1 // SPDX-License-Identifier: GPL-2.0
2
3 /* Copyright (c) 2019 Facebook */
4
5 #include <assert.h>
6 #include <limits.h>
7 #include <unistd.h>
8 #include <sys/file.h>
9 #include <sys/time.h>
10 #include <linux/err.h>
11 #include <linux/zalloc.h>
12 #include <api/fs/fs.h>
13 #include <perf/bpf_perf.h>
14
15 #include "bpf_counter.h"
16 #include "counts.h"
17 #include "debug.h"
18 #include "evsel.h"
19 #include "evlist.h"
20 #include "target.h"
21 #include "cgroup.h"
22 #include "cpumap.h"
23 #include "thread_map.h"
24
25 #include "bpf_skel/bpf_prog_profiler.skel.h"
26 #include "bpf_skel/bperf_u.h"
27 #include "bpf_skel/bperf_leader.skel.h"
28 #include "bpf_skel/bperf_follower.skel.h"
29
30 #define ATTR_MAP_SIZE 16
31
u64_to_ptr(__u64 ptr)32 static inline void *u64_to_ptr(__u64 ptr)
33 {
34 return (void *)(unsigned long)ptr;
35 }
36
bpf_counter_alloc(void)37 static struct bpf_counter *bpf_counter_alloc(void)
38 {
39 struct bpf_counter *counter;
40
41 counter = zalloc(sizeof(*counter));
42 if (counter)
43 INIT_LIST_HEAD(&counter->list);
44 return counter;
45 }
46
bpf_program_profiler__destroy(struct evsel * evsel)47 static int bpf_program_profiler__destroy(struct evsel *evsel)
48 {
49 struct bpf_counter *counter, *tmp;
50
51 list_for_each_entry_safe(counter, tmp,
52 &evsel->bpf_counter_list, list) {
53 list_del_init(&counter->list);
54 bpf_prog_profiler_bpf__destroy(counter->skel);
55 free(counter);
56 }
57 assert(list_empty(&evsel->bpf_counter_list));
58
59 return 0;
60 }
61
bpf_target_prog_name(int tgt_fd)62 static char *bpf_target_prog_name(int tgt_fd)
63 {
64 struct bpf_prog_info_linear *info_linear;
65 struct bpf_func_info *func_info;
66 const struct btf_type *t;
67 struct btf *btf = NULL;
68 char *name = NULL;
69
70 info_linear = bpf_program__get_prog_info_linear(
71 tgt_fd, 1UL << BPF_PROG_INFO_FUNC_INFO);
72 if (IS_ERR_OR_NULL(info_linear)) {
73 pr_debug("failed to get info_linear for prog FD %d\n", tgt_fd);
74 return NULL;
75 }
76
77 if (info_linear->info.btf_id == 0) {
78 pr_debug("prog FD %d doesn't have valid btf\n", tgt_fd);
79 goto out;
80 }
81
82 btf = btf__load_from_kernel_by_id(info_linear->info.btf_id);
83 if (libbpf_get_error(btf)) {
84 pr_debug("failed to load btf for prog FD %d\n", tgt_fd);
85 goto out;
86 }
87
88 func_info = u64_to_ptr(info_linear->info.func_info);
89 t = btf__type_by_id(btf, func_info[0].type_id);
90 if (!t) {
91 pr_debug("btf %d doesn't have type %d\n",
92 info_linear->info.btf_id, func_info[0].type_id);
93 goto out;
94 }
95 name = strdup(btf__name_by_offset(btf, t->name_off));
96 out:
97 btf__free(btf);
98 free(info_linear);
99 return name;
100 }
101
bpf_program_profiler_load_one(struct evsel * evsel,u32 prog_id)102 static int bpf_program_profiler_load_one(struct evsel *evsel, u32 prog_id)
103 {
104 struct bpf_prog_profiler_bpf *skel;
105 struct bpf_counter *counter;
106 struct bpf_program *prog;
107 char *prog_name;
108 int prog_fd;
109 int err;
110
111 prog_fd = bpf_prog_get_fd_by_id(prog_id);
112 if (prog_fd < 0) {
113 pr_err("Failed to open fd for bpf prog %u\n", prog_id);
114 return -1;
115 }
116 counter = bpf_counter_alloc();
117 if (!counter) {
118 close(prog_fd);
119 return -1;
120 }
121
122 skel = bpf_prog_profiler_bpf__open();
123 if (!skel) {
124 pr_err("Failed to open bpf skeleton\n");
125 goto err_out;
126 }
127
128 skel->rodata->num_cpu = evsel__nr_cpus(evsel);
129
130 bpf_map__resize(skel->maps.events, evsel__nr_cpus(evsel));
131 bpf_map__resize(skel->maps.fentry_readings, 1);
132 bpf_map__resize(skel->maps.accum_readings, 1);
133
134 prog_name = bpf_target_prog_name(prog_fd);
135 if (!prog_name) {
136 pr_err("Failed to get program name for bpf prog %u. Does it have BTF?\n", prog_id);
137 goto err_out;
138 }
139
140 bpf_object__for_each_program(prog, skel->obj) {
141 err = bpf_program__set_attach_target(prog, prog_fd, prog_name);
142 if (err) {
143 pr_err("bpf_program__set_attach_target failed.\n"
144 "Does bpf prog %u have BTF?\n", prog_id);
145 goto err_out;
146 }
147 }
148 set_max_rlimit();
149 err = bpf_prog_profiler_bpf__load(skel);
150 if (err) {
151 pr_err("bpf_prog_profiler_bpf__load failed\n");
152 goto err_out;
153 }
154
155 assert(skel != NULL);
156 counter->skel = skel;
157 list_add(&counter->list, &evsel->bpf_counter_list);
158 close(prog_fd);
159 return 0;
160 err_out:
161 bpf_prog_profiler_bpf__destroy(skel);
162 free(counter);
163 close(prog_fd);
164 return -1;
165 }
166
bpf_program_profiler__load(struct evsel * evsel,struct target * target)167 static int bpf_program_profiler__load(struct evsel *evsel, struct target *target)
168 {
169 char *bpf_str, *bpf_str_, *tok, *saveptr = NULL, *p;
170 u32 prog_id;
171 int ret;
172
173 bpf_str_ = bpf_str = strdup(target->bpf_str);
174 if (!bpf_str)
175 return -1;
176
177 while ((tok = strtok_r(bpf_str, ",", &saveptr)) != NULL) {
178 prog_id = strtoul(tok, &p, 10);
179 if (prog_id == 0 || prog_id == UINT_MAX ||
180 (*p != '\0' && *p != ',')) {
181 pr_err("Failed to parse bpf prog ids %s\n",
182 target->bpf_str);
183 return -1;
184 }
185
186 ret = bpf_program_profiler_load_one(evsel, prog_id);
187 if (ret) {
188 bpf_program_profiler__destroy(evsel);
189 free(bpf_str_);
190 return -1;
191 }
192 bpf_str = NULL;
193 }
194 free(bpf_str_);
195 return 0;
196 }
197
bpf_program_profiler__enable(struct evsel * evsel)198 static int bpf_program_profiler__enable(struct evsel *evsel)
199 {
200 struct bpf_counter *counter;
201 int ret;
202
203 list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
204 assert(counter->skel != NULL);
205 ret = bpf_prog_profiler_bpf__attach(counter->skel);
206 if (ret) {
207 bpf_program_profiler__destroy(evsel);
208 return ret;
209 }
210 }
211 return 0;
212 }
213
bpf_program_profiler__disable(struct evsel * evsel)214 static int bpf_program_profiler__disable(struct evsel *evsel)
215 {
216 struct bpf_counter *counter;
217
218 list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
219 assert(counter->skel != NULL);
220 bpf_prog_profiler_bpf__detach(counter->skel);
221 }
222 return 0;
223 }
224
bpf_program_profiler__read(struct evsel * evsel)225 static int bpf_program_profiler__read(struct evsel *evsel)
226 {
227 // perf_cpu_map uses /sys/devices/system/cpu/online
228 int num_cpu = evsel__nr_cpus(evsel);
229 // BPF_MAP_TYPE_PERCPU_ARRAY uses /sys/devices/system/cpu/possible
230 // Sometimes possible > online, like on a Ryzen 3900X that has 24
231 // threads but its possible showed 0-31 -acme
232 int num_cpu_bpf = libbpf_num_possible_cpus();
233 struct bpf_perf_event_value values[num_cpu_bpf];
234 struct bpf_counter *counter;
235 int reading_map_fd;
236 __u32 key = 0;
237 int err, cpu;
238
239 if (list_empty(&evsel->bpf_counter_list))
240 return -EAGAIN;
241
242 for (cpu = 0; cpu < num_cpu; cpu++) {
243 perf_counts(evsel->counts, cpu, 0)->val = 0;
244 perf_counts(evsel->counts, cpu, 0)->ena = 0;
245 perf_counts(evsel->counts, cpu, 0)->run = 0;
246 }
247 list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
248 struct bpf_prog_profiler_bpf *skel = counter->skel;
249
250 assert(skel != NULL);
251 reading_map_fd = bpf_map__fd(skel->maps.accum_readings);
252
253 err = bpf_map_lookup_elem(reading_map_fd, &key, values);
254 if (err) {
255 pr_err("failed to read value\n");
256 return err;
257 }
258
259 for (cpu = 0; cpu < num_cpu; cpu++) {
260 perf_counts(evsel->counts, cpu, 0)->val += values[cpu].counter;
261 perf_counts(evsel->counts, cpu, 0)->ena += values[cpu].enabled;
262 perf_counts(evsel->counts, cpu, 0)->run += values[cpu].running;
263 }
264 }
265 return 0;
266 }
267
bpf_program_profiler__install_pe(struct evsel * evsel,int cpu,int fd)268 static int bpf_program_profiler__install_pe(struct evsel *evsel, int cpu,
269 int fd)
270 {
271 struct bpf_prog_profiler_bpf *skel;
272 struct bpf_counter *counter;
273 int ret;
274
275 list_for_each_entry(counter, &evsel->bpf_counter_list, list) {
276 skel = counter->skel;
277 assert(skel != NULL);
278
279 ret = bpf_map_update_elem(bpf_map__fd(skel->maps.events),
280 &cpu, &fd, BPF_ANY);
281 if (ret)
282 return ret;
283 }
284 return 0;
285 }
286
287 struct bpf_counter_ops bpf_program_profiler_ops = {
288 .load = bpf_program_profiler__load,
289 .enable = bpf_program_profiler__enable,
290 .disable = bpf_program_profiler__disable,
291 .read = bpf_program_profiler__read,
292 .destroy = bpf_program_profiler__destroy,
293 .install_pe = bpf_program_profiler__install_pe,
294 };
295
bperf_attr_map_compatible(int attr_map_fd)296 static bool bperf_attr_map_compatible(int attr_map_fd)
297 {
298 struct bpf_map_info map_info = {0};
299 __u32 map_info_len = sizeof(map_info);
300 int err;
301
302 err = bpf_obj_get_info_by_fd(attr_map_fd, &map_info, &map_info_len);
303
304 if (err)
305 return false;
306 return (map_info.key_size == sizeof(struct perf_event_attr)) &&
307 (map_info.value_size == sizeof(struct perf_event_attr_map_entry));
308 }
309
bperf_lock_attr_map(struct target * target)310 static int bperf_lock_attr_map(struct target *target)
311 {
312 char path[PATH_MAX];
313 int map_fd, err;
314
315 if (target->attr_map) {
316 scnprintf(path, PATH_MAX, "%s", target->attr_map);
317 } else {
318 scnprintf(path, PATH_MAX, "%s/fs/bpf/%s", sysfs__mountpoint(),
319 BPF_PERF_DEFAULT_ATTR_MAP_PATH);
320 }
321
322 if (access(path, F_OK)) {
323 map_fd = bpf_create_map(BPF_MAP_TYPE_HASH,
324 sizeof(struct perf_event_attr),
325 sizeof(struct perf_event_attr_map_entry),
326 ATTR_MAP_SIZE, 0);
327 if (map_fd < 0)
328 return -1;
329
330 err = bpf_obj_pin(map_fd, path);
331 if (err) {
332 /* someone pinned the map in parallel? */
333 close(map_fd);
334 map_fd = bpf_obj_get(path);
335 if (map_fd < 0)
336 return -1;
337 }
338 } else {
339 map_fd = bpf_obj_get(path);
340 if (map_fd < 0)
341 return -1;
342 }
343
344 if (!bperf_attr_map_compatible(map_fd)) {
345 close(map_fd);
346 return -1;
347
348 }
349 err = flock(map_fd, LOCK_EX);
350 if (err) {
351 close(map_fd);
352 return -1;
353 }
354 return map_fd;
355 }
356
bperf_check_target(struct evsel * evsel,struct target * target,enum bperf_filter_type * filter_type,__u32 * filter_entry_cnt)357 static int bperf_check_target(struct evsel *evsel,
358 struct target *target,
359 enum bperf_filter_type *filter_type,
360 __u32 *filter_entry_cnt)
361 {
362 if (evsel->core.leader->nr_members > 1) {
363 pr_err("bpf managed perf events do not yet support groups.\n");
364 return -1;
365 }
366
367 /* determine filter type based on target */
368 if (target->system_wide) {
369 *filter_type = BPERF_FILTER_GLOBAL;
370 *filter_entry_cnt = 1;
371 } else if (target->cpu_list) {
372 *filter_type = BPERF_FILTER_CPU;
373 *filter_entry_cnt = perf_cpu_map__nr(evsel__cpus(evsel));
374 } else if (target->tid) {
375 *filter_type = BPERF_FILTER_PID;
376 *filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
377 } else if (target->pid || evsel->evlist->workload.pid != -1) {
378 *filter_type = BPERF_FILTER_TGID;
379 *filter_entry_cnt = perf_thread_map__nr(evsel->core.threads);
380 } else {
381 pr_err("bpf managed perf events do not yet support these targets.\n");
382 return -1;
383 }
384
385 return 0;
386 }
387
388 static struct perf_cpu_map *all_cpu_map;
389
bperf_reload_leader_program(struct evsel * evsel,int attr_map_fd,struct perf_event_attr_map_entry * entry)390 static int bperf_reload_leader_program(struct evsel *evsel, int attr_map_fd,
391 struct perf_event_attr_map_entry *entry)
392 {
393 struct bperf_leader_bpf *skel = bperf_leader_bpf__open();
394 int link_fd, diff_map_fd, err;
395 struct bpf_link *link = NULL;
396
397 if (!skel) {
398 pr_err("Failed to open leader skeleton\n");
399 return -1;
400 }
401
402 bpf_map__resize(skel->maps.events, libbpf_num_possible_cpus());
403 err = bperf_leader_bpf__load(skel);
404 if (err) {
405 pr_err("Failed to load leader skeleton\n");
406 goto out;
407 }
408
409 link = bpf_program__attach(skel->progs.on_switch);
410 if (IS_ERR(link)) {
411 pr_err("Failed to attach leader program\n");
412 err = PTR_ERR(link);
413 goto out;
414 }
415
416 link_fd = bpf_link__fd(link);
417 diff_map_fd = bpf_map__fd(skel->maps.diff_readings);
418 entry->link_id = bpf_link_get_id(link_fd);
419 entry->diff_map_id = bpf_map_get_id(diff_map_fd);
420 err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, entry, BPF_ANY);
421 assert(err == 0);
422
423 evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry->link_id);
424 assert(evsel->bperf_leader_link_fd >= 0);
425
426 /*
427 * save leader_skel for install_pe, which is called within
428 * following evsel__open_per_cpu call
429 */
430 evsel->leader_skel = skel;
431 evsel__open_per_cpu(evsel, all_cpu_map, -1);
432
433 out:
434 bperf_leader_bpf__destroy(skel);
435 bpf_link__destroy(link);
436 return err;
437 }
438
bperf__load(struct evsel * evsel,struct target * target)439 static int bperf__load(struct evsel *evsel, struct target *target)
440 {
441 struct perf_event_attr_map_entry entry = {0xffffffff, 0xffffffff};
442 int attr_map_fd, diff_map_fd = -1, err;
443 enum bperf_filter_type filter_type;
444 __u32 filter_entry_cnt, i;
445
446 if (bperf_check_target(evsel, target, &filter_type, &filter_entry_cnt))
447 return -1;
448
449 if (!all_cpu_map) {
450 all_cpu_map = perf_cpu_map__new(NULL);
451 if (!all_cpu_map)
452 return -1;
453 }
454
455 evsel->bperf_leader_prog_fd = -1;
456 evsel->bperf_leader_link_fd = -1;
457
458 /*
459 * Step 1: hold a fd on the leader program and the bpf_link, if
460 * the program is not already gone, reload the program.
461 * Use flock() to ensure exclusive access to the perf_event_attr
462 * map.
463 */
464 attr_map_fd = bperf_lock_attr_map(target);
465 if (attr_map_fd < 0) {
466 pr_err("Failed to lock perf_event_attr map\n");
467 return -1;
468 }
469
470 err = bpf_map_lookup_elem(attr_map_fd, &evsel->core.attr, &entry);
471 if (err) {
472 err = bpf_map_update_elem(attr_map_fd, &evsel->core.attr, &entry, BPF_ANY);
473 if (err)
474 goto out;
475 }
476
477 evsel->bperf_leader_link_fd = bpf_link_get_fd_by_id(entry.link_id);
478 if (evsel->bperf_leader_link_fd < 0 &&
479 bperf_reload_leader_program(evsel, attr_map_fd, &entry)) {
480 err = -1;
481 goto out;
482 }
483 /*
484 * The bpf_link holds reference to the leader program, and the
485 * leader program holds reference to the maps. Therefore, if
486 * link_id is valid, diff_map_id should also be valid.
487 */
488 evsel->bperf_leader_prog_fd = bpf_prog_get_fd_by_id(
489 bpf_link_get_prog_id(evsel->bperf_leader_link_fd));
490 assert(evsel->bperf_leader_prog_fd >= 0);
491
492 diff_map_fd = bpf_map_get_fd_by_id(entry.diff_map_id);
493 assert(diff_map_fd >= 0);
494
495 /*
496 * bperf uses BPF_PROG_TEST_RUN to get accurate reading. Check
497 * whether the kernel support it
498 */
499 err = bperf_trigger_reading(evsel->bperf_leader_prog_fd, 0);
500 if (err) {
501 pr_err("The kernel does not support test_run for raw_tp BPF programs.\n"
502 "Therefore, --use-bpf might show inaccurate readings\n");
503 goto out;
504 }
505
506 /* Step 2: load the follower skeleton */
507 evsel->follower_skel = bperf_follower_bpf__open();
508 if (!evsel->follower_skel) {
509 err = -1;
510 pr_err("Failed to open follower skeleton\n");
511 goto out;
512 }
513
514 /* attach fexit program to the leader program */
515 bpf_program__set_attach_target(evsel->follower_skel->progs.fexit_XXX,
516 evsel->bperf_leader_prog_fd, "on_switch");
517
518 /* connect to leader diff_reading map */
519 bpf_map__reuse_fd(evsel->follower_skel->maps.diff_readings, diff_map_fd);
520
521 /* set up reading map */
522 bpf_map__set_max_entries(evsel->follower_skel->maps.accum_readings,
523 filter_entry_cnt);
524 /* set up follower filter based on target */
525 bpf_map__set_max_entries(evsel->follower_skel->maps.filter,
526 filter_entry_cnt);
527 err = bperf_follower_bpf__load(evsel->follower_skel);
528 if (err) {
529 pr_err("Failed to load follower skeleton\n");
530 bperf_follower_bpf__destroy(evsel->follower_skel);
531 evsel->follower_skel = NULL;
532 goto out;
533 }
534
535 for (i = 0; i < filter_entry_cnt; i++) {
536 int filter_map_fd;
537 __u32 key;
538
539 if (filter_type == BPERF_FILTER_PID ||
540 filter_type == BPERF_FILTER_TGID)
541 key = evsel->core.threads->map[i].pid;
542 else if (filter_type == BPERF_FILTER_CPU)
543 key = evsel->core.cpus->map[i];
544 else
545 break;
546
547 filter_map_fd = bpf_map__fd(evsel->follower_skel->maps.filter);
548 bpf_map_update_elem(filter_map_fd, &key, &i, BPF_ANY);
549 }
550
551 evsel->follower_skel->bss->type = filter_type;
552
553 err = bperf_follower_bpf__attach(evsel->follower_skel);
554
555 out:
556 if (err && evsel->bperf_leader_link_fd >= 0)
557 close(evsel->bperf_leader_link_fd);
558 if (err && evsel->bperf_leader_prog_fd >= 0)
559 close(evsel->bperf_leader_prog_fd);
560 if (diff_map_fd >= 0)
561 close(diff_map_fd);
562
563 flock(attr_map_fd, LOCK_UN);
564 close(attr_map_fd);
565
566 return err;
567 }
568
bperf__install_pe(struct evsel * evsel,int cpu,int fd)569 static int bperf__install_pe(struct evsel *evsel, int cpu, int fd)
570 {
571 struct bperf_leader_bpf *skel = evsel->leader_skel;
572
573 return bpf_map_update_elem(bpf_map__fd(skel->maps.events),
574 &cpu, &fd, BPF_ANY);
575 }
576
577 /*
578 * trigger the leader prog on each cpu, so the accum_reading map could get
579 * the latest readings.
580 */
bperf_sync_counters(struct evsel * evsel)581 static int bperf_sync_counters(struct evsel *evsel)
582 {
583 int num_cpu, i, cpu;
584
585 num_cpu = all_cpu_map->nr;
586 for (i = 0; i < num_cpu; i++) {
587 cpu = all_cpu_map->map[i];
588 bperf_trigger_reading(evsel->bperf_leader_prog_fd, cpu);
589 }
590 return 0;
591 }
592
bperf__enable(struct evsel * evsel)593 static int bperf__enable(struct evsel *evsel)
594 {
595 evsel->follower_skel->bss->enabled = 1;
596 return 0;
597 }
598
bperf__disable(struct evsel * evsel)599 static int bperf__disable(struct evsel *evsel)
600 {
601 evsel->follower_skel->bss->enabled = 0;
602 return 0;
603 }
604
bperf__read(struct evsel * evsel)605 static int bperf__read(struct evsel *evsel)
606 {
607 struct bperf_follower_bpf *skel = evsel->follower_skel;
608 __u32 num_cpu_bpf = cpu__max_cpu();
609 struct bpf_perf_event_value values[num_cpu_bpf];
610 int reading_map_fd, err = 0;
611 __u32 i, j, num_cpu;
612
613 bperf_sync_counters(evsel);
614 reading_map_fd = bpf_map__fd(skel->maps.accum_readings);
615
616 for (i = 0; i < bpf_map__max_entries(skel->maps.accum_readings); i++) {
617 __u32 cpu;
618
619 err = bpf_map_lookup_elem(reading_map_fd, &i, values);
620 if (err)
621 goto out;
622 switch (evsel->follower_skel->bss->type) {
623 case BPERF_FILTER_GLOBAL:
624 assert(i == 0);
625
626 num_cpu = all_cpu_map->nr;
627 for (j = 0; j < num_cpu; j++) {
628 cpu = all_cpu_map->map[j];
629 perf_counts(evsel->counts, cpu, 0)->val = values[cpu].counter;
630 perf_counts(evsel->counts, cpu, 0)->ena = values[cpu].enabled;
631 perf_counts(evsel->counts, cpu, 0)->run = values[cpu].running;
632 }
633 break;
634 case BPERF_FILTER_CPU:
635 cpu = evsel->core.cpus->map[i];
636 perf_counts(evsel->counts, i, 0)->val = values[cpu].counter;
637 perf_counts(evsel->counts, i, 0)->ena = values[cpu].enabled;
638 perf_counts(evsel->counts, i, 0)->run = values[cpu].running;
639 break;
640 case BPERF_FILTER_PID:
641 case BPERF_FILTER_TGID:
642 perf_counts(evsel->counts, 0, i)->val = 0;
643 perf_counts(evsel->counts, 0, i)->ena = 0;
644 perf_counts(evsel->counts, 0, i)->run = 0;
645
646 for (cpu = 0; cpu < num_cpu_bpf; cpu++) {
647 perf_counts(evsel->counts, 0, i)->val += values[cpu].counter;
648 perf_counts(evsel->counts, 0, i)->ena += values[cpu].enabled;
649 perf_counts(evsel->counts, 0, i)->run += values[cpu].running;
650 }
651 break;
652 default:
653 break;
654 }
655 }
656 out:
657 return err;
658 }
659
bperf__destroy(struct evsel * evsel)660 static int bperf__destroy(struct evsel *evsel)
661 {
662 bperf_follower_bpf__destroy(evsel->follower_skel);
663 close(evsel->bperf_leader_prog_fd);
664 close(evsel->bperf_leader_link_fd);
665 return 0;
666 }
667
668 /*
669 * bperf: share hardware PMCs with BPF
670 *
671 * perf uses performance monitoring counters (PMC) to monitor system
672 * performance. The PMCs are limited hardware resources. For example,
673 * Intel CPUs have 3x fixed PMCs and 4x programmable PMCs per cpu.
674 *
675 * Modern data center systems use these PMCs in many different ways:
676 * system level monitoring, (maybe nested) container level monitoring, per
677 * process monitoring, profiling (in sample mode), etc. In some cases,
678 * there are more active perf_events than available hardware PMCs. To allow
679 * all perf_events to have a chance to run, it is necessary to do expensive
680 * time multiplexing of events.
681 *
682 * On the other hand, many monitoring tools count the common metrics
683 * (cycles, instructions). It is a waste to have multiple tools create
684 * multiple perf_events of "cycles" and occupy multiple PMCs.
685 *
686 * bperf tries to reduce such wastes by allowing multiple perf_events of
687 * "cycles" or "instructions" (at different scopes) to share PMUs. Instead
688 * of having each perf-stat session to read its own perf_events, bperf uses
689 * BPF programs to read the perf_events and aggregate readings to BPF maps.
690 * Then, the perf-stat session(s) reads the values from these BPF maps.
691 *
692 * ||
693 * shared progs and maps <- || -> per session progs and maps
694 * ||
695 * --------------- ||
696 * | perf_events | ||
697 * --------------- fexit || -----------------
698 * | --------||----> | follower prog |
699 * --------------- / || --- -----------------
700 * cs -> | leader prog |/ ||/ | |
701 * --> --------------- /|| -------------- ------------------
702 * / | | / || | filter map | | accum_readings |
703 * / ------------ ------------ || -------------- ------------------
704 * | | prev map | | diff map | || |
705 * | ------------ ------------ || |
706 * \ || |
707 * = \ ==================================================== | ============
708 * \ / user space
709 * \ /
710 * \ /
711 * BPF_PROG_TEST_RUN BPF_MAP_LOOKUP_ELEM
712 * \ /
713 * \ /
714 * \------ perf-stat ----------------------/
715 *
716 * The figure above shows the architecture of bperf. Note that the figure
717 * is divided into 3 regions: shared progs and maps (top left), per session
718 * progs and maps (top right), and user space (bottom).
719 *
720 * The leader prog is triggered on each context switch (cs). The leader
721 * prog reads perf_events and stores the difference (current_reading -
722 * previous_reading) to the diff map. For the same metric, e.g. "cycles",
723 * multiple perf-stat sessions share the same leader prog.
724 *
725 * Each perf-stat session creates a follower prog as fexit program to the
726 * leader prog. It is possible to attach up to BPF_MAX_TRAMP_PROGS (38)
727 * follower progs to the same leader prog. The follower prog checks current
728 * task and processor ID to decide whether to add the value from the diff
729 * map to its accumulated reading map (accum_readings).
730 *
731 * Finally, perf-stat user space reads the value from accum_reading map.
732 *
733 * Besides context switch, it is also necessary to trigger the leader prog
734 * before perf-stat reads the value. Otherwise, the accum_reading map may
735 * not have the latest reading from the perf_events. This is achieved by
736 * triggering the event via sys_bpf(BPF_PROG_TEST_RUN) to each CPU.
737 *
738 * Comment before the definition of struct perf_event_attr_map_entry
739 * describes how different sessions of perf-stat share information about
740 * the leader prog.
741 */
742
743 struct bpf_counter_ops bperf_ops = {
744 .load = bperf__load,
745 .enable = bperf__enable,
746 .disable = bperf__disable,
747 .read = bperf__read,
748 .install_pe = bperf__install_pe,
749 .destroy = bperf__destroy,
750 };
751
752 extern struct bpf_counter_ops bperf_cgrp_ops;
753
bpf_counter_skip(struct evsel * evsel)754 static inline bool bpf_counter_skip(struct evsel *evsel)
755 {
756 return list_empty(&evsel->bpf_counter_list) &&
757 evsel->follower_skel == NULL;
758 }
759
bpf_counter__install_pe(struct evsel * evsel,int cpu,int fd)760 int bpf_counter__install_pe(struct evsel *evsel, int cpu, int fd)
761 {
762 if (bpf_counter_skip(evsel))
763 return 0;
764 return evsel->bpf_counter_ops->install_pe(evsel, cpu, fd);
765 }
766
bpf_counter__load(struct evsel * evsel,struct target * target)767 int bpf_counter__load(struct evsel *evsel, struct target *target)
768 {
769 if (target->bpf_str)
770 evsel->bpf_counter_ops = &bpf_program_profiler_ops;
771 else if (cgrp_event_expanded && target->use_bpf)
772 evsel->bpf_counter_ops = &bperf_cgrp_ops;
773 else if (target->use_bpf || evsel->bpf_counter ||
774 evsel__match_bpf_counter_events(evsel->name))
775 evsel->bpf_counter_ops = &bperf_ops;
776
777 if (evsel->bpf_counter_ops)
778 return evsel->bpf_counter_ops->load(evsel, target);
779 return 0;
780 }
781
bpf_counter__enable(struct evsel * evsel)782 int bpf_counter__enable(struct evsel *evsel)
783 {
784 if (bpf_counter_skip(evsel))
785 return 0;
786 return evsel->bpf_counter_ops->enable(evsel);
787 }
788
bpf_counter__disable(struct evsel * evsel)789 int bpf_counter__disable(struct evsel *evsel)
790 {
791 if (bpf_counter_skip(evsel))
792 return 0;
793 return evsel->bpf_counter_ops->disable(evsel);
794 }
795
bpf_counter__read(struct evsel * evsel)796 int bpf_counter__read(struct evsel *evsel)
797 {
798 if (bpf_counter_skip(evsel))
799 return -EAGAIN;
800 return evsel->bpf_counter_ops->read(evsel);
801 }
802
bpf_counter__destroy(struct evsel * evsel)803 void bpf_counter__destroy(struct evsel *evsel)
804 {
805 if (bpf_counter_skip(evsel))
806 return;
807 evsel->bpf_counter_ops->destroy(evsel);
808 evsel->bpf_counter_ops = NULL;
809 }
810