1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Linux network driver for QLogic BR-series Converged Network Adapter.
4 */
5 /*
6 * Copyright (c) 2005-2014 Brocade Communications Systems, Inc.
7 * Copyright (c) 2014-2015 QLogic Corporation
8 * All rights reserved
9 * www.qlogic.com
10 */
11 #include <linux/bitops.h>
12 #include <linux/netdevice.h>
13 #include <linux/skbuff.h>
14 #include <linux/etherdevice.h>
15 #include <linux/in.h>
16 #include <linux/ethtool.h>
17 #include <linux/if_vlan.h>
18 #include <linux/if_ether.h>
19 #include <linux/ip.h>
20 #include <linux/prefetch.h>
21 #include <linux/module.h>
22
23 #include "bnad.h"
24 #include "bna.h"
25 #include "cna.h"
26
27 static DEFINE_MUTEX(bnad_fwimg_mutex);
28
29 /*
30 * Module params
31 */
32 static uint bnad_msix_disable;
33 module_param(bnad_msix_disable, uint, 0444);
34 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
35
36 static uint bnad_ioc_auto_recover = 1;
37 module_param(bnad_ioc_auto_recover, uint, 0444);
38 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
39
40 static uint bna_debugfs_enable = 1;
41 module_param(bna_debugfs_enable, uint, 0644);
42 MODULE_PARM_DESC(bna_debugfs_enable, "Enables debugfs feature, default=1,"
43 " Range[false:0|true:1]");
44
45 /*
46 * Global variables
47 */
48 static u32 bnad_rxqs_per_cq = 2;
49 static atomic_t bna_id;
50 static const u8 bnad_bcast_addr[] __aligned(2) =
51 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
52
53 /*
54 * Local MACROS
55 */
56 #define BNAD_GET_MBOX_IRQ(_bnad) \
57 (((_bnad)->cfg_flags & BNAD_CF_MSIX) ? \
58 ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \
59 ((_bnad)->pcidev->irq))
60
61 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _size) \
62 do { \
63 (_res_info)->res_type = BNA_RES_T_MEM; \
64 (_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA; \
65 (_res_info)->res_u.mem_info.num = (_num); \
66 (_res_info)->res_u.mem_info.len = (_size); \
67 } while (0)
68
69 /*
70 * Reinitialize completions in CQ, once Rx is taken down
71 */
72 static void
bnad_cq_cleanup(struct bnad * bnad,struct bna_ccb * ccb)73 bnad_cq_cleanup(struct bnad *bnad, struct bna_ccb *ccb)
74 {
75 struct bna_cq_entry *cmpl;
76 int i;
77
78 for (i = 0; i < ccb->q_depth; i++) {
79 cmpl = &((struct bna_cq_entry *)ccb->sw_q)[i];
80 cmpl->valid = 0;
81 }
82 }
83
84 /* Tx Datapath functions */
85
86
87 /* Caller should ensure that the entry at unmap_q[index] is valid */
88 static u32
bnad_tx_buff_unmap(struct bnad * bnad,struct bnad_tx_unmap * unmap_q,u32 q_depth,u32 index)89 bnad_tx_buff_unmap(struct bnad *bnad,
90 struct bnad_tx_unmap *unmap_q,
91 u32 q_depth, u32 index)
92 {
93 struct bnad_tx_unmap *unmap;
94 struct sk_buff *skb;
95 int vector, nvecs;
96
97 unmap = &unmap_q[index];
98 nvecs = unmap->nvecs;
99
100 skb = unmap->skb;
101 unmap->skb = NULL;
102 unmap->nvecs = 0;
103 dma_unmap_single(&bnad->pcidev->dev,
104 dma_unmap_addr(&unmap->vectors[0], dma_addr),
105 skb_headlen(skb), DMA_TO_DEVICE);
106 dma_unmap_addr_set(&unmap->vectors[0], dma_addr, 0);
107 nvecs--;
108
109 vector = 0;
110 while (nvecs) {
111 vector++;
112 if (vector == BFI_TX_MAX_VECTORS_PER_WI) {
113 vector = 0;
114 BNA_QE_INDX_INC(index, q_depth);
115 unmap = &unmap_q[index];
116 }
117
118 dma_unmap_page(&bnad->pcidev->dev,
119 dma_unmap_addr(&unmap->vectors[vector], dma_addr),
120 dma_unmap_len(&unmap->vectors[vector], dma_len),
121 DMA_TO_DEVICE);
122 dma_unmap_addr_set(&unmap->vectors[vector], dma_addr, 0);
123 nvecs--;
124 }
125
126 BNA_QE_INDX_INC(index, q_depth);
127
128 return index;
129 }
130
131 /*
132 * Frees all pending Tx Bufs
133 * At this point no activity is expected on the Q,
134 * so DMA unmap & freeing is fine.
135 */
136 static void
bnad_txq_cleanup(struct bnad * bnad,struct bna_tcb * tcb)137 bnad_txq_cleanup(struct bnad *bnad, struct bna_tcb *tcb)
138 {
139 struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
140 struct sk_buff *skb;
141 int i;
142
143 for (i = 0; i < tcb->q_depth; i++) {
144 skb = unmap_q[i].skb;
145 if (!skb)
146 continue;
147 bnad_tx_buff_unmap(bnad, unmap_q, tcb->q_depth, i);
148
149 dev_kfree_skb_any(skb);
150 }
151 }
152
153 /*
154 * bnad_txcmpl_process : Frees the Tx bufs on Tx completion
155 * Can be called in a) Interrupt context
156 * b) Sending context
157 */
158 static u32
bnad_txcmpl_process(struct bnad * bnad,struct bna_tcb * tcb)159 bnad_txcmpl_process(struct bnad *bnad, struct bna_tcb *tcb)
160 {
161 u32 sent_packets = 0, sent_bytes = 0;
162 u32 wis, unmap_wis, hw_cons, cons, q_depth;
163 struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
164 struct bnad_tx_unmap *unmap;
165 struct sk_buff *skb;
166
167 /* Just return if TX is stopped */
168 if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
169 return 0;
170
171 hw_cons = *(tcb->hw_consumer_index);
172 rmb();
173 cons = tcb->consumer_index;
174 q_depth = tcb->q_depth;
175
176 wis = BNA_Q_INDEX_CHANGE(cons, hw_cons, q_depth);
177 BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
178
179 while (wis) {
180 unmap = &unmap_q[cons];
181
182 skb = unmap->skb;
183
184 sent_packets++;
185 sent_bytes += skb->len;
186
187 unmap_wis = BNA_TXQ_WI_NEEDED(unmap->nvecs);
188 wis -= unmap_wis;
189
190 cons = bnad_tx_buff_unmap(bnad, unmap_q, q_depth, cons);
191 dev_kfree_skb_any(skb);
192 }
193
194 /* Update consumer pointers. */
195 tcb->consumer_index = hw_cons;
196
197 tcb->txq->tx_packets += sent_packets;
198 tcb->txq->tx_bytes += sent_bytes;
199
200 return sent_packets;
201 }
202
203 static u32
bnad_tx_complete(struct bnad * bnad,struct bna_tcb * tcb)204 bnad_tx_complete(struct bnad *bnad, struct bna_tcb *tcb)
205 {
206 struct net_device *netdev = bnad->netdev;
207 u32 sent = 0;
208
209 if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
210 return 0;
211
212 sent = bnad_txcmpl_process(bnad, tcb);
213 if (sent) {
214 if (netif_queue_stopped(netdev) &&
215 netif_carrier_ok(netdev) &&
216 BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
217 BNAD_NETIF_WAKE_THRESHOLD) {
218 if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
219 netif_wake_queue(netdev);
220 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
221 }
222 }
223 }
224
225 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
226 bna_ib_ack(tcb->i_dbell, sent);
227
228 smp_mb__before_atomic();
229 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
230
231 return sent;
232 }
233
234 /* MSIX Tx Completion Handler */
235 static irqreturn_t
bnad_msix_tx(int irq,void * data)236 bnad_msix_tx(int irq, void *data)
237 {
238 struct bna_tcb *tcb = (struct bna_tcb *)data;
239 struct bnad *bnad = tcb->bnad;
240
241 bnad_tx_complete(bnad, tcb);
242
243 return IRQ_HANDLED;
244 }
245
246 static inline void
bnad_rxq_alloc_uninit(struct bnad * bnad,struct bna_rcb * rcb)247 bnad_rxq_alloc_uninit(struct bnad *bnad, struct bna_rcb *rcb)
248 {
249 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
250
251 unmap_q->reuse_pi = -1;
252 unmap_q->alloc_order = -1;
253 unmap_q->map_size = 0;
254 unmap_q->type = BNAD_RXBUF_NONE;
255 }
256
257 /* Default is page-based allocation. Multi-buffer support - TBD */
258 static int
bnad_rxq_alloc_init(struct bnad * bnad,struct bna_rcb * rcb)259 bnad_rxq_alloc_init(struct bnad *bnad, struct bna_rcb *rcb)
260 {
261 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
262 int order;
263
264 bnad_rxq_alloc_uninit(bnad, rcb);
265
266 order = get_order(rcb->rxq->buffer_size);
267
268 unmap_q->type = BNAD_RXBUF_PAGE;
269
270 if (bna_is_small_rxq(rcb->id)) {
271 unmap_q->alloc_order = 0;
272 unmap_q->map_size = rcb->rxq->buffer_size;
273 } else {
274 if (rcb->rxq->multi_buffer) {
275 unmap_q->alloc_order = 0;
276 unmap_q->map_size = rcb->rxq->buffer_size;
277 unmap_q->type = BNAD_RXBUF_MULTI_BUFF;
278 } else {
279 unmap_q->alloc_order = order;
280 unmap_q->map_size =
281 (rcb->rxq->buffer_size > 2048) ?
282 PAGE_SIZE << order : 2048;
283 }
284 }
285
286 BUG_ON((PAGE_SIZE << order) % unmap_q->map_size);
287
288 return 0;
289 }
290
291 static inline void
bnad_rxq_cleanup_page(struct bnad * bnad,struct bnad_rx_unmap * unmap)292 bnad_rxq_cleanup_page(struct bnad *bnad, struct bnad_rx_unmap *unmap)
293 {
294 if (!unmap->page)
295 return;
296
297 dma_unmap_page(&bnad->pcidev->dev,
298 dma_unmap_addr(&unmap->vector, dma_addr),
299 unmap->vector.len, DMA_FROM_DEVICE);
300 put_page(unmap->page);
301 unmap->page = NULL;
302 dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
303 unmap->vector.len = 0;
304 }
305
306 static inline void
bnad_rxq_cleanup_skb(struct bnad * bnad,struct bnad_rx_unmap * unmap)307 bnad_rxq_cleanup_skb(struct bnad *bnad, struct bnad_rx_unmap *unmap)
308 {
309 if (!unmap->skb)
310 return;
311
312 dma_unmap_single(&bnad->pcidev->dev,
313 dma_unmap_addr(&unmap->vector, dma_addr),
314 unmap->vector.len, DMA_FROM_DEVICE);
315 dev_kfree_skb_any(unmap->skb);
316 unmap->skb = NULL;
317 dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
318 unmap->vector.len = 0;
319 }
320
321 static void
bnad_rxq_cleanup(struct bnad * bnad,struct bna_rcb * rcb)322 bnad_rxq_cleanup(struct bnad *bnad, struct bna_rcb *rcb)
323 {
324 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
325 int i;
326
327 for (i = 0; i < rcb->q_depth; i++) {
328 struct bnad_rx_unmap *unmap = &unmap_q->unmap[i];
329
330 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
331 bnad_rxq_cleanup_skb(bnad, unmap);
332 else
333 bnad_rxq_cleanup_page(bnad, unmap);
334 }
335 bnad_rxq_alloc_uninit(bnad, rcb);
336 }
337
338 static u32
bnad_rxq_refill_page(struct bnad * bnad,struct bna_rcb * rcb,u32 nalloc)339 bnad_rxq_refill_page(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
340 {
341 u32 alloced, prod, q_depth;
342 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
343 struct bnad_rx_unmap *unmap, *prev;
344 struct bna_rxq_entry *rxent;
345 struct page *page;
346 u32 page_offset, alloc_size;
347 dma_addr_t dma_addr;
348
349 prod = rcb->producer_index;
350 q_depth = rcb->q_depth;
351
352 alloc_size = PAGE_SIZE << unmap_q->alloc_order;
353 alloced = 0;
354
355 while (nalloc--) {
356 unmap = &unmap_q->unmap[prod];
357
358 if (unmap_q->reuse_pi < 0) {
359 page = alloc_pages(GFP_ATOMIC | __GFP_COMP,
360 unmap_q->alloc_order);
361 page_offset = 0;
362 } else {
363 prev = &unmap_q->unmap[unmap_q->reuse_pi];
364 page = prev->page;
365 page_offset = prev->page_offset + unmap_q->map_size;
366 get_page(page);
367 }
368
369 if (unlikely(!page)) {
370 BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
371 rcb->rxq->rxbuf_alloc_failed++;
372 goto finishing;
373 }
374
375 dma_addr = dma_map_page(&bnad->pcidev->dev, page, page_offset,
376 unmap_q->map_size, DMA_FROM_DEVICE);
377 if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
378 put_page(page);
379 BNAD_UPDATE_CTR(bnad, rxbuf_map_failed);
380 rcb->rxq->rxbuf_map_failed++;
381 goto finishing;
382 }
383
384 unmap->page = page;
385 unmap->page_offset = page_offset;
386 dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
387 unmap->vector.len = unmap_q->map_size;
388 page_offset += unmap_q->map_size;
389
390 if (page_offset < alloc_size)
391 unmap_q->reuse_pi = prod;
392 else
393 unmap_q->reuse_pi = -1;
394
395 rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
396 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
397 BNA_QE_INDX_INC(prod, q_depth);
398 alloced++;
399 }
400
401 finishing:
402 if (likely(alloced)) {
403 rcb->producer_index = prod;
404 smp_mb();
405 if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
406 bna_rxq_prod_indx_doorbell(rcb);
407 }
408
409 return alloced;
410 }
411
412 static u32
bnad_rxq_refill_skb(struct bnad * bnad,struct bna_rcb * rcb,u32 nalloc)413 bnad_rxq_refill_skb(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
414 {
415 u32 alloced, prod, q_depth, buff_sz;
416 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
417 struct bnad_rx_unmap *unmap;
418 struct bna_rxq_entry *rxent;
419 struct sk_buff *skb;
420 dma_addr_t dma_addr;
421
422 buff_sz = rcb->rxq->buffer_size;
423 prod = rcb->producer_index;
424 q_depth = rcb->q_depth;
425
426 alloced = 0;
427 while (nalloc--) {
428 unmap = &unmap_q->unmap[prod];
429
430 skb = netdev_alloc_skb_ip_align(bnad->netdev, buff_sz);
431
432 if (unlikely(!skb)) {
433 BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
434 rcb->rxq->rxbuf_alloc_failed++;
435 goto finishing;
436 }
437
438 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
439 buff_sz, DMA_FROM_DEVICE);
440 if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
441 dev_kfree_skb_any(skb);
442 BNAD_UPDATE_CTR(bnad, rxbuf_map_failed);
443 rcb->rxq->rxbuf_map_failed++;
444 goto finishing;
445 }
446
447 unmap->skb = skb;
448 dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
449 unmap->vector.len = buff_sz;
450
451 rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
452 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
453 BNA_QE_INDX_INC(prod, q_depth);
454 alloced++;
455 }
456
457 finishing:
458 if (likely(alloced)) {
459 rcb->producer_index = prod;
460 smp_mb();
461 if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
462 bna_rxq_prod_indx_doorbell(rcb);
463 }
464
465 return alloced;
466 }
467
468 static inline void
bnad_rxq_post(struct bnad * bnad,struct bna_rcb * rcb)469 bnad_rxq_post(struct bnad *bnad, struct bna_rcb *rcb)
470 {
471 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
472 u32 to_alloc;
473
474 to_alloc = BNA_QE_FREE_CNT(rcb, rcb->q_depth);
475 if (!(to_alloc >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT))
476 return;
477
478 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
479 bnad_rxq_refill_skb(bnad, rcb, to_alloc);
480 else
481 bnad_rxq_refill_page(bnad, rcb, to_alloc);
482 }
483
484 #define flags_cksum_prot_mask (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
485 BNA_CQ_EF_IPV6 | \
486 BNA_CQ_EF_TCP | BNA_CQ_EF_UDP | \
487 BNA_CQ_EF_L4_CKSUM_OK)
488
489 #define flags_tcp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
490 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
491 #define flags_tcp6 (BNA_CQ_EF_IPV6 | \
492 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
493 #define flags_udp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
494 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
495 #define flags_udp6 (BNA_CQ_EF_IPV6 | \
496 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
497
498 static void
bnad_cq_drop_packet(struct bnad * bnad,struct bna_rcb * rcb,u32 sop_ci,u32 nvecs)499 bnad_cq_drop_packet(struct bnad *bnad, struct bna_rcb *rcb,
500 u32 sop_ci, u32 nvecs)
501 {
502 struct bnad_rx_unmap_q *unmap_q;
503 struct bnad_rx_unmap *unmap;
504 u32 ci, vec;
505
506 unmap_q = rcb->unmap_q;
507 for (vec = 0, ci = sop_ci; vec < nvecs; vec++) {
508 unmap = &unmap_q->unmap[ci];
509 BNA_QE_INDX_INC(ci, rcb->q_depth);
510
511 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
512 bnad_rxq_cleanup_skb(bnad, unmap);
513 else
514 bnad_rxq_cleanup_page(bnad, unmap);
515 }
516 }
517
518 static void
bnad_cq_setup_skb_frags(struct bna_ccb * ccb,struct sk_buff * skb,u32 nvecs)519 bnad_cq_setup_skb_frags(struct bna_ccb *ccb, struct sk_buff *skb, u32 nvecs)
520 {
521 struct bna_rcb *rcb;
522 struct bnad *bnad;
523 struct bnad_rx_unmap_q *unmap_q;
524 struct bna_cq_entry *cq, *cmpl;
525 u32 ci, pi, totlen = 0;
526
527 cq = ccb->sw_q;
528 pi = ccb->producer_index;
529 cmpl = &cq[pi];
530
531 rcb = bna_is_small_rxq(cmpl->rxq_id) ? ccb->rcb[1] : ccb->rcb[0];
532 unmap_q = rcb->unmap_q;
533 bnad = rcb->bnad;
534 ci = rcb->consumer_index;
535
536 /* prefetch header */
537 prefetch(page_address(unmap_q->unmap[ci].page) +
538 unmap_q->unmap[ci].page_offset);
539
540 while (nvecs--) {
541 struct bnad_rx_unmap *unmap;
542 u32 len;
543
544 unmap = &unmap_q->unmap[ci];
545 BNA_QE_INDX_INC(ci, rcb->q_depth);
546
547 dma_unmap_page(&bnad->pcidev->dev,
548 dma_unmap_addr(&unmap->vector, dma_addr),
549 unmap->vector.len, DMA_FROM_DEVICE);
550
551 len = ntohs(cmpl->length);
552 skb->truesize += unmap->vector.len;
553 totlen += len;
554
555 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
556 unmap->page, unmap->page_offset, len);
557
558 unmap->page = NULL;
559 unmap->vector.len = 0;
560
561 BNA_QE_INDX_INC(pi, ccb->q_depth);
562 cmpl = &cq[pi];
563 }
564
565 skb->len += totlen;
566 skb->data_len += totlen;
567 }
568
569 static inline void
bnad_cq_setup_skb(struct bnad * bnad,struct sk_buff * skb,struct bnad_rx_unmap * unmap,u32 len)570 bnad_cq_setup_skb(struct bnad *bnad, struct sk_buff *skb,
571 struct bnad_rx_unmap *unmap, u32 len)
572 {
573 prefetch(skb->data);
574
575 dma_unmap_single(&bnad->pcidev->dev,
576 dma_unmap_addr(&unmap->vector, dma_addr),
577 unmap->vector.len, DMA_FROM_DEVICE);
578
579 skb_put(skb, len);
580 skb->protocol = eth_type_trans(skb, bnad->netdev);
581
582 unmap->skb = NULL;
583 unmap->vector.len = 0;
584 }
585
586 static u32
bnad_cq_process(struct bnad * bnad,struct bna_ccb * ccb,int budget)587 bnad_cq_process(struct bnad *bnad, struct bna_ccb *ccb, int budget)
588 {
589 struct bna_cq_entry *cq, *cmpl, *next_cmpl;
590 struct bna_rcb *rcb = NULL;
591 struct bnad_rx_unmap_q *unmap_q;
592 struct bnad_rx_unmap *unmap = NULL;
593 struct sk_buff *skb = NULL;
594 struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
595 struct bnad_rx_ctrl *rx_ctrl = ccb->ctrl;
596 u32 packets = 0, len = 0, totlen = 0;
597 u32 pi, vec, sop_ci = 0, nvecs = 0;
598 u32 flags, masked_flags;
599
600 prefetch(bnad->netdev);
601
602 cq = ccb->sw_q;
603
604 while (packets < budget) {
605 cmpl = &cq[ccb->producer_index];
606 if (!cmpl->valid)
607 break;
608 /* The 'valid' field is set by the adapter, only after writing
609 * the other fields of completion entry. Hence, do not load
610 * other fields of completion entry *before* the 'valid' is
611 * loaded. Adding the rmb() here prevents the compiler and/or
612 * CPU from reordering the reads which would potentially result
613 * in reading stale values in completion entry.
614 */
615 rmb();
616
617 BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
618
619 if (bna_is_small_rxq(cmpl->rxq_id))
620 rcb = ccb->rcb[1];
621 else
622 rcb = ccb->rcb[0];
623
624 unmap_q = rcb->unmap_q;
625
626 /* start of packet ci */
627 sop_ci = rcb->consumer_index;
628
629 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) {
630 unmap = &unmap_q->unmap[sop_ci];
631 skb = unmap->skb;
632 } else {
633 skb = napi_get_frags(&rx_ctrl->napi);
634 if (unlikely(!skb))
635 break;
636 }
637 prefetch(skb);
638
639 flags = ntohl(cmpl->flags);
640 len = ntohs(cmpl->length);
641 totlen = len;
642 nvecs = 1;
643
644 /* Check all the completions for this frame.
645 * busy-wait doesn't help much, break here.
646 */
647 if (BNAD_RXBUF_IS_MULTI_BUFF(unmap_q->type) &&
648 (flags & BNA_CQ_EF_EOP) == 0) {
649 pi = ccb->producer_index;
650 do {
651 BNA_QE_INDX_INC(pi, ccb->q_depth);
652 next_cmpl = &cq[pi];
653
654 if (!next_cmpl->valid)
655 break;
656 /* The 'valid' field is set by the adapter, only
657 * after writing the other fields of completion
658 * entry. Hence, do not load other fields of
659 * completion entry *before* the 'valid' is
660 * loaded. Adding the rmb() here prevents the
661 * compiler and/or CPU from reordering the reads
662 * which would potentially result in reading
663 * stale values in completion entry.
664 */
665 rmb();
666
667 len = ntohs(next_cmpl->length);
668 flags = ntohl(next_cmpl->flags);
669
670 nvecs++;
671 totlen += len;
672 } while ((flags & BNA_CQ_EF_EOP) == 0);
673
674 if (!next_cmpl->valid)
675 break;
676 }
677 packets++;
678
679 /* TODO: BNA_CQ_EF_LOCAL ? */
680 if (unlikely(flags & (BNA_CQ_EF_MAC_ERROR |
681 BNA_CQ_EF_FCS_ERROR |
682 BNA_CQ_EF_TOO_LONG))) {
683 bnad_cq_drop_packet(bnad, rcb, sop_ci, nvecs);
684 rcb->rxq->rx_packets_with_error++;
685
686 goto next;
687 }
688
689 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
690 bnad_cq_setup_skb(bnad, skb, unmap, len);
691 else
692 bnad_cq_setup_skb_frags(ccb, skb, nvecs);
693
694 rcb->rxq->rx_packets++;
695 rcb->rxq->rx_bytes += totlen;
696 ccb->bytes_per_intr += totlen;
697
698 masked_flags = flags & flags_cksum_prot_mask;
699
700 if (likely
701 ((bnad->netdev->features & NETIF_F_RXCSUM) &&
702 ((masked_flags == flags_tcp4) ||
703 (masked_flags == flags_udp4) ||
704 (masked_flags == flags_tcp6) ||
705 (masked_flags == flags_udp6))))
706 skb->ip_summed = CHECKSUM_UNNECESSARY;
707 else
708 skb_checksum_none_assert(skb);
709
710 if ((flags & BNA_CQ_EF_VLAN) &&
711 (bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
712 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cmpl->vlan_tag));
713
714 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
715 netif_receive_skb(skb);
716 else
717 napi_gro_frags(&rx_ctrl->napi);
718
719 next:
720 BNA_QE_INDX_ADD(rcb->consumer_index, nvecs, rcb->q_depth);
721 for (vec = 0; vec < nvecs; vec++) {
722 cmpl = &cq[ccb->producer_index];
723 cmpl->valid = 0;
724 BNA_QE_INDX_INC(ccb->producer_index, ccb->q_depth);
725 }
726 }
727
728 napi_gro_flush(&rx_ctrl->napi, false);
729 if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
730 bna_ib_ack_disable_irq(ccb->i_dbell, packets);
731
732 bnad_rxq_post(bnad, ccb->rcb[0]);
733 if (ccb->rcb[1])
734 bnad_rxq_post(bnad, ccb->rcb[1]);
735
736 return packets;
737 }
738
739 static void
bnad_netif_rx_schedule_poll(struct bnad * bnad,struct bna_ccb * ccb)740 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
741 {
742 struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
743 struct napi_struct *napi = &rx_ctrl->napi;
744
745 if (likely(napi_schedule_prep(napi))) {
746 __napi_schedule(napi);
747 rx_ctrl->rx_schedule++;
748 }
749 }
750
751 /* MSIX Rx Path Handler */
752 static irqreturn_t
bnad_msix_rx(int irq,void * data)753 bnad_msix_rx(int irq, void *data)
754 {
755 struct bna_ccb *ccb = (struct bna_ccb *)data;
756
757 if (ccb) {
758 ((struct bnad_rx_ctrl *)ccb->ctrl)->rx_intr_ctr++;
759 bnad_netif_rx_schedule_poll(ccb->bnad, ccb);
760 }
761
762 return IRQ_HANDLED;
763 }
764
765 /* Interrupt handlers */
766
767 /* Mbox Interrupt Handlers */
768 static irqreturn_t
bnad_msix_mbox_handler(int irq,void * data)769 bnad_msix_mbox_handler(int irq, void *data)
770 {
771 u32 intr_status;
772 unsigned long flags;
773 struct bnad *bnad = (struct bnad *)data;
774
775 spin_lock_irqsave(&bnad->bna_lock, flags);
776 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
777 spin_unlock_irqrestore(&bnad->bna_lock, flags);
778 return IRQ_HANDLED;
779 }
780
781 bna_intr_status_get(&bnad->bna, intr_status);
782
783 if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
784 bna_mbox_handler(&bnad->bna, intr_status);
785
786 spin_unlock_irqrestore(&bnad->bna_lock, flags);
787
788 return IRQ_HANDLED;
789 }
790
791 static irqreturn_t
bnad_isr(int irq,void * data)792 bnad_isr(int irq, void *data)
793 {
794 int i, j;
795 u32 intr_status;
796 unsigned long flags;
797 struct bnad *bnad = (struct bnad *)data;
798 struct bnad_rx_info *rx_info;
799 struct bnad_rx_ctrl *rx_ctrl;
800 struct bna_tcb *tcb = NULL;
801
802 spin_lock_irqsave(&bnad->bna_lock, flags);
803 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
804 spin_unlock_irqrestore(&bnad->bna_lock, flags);
805 return IRQ_NONE;
806 }
807
808 bna_intr_status_get(&bnad->bna, intr_status);
809
810 if (unlikely(!intr_status)) {
811 spin_unlock_irqrestore(&bnad->bna_lock, flags);
812 return IRQ_NONE;
813 }
814
815 if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
816 bna_mbox_handler(&bnad->bna, intr_status);
817
818 spin_unlock_irqrestore(&bnad->bna_lock, flags);
819
820 if (!BNA_IS_INTX_DATA_INTR(intr_status))
821 return IRQ_HANDLED;
822
823 /* Process data interrupts */
824 /* Tx processing */
825 for (i = 0; i < bnad->num_tx; i++) {
826 for (j = 0; j < bnad->num_txq_per_tx; j++) {
827 tcb = bnad->tx_info[i].tcb[j];
828 if (tcb && test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
829 bnad_tx_complete(bnad, bnad->tx_info[i].tcb[j]);
830 }
831 }
832 /* Rx processing */
833 for (i = 0; i < bnad->num_rx; i++) {
834 rx_info = &bnad->rx_info[i];
835 if (!rx_info->rx)
836 continue;
837 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
838 rx_ctrl = &rx_info->rx_ctrl[j];
839 if (rx_ctrl->ccb)
840 bnad_netif_rx_schedule_poll(bnad,
841 rx_ctrl->ccb);
842 }
843 }
844 return IRQ_HANDLED;
845 }
846
847 /*
848 * Called in interrupt / callback context
849 * with bna_lock held, so cfg_flags access is OK
850 */
851 static void
bnad_enable_mbox_irq(struct bnad * bnad)852 bnad_enable_mbox_irq(struct bnad *bnad)
853 {
854 clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
855
856 BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
857 }
858
859 /*
860 * Called with bnad->bna_lock held b'cos of
861 * bnad->cfg_flags access.
862 */
863 static void
bnad_disable_mbox_irq(struct bnad * bnad)864 bnad_disable_mbox_irq(struct bnad *bnad)
865 {
866 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
867
868 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
869 }
870
871 static void
bnad_set_netdev_perm_addr(struct bnad * bnad)872 bnad_set_netdev_perm_addr(struct bnad *bnad)
873 {
874 struct net_device *netdev = bnad->netdev;
875
876 ether_addr_copy(netdev->perm_addr, bnad->perm_addr);
877 if (is_zero_ether_addr(netdev->dev_addr))
878 eth_hw_addr_set(netdev, bnad->perm_addr);
879 }
880
881 /* Control Path Handlers */
882
883 /* Callbacks */
884 void
bnad_cb_mbox_intr_enable(struct bnad * bnad)885 bnad_cb_mbox_intr_enable(struct bnad *bnad)
886 {
887 bnad_enable_mbox_irq(bnad);
888 }
889
890 void
bnad_cb_mbox_intr_disable(struct bnad * bnad)891 bnad_cb_mbox_intr_disable(struct bnad *bnad)
892 {
893 bnad_disable_mbox_irq(bnad);
894 }
895
896 void
bnad_cb_ioceth_ready(struct bnad * bnad)897 bnad_cb_ioceth_ready(struct bnad *bnad)
898 {
899 bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
900 complete(&bnad->bnad_completions.ioc_comp);
901 }
902
903 void
bnad_cb_ioceth_failed(struct bnad * bnad)904 bnad_cb_ioceth_failed(struct bnad *bnad)
905 {
906 bnad->bnad_completions.ioc_comp_status = BNA_CB_FAIL;
907 complete(&bnad->bnad_completions.ioc_comp);
908 }
909
910 void
bnad_cb_ioceth_disabled(struct bnad * bnad)911 bnad_cb_ioceth_disabled(struct bnad *bnad)
912 {
913 bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
914 complete(&bnad->bnad_completions.ioc_comp);
915 }
916
917 static void
bnad_cb_enet_disabled(void * arg)918 bnad_cb_enet_disabled(void *arg)
919 {
920 struct bnad *bnad = (struct bnad *)arg;
921
922 netif_carrier_off(bnad->netdev);
923 complete(&bnad->bnad_completions.enet_comp);
924 }
925
926 void
bnad_cb_ethport_link_status(struct bnad * bnad,enum bna_link_status link_status)927 bnad_cb_ethport_link_status(struct bnad *bnad,
928 enum bna_link_status link_status)
929 {
930 bool link_up = false;
931
932 link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
933
934 if (link_status == BNA_CEE_UP) {
935 if (!test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
936 BNAD_UPDATE_CTR(bnad, cee_toggle);
937 set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
938 } else {
939 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
940 BNAD_UPDATE_CTR(bnad, cee_toggle);
941 clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
942 }
943
944 if (link_up) {
945 if (!netif_carrier_ok(bnad->netdev)) {
946 uint tx_id, tcb_id;
947 netdev_info(bnad->netdev, "link up\n");
948 netif_carrier_on(bnad->netdev);
949 BNAD_UPDATE_CTR(bnad, link_toggle);
950 for (tx_id = 0; tx_id < bnad->num_tx; tx_id++) {
951 for (tcb_id = 0; tcb_id < bnad->num_txq_per_tx;
952 tcb_id++) {
953 struct bna_tcb *tcb =
954 bnad->tx_info[tx_id].tcb[tcb_id];
955 u32 txq_id;
956 if (!tcb)
957 continue;
958
959 txq_id = tcb->id;
960
961 if (test_bit(BNAD_TXQ_TX_STARTED,
962 &tcb->flags)) {
963 /*
964 * Force an immediate
965 * Transmit Schedule */
966 netif_wake_subqueue(
967 bnad->netdev,
968 txq_id);
969 BNAD_UPDATE_CTR(bnad,
970 netif_queue_wakeup);
971 } else {
972 netif_stop_subqueue(
973 bnad->netdev,
974 txq_id);
975 BNAD_UPDATE_CTR(bnad,
976 netif_queue_stop);
977 }
978 }
979 }
980 }
981 } else {
982 if (netif_carrier_ok(bnad->netdev)) {
983 netdev_info(bnad->netdev, "link down\n");
984 netif_carrier_off(bnad->netdev);
985 BNAD_UPDATE_CTR(bnad, link_toggle);
986 }
987 }
988 }
989
990 static void
bnad_cb_tx_disabled(void * arg,struct bna_tx * tx)991 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx)
992 {
993 struct bnad *bnad = (struct bnad *)arg;
994
995 complete(&bnad->bnad_completions.tx_comp);
996 }
997
998 static void
bnad_cb_tcb_setup(struct bnad * bnad,struct bna_tcb * tcb)999 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
1000 {
1001 struct bnad_tx_info *tx_info =
1002 (struct bnad_tx_info *)tcb->txq->tx->priv;
1003
1004 tcb->priv = tcb;
1005 tx_info->tcb[tcb->id] = tcb;
1006 }
1007
1008 static void
bnad_cb_tcb_destroy(struct bnad * bnad,struct bna_tcb * tcb)1009 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
1010 {
1011 struct bnad_tx_info *tx_info =
1012 (struct bnad_tx_info *)tcb->txq->tx->priv;
1013
1014 tx_info->tcb[tcb->id] = NULL;
1015 tcb->priv = NULL;
1016 }
1017
1018 static void
bnad_cb_ccb_setup(struct bnad * bnad,struct bna_ccb * ccb)1019 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
1020 {
1021 struct bnad_rx_info *rx_info =
1022 (struct bnad_rx_info *)ccb->cq->rx->priv;
1023
1024 rx_info->rx_ctrl[ccb->id].ccb = ccb;
1025 ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
1026 }
1027
1028 static void
bnad_cb_ccb_destroy(struct bnad * bnad,struct bna_ccb * ccb)1029 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
1030 {
1031 struct bnad_rx_info *rx_info =
1032 (struct bnad_rx_info *)ccb->cq->rx->priv;
1033
1034 rx_info->rx_ctrl[ccb->id].ccb = NULL;
1035 }
1036
1037 static void
bnad_cb_tx_stall(struct bnad * bnad,struct bna_tx * tx)1038 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tx *tx)
1039 {
1040 struct bnad_tx_info *tx_info = tx->priv;
1041 struct bna_tcb *tcb;
1042 u32 txq_id;
1043 int i;
1044
1045 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1046 tcb = tx_info->tcb[i];
1047 if (!tcb)
1048 continue;
1049 txq_id = tcb->id;
1050 clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1051 netif_stop_subqueue(bnad->netdev, txq_id);
1052 }
1053 }
1054
1055 static void
bnad_cb_tx_resume(struct bnad * bnad,struct bna_tx * tx)1056 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tx *tx)
1057 {
1058 struct bnad_tx_info *tx_info = tx->priv;
1059 struct bna_tcb *tcb;
1060 u32 txq_id;
1061 int i;
1062
1063 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1064 tcb = tx_info->tcb[i];
1065 if (!tcb)
1066 continue;
1067 txq_id = tcb->id;
1068
1069 BUG_ON(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags));
1070 set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1071 BUG_ON(*(tcb->hw_consumer_index) != 0);
1072
1073 if (netif_carrier_ok(bnad->netdev)) {
1074 netif_wake_subqueue(bnad->netdev, txq_id);
1075 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
1076 }
1077 }
1078
1079 /*
1080 * Workaround for first ioceth enable failure & we
1081 * get a 0 MAC address. We try to get the MAC address
1082 * again here.
1083 */
1084 if (is_zero_ether_addr(bnad->perm_addr)) {
1085 bna_enet_perm_mac_get(&bnad->bna.enet, bnad->perm_addr);
1086 bnad_set_netdev_perm_addr(bnad);
1087 }
1088 }
1089
1090 /*
1091 * Free all TxQs buffers and then notify TX_E_CLEANUP_DONE to Tx fsm.
1092 */
1093 static void
bnad_tx_cleanup(struct delayed_work * work)1094 bnad_tx_cleanup(struct delayed_work *work)
1095 {
1096 struct bnad_tx_info *tx_info =
1097 container_of(work, struct bnad_tx_info, tx_cleanup_work);
1098 struct bnad *bnad = NULL;
1099 struct bna_tcb *tcb;
1100 unsigned long flags;
1101 u32 i, pending = 0;
1102
1103 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1104 tcb = tx_info->tcb[i];
1105 if (!tcb)
1106 continue;
1107
1108 bnad = tcb->bnad;
1109
1110 if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
1111 pending++;
1112 continue;
1113 }
1114
1115 bnad_txq_cleanup(bnad, tcb);
1116
1117 smp_mb__before_atomic();
1118 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
1119 }
1120
1121 if (pending) {
1122 queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work,
1123 msecs_to_jiffies(1));
1124 return;
1125 }
1126
1127 spin_lock_irqsave(&bnad->bna_lock, flags);
1128 bna_tx_cleanup_complete(tx_info->tx);
1129 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1130 }
1131
1132 static void
bnad_cb_tx_cleanup(struct bnad * bnad,struct bna_tx * tx)1133 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tx *tx)
1134 {
1135 struct bnad_tx_info *tx_info = tx->priv;
1136 struct bna_tcb *tcb;
1137 int i;
1138
1139 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1140 tcb = tx_info->tcb[i];
1141 if (!tcb)
1142 continue;
1143 }
1144
1145 queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work, 0);
1146 }
1147
1148 static void
bnad_cb_rx_stall(struct bnad * bnad,struct bna_rx * rx)1149 bnad_cb_rx_stall(struct bnad *bnad, struct bna_rx *rx)
1150 {
1151 struct bnad_rx_info *rx_info = rx->priv;
1152 struct bna_ccb *ccb;
1153 struct bnad_rx_ctrl *rx_ctrl;
1154 int i;
1155
1156 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1157 rx_ctrl = &rx_info->rx_ctrl[i];
1158 ccb = rx_ctrl->ccb;
1159 if (!ccb)
1160 continue;
1161
1162 clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[0]->flags);
1163
1164 if (ccb->rcb[1])
1165 clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[1]->flags);
1166 }
1167 }
1168
1169 /*
1170 * Free all RxQs buffers and then notify RX_E_CLEANUP_DONE to Rx fsm.
1171 */
1172 static void
bnad_rx_cleanup(void * work)1173 bnad_rx_cleanup(void *work)
1174 {
1175 struct bnad_rx_info *rx_info =
1176 container_of(work, struct bnad_rx_info, rx_cleanup_work);
1177 struct bnad_rx_ctrl *rx_ctrl;
1178 struct bnad *bnad = NULL;
1179 unsigned long flags;
1180 u32 i;
1181
1182 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1183 rx_ctrl = &rx_info->rx_ctrl[i];
1184
1185 if (!rx_ctrl->ccb)
1186 continue;
1187
1188 bnad = rx_ctrl->ccb->bnad;
1189
1190 /*
1191 * Wait till the poll handler has exited
1192 * and nothing can be scheduled anymore
1193 */
1194 napi_disable(&rx_ctrl->napi);
1195
1196 bnad_cq_cleanup(bnad, rx_ctrl->ccb);
1197 bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[0]);
1198 if (rx_ctrl->ccb->rcb[1])
1199 bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[1]);
1200 }
1201
1202 spin_lock_irqsave(&bnad->bna_lock, flags);
1203 bna_rx_cleanup_complete(rx_info->rx);
1204 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1205 }
1206
1207 static void
bnad_cb_rx_cleanup(struct bnad * bnad,struct bna_rx * rx)1208 bnad_cb_rx_cleanup(struct bnad *bnad, struct bna_rx *rx)
1209 {
1210 struct bnad_rx_info *rx_info = rx->priv;
1211 struct bna_ccb *ccb;
1212 struct bnad_rx_ctrl *rx_ctrl;
1213 int i;
1214
1215 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1216 rx_ctrl = &rx_info->rx_ctrl[i];
1217 ccb = rx_ctrl->ccb;
1218 if (!ccb)
1219 continue;
1220
1221 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
1222
1223 if (ccb->rcb[1])
1224 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
1225 }
1226
1227 queue_work(bnad->work_q, &rx_info->rx_cleanup_work);
1228 }
1229
1230 static void
bnad_cb_rx_post(struct bnad * bnad,struct bna_rx * rx)1231 bnad_cb_rx_post(struct bnad *bnad, struct bna_rx *rx)
1232 {
1233 struct bnad_rx_info *rx_info = rx->priv;
1234 struct bna_ccb *ccb;
1235 struct bna_rcb *rcb;
1236 struct bnad_rx_ctrl *rx_ctrl;
1237 int i, j;
1238
1239 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1240 rx_ctrl = &rx_info->rx_ctrl[i];
1241 ccb = rx_ctrl->ccb;
1242 if (!ccb)
1243 continue;
1244
1245 napi_enable(&rx_ctrl->napi);
1246
1247 for (j = 0; j < BNAD_MAX_RXQ_PER_RXP; j++) {
1248 rcb = ccb->rcb[j];
1249 if (!rcb)
1250 continue;
1251
1252 bnad_rxq_alloc_init(bnad, rcb);
1253 set_bit(BNAD_RXQ_STARTED, &rcb->flags);
1254 set_bit(BNAD_RXQ_POST_OK, &rcb->flags);
1255 bnad_rxq_post(bnad, rcb);
1256 }
1257 }
1258 }
1259
1260 static void
bnad_cb_rx_disabled(void * arg,struct bna_rx * rx)1261 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx)
1262 {
1263 struct bnad *bnad = (struct bnad *)arg;
1264
1265 complete(&bnad->bnad_completions.rx_comp);
1266 }
1267
1268 static void
bnad_cb_rx_mcast_add(struct bnad * bnad,struct bna_rx * rx)1269 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx)
1270 {
1271 bnad->bnad_completions.mcast_comp_status = BNA_CB_SUCCESS;
1272 complete(&bnad->bnad_completions.mcast_comp);
1273 }
1274
1275 void
bnad_cb_stats_get(struct bnad * bnad,enum bna_cb_status status,struct bna_stats * stats)1276 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
1277 struct bna_stats *stats)
1278 {
1279 if (status == BNA_CB_SUCCESS)
1280 BNAD_UPDATE_CTR(bnad, hw_stats_updates);
1281
1282 if (!netif_running(bnad->netdev) ||
1283 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1284 return;
1285
1286 mod_timer(&bnad->stats_timer,
1287 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1288 }
1289
1290 static void
bnad_cb_enet_mtu_set(struct bnad * bnad)1291 bnad_cb_enet_mtu_set(struct bnad *bnad)
1292 {
1293 bnad->bnad_completions.mtu_comp_status = BNA_CB_SUCCESS;
1294 complete(&bnad->bnad_completions.mtu_comp);
1295 }
1296
1297 void
bnad_cb_completion(void * arg,enum bfa_status status)1298 bnad_cb_completion(void *arg, enum bfa_status status)
1299 {
1300 struct bnad_iocmd_comp *iocmd_comp =
1301 (struct bnad_iocmd_comp *)arg;
1302
1303 iocmd_comp->comp_status = (u32) status;
1304 complete(&iocmd_comp->comp);
1305 }
1306
1307 /* Resource allocation, free functions */
1308
1309 static void
bnad_mem_free(struct bnad * bnad,struct bna_mem_info * mem_info)1310 bnad_mem_free(struct bnad *bnad,
1311 struct bna_mem_info *mem_info)
1312 {
1313 int i;
1314 dma_addr_t dma_pa;
1315
1316 if (mem_info->mdl == NULL)
1317 return;
1318
1319 for (i = 0; i < mem_info->num; i++) {
1320 if (mem_info->mdl[i].kva != NULL) {
1321 if (mem_info->mem_type == BNA_MEM_T_DMA) {
1322 BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1323 dma_pa);
1324 dma_free_coherent(&bnad->pcidev->dev,
1325 mem_info->mdl[i].len,
1326 mem_info->mdl[i].kva, dma_pa);
1327 } else
1328 kfree(mem_info->mdl[i].kva);
1329 }
1330 }
1331 kfree(mem_info->mdl);
1332 mem_info->mdl = NULL;
1333 }
1334
1335 static int
bnad_mem_alloc(struct bnad * bnad,struct bna_mem_info * mem_info)1336 bnad_mem_alloc(struct bnad *bnad,
1337 struct bna_mem_info *mem_info)
1338 {
1339 int i;
1340 dma_addr_t dma_pa;
1341
1342 if ((mem_info->num == 0) || (mem_info->len == 0)) {
1343 mem_info->mdl = NULL;
1344 return 0;
1345 }
1346
1347 mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1348 GFP_KERNEL);
1349 if (mem_info->mdl == NULL)
1350 return -ENOMEM;
1351
1352 if (mem_info->mem_type == BNA_MEM_T_DMA) {
1353 for (i = 0; i < mem_info->num; i++) {
1354 mem_info->mdl[i].len = mem_info->len;
1355 mem_info->mdl[i].kva =
1356 dma_alloc_coherent(&bnad->pcidev->dev,
1357 mem_info->len, &dma_pa,
1358 GFP_KERNEL);
1359 if (mem_info->mdl[i].kva == NULL)
1360 goto err_return;
1361
1362 BNA_SET_DMA_ADDR(dma_pa,
1363 &(mem_info->mdl[i].dma));
1364 }
1365 } else {
1366 for (i = 0; i < mem_info->num; i++) {
1367 mem_info->mdl[i].len = mem_info->len;
1368 mem_info->mdl[i].kva = kzalloc(mem_info->len,
1369 GFP_KERNEL);
1370 if (mem_info->mdl[i].kva == NULL)
1371 goto err_return;
1372 }
1373 }
1374
1375 return 0;
1376
1377 err_return:
1378 bnad_mem_free(bnad, mem_info);
1379 return -ENOMEM;
1380 }
1381
1382 /* Free IRQ for Mailbox */
1383 static void
bnad_mbox_irq_free(struct bnad * bnad)1384 bnad_mbox_irq_free(struct bnad *bnad)
1385 {
1386 int irq;
1387 unsigned long flags;
1388
1389 spin_lock_irqsave(&bnad->bna_lock, flags);
1390 bnad_disable_mbox_irq(bnad);
1391 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1392
1393 irq = BNAD_GET_MBOX_IRQ(bnad);
1394 free_irq(irq, bnad);
1395 }
1396
1397 /*
1398 * Allocates IRQ for Mailbox, but keep it disabled
1399 * This will be enabled once we get the mbox enable callback
1400 * from bna
1401 */
1402 static int
bnad_mbox_irq_alloc(struct bnad * bnad)1403 bnad_mbox_irq_alloc(struct bnad *bnad)
1404 {
1405 int err = 0;
1406 unsigned long irq_flags, flags;
1407 u32 irq;
1408 irq_handler_t irq_handler;
1409
1410 spin_lock_irqsave(&bnad->bna_lock, flags);
1411 if (bnad->cfg_flags & BNAD_CF_MSIX) {
1412 irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1413 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
1414 irq_flags = 0;
1415 } else {
1416 irq_handler = (irq_handler_t)bnad_isr;
1417 irq = bnad->pcidev->irq;
1418 irq_flags = IRQF_SHARED;
1419 }
1420
1421 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1422 sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1423
1424 /*
1425 * Set the Mbox IRQ disable flag, so that the IRQ handler
1426 * called from request_irq() for SHARED IRQs do not execute
1427 */
1428 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1429
1430 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1431
1432 err = request_irq(irq, irq_handler, irq_flags,
1433 bnad->mbox_irq_name, bnad);
1434
1435 return err;
1436 }
1437
1438 static void
bnad_txrx_irq_free(struct bnad * bnad,struct bna_intr_info * intr_info)1439 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1440 {
1441 kfree(intr_info->idl);
1442 intr_info->idl = NULL;
1443 }
1444
1445 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1446 static int
bnad_txrx_irq_alloc(struct bnad * bnad,enum bnad_intr_source src,u32 txrx_id,struct bna_intr_info * intr_info)1447 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1448 u32 txrx_id, struct bna_intr_info *intr_info)
1449 {
1450 int i, vector_start = 0;
1451 u32 cfg_flags;
1452 unsigned long flags;
1453
1454 spin_lock_irqsave(&bnad->bna_lock, flags);
1455 cfg_flags = bnad->cfg_flags;
1456 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1457
1458 if (cfg_flags & BNAD_CF_MSIX) {
1459 intr_info->intr_type = BNA_INTR_T_MSIX;
1460 intr_info->idl = kcalloc(intr_info->num,
1461 sizeof(struct bna_intr_descr),
1462 GFP_KERNEL);
1463 if (!intr_info->idl)
1464 return -ENOMEM;
1465
1466 switch (src) {
1467 case BNAD_INTR_TX:
1468 vector_start = BNAD_MAILBOX_MSIX_VECTORS + txrx_id;
1469 break;
1470
1471 case BNAD_INTR_RX:
1472 vector_start = BNAD_MAILBOX_MSIX_VECTORS +
1473 (bnad->num_tx * bnad->num_txq_per_tx) +
1474 txrx_id;
1475 break;
1476
1477 default:
1478 BUG();
1479 }
1480
1481 for (i = 0; i < intr_info->num; i++)
1482 intr_info->idl[i].vector = vector_start + i;
1483 } else {
1484 intr_info->intr_type = BNA_INTR_T_INTX;
1485 intr_info->num = 1;
1486 intr_info->idl = kcalloc(intr_info->num,
1487 sizeof(struct bna_intr_descr),
1488 GFP_KERNEL);
1489 if (!intr_info->idl)
1490 return -ENOMEM;
1491
1492 switch (src) {
1493 case BNAD_INTR_TX:
1494 intr_info->idl[0].vector = BNAD_INTX_TX_IB_BITMASK;
1495 break;
1496
1497 case BNAD_INTR_RX:
1498 intr_info->idl[0].vector = BNAD_INTX_RX_IB_BITMASK;
1499 break;
1500 }
1501 }
1502 return 0;
1503 }
1504
1505 /* NOTE: Should be called for MSIX only
1506 * Unregisters Tx MSIX vector(s) from the kernel
1507 */
1508 static void
bnad_tx_msix_unregister(struct bnad * bnad,struct bnad_tx_info * tx_info,int num_txqs)1509 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1510 int num_txqs)
1511 {
1512 int i;
1513 int vector_num;
1514
1515 for (i = 0; i < num_txqs; i++) {
1516 if (tx_info->tcb[i] == NULL)
1517 continue;
1518
1519 vector_num = tx_info->tcb[i]->intr_vector;
1520 free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1521 }
1522 }
1523
1524 /* NOTE: Should be called for MSIX only
1525 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1526 */
1527 static int
bnad_tx_msix_register(struct bnad * bnad,struct bnad_tx_info * tx_info,u32 tx_id,int num_txqs)1528 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1529 u32 tx_id, int num_txqs)
1530 {
1531 int i;
1532 int err;
1533 int vector_num;
1534
1535 for (i = 0; i < num_txqs; i++) {
1536 vector_num = tx_info->tcb[i]->intr_vector;
1537 sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
1538 tx_id + tx_info->tcb[i]->id);
1539 err = request_irq(bnad->msix_table[vector_num].vector,
1540 (irq_handler_t)bnad_msix_tx, 0,
1541 tx_info->tcb[i]->name,
1542 tx_info->tcb[i]);
1543 if (err)
1544 goto err_return;
1545 }
1546
1547 return 0;
1548
1549 err_return:
1550 if (i > 0)
1551 bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1552 return -1;
1553 }
1554
1555 /* NOTE: Should be called for MSIX only
1556 * Unregisters Rx MSIX vector(s) from the kernel
1557 */
1558 static void
bnad_rx_msix_unregister(struct bnad * bnad,struct bnad_rx_info * rx_info,int num_rxps)1559 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1560 int num_rxps)
1561 {
1562 int i;
1563 int vector_num;
1564
1565 for (i = 0; i < num_rxps; i++) {
1566 if (rx_info->rx_ctrl[i].ccb == NULL)
1567 continue;
1568
1569 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1570 free_irq(bnad->msix_table[vector_num].vector,
1571 rx_info->rx_ctrl[i].ccb);
1572 }
1573 }
1574
1575 /* NOTE: Should be called for MSIX only
1576 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1577 */
1578 static int
bnad_rx_msix_register(struct bnad * bnad,struct bnad_rx_info * rx_info,u32 rx_id,int num_rxps)1579 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1580 u32 rx_id, int num_rxps)
1581 {
1582 int i;
1583 int err;
1584 int vector_num;
1585
1586 for (i = 0; i < num_rxps; i++) {
1587 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1588 sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
1589 bnad->netdev->name,
1590 rx_id + rx_info->rx_ctrl[i].ccb->id);
1591 err = request_irq(bnad->msix_table[vector_num].vector,
1592 (irq_handler_t)bnad_msix_rx, 0,
1593 rx_info->rx_ctrl[i].ccb->name,
1594 rx_info->rx_ctrl[i].ccb);
1595 if (err)
1596 goto err_return;
1597 }
1598
1599 return 0;
1600
1601 err_return:
1602 if (i > 0)
1603 bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1604 return -1;
1605 }
1606
1607 /* Free Tx object Resources */
1608 static void
bnad_tx_res_free(struct bnad * bnad,struct bna_res_info * res_info)1609 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1610 {
1611 int i;
1612
1613 for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1614 if (res_info[i].res_type == BNA_RES_T_MEM)
1615 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1616 else if (res_info[i].res_type == BNA_RES_T_INTR)
1617 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1618 }
1619 }
1620
1621 /* Allocates memory and interrupt resources for Tx object */
1622 static int
bnad_tx_res_alloc(struct bnad * bnad,struct bna_res_info * res_info,u32 tx_id)1623 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1624 u32 tx_id)
1625 {
1626 int i, err = 0;
1627
1628 for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1629 if (res_info[i].res_type == BNA_RES_T_MEM)
1630 err = bnad_mem_alloc(bnad,
1631 &res_info[i].res_u.mem_info);
1632 else if (res_info[i].res_type == BNA_RES_T_INTR)
1633 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1634 &res_info[i].res_u.intr_info);
1635 if (err)
1636 goto err_return;
1637 }
1638 return 0;
1639
1640 err_return:
1641 bnad_tx_res_free(bnad, res_info);
1642 return err;
1643 }
1644
1645 /* Free Rx object Resources */
1646 static void
bnad_rx_res_free(struct bnad * bnad,struct bna_res_info * res_info)1647 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1648 {
1649 int i;
1650
1651 for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1652 if (res_info[i].res_type == BNA_RES_T_MEM)
1653 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1654 else if (res_info[i].res_type == BNA_RES_T_INTR)
1655 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1656 }
1657 }
1658
1659 /* Allocates memory and interrupt resources for Rx object */
1660 static int
bnad_rx_res_alloc(struct bnad * bnad,struct bna_res_info * res_info,uint rx_id)1661 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1662 uint rx_id)
1663 {
1664 int i, err = 0;
1665
1666 /* All memory needs to be allocated before setup_ccbs */
1667 for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1668 if (res_info[i].res_type == BNA_RES_T_MEM)
1669 err = bnad_mem_alloc(bnad,
1670 &res_info[i].res_u.mem_info);
1671 else if (res_info[i].res_type == BNA_RES_T_INTR)
1672 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1673 &res_info[i].res_u.intr_info);
1674 if (err)
1675 goto err_return;
1676 }
1677 return 0;
1678
1679 err_return:
1680 bnad_rx_res_free(bnad, res_info);
1681 return err;
1682 }
1683
1684 /* Timer callbacks */
1685 /* a) IOC timer */
1686 static void
bnad_ioc_timeout(struct timer_list * t)1687 bnad_ioc_timeout(struct timer_list *t)
1688 {
1689 struct bnad *bnad = from_timer(bnad, t, bna.ioceth.ioc.ioc_timer);
1690 unsigned long flags;
1691
1692 spin_lock_irqsave(&bnad->bna_lock, flags);
1693 bfa_nw_ioc_timeout(&bnad->bna.ioceth.ioc);
1694 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1695 }
1696
1697 static void
bnad_ioc_hb_check(struct timer_list * t)1698 bnad_ioc_hb_check(struct timer_list *t)
1699 {
1700 struct bnad *bnad = from_timer(bnad, t, bna.ioceth.ioc.hb_timer);
1701 unsigned long flags;
1702
1703 spin_lock_irqsave(&bnad->bna_lock, flags);
1704 bfa_nw_ioc_hb_check(&bnad->bna.ioceth.ioc);
1705 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1706 }
1707
1708 static void
bnad_iocpf_timeout(struct timer_list * t)1709 bnad_iocpf_timeout(struct timer_list *t)
1710 {
1711 struct bnad *bnad = from_timer(bnad, t, bna.ioceth.ioc.iocpf_timer);
1712 unsigned long flags;
1713
1714 spin_lock_irqsave(&bnad->bna_lock, flags);
1715 bfa_nw_iocpf_timeout(&bnad->bna.ioceth.ioc);
1716 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1717 }
1718
1719 static void
bnad_iocpf_sem_timeout(struct timer_list * t)1720 bnad_iocpf_sem_timeout(struct timer_list *t)
1721 {
1722 struct bnad *bnad = from_timer(bnad, t, bna.ioceth.ioc.sem_timer);
1723 unsigned long flags;
1724
1725 spin_lock_irqsave(&bnad->bna_lock, flags);
1726 bfa_nw_iocpf_sem_timeout(&bnad->bna.ioceth.ioc);
1727 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1728 }
1729
1730 /*
1731 * All timer routines use bnad->bna_lock to protect against
1732 * the following race, which may occur in case of no locking:
1733 * Time CPU m CPU n
1734 * 0 1 = test_bit
1735 * 1 clear_bit
1736 * 2 del_timer_sync
1737 * 3 mod_timer
1738 */
1739
1740 /* b) Dynamic Interrupt Moderation Timer */
1741 static void
bnad_dim_timeout(struct timer_list * t)1742 bnad_dim_timeout(struct timer_list *t)
1743 {
1744 struct bnad *bnad = from_timer(bnad, t, dim_timer);
1745 struct bnad_rx_info *rx_info;
1746 struct bnad_rx_ctrl *rx_ctrl;
1747 int i, j;
1748 unsigned long flags;
1749
1750 if (!netif_carrier_ok(bnad->netdev))
1751 return;
1752
1753 spin_lock_irqsave(&bnad->bna_lock, flags);
1754 for (i = 0; i < bnad->num_rx; i++) {
1755 rx_info = &bnad->rx_info[i];
1756 if (!rx_info->rx)
1757 continue;
1758 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1759 rx_ctrl = &rx_info->rx_ctrl[j];
1760 if (!rx_ctrl->ccb)
1761 continue;
1762 bna_rx_dim_update(rx_ctrl->ccb);
1763 }
1764 }
1765
1766 /* Check for BNAD_CF_DIM_ENABLED, does not eliminate a race */
1767 if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1768 mod_timer(&bnad->dim_timer,
1769 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1770 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1771 }
1772
1773 /* c) Statistics Timer */
1774 static void
bnad_stats_timeout(struct timer_list * t)1775 bnad_stats_timeout(struct timer_list *t)
1776 {
1777 struct bnad *bnad = from_timer(bnad, t, stats_timer);
1778 unsigned long flags;
1779
1780 if (!netif_running(bnad->netdev) ||
1781 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1782 return;
1783
1784 spin_lock_irqsave(&bnad->bna_lock, flags);
1785 bna_hw_stats_get(&bnad->bna);
1786 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1787 }
1788
1789 /*
1790 * Set up timer for DIM
1791 * Called with bnad->bna_lock held
1792 */
1793 void
bnad_dim_timer_start(struct bnad * bnad)1794 bnad_dim_timer_start(struct bnad *bnad)
1795 {
1796 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1797 !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1798 timer_setup(&bnad->dim_timer, bnad_dim_timeout, 0);
1799 set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1800 mod_timer(&bnad->dim_timer,
1801 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1802 }
1803 }
1804
1805 /*
1806 * Set up timer for statistics
1807 * Called with mutex_lock(&bnad->conf_mutex) held
1808 */
1809 static void
bnad_stats_timer_start(struct bnad * bnad)1810 bnad_stats_timer_start(struct bnad *bnad)
1811 {
1812 unsigned long flags;
1813
1814 spin_lock_irqsave(&bnad->bna_lock, flags);
1815 if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1816 timer_setup(&bnad->stats_timer, bnad_stats_timeout, 0);
1817 mod_timer(&bnad->stats_timer,
1818 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1819 }
1820 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1821 }
1822
1823 /*
1824 * Stops the stats timer
1825 * Called with mutex_lock(&bnad->conf_mutex) held
1826 */
1827 static void
bnad_stats_timer_stop(struct bnad * bnad)1828 bnad_stats_timer_stop(struct bnad *bnad)
1829 {
1830 int to_del = 0;
1831 unsigned long flags;
1832
1833 spin_lock_irqsave(&bnad->bna_lock, flags);
1834 if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1835 to_del = 1;
1836 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1837 if (to_del)
1838 del_timer_sync(&bnad->stats_timer);
1839 }
1840
1841 /* Utilities */
1842
1843 static void
bnad_netdev_mc_list_get(struct net_device * netdev,u8 * mc_list)1844 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1845 {
1846 int i = 1; /* Index 0 has broadcast address */
1847 struct netdev_hw_addr *mc_addr;
1848
1849 netdev_for_each_mc_addr(mc_addr, netdev) {
1850 ether_addr_copy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0]);
1851 i++;
1852 }
1853 }
1854
1855 static int
bnad_napi_poll_rx(struct napi_struct * napi,int budget)1856 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1857 {
1858 struct bnad_rx_ctrl *rx_ctrl =
1859 container_of(napi, struct bnad_rx_ctrl, napi);
1860 struct bnad *bnad = rx_ctrl->bnad;
1861 int rcvd = 0;
1862
1863 rx_ctrl->rx_poll_ctr++;
1864
1865 if (!netif_carrier_ok(bnad->netdev))
1866 goto poll_exit;
1867
1868 rcvd = bnad_cq_process(bnad, rx_ctrl->ccb, budget);
1869 if (rcvd >= budget)
1870 return rcvd;
1871
1872 poll_exit:
1873 napi_complete_done(napi, rcvd);
1874
1875 rx_ctrl->rx_complete++;
1876
1877 if (rx_ctrl->ccb)
1878 bnad_enable_rx_irq_unsafe(rx_ctrl->ccb);
1879
1880 return rcvd;
1881 }
1882
1883 static void
bnad_napi_add(struct bnad * bnad,u32 rx_id)1884 bnad_napi_add(struct bnad *bnad, u32 rx_id)
1885 {
1886 struct bnad_rx_ctrl *rx_ctrl;
1887 int i;
1888
1889 /* Initialize & enable NAPI */
1890 for (i = 0; i < bnad->num_rxp_per_rx; i++) {
1891 rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1892 netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1893 bnad_napi_poll_rx);
1894 }
1895 }
1896
1897 static void
bnad_napi_delete(struct bnad * bnad,u32 rx_id)1898 bnad_napi_delete(struct bnad *bnad, u32 rx_id)
1899 {
1900 int i;
1901
1902 /* First disable and then clean up */
1903 for (i = 0; i < bnad->num_rxp_per_rx; i++)
1904 netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1905 }
1906
1907 /* Should be held with conf_lock held */
1908 void
bnad_destroy_tx(struct bnad * bnad,u32 tx_id)1909 bnad_destroy_tx(struct bnad *bnad, u32 tx_id)
1910 {
1911 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1912 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1913 unsigned long flags;
1914
1915 if (!tx_info->tx)
1916 return;
1917
1918 init_completion(&bnad->bnad_completions.tx_comp);
1919 spin_lock_irqsave(&bnad->bna_lock, flags);
1920 bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1921 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1922 wait_for_completion(&bnad->bnad_completions.tx_comp);
1923
1924 if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1925 bnad_tx_msix_unregister(bnad, tx_info,
1926 bnad->num_txq_per_tx);
1927
1928 spin_lock_irqsave(&bnad->bna_lock, flags);
1929 bna_tx_destroy(tx_info->tx);
1930 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1931
1932 tx_info->tx = NULL;
1933 tx_info->tx_id = 0;
1934
1935 bnad_tx_res_free(bnad, res_info);
1936 }
1937
1938 /* Should be held with conf_lock held */
1939 int
bnad_setup_tx(struct bnad * bnad,u32 tx_id)1940 bnad_setup_tx(struct bnad *bnad, u32 tx_id)
1941 {
1942 int err;
1943 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1944 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1945 struct bna_intr_info *intr_info =
1946 &res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1947 struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1948 static const struct bna_tx_event_cbfn tx_cbfn = {
1949 .tcb_setup_cbfn = bnad_cb_tcb_setup,
1950 .tcb_destroy_cbfn = bnad_cb_tcb_destroy,
1951 .tx_stall_cbfn = bnad_cb_tx_stall,
1952 .tx_resume_cbfn = bnad_cb_tx_resume,
1953 .tx_cleanup_cbfn = bnad_cb_tx_cleanup,
1954 };
1955
1956 struct bna_tx *tx;
1957 unsigned long flags;
1958
1959 tx_info->tx_id = tx_id;
1960
1961 /* Initialize the Tx object configuration */
1962 tx_config->num_txq = bnad->num_txq_per_tx;
1963 tx_config->txq_depth = bnad->txq_depth;
1964 tx_config->tx_type = BNA_TX_T_REGULAR;
1965 tx_config->coalescing_timeo = bnad->tx_coalescing_timeo;
1966
1967 /* Get BNA's resource requirement for one tx object */
1968 spin_lock_irqsave(&bnad->bna_lock, flags);
1969 bna_tx_res_req(bnad->num_txq_per_tx,
1970 bnad->txq_depth, res_info);
1971 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1972
1973 /* Fill Unmap Q memory requirements */
1974 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_TX_RES_MEM_T_UNMAPQ],
1975 bnad->num_txq_per_tx, (sizeof(struct bnad_tx_unmap) *
1976 bnad->txq_depth));
1977
1978 /* Allocate resources */
1979 err = bnad_tx_res_alloc(bnad, res_info, tx_id);
1980 if (err)
1981 return err;
1982
1983 /* Ask BNA to create one Tx object, supplying required resources */
1984 spin_lock_irqsave(&bnad->bna_lock, flags);
1985 tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
1986 tx_info);
1987 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1988 if (!tx) {
1989 err = -ENOMEM;
1990 goto err_return;
1991 }
1992 tx_info->tx = tx;
1993
1994 INIT_DELAYED_WORK(&tx_info->tx_cleanup_work,
1995 (work_func_t)bnad_tx_cleanup);
1996
1997 /* Register ISR for the Tx object */
1998 if (intr_info->intr_type == BNA_INTR_T_MSIX) {
1999 err = bnad_tx_msix_register(bnad, tx_info,
2000 tx_id, bnad->num_txq_per_tx);
2001 if (err)
2002 goto cleanup_tx;
2003 }
2004
2005 spin_lock_irqsave(&bnad->bna_lock, flags);
2006 bna_tx_enable(tx);
2007 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2008
2009 return 0;
2010
2011 cleanup_tx:
2012 spin_lock_irqsave(&bnad->bna_lock, flags);
2013 bna_tx_destroy(tx_info->tx);
2014 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2015 tx_info->tx = NULL;
2016 tx_info->tx_id = 0;
2017 err_return:
2018 bnad_tx_res_free(bnad, res_info);
2019 return err;
2020 }
2021
2022 /* Setup the rx config for bna_rx_create */
2023 /* bnad decides the configuration */
2024 static void
bnad_init_rx_config(struct bnad * bnad,struct bna_rx_config * rx_config)2025 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
2026 {
2027 memset(rx_config, 0, sizeof(*rx_config));
2028 rx_config->rx_type = BNA_RX_T_REGULAR;
2029 rx_config->num_paths = bnad->num_rxp_per_rx;
2030 rx_config->coalescing_timeo = bnad->rx_coalescing_timeo;
2031
2032 if (bnad->num_rxp_per_rx > 1) {
2033 rx_config->rss_status = BNA_STATUS_T_ENABLED;
2034 rx_config->rss_config.hash_type =
2035 (BFI_ENET_RSS_IPV6 |
2036 BFI_ENET_RSS_IPV6_TCP |
2037 BFI_ENET_RSS_IPV4 |
2038 BFI_ENET_RSS_IPV4_TCP);
2039 rx_config->rss_config.hash_mask =
2040 bnad->num_rxp_per_rx - 1;
2041 netdev_rss_key_fill(rx_config->rss_config.toeplitz_hash_key,
2042 sizeof(rx_config->rss_config.toeplitz_hash_key));
2043 } else {
2044 rx_config->rss_status = BNA_STATUS_T_DISABLED;
2045 memset(&rx_config->rss_config, 0,
2046 sizeof(rx_config->rss_config));
2047 }
2048
2049 rx_config->frame_size = BNAD_FRAME_SIZE(bnad->netdev->mtu);
2050 rx_config->q0_multi_buf = BNA_STATUS_T_DISABLED;
2051
2052 /* BNA_RXP_SINGLE - one data-buffer queue
2053 * BNA_RXP_SLR - one small-buffer and one large-buffer queues
2054 * BNA_RXP_HDS - one header-buffer and one data-buffer queues
2055 */
2056 /* TODO: configurable param for queue type */
2057 rx_config->rxp_type = BNA_RXP_SLR;
2058
2059 if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
2060 rx_config->frame_size > 4096) {
2061 /* though size_routing_enable is set in SLR,
2062 * small packets may get routed to same rxq.
2063 * set buf_size to 2048 instead of PAGE_SIZE.
2064 */
2065 rx_config->q0_buf_size = 2048;
2066 /* this should be in multiples of 2 */
2067 rx_config->q0_num_vecs = 4;
2068 rx_config->q0_depth = bnad->rxq_depth * rx_config->q0_num_vecs;
2069 rx_config->q0_multi_buf = BNA_STATUS_T_ENABLED;
2070 } else {
2071 rx_config->q0_buf_size = rx_config->frame_size;
2072 rx_config->q0_num_vecs = 1;
2073 rx_config->q0_depth = bnad->rxq_depth;
2074 }
2075
2076 /* initialize for q1 for BNA_RXP_SLR/BNA_RXP_HDS */
2077 if (rx_config->rxp_type == BNA_RXP_SLR) {
2078 rx_config->q1_depth = bnad->rxq_depth;
2079 rx_config->q1_buf_size = BFI_SMALL_RXBUF_SIZE;
2080 }
2081
2082 rx_config->vlan_strip_status =
2083 (bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) ?
2084 BNA_STATUS_T_ENABLED : BNA_STATUS_T_DISABLED;
2085 }
2086
2087 static void
bnad_rx_ctrl_init(struct bnad * bnad,u32 rx_id)2088 bnad_rx_ctrl_init(struct bnad *bnad, u32 rx_id)
2089 {
2090 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2091 int i;
2092
2093 for (i = 0; i < bnad->num_rxp_per_rx; i++)
2094 rx_info->rx_ctrl[i].bnad = bnad;
2095 }
2096
2097 /* Called with mutex_lock(&bnad->conf_mutex) held */
2098 static u32
bnad_reinit_rx(struct bnad * bnad)2099 bnad_reinit_rx(struct bnad *bnad)
2100 {
2101 struct net_device *netdev = bnad->netdev;
2102 u32 err = 0, current_err = 0;
2103 u32 rx_id = 0, count = 0;
2104 unsigned long flags;
2105
2106 /* destroy and create new rx objects */
2107 for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2108 if (!bnad->rx_info[rx_id].rx)
2109 continue;
2110 bnad_destroy_rx(bnad, rx_id);
2111 }
2112
2113 spin_lock_irqsave(&bnad->bna_lock, flags);
2114 bna_enet_mtu_set(&bnad->bna.enet,
2115 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2116 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2117
2118 for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2119 count++;
2120 current_err = bnad_setup_rx(bnad, rx_id);
2121 if (current_err && !err) {
2122 err = current_err;
2123 netdev_err(netdev, "RXQ:%u setup failed\n", rx_id);
2124 }
2125 }
2126
2127 /* restore rx configuration */
2128 if (bnad->rx_info[0].rx && !err) {
2129 bnad_restore_vlans(bnad, 0);
2130 bnad_enable_default_bcast(bnad);
2131 spin_lock_irqsave(&bnad->bna_lock, flags);
2132 bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2133 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2134 bnad_set_rx_mode(netdev);
2135 }
2136
2137 return count;
2138 }
2139
2140 /* Called with bnad_conf_lock() held */
2141 void
bnad_destroy_rx(struct bnad * bnad,u32 rx_id)2142 bnad_destroy_rx(struct bnad *bnad, u32 rx_id)
2143 {
2144 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2145 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2146 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2147 unsigned long flags;
2148 int to_del = 0;
2149
2150 if (!rx_info->rx)
2151 return;
2152
2153 if (0 == rx_id) {
2154 spin_lock_irqsave(&bnad->bna_lock, flags);
2155 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
2156 test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
2157 clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
2158 to_del = 1;
2159 }
2160 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2161 if (to_del)
2162 del_timer_sync(&bnad->dim_timer);
2163 }
2164
2165 init_completion(&bnad->bnad_completions.rx_comp);
2166 spin_lock_irqsave(&bnad->bna_lock, flags);
2167 bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
2168 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2169 wait_for_completion(&bnad->bnad_completions.rx_comp);
2170
2171 if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
2172 bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
2173
2174 bnad_napi_delete(bnad, rx_id);
2175
2176 spin_lock_irqsave(&bnad->bna_lock, flags);
2177 bna_rx_destroy(rx_info->rx);
2178
2179 rx_info->rx = NULL;
2180 rx_info->rx_id = 0;
2181 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2182
2183 bnad_rx_res_free(bnad, res_info);
2184 }
2185
2186 /* Called with mutex_lock(&bnad->conf_mutex) held */
2187 int
bnad_setup_rx(struct bnad * bnad,u32 rx_id)2188 bnad_setup_rx(struct bnad *bnad, u32 rx_id)
2189 {
2190 int err;
2191 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2192 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2193 struct bna_intr_info *intr_info =
2194 &res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
2195 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2196 static const struct bna_rx_event_cbfn rx_cbfn = {
2197 .rcb_setup_cbfn = NULL,
2198 .rcb_destroy_cbfn = NULL,
2199 .ccb_setup_cbfn = bnad_cb_ccb_setup,
2200 .ccb_destroy_cbfn = bnad_cb_ccb_destroy,
2201 .rx_stall_cbfn = bnad_cb_rx_stall,
2202 .rx_cleanup_cbfn = bnad_cb_rx_cleanup,
2203 .rx_post_cbfn = bnad_cb_rx_post,
2204 };
2205 struct bna_rx *rx;
2206 unsigned long flags;
2207
2208 rx_info->rx_id = rx_id;
2209
2210 /* Initialize the Rx object configuration */
2211 bnad_init_rx_config(bnad, rx_config);
2212
2213 /* Get BNA's resource requirement for one Rx object */
2214 spin_lock_irqsave(&bnad->bna_lock, flags);
2215 bna_rx_res_req(rx_config, res_info);
2216 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2217
2218 /* Fill Unmap Q memory requirements */
2219 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPDQ],
2220 rx_config->num_paths,
2221 (rx_config->q0_depth *
2222 sizeof(struct bnad_rx_unmap)) +
2223 sizeof(struct bnad_rx_unmap_q));
2224
2225 if (rx_config->rxp_type != BNA_RXP_SINGLE) {
2226 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPHQ],
2227 rx_config->num_paths,
2228 (rx_config->q1_depth *
2229 sizeof(struct bnad_rx_unmap) +
2230 sizeof(struct bnad_rx_unmap_q)));
2231 }
2232 /* Allocate resource */
2233 err = bnad_rx_res_alloc(bnad, res_info, rx_id);
2234 if (err)
2235 return err;
2236
2237 bnad_rx_ctrl_init(bnad, rx_id);
2238
2239 /* Ask BNA to create one Rx object, supplying required resources */
2240 spin_lock_irqsave(&bnad->bna_lock, flags);
2241 rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
2242 rx_info);
2243 if (!rx) {
2244 err = -ENOMEM;
2245 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2246 goto err_return;
2247 }
2248 rx_info->rx = rx;
2249 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2250
2251 INIT_WORK(&rx_info->rx_cleanup_work,
2252 (work_func_t)(bnad_rx_cleanup));
2253
2254 /*
2255 * Init NAPI, so that state is set to NAPI_STATE_SCHED,
2256 * so that IRQ handler cannot schedule NAPI at this point.
2257 */
2258 bnad_napi_add(bnad, rx_id);
2259
2260 /* Register ISR for the Rx object */
2261 if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2262 err = bnad_rx_msix_register(bnad, rx_info, rx_id,
2263 rx_config->num_paths);
2264 if (err)
2265 goto err_return;
2266 }
2267
2268 spin_lock_irqsave(&bnad->bna_lock, flags);
2269 if (0 == rx_id) {
2270 /* Set up Dynamic Interrupt Moderation Vector */
2271 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
2272 bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
2273
2274 /* Enable VLAN filtering only on the default Rx */
2275 bna_rx_vlanfilter_enable(rx);
2276
2277 /* Start the DIM timer */
2278 bnad_dim_timer_start(bnad);
2279 }
2280
2281 bna_rx_enable(rx);
2282 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2283
2284 return 0;
2285
2286 err_return:
2287 bnad_destroy_rx(bnad, rx_id);
2288 return err;
2289 }
2290
2291 /* Called with conf_lock & bnad->bna_lock held */
2292 void
bnad_tx_coalescing_timeo_set(struct bnad * bnad)2293 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
2294 {
2295 struct bnad_tx_info *tx_info;
2296
2297 tx_info = &bnad->tx_info[0];
2298 if (!tx_info->tx)
2299 return;
2300
2301 bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
2302 }
2303
2304 /* Called with conf_lock & bnad->bna_lock held */
2305 void
bnad_rx_coalescing_timeo_set(struct bnad * bnad)2306 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
2307 {
2308 struct bnad_rx_info *rx_info;
2309 int i;
2310
2311 for (i = 0; i < bnad->num_rx; i++) {
2312 rx_info = &bnad->rx_info[i];
2313 if (!rx_info->rx)
2314 continue;
2315 bna_rx_coalescing_timeo_set(rx_info->rx,
2316 bnad->rx_coalescing_timeo);
2317 }
2318 }
2319
2320 /*
2321 * Called with bnad->bna_lock held
2322 */
2323 int
bnad_mac_addr_set_locked(struct bnad * bnad,const u8 * mac_addr)2324 bnad_mac_addr_set_locked(struct bnad *bnad, const u8 *mac_addr)
2325 {
2326 int ret;
2327
2328 if (!is_valid_ether_addr(mac_addr))
2329 return -EADDRNOTAVAIL;
2330
2331 /* If datapath is down, pretend everything went through */
2332 if (!bnad->rx_info[0].rx)
2333 return 0;
2334
2335 ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr);
2336 if (ret != BNA_CB_SUCCESS)
2337 return -EADDRNOTAVAIL;
2338
2339 return 0;
2340 }
2341
2342 /* Should be called with conf_lock held */
2343 int
bnad_enable_default_bcast(struct bnad * bnad)2344 bnad_enable_default_bcast(struct bnad *bnad)
2345 {
2346 struct bnad_rx_info *rx_info = &bnad->rx_info[0];
2347 int ret;
2348 unsigned long flags;
2349
2350 init_completion(&bnad->bnad_completions.mcast_comp);
2351
2352 spin_lock_irqsave(&bnad->bna_lock, flags);
2353 ret = bna_rx_mcast_add(rx_info->rx, bnad_bcast_addr,
2354 bnad_cb_rx_mcast_add);
2355 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2356
2357 if (ret == BNA_CB_SUCCESS)
2358 wait_for_completion(&bnad->bnad_completions.mcast_comp);
2359 else
2360 return -ENODEV;
2361
2362 if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
2363 return -ENODEV;
2364
2365 return 0;
2366 }
2367
2368 /* Called with mutex_lock(&bnad->conf_mutex) held */
2369 void
bnad_restore_vlans(struct bnad * bnad,u32 rx_id)2370 bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
2371 {
2372 u16 vid;
2373 unsigned long flags;
2374
2375 for_each_set_bit(vid, bnad->active_vlans, VLAN_N_VID) {
2376 spin_lock_irqsave(&bnad->bna_lock, flags);
2377 bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vid);
2378 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2379 }
2380 }
2381
2382 /* Statistics utilities */
2383 void
bnad_netdev_qstats_fill(struct bnad * bnad,struct rtnl_link_stats64 * stats)2384 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2385 {
2386 int i, j;
2387
2388 for (i = 0; i < bnad->num_rx; i++) {
2389 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2390 if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2391 stats->rx_packets += bnad->rx_info[i].
2392 rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2393 stats->rx_bytes += bnad->rx_info[i].
2394 rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2395 if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2396 bnad->rx_info[i].rx_ctrl[j].ccb->
2397 rcb[1]->rxq) {
2398 stats->rx_packets +=
2399 bnad->rx_info[i].rx_ctrl[j].
2400 ccb->rcb[1]->rxq->rx_packets;
2401 stats->rx_bytes +=
2402 bnad->rx_info[i].rx_ctrl[j].
2403 ccb->rcb[1]->rxq->rx_bytes;
2404 }
2405 }
2406 }
2407 }
2408 for (i = 0; i < bnad->num_tx; i++) {
2409 for (j = 0; j < bnad->num_txq_per_tx; j++) {
2410 if (bnad->tx_info[i].tcb[j]) {
2411 stats->tx_packets +=
2412 bnad->tx_info[i].tcb[j]->txq->tx_packets;
2413 stats->tx_bytes +=
2414 bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2415 }
2416 }
2417 }
2418 }
2419
2420 /*
2421 * Must be called with the bna_lock held.
2422 */
2423 void
bnad_netdev_hwstats_fill(struct bnad * bnad,struct rtnl_link_stats64 * stats)2424 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2425 {
2426 struct bfi_enet_stats_mac *mac_stats;
2427 u32 bmap;
2428 int i;
2429
2430 mac_stats = &bnad->stats.bna_stats->hw_stats.mac_stats;
2431 stats->rx_errors =
2432 mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2433 mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2434 mac_stats->rx_undersize;
2435 stats->tx_errors = mac_stats->tx_fcs_error +
2436 mac_stats->tx_undersize;
2437 stats->rx_dropped = mac_stats->rx_drop;
2438 stats->tx_dropped = mac_stats->tx_drop;
2439 stats->multicast = mac_stats->rx_multicast;
2440 stats->collisions = mac_stats->tx_total_collision;
2441
2442 stats->rx_length_errors = mac_stats->rx_frame_length_error;
2443
2444 /* receive ring buffer overflow ?? */
2445
2446 stats->rx_crc_errors = mac_stats->rx_fcs_error;
2447 stats->rx_frame_errors = mac_stats->rx_alignment_error;
2448 /* recv'r fifo overrun */
2449 bmap = bna_rx_rid_mask(&bnad->bna);
2450 for (i = 0; bmap; i++) {
2451 if (bmap & 1) {
2452 stats->rx_fifo_errors +=
2453 bnad->stats.bna_stats->
2454 hw_stats.rxf_stats[i].frame_drops;
2455 break;
2456 }
2457 bmap >>= 1;
2458 }
2459 }
2460
2461 static void
bnad_mbox_irq_sync(struct bnad * bnad)2462 bnad_mbox_irq_sync(struct bnad *bnad)
2463 {
2464 u32 irq;
2465 unsigned long flags;
2466
2467 spin_lock_irqsave(&bnad->bna_lock, flags);
2468 if (bnad->cfg_flags & BNAD_CF_MSIX)
2469 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
2470 else
2471 irq = bnad->pcidev->irq;
2472 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2473
2474 synchronize_irq(irq);
2475 }
2476
2477 /* Utility used by bnad_start_xmit, for doing TSO */
2478 static int
bnad_tso_prepare(struct bnad * bnad,struct sk_buff * skb)2479 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2480 {
2481 int err;
2482
2483 err = skb_cow_head(skb, 0);
2484 if (err < 0) {
2485 BNAD_UPDATE_CTR(bnad, tso_err);
2486 return err;
2487 }
2488
2489 /*
2490 * For TSO, the TCP checksum field is seeded with pseudo-header sum
2491 * excluding the length field.
2492 */
2493 if (vlan_get_protocol(skb) == htons(ETH_P_IP)) {
2494 struct iphdr *iph = ip_hdr(skb);
2495
2496 /* Do we really need these? */
2497 iph->tot_len = 0;
2498 iph->check = 0;
2499
2500 tcp_hdr(skb)->check =
2501 ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2502 IPPROTO_TCP, 0);
2503 BNAD_UPDATE_CTR(bnad, tso4);
2504 } else {
2505 tcp_v6_gso_csum_prep(skb);
2506 BNAD_UPDATE_CTR(bnad, tso6);
2507 }
2508
2509 return 0;
2510 }
2511
2512 /*
2513 * Initialize Q numbers depending on Rx Paths
2514 * Called with bnad->bna_lock held, because of cfg_flags
2515 * access.
2516 */
2517 static void
bnad_q_num_init(struct bnad * bnad)2518 bnad_q_num_init(struct bnad *bnad)
2519 {
2520 int rxps;
2521
2522 rxps = min((uint)num_online_cpus(),
2523 (uint)(BNAD_MAX_RX * BNAD_MAX_RXP_PER_RX));
2524
2525 if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2526 rxps = 1; /* INTx */
2527
2528 bnad->num_rx = 1;
2529 bnad->num_tx = 1;
2530 bnad->num_rxp_per_rx = rxps;
2531 bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2532 }
2533
2534 /*
2535 * Adjusts the Q numbers, given a number of msix vectors
2536 * Give preference to RSS as opposed to Tx priority Queues,
2537 * in such a case, just use 1 Tx Q
2538 * Called with bnad->bna_lock held b'cos of cfg_flags access
2539 */
2540 static void
bnad_q_num_adjust(struct bnad * bnad,int msix_vectors,int temp)2541 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors, int temp)
2542 {
2543 bnad->num_txq_per_tx = 1;
2544 if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx) +
2545 bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2546 (bnad->cfg_flags & BNAD_CF_MSIX)) {
2547 bnad->num_rxp_per_rx = msix_vectors -
2548 (bnad->num_tx * bnad->num_txq_per_tx) -
2549 BNAD_MAILBOX_MSIX_VECTORS;
2550 } else
2551 bnad->num_rxp_per_rx = 1;
2552 }
2553
2554 /* Enable / disable ioceth */
2555 static int
bnad_ioceth_disable(struct bnad * bnad)2556 bnad_ioceth_disable(struct bnad *bnad)
2557 {
2558 unsigned long flags;
2559 int err = 0;
2560
2561 spin_lock_irqsave(&bnad->bna_lock, flags);
2562 init_completion(&bnad->bnad_completions.ioc_comp);
2563 bna_ioceth_disable(&bnad->bna.ioceth, BNA_HARD_CLEANUP);
2564 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2565
2566 wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2567 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2568
2569 err = bnad->bnad_completions.ioc_comp_status;
2570 return err;
2571 }
2572
2573 static int
bnad_ioceth_enable(struct bnad * bnad)2574 bnad_ioceth_enable(struct bnad *bnad)
2575 {
2576 int err = 0;
2577 unsigned long flags;
2578
2579 spin_lock_irqsave(&bnad->bna_lock, flags);
2580 init_completion(&bnad->bnad_completions.ioc_comp);
2581 bnad->bnad_completions.ioc_comp_status = BNA_CB_WAITING;
2582 bna_ioceth_enable(&bnad->bna.ioceth);
2583 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2584
2585 wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2586 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2587
2588 err = bnad->bnad_completions.ioc_comp_status;
2589
2590 return err;
2591 }
2592
2593 /* Free BNA resources */
2594 static void
bnad_res_free(struct bnad * bnad,struct bna_res_info * res_info,u32 res_val_max)2595 bnad_res_free(struct bnad *bnad, struct bna_res_info *res_info,
2596 u32 res_val_max)
2597 {
2598 int i;
2599
2600 for (i = 0; i < res_val_max; i++)
2601 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2602 }
2603
2604 /* Allocates memory and interrupt resources for BNA */
2605 static int
bnad_res_alloc(struct bnad * bnad,struct bna_res_info * res_info,u32 res_val_max)2606 bnad_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
2607 u32 res_val_max)
2608 {
2609 int i, err;
2610
2611 for (i = 0; i < res_val_max; i++) {
2612 err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2613 if (err)
2614 goto err_return;
2615 }
2616 return 0;
2617
2618 err_return:
2619 bnad_res_free(bnad, res_info, res_val_max);
2620 return err;
2621 }
2622
2623 /* Interrupt enable / disable */
2624 static void
bnad_enable_msix(struct bnad * bnad)2625 bnad_enable_msix(struct bnad *bnad)
2626 {
2627 int i, ret;
2628 unsigned long flags;
2629
2630 spin_lock_irqsave(&bnad->bna_lock, flags);
2631 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2632 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2633 return;
2634 }
2635 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2636
2637 if (bnad->msix_table)
2638 return;
2639
2640 bnad->msix_table =
2641 kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2642
2643 if (!bnad->msix_table)
2644 goto intx_mode;
2645
2646 for (i = 0; i < bnad->msix_num; i++)
2647 bnad->msix_table[i].entry = i;
2648
2649 ret = pci_enable_msix_range(bnad->pcidev, bnad->msix_table,
2650 1, bnad->msix_num);
2651 if (ret < 0) {
2652 goto intx_mode;
2653 } else if (ret < bnad->msix_num) {
2654 dev_warn(&bnad->pcidev->dev,
2655 "%d MSI-X vectors allocated < %d requested\n",
2656 ret, bnad->msix_num);
2657
2658 spin_lock_irqsave(&bnad->bna_lock, flags);
2659 /* ret = #of vectors that we got */
2660 bnad_q_num_adjust(bnad, (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2,
2661 (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2);
2662 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2663
2664 bnad->msix_num = BNAD_NUM_TXQ + BNAD_NUM_RXP +
2665 BNAD_MAILBOX_MSIX_VECTORS;
2666
2667 if (bnad->msix_num > ret) {
2668 pci_disable_msix(bnad->pcidev);
2669 goto intx_mode;
2670 }
2671 }
2672
2673 pci_intx(bnad->pcidev, 0);
2674
2675 return;
2676
2677 intx_mode:
2678 dev_warn(&bnad->pcidev->dev,
2679 "MSI-X enable failed - operating in INTx mode\n");
2680
2681 kfree(bnad->msix_table);
2682 bnad->msix_table = NULL;
2683 bnad->msix_num = 0;
2684 spin_lock_irqsave(&bnad->bna_lock, flags);
2685 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2686 bnad_q_num_init(bnad);
2687 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2688 }
2689
2690 static void
bnad_disable_msix(struct bnad * bnad)2691 bnad_disable_msix(struct bnad *bnad)
2692 {
2693 u32 cfg_flags;
2694 unsigned long flags;
2695
2696 spin_lock_irqsave(&bnad->bna_lock, flags);
2697 cfg_flags = bnad->cfg_flags;
2698 if (bnad->cfg_flags & BNAD_CF_MSIX)
2699 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2700 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2701
2702 if (cfg_flags & BNAD_CF_MSIX) {
2703 pci_disable_msix(bnad->pcidev);
2704 kfree(bnad->msix_table);
2705 bnad->msix_table = NULL;
2706 }
2707 }
2708
2709 /* Netdev entry points */
2710 static int
bnad_open(struct net_device * netdev)2711 bnad_open(struct net_device *netdev)
2712 {
2713 int err;
2714 struct bnad *bnad = netdev_priv(netdev);
2715 struct bna_pause_config pause_config;
2716 unsigned long flags;
2717
2718 mutex_lock(&bnad->conf_mutex);
2719
2720 /* Tx */
2721 err = bnad_setup_tx(bnad, 0);
2722 if (err)
2723 goto err_return;
2724
2725 /* Rx */
2726 err = bnad_setup_rx(bnad, 0);
2727 if (err)
2728 goto cleanup_tx;
2729
2730 /* Port */
2731 pause_config.tx_pause = 0;
2732 pause_config.rx_pause = 0;
2733
2734 spin_lock_irqsave(&bnad->bna_lock, flags);
2735 bna_enet_mtu_set(&bnad->bna.enet,
2736 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2737 bna_enet_pause_config(&bnad->bna.enet, &pause_config);
2738 bna_enet_enable(&bnad->bna.enet);
2739 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2740
2741 /* Enable broadcast */
2742 bnad_enable_default_bcast(bnad);
2743
2744 /* Restore VLANs, if any */
2745 bnad_restore_vlans(bnad, 0);
2746
2747 /* Set the UCAST address */
2748 spin_lock_irqsave(&bnad->bna_lock, flags);
2749 bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2750 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2751
2752 /* Start the stats timer */
2753 bnad_stats_timer_start(bnad);
2754
2755 mutex_unlock(&bnad->conf_mutex);
2756
2757 return 0;
2758
2759 cleanup_tx:
2760 bnad_destroy_tx(bnad, 0);
2761
2762 err_return:
2763 mutex_unlock(&bnad->conf_mutex);
2764 return err;
2765 }
2766
2767 static int
bnad_stop(struct net_device * netdev)2768 bnad_stop(struct net_device *netdev)
2769 {
2770 struct bnad *bnad = netdev_priv(netdev);
2771 unsigned long flags;
2772
2773 mutex_lock(&bnad->conf_mutex);
2774
2775 /* Stop the stats timer */
2776 bnad_stats_timer_stop(bnad);
2777
2778 init_completion(&bnad->bnad_completions.enet_comp);
2779
2780 spin_lock_irqsave(&bnad->bna_lock, flags);
2781 bna_enet_disable(&bnad->bna.enet, BNA_HARD_CLEANUP,
2782 bnad_cb_enet_disabled);
2783 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2784
2785 wait_for_completion(&bnad->bnad_completions.enet_comp);
2786
2787 bnad_destroy_tx(bnad, 0);
2788 bnad_destroy_rx(bnad, 0);
2789
2790 /* Synchronize mailbox IRQ */
2791 bnad_mbox_irq_sync(bnad);
2792
2793 mutex_unlock(&bnad->conf_mutex);
2794
2795 return 0;
2796 }
2797
2798 /* TX */
2799 /* Returns 0 for success */
2800 static int
bnad_txq_wi_prepare(struct bnad * bnad,struct bna_tcb * tcb,struct sk_buff * skb,struct bna_txq_entry * txqent)2801 bnad_txq_wi_prepare(struct bnad *bnad, struct bna_tcb *tcb,
2802 struct sk_buff *skb, struct bna_txq_entry *txqent)
2803 {
2804 u16 flags = 0;
2805 u32 gso_size;
2806 u16 vlan_tag = 0;
2807
2808 if (skb_vlan_tag_present(skb)) {
2809 vlan_tag = (u16)skb_vlan_tag_get(skb);
2810 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2811 }
2812 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2813 vlan_tag = ((tcb->priority & 0x7) << VLAN_PRIO_SHIFT)
2814 | (vlan_tag & 0x1fff);
2815 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2816 }
2817 txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2818
2819 if (skb_is_gso(skb)) {
2820 gso_size = skb_shinfo(skb)->gso_size;
2821 if (unlikely(gso_size > bnad->netdev->mtu)) {
2822 BNAD_UPDATE_CTR(bnad, tx_skb_mss_too_long);
2823 return -EINVAL;
2824 }
2825 if (unlikely((gso_size + skb_tcp_all_headers(skb)) >= skb->len)) {
2826 txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND);
2827 txqent->hdr.wi.lso_mss = 0;
2828 BNAD_UPDATE_CTR(bnad, tx_skb_tso_too_short);
2829 } else {
2830 txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND_LSO);
2831 txqent->hdr.wi.lso_mss = htons(gso_size);
2832 }
2833
2834 if (bnad_tso_prepare(bnad, skb)) {
2835 BNAD_UPDATE_CTR(bnad, tx_skb_tso_prepare);
2836 return -EINVAL;
2837 }
2838
2839 flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2840 txqent->hdr.wi.l4_hdr_size_n_offset =
2841 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET(
2842 tcp_hdrlen(skb) >> 2, skb_transport_offset(skb)));
2843 } else {
2844 txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND);
2845 txqent->hdr.wi.lso_mss = 0;
2846
2847 if (unlikely(skb->len > (bnad->netdev->mtu + VLAN_ETH_HLEN))) {
2848 BNAD_UPDATE_CTR(bnad, tx_skb_non_tso_too_long);
2849 return -EINVAL;
2850 }
2851
2852 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2853 __be16 net_proto = vlan_get_protocol(skb);
2854 u8 proto = 0;
2855
2856 if (net_proto == htons(ETH_P_IP))
2857 proto = ip_hdr(skb)->protocol;
2858 #ifdef NETIF_F_IPV6_CSUM
2859 else if (net_proto == htons(ETH_P_IPV6)) {
2860 /* nexthdr may not be TCP immediately. */
2861 proto = ipv6_hdr(skb)->nexthdr;
2862 }
2863 #endif
2864 if (proto == IPPROTO_TCP) {
2865 flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2866 txqent->hdr.wi.l4_hdr_size_n_offset =
2867 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2868 (0, skb_transport_offset(skb)));
2869
2870 BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2871
2872 if (unlikely(skb_headlen(skb) <
2873 skb_tcp_all_headers(skb))) {
2874 BNAD_UPDATE_CTR(bnad, tx_skb_tcp_hdr);
2875 return -EINVAL;
2876 }
2877 } else if (proto == IPPROTO_UDP) {
2878 flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2879 txqent->hdr.wi.l4_hdr_size_n_offset =
2880 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2881 (0, skb_transport_offset(skb)));
2882
2883 BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2884 if (unlikely(skb_headlen(skb) <
2885 skb_transport_offset(skb) +
2886 sizeof(struct udphdr))) {
2887 BNAD_UPDATE_CTR(bnad, tx_skb_udp_hdr);
2888 return -EINVAL;
2889 }
2890 } else {
2891
2892 BNAD_UPDATE_CTR(bnad, tx_skb_csum_err);
2893 return -EINVAL;
2894 }
2895 } else
2896 txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2897 }
2898
2899 txqent->hdr.wi.flags = htons(flags);
2900 txqent->hdr.wi.frame_length = htonl(skb->len);
2901
2902 return 0;
2903 }
2904
2905 /*
2906 * bnad_start_xmit : Netdev entry point for Transmit
2907 * Called under lock held by net_device
2908 */
2909 static netdev_tx_t
bnad_start_xmit(struct sk_buff * skb,struct net_device * netdev)2910 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2911 {
2912 struct bnad *bnad = netdev_priv(netdev);
2913 u32 txq_id = 0;
2914 struct bna_tcb *tcb = NULL;
2915 struct bnad_tx_unmap *unmap_q, *unmap, *head_unmap;
2916 u32 prod, q_depth, vect_id;
2917 u32 wis, vectors, len;
2918 int i;
2919 dma_addr_t dma_addr;
2920 struct bna_txq_entry *txqent;
2921
2922 len = skb_headlen(skb);
2923
2924 /* Sanity checks for the skb */
2925
2926 if (unlikely(skb->len <= ETH_HLEN)) {
2927 dev_kfree_skb_any(skb);
2928 BNAD_UPDATE_CTR(bnad, tx_skb_too_short);
2929 return NETDEV_TX_OK;
2930 }
2931 if (unlikely(len > BFI_TX_MAX_DATA_PER_VECTOR)) {
2932 dev_kfree_skb_any(skb);
2933 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2934 return NETDEV_TX_OK;
2935 }
2936 if (unlikely(len == 0)) {
2937 dev_kfree_skb_any(skb);
2938 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2939 return NETDEV_TX_OK;
2940 }
2941
2942 tcb = bnad->tx_info[0].tcb[txq_id];
2943
2944 /*
2945 * Takes care of the Tx that is scheduled between clearing the flag
2946 * and the netif_tx_stop_all_queues() call.
2947 */
2948 if (unlikely(!tcb || !test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2949 dev_kfree_skb_any(skb);
2950 BNAD_UPDATE_CTR(bnad, tx_skb_stopping);
2951 return NETDEV_TX_OK;
2952 }
2953
2954 q_depth = tcb->q_depth;
2955 prod = tcb->producer_index;
2956 unmap_q = tcb->unmap_q;
2957
2958 vectors = 1 + skb_shinfo(skb)->nr_frags;
2959 wis = BNA_TXQ_WI_NEEDED(vectors); /* 4 vectors per work item */
2960
2961 if (unlikely(vectors > BFI_TX_MAX_VECTORS_PER_PKT)) {
2962 dev_kfree_skb_any(skb);
2963 BNAD_UPDATE_CTR(bnad, tx_skb_max_vectors);
2964 return NETDEV_TX_OK;
2965 }
2966
2967 /* Check for available TxQ resources */
2968 if (unlikely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
2969 if ((*tcb->hw_consumer_index != tcb->consumer_index) &&
2970 !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
2971 u32 sent;
2972 sent = bnad_txcmpl_process(bnad, tcb);
2973 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2974 bna_ib_ack(tcb->i_dbell, sent);
2975 smp_mb__before_atomic();
2976 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
2977 } else {
2978 netif_stop_queue(netdev);
2979 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2980 }
2981
2982 smp_mb();
2983 /*
2984 * Check again to deal with race condition between
2985 * netif_stop_queue here, and netif_wake_queue in
2986 * interrupt handler which is not inside netif tx lock.
2987 */
2988 if (likely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
2989 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2990 return NETDEV_TX_BUSY;
2991 } else {
2992 netif_wake_queue(netdev);
2993 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
2994 }
2995 }
2996
2997 txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
2998 head_unmap = &unmap_q[prod];
2999
3000 /* Program the opcode, flags, frame_len, num_vectors in WI */
3001 if (bnad_txq_wi_prepare(bnad, tcb, skb, txqent)) {
3002 dev_kfree_skb_any(skb);
3003 return NETDEV_TX_OK;
3004 }
3005 txqent->hdr.wi.reserved = 0;
3006 txqent->hdr.wi.num_vectors = vectors;
3007
3008 head_unmap->skb = skb;
3009 head_unmap->nvecs = 0;
3010
3011 /* Program the vectors */
3012 unmap = head_unmap;
3013 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
3014 len, DMA_TO_DEVICE);
3015 if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
3016 dev_kfree_skb_any(skb);
3017 BNAD_UPDATE_CTR(bnad, tx_skb_map_failed);
3018 return NETDEV_TX_OK;
3019 }
3020 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[0].host_addr);
3021 txqent->vector[0].length = htons(len);
3022 dma_unmap_addr_set(&unmap->vectors[0], dma_addr, dma_addr);
3023 head_unmap->nvecs++;
3024
3025 for (i = 0, vect_id = 0; i < vectors - 1; i++) {
3026 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3027 u32 size = skb_frag_size(frag);
3028
3029 if (unlikely(size == 0)) {
3030 /* Undo the changes starting at tcb->producer_index */
3031 bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
3032 tcb->producer_index);
3033 dev_kfree_skb_any(skb);
3034 BNAD_UPDATE_CTR(bnad, tx_skb_frag_zero);
3035 return NETDEV_TX_OK;
3036 }
3037
3038 len += size;
3039
3040 vect_id++;
3041 if (vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
3042 vect_id = 0;
3043 BNA_QE_INDX_INC(prod, q_depth);
3044 txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3045 txqent->hdr.wi_ext.opcode = htons(BNA_TXQ_WI_EXTENSION);
3046 unmap = &unmap_q[prod];
3047 }
3048
3049 dma_addr = skb_frag_dma_map(&bnad->pcidev->dev, frag,
3050 0, size, DMA_TO_DEVICE);
3051 if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
3052 /* Undo the changes starting at tcb->producer_index */
3053 bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
3054 tcb->producer_index);
3055 dev_kfree_skb_any(skb);
3056 BNAD_UPDATE_CTR(bnad, tx_skb_map_failed);
3057 return NETDEV_TX_OK;
3058 }
3059
3060 dma_unmap_len_set(&unmap->vectors[vect_id], dma_len, size);
3061 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
3062 txqent->vector[vect_id].length = htons(size);
3063 dma_unmap_addr_set(&unmap->vectors[vect_id], dma_addr,
3064 dma_addr);
3065 head_unmap->nvecs++;
3066 }
3067
3068 if (unlikely(len != skb->len)) {
3069 /* Undo the changes starting at tcb->producer_index */
3070 bnad_tx_buff_unmap(bnad, unmap_q, q_depth, tcb->producer_index);
3071 dev_kfree_skb_any(skb);
3072 BNAD_UPDATE_CTR(bnad, tx_skb_len_mismatch);
3073 return NETDEV_TX_OK;
3074 }
3075
3076 BNA_QE_INDX_INC(prod, q_depth);
3077 tcb->producer_index = prod;
3078
3079 wmb();
3080
3081 if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
3082 return NETDEV_TX_OK;
3083
3084 skb_tx_timestamp(skb);
3085
3086 bna_txq_prod_indx_doorbell(tcb);
3087
3088 return NETDEV_TX_OK;
3089 }
3090
3091 /*
3092 * Used spin_lock to synchronize reading of stats structures, which
3093 * is written by BNA under the same lock.
3094 */
3095 static void
bnad_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)3096 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
3097 {
3098 struct bnad *bnad = netdev_priv(netdev);
3099 unsigned long flags;
3100
3101 spin_lock_irqsave(&bnad->bna_lock, flags);
3102
3103 bnad_netdev_qstats_fill(bnad, stats);
3104 bnad_netdev_hwstats_fill(bnad, stats);
3105
3106 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3107 }
3108
3109 static void
bnad_set_rx_ucast_fltr(struct bnad * bnad)3110 bnad_set_rx_ucast_fltr(struct bnad *bnad)
3111 {
3112 struct net_device *netdev = bnad->netdev;
3113 int uc_count = netdev_uc_count(netdev);
3114 enum bna_cb_status ret;
3115 u8 *mac_list;
3116 struct netdev_hw_addr *ha;
3117 int entry;
3118
3119 if (netdev_uc_empty(bnad->netdev)) {
3120 bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL);
3121 return;
3122 }
3123
3124 if (uc_count > bna_attr(&bnad->bna)->num_ucmac)
3125 goto mode_default;
3126
3127 mac_list = kcalloc(ETH_ALEN, uc_count, GFP_ATOMIC);
3128 if (mac_list == NULL)
3129 goto mode_default;
3130
3131 entry = 0;
3132 netdev_for_each_uc_addr(ha, netdev) {
3133 ether_addr_copy(&mac_list[entry * ETH_ALEN], &ha->addr[0]);
3134 entry++;
3135 }
3136
3137 ret = bna_rx_ucast_listset(bnad->rx_info[0].rx, entry, mac_list);
3138 kfree(mac_list);
3139
3140 if (ret != BNA_CB_SUCCESS)
3141 goto mode_default;
3142
3143 return;
3144
3145 /* ucast packets not in UCAM are routed to default function */
3146 mode_default:
3147 bnad->cfg_flags |= BNAD_CF_DEFAULT;
3148 bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL);
3149 }
3150
3151 static void
bnad_set_rx_mcast_fltr(struct bnad * bnad)3152 bnad_set_rx_mcast_fltr(struct bnad *bnad)
3153 {
3154 struct net_device *netdev = bnad->netdev;
3155 int mc_count = netdev_mc_count(netdev);
3156 enum bna_cb_status ret;
3157 u8 *mac_list;
3158
3159 if (netdev->flags & IFF_ALLMULTI)
3160 goto mode_allmulti;
3161
3162 if (netdev_mc_empty(netdev))
3163 return;
3164
3165 if (mc_count > bna_attr(&bnad->bna)->num_mcmac)
3166 goto mode_allmulti;
3167
3168 mac_list = kcalloc(mc_count + 1, ETH_ALEN, GFP_ATOMIC);
3169
3170 if (mac_list == NULL)
3171 goto mode_allmulti;
3172
3173 ether_addr_copy(&mac_list[0], &bnad_bcast_addr[0]);
3174
3175 /* copy rest of the MCAST addresses */
3176 bnad_netdev_mc_list_get(netdev, mac_list);
3177 ret = bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1, mac_list);
3178 kfree(mac_list);
3179
3180 if (ret != BNA_CB_SUCCESS)
3181 goto mode_allmulti;
3182
3183 return;
3184
3185 mode_allmulti:
3186 bnad->cfg_flags |= BNAD_CF_ALLMULTI;
3187 bna_rx_mcast_delall(bnad->rx_info[0].rx);
3188 }
3189
3190 void
bnad_set_rx_mode(struct net_device * netdev)3191 bnad_set_rx_mode(struct net_device *netdev)
3192 {
3193 struct bnad *bnad = netdev_priv(netdev);
3194 enum bna_rxmode new_mode, mode_mask;
3195 unsigned long flags;
3196
3197 spin_lock_irqsave(&bnad->bna_lock, flags);
3198
3199 if (bnad->rx_info[0].rx == NULL) {
3200 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3201 return;
3202 }
3203
3204 /* clear bnad flags to update it with new settings */
3205 bnad->cfg_flags &= ~(BNAD_CF_PROMISC | BNAD_CF_DEFAULT |
3206 BNAD_CF_ALLMULTI);
3207
3208 new_mode = 0;
3209 if (netdev->flags & IFF_PROMISC) {
3210 new_mode |= BNAD_RXMODE_PROMISC_DEFAULT;
3211 bnad->cfg_flags |= BNAD_CF_PROMISC;
3212 } else {
3213 bnad_set_rx_mcast_fltr(bnad);
3214
3215 if (bnad->cfg_flags & BNAD_CF_ALLMULTI)
3216 new_mode |= BNA_RXMODE_ALLMULTI;
3217
3218 bnad_set_rx_ucast_fltr(bnad);
3219
3220 if (bnad->cfg_flags & BNAD_CF_DEFAULT)
3221 new_mode |= BNA_RXMODE_DEFAULT;
3222 }
3223
3224 mode_mask = BNA_RXMODE_PROMISC | BNA_RXMODE_DEFAULT |
3225 BNA_RXMODE_ALLMULTI;
3226 bna_rx_mode_set(bnad->rx_info[0].rx, new_mode, mode_mask);
3227
3228 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3229 }
3230
3231 /*
3232 * bna_lock is used to sync writes to netdev->addr
3233 * conf_lock cannot be used since this call may be made
3234 * in a non-blocking context.
3235 */
3236 static int
bnad_set_mac_address(struct net_device * netdev,void * addr)3237 bnad_set_mac_address(struct net_device *netdev, void *addr)
3238 {
3239 int err;
3240 struct bnad *bnad = netdev_priv(netdev);
3241 struct sockaddr *sa = (struct sockaddr *)addr;
3242 unsigned long flags;
3243
3244 spin_lock_irqsave(&bnad->bna_lock, flags);
3245
3246 err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
3247 if (!err)
3248 eth_hw_addr_set(netdev, sa->sa_data);
3249
3250 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3251
3252 return err;
3253 }
3254
3255 static int
bnad_mtu_set(struct bnad * bnad,int frame_size)3256 bnad_mtu_set(struct bnad *bnad, int frame_size)
3257 {
3258 unsigned long flags;
3259
3260 init_completion(&bnad->bnad_completions.mtu_comp);
3261
3262 spin_lock_irqsave(&bnad->bna_lock, flags);
3263 bna_enet_mtu_set(&bnad->bna.enet, frame_size, bnad_cb_enet_mtu_set);
3264 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3265
3266 wait_for_completion(&bnad->bnad_completions.mtu_comp);
3267
3268 return bnad->bnad_completions.mtu_comp_status;
3269 }
3270
3271 static int
bnad_change_mtu(struct net_device * netdev,int new_mtu)3272 bnad_change_mtu(struct net_device *netdev, int new_mtu)
3273 {
3274 int err, mtu;
3275 struct bnad *bnad = netdev_priv(netdev);
3276 u32 frame, new_frame;
3277
3278 mutex_lock(&bnad->conf_mutex);
3279
3280 mtu = netdev->mtu;
3281 netdev->mtu = new_mtu;
3282
3283 frame = BNAD_FRAME_SIZE(mtu);
3284 new_frame = BNAD_FRAME_SIZE(new_mtu);
3285
3286 /* check if multi-buffer needs to be enabled */
3287 if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
3288 netif_running(bnad->netdev)) {
3289 /* only when transition is over 4K */
3290 if ((frame <= 4096 && new_frame > 4096) ||
3291 (frame > 4096 && new_frame <= 4096))
3292 bnad_reinit_rx(bnad);
3293 }
3294
3295 err = bnad_mtu_set(bnad, new_frame);
3296 if (err)
3297 err = -EBUSY;
3298
3299 mutex_unlock(&bnad->conf_mutex);
3300 return err;
3301 }
3302
3303 static int
bnad_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)3304 bnad_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3305 {
3306 struct bnad *bnad = netdev_priv(netdev);
3307 unsigned long flags;
3308
3309 if (!bnad->rx_info[0].rx)
3310 return 0;
3311
3312 mutex_lock(&bnad->conf_mutex);
3313
3314 spin_lock_irqsave(&bnad->bna_lock, flags);
3315 bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
3316 set_bit(vid, bnad->active_vlans);
3317 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3318
3319 mutex_unlock(&bnad->conf_mutex);
3320
3321 return 0;
3322 }
3323
3324 static int
bnad_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)3325 bnad_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3326 {
3327 struct bnad *bnad = netdev_priv(netdev);
3328 unsigned long flags;
3329
3330 if (!bnad->rx_info[0].rx)
3331 return 0;
3332
3333 mutex_lock(&bnad->conf_mutex);
3334
3335 spin_lock_irqsave(&bnad->bna_lock, flags);
3336 clear_bit(vid, bnad->active_vlans);
3337 bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
3338 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3339
3340 mutex_unlock(&bnad->conf_mutex);
3341
3342 return 0;
3343 }
3344
bnad_set_features(struct net_device * dev,netdev_features_t features)3345 static int bnad_set_features(struct net_device *dev, netdev_features_t features)
3346 {
3347 struct bnad *bnad = netdev_priv(dev);
3348 netdev_features_t changed = features ^ dev->features;
3349
3350 if ((changed & NETIF_F_HW_VLAN_CTAG_RX) && netif_running(dev)) {
3351 unsigned long flags;
3352
3353 spin_lock_irqsave(&bnad->bna_lock, flags);
3354
3355 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3356 bna_rx_vlan_strip_enable(bnad->rx_info[0].rx);
3357 else
3358 bna_rx_vlan_strip_disable(bnad->rx_info[0].rx);
3359
3360 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3361 }
3362
3363 return 0;
3364 }
3365
3366 #ifdef CONFIG_NET_POLL_CONTROLLER
3367 static void
bnad_netpoll(struct net_device * netdev)3368 bnad_netpoll(struct net_device *netdev)
3369 {
3370 struct bnad *bnad = netdev_priv(netdev);
3371 struct bnad_rx_info *rx_info;
3372 struct bnad_rx_ctrl *rx_ctrl;
3373 u32 curr_mask;
3374 int i, j;
3375
3376 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
3377 bna_intx_disable(&bnad->bna, curr_mask);
3378 bnad_isr(bnad->pcidev->irq, netdev);
3379 bna_intx_enable(&bnad->bna, curr_mask);
3380 } else {
3381 /*
3382 * Tx processing may happen in sending context, so no need
3383 * to explicitly process completions here
3384 */
3385
3386 /* Rx processing */
3387 for (i = 0; i < bnad->num_rx; i++) {
3388 rx_info = &bnad->rx_info[i];
3389 if (!rx_info->rx)
3390 continue;
3391 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
3392 rx_ctrl = &rx_info->rx_ctrl[j];
3393 if (rx_ctrl->ccb)
3394 bnad_netif_rx_schedule_poll(bnad,
3395 rx_ctrl->ccb);
3396 }
3397 }
3398 }
3399 }
3400 #endif
3401
3402 static const struct net_device_ops bnad_netdev_ops = {
3403 .ndo_open = bnad_open,
3404 .ndo_stop = bnad_stop,
3405 .ndo_start_xmit = bnad_start_xmit,
3406 .ndo_get_stats64 = bnad_get_stats64,
3407 .ndo_set_rx_mode = bnad_set_rx_mode,
3408 .ndo_validate_addr = eth_validate_addr,
3409 .ndo_set_mac_address = bnad_set_mac_address,
3410 .ndo_change_mtu = bnad_change_mtu,
3411 .ndo_vlan_rx_add_vid = bnad_vlan_rx_add_vid,
3412 .ndo_vlan_rx_kill_vid = bnad_vlan_rx_kill_vid,
3413 .ndo_set_features = bnad_set_features,
3414 #ifdef CONFIG_NET_POLL_CONTROLLER
3415 .ndo_poll_controller = bnad_netpoll
3416 #endif
3417 };
3418
3419 static void
bnad_netdev_init(struct bnad * bnad)3420 bnad_netdev_init(struct bnad *bnad)
3421 {
3422 struct net_device *netdev = bnad->netdev;
3423
3424 netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM |
3425 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3426 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_TX |
3427 NETIF_F_HW_VLAN_CTAG_RX;
3428
3429 netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA |
3430 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3431 NETIF_F_TSO | NETIF_F_TSO6;
3432
3433 netdev->features |= netdev->hw_features | NETIF_F_HW_VLAN_CTAG_FILTER |
3434 NETIF_F_HIGHDMA;
3435
3436 netdev->mem_start = bnad->mmio_start;
3437 netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
3438
3439 /* MTU range: 46 - 9000 */
3440 netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
3441 netdev->max_mtu = BNAD_JUMBO_MTU;
3442
3443 netdev->netdev_ops = &bnad_netdev_ops;
3444 bnad_set_ethtool_ops(netdev);
3445 }
3446
3447 /*
3448 * 1. Initialize the bnad structure
3449 * 2. Setup netdev pointer in pci_dev
3450 * 3. Initialize no. of TxQ & CQs & MSIX vectors
3451 * 4. Initialize work queue.
3452 */
3453 static int
bnad_init(struct bnad * bnad,struct pci_dev * pdev,struct net_device * netdev)3454 bnad_init(struct bnad *bnad,
3455 struct pci_dev *pdev, struct net_device *netdev)
3456 {
3457 unsigned long flags;
3458
3459 SET_NETDEV_DEV(netdev, &pdev->dev);
3460 pci_set_drvdata(pdev, netdev);
3461
3462 bnad->netdev = netdev;
3463 bnad->pcidev = pdev;
3464 bnad->mmio_start = pci_resource_start(pdev, 0);
3465 bnad->mmio_len = pci_resource_len(pdev, 0);
3466 bnad->bar0 = ioremap(bnad->mmio_start, bnad->mmio_len);
3467 if (!bnad->bar0) {
3468 dev_err(&pdev->dev, "ioremap for bar0 failed\n");
3469 return -ENOMEM;
3470 }
3471 dev_info(&pdev->dev, "bar0 mapped to %p, len %llu\n", bnad->bar0,
3472 (unsigned long long) bnad->mmio_len);
3473
3474 spin_lock_irqsave(&bnad->bna_lock, flags);
3475 if (!bnad_msix_disable)
3476 bnad->cfg_flags = BNAD_CF_MSIX;
3477
3478 bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
3479
3480 bnad_q_num_init(bnad);
3481 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3482
3483 bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
3484 (bnad->num_rx * bnad->num_rxp_per_rx) +
3485 BNAD_MAILBOX_MSIX_VECTORS;
3486
3487 bnad->txq_depth = BNAD_TXQ_DEPTH;
3488 bnad->rxq_depth = BNAD_RXQ_DEPTH;
3489
3490 bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
3491 bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
3492
3493 sprintf(bnad->wq_name, "%s_wq_%d", BNAD_NAME, bnad->id);
3494 bnad->work_q = create_singlethread_workqueue(bnad->wq_name);
3495 if (!bnad->work_q) {
3496 iounmap(bnad->bar0);
3497 return -ENOMEM;
3498 }
3499
3500 return 0;
3501 }
3502
3503 /*
3504 * Must be called after bnad_pci_uninit()
3505 * so that iounmap() and pci_set_drvdata(NULL)
3506 * happens only after PCI uninitialization.
3507 */
3508 static void
bnad_uninit(struct bnad * bnad)3509 bnad_uninit(struct bnad *bnad)
3510 {
3511 if (bnad->work_q) {
3512 destroy_workqueue(bnad->work_q);
3513 bnad->work_q = NULL;
3514 }
3515
3516 if (bnad->bar0)
3517 iounmap(bnad->bar0);
3518 }
3519
3520 /*
3521 * Initialize locks
3522 a) Per ioceth mutes used for serializing configuration
3523 changes from OS interface
3524 b) spin lock used to protect bna state machine
3525 */
3526 static void
bnad_lock_init(struct bnad * bnad)3527 bnad_lock_init(struct bnad *bnad)
3528 {
3529 spin_lock_init(&bnad->bna_lock);
3530 mutex_init(&bnad->conf_mutex);
3531 }
3532
3533 static void
bnad_lock_uninit(struct bnad * bnad)3534 bnad_lock_uninit(struct bnad *bnad)
3535 {
3536 mutex_destroy(&bnad->conf_mutex);
3537 }
3538
3539 /* PCI Initialization */
3540 static int
bnad_pci_init(struct bnad * bnad,struct pci_dev * pdev)3541 bnad_pci_init(struct bnad *bnad, struct pci_dev *pdev)
3542 {
3543 int err;
3544
3545 err = pci_enable_device(pdev);
3546 if (err)
3547 return err;
3548 err = pci_request_regions(pdev, BNAD_NAME);
3549 if (err)
3550 goto disable_device;
3551 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3552 if (err)
3553 goto release_regions;
3554 pci_set_master(pdev);
3555 return 0;
3556
3557 release_regions:
3558 pci_release_regions(pdev);
3559 disable_device:
3560 pci_disable_device(pdev);
3561
3562 return err;
3563 }
3564
3565 static void
bnad_pci_uninit(struct pci_dev * pdev)3566 bnad_pci_uninit(struct pci_dev *pdev)
3567 {
3568 pci_release_regions(pdev);
3569 pci_disable_device(pdev);
3570 }
3571
3572 static int
bnad_pci_probe(struct pci_dev * pdev,const struct pci_device_id * pcidev_id)3573 bnad_pci_probe(struct pci_dev *pdev,
3574 const struct pci_device_id *pcidev_id)
3575 {
3576 int err;
3577 struct bnad *bnad;
3578 struct bna *bna;
3579 struct net_device *netdev;
3580 struct bfa_pcidev pcidev_info;
3581 unsigned long flags;
3582
3583 mutex_lock(&bnad_fwimg_mutex);
3584 if (!cna_get_firmware_buf(pdev)) {
3585 mutex_unlock(&bnad_fwimg_mutex);
3586 dev_err(&pdev->dev, "failed to load firmware image!\n");
3587 return -ENODEV;
3588 }
3589 mutex_unlock(&bnad_fwimg_mutex);
3590
3591 /*
3592 * Allocates sizeof(struct net_device + struct bnad)
3593 * bnad = netdev->priv
3594 */
3595 netdev = alloc_etherdev(sizeof(struct bnad));
3596 if (!netdev) {
3597 err = -ENOMEM;
3598 return err;
3599 }
3600 bnad = netdev_priv(netdev);
3601 bnad_lock_init(bnad);
3602 bnad->id = atomic_inc_return(&bna_id) - 1;
3603
3604 mutex_lock(&bnad->conf_mutex);
3605 /* PCI initialization */
3606 err = bnad_pci_init(bnad, pdev);
3607 if (err)
3608 goto unlock_mutex;
3609
3610 /*
3611 * Initialize bnad structure
3612 * Setup relation between pci_dev & netdev
3613 */
3614 err = bnad_init(bnad, pdev, netdev);
3615 if (err)
3616 goto pci_uninit;
3617
3618 /* Initialize netdev structure, set up ethtool ops */
3619 bnad_netdev_init(bnad);
3620
3621 /* Set link to down state */
3622 netif_carrier_off(netdev);
3623
3624 /* Setup the debugfs node for this bfad */
3625 if (bna_debugfs_enable)
3626 bnad_debugfs_init(bnad);
3627
3628 /* Get resource requirement form bna */
3629 spin_lock_irqsave(&bnad->bna_lock, flags);
3630 bna_res_req(&bnad->res_info[0]);
3631 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3632
3633 /* Allocate resources from bna */
3634 err = bnad_res_alloc(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3635 if (err)
3636 goto drv_uninit;
3637
3638 bna = &bnad->bna;
3639
3640 /* Setup pcidev_info for bna_init() */
3641 pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3642 pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3643 pcidev_info.device_id = bnad->pcidev->device;
3644 pcidev_info.pci_bar_kva = bnad->bar0;
3645
3646 spin_lock_irqsave(&bnad->bna_lock, flags);
3647 bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3648 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3649
3650 bnad->stats.bna_stats = &bna->stats;
3651
3652 bnad_enable_msix(bnad);
3653 err = bnad_mbox_irq_alloc(bnad);
3654 if (err)
3655 goto res_free;
3656
3657 /* Set up timers */
3658 timer_setup(&bnad->bna.ioceth.ioc.ioc_timer, bnad_ioc_timeout, 0);
3659 timer_setup(&bnad->bna.ioceth.ioc.hb_timer, bnad_ioc_hb_check, 0);
3660 timer_setup(&bnad->bna.ioceth.ioc.iocpf_timer, bnad_iocpf_timeout, 0);
3661 timer_setup(&bnad->bna.ioceth.ioc.sem_timer, bnad_iocpf_sem_timeout,
3662 0);
3663
3664 /*
3665 * Start the chip
3666 * If the call back comes with error, we bail out.
3667 * This is a catastrophic error.
3668 */
3669 err = bnad_ioceth_enable(bnad);
3670 if (err) {
3671 dev_err(&pdev->dev, "initialization failed err=%d\n", err);
3672 goto probe_success;
3673 }
3674
3675 spin_lock_irqsave(&bnad->bna_lock, flags);
3676 if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3677 bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) {
3678 bnad_q_num_adjust(bnad, bna_attr(bna)->num_txq - 1,
3679 bna_attr(bna)->num_rxp - 1);
3680 if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3681 bna_num_rxp_set(bna, BNAD_NUM_RXP + 1))
3682 err = -EIO;
3683 }
3684 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3685 if (err)
3686 goto disable_ioceth;
3687
3688 spin_lock_irqsave(&bnad->bna_lock, flags);
3689 bna_mod_res_req(&bnad->bna, &bnad->mod_res_info[0]);
3690 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3691
3692 err = bnad_res_alloc(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3693 if (err) {
3694 err = -EIO;
3695 goto disable_ioceth;
3696 }
3697
3698 spin_lock_irqsave(&bnad->bna_lock, flags);
3699 bna_mod_init(&bnad->bna, &bnad->mod_res_info[0]);
3700 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3701
3702 /* Get the burnt-in mac */
3703 spin_lock_irqsave(&bnad->bna_lock, flags);
3704 bna_enet_perm_mac_get(&bna->enet, bnad->perm_addr);
3705 bnad_set_netdev_perm_addr(bnad);
3706 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3707
3708 mutex_unlock(&bnad->conf_mutex);
3709
3710 /* Finally, reguister with net_device layer */
3711 err = register_netdev(netdev);
3712 if (err) {
3713 dev_err(&pdev->dev, "registering net device failed\n");
3714 goto probe_uninit;
3715 }
3716 set_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags);
3717
3718 return 0;
3719
3720 probe_success:
3721 mutex_unlock(&bnad->conf_mutex);
3722 return 0;
3723
3724 probe_uninit:
3725 mutex_lock(&bnad->conf_mutex);
3726 bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3727 disable_ioceth:
3728 bnad_ioceth_disable(bnad);
3729 del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3730 del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3731 del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3732 spin_lock_irqsave(&bnad->bna_lock, flags);
3733 bna_uninit(bna);
3734 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3735 bnad_mbox_irq_free(bnad);
3736 bnad_disable_msix(bnad);
3737 res_free:
3738 bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3739 drv_uninit:
3740 /* Remove the debugfs node for this bnad */
3741 kfree(bnad->regdata);
3742 bnad_debugfs_uninit(bnad);
3743 bnad_uninit(bnad);
3744 pci_uninit:
3745 bnad_pci_uninit(pdev);
3746 unlock_mutex:
3747 mutex_unlock(&bnad->conf_mutex);
3748 bnad_lock_uninit(bnad);
3749 free_netdev(netdev);
3750 return err;
3751 }
3752
3753 static void
bnad_pci_remove(struct pci_dev * pdev)3754 bnad_pci_remove(struct pci_dev *pdev)
3755 {
3756 struct net_device *netdev = pci_get_drvdata(pdev);
3757 struct bnad *bnad;
3758 struct bna *bna;
3759 unsigned long flags;
3760
3761 if (!netdev)
3762 return;
3763
3764 bnad = netdev_priv(netdev);
3765 bna = &bnad->bna;
3766
3767 if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags))
3768 unregister_netdev(netdev);
3769
3770 mutex_lock(&bnad->conf_mutex);
3771 bnad_ioceth_disable(bnad);
3772 del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3773 del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3774 del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3775 spin_lock_irqsave(&bnad->bna_lock, flags);
3776 bna_uninit(bna);
3777 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3778
3779 bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3780 bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3781 bnad_mbox_irq_free(bnad);
3782 bnad_disable_msix(bnad);
3783 bnad_pci_uninit(pdev);
3784 mutex_unlock(&bnad->conf_mutex);
3785 bnad_lock_uninit(bnad);
3786 /* Remove the debugfs node for this bnad */
3787 kfree(bnad->regdata);
3788 bnad_debugfs_uninit(bnad);
3789 bnad_uninit(bnad);
3790 free_netdev(netdev);
3791 }
3792
3793 static const struct pci_device_id bnad_pci_id_table[] = {
3794 {
3795 PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3796 PCI_DEVICE_ID_BROCADE_CT),
3797 .class = PCI_CLASS_NETWORK_ETHERNET << 8,
3798 .class_mask = 0xffff00
3799 },
3800 {
3801 PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3802 BFA_PCI_DEVICE_ID_CT2),
3803 .class = PCI_CLASS_NETWORK_ETHERNET << 8,
3804 .class_mask = 0xffff00
3805 },
3806 {0, },
3807 };
3808
3809 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3810
3811 static struct pci_driver bnad_pci_driver = {
3812 .name = BNAD_NAME,
3813 .id_table = bnad_pci_id_table,
3814 .probe = bnad_pci_probe,
3815 .remove = bnad_pci_remove,
3816 };
3817
3818 static int __init
bnad_module_init(void)3819 bnad_module_init(void)
3820 {
3821 int err;
3822
3823 bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3824
3825 err = pci_register_driver(&bnad_pci_driver);
3826 if (err < 0) {
3827 pr_err("bna: PCI driver registration failed err=%d\n", err);
3828 return err;
3829 }
3830
3831 return 0;
3832 }
3833
3834 static void __exit
bnad_module_exit(void)3835 bnad_module_exit(void)
3836 {
3837 pci_unregister_driver(&bnad_pci_driver);
3838 release_firmware(bfi_fw);
3839 }
3840
3841 module_init(bnad_module_init);
3842 module_exit(bnad_module_exit);
3843
3844 MODULE_AUTHOR("Brocade");
3845 MODULE_LICENSE("GPL");
3846 MODULE_DESCRIPTION("QLogic BR-series 10G PCIe Ethernet driver");
3847 MODULE_FIRMWARE(CNA_FW_FILE_CT);
3848 MODULE_FIRMWARE(CNA_FW_FILE_CT2);
3849