1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4 *
5 * Uses a block device as cache for other block devices; optimized for SSDs.
6 * All allocation is done in buckets, which should match the erase block size
7 * of the device.
8 *
9 * Buckets containing cached data are kept on a heap sorted by priority;
10 * bucket priority is increased on cache hit, and periodically all the buckets
11 * on the heap have their priority scaled down. This currently is just used as
12 * an LRU but in the future should allow for more intelligent heuristics.
13 *
14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15 * counter. Garbage collection is used to remove stale pointers.
16 *
17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18 * as keys are inserted we only sort the pages that have not yet been written.
19 * When garbage collection is run, we resort the entire node.
20 *
21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22 */
23
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28
29 #include <linux/slab.h>
30 #include <linux/bitops.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/prefetch.h>
34 #include <linux/random.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched/clock.h>
37 #include <linux/rculist.h>
38 #include <linux/delay.h>
39 #include <trace/events/bcache.h>
40
41 /*
42 * Todo:
43 * register_bcache: Return errors out to userspace correctly
44 *
45 * Writeback: don't undirty key until after a cache flush
46 *
47 * Create an iterator for key pointers
48 *
49 * On btree write error, mark bucket such that it won't be freed from the cache
50 *
51 * Journalling:
52 * Check for bad keys in replay
53 * Propagate barriers
54 * Refcount journal entries in journal_replay
55 *
56 * Garbage collection:
57 * Finish incremental gc
58 * Gc should free old UUIDs, data for invalid UUIDs
59 *
60 * Provide a way to list backing device UUIDs we have data cached for, and
61 * probably how long it's been since we've seen them, and a way to invalidate
62 * dirty data for devices that will never be attached again
63 *
64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
65 * that based on that and how much dirty data we have we can keep writeback
66 * from being starved
67 *
68 * Add a tracepoint or somesuch to watch for writeback starvation
69 *
70 * When btree depth > 1 and splitting an interior node, we have to make sure
71 * alloc_bucket() cannot fail. This should be true but is not completely
72 * obvious.
73 *
74 * Plugging?
75 *
76 * If data write is less than hard sector size of ssd, round up offset in open
77 * bucket to the next whole sector
78 *
79 * Superblock needs to be fleshed out for multiple cache devices
80 *
81 * Add a sysfs tunable for the number of writeback IOs in flight
82 *
83 * Add a sysfs tunable for the number of open data buckets
84 *
85 * IO tracking: Can we track when one process is doing io on behalf of another?
86 * IO tracking: Don't use just an average, weigh more recent stuff higher
87 *
88 * Test module load/unload
89 */
90
91 #define MAX_NEED_GC 64
92 #define MAX_SAVE_PRIO 72
93 #define MAX_GC_TIMES 100
94 #define MIN_GC_NODES 100
95 #define GC_SLEEP_MS 100
96
97 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
98
99 #define PTR_HASH(c, k) \
100 (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
101
102 static struct workqueue_struct *btree_io_wq;
103
104 #define insert_lock(s, b) ((b)->level <= (s)->lock)
105
106
write_block(struct btree * b)107 static inline struct bset *write_block(struct btree *b)
108 {
109 return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache);
110 }
111
bch_btree_init_next(struct btree * b)112 static void bch_btree_init_next(struct btree *b)
113 {
114 /* If not a leaf node, always sort */
115 if (b->level && b->keys.nsets)
116 bch_btree_sort(&b->keys, &b->c->sort);
117 else
118 bch_btree_sort_lazy(&b->keys, &b->c->sort);
119
120 if (b->written < btree_blocks(b))
121 bch_bset_init_next(&b->keys, write_block(b),
122 bset_magic(&b->c->cache->sb));
123
124 }
125
126 /* Btree key manipulation */
127
bkey_put(struct cache_set * c,struct bkey * k)128 void bkey_put(struct cache_set *c, struct bkey *k)
129 {
130 unsigned int i;
131
132 for (i = 0; i < KEY_PTRS(k); i++)
133 if (ptr_available(c, k, i))
134 atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
135 }
136
137 /* Btree IO */
138
btree_csum_set(struct btree * b,struct bset * i)139 static uint64_t btree_csum_set(struct btree *b, struct bset *i)
140 {
141 uint64_t crc = b->key.ptr[0];
142 void *data = (void *) i + 8, *end = bset_bkey_last(i);
143
144 crc = crc64_be(crc, data, end - data);
145 return crc ^ 0xffffffffffffffffULL;
146 }
147
bch_btree_node_read_done(struct btree * b)148 void bch_btree_node_read_done(struct btree *b)
149 {
150 const char *err = "bad btree header";
151 struct bset *i = btree_bset_first(b);
152 struct btree_iter *iter;
153
154 /*
155 * c->fill_iter can allocate an iterator with more memory space
156 * than static MAX_BSETS.
157 * See the comment arount cache_set->fill_iter.
158 */
159 iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
160 iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size;
161 iter->used = 0;
162
163 #ifdef CONFIG_BCACHE_DEBUG
164 iter->b = &b->keys;
165 #endif
166
167 if (!i->seq)
168 goto err;
169
170 for (;
171 b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
172 i = write_block(b)) {
173 err = "unsupported bset version";
174 if (i->version > BCACHE_BSET_VERSION)
175 goto err;
176
177 err = "bad btree header";
178 if (b->written + set_blocks(i, block_bytes(b->c->cache)) >
179 btree_blocks(b))
180 goto err;
181
182 err = "bad magic";
183 if (i->magic != bset_magic(&b->c->cache->sb))
184 goto err;
185
186 err = "bad checksum";
187 switch (i->version) {
188 case 0:
189 if (i->csum != csum_set(i))
190 goto err;
191 break;
192 case BCACHE_BSET_VERSION:
193 if (i->csum != btree_csum_set(b, i))
194 goto err;
195 break;
196 }
197
198 err = "empty set";
199 if (i != b->keys.set[0].data && !i->keys)
200 goto err;
201
202 bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
203
204 b->written += set_blocks(i, block_bytes(b->c->cache));
205 }
206
207 err = "corrupted btree";
208 for (i = write_block(b);
209 bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
210 i = ((void *) i) + block_bytes(b->c->cache))
211 if (i->seq == b->keys.set[0].data->seq)
212 goto err;
213
214 bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
215
216 i = b->keys.set[0].data;
217 err = "short btree key";
218 if (b->keys.set[0].size &&
219 bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
220 goto err;
221
222 if (b->written < btree_blocks(b))
223 bch_bset_init_next(&b->keys, write_block(b),
224 bset_magic(&b->c->cache->sb));
225 out:
226 mempool_free(iter, &b->c->fill_iter);
227 return;
228 err:
229 set_btree_node_io_error(b);
230 bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
231 err, PTR_BUCKET_NR(b->c, &b->key, 0),
232 bset_block_offset(b, i), i->keys);
233 goto out;
234 }
235
btree_node_read_endio(struct bio * bio)236 static void btree_node_read_endio(struct bio *bio)
237 {
238 struct closure *cl = bio->bi_private;
239
240 closure_put(cl);
241 }
242
bch_btree_node_read(struct btree * b)243 static void bch_btree_node_read(struct btree *b)
244 {
245 uint64_t start_time = local_clock();
246 struct closure cl;
247 struct bio *bio;
248
249 trace_bcache_btree_read(b);
250
251 closure_init_stack(&cl);
252
253 bio = bch_bbio_alloc(b->c);
254 bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
255 bio->bi_end_io = btree_node_read_endio;
256 bio->bi_private = &cl;
257 bio->bi_opf = REQ_OP_READ | REQ_META;
258
259 bch_bio_map(bio, b->keys.set[0].data);
260
261 bch_submit_bbio(bio, b->c, &b->key, 0);
262 closure_sync(&cl);
263
264 if (bio->bi_status)
265 set_btree_node_io_error(b);
266
267 bch_bbio_free(bio, b->c);
268
269 if (btree_node_io_error(b))
270 goto err;
271
272 bch_btree_node_read_done(b);
273 bch_time_stats_update(&b->c->btree_read_time, start_time);
274
275 return;
276 err:
277 bch_cache_set_error(b->c, "io error reading bucket %zu",
278 PTR_BUCKET_NR(b->c, &b->key, 0));
279 }
280
btree_complete_write(struct btree * b,struct btree_write * w)281 static void btree_complete_write(struct btree *b, struct btree_write *w)
282 {
283 if (w->prio_blocked &&
284 !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
285 wake_up_allocators(b->c);
286
287 if (w->journal) {
288 atomic_dec_bug(w->journal);
289 __closure_wake_up(&b->c->journal.wait);
290 }
291
292 w->prio_blocked = 0;
293 w->journal = NULL;
294 }
295
btree_node_write_unlock(struct closure * cl)296 static void btree_node_write_unlock(struct closure *cl)
297 {
298 struct btree *b = container_of(cl, struct btree, io);
299
300 up(&b->io_mutex);
301 }
302
__btree_node_write_done(struct closure * cl)303 static void __btree_node_write_done(struct closure *cl)
304 {
305 struct btree *b = container_of(cl, struct btree, io);
306 struct btree_write *w = btree_prev_write(b);
307
308 bch_bbio_free(b->bio, b->c);
309 b->bio = NULL;
310 btree_complete_write(b, w);
311
312 if (btree_node_dirty(b))
313 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
314
315 closure_return_with_destructor(cl, btree_node_write_unlock);
316 }
317
btree_node_write_done(struct closure * cl)318 static void btree_node_write_done(struct closure *cl)
319 {
320 struct btree *b = container_of(cl, struct btree, io);
321
322 bio_free_pages(b->bio);
323 __btree_node_write_done(cl);
324 }
325
btree_node_write_endio(struct bio * bio)326 static void btree_node_write_endio(struct bio *bio)
327 {
328 struct closure *cl = bio->bi_private;
329 struct btree *b = container_of(cl, struct btree, io);
330
331 if (bio->bi_status)
332 set_btree_node_io_error(b);
333
334 bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
335 closure_put(cl);
336 }
337
do_btree_node_write(struct btree * b)338 static void do_btree_node_write(struct btree *b)
339 {
340 struct closure *cl = &b->io;
341 struct bset *i = btree_bset_last(b);
342 BKEY_PADDED(key) k;
343
344 i->version = BCACHE_BSET_VERSION;
345 i->csum = btree_csum_set(b, i);
346
347 BUG_ON(b->bio);
348 b->bio = bch_bbio_alloc(b->c);
349
350 b->bio->bi_end_io = btree_node_write_endio;
351 b->bio->bi_private = cl;
352 b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c->cache));
353 b->bio->bi_opf = REQ_OP_WRITE | REQ_META | REQ_FUA;
354 bch_bio_map(b->bio, i);
355
356 /*
357 * If we're appending to a leaf node, we don't technically need FUA -
358 * this write just needs to be persisted before the next journal write,
359 * which will be marked FLUSH|FUA.
360 *
361 * Similarly if we're writing a new btree root - the pointer is going to
362 * be in the next journal entry.
363 *
364 * But if we're writing a new btree node (that isn't a root) or
365 * appending to a non leaf btree node, we need either FUA or a flush
366 * when we write the parent with the new pointer. FUA is cheaper than a
367 * flush, and writes appending to leaf nodes aren't blocking anything so
368 * just make all btree node writes FUA to keep things sane.
369 */
370
371 bkey_copy(&k.key, &b->key);
372 SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
373 bset_sector_offset(&b->keys, i));
374
375 if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
376 struct bio_vec *bv;
377 void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
378 struct bvec_iter_all iter_all;
379
380 bio_for_each_segment_all(bv, b->bio, iter_all) {
381 memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
382 addr += PAGE_SIZE;
383 }
384
385 bch_submit_bbio(b->bio, b->c, &k.key, 0);
386
387 continue_at(cl, btree_node_write_done, NULL);
388 } else {
389 /*
390 * No problem for multipage bvec since the bio is
391 * just allocated
392 */
393 b->bio->bi_vcnt = 0;
394 bch_bio_map(b->bio, i);
395
396 bch_submit_bbio(b->bio, b->c, &k.key, 0);
397
398 closure_sync(cl);
399 continue_at_nobarrier(cl, __btree_node_write_done, NULL);
400 }
401 }
402
__bch_btree_node_write(struct btree * b,struct closure * parent)403 void __bch_btree_node_write(struct btree *b, struct closure *parent)
404 {
405 struct bset *i = btree_bset_last(b);
406
407 lockdep_assert_held(&b->write_lock);
408
409 trace_bcache_btree_write(b);
410
411 BUG_ON(current->bio_list);
412 BUG_ON(b->written >= btree_blocks(b));
413 BUG_ON(b->written && !i->keys);
414 BUG_ON(btree_bset_first(b)->seq != i->seq);
415 bch_check_keys(&b->keys, "writing");
416
417 cancel_delayed_work(&b->work);
418
419 /* If caller isn't waiting for write, parent refcount is cache set */
420 down(&b->io_mutex);
421 closure_init(&b->io, parent ?: &b->c->cl);
422
423 clear_bit(BTREE_NODE_dirty, &b->flags);
424 change_bit(BTREE_NODE_write_idx, &b->flags);
425
426 do_btree_node_write(b);
427
428 atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size,
429 &b->c->cache->btree_sectors_written);
430
431 b->written += set_blocks(i, block_bytes(b->c->cache));
432 }
433
bch_btree_node_write(struct btree * b,struct closure * parent)434 void bch_btree_node_write(struct btree *b, struct closure *parent)
435 {
436 unsigned int nsets = b->keys.nsets;
437
438 lockdep_assert_held(&b->lock);
439
440 __bch_btree_node_write(b, parent);
441
442 /*
443 * do verify if there was more than one set initially (i.e. we did a
444 * sort) and we sorted down to a single set:
445 */
446 if (nsets && !b->keys.nsets)
447 bch_btree_verify(b);
448
449 bch_btree_init_next(b);
450 }
451
bch_btree_node_write_sync(struct btree * b)452 static void bch_btree_node_write_sync(struct btree *b)
453 {
454 struct closure cl;
455
456 closure_init_stack(&cl);
457
458 mutex_lock(&b->write_lock);
459 bch_btree_node_write(b, &cl);
460 mutex_unlock(&b->write_lock);
461
462 closure_sync(&cl);
463 }
464
btree_node_write_work(struct work_struct * w)465 static void btree_node_write_work(struct work_struct *w)
466 {
467 struct btree *b = container_of(to_delayed_work(w), struct btree, work);
468
469 mutex_lock(&b->write_lock);
470 if (btree_node_dirty(b))
471 __bch_btree_node_write(b, NULL);
472 mutex_unlock(&b->write_lock);
473 }
474
bch_btree_leaf_dirty(struct btree * b,atomic_t * journal_ref)475 static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
476 {
477 struct bset *i = btree_bset_last(b);
478 struct btree_write *w = btree_current_write(b);
479
480 lockdep_assert_held(&b->write_lock);
481
482 BUG_ON(!b->written);
483 BUG_ON(!i->keys);
484
485 if (!btree_node_dirty(b))
486 queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
487
488 set_btree_node_dirty(b);
489
490 /*
491 * w->journal is always the oldest journal pin of all bkeys
492 * in the leaf node, to make sure the oldest jset seq won't
493 * be increased before this btree node is flushed.
494 */
495 if (journal_ref) {
496 if (w->journal &&
497 journal_pin_cmp(b->c, w->journal, journal_ref)) {
498 atomic_dec_bug(w->journal);
499 w->journal = NULL;
500 }
501
502 if (!w->journal) {
503 w->journal = journal_ref;
504 atomic_inc(w->journal);
505 }
506 }
507
508 /* Force write if set is too big */
509 if (set_bytes(i) > PAGE_SIZE - 48 &&
510 !current->bio_list)
511 bch_btree_node_write(b, NULL);
512 }
513
514 /*
515 * Btree in memory cache - allocation/freeing
516 * mca -> memory cache
517 */
518
519 #define mca_reserve(c) (((!IS_ERR_OR_NULL(c->root) && c->root->level) \
520 ? c->root->level : 1) * 8 + 16)
521 #define mca_can_free(c) \
522 max_t(int, 0, c->btree_cache_used - mca_reserve(c))
523
mca_data_free(struct btree * b)524 static void mca_data_free(struct btree *b)
525 {
526 BUG_ON(b->io_mutex.count != 1);
527
528 bch_btree_keys_free(&b->keys);
529
530 b->c->btree_cache_used--;
531 list_move(&b->list, &b->c->btree_cache_freed);
532 }
533
mca_bucket_free(struct btree * b)534 static void mca_bucket_free(struct btree *b)
535 {
536 BUG_ON(btree_node_dirty(b));
537
538 b->key.ptr[0] = 0;
539 hlist_del_init_rcu(&b->hash);
540 list_move(&b->list, &b->c->btree_cache_freeable);
541 }
542
btree_order(struct bkey * k)543 static unsigned int btree_order(struct bkey *k)
544 {
545 return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
546 }
547
mca_data_alloc(struct btree * b,struct bkey * k,gfp_t gfp)548 static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
549 {
550 if (!bch_btree_keys_alloc(&b->keys,
551 max_t(unsigned int,
552 ilog2(b->c->btree_pages),
553 btree_order(k)),
554 gfp)) {
555 b->c->btree_cache_used++;
556 list_move(&b->list, &b->c->btree_cache);
557 } else {
558 list_move(&b->list, &b->c->btree_cache_freed);
559 }
560 }
561
562 #define cmp_int(l, r) ((l > r) - (l < r))
563
564 #ifdef CONFIG_PROVE_LOCKING
btree_lock_cmp_fn(const struct lockdep_map * _a,const struct lockdep_map * _b)565 static int btree_lock_cmp_fn(const struct lockdep_map *_a,
566 const struct lockdep_map *_b)
567 {
568 const struct btree *a = container_of(_a, struct btree, lock.dep_map);
569 const struct btree *b = container_of(_b, struct btree, lock.dep_map);
570
571 return -cmp_int(a->level, b->level) ?: bkey_cmp(&a->key, &b->key);
572 }
573
btree_lock_print_fn(const struct lockdep_map * map)574 static void btree_lock_print_fn(const struct lockdep_map *map)
575 {
576 const struct btree *b = container_of(map, struct btree, lock.dep_map);
577
578 printk(KERN_CONT " l=%u %llu:%llu", b->level,
579 KEY_INODE(&b->key), KEY_OFFSET(&b->key));
580 }
581 #endif
582
mca_bucket_alloc(struct cache_set * c,struct bkey * k,gfp_t gfp)583 static struct btree *mca_bucket_alloc(struct cache_set *c,
584 struct bkey *k, gfp_t gfp)
585 {
586 /*
587 * kzalloc() is necessary here for initialization,
588 * see code comments in bch_btree_keys_init().
589 */
590 struct btree *b = kzalloc(sizeof(struct btree), gfp);
591
592 if (!b)
593 return NULL;
594
595 init_rwsem(&b->lock);
596 lock_set_cmp_fn(&b->lock, btree_lock_cmp_fn, btree_lock_print_fn);
597 mutex_init(&b->write_lock);
598 lockdep_set_novalidate_class(&b->write_lock);
599 INIT_LIST_HEAD(&b->list);
600 INIT_DELAYED_WORK(&b->work, btree_node_write_work);
601 b->c = c;
602 sema_init(&b->io_mutex, 1);
603
604 mca_data_alloc(b, k, gfp);
605 return b;
606 }
607
mca_reap(struct btree * b,unsigned int min_order,bool flush)608 static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
609 {
610 struct closure cl;
611
612 closure_init_stack(&cl);
613 lockdep_assert_held(&b->c->bucket_lock);
614
615 if (!down_write_trylock(&b->lock))
616 return -ENOMEM;
617
618 BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
619
620 if (b->keys.page_order < min_order)
621 goto out_unlock;
622
623 if (!flush) {
624 if (btree_node_dirty(b))
625 goto out_unlock;
626
627 if (down_trylock(&b->io_mutex))
628 goto out_unlock;
629 up(&b->io_mutex);
630 }
631
632 retry:
633 /*
634 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
635 * __bch_btree_node_write(). To avoid an extra flush, acquire
636 * b->write_lock before checking BTREE_NODE_dirty bit.
637 */
638 mutex_lock(&b->write_lock);
639 /*
640 * If this btree node is selected in btree_flush_write() by journal
641 * code, delay and retry until the node is flushed by journal code
642 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
643 */
644 if (btree_node_journal_flush(b)) {
645 pr_debug("bnode %p is flushing by journal, retry\n", b);
646 mutex_unlock(&b->write_lock);
647 udelay(1);
648 goto retry;
649 }
650
651 if (btree_node_dirty(b))
652 __bch_btree_node_write(b, &cl);
653 mutex_unlock(&b->write_lock);
654
655 closure_sync(&cl);
656
657 /* wait for any in flight btree write */
658 down(&b->io_mutex);
659 up(&b->io_mutex);
660
661 return 0;
662 out_unlock:
663 rw_unlock(true, b);
664 return -ENOMEM;
665 }
666
bch_mca_scan(struct shrinker * shrink,struct shrink_control * sc)667 static unsigned long bch_mca_scan(struct shrinker *shrink,
668 struct shrink_control *sc)
669 {
670 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
671 struct btree *b, *t;
672 unsigned long i, nr = sc->nr_to_scan;
673 unsigned long freed = 0;
674 unsigned int btree_cache_used;
675
676 if (c->shrinker_disabled)
677 return SHRINK_STOP;
678
679 if (c->btree_cache_alloc_lock)
680 return SHRINK_STOP;
681
682 /* Return -1 if we can't do anything right now */
683 if (sc->gfp_mask & __GFP_IO)
684 mutex_lock(&c->bucket_lock);
685 else if (!mutex_trylock(&c->bucket_lock))
686 return -1;
687
688 /*
689 * It's _really_ critical that we don't free too many btree nodes - we
690 * have to always leave ourselves a reserve. The reserve is how we
691 * guarantee that allocating memory for a new btree node can always
692 * succeed, so that inserting keys into the btree can always succeed and
693 * IO can always make forward progress:
694 */
695 nr /= c->btree_pages;
696 if (nr == 0)
697 nr = 1;
698 nr = min_t(unsigned long, nr, mca_can_free(c));
699
700 i = 0;
701 btree_cache_used = c->btree_cache_used;
702 list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
703 if (nr <= 0)
704 goto out;
705
706 if (!mca_reap(b, 0, false)) {
707 mca_data_free(b);
708 rw_unlock(true, b);
709 freed++;
710 }
711 nr--;
712 i++;
713 }
714
715 list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
716 if (nr <= 0 || i >= btree_cache_used)
717 goto out;
718
719 if (!mca_reap(b, 0, false)) {
720 mca_bucket_free(b);
721 mca_data_free(b);
722 rw_unlock(true, b);
723 freed++;
724 }
725
726 nr--;
727 i++;
728 }
729 out:
730 mutex_unlock(&c->bucket_lock);
731 return freed * c->btree_pages;
732 }
733
bch_mca_count(struct shrinker * shrink,struct shrink_control * sc)734 static unsigned long bch_mca_count(struct shrinker *shrink,
735 struct shrink_control *sc)
736 {
737 struct cache_set *c = container_of(shrink, struct cache_set, shrink);
738
739 if (c->shrinker_disabled)
740 return 0;
741
742 if (c->btree_cache_alloc_lock)
743 return 0;
744
745 return mca_can_free(c) * c->btree_pages;
746 }
747
bch_btree_cache_free(struct cache_set * c)748 void bch_btree_cache_free(struct cache_set *c)
749 {
750 struct btree *b;
751 struct closure cl;
752
753 closure_init_stack(&cl);
754
755 if (c->shrink.list.next)
756 unregister_shrinker(&c->shrink);
757
758 mutex_lock(&c->bucket_lock);
759
760 #ifdef CONFIG_BCACHE_DEBUG
761 if (c->verify_data)
762 list_move(&c->verify_data->list, &c->btree_cache);
763
764 free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb)));
765 #endif
766
767 list_splice(&c->btree_cache_freeable,
768 &c->btree_cache);
769
770 while (!list_empty(&c->btree_cache)) {
771 b = list_first_entry(&c->btree_cache, struct btree, list);
772
773 /*
774 * This function is called by cache_set_free(), no I/O
775 * request on cache now, it is unnecessary to acquire
776 * b->write_lock before clearing BTREE_NODE_dirty anymore.
777 */
778 if (btree_node_dirty(b)) {
779 btree_complete_write(b, btree_current_write(b));
780 clear_bit(BTREE_NODE_dirty, &b->flags);
781 }
782 mca_data_free(b);
783 }
784
785 while (!list_empty(&c->btree_cache_freed)) {
786 b = list_first_entry(&c->btree_cache_freed,
787 struct btree, list);
788 list_del(&b->list);
789 cancel_delayed_work_sync(&b->work);
790 kfree(b);
791 }
792
793 mutex_unlock(&c->bucket_lock);
794 }
795
bch_btree_cache_alloc(struct cache_set * c)796 int bch_btree_cache_alloc(struct cache_set *c)
797 {
798 unsigned int i;
799
800 for (i = 0; i < mca_reserve(c); i++)
801 if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
802 return -ENOMEM;
803
804 list_splice_init(&c->btree_cache,
805 &c->btree_cache_freeable);
806
807 #ifdef CONFIG_BCACHE_DEBUG
808 mutex_init(&c->verify_lock);
809
810 c->verify_ondisk = (void *)
811 __get_free_pages(GFP_KERNEL|__GFP_COMP,
812 ilog2(meta_bucket_pages(&c->cache->sb)));
813 if (!c->verify_ondisk) {
814 /*
815 * Don't worry about the mca_rereserve buckets
816 * allocated in previous for-loop, they will be
817 * handled properly in bch_cache_set_unregister().
818 */
819 return -ENOMEM;
820 }
821
822 c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
823
824 if (c->verify_data &&
825 c->verify_data->keys.set->data)
826 list_del_init(&c->verify_data->list);
827 else
828 c->verify_data = NULL;
829 #endif
830
831 c->shrink.count_objects = bch_mca_count;
832 c->shrink.scan_objects = bch_mca_scan;
833 c->shrink.seeks = 4;
834 c->shrink.batch = c->btree_pages * 2;
835
836 if (register_shrinker(&c->shrink, "md-bcache:%pU", c->set_uuid))
837 pr_warn("bcache: %s: could not register shrinker\n",
838 __func__);
839
840 return 0;
841 }
842
843 /* Btree in memory cache - hash table */
844
mca_hash(struct cache_set * c,struct bkey * k)845 static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
846 {
847 return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
848 }
849
mca_find(struct cache_set * c,struct bkey * k)850 static struct btree *mca_find(struct cache_set *c, struct bkey *k)
851 {
852 struct btree *b;
853
854 rcu_read_lock();
855 hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
856 if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
857 goto out;
858 b = NULL;
859 out:
860 rcu_read_unlock();
861 return b;
862 }
863
mca_cannibalize_lock(struct cache_set * c,struct btree_op * op)864 static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
865 {
866 spin_lock(&c->btree_cannibalize_lock);
867 if (likely(c->btree_cache_alloc_lock == NULL)) {
868 c->btree_cache_alloc_lock = current;
869 } else if (c->btree_cache_alloc_lock != current) {
870 if (op)
871 prepare_to_wait(&c->btree_cache_wait, &op->wait,
872 TASK_UNINTERRUPTIBLE);
873 spin_unlock(&c->btree_cannibalize_lock);
874 return -EINTR;
875 }
876 spin_unlock(&c->btree_cannibalize_lock);
877
878 return 0;
879 }
880
mca_cannibalize(struct cache_set * c,struct btree_op * op,struct bkey * k)881 static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
882 struct bkey *k)
883 {
884 struct btree *b;
885
886 trace_bcache_btree_cache_cannibalize(c);
887
888 if (mca_cannibalize_lock(c, op))
889 return ERR_PTR(-EINTR);
890
891 list_for_each_entry_reverse(b, &c->btree_cache, list)
892 if (!mca_reap(b, btree_order(k), false))
893 return b;
894
895 list_for_each_entry_reverse(b, &c->btree_cache, list)
896 if (!mca_reap(b, btree_order(k), true))
897 return b;
898
899 WARN(1, "btree cache cannibalize failed\n");
900 return ERR_PTR(-ENOMEM);
901 }
902
903 /*
904 * We can only have one thread cannibalizing other cached btree nodes at a time,
905 * or we'll deadlock. We use an open coded mutex to ensure that, which a
906 * cannibalize_bucket() will take. This means every time we unlock the root of
907 * the btree, we need to release this lock if we have it held.
908 */
bch_cannibalize_unlock(struct cache_set * c)909 void bch_cannibalize_unlock(struct cache_set *c)
910 {
911 spin_lock(&c->btree_cannibalize_lock);
912 if (c->btree_cache_alloc_lock == current) {
913 c->btree_cache_alloc_lock = NULL;
914 wake_up(&c->btree_cache_wait);
915 }
916 spin_unlock(&c->btree_cannibalize_lock);
917 }
918
mca_alloc(struct cache_set * c,struct btree_op * op,struct bkey * k,int level)919 static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
920 struct bkey *k, int level)
921 {
922 struct btree *b;
923
924 BUG_ON(current->bio_list);
925
926 lockdep_assert_held(&c->bucket_lock);
927
928 if (mca_find(c, k))
929 return NULL;
930
931 /* btree_free() doesn't free memory; it sticks the node on the end of
932 * the list. Check if there's any freed nodes there:
933 */
934 list_for_each_entry(b, &c->btree_cache_freeable, list)
935 if (!mca_reap(b, btree_order(k), false))
936 goto out;
937
938 /* We never free struct btree itself, just the memory that holds the on
939 * disk node. Check the freed list before allocating a new one:
940 */
941 list_for_each_entry(b, &c->btree_cache_freed, list)
942 if (!mca_reap(b, 0, false)) {
943 mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
944 if (!b->keys.set[0].data)
945 goto err;
946 else
947 goto out;
948 }
949
950 b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
951 if (!b)
952 goto err;
953
954 BUG_ON(!down_write_trylock(&b->lock));
955 if (!b->keys.set->data)
956 goto err;
957 out:
958 BUG_ON(b->io_mutex.count != 1);
959
960 bkey_copy(&b->key, k);
961 list_move(&b->list, &c->btree_cache);
962 hlist_del_init_rcu(&b->hash);
963 hlist_add_head_rcu(&b->hash, mca_hash(c, k));
964
965 lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
966 b->parent = (void *) ~0UL;
967 b->flags = 0;
968 b->written = 0;
969 b->level = level;
970
971 if (!b->level)
972 bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
973 &b->c->expensive_debug_checks);
974 else
975 bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
976 &b->c->expensive_debug_checks);
977
978 return b;
979 err:
980 if (b)
981 rw_unlock(true, b);
982
983 b = mca_cannibalize(c, op, k);
984 if (!IS_ERR(b))
985 goto out;
986
987 return b;
988 }
989
990 /*
991 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
992 * in from disk if necessary.
993 *
994 * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN.
995 *
996 * The btree node will have either a read or a write lock held, depending on
997 * level and op->lock.
998 */
bch_btree_node_get(struct cache_set * c,struct btree_op * op,struct bkey * k,int level,bool write,struct btree * parent)999 struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
1000 struct bkey *k, int level, bool write,
1001 struct btree *parent)
1002 {
1003 int i = 0;
1004 struct btree *b;
1005
1006 BUG_ON(level < 0);
1007 retry:
1008 b = mca_find(c, k);
1009
1010 if (!b) {
1011 if (current->bio_list)
1012 return ERR_PTR(-EAGAIN);
1013
1014 mutex_lock(&c->bucket_lock);
1015 b = mca_alloc(c, op, k, level);
1016 mutex_unlock(&c->bucket_lock);
1017
1018 if (!b)
1019 goto retry;
1020 if (IS_ERR(b))
1021 return b;
1022
1023 bch_btree_node_read(b);
1024
1025 if (!write)
1026 downgrade_write(&b->lock);
1027 } else {
1028 rw_lock(write, b, level);
1029 if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1030 rw_unlock(write, b);
1031 goto retry;
1032 }
1033 BUG_ON(b->level != level);
1034 }
1035
1036 if (btree_node_io_error(b)) {
1037 rw_unlock(write, b);
1038 return ERR_PTR(-EIO);
1039 }
1040
1041 BUG_ON(!b->written);
1042
1043 b->parent = parent;
1044
1045 for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1046 prefetch(b->keys.set[i].tree);
1047 prefetch(b->keys.set[i].data);
1048 }
1049
1050 for (; i <= b->keys.nsets; i++)
1051 prefetch(b->keys.set[i].data);
1052
1053 return b;
1054 }
1055
btree_node_prefetch(struct btree * parent,struct bkey * k)1056 static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1057 {
1058 struct btree *b;
1059
1060 mutex_lock(&parent->c->bucket_lock);
1061 b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1062 mutex_unlock(&parent->c->bucket_lock);
1063
1064 if (!IS_ERR_OR_NULL(b)) {
1065 b->parent = parent;
1066 bch_btree_node_read(b);
1067 rw_unlock(true, b);
1068 }
1069 }
1070
1071 /* Btree alloc */
1072
btree_node_free(struct btree * b)1073 static void btree_node_free(struct btree *b)
1074 {
1075 trace_bcache_btree_node_free(b);
1076
1077 BUG_ON(b == b->c->root);
1078
1079 retry:
1080 mutex_lock(&b->write_lock);
1081 /*
1082 * If the btree node is selected and flushing in btree_flush_write(),
1083 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1084 * then it is safe to free the btree node here. Otherwise this btree
1085 * node will be in race condition.
1086 */
1087 if (btree_node_journal_flush(b)) {
1088 mutex_unlock(&b->write_lock);
1089 pr_debug("bnode %p journal_flush set, retry\n", b);
1090 udelay(1);
1091 goto retry;
1092 }
1093
1094 if (btree_node_dirty(b)) {
1095 btree_complete_write(b, btree_current_write(b));
1096 clear_bit(BTREE_NODE_dirty, &b->flags);
1097 }
1098
1099 mutex_unlock(&b->write_lock);
1100
1101 cancel_delayed_work(&b->work);
1102
1103 mutex_lock(&b->c->bucket_lock);
1104 bch_bucket_free(b->c, &b->key);
1105 mca_bucket_free(b);
1106 mutex_unlock(&b->c->bucket_lock);
1107 }
1108
__bch_btree_node_alloc(struct cache_set * c,struct btree_op * op,int level,bool wait,struct btree * parent)1109 struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1110 int level, bool wait,
1111 struct btree *parent)
1112 {
1113 BKEY_PADDED(key) k;
1114 struct btree *b;
1115
1116 mutex_lock(&c->bucket_lock);
1117 retry:
1118 /* return ERR_PTR(-EAGAIN) when it fails */
1119 b = ERR_PTR(-EAGAIN);
1120 if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait))
1121 goto err;
1122
1123 bkey_put(c, &k.key);
1124 SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1125
1126 b = mca_alloc(c, op, &k.key, level);
1127 if (IS_ERR(b))
1128 goto err_free;
1129
1130 if (!b) {
1131 cache_bug(c,
1132 "Tried to allocate bucket that was in btree cache");
1133 goto retry;
1134 }
1135
1136 b->parent = parent;
1137 bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb));
1138
1139 mutex_unlock(&c->bucket_lock);
1140
1141 trace_bcache_btree_node_alloc(b);
1142 return b;
1143 err_free:
1144 bch_bucket_free(c, &k.key);
1145 err:
1146 mutex_unlock(&c->bucket_lock);
1147
1148 trace_bcache_btree_node_alloc_fail(c);
1149 return b;
1150 }
1151
bch_btree_node_alloc(struct cache_set * c,struct btree_op * op,int level,struct btree * parent)1152 static struct btree *bch_btree_node_alloc(struct cache_set *c,
1153 struct btree_op *op, int level,
1154 struct btree *parent)
1155 {
1156 return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1157 }
1158
btree_node_alloc_replacement(struct btree * b,struct btree_op * op)1159 static struct btree *btree_node_alloc_replacement(struct btree *b,
1160 struct btree_op *op)
1161 {
1162 struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1163
1164 if (!IS_ERR(n)) {
1165 mutex_lock(&n->write_lock);
1166 bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1167 bkey_copy_key(&n->key, &b->key);
1168 mutex_unlock(&n->write_lock);
1169 }
1170
1171 return n;
1172 }
1173
make_btree_freeing_key(struct btree * b,struct bkey * k)1174 static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1175 {
1176 unsigned int i;
1177
1178 mutex_lock(&b->c->bucket_lock);
1179
1180 atomic_inc(&b->c->prio_blocked);
1181
1182 bkey_copy(k, &b->key);
1183 bkey_copy_key(k, &ZERO_KEY);
1184
1185 for (i = 0; i < KEY_PTRS(k); i++)
1186 SET_PTR_GEN(k, i,
1187 bch_inc_gen(b->c->cache,
1188 PTR_BUCKET(b->c, &b->key, i)));
1189
1190 mutex_unlock(&b->c->bucket_lock);
1191 }
1192
btree_check_reserve(struct btree * b,struct btree_op * op)1193 static int btree_check_reserve(struct btree *b, struct btree_op *op)
1194 {
1195 struct cache_set *c = b->c;
1196 struct cache *ca = c->cache;
1197 unsigned int reserve = (c->root->level - b->level) * 2 + 1;
1198
1199 mutex_lock(&c->bucket_lock);
1200
1201 if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1202 if (op)
1203 prepare_to_wait(&c->btree_cache_wait, &op->wait,
1204 TASK_UNINTERRUPTIBLE);
1205 mutex_unlock(&c->bucket_lock);
1206 return -EINTR;
1207 }
1208
1209 mutex_unlock(&c->bucket_lock);
1210
1211 return mca_cannibalize_lock(b->c, op);
1212 }
1213
1214 /* Garbage collection */
1215
__bch_btree_mark_key(struct cache_set * c,int level,struct bkey * k)1216 static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1217 struct bkey *k)
1218 {
1219 uint8_t stale = 0;
1220 unsigned int i;
1221 struct bucket *g;
1222
1223 /*
1224 * ptr_invalid() can't return true for the keys that mark btree nodes as
1225 * freed, but since ptr_bad() returns true we'll never actually use them
1226 * for anything and thus we don't want mark their pointers here
1227 */
1228 if (!bkey_cmp(k, &ZERO_KEY))
1229 return stale;
1230
1231 for (i = 0; i < KEY_PTRS(k); i++) {
1232 if (!ptr_available(c, k, i))
1233 continue;
1234
1235 g = PTR_BUCKET(c, k, i);
1236
1237 if (gen_after(g->last_gc, PTR_GEN(k, i)))
1238 g->last_gc = PTR_GEN(k, i);
1239
1240 if (ptr_stale(c, k, i)) {
1241 stale = max(stale, ptr_stale(c, k, i));
1242 continue;
1243 }
1244
1245 cache_bug_on(GC_MARK(g) &&
1246 (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1247 c, "inconsistent ptrs: mark = %llu, level = %i",
1248 GC_MARK(g), level);
1249
1250 if (level)
1251 SET_GC_MARK(g, GC_MARK_METADATA);
1252 else if (KEY_DIRTY(k))
1253 SET_GC_MARK(g, GC_MARK_DIRTY);
1254 else if (!GC_MARK(g))
1255 SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1256
1257 /* guard against overflow */
1258 SET_GC_SECTORS_USED(g, min_t(unsigned int,
1259 GC_SECTORS_USED(g) + KEY_SIZE(k),
1260 MAX_GC_SECTORS_USED));
1261
1262 BUG_ON(!GC_SECTORS_USED(g));
1263 }
1264
1265 return stale;
1266 }
1267
1268 #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
1269
bch_initial_mark_key(struct cache_set * c,int level,struct bkey * k)1270 void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1271 {
1272 unsigned int i;
1273
1274 for (i = 0; i < KEY_PTRS(k); i++)
1275 if (ptr_available(c, k, i) &&
1276 !ptr_stale(c, k, i)) {
1277 struct bucket *b = PTR_BUCKET(c, k, i);
1278
1279 b->gen = PTR_GEN(k, i);
1280
1281 if (level && bkey_cmp(k, &ZERO_KEY))
1282 b->prio = BTREE_PRIO;
1283 else if (!level && b->prio == BTREE_PRIO)
1284 b->prio = INITIAL_PRIO;
1285 }
1286
1287 __bch_btree_mark_key(c, level, k);
1288 }
1289
bch_update_bucket_in_use(struct cache_set * c,struct gc_stat * stats)1290 void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1291 {
1292 stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1293 }
1294
btree_gc_mark_node(struct btree * b,struct gc_stat * gc)1295 static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1296 {
1297 uint8_t stale = 0;
1298 unsigned int keys = 0, good_keys = 0;
1299 struct bkey *k;
1300 struct btree_iter iter;
1301 struct bset_tree *t;
1302
1303 gc->nodes++;
1304
1305 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1306 stale = max(stale, btree_mark_key(b, k));
1307 keys++;
1308
1309 if (bch_ptr_bad(&b->keys, k))
1310 continue;
1311
1312 gc->key_bytes += bkey_u64s(k);
1313 gc->nkeys++;
1314 good_keys++;
1315
1316 gc->data += KEY_SIZE(k);
1317 }
1318
1319 for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1320 btree_bug_on(t->size &&
1321 bset_written(&b->keys, t) &&
1322 bkey_cmp(&b->key, &t->end) < 0,
1323 b, "found short btree key in gc");
1324
1325 if (b->c->gc_always_rewrite)
1326 return true;
1327
1328 if (stale > 10)
1329 return true;
1330
1331 if ((keys - good_keys) * 2 > keys)
1332 return true;
1333
1334 return false;
1335 }
1336
1337 #define GC_MERGE_NODES 4U
1338
1339 struct gc_merge_info {
1340 struct btree *b;
1341 unsigned int keys;
1342 };
1343
1344 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1345 struct keylist *insert_keys,
1346 atomic_t *journal_ref,
1347 struct bkey *replace_key);
1348
btree_gc_coalesce(struct btree * b,struct btree_op * op,struct gc_stat * gc,struct gc_merge_info * r)1349 static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1350 struct gc_stat *gc, struct gc_merge_info *r)
1351 {
1352 unsigned int i, nodes = 0, keys = 0, blocks;
1353 struct btree *new_nodes[GC_MERGE_NODES];
1354 struct keylist keylist;
1355 struct closure cl;
1356 struct bkey *k;
1357
1358 bch_keylist_init(&keylist);
1359
1360 if (btree_check_reserve(b, NULL))
1361 return 0;
1362
1363 memset(new_nodes, 0, sizeof(new_nodes));
1364 closure_init_stack(&cl);
1365
1366 while (nodes < GC_MERGE_NODES && !IS_ERR(r[nodes].b))
1367 keys += r[nodes++].keys;
1368
1369 blocks = btree_default_blocks(b->c) * 2 / 3;
1370
1371 if (nodes < 2 ||
1372 __set_blocks(b->keys.set[0].data, keys,
1373 block_bytes(b->c->cache)) > blocks * (nodes - 1))
1374 return 0;
1375
1376 for (i = 0; i < nodes; i++) {
1377 new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1378 if (IS_ERR(new_nodes[i]))
1379 goto out_nocoalesce;
1380 }
1381
1382 /*
1383 * We have to check the reserve here, after we've allocated our new
1384 * nodes, to make sure the insert below will succeed - we also check
1385 * before as an optimization to potentially avoid a bunch of expensive
1386 * allocs/sorts
1387 */
1388 if (btree_check_reserve(b, NULL))
1389 goto out_nocoalesce;
1390
1391 for (i = 0; i < nodes; i++)
1392 mutex_lock(&new_nodes[i]->write_lock);
1393
1394 for (i = nodes - 1; i > 0; --i) {
1395 struct bset *n1 = btree_bset_first(new_nodes[i]);
1396 struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1397 struct bkey *k, *last = NULL;
1398
1399 keys = 0;
1400
1401 if (i > 1) {
1402 for (k = n2->start;
1403 k < bset_bkey_last(n2);
1404 k = bkey_next(k)) {
1405 if (__set_blocks(n1, n1->keys + keys +
1406 bkey_u64s(k),
1407 block_bytes(b->c->cache)) > blocks)
1408 break;
1409
1410 last = k;
1411 keys += bkey_u64s(k);
1412 }
1413 } else {
1414 /*
1415 * Last node we're not getting rid of - we're getting
1416 * rid of the node at r[0]. Have to try and fit all of
1417 * the remaining keys into this node; we can't ensure
1418 * they will always fit due to rounding and variable
1419 * length keys (shouldn't be possible in practice,
1420 * though)
1421 */
1422 if (__set_blocks(n1, n1->keys + n2->keys,
1423 block_bytes(b->c->cache)) >
1424 btree_blocks(new_nodes[i]))
1425 goto out_unlock_nocoalesce;
1426
1427 keys = n2->keys;
1428 /* Take the key of the node we're getting rid of */
1429 last = &r->b->key;
1430 }
1431
1432 BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) >
1433 btree_blocks(new_nodes[i]));
1434
1435 if (last)
1436 bkey_copy_key(&new_nodes[i]->key, last);
1437
1438 memcpy(bset_bkey_last(n1),
1439 n2->start,
1440 (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1441
1442 n1->keys += keys;
1443 r[i].keys = n1->keys;
1444
1445 memmove(n2->start,
1446 bset_bkey_idx(n2, keys),
1447 (void *) bset_bkey_last(n2) -
1448 (void *) bset_bkey_idx(n2, keys));
1449
1450 n2->keys -= keys;
1451
1452 if (__bch_keylist_realloc(&keylist,
1453 bkey_u64s(&new_nodes[i]->key)))
1454 goto out_unlock_nocoalesce;
1455
1456 bch_btree_node_write(new_nodes[i], &cl);
1457 bch_keylist_add(&keylist, &new_nodes[i]->key);
1458 }
1459
1460 for (i = 0; i < nodes; i++)
1461 mutex_unlock(&new_nodes[i]->write_lock);
1462
1463 closure_sync(&cl);
1464
1465 /* We emptied out this node */
1466 BUG_ON(btree_bset_first(new_nodes[0])->keys);
1467 btree_node_free(new_nodes[0]);
1468 rw_unlock(true, new_nodes[0]);
1469 new_nodes[0] = NULL;
1470
1471 for (i = 0; i < nodes; i++) {
1472 if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1473 goto out_nocoalesce;
1474
1475 make_btree_freeing_key(r[i].b, keylist.top);
1476 bch_keylist_push(&keylist);
1477 }
1478
1479 bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1480 BUG_ON(!bch_keylist_empty(&keylist));
1481
1482 for (i = 0; i < nodes; i++) {
1483 btree_node_free(r[i].b);
1484 rw_unlock(true, r[i].b);
1485
1486 r[i].b = new_nodes[i];
1487 }
1488
1489 memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1490 r[nodes - 1].b = ERR_PTR(-EINTR);
1491
1492 trace_bcache_btree_gc_coalesce(nodes);
1493 gc->nodes--;
1494
1495 bch_keylist_free(&keylist);
1496
1497 /* Invalidated our iterator */
1498 return -EINTR;
1499
1500 out_unlock_nocoalesce:
1501 for (i = 0; i < nodes; i++)
1502 mutex_unlock(&new_nodes[i]->write_lock);
1503
1504 out_nocoalesce:
1505 closure_sync(&cl);
1506
1507 while ((k = bch_keylist_pop(&keylist)))
1508 if (!bkey_cmp(k, &ZERO_KEY))
1509 atomic_dec(&b->c->prio_blocked);
1510 bch_keylist_free(&keylist);
1511
1512 for (i = 0; i < nodes; i++)
1513 if (!IS_ERR(new_nodes[i])) {
1514 btree_node_free(new_nodes[i]);
1515 rw_unlock(true, new_nodes[i]);
1516 }
1517 return 0;
1518 }
1519
btree_gc_rewrite_node(struct btree * b,struct btree_op * op,struct btree * replace)1520 static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1521 struct btree *replace)
1522 {
1523 struct keylist keys;
1524 struct btree *n;
1525
1526 if (btree_check_reserve(b, NULL))
1527 return 0;
1528
1529 n = btree_node_alloc_replacement(replace, NULL);
1530
1531 /* recheck reserve after allocating replacement node */
1532 if (btree_check_reserve(b, NULL)) {
1533 btree_node_free(n);
1534 rw_unlock(true, n);
1535 return 0;
1536 }
1537
1538 bch_btree_node_write_sync(n);
1539
1540 bch_keylist_init(&keys);
1541 bch_keylist_add(&keys, &n->key);
1542
1543 make_btree_freeing_key(replace, keys.top);
1544 bch_keylist_push(&keys);
1545
1546 bch_btree_insert_node(b, op, &keys, NULL, NULL);
1547 BUG_ON(!bch_keylist_empty(&keys));
1548
1549 btree_node_free(replace);
1550 rw_unlock(true, n);
1551
1552 /* Invalidated our iterator */
1553 return -EINTR;
1554 }
1555
btree_gc_count_keys(struct btree * b)1556 static unsigned int btree_gc_count_keys(struct btree *b)
1557 {
1558 struct bkey *k;
1559 struct btree_iter iter;
1560 unsigned int ret = 0;
1561
1562 for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1563 ret += bkey_u64s(k);
1564
1565 return ret;
1566 }
1567
btree_gc_min_nodes(struct cache_set * c)1568 static size_t btree_gc_min_nodes(struct cache_set *c)
1569 {
1570 size_t min_nodes;
1571
1572 /*
1573 * Since incremental GC would stop 100ms when front
1574 * side I/O comes, so when there are many btree nodes,
1575 * if GC only processes constant (100) nodes each time,
1576 * GC would last a long time, and the front side I/Os
1577 * would run out of the buckets (since no new bucket
1578 * can be allocated during GC), and be blocked again.
1579 * So GC should not process constant nodes, but varied
1580 * nodes according to the number of btree nodes, which
1581 * realized by dividing GC into constant(100) times,
1582 * so when there are many btree nodes, GC can process
1583 * more nodes each time, otherwise, GC will process less
1584 * nodes each time (but no less than MIN_GC_NODES)
1585 */
1586 min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1587 if (min_nodes < MIN_GC_NODES)
1588 min_nodes = MIN_GC_NODES;
1589
1590 return min_nodes;
1591 }
1592
1593
btree_gc_recurse(struct btree * b,struct btree_op * op,struct closure * writes,struct gc_stat * gc)1594 static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1595 struct closure *writes, struct gc_stat *gc)
1596 {
1597 int ret = 0;
1598 bool should_rewrite;
1599 struct bkey *k;
1600 struct btree_iter iter;
1601 struct gc_merge_info r[GC_MERGE_NODES];
1602 struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1603
1604 bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1605
1606 for (i = r; i < r + ARRAY_SIZE(r); i++)
1607 i->b = ERR_PTR(-EINTR);
1608
1609 while (1) {
1610 k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1611 if (k) {
1612 r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1613 true, b);
1614 if (IS_ERR(r->b)) {
1615 ret = PTR_ERR(r->b);
1616 break;
1617 }
1618
1619 r->keys = btree_gc_count_keys(r->b);
1620
1621 ret = btree_gc_coalesce(b, op, gc, r);
1622 if (ret)
1623 break;
1624 }
1625
1626 if (!last->b)
1627 break;
1628
1629 if (!IS_ERR(last->b)) {
1630 should_rewrite = btree_gc_mark_node(last->b, gc);
1631 if (should_rewrite) {
1632 ret = btree_gc_rewrite_node(b, op, last->b);
1633 if (ret)
1634 break;
1635 }
1636
1637 if (last->b->level) {
1638 ret = btree_gc_recurse(last->b, op, writes, gc);
1639 if (ret)
1640 break;
1641 }
1642
1643 bkey_copy_key(&b->c->gc_done, &last->b->key);
1644
1645 /*
1646 * Must flush leaf nodes before gc ends, since replace
1647 * operations aren't journalled
1648 */
1649 mutex_lock(&last->b->write_lock);
1650 if (btree_node_dirty(last->b))
1651 bch_btree_node_write(last->b, writes);
1652 mutex_unlock(&last->b->write_lock);
1653 rw_unlock(true, last->b);
1654 }
1655
1656 memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1657 r->b = NULL;
1658
1659 if (atomic_read(&b->c->search_inflight) &&
1660 gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1661 gc->nodes_pre = gc->nodes;
1662 ret = -EAGAIN;
1663 break;
1664 }
1665
1666 if (need_resched()) {
1667 ret = -EAGAIN;
1668 break;
1669 }
1670 }
1671
1672 for (i = r; i < r + ARRAY_SIZE(r); i++)
1673 if (!IS_ERR_OR_NULL(i->b)) {
1674 mutex_lock(&i->b->write_lock);
1675 if (btree_node_dirty(i->b))
1676 bch_btree_node_write(i->b, writes);
1677 mutex_unlock(&i->b->write_lock);
1678 rw_unlock(true, i->b);
1679 }
1680
1681 return ret;
1682 }
1683
bch_btree_gc_root(struct btree * b,struct btree_op * op,struct closure * writes,struct gc_stat * gc)1684 static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1685 struct closure *writes, struct gc_stat *gc)
1686 {
1687 struct btree *n = NULL;
1688 int ret = 0;
1689 bool should_rewrite;
1690
1691 should_rewrite = btree_gc_mark_node(b, gc);
1692 if (should_rewrite) {
1693 n = btree_node_alloc_replacement(b, NULL);
1694
1695 if (!IS_ERR(n)) {
1696 bch_btree_node_write_sync(n);
1697
1698 bch_btree_set_root(n);
1699 btree_node_free(b);
1700 rw_unlock(true, n);
1701
1702 return -EINTR;
1703 }
1704 }
1705
1706 __bch_btree_mark_key(b->c, b->level + 1, &b->key);
1707
1708 if (b->level) {
1709 ret = btree_gc_recurse(b, op, writes, gc);
1710 if (ret)
1711 return ret;
1712 }
1713
1714 bkey_copy_key(&b->c->gc_done, &b->key);
1715
1716 return ret;
1717 }
1718
btree_gc_start(struct cache_set * c)1719 static void btree_gc_start(struct cache_set *c)
1720 {
1721 struct cache *ca;
1722 struct bucket *b;
1723
1724 if (!c->gc_mark_valid)
1725 return;
1726
1727 mutex_lock(&c->bucket_lock);
1728
1729 c->gc_mark_valid = 0;
1730 c->gc_done = ZERO_KEY;
1731
1732 ca = c->cache;
1733 for_each_bucket(b, ca) {
1734 b->last_gc = b->gen;
1735 if (!atomic_read(&b->pin)) {
1736 SET_GC_MARK(b, 0);
1737 SET_GC_SECTORS_USED(b, 0);
1738 }
1739 }
1740
1741 mutex_unlock(&c->bucket_lock);
1742 }
1743
bch_btree_gc_finish(struct cache_set * c)1744 static void bch_btree_gc_finish(struct cache_set *c)
1745 {
1746 struct bucket *b;
1747 struct cache *ca;
1748 unsigned int i, j;
1749 uint64_t *k;
1750
1751 mutex_lock(&c->bucket_lock);
1752
1753 set_gc_sectors(c);
1754 c->gc_mark_valid = 1;
1755 c->need_gc = 0;
1756
1757 for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1758 SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1759 GC_MARK_METADATA);
1760
1761 /* don't reclaim buckets to which writeback keys point */
1762 rcu_read_lock();
1763 for (i = 0; i < c->devices_max_used; i++) {
1764 struct bcache_device *d = c->devices[i];
1765 struct cached_dev *dc;
1766 struct keybuf_key *w, *n;
1767
1768 if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1769 continue;
1770 dc = container_of(d, struct cached_dev, disk);
1771
1772 spin_lock(&dc->writeback_keys.lock);
1773 rbtree_postorder_for_each_entry_safe(w, n,
1774 &dc->writeback_keys.keys, node)
1775 for (j = 0; j < KEY_PTRS(&w->key); j++)
1776 SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1777 GC_MARK_DIRTY);
1778 spin_unlock(&dc->writeback_keys.lock);
1779 }
1780 rcu_read_unlock();
1781
1782 c->avail_nbuckets = 0;
1783
1784 ca = c->cache;
1785 ca->invalidate_needs_gc = 0;
1786
1787 for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++)
1788 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1789
1790 for (k = ca->prio_buckets;
1791 k < ca->prio_buckets + prio_buckets(ca) * 2; k++)
1792 SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1793
1794 for_each_bucket(b, ca) {
1795 c->need_gc = max(c->need_gc, bucket_gc_gen(b));
1796
1797 if (atomic_read(&b->pin))
1798 continue;
1799
1800 BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1801
1802 if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1803 c->avail_nbuckets++;
1804 }
1805
1806 mutex_unlock(&c->bucket_lock);
1807 }
1808
bch_btree_gc(struct cache_set * c)1809 static void bch_btree_gc(struct cache_set *c)
1810 {
1811 int ret;
1812 struct gc_stat stats;
1813 struct closure writes;
1814 struct btree_op op;
1815 uint64_t start_time = local_clock();
1816
1817 trace_bcache_gc_start(c);
1818
1819 memset(&stats, 0, sizeof(struct gc_stat));
1820 closure_init_stack(&writes);
1821 bch_btree_op_init(&op, SHRT_MAX);
1822
1823 btree_gc_start(c);
1824
1825 /* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1826 do {
1827 ret = bcache_btree_root(gc_root, c, &op, &writes, &stats);
1828 closure_sync(&writes);
1829 cond_resched();
1830
1831 if (ret == -EAGAIN)
1832 schedule_timeout_interruptible(msecs_to_jiffies
1833 (GC_SLEEP_MS));
1834 else if (ret)
1835 pr_warn("gc failed!\n");
1836 } while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1837
1838 bch_btree_gc_finish(c);
1839 wake_up_allocators(c);
1840
1841 bch_time_stats_update(&c->btree_gc_time, start_time);
1842
1843 stats.key_bytes *= sizeof(uint64_t);
1844 stats.data <<= 9;
1845 bch_update_bucket_in_use(c, &stats);
1846 memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1847
1848 trace_bcache_gc_end(c);
1849
1850 bch_moving_gc(c);
1851 }
1852
gc_should_run(struct cache_set * c)1853 static bool gc_should_run(struct cache_set *c)
1854 {
1855 struct cache *ca = c->cache;
1856
1857 if (ca->invalidate_needs_gc)
1858 return true;
1859
1860 if (atomic_read(&c->sectors_to_gc) < 0)
1861 return true;
1862
1863 return false;
1864 }
1865
bch_gc_thread(void * arg)1866 static int bch_gc_thread(void *arg)
1867 {
1868 struct cache_set *c = arg;
1869
1870 while (1) {
1871 wait_event_interruptible(c->gc_wait,
1872 kthread_should_stop() ||
1873 test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1874 gc_should_run(c));
1875
1876 if (kthread_should_stop() ||
1877 test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1878 break;
1879
1880 set_gc_sectors(c);
1881 bch_btree_gc(c);
1882 }
1883
1884 wait_for_kthread_stop();
1885 return 0;
1886 }
1887
bch_gc_thread_start(struct cache_set * c)1888 int bch_gc_thread_start(struct cache_set *c)
1889 {
1890 c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1891 return PTR_ERR_OR_ZERO(c->gc_thread);
1892 }
1893
1894 /* Initial partial gc */
1895
bch_btree_check_recurse(struct btree * b,struct btree_op * op)1896 static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1897 {
1898 int ret = 0;
1899 struct bkey *k, *p = NULL;
1900 struct btree_iter iter;
1901
1902 for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1903 bch_initial_mark_key(b->c, b->level, k);
1904
1905 bch_initial_mark_key(b->c, b->level + 1, &b->key);
1906
1907 if (b->level) {
1908 bch_btree_iter_init(&b->keys, &iter, NULL);
1909
1910 do {
1911 k = bch_btree_iter_next_filter(&iter, &b->keys,
1912 bch_ptr_bad);
1913 if (k) {
1914 btree_node_prefetch(b, k);
1915 /*
1916 * initiallize c->gc_stats.nodes
1917 * for incremental GC
1918 */
1919 b->c->gc_stats.nodes++;
1920 }
1921
1922 if (p)
1923 ret = bcache_btree(check_recurse, p, b, op);
1924
1925 p = k;
1926 } while (p && !ret);
1927 }
1928
1929 return ret;
1930 }
1931
1932
bch_btree_check_thread(void * arg)1933 static int bch_btree_check_thread(void *arg)
1934 {
1935 int ret;
1936 struct btree_check_info *info = arg;
1937 struct btree_check_state *check_state = info->state;
1938 struct cache_set *c = check_state->c;
1939 struct btree_iter iter;
1940 struct bkey *k, *p;
1941 int cur_idx, prev_idx, skip_nr;
1942
1943 k = p = NULL;
1944 cur_idx = prev_idx = 0;
1945 ret = 0;
1946
1947 /* root node keys are checked before thread created */
1948 bch_btree_iter_init(&c->root->keys, &iter, NULL);
1949 k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
1950 BUG_ON(!k);
1951
1952 p = k;
1953 while (k) {
1954 /*
1955 * Fetch a root node key index, skip the keys which
1956 * should be fetched by other threads, then check the
1957 * sub-tree indexed by the fetched key.
1958 */
1959 spin_lock(&check_state->idx_lock);
1960 cur_idx = check_state->key_idx;
1961 check_state->key_idx++;
1962 spin_unlock(&check_state->idx_lock);
1963
1964 skip_nr = cur_idx - prev_idx;
1965
1966 while (skip_nr) {
1967 k = bch_btree_iter_next_filter(&iter,
1968 &c->root->keys,
1969 bch_ptr_bad);
1970 if (k)
1971 p = k;
1972 else {
1973 /*
1974 * No more keys to check in root node,
1975 * current checking threads are enough,
1976 * stop creating more.
1977 */
1978 atomic_set(&check_state->enough, 1);
1979 /* Update check_state->enough earlier */
1980 smp_mb__after_atomic();
1981 goto out;
1982 }
1983 skip_nr--;
1984 cond_resched();
1985 }
1986
1987 if (p) {
1988 struct btree_op op;
1989
1990 btree_node_prefetch(c->root, p);
1991 c->gc_stats.nodes++;
1992 bch_btree_op_init(&op, 0);
1993 ret = bcache_btree(check_recurse, p, c->root, &op);
1994 /*
1995 * The op may be added to cache_set's btree_cache_wait
1996 * in mca_cannibalize(), must ensure it is removed from
1997 * the list and release btree_cache_alloc_lock before
1998 * free op memory.
1999 * Otherwise, the btree_cache_wait will be damaged.
2000 */
2001 bch_cannibalize_unlock(c);
2002 finish_wait(&c->btree_cache_wait, &(&op)->wait);
2003 if (ret)
2004 goto out;
2005 }
2006 p = NULL;
2007 prev_idx = cur_idx;
2008 cond_resched();
2009 }
2010
2011 out:
2012 info->result = ret;
2013 /* update check_state->started among all CPUs */
2014 smp_mb__before_atomic();
2015 if (atomic_dec_and_test(&check_state->started))
2016 wake_up(&check_state->wait);
2017
2018 return ret;
2019 }
2020
2021
2022
bch_btree_chkthread_nr(void)2023 static int bch_btree_chkthread_nr(void)
2024 {
2025 int n = num_online_cpus()/2;
2026
2027 if (n == 0)
2028 n = 1;
2029 else if (n > BCH_BTR_CHKTHREAD_MAX)
2030 n = BCH_BTR_CHKTHREAD_MAX;
2031
2032 return n;
2033 }
2034
bch_btree_check(struct cache_set * c)2035 int bch_btree_check(struct cache_set *c)
2036 {
2037 int ret = 0;
2038 int i;
2039 struct bkey *k = NULL;
2040 struct btree_iter iter;
2041 struct btree_check_state check_state;
2042
2043 /* check and mark root node keys */
2044 for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid)
2045 bch_initial_mark_key(c, c->root->level, k);
2046
2047 bch_initial_mark_key(c, c->root->level + 1, &c->root->key);
2048
2049 if (c->root->level == 0)
2050 return 0;
2051
2052 memset(&check_state, 0, sizeof(struct btree_check_state));
2053 check_state.c = c;
2054 check_state.total_threads = bch_btree_chkthread_nr();
2055 check_state.key_idx = 0;
2056 spin_lock_init(&check_state.idx_lock);
2057 atomic_set(&check_state.started, 0);
2058 atomic_set(&check_state.enough, 0);
2059 init_waitqueue_head(&check_state.wait);
2060
2061 rw_lock(0, c->root, c->root->level);
2062 /*
2063 * Run multiple threads to check btree nodes in parallel,
2064 * if check_state.enough is non-zero, it means current
2065 * running check threads are enough, unncessary to create
2066 * more.
2067 */
2068 for (i = 0; i < check_state.total_threads; i++) {
2069 /* fetch latest check_state.enough earlier */
2070 smp_mb__before_atomic();
2071 if (atomic_read(&check_state.enough))
2072 break;
2073
2074 check_state.infos[i].result = 0;
2075 check_state.infos[i].state = &check_state;
2076
2077 check_state.infos[i].thread =
2078 kthread_run(bch_btree_check_thread,
2079 &check_state.infos[i],
2080 "bch_btrchk[%d]", i);
2081 if (IS_ERR(check_state.infos[i].thread)) {
2082 pr_err("fails to run thread bch_btrchk[%d]\n", i);
2083 for (--i; i >= 0; i--)
2084 kthread_stop(check_state.infos[i].thread);
2085 ret = -ENOMEM;
2086 goto out;
2087 }
2088 atomic_inc(&check_state.started);
2089 }
2090
2091 /*
2092 * Must wait for all threads to stop.
2093 */
2094 wait_event(check_state.wait, atomic_read(&check_state.started) == 0);
2095
2096 for (i = 0; i < check_state.total_threads; i++) {
2097 if (check_state.infos[i].result) {
2098 ret = check_state.infos[i].result;
2099 goto out;
2100 }
2101 }
2102
2103 out:
2104 rw_unlock(0, c->root);
2105 return ret;
2106 }
2107
bch_initial_gc_finish(struct cache_set * c)2108 void bch_initial_gc_finish(struct cache_set *c)
2109 {
2110 struct cache *ca = c->cache;
2111 struct bucket *b;
2112
2113 bch_btree_gc_finish(c);
2114
2115 mutex_lock(&c->bucket_lock);
2116
2117 /*
2118 * We need to put some unused buckets directly on the prio freelist in
2119 * order to get the allocator thread started - it needs freed buckets in
2120 * order to rewrite the prios and gens, and it needs to rewrite prios
2121 * and gens in order to free buckets.
2122 *
2123 * This is only safe for buckets that have no live data in them, which
2124 * there should always be some of.
2125 */
2126 for_each_bucket(b, ca) {
2127 if (fifo_full(&ca->free[RESERVE_PRIO]) &&
2128 fifo_full(&ca->free[RESERVE_BTREE]))
2129 break;
2130
2131 if (bch_can_invalidate_bucket(ca, b) &&
2132 !GC_MARK(b)) {
2133 __bch_invalidate_one_bucket(ca, b);
2134 if (!fifo_push(&ca->free[RESERVE_PRIO],
2135 b - ca->buckets))
2136 fifo_push(&ca->free[RESERVE_BTREE],
2137 b - ca->buckets);
2138 }
2139 }
2140
2141 mutex_unlock(&c->bucket_lock);
2142 }
2143
2144 /* Btree insertion */
2145
btree_insert_key(struct btree * b,struct bkey * k,struct bkey * replace_key)2146 static bool btree_insert_key(struct btree *b, struct bkey *k,
2147 struct bkey *replace_key)
2148 {
2149 unsigned int status;
2150
2151 BUG_ON(bkey_cmp(k, &b->key) > 0);
2152
2153 status = bch_btree_insert_key(&b->keys, k, replace_key);
2154 if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2155 bch_check_keys(&b->keys, "%u for %s", status,
2156 replace_key ? "replace" : "insert");
2157
2158 trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2159 status);
2160 return true;
2161 } else
2162 return false;
2163 }
2164
insert_u64s_remaining(struct btree * b)2165 static size_t insert_u64s_remaining(struct btree *b)
2166 {
2167 long ret = bch_btree_keys_u64s_remaining(&b->keys);
2168
2169 /*
2170 * Might land in the middle of an existing extent and have to split it
2171 */
2172 if (b->keys.ops->is_extents)
2173 ret -= KEY_MAX_U64S;
2174
2175 return max(ret, 0L);
2176 }
2177
bch_btree_insert_keys(struct btree * b,struct btree_op * op,struct keylist * insert_keys,struct bkey * replace_key)2178 static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2179 struct keylist *insert_keys,
2180 struct bkey *replace_key)
2181 {
2182 bool ret = false;
2183 int oldsize = bch_count_data(&b->keys);
2184
2185 while (!bch_keylist_empty(insert_keys)) {
2186 struct bkey *k = insert_keys->keys;
2187
2188 if (bkey_u64s(k) > insert_u64s_remaining(b))
2189 break;
2190
2191 if (bkey_cmp(k, &b->key) <= 0) {
2192 if (!b->level)
2193 bkey_put(b->c, k);
2194
2195 ret |= btree_insert_key(b, k, replace_key);
2196 bch_keylist_pop_front(insert_keys);
2197 } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2198 BKEY_PADDED(key) temp;
2199 bkey_copy(&temp.key, insert_keys->keys);
2200
2201 bch_cut_back(&b->key, &temp.key);
2202 bch_cut_front(&b->key, insert_keys->keys);
2203
2204 ret |= btree_insert_key(b, &temp.key, replace_key);
2205 break;
2206 } else {
2207 break;
2208 }
2209 }
2210
2211 if (!ret)
2212 op->insert_collision = true;
2213
2214 BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2215
2216 BUG_ON(bch_count_data(&b->keys) < oldsize);
2217 return ret;
2218 }
2219
btree_split(struct btree * b,struct btree_op * op,struct keylist * insert_keys,struct bkey * replace_key)2220 static int btree_split(struct btree *b, struct btree_op *op,
2221 struct keylist *insert_keys,
2222 struct bkey *replace_key)
2223 {
2224 bool split;
2225 struct btree *n1, *n2 = NULL, *n3 = NULL;
2226 uint64_t start_time = local_clock();
2227 struct closure cl;
2228 struct keylist parent_keys;
2229
2230 closure_init_stack(&cl);
2231 bch_keylist_init(&parent_keys);
2232
2233 if (btree_check_reserve(b, op)) {
2234 if (!b->level)
2235 return -EINTR;
2236 else
2237 WARN(1, "insufficient reserve for split\n");
2238 }
2239
2240 n1 = btree_node_alloc_replacement(b, op);
2241 if (IS_ERR(n1))
2242 goto err;
2243
2244 split = set_blocks(btree_bset_first(n1),
2245 block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5;
2246
2247 if (split) {
2248 unsigned int keys = 0;
2249
2250 trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2251
2252 n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2253 if (IS_ERR(n2))
2254 goto err_free1;
2255
2256 if (!b->parent) {
2257 n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2258 if (IS_ERR(n3))
2259 goto err_free2;
2260 }
2261
2262 mutex_lock(&n1->write_lock);
2263 mutex_lock(&n2->write_lock);
2264
2265 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2266
2267 /*
2268 * Has to be a linear search because we don't have an auxiliary
2269 * search tree yet
2270 */
2271
2272 while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2273 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2274 keys));
2275
2276 bkey_copy_key(&n1->key,
2277 bset_bkey_idx(btree_bset_first(n1), keys));
2278 keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2279
2280 btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2281 btree_bset_first(n1)->keys = keys;
2282
2283 memcpy(btree_bset_first(n2)->start,
2284 bset_bkey_last(btree_bset_first(n1)),
2285 btree_bset_first(n2)->keys * sizeof(uint64_t));
2286
2287 bkey_copy_key(&n2->key, &b->key);
2288
2289 bch_keylist_add(&parent_keys, &n2->key);
2290 bch_btree_node_write(n2, &cl);
2291 mutex_unlock(&n2->write_lock);
2292 rw_unlock(true, n2);
2293 } else {
2294 trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2295
2296 mutex_lock(&n1->write_lock);
2297 bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2298 }
2299
2300 bch_keylist_add(&parent_keys, &n1->key);
2301 bch_btree_node_write(n1, &cl);
2302 mutex_unlock(&n1->write_lock);
2303
2304 if (n3) {
2305 /* Depth increases, make a new root */
2306 mutex_lock(&n3->write_lock);
2307 bkey_copy_key(&n3->key, &MAX_KEY);
2308 bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2309 bch_btree_node_write(n3, &cl);
2310 mutex_unlock(&n3->write_lock);
2311
2312 closure_sync(&cl);
2313 bch_btree_set_root(n3);
2314 rw_unlock(true, n3);
2315 } else if (!b->parent) {
2316 /* Root filled up but didn't need to be split */
2317 closure_sync(&cl);
2318 bch_btree_set_root(n1);
2319 } else {
2320 /* Split a non root node */
2321 closure_sync(&cl);
2322 make_btree_freeing_key(b, parent_keys.top);
2323 bch_keylist_push(&parent_keys);
2324
2325 bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2326 BUG_ON(!bch_keylist_empty(&parent_keys));
2327 }
2328
2329 btree_node_free(b);
2330 rw_unlock(true, n1);
2331
2332 bch_time_stats_update(&b->c->btree_split_time, start_time);
2333
2334 return 0;
2335 err_free2:
2336 bkey_put(b->c, &n2->key);
2337 btree_node_free(n2);
2338 rw_unlock(true, n2);
2339 err_free1:
2340 bkey_put(b->c, &n1->key);
2341 btree_node_free(n1);
2342 rw_unlock(true, n1);
2343 err:
2344 WARN(1, "bcache: btree split failed (level %u)", b->level);
2345
2346 if (n3 == ERR_PTR(-EAGAIN) ||
2347 n2 == ERR_PTR(-EAGAIN) ||
2348 n1 == ERR_PTR(-EAGAIN))
2349 return -EAGAIN;
2350
2351 return -ENOMEM;
2352 }
2353
bch_btree_insert_node(struct btree * b,struct btree_op * op,struct keylist * insert_keys,atomic_t * journal_ref,struct bkey * replace_key)2354 static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2355 struct keylist *insert_keys,
2356 atomic_t *journal_ref,
2357 struct bkey *replace_key)
2358 {
2359 struct closure cl;
2360
2361 BUG_ON(b->level && replace_key);
2362
2363 closure_init_stack(&cl);
2364
2365 mutex_lock(&b->write_lock);
2366
2367 if (write_block(b) != btree_bset_last(b) &&
2368 b->keys.last_set_unwritten)
2369 bch_btree_init_next(b); /* just wrote a set */
2370
2371 if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2372 mutex_unlock(&b->write_lock);
2373 goto split;
2374 }
2375
2376 BUG_ON(write_block(b) != btree_bset_last(b));
2377
2378 if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2379 if (!b->level)
2380 bch_btree_leaf_dirty(b, journal_ref);
2381 else
2382 bch_btree_node_write(b, &cl);
2383 }
2384
2385 mutex_unlock(&b->write_lock);
2386
2387 /* wait for btree node write if necessary, after unlock */
2388 closure_sync(&cl);
2389
2390 return 0;
2391 split:
2392 if (current->bio_list) {
2393 op->lock = b->c->root->level + 1;
2394 return -EAGAIN;
2395 } else if (op->lock <= b->c->root->level) {
2396 op->lock = b->c->root->level + 1;
2397 return -EINTR;
2398 } else {
2399 /* Invalidated all iterators */
2400 int ret = btree_split(b, op, insert_keys, replace_key);
2401
2402 if (bch_keylist_empty(insert_keys))
2403 return 0;
2404 else if (!ret)
2405 return -EINTR;
2406 return ret;
2407 }
2408 }
2409
bch_btree_insert_check_key(struct btree * b,struct btree_op * op,struct bkey * check_key)2410 int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2411 struct bkey *check_key)
2412 {
2413 int ret = -EINTR;
2414 uint64_t btree_ptr = b->key.ptr[0];
2415 unsigned long seq = b->seq;
2416 struct keylist insert;
2417 bool upgrade = op->lock == -1;
2418
2419 bch_keylist_init(&insert);
2420
2421 if (upgrade) {
2422 rw_unlock(false, b);
2423 rw_lock(true, b, b->level);
2424
2425 if (b->key.ptr[0] != btree_ptr ||
2426 b->seq != seq + 1) {
2427 op->lock = b->level;
2428 goto out;
2429 }
2430 }
2431
2432 SET_KEY_PTRS(check_key, 1);
2433 get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2434
2435 SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2436
2437 bch_keylist_add(&insert, check_key);
2438
2439 ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2440
2441 BUG_ON(!ret && !bch_keylist_empty(&insert));
2442 out:
2443 if (upgrade)
2444 downgrade_write(&b->lock);
2445 return ret;
2446 }
2447
2448 struct btree_insert_op {
2449 struct btree_op op;
2450 struct keylist *keys;
2451 atomic_t *journal_ref;
2452 struct bkey *replace_key;
2453 };
2454
btree_insert_fn(struct btree_op * b_op,struct btree * b)2455 static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2456 {
2457 struct btree_insert_op *op = container_of(b_op,
2458 struct btree_insert_op, op);
2459
2460 int ret = bch_btree_insert_node(b, &op->op, op->keys,
2461 op->journal_ref, op->replace_key);
2462 if (ret && !bch_keylist_empty(op->keys))
2463 return ret;
2464 else
2465 return MAP_DONE;
2466 }
2467
bch_btree_insert(struct cache_set * c,struct keylist * keys,atomic_t * journal_ref,struct bkey * replace_key)2468 int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2469 atomic_t *journal_ref, struct bkey *replace_key)
2470 {
2471 struct btree_insert_op op;
2472 int ret = 0;
2473
2474 BUG_ON(current->bio_list);
2475 BUG_ON(bch_keylist_empty(keys));
2476
2477 bch_btree_op_init(&op.op, 0);
2478 op.keys = keys;
2479 op.journal_ref = journal_ref;
2480 op.replace_key = replace_key;
2481
2482 while (!ret && !bch_keylist_empty(keys)) {
2483 op.op.lock = 0;
2484 ret = bch_btree_map_leaf_nodes(&op.op, c,
2485 &START_KEY(keys->keys),
2486 btree_insert_fn);
2487 }
2488
2489 if (ret) {
2490 struct bkey *k;
2491
2492 pr_err("error %i\n", ret);
2493
2494 while ((k = bch_keylist_pop(keys)))
2495 bkey_put(c, k);
2496 } else if (op.op.insert_collision)
2497 ret = -ESRCH;
2498
2499 return ret;
2500 }
2501
bch_btree_set_root(struct btree * b)2502 void bch_btree_set_root(struct btree *b)
2503 {
2504 unsigned int i;
2505 struct closure cl;
2506
2507 closure_init_stack(&cl);
2508
2509 trace_bcache_btree_set_root(b);
2510
2511 BUG_ON(!b->written);
2512
2513 for (i = 0; i < KEY_PTRS(&b->key); i++)
2514 BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2515
2516 mutex_lock(&b->c->bucket_lock);
2517 list_del_init(&b->list);
2518 mutex_unlock(&b->c->bucket_lock);
2519
2520 b->c->root = b;
2521
2522 bch_journal_meta(b->c, &cl);
2523 closure_sync(&cl);
2524 }
2525
2526 /* Map across nodes or keys */
2527
bch_btree_map_nodes_recurse(struct btree * b,struct btree_op * op,struct bkey * from,btree_map_nodes_fn * fn,int flags)2528 static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2529 struct bkey *from,
2530 btree_map_nodes_fn *fn, int flags)
2531 {
2532 int ret = MAP_CONTINUE;
2533
2534 if (b->level) {
2535 struct bkey *k;
2536 struct btree_iter iter;
2537
2538 bch_btree_iter_init(&b->keys, &iter, from);
2539
2540 while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2541 bch_ptr_bad))) {
2542 ret = bcache_btree(map_nodes_recurse, k, b,
2543 op, from, fn, flags);
2544 from = NULL;
2545
2546 if (ret != MAP_CONTINUE)
2547 return ret;
2548 }
2549 }
2550
2551 if (!b->level || flags == MAP_ALL_NODES)
2552 ret = fn(op, b);
2553
2554 return ret;
2555 }
2556
__bch_btree_map_nodes(struct btree_op * op,struct cache_set * c,struct bkey * from,btree_map_nodes_fn * fn,int flags)2557 int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2558 struct bkey *from, btree_map_nodes_fn *fn, int flags)
2559 {
2560 return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags);
2561 }
2562
bch_btree_map_keys_recurse(struct btree * b,struct btree_op * op,struct bkey * from,btree_map_keys_fn * fn,int flags)2563 int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2564 struct bkey *from, btree_map_keys_fn *fn,
2565 int flags)
2566 {
2567 int ret = MAP_CONTINUE;
2568 struct bkey *k;
2569 struct btree_iter iter;
2570
2571 bch_btree_iter_init(&b->keys, &iter, from);
2572
2573 while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2574 ret = !b->level
2575 ? fn(op, b, k)
2576 : bcache_btree(map_keys_recurse, k,
2577 b, op, from, fn, flags);
2578 from = NULL;
2579
2580 if (ret != MAP_CONTINUE)
2581 return ret;
2582 }
2583
2584 if (!b->level && (flags & MAP_END_KEY))
2585 ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2586 KEY_OFFSET(&b->key), 0));
2587
2588 return ret;
2589 }
2590
bch_btree_map_keys(struct btree_op * op,struct cache_set * c,struct bkey * from,btree_map_keys_fn * fn,int flags)2591 int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2592 struct bkey *from, btree_map_keys_fn *fn, int flags)
2593 {
2594 return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags);
2595 }
2596
2597 /* Keybuf code */
2598
keybuf_cmp(struct keybuf_key * l,struct keybuf_key * r)2599 static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2600 {
2601 /* Overlapping keys compare equal */
2602 if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2603 return -1;
2604 if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2605 return 1;
2606 return 0;
2607 }
2608
keybuf_nonoverlapping_cmp(struct keybuf_key * l,struct keybuf_key * r)2609 static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2610 struct keybuf_key *r)
2611 {
2612 return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2613 }
2614
2615 struct refill {
2616 struct btree_op op;
2617 unsigned int nr_found;
2618 struct keybuf *buf;
2619 struct bkey *end;
2620 keybuf_pred_fn *pred;
2621 };
2622
refill_keybuf_fn(struct btree_op * op,struct btree * b,struct bkey * k)2623 static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2624 struct bkey *k)
2625 {
2626 struct refill *refill = container_of(op, struct refill, op);
2627 struct keybuf *buf = refill->buf;
2628 int ret = MAP_CONTINUE;
2629
2630 if (bkey_cmp(k, refill->end) > 0) {
2631 ret = MAP_DONE;
2632 goto out;
2633 }
2634
2635 if (!KEY_SIZE(k)) /* end key */
2636 goto out;
2637
2638 if (refill->pred(buf, k)) {
2639 struct keybuf_key *w;
2640
2641 spin_lock(&buf->lock);
2642
2643 w = array_alloc(&buf->freelist);
2644 if (!w) {
2645 spin_unlock(&buf->lock);
2646 return MAP_DONE;
2647 }
2648
2649 w->private = NULL;
2650 bkey_copy(&w->key, k);
2651
2652 if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2653 array_free(&buf->freelist, w);
2654 else
2655 refill->nr_found++;
2656
2657 if (array_freelist_empty(&buf->freelist))
2658 ret = MAP_DONE;
2659
2660 spin_unlock(&buf->lock);
2661 }
2662 out:
2663 buf->last_scanned = *k;
2664 return ret;
2665 }
2666
bch_refill_keybuf(struct cache_set * c,struct keybuf * buf,struct bkey * end,keybuf_pred_fn * pred)2667 void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2668 struct bkey *end, keybuf_pred_fn *pred)
2669 {
2670 struct bkey start = buf->last_scanned;
2671 struct refill refill;
2672
2673 cond_resched();
2674
2675 bch_btree_op_init(&refill.op, -1);
2676 refill.nr_found = 0;
2677 refill.buf = buf;
2678 refill.end = end;
2679 refill.pred = pred;
2680
2681 bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2682 refill_keybuf_fn, MAP_END_KEY);
2683
2684 trace_bcache_keyscan(refill.nr_found,
2685 KEY_INODE(&start), KEY_OFFSET(&start),
2686 KEY_INODE(&buf->last_scanned),
2687 KEY_OFFSET(&buf->last_scanned));
2688
2689 spin_lock(&buf->lock);
2690
2691 if (!RB_EMPTY_ROOT(&buf->keys)) {
2692 struct keybuf_key *w;
2693
2694 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2695 buf->start = START_KEY(&w->key);
2696
2697 w = RB_LAST(&buf->keys, struct keybuf_key, node);
2698 buf->end = w->key;
2699 } else {
2700 buf->start = MAX_KEY;
2701 buf->end = MAX_KEY;
2702 }
2703
2704 spin_unlock(&buf->lock);
2705 }
2706
__bch_keybuf_del(struct keybuf * buf,struct keybuf_key * w)2707 static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2708 {
2709 rb_erase(&w->node, &buf->keys);
2710 array_free(&buf->freelist, w);
2711 }
2712
bch_keybuf_del(struct keybuf * buf,struct keybuf_key * w)2713 void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2714 {
2715 spin_lock(&buf->lock);
2716 __bch_keybuf_del(buf, w);
2717 spin_unlock(&buf->lock);
2718 }
2719
bch_keybuf_check_overlapping(struct keybuf * buf,struct bkey * start,struct bkey * end)2720 bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2721 struct bkey *end)
2722 {
2723 bool ret = false;
2724 struct keybuf_key *p, *w, s;
2725
2726 s.key = *start;
2727
2728 if (bkey_cmp(end, &buf->start) <= 0 ||
2729 bkey_cmp(start, &buf->end) >= 0)
2730 return false;
2731
2732 spin_lock(&buf->lock);
2733 w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2734
2735 while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2736 p = w;
2737 w = RB_NEXT(w, node);
2738
2739 if (p->private)
2740 ret = true;
2741 else
2742 __bch_keybuf_del(buf, p);
2743 }
2744
2745 spin_unlock(&buf->lock);
2746 return ret;
2747 }
2748
bch_keybuf_next(struct keybuf * buf)2749 struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2750 {
2751 struct keybuf_key *w;
2752
2753 spin_lock(&buf->lock);
2754
2755 w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2756
2757 while (w && w->private)
2758 w = RB_NEXT(w, node);
2759
2760 if (w)
2761 w->private = ERR_PTR(-EINTR);
2762
2763 spin_unlock(&buf->lock);
2764 return w;
2765 }
2766
bch_keybuf_next_rescan(struct cache_set * c,struct keybuf * buf,struct bkey * end,keybuf_pred_fn * pred)2767 struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2768 struct keybuf *buf,
2769 struct bkey *end,
2770 keybuf_pred_fn *pred)
2771 {
2772 struct keybuf_key *ret;
2773
2774 while (1) {
2775 ret = bch_keybuf_next(buf);
2776 if (ret)
2777 break;
2778
2779 if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2780 pr_debug("scan finished\n");
2781 break;
2782 }
2783
2784 bch_refill_keybuf(c, buf, end, pred);
2785 }
2786
2787 return ret;
2788 }
2789
bch_keybuf_init(struct keybuf * buf)2790 void bch_keybuf_init(struct keybuf *buf)
2791 {
2792 buf->last_scanned = MAX_KEY;
2793 buf->keys = RB_ROOT;
2794
2795 spin_lock_init(&buf->lock);
2796 array_allocator_init(&buf->freelist);
2797 }
2798
bch_btree_exit(void)2799 void bch_btree_exit(void)
2800 {
2801 if (btree_io_wq)
2802 destroy_workqueue(btree_io_wq);
2803 }
2804
bch_btree_init(void)2805 int __init bch_btree_init(void)
2806 {
2807 btree_io_wq = alloc_workqueue("bch_btree_io", WQ_MEM_RECLAIM, 0);
2808 if (!btree_io_wq)
2809 return -ENOMEM;
2810
2811 return 0;
2812 }
2813