapter(state->cec_adap);
2698  	return err;
2699  }
2700  
adv76xx_unregistered(struct v4l2_subdev * sd)2701  static void adv76xx_unregistered(struct v4l2_subdev *sd)
2702  {
2703  	struct adv76xx_state *state = to_state(sd);
2704  
2705  	cec_unregister_adapter(state->cec_adap);
2706  }
2707  
2708  /* ----------------------------------------------------------------------- */
2709  
2710  static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
2711  	.s_ctrl = adv76xx_s_ctrl,
2712  	.g_volatile_ctrl = adv76xx_g_volatile_ctrl,
2713  };
2714  
2715  static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
2716  	.log_status = adv76xx_log_status,
2717  	.interrupt_service_routine = adv76xx_isr,
2718  	.subscribe_event = adv76xx_subscribe_event,
2719  	.unsubscribe_event = v4l2_event_subdev_unsubscribe,
2720  #ifdef CONFIG_VIDEO_ADV_DEBUG
2721  	.g_register = adv76xx_g_register,
2722  	.s_register = adv76xx_s_register,
2723  #endif
2724  };
2725  
2726  static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
2727  	.s_routing = adv76xx_s_routing,
2728  	.g_input_status = adv76xx_g_input_status,
2729  	.s_dv_timings = adv76xx_s_dv_timings,
2730  	.g_dv_timings = adv76xx_g_dv_timings,
2731  	.query_dv_timings = adv76xx_query_dv_timings,
2732  };
2733  
2734  static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
2735  	.enum_mbus_code = adv76xx_enum_mbus_code,
2736  	.get_selection = adv76xx_get_selection,
2737  	.get_fmt = adv76xx_get_format,
2738  	.set_fmt = adv76xx_set_format,
2739  	.get_edid = adv76xx_get_edid,
2740  	.set_edid = adv76xx_set_edid,
2741  	.dv_timings_cap = adv76xx_dv_timings_cap,
2742  	.enum_dv_timings = adv76xx_enum_dv_timings,
2743  };
2744  
2745  static const struct v4l2_subdev_ops adv76xx_ops = {
2746  	.core = &adv76xx_core_ops,
2747  	.video = &adv76xx_video_ops,
2748  	.pad = &adv76xx_pad_ops,
2749  };
2750  
2751  static const struct v4l2_subdev_internal_ops adv76xx_int_ops = {
2752  	.registered = adv76xx_registered,
2753  	.unregistered = adv76xx_unregistered,
2754  };
2755  
2756  /* -------------------------- custom ctrls ---------------------------------- */
2757  
2758  static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2759  	.ops = &adv76xx_ctrl_ops,
2760  	.id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
2761  	.name = "Analog Sampling Phase",
2762  	.type = V4L2_CTRL_TYPE_INTEGER,
2763  	.min = 0,
2764  	.max = 0x1f,
2765  	.step = 1,
2766  	.def = 0,
2767  };
2768  
2769  static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
2770  	.ops = &adv76xx_ctrl_ops,
2771  	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
2772  	.name = "Free Running Color, Manual",
2773  	.type = V4L2_CTRL_TYPE_BOOLEAN,
2774  	.min = false,
2775  	.max = true,
2776  	.step = 1,
2777  	.def = false,
2778  };
2779  
2780  static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
2781  	.ops = &adv76xx_ctrl_ops,
2782  	.id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
2783  	.name = "Free Running Color",
2784  	.type = V4L2_CTRL_TYPE_INTEGER,
2785  	.min = 0x0,
2786  	.max = 0xffffff,
2787  	.step = 0x1,
2788  	.def = 0x0,
2789  };
2790  
2791  /* ----------------------------------------------------------------------- */
2792  
2793  struct adv76xx_register_map {
2794  	const char *name;
2795  	u8 default_addr;
2796  };
2797  
2798  static const struct adv76xx_register_map adv76xx_default_addresses[] = {
2799  	[ADV76XX_PAGE_IO] = { "main", 0x4c },
2800  	[ADV7604_PAGE_AVLINK] = { "avlink", 0x42 },
2801  	[ADV76XX_PAGE_CEC] = { "cec", 0x40 },
2802  	[ADV76XX_PAGE_INFOFRAME] = { "infoframe", 0x3e },
2803  	[ADV7604_PAGE_ESDP] = { "esdp", 0x38 },
2804  	[ADV7604_PAGE_DPP] = { "dpp", 0x3c },
2805  	[ADV76XX_PAGE_AFE] = { "afe", 0x26 },
2806  	[ADV76XX_PAGE_REP] = { "rep", 0x32 },
2807  	[ADV76XX_PAGE_EDID] = { "edid", 0x36 },
2808  	[ADV76XX_PAGE_HDMI] = { "hdmi", 0x34 },
2809  	[ADV76XX_PAGE_TEST] = { "test", 0x30 },
2810  	[ADV76XX_PAGE_CP] = { "cp", 0x22 },
2811  	[ADV7604_PAGE_VDP] = { "vdp", 0x24 },
2812  };
2813  
adv76xx_core_init(struct v4l2_subdev * sd)2814  static int adv76xx_core_init(struct v4l2_subdev *sd)
2815  {
2816  	struct adv76xx_state *state = to_state(sd);
2817  	const struct adv76xx_chip_info *info = state->info;
2818  	struct adv76xx_platform_data *pdata = &state->pdata;
2819  
2820  	hdmi_write(sd, 0x48,
2821  		(pdata->disable_pwrdnb ? 0x80 : 0) |
2822  		(pdata->disable_cable_det_rst ? 0x40 : 0));
2823  
2824  	disable_input(sd);
2825  
2826  	if (pdata->default_input >= 0 &&
2827  	    pdata->default_input < state->source_pad) {
2828  		state->selected_input = pdata->default_input;
2829  		select_input(sd);
2830  		enable_input(sd);
2831  	}
2832  
2833  	/* power */
2834  	io_write(sd, 0x0c, 0x42);   /* Power up part and power down VDP */
2835  	io_write(sd, 0x0b, 0x44);   /* Power down ESDP block */
2836  	cp_write(sd, 0xcf, 0x01);   /* Power down macrovision */
2837  
2838  	/* HPD */
2839  	if (info->type != ADV7604) {
2840  		/* Set manual HPD values to 0 */
2841  		io_write_clr_set(sd, 0x20, 0xc0, 0);
2842  		/*
2843  		 * Set HPA_DELAY to 200 ms and set automatic HPD control
2844  		 * to: internal EDID is active AND a cable is detected
2845  		 * AND the manual HPD control is set to 1.
2846  		 */
2847  		hdmi_write_clr_set(sd, 0x6c, 0xf6, 0x26);
2848  	}
2849  
2850  	/* video format */
2851  	io_write_clr_set(sd, 0x02, 0x0f, pdata->alt_gamma << 3);
2852  	io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2853  			pdata->insert_av_codes << 2 |
2854  			pdata->replicate_av_codes << 1);
2855  	adv76xx_setup_format(state);
2856  
2857  	cp_write(sd, 0x69, 0x30);   /* Enable CP CSC */
2858  
2859  	/* VS, HS polarities */
2860  	io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
2861  		 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2862  
2863  	/* Adjust drive strength */
2864  	io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
2865  				pdata->dr_str_clk << 2 |
2866  				pdata->dr_str_sync);
2867  
2868  	cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
2869  	cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2870  	cp_write(sd, 0xf9, 0x23); /*  STDI ch. 1 - LCVS change threshold -
2871  				      ADI recommended setting [REF_01, c. 2.3.3] */
2872  	cp_write(sd, 0x45, 0x23); /*  STDI ch. 2 - LCVS change threshold -
2873  				      ADI recommended setting [REF_01, c. 2.3.3] */
2874  	cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
2875  				     for digital formats */
2876  
2877  	/* HDMI audio */
2878  	hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
2879  	hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
2880  	hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2881  
2882  	/* TODO from platform data */
2883  	afe_write(sd, 0xb5, 0x01);  /* Setting MCLK to 256Fs */
2884  
2885  	if (adv76xx_has_afe(state)) {
2886  		afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2887  		io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2888  	}
2889  
2890  	/* interrupts */
2891  	io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2892  	io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2893  	io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
2894  	io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
2895  	info->setup_irqs(sd);
2896  
2897  	return v4l2_ctrl_handler_setup(sd->ctrl_handler);
2898  }
2899  
adv7604_setup_irqs(struct v4l2_subdev * sd)2900  static void adv7604_setup_irqs(struct v4l2_subdev *sd)
2901  {
2902  	io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
2903  }
2904  
adv7611_setup_irqs(struct v4l2_subdev * sd)2905  static void adv7611_setup_irqs(struct v4l2_subdev *sd)
2906  {
2907  	io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
2908  }
2909  
adv7612_setup_irqs(struct v4l2_subdev * sd)2910  static void adv7612_setup_irqs(struct v4l2_subdev *sd)
2911  {
2912  	io_write(sd, 0x41, 0xd0); /* disable INT2 */
2913  }
2914  
adv76xx_unregister_clients(struct adv76xx_state * state)2915  static void adv76xx_unregister_clients(struct adv76xx_state *state)
2916  {
2917  	unsigned int i;
2918  
2919  	for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i)
2920  		i2c_unregister_device(state->i2c_clients[i]);
2921  }
2922  
adv76xx_dummy_client(struct v4l2_subdev * sd,unsigned int page)2923  static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2924  					       unsigned int page)
2925  {
2926  	struct i2c_client *client = v4l2_get_subdevdata(sd);
2927  	struct adv76xx_state *state = to_state(sd);
2928  	struct adv76xx_platform_data *pdata = &state->pdata;
2929  	unsigned int io_reg = 0xf2 + page;
2930  	struct i2c_client *new_client;
2931  
2932  	if (pdata && pdata->i2c_addresses[page])
2933  		new_client = i2c_new_dummy_device(client->adapter,
2934  					   pdata->i2c_addresses[page]);
2935  	else
2936  		new_client = i2c_new_ancillary_device(client,
2937  				adv76xx_default_addresses[page].name,
2938  				adv76xx_default_addresses[page].default_addr);
2939  
2940  	if (!IS_ERR(new_client))
2941  		io_write(sd, io_reg, new_client->addr << 1);
2942  
2943  	return new_client;
2944  }
2945  
2946  static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2947  	/* reset ADI recommended settings for HDMI: */
2948  	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2949  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2950  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2951  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
2952  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
2953  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2954  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
2955  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
2956  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2957  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2958  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
2959  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
2960  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2961  
2962  	/* set ADI recommended settings for digitizer */
2963  	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2964  	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
2965  	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
2966  	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
2967  	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
2968  	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2969  
2970  	{ ADV76XX_REG_SEQ_TERM, 0 },
2971  };
2972  
2973  static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2974  	/* set ADI recommended settings for HDMI: */
2975  	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2976  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
2977  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
2978  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
2979  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2980  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
2981  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
2982  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2983  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2984  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
2985  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
2986  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2987  
2988  	/* reset ADI recommended settings for digitizer */
2989  	/* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2990  	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
2991  	{ ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2992  
2993  	{ ADV76XX_REG_SEQ_TERM, 0 },
2994  };
2995  
2996  static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2997  	/* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2998  	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2999  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
3000  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
3001  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
3002  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
3003  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
3004  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
3005  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
3006  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
3007  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
3008  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },
3009  
3010  	{ ADV76XX_REG_SEQ_TERM, 0 },
3011  };
3012  
3013  static const struct adv76xx_reg_seq adv7612_recommended_settings_hdmi[] = {
3014  	{ ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
3015  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
3016  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
3017  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
3018  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
3019  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
3020  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
3021  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
3022  	{ ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
3023  	{ ADV76XX_REG_SEQ_TERM, 0 },
3024  };
3025  
3026  static const struct adv76xx_chip_info adv76xx_chip_info[] = {
3027  	[ADV7604] = {
3028  		.type = ADV7604,
3029  		.has_afe = true,
3030  		.max_port = ADV7604_PAD_VGA_COMP,
3031  		.num_dv_ports = 4,
3032  		.edid_enable_reg = 0x77,
3033  		.edid_status_reg = 0x7d,
3034  		.edid_segment_reg = 0x77,
3035  		.edid_segment_mask = 0x10,
3036  		.edid_spa_loc_reg = 0x76,
3037  		.edid_spa_loc_msb_mask = 0x40,
3038  		.edid_spa_port_b_reg = 0x70,
3039  		.lcf_reg = 0xb3,
3040  		.tdms_lock_mask = 0xe0,
3041  		.cable_det_mask = 0x1e,
3042  		.fmt_change_digital_mask = 0xc1,
3043  		.cp_csc = 0xfc,
3044  		.cec_irq_status = 0x4d,
3045  		.cec_rx_enable = 0x26,
3046  		.cec_rx_enable_mask = 0x01,
3047  		.cec_irq_swap = true,
3048  		.formats = adv7604_formats,
3049  		.nformats = ARRAY_SIZE(adv7604_formats),
3050  		.set_termination = adv7604_set_termination,
3051  		.setup_irqs = adv7604_setup_irqs,
3052  		.read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
3053  		.read_cable_det = adv7604_read_cable_det,
3054  		.recommended_settings = {
3055  		    [0] = adv7604_recommended_settings_afe,
3056  		    [1] = adv7604_recommended_settings_hdmi,
3057  		},
3058  		.num_recommended_settings = {
3059  		    [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
3060  		    [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
3061  		},
3062  		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
3063  			BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
3064  			BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
3065  			BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
3066  			BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
3067  			BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
3068  			BIT(ADV7604_PAGE_VDP),
3069  		.linewidth_mask = 0xfff,
3070  		.field0_height_mask = 0xfff,
3071  		.field1_height_mask = 0xfff,
3072  		.hfrontporch_mask = 0x3ff,
3073  		.hsync_mask = 0x3ff,
3074  		.hbackporch_mask = 0x3ff,
3075  		.field0_vfrontporch_mask = 0x1fff,
3076  		.field0_vsync_mask = 0x1fff,
3077  		.field0_vbackporch_mask = 0x1fff,
3078  		.field1_vfrontporch_mask = 0x1fff,
3079  		.field1_vsync_mask = 0x1fff,
3080  		.field1_vbackporch_mask = 0x1fff,
3081  	},
3082  	[ADV7611] = {
3083  		.type = ADV7611,
3084  		.has_afe = false,
3085  		.max_port = ADV76XX_PAD_HDMI_PORT_A,
3086  		.num_dv_ports = 1,
3087  		.edid_enable_reg = 0x74,
3088  		.edid_status_reg = 0x76,
3089  		.edid_segment_reg = 0x7a,
3090  		.edid_segment_mask = 0x01,
3091  		.lcf_reg = 0xa3,
3092  		.tdms_lock_mask = 0x43,
3093  		.cable_det_mask = 0x01,
3094  		.fmt_change_digital_mask = 0x03,
3095  		.cp_csc = 0xf4,
3096  		.cec_irq_status = 0x93,
3097  		.cec_rx_enable = 0x2c,
3098  		.cec_rx_enable_mask = 0x02,
3099  		.formats = adv7611_formats,
3100  		.nformats = ARRAY_SIZE(adv7611_formats),
3101  		.set_termination = adv7611_set_termination,
3102  		.setup_irqs = adv7611_setup_irqs,
3103  		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3104  		.read_cable_det = adv7611_read_cable_det,
3105  		.recommended_settings = {
3106  		    [1] = adv7611_recommended_settings_hdmi,
3107  		},
3108  		.num_recommended_settings = {
3109  		    [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
3110  		},
3111  		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3112  			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3113  			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
3114  			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3115  		.linewidth_mask = 0x1fff,
3116  		.field0_height_mask = 0x1fff,
3117  		.field1_height_mask = 0x1fff,
3118  		.hfrontporch_mask = 0x1fff,
3119  		.hsync_mask = 0x1fff,
3120  		.hbackporch_mask = 0x1fff,
3121  		.field0_vfrontporch_mask = 0x3fff,
3122  		.field0_vsync_mask = 0x3fff,
3123  		.field0_vbackporch_mask = 0x3fff,
3124  		.field1_vfrontporch_mask = 0x3fff,
3125  		.field1_vsync_mask = 0x3fff,
3126  		.field1_vbackporch_mask = 0x3fff,
3127  	},
3128  	[ADV7612] = {
3129  		.type = ADV7612,
3130  		.has_afe = false,
3131  		.max_port = ADV76XX_PAD_HDMI_PORT_A,	/* B not supported */
3132  		.num_dv_ports = 1,			/* normally 2 */
3133  		.edid_enable_reg = 0x74,
3134  		.edid_status_reg = 0x76,
3135  		.edid_segment_reg = 0x7a,
3136  		.edid_segment_mask = 0x01,
3137  		.edid_spa_loc_reg = 0x70,
3138  		.edid_spa_loc_msb_mask = 0x01,
3139  		.edid_spa_port_b_reg = 0x52,
3140  		.lcf_reg = 0xa3,
3141  		.tdms_lock_mask = 0x43,
3142  		.cable_det_mask = 0x01,
3143  		.fmt_change_digital_mask = 0x03,
3144  		.cp_csc = 0xf4,
3145  		.cec_irq_status = 0x93,
3146  		.cec_rx_enable = 0x2c,
3147  		.cec_rx_enable_mask = 0x02,
3148  		.formats = adv7612_formats,
3149  		.nformats = ARRAY_SIZE(adv7612_formats),
3150  		.set_termination = adv7611_set_termination,
3151  		.setup_irqs = adv7612_setup_irqs,
3152  		.read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
3153  		.read_cable_det = adv7612_read_cable_det,
3154  		.recommended_settings = {
3155  		    [1] = adv7612_recommended_settings_hdmi,
3156  		},
3157  		.num_recommended_settings = {
3158  		    [1] = ARRAY_SIZE(adv7612_recommended_settings_hdmi),
3159  		},
3160  		.page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
3161  			BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
3162  			BIT(ADV76XX_PAGE_REP) |  BIT(ADV76XX_PAGE_EDID) |
3163  			BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
3164  		.linewidth_mask = 0x1fff,
3165  		.field0_height_mask = 0x1fff,
3166  		.field1_height_mask = 0x1fff,
3167  		.hfrontporch_mask = 0x1fff,
3168  		.hsync_mask = 0x1fff,
3169  		.hbackporch_mask = 0x1fff,
3170  		.field0_vfrontporch_mask = 0x3fff,
3171  		.field0_vsync_mask = 0x3fff,
3172  		.field0_vbackporch_mask = 0x3fff,
3173  		.field1_vfrontporch_mask = 0x3fff,
3174  		.field1_vsync_mask = 0x3fff,
3175  		.field1_vbackporch_mask = 0x3fff,
3176  	},
3177  };
3178  
3179  static const struct i2c_device_id adv76xx_i2c_id[] = {
3180  	{ "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
3181  	{ "adv7610", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
3182  	{ "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
3183  	{ "adv7612", (kernel_ulong_t)&adv76xx_chip_info[ADV7612] },
3184  	{ }
3185  };
3186  MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
3187  
3188  static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
3189  	{ .compatible = "adi,adv7610", .data = &adv76xx_chip_info[ADV7611] },
3190  	{ .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
3191  	{ .compatible = "adi,adv7612", .data = &adv76xx_chip_info[ADV7612] },
3192  	{ }
3193  };
3194  MODULE_DEVICE_TABLE(of, adv76xx_of_id);
3195  
adv76xx_parse_dt(struct adv76xx_state * state)3196  static int adv76xx_parse_dt(struct adv76xx_state *state)
3197  {
3198  	struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
3199  	struct device_node *endpoint;
3200  	struct device_node *np;
3201  	unsigned int flags;
3202  	int ret;
3203  	u32 v;
3204  
3205  	np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
3206  
3207  	/* Parse the endpoint. */
3208  	endpoint = of_graph_get_next_endpoint(np, NULL);
3209  	if (!endpoint)
3210  		return -EINVAL;
3211  
3212  	ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(endpoint), &bus_cfg);
3213  	of_node_put(endpoint);
3214  	if (ret)
3215  		return ret;
3216  
3217  	if (!of_property_read_u32(np, "default-input", &v))
3218  		state->pdata.default_input = v;
3219  	else
3220  		state->pdata.default_input = -1;
3221  
3222  	flags = bus_cfg.bus.parallel.flags;
3223  
3224  	if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
3225  		state->pdata.inv_hs_pol = 1;
3226  
3227  	if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
3228  		state->pdata.inv_vs_pol = 1;
3229  
3230  	if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
3231  		state->pdata.inv_llc_pol = 1;
3232  
3233  	if (bus_cfg.bus_type == V4L2_MBUS_BT656)
3234  		state->pdata.insert_av_codes = 1;
3235  
3236  	/* Disable the interrupt for now as no DT-based board uses it. */
3237  	state->pdata.int1_config = ADV76XX_INT1_CONFIG_ACTIVE_HIGH;
3238  
3239  	/* Hardcode the remaining platform data fields. */
3240  	state->pdata.disable_pwrdnb = 0;
3241  	state->pdata.disable_cable_det_rst = 0;
3242  	state->pdata.blank_data = 1;
3243  	state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
3244  	state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;
3245  	state->pdata.dr_str_data = ADV76XX_DR_STR_MEDIUM_HIGH;
3246  	state->pdata.dr_str_clk = ADV76XX_DR_STR_MEDIUM_HIGH;
3247  	state->pdata.dr_str_sync = ADV76XX_DR_STR_MEDIUM_HIGH;
3248  
3249  	return 0;
3250  }
3251  
3252  static const struct regmap_config adv76xx_regmap_cnf[] = {
3253  	{
3254  		.name			= "io",
3255  		.reg_bits		= 8,
3256  		.val_bits		= 8,
3257  
3258  		.max_register		= 0xff,
3259  		.cache_type		= REGCACHE_NONE,
3260  	},
3261  	{
3262  		.name			= "avlink",
3263  		.reg_bits		= 8,
3264  		.val_bits		= 8,
3265  
3266  		.max_register		= 0xff,
3267  		.cache_type		= REGCACHE_NONE,
3268  	},
3269  	{
3270  		.name			= "cec",
3271  		.reg_bits		= 8,
3272  		.val_bits		= 8,
3273  
3274  		.max_register		= 0xff,
3275  		.cache_type		= REGCACHE_NONE,
3276  	},
3277  	{
3278  		.name			= "infoframe",
3279  		.reg_bits		= 8,
3280  		.val_bits		= 8,
3281  
3282  		.max_register		= 0xff,
3283  		.cache_type		= REGCACHE_NONE,
3284  	},
3285  	{
3286  		.name			= "esdp",
3287  		.reg_bits		= 8,
3288  		.val_bits		= 8,
3289  
3290  		.max_register		= 0xff,
3291  		.cache_type		= REGCACHE_NONE,
3292  	},
3293  	{
3294  		.name			= "epp",
3295  		.reg_bits		= 8,
3296  		.val_bits		= 8,
3297  
3298  		.max_register		= 0xff,
3299  		.cache_type		= REGCACHE_NONE,
3300  	},
3301  	{
3302  		.name			= "afe",
3303  		.reg_bits		= 8,
3304  		.val_bits		= 8,
3305  
3306  		.max_register		= 0xff,
3307  		.cache_type		= REGCACHE_NONE,
3308  	},
3309  	{
3310  		.name			= "rep",
3311  		.reg_bits		= 8,
3312  		.val_bits		= 8,
3313  
3314  		.max_register		= 0xff,
3315  		.cache_type		= REGCACHE_NONE,
3316  	},
3317  	{
3318  		.name			= "edid",
3319  		.reg_bits		= 8,
3320  		.val_bits		= 8,
3321  
3322  		.max_register		= 0xff,
3323  		.cache_type		= REGCACHE_NONE,
3324  	},
3325  
3326  	{
3327  		.name			= "hdmi",
3328  		.reg_bits		= 8,
3329  		.val_bits		= 8,
3330  
3331  		.max_register		= 0xff,
3332  		.cache_type		= REGCACHE_NONE,
3333  	},
3334  	{
3335  		.name			= "test",
3336  		.reg_bits		= 8,
3337  		.val_bits		= 8,
3338  
3339  		.max_register		= 0xff,
3340  		.cache_type		= REGCACHE_NONE,
3341  	},
3342  	{
3343  		.name			= "cp",
3344  		.reg_bits		= 8,
3345  		.val_bits		= 8,
3346  
3347  		.max_register		= 0xff,
3348  		.cache_type		= REGCACHE_NONE,
3349  	},
3350  	{
3351  		.name			= "vdp",
3352  		.reg_bits		= 8,
3353  		.val_bits		= 8,
3354  
3355  		.max_register		= 0xff,
3356  		.cache_type		= REGCACHE_NONE,
3357  	},
3358  };
3359  
configure_regmap(struct adv76xx_state * state,int region)3360  static int configure_regmap(struct adv76xx_state *state, int region)
3361  {
3362  	int err;
3363  
3364  	if (!state->i2c_clients[region])
3365  		return -ENODEV;
3366  
3367  	state->regmap[region] =
3368  		devm_regmap_init_i2c(state->i2c_clients[region],
3369  				     &adv76xx_regmap_cnf[region]);
3370  
3371  	if (IS_ERR(state->regmap[region])) {
3372  		err = PTR_ERR(state->regmap[region]);
3373  		v4l_err(state->i2c_clients[region],
3374  			"Error initializing regmap %d with error %d\n",
3375  			region, err);
3376  		return -EINVAL;
3377  	}
3378  
3379  	return 0;
3380  }
3381  
configure_regmaps(struct adv76xx_state * state)3382  static int configure_regmaps(struct adv76xx_state *state)
3383  {
3384  	int i, err;
3385  
3386  	for (i = ADV7604_PAGE_AVLINK ; i < ADV76XX_PAGE_MAX; i++) {
3387  		err = configure_regmap(state, i);
3388  		if (err && (err != -ENODEV))
3389  			return err;
3390  	}
3391  	return 0;
3392  }
3393  
adv76xx_reset(struct adv76xx_state * state)3394  static void adv76xx_reset(struct adv76xx_state *state)
3395  {
3396  	if (state->reset_gpio) {
3397  		/* ADV76XX can be reset by a low reset pulse of minimum 5 ms. */
3398  		gpiod_set_value_cansleep(state->reset_gpio, 0);
3399  		usleep_range(5000, 10000);
3400  		gpiod_set_value_cansleep(state->reset_gpio, 1);
3401  		/* It is recommended to wait 5 ms after the low pulse before */
3402  		/* an I2C write is performed to the ADV76XX. */
3403  		usleep_range(5000, 10000);
3404  	}
3405  }
3406  
adv76xx_probe(struct i2c_client * client)3407  static int adv76xx_probe(struct i2c_client *client)
3408  {
3409  	const struct i2c_device_id *id = i2c_client_get_device_id(client);
3410  	static const struct v4l2_dv_timings cea640x480 =
3411  		V4L2_DV_BT_CEA_640X480P59_94;
3412  	struct adv76xx_state *state;
3413  	struct v4l2_ctrl_handler *hdl;
3414  	struct v4l2_ctrl *ctrl;
3415  	struct v4l2_subdev *sd;
3416  	unsigned int i;
3417  	unsigned int val, val2;
3418  	int err;
3419  
3420  	/* Check if the adapter supports the needed features */
3421  	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
3422  		return -EIO;
3423  	v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
3424  			client->addr << 1);
3425  
3426  	state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
3427  	if (!state)
3428  		return -ENOMEM;
3429  
3430  	state->i2c_clients[ADV76XX_PAGE_IO] = client;
3431  
3432  	/* initialize variables */
3433  	state->restart_stdi_once = true;
3434  	state->selected_input = ~0;
3435  
3436  	if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
3437  		const struct of_device_id *oid;
3438  
3439  		oid = of_match_node(adv76xx_of_id, client->dev.of_node);
3440  		state->info = oid->data;
3441  
3442  		err = adv76xx_parse_dt(state);
3443  		if (err < 0) {
3444  			v4l_err(client, "DT parsing error\n");
3445  			return err;
3446  		}
3447  	} else if (client->dev.platform_data) {
3448  		struct adv76xx_platform_data *pdata = client->dev.platform_data;
3449  
3450  		state->info = (const struct adv76xx_chip_info *)id->driver_data;
3451  		state->pdata = *pdata;
3452  	} else {
3453  		v4l_err(client, "No platform data!\n");
3454  		return -ENODEV;
3455  	}
3456  
3457  	/* Request GPIOs. */
3458  	for (i = 0; i < state->info->num_dv_ports; ++i) {
3459  		state->hpd_gpio[i] =
3460  			devm_gpiod_get_index_optional(&client->dev, "hpd", i,
3461  						      GPIOD_OUT_LOW);
3462  		if (IS_ERR(state->hpd_gpio[i]))
3463  			return PTR_ERR(state->hpd_gpio[i]);
3464  
3465  		if (state->hpd_gpio[i])
3466  			v4l_info(client, "Handling HPD %u GPIO\n", i);
3467  	}
3468  	state->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
3469  								GPIOD_OUT_HIGH);
3470  	if (IS_ERR(state->reset_gpio))
3471  		return PTR_ERR(state->reset_gpio);
3472  
3473  	adv76xx_reset(state);
3474  
3475  	state->timings = cea640x480;
3476  	state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
3477  
3478  	sd = &state->sd;
3479  	v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
3480  	snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
3481  		id->name, i2c_adapter_id(client->adapter),
3482  		client->addr);
3483  	sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS;
3484  	sd->internal_ops = &adv76xx_int_ops;
3485  
3486  	/* Configure IO Regmap region */
3487  	err = configure_regmap(state, ADV76XX_PAGE_IO);
3488  
3489  	if (err) {
3490  		v4l2_err(sd, "Error configuring IO regmap region\n");
3491  		return -ENODEV;
3492  	}
3493  
3494  	/*
3495  	 * Verify that the chip is present. On ADV7604 the RD_INFO register only
3496  	 * identifies the revision, while on ADV7611 it identifies the model as
3497  	 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
3498  	 */
3499  	switch (state->info->type) {
3500  	case ADV7604:
3501  		err = regmap_read(state->regmap[ADV76XX_PAGE_IO], 0xfb, &val);
3502  		if (err) {
3503  			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3504  			return -ENODEV;
3505  		}
3506  		if (val != 0x68) {
3507  			v4l2_err(sd, "not an ADV7604 on address 0x%x\n",
3508  				 client->addr << 1);
3509  			return -ENODEV;
3510  		}
3511  		break;
3512  	case ADV7611:
3513  	case ADV7612:
3514  		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3515  				0xea,
3516  				&val);
3517  		if (err) {
3518  			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3519  			return -ENODEV;
3520  		}
3521  		val2 = val << 8;
3522  		err = regmap_read(state->regmap[ADV76XX_PAGE_IO],
3523  			    0xeb,
3524  			    &val);
3525  		if (err) {
3526  			v4l2_err(sd, "Error %d reading IO Regmap\n", err);
3527  			return -ENODEV;
3528  		}
3529  		val |= val2;
3530  		if ((state->info->type == ADV7611 && val != 0x2051) ||
3531  			(state->info->type == ADV7612 && val != 0x2041)) {
3532  			v4l2_err(sd, "not an %s on address 0x%x\n",
3533  				 state->info->type == ADV7611 ? "ADV7610/11" : "ADV7612",
3534  				 client->addr << 1);
3535  			return -ENODEV;
3536  		}
3537  		break;
3538  	}
3539  
3540  	/* control handlers */
3541  	hdl = &state->hdl;
3542  	v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
3543  
3544  	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3545  			V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
3546  	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3547  			V4L2_CID_CONTRAST, 0, 255, 1, 128);
3548  	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3549  			V4L2_CID_SATURATION, 0, 255, 1, 128);
3550  	v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
3551  			V4L2_CID_HUE, 0, 255, 1, 0);
3552  	ctrl = v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3553  			V4L2_CID_DV_RX_IT_CONTENT_TYPE, V4L2_DV_IT_CONTENT_TYPE_NO_ITC,
3554  			0, V4L2_DV_IT_CONTENT_TYPE_NO_ITC);
3555  	if (ctrl)
3556  		ctrl->flags |= V4L2_CTRL_FLAG_VOLATILE;
3557  
3558  	state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
3559  			V4L2_CID_DV_RX_POWER_PRESENT, 0,
3560  			(1 << state->info->num_dv_ports) - 1, 0, 0);
3561  	state->rgb_quantization_range_ctrl =
3562  		v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
3563  			V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
3564  			0, V4L2_DV_RGB_RANGE_AUTO);
3565  
3566  	/* custom controls */
3567  	if (adv76xx_has_afe(state))
3568  		state->analog_sampling_phase_ctrl =
3569  			v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
3570  	state->free_run_color_manual_ctrl =
3571  		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
3572  	state->free_run_color_ctrl =
3573  		v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
3574  
3575  	sd->ctrl_handler = hdl;
3576  	if (hdl->error) {
3577  		err = hdl->error;
3578  		goto err_hdl;
3579  	}
3580  	if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
3581  		err = -ENODEV;
3582  		goto err_hdl;
3583  	}
3584  
3585  	for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
3586  		struct i2c_client *dummy_client;
3587  
3588  		if (!(BIT(i) & state->info->page_mask))
3589  			continue;
3590  
3591  		dummy_client = adv76xx_dummy_client(sd, i);
3592  		if (IS_ERR(dummy_client)) {
3593  			err = PTR_ERR(dummy_client);
3594  			v4l2_err(sd, "failed to create i2c client %u\n", i);
3595  			goto err_i2c;
3596  		}
3597  
3598  		state->i2c_clients[i] = dummy_client;
3599  	}
3600  
3601  	INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
3602  			adv76xx_delayed_work_enable_hotplug);
3603  
3604  	state->source_pad = state->info->num_dv_ports
3605  			  + (state->info->has_afe ? 2 : 0);
3606  	for (i = 0; i < state->source_pad; ++i)
3607  		state->pads[i].flags = MEDIA_PAD_FL_SINK;
3608  	state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;
3609  	sd->entity.function = MEDIA_ENT_F_DV_DECODER;
3610  
3611  	err = media_entity_pads_init(&sd->entity, state->source_pad + 1,
3612  				state->pads);
3613  	if (err)
3614  		goto err_work_queues;
3615  
3616  	/* Configure regmaps */
3617  	err = configure_regmaps(state);
3618  	if (err)
3619  		goto err_entity;
3620  
3621  	err = adv76xx_core_init(sd);
3622  	if (err)
3623  		goto err_entity;
3624  
3625  	if (client->irq) {
3626  		err = devm_request_threaded_irq(&client->dev,
3627  						client->irq,
3628  						NULL, adv76xx_irq_handler,
3629  						IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
3630  						client->name, state);
3631  		if (err)
3632  			goto err_entity;
3633  	}
3634  
3635  #if IS_ENABLED(CONFIG_VIDEO_ADV7604_CEC)
3636  	state->cec_adap = cec_allocate_adapter(&adv76xx_cec_adap_ops,
3637  		state, dev_name(&client->dev),
3638  		CEC_CAP_DEFAULTS, ADV76XX_MAX_ADDRS);
3639  	err = PTR_ERR_OR_ZERO(state->cec_adap);
3640  	if (err)
3641  		goto err_entity;
3642  #endif
3643  
3644  	v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
3645  			client->addr << 1, client->adapter->name);
3646  
3647  	err = v4l2_async_register_subdev(sd);
3648  	if (err)
3649  		goto err_entity;
3650  
3651  	return 0;
3652  
3653  err_entity:
3654  	media_entity_cleanup(&sd->entity);
3655  err_work_queues:
3656  	cancel_delayed_work(&state->delayed_work_enable_hotplug);
3657  err_i2c:
3658  	adv76xx_unregister_clients(state);
3659  err_hdl:
3660  	v4l2_ctrl_handler_free(hdl);
3661  	return err;
3662  }
3663  
3664  /* ----------------------------------------------------------------------- */
3665  
adv76xx_remove(struct i2c_client * client)3666  static void adv76xx_remove(struct i2c_client *client)
3667  {
3668  	struct v4l2_subdev *sd = i2c_get_clientdata(client);
3669  	struct adv76xx_state *state = to_state(sd);
3670  
3671  	/* disable interrupts */
3672  	io_write(sd, 0x40, 0);
3673  	io_write(sd, 0x41, 0);
3674  	io_write(sd, 0x46, 0);
3675  	io_write(sd, 0x6e, 0);
3676  	io_write(sd, 0x73, 0);
3677  
3678  	cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
3679  	v4l2_async_unregister_subdev(sd);
3680  	media_entity_cleanup(&sd->entity);
3681  	adv76xx_unregister_clients(to_state(sd));
3682  	v4l2_ctrl_handler_free(sd->ctrl_handler);
3683  }
3684  
3685  /* ----------------------------------------------------------------------- */
3686  
3687  static struct i2c_driver adv76xx_driver = {
3688  	.driver = {
3689  		.name = "adv7604",
3690  		.of_match_table = of_match_ptr(adv76xx_of_id),
3691  	},
3692  	.probe = adv76xx_probe,
3693  	.remove = adv76xx_remove,
3694  	.id_table = adv76xx_i2c_id,
3695  };
3696  
3697  module_i2c_driver(adv76xx_driver);
3698