1 /*
2 * MTK NAND Flash controller driver.
3 * Copyright (C) 2016 MediaTek Inc.
4 * Authors: Xiaolei Li <xiaolei.li@mediatek.com>
5 * Jorge Ramirez-Ortiz <jorge.ramirez-ortiz@linaro.org>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
17 #include <linux/platform_device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/interrupt.h>
20 #include <linux/delay.h>
21 #include <linux/clk.h>
22 #include <linux/mtd/rawnand.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/module.h>
25 #include <linux/iopoll.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include "mtk_ecc.h"
29
30 /* NAND controller register definition */
31 #define NFI_CNFG (0x00)
32 #define CNFG_AHB BIT(0)
33 #define CNFG_READ_EN BIT(1)
34 #define CNFG_DMA_BURST_EN BIT(2)
35 #define CNFG_BYTE_RW BIT(6)
36 #define CNFG_HW_ECC_EN BIT(8)
37 #define CNFG_AUTO_FMT_EN BIT(9)
38 #define CNFG_OP_CUST (6 << 12)
39 #define NFI_PAGEFMT (0x04)
40 #define PAGEFMT_FDM_ECC_SHIFT (12)
41 #define PAGEFMT_FDM_SHIFT (8)
42 #define PAGEFMT_SEC_SEL_512 BIT(2)
43 #define PAGEFMT_512_2K (0)
44 #define PAGEFMT_2K_4K (1)
45 #define PAGEFMT_4K_8K (2)
46 #define PAGEFMT_8K_16K (3)
47 /* NFI control */
48 #define NFI_CON (0x08)
49 #define CON_FIFO_FLUSH BIT(0)
50 #define CON_NFI_RST BIT(1)
51 #define CON_BRD BIT(8) /* burst read */
52 #define CON_BWR BIT(9) /* burst write */
53 #define CON_SEC_SHIFT (12)
54 /* Timming control register */
55 #define NFI_ACCCON (0x0C)
56 #define NFI_INTR_EN (0x10)
57 #define INTR_AHB_DONE_EN BIT(6)
58 #define NFI_INTR_STA (0x14)
59 #define NFI_CMD (0x20)
60 #define NFI_ADDRNOB (0x30)
61 #define NFI_COLADDR (0x34)
62 #define NFI_ROWADDR (0x38)
63 #define NFI_STRDATA (0x40)
64 #define STAR_EN (1)
65 #define STAR_DE (0)
66 #define NFI_CNRNB (0x44)
67 #define NFI_DATAW (0x50)
68 #define NFI_DATAR (0x54)
69 #define NFI_PIO_DIRDY (0x58)
70 #define PIO_DI_RDY (0x01)
71 #define NFI_STA (0x60)
72 #define STA_CMD BIT(0)
73 #define STA_ADDR BIT(1)
74 #define STA_BUSY BIT(8)
75 #define STA_EMP_PAGE BIT(12)
76 #define NFI_FSM_CUSTDATA (0xe << 16)
77 #define NFI_FSM_MASK (0xf << 16)
78 #define NFI_ADDRCNTR (0x70)
79 #define CNTR_MASK GENMASK(16, 12)
80 #define ADDRCNTR_SEC_SHIFT (12)
81 #define ADDRCNTR_SEC(val) \
82 (((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT)
83 #define NFI_STRADDR (0x80)
84 #define NFI_BYTELEN (0x84)
85 #define NFI_CSEL (0x90)
86 #define NFI_FDML(x) (0xA0 + (x) * sizeof(u32) * 2)
87 #define NFI_FDMM(x) (0xA4 + (x) * sizeof(u32) * 2)
88 #define NFI_FDM_MAX_SIZE (8)
89 #define NFI_FDM_MIN_SIZE (1)
90 #define NFI_MASTER_STA (0x224)
91 #define MASTER_STA_MASK (0x0FFF)
92 #define NFI_EMPTY_THRESH (0x23C)
93
94 #define MTK_NAME "mtk-nand"
95 #define KB(x) ((x) * 1024UL)
96 #define MB(x) (KB(x) * 1024UL)
97
98 #define MTK_TIMEOUT (500000)
99 #define MTK_RESET_TIMEOUT (1000000)
100 #define MTK_NAND_MAX_NSELS (2)
101 #define MTK_NFC_MIN_SPARE (16)
102 #define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \
103 ((tpoecs) << 28 | (tprecs) << 22 | (tc2r) << 16 | \
104 (tw2r) << 12 | (twh) << 8 | (twst) << 4 | (trlt))
105
106 struct mtk_nfc_caps {
107 const u8 *spare_size;
108 u8 num_spare_size;
109 u8 pageformat_spare_shift;
110 u8 nfi_clk_div;
111 u8 max_sector;
112 u32 max_sector_size;
113 };
114
115 struct mtk_nfc_bad_mark_ctl {
116 void (*bm_swap)(struct mtd_info *, u8 *buf, int raw);
117 u32 sec;
118 u32 pos;
119 };
120
121 /*
122 * FDM: region used to store free OOB data
123 */
124 struct mtk_nfc_fdm {
125 u32 reg_size;
126 u32 ecc_size;
127 };
128
129 struct mtk_nfc_nand_chip {
130 struct list_head node;
131 struct nand_chip nand;
132
133 struct mtk_nfc_bad_mark_ctl bad_mark;
134 struct mtk_nfc_fdm fdm;
135 u32 spare_per_sector;
136
137 int nsels;
138 u8 sels[0];
139 /* nothing after this field */
140 };
141
142 struct mtk_nfc_clk {
143 struct clk *nfi_clk;
144 struct clk *pad_clk;
145 };
146
147 struct mtk_nfc {
148 struct nand_controller controller;
149 struct mtk_ecc_config ecc_cfg;
150 struct mtk_nfc_clk clk;
151 struct mtk_ecc *ecc;
152
153 struct device *dev;
154 const struct mtk_nfc_caps *caps;
155 void __iomem *regs;
156
157 struct completion done;
158 struct list_head chips;
159
160 u8 *buffer;
161 };
162
163 /*
164 * supported spare size of each IP.
165 * order should be the same with the spare size bitfiled defination of
166 * register NFI_PAGEFMT.
167 */
168 static const u8 spare_size_mt2701[] = {
169 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 63, 64
170 };
171
172 static const u8 spare_size_mt2712[] = {
173 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
174 74
175 };
176
177 static const u8 spare_size_mt7622[] = {
178 16, 26, 27, 28
179 };
180
to_mtk_nand(struct nand_chip * nand)181 static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand)
182 {
183 return container_of(nand, struct mtk_nfc_nand_chip, nand);
184 }
185
data_ptr(struct nand_chip * chip,const u8 * p,int i)186 static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i)
187 {
188 return (u8 *)p + i * chip->ecc.size;
189 }
190
oob_ptr(struct nand_chip * chip,int i)191 static inline u8 *oob_ptr(struct nand_chip *chip, int i)
192 {
193 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
194 u8 *poi;
195
196 /* map the sector's FDM data to free oob:
197 * the beginning of the oob area stores the FDM data of bad mark sectors
198 */
199
200 if (i < mtk_nand->bad_mark.sec)
201 poi = chip->oob_poi + (i + 1) * mtk_nand->fdm.reg_size;
202 else if (i == mtk_nand->bad_mark.sec)
203 poi = chip->oob_poi;
204 else
205 poi = chip->oob_poi + i * mtk_nand->fdm.reg_size;
206
207 return poi;
208 }
209
mtk_data_len(struct nand_chip * chip)210 static inline int mtk_data_len(struct nand_chip *chip)
211 {
212 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
213
214 return chip->ecc.size + mtk_nand->spare_per_sector;
215 }
216
mtk_data_ptr(struct nand_chip * chip,int i)217 static inline u8 *mtk_data_ptr(struct nand_chip *chip, int i)
218 {
219 struct mtk_nfc *nfc = nand_get_controller_data(chip);
220
221 return nfc->buffer + i * mtk_data_len(chip);
222 }
223
mtk_oob_ptr(struct nand_chip * chip,int i)224 static inline u8 *mtk_oob_ptr(struct nand_chip *chip, int i)
225 {
226 struct mtk_nfc *nfc = nand_get_controller_data(chip);
227
228 return nfc->buffer + i * mtk_data_len(chip) + chip->ecc.size;
229 }
230
nfi_writel(struct mtk_nfc * nfc,u32 val,u32 reg)231 static inline void nfi_writel(struct mtk_nfc *nfc, u32 val, u32 reg)
232 {
233 writel(val, nfc->regs + reg);
234 }
235
nfi_writew(struct mtk_nfc * nfc,u16 val,u32 reg)236 static inline void nfi_writew(struct mtk_nfc *nfc, u16 val, u32 reg)
237 {
238 writew(val, nfc->regs + reg);
239 }
240
nfi_writeb(struct mtk_nfc * nfc,u8 val,u32 reg)241 static inline void nfi_writeb(struct mtk_nfc *nfc, u8 val, u32 reg)
242 {
243 writeb(val, nfc->regs + reg);
244 }
245
nfi_readl(struct mtk_nfc * nfc,u32 reg)246 static inline u32 nfi_readl(struct mtk_nfc *nfc, u32 reg)
247 {
248 return readl_relaxed(nfc->regs + reg);
249 }
250
nfi_readw(struct mtk_nfc * nfc,u32 reg)251 static inline u16 nfi_readw(struct mtk_nfc *nfc, u32 reg)
252 {
253 return readw_relaxed(nfc->regs + reg);
254 }
255
nfi_readb(struct mtk_nfc * nfc,u32 reg)256 static inline u8 nfi_readb(struct mtk_nfc *nfc, u32 reg)
257 {
258 return readb_relaxed(nfc->regs + reg);
259 }
260
mtk_nfc_hw_reset(struct mtk_nfc * nfc)261 static void mtk_nfc_hw_reset(struct mtk_nfc *nfc)
262 {
263 struct device *dev = nfc->dev;
264 u32 val;
265 int ret;
266
267 /* reset all registers and force the NFI master to terminate */
268 nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
269
270 /* wait for the master to finish the last transaction */
271 ret = readl_poll_timeout(nfc->regs + NFI_MASTER_STA, val,
272 !(val & MASTER_STA_MASK), 50,
273 MTK_RESET_TIMEOUT);
274 if (ret)
275 dev_warn(dev, "master active in reset [0x%x] = 0x%x\n",
276 NFI_MASTER_STA, val);
277
278 /* ensure any status register affected by the NFI master is reset */
279 nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON);
280 nfi_writew(nfc, STAR_DE, NFI_STRDATA);
281 }
282
mtk_nfc_send_command(struct mtk_nfc * nfc,u8 command)283 static int mtk_nfc_send_command(struct mtk_nfc *nfc, u8 command)
284 {
285 struct device *dev = nfc->dev;
286 u32 val;
287 int ret;
288
289 nfi_writel(nfc, command, NFI_CMD);
290
291 ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
292 !(val & STA_CMD), 10, MTK_TIMEOUT);
293 if (ret) {
294 dev_warn(dev, "nfi core timed out entering command mode\n");
295 return -EIO;
296 }
297
298 return 0;
299 }
300
mtk_nfc_send_address(struct mtk_nfc * nfc,int addr)301 static int mtk_nfc_send_address(struct mtk_nfc *nfc, int addr)
302 {
303 struct device *dev = nfc->dev;
304 u32 val;
305 int ret;
306
307 nfi_writel(nfc, addr, NFI_COLADDR);
308 nfi_writel(nfc, 0, NFI_ROWADDR);
309 nfi_writew(nfc, 1, NFI_ADDRNOB);
310
311 ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val,
312 !(val & STA_ADDR), 10, MTK_TIMEOUT);
313 if (ret) {
314 dev_warn(dev, "nfi core timed out entering address mode\n");
315 return -EIO;
316 }
317
318 return 0;
319 }
320
mtk_nfc_hw_runtime_config(struct mtd_info * mtd)321 static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd)
322 {
323 struct nand_chip *chip = mtd_to_nand(mtd);
324 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
325 struct mtk_nfc *nfc = nand_get_controller_data(chip);
326 u32 fmt, spare, i;
327
328 if (!mtd->writesize)
329 return 0;
330
331 spare = mtk_nand->spare_per_sector;
332
333 switch (mtd->writesize) {
334 case 512:
335 fmt = PAGEFMT_512_2K | PAGEFMT_SEC_SEL_512;
336 break;
337 case KB(2):
338 if (chip->ecc.size == 512)
339 fmt = PAGEFMT_2K_4K | PAGEFMT_SEC_SEL_512;
340 else
341 fmt = PAGEFMT_512_2K;
342 break;
343 case KB(4):
344 if (chip->ecc.size == 512)
345 fmt = PAGEFMT_4K_8K | PAGEFMT_SEC_SEL_512;
346 else
347 fmt = PAGEFMT_2K_4K;
348 break;
349 case KB(8):
350 if (chip->ecc.size == 512)
351 fmt = PAGEFMT_8K_16K | PAGEFMT_SEC_SEL_512;
352 else
353 fmt = PAGEFMT_4K_8K;
354 break;
355 case KB(16):
356 fmt = PAGEFMT_8K_16K;
357 break;
358 default:
359 dev_err(nfc->dev, "invalid page len: %d\n", mtd->writesize);
360 return -EINVAL;
361 }
362
363 /*
364 * the hardware will double the value for this eccsize, so we need to
365 * halve it
366 */
367 if (chip->ecc.size == 1024)
368 spare >>= 1;
369
370 for (i = 0; i < nfc->caps->num_spare_size; i++) {
371 if (nfc->caps->spare_size[i] == spare)
372 break;
373 }
374
375 if (i == nfc->caps->num_spare_size) {
376 dev_err(nfc->dev, "invalid spare size %d\n", spare);
377 return -EINVAL;
378 }
379
380 fmt |= i << nfc->caps->pageformat_spare_shift;
381
382 fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT;
383 fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT;
384 nfi_writel(nfc, fmt, NFI_PAGEFMT);
385
386 nfc->ecc_cfg.strength = chip->ecc.strength;
387 nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size;
388
389 return 0;
390 }
391
mtk_nfc_select_chip(struct mtd_info * mtd,int chip)392 static void mtk_nfc_select_chip(struct mtd_info *mtd, int chip)
393 {
394 struct nand_chip *nand = mtd_to_nand(mtd);
395 struct mtk_nfc *nfc = nand_get_controller_data(nand);
396 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand);
397
398 if (chip < 0)
399 return;
400
401 mtk_nfc_hw_runtime_config(mtd);
402
403 nfi_writel(nfc, mtk_nand->sels[chip], NFI_CSEL);
404 }
405
mtk_nfc_dev_ready(struct mtd_info * mtd)406 static int mtk_nfc_dev_ready(struct mtd_info *mtd)
407 {
408 struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
409
410 if (nfi_readl(nfc, NFI_STA) & STA_BUSY)
411 return 0;
412
413 return 1;
414 }
415
mtk_nfc_cmd_ctrl(struct mtd_info * mtd,int dat,unsigned int ctrl)416 static void mtk_nfc_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
417 {
418 struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
419
420 if (ctrl & NAND_ALE) {
421 mtk_nfc_send_address(nfc, dat);
422 } else if (ctrl & NAND_CLE) {
423 mtk_nfc_hw_reset(nfc);
424
425 nfi_writew(nfc, CNFG_OP_CUST, NFI_CNFG);
426 mtk_nfc_send_command(nfc, dat);
427 }
428 }
429
mtk_nfc_wait_ioready(struct mtk_nfc * nfc)430 static inline void mtk_nfc_wait_ioready(struct mtk_nfc *nfc)
431 {
432 int rc;
433 u8 val;
434
435 rc = readb_poll_timeout_atomic(nfc->regs + NFI_PIO_DIRDY, val,
436 val & PIO_DI_RDY, 10, MTK_TIMEOUT);
437 if (rc < 0)
438 dev_err(nfc->dev, "data not ready\n");
439 }
440
mtk_nfc_read_byte(struct mtd_info * mtd)441 static inline u8 mtk_nfc_read_byte(struct mtd_info *mtd)
442 {
443 struct nand_chip *chip = mtd_to_nand(mtd);
444 struct mtk_nfc *nfc = nand_get_controller_data(chip);
445 u32 reg;
446
447 /* after each byte read, the NFI_STA reg is reset by the hardware */
448 reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
449 if (reg != NFI_FSM_CUSTDATA) {
450 reg = nfi_readw(nfc, NFI_CNFG);
451 reg |= CNFG_BYTE_RW | CNFG_READ_EN;
452 nfi_writew(nfc, reg, NFI_CNFG);
453
454 /*
455 * set to max sector to allow the HW to continue reading over
456 * unaligned accesses
457 */
458 reg = (nfc->caps->max_sector << CON_SEC_SHIFT) | CON_BRD;
459 nfi_writel(nfc, reg, NFI_CON);
460
461 /* trigger to fetch data */
462 nfi_writew(nfc, STAR_EN, NFI_STRDATA);
463 }
464
465 mtk_nfc_wait_ioready(nfc);
466
467 return nfi_readb(nfc, NFI_DATAR);
468 }
469
mtk_nfc_read_buf(struct mtd_info * mtd,u8 * buf,int len)470 static void mtk_nfc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
471 {
472 int i;
473
474 for (i = 0; i < len; i++)
475 buf[i] = mtk_nfc_read_byte(mtd);
476 }
477
mtk_nfc_write_byte(struct mtd_info * mtd,u8 byte)478 static void mtk_nfc_write_byte(struct mtd_info *mtd, u8 byte)
479 {
480 struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
481 u32 reg;
482
483 reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK;
484
485 if (reg != NFI_FSM_CUSTDATA) {
486 reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW;
487 nfi_writew(nfc, reg, NFI_CNFG);
488
489 reg = nfc->caps->max_sector << CON_SEC_SHIFT | CON_BWR;
490 nfi_writel(nfc, reg, NFI_CON);
491
492 nfi_writew(nfc, STAR_EN, NFI_STRDATA);
493 }
494
495 mtk_nfc_wait_ioready(nfc);
496 nfi_writeb(nfc, byte, NFI_DATAW);
497 }
498
mtk_nfc_write_buf(struct mtd_info * mtd,const u8 * buf,int len)499 static void mtk_nfc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
500 {
501 int i;
502
503 for (i = 0; i < len; i++)
504 mtk_nfc_write_byte(mtd, buf[i]);
505 }
506
mtk_nfc_setup_data_interface(struct mtd_info * mtd,int csline,const struct nand_data_interface * conf)507 static int mtk_nfc_setup_data_interface(struct mtd_info *mtd, int csline,
508 const struct nand_data_interface *conf)
509 {
510 struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd));
511 const struct nand_sdr_timings *timings;
512 u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt;
513
514 timings = nand_get_sdr_timings(conf);
515 if (IS_ERR(timings))
516 return -ENOTSUPP;
517
518 if (csline == NAND_DATA_IFACE_CHECK_ONLY)
519 return 0;
520
521 rate = clk_get_rate(nfc->clk.nfi_clk);
522 /* There is a frequency divider in some IPs */
523 rate /= nfc->caps->nfi_clk_div;
524
525 /* turn clock rate into KHZ */
526 rate /= 1000;
527
528 tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000;
529 tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000);
530 tpoecs &= 0xf;
531
532 tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000;
533 tprecs = DIV_ROUND_UP(tprecs * rate, 1000000);
534 tprecs &= 0x3f;
535
536 /* sdr interface has no tCR which means CE# low to RE# low */
537 tc2r = 0;
538
539 tw2r = timings->tWHR_min / 1000;
540 tw2r = DIV_ROUND_UP(tw2r * rate, 1000000);
541 tw2r = DIV_ROUND_UP(tw2r - 1, 2);
542 tw2r &= 0xf;
543
544 twh = max(timings->tREH_min, timings->tWH_min) / 1000;
545 twh = DIV_ROUND_UP(twh * rate, 1000000) - 1;
546 twh &= 0xf;
547
548 twst = timings->tWP_min / 1000;
549 twst = DIV_ROUND_UP(twst * rate, 1000000) - 1;
550 twst &= 0xf;
551
552 trlt = max(timings->tREA_max, timings->tRP_min) / 1000;
553 trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1;
554 trlt &= 0xf;
555
556 /*
557 * ACCON: access timing control register
558 * -------------------------------------
559 * 31:28: tpoecs, minimum required time for CS post pulling down after
560 * accessing the device
561 * 27:22: tprecs, minimum required time for CS pre pulling down before
562 * accessing the device
563 * 21:16: tc2r, minimum required time from NCEB low to NREB low
564 * 15:12: tw2r, minimum required time from NWEB high to NREB low.
565 * 11:08: twh, write enable hold time
566 * 07:04: twst, write wait states
567 * 03:00: trlt, read wait states
568 */
569 trlt = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt);
570 nfi_writel(nfc, trlt, NFI_ACCCON);
571
572 return 0;
573 }
574
mtk_nfc_sector_encode(struct nand_chip * chip,u8 * data)575 static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data)
576 {
577 struct mtk_nfc *nfc = nand_get_controller_data(chip);
578 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
579 int size = chip->ecc.size + mtk_nand->fdm.reg_size;
580
581 nfc->ecc_cfg.mode = ECC_DMA_MODE;
582 nfc->ecc_cfg.op = ECC_ENCODE;
583
584 return mtk_ecc_encode(nfc->ecc, &nfc->ecc_cfg, data, size);
585 }
586
mtk_nfc_no_bad_mark_swap(struct mtd_info * a,u8 * b,int c)587 static void mtk_nfc_no_bad_mark_swap(struct mtd_info *a, u8 *b, int c)
588 {
589 /* nop */
590 }
591
mtk_nfc_bad_mark_swap(struct mtd_info * mtd,u8 * buf,int raw)592 static void mtk_nfc_bad_mark_swap(struct mtd_info *mtd, u8 *buf, int raw)
593 {
594 struct nand_chip *chip = mtd_to_nand(mtd);
595 struct mtk_nfc_nand_chip *nand = to_mtk_nand(chip);
596 u32 bad_pos = nand->bad_mark.pos;
597
598 if (raw)
599 bad_pos += nand->bad_mark.sec * mtk_data_len(chip);
600 else
601 bad_pos += nand->bad_mark.sec * chip->ecc.size;
602
603 swap(chip->oob_poi[0], buf[bad_pos]);
604 }
605
mtk_nfc_format_subpage(struct mtd_info * mtd,u32 offset,u32 len,const u8 * buf)606 static int mtk_nfc_format_subpage(struct mtd_info *mtd, u32 offset,
607 u32 len, const u8 *buf)
608 {
609 struct nand_chip *chip = mtd_to_nand(mtd);
610 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
611 struct mtk_nfc *nfc = nand_get_controller_data(chip);
612 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
613 u32 start, end;
614 int i, ret;
615
616 start = offset / chip->ecc.size;
617 end = DIV_ROUND_UP(offset + len, chip->ecc.size);
618
619 memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
620 for (i = 0; i < chip->ecc.steps; i++) {
621 memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
622 chip->ecc.size);
623
624 if (start > i || i >= end)
625 continue;
626
627 if (i == mtk_nand->bad_mark.sec)
628 mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
629
630 memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
631
632 /* program the CRC back to the OOB */
633 ret = mtk_nfc_sector_encode(chip, mtk_data_ptr(chip, i));
634 if (ret < 0)
635 return ret;
636 }
637
638 return 0;
639 }
640
mtk_nfc_format_page(struct mtd_info * mtd,const u8 * buf)641 static void mtk_nfc_format_page(struct mtd_info *mtd, const u8 *buf)
642 {
643 struct nand_chip *chip = mtd_to_nand(mtd);
644 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
645 struct mtk_nfc *nfc = nand_get_controller_data(chip);
646 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
647 u32 i;
648
649 memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
650 for (i = 0; i < chip->ecc.steps; i++) {
651 if (buf)
652 memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i),
653 chip->ecc.size);
654
655 if (i == mtk_nand->bad_mark.sec)
656 mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
657
658 memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size);
659 }
660 }
661
mtk_nfc_read_fdm(struct nand_chip * chip,u32 start,u32 sectors)662 static inline void mtk_nfc_read_fdm(struct nand_chip *chip, u32 start,
663 u32 sectors)
664 {
665 struct mtk_nfc *nfc = nand_get_controller_data(chip);
666 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
667 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
668 u32 vall, valm;
669 u8 *oobptr;
670 int i, j;
671
672 for (i = 0; i < sectors; i++) {
673 oobptr = oob_ptr(chip, start + i);
674 vall = nfi_readl(nfc, NFI_FDML(i));
675 valm = nfi_readl(nfc, NFI_FDMM(i));
676
677 for (j = 0; j < fdm->reg_size; j++)
678 oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
679 }
680 }
681
mtk_nfc_write_fdm(struct nand_chip * chip)682 static inline void mtk_nfc_write_fdm(struct nand_chip *chip)
683 {
684 struct mtk_nfc *nfc = nand_get_controller_data(chip);
685 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
686 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
687 u32 vall, valm;
688 u8 *oobptr;
689 int i, j;
690
691 for (i = 0; i < chip->ecc.steps; i++) {
692 oobptr = oob_ptr(chip, i);
693 vall = 0;
694 valm = 0;
695 for (j = 0; j < 8; j++) {
696 if (j < 4)
697 vall |= (j < fdm->reg_size ? oobptr[j] : 0xff)
698 << (j * 8);
699 else
700 valm |= (j < fdm->reg_size ? oobptr[j] : 0xff)
701 << ((j - 4) * 8);
702 }
703 nfi_writel(nfc, vall, NFI_FDML(i));
704 nfi_writel(nfc, valm, NFI_FDMM(i));
705 }
706 }
707
mtk_nfc_do_write_page(struct mtd_info * mtd,struct nand_chip * chip,const u8 * buf,int page,int len)708 static int mtk_nfc_do_write_page(struct mtd_info *mtd, struct nand_chip *chip,
709 const u8 *buf, int page, int len)
710 {
711 struct mtk_nfc *nfc = nand_get_controller_data(chip);
712 struct device *dev = nfc->dev;
713 dma_addr_t addr;
714 u32 reg;
715 int ret;
716
717 addr = dma_map_single(dev, (void *)buf, len, DMA_TO_DEVICE);
718 ret = dma_mapping_error(nfc->dev, addr);
719 if (ret) {
720 dev_err(nfc->dev, "dma mapping error\n");
721 return -EINVAL;
722 }
723
724 reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AHB | CNFG_DMA_BURST_EN;
725 nfi_writew(nfc, reg, NFI_CNFG);
726
727 nfi_writel(nfc, chip->ecc.steps << CON_SEC_SHIFT, NFI_CON);
728 nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
729 nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
730
731 init_completion(&nfc->done);
732
733 reg = nfi_readl(nfc, NFI_CON) | CON_BWR;
734 nfi_writel(nfc, reg, NFI_CON);
735 nfi_writew(nfc, STAR_EN, NFI_STRDATA);
736
737 ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
738 if (!ret) {
739 dev_err(dev, "program ahb done timeout\n");
740 nfi_writew(nfc, 0, NFI_INTR_EN);
741 ret = -ETIMEDOUT;
742 goto timeout;
743 }
744
745 ret = readl_poll_timeout_atomic(nfc->regs + NFI_ADDRCNTR, reg,
746 ADDRCNTR_SEC(reg) >= chip->ecc.steps,
747 10, MTK_TIMEOUT);
748 if (ret)
749 dev_err(dev, "hwecc write timeout\n");
750
751 timeout:
752
753 dma_unmap_single(nfc->dev, addr, len, DMA_TO_DEVICE);
754 nfi_writel(nfc, 0, NFI_CON);
755
756 return ret;
757 }
758
mtk_nfc_write_page(struct mtd_info * mtd,struct nand_chip * chip,const u8 * buf,int page,int raw)759 static int mtk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
760 const u8 *buf, int page, int raw)
761 {
762 struct mtk_nfc *nfc = nand_get_controller_data(chip);
763 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
764 size_t len;
765 const u8 *bufpoi;
766 u32 reg;
767 int ret;
768
769 nand_prog_page_begin_op(chip, page, 0, NULL, 0);
770
771 if (!raw) {
772 /* OOB => FDM: from register, ECC: from HW */
773 reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AUTO_FMT_EN;
774 nfi_writew(nfc, reg | CNFG_HW_ECC_EN, NFI_CNFG);
775
776 nfc->ecc_cfg.op = ECC_ENCODE;
777 nfc->ecc_cfg.mode = ECC_NFI_MODE;
778 ret = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
779 if (ret) {
780 /* clear NFI config */
781 reg = nfi_readw(nfc, NFI_CNFG);
782 reg &= ~(CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
783 nfi_writew(nfc, reg, NFI_CNFG);
784
785 return ret;
786 }
787
788 memcpy(nfc->buffer, buf, mtd->writesize);
789 mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, raw);
790 bufpoi = nfc->buffer;
791
792 /* write OOB into the FDM registers (OOB area in MTK NAND) */
793 mtk_nfc_write_fdm(chip);
794 } else {
795 bufpoi = buf;
796 }
797
798 len = mtd->writesize + (raw ? mtd->oobsize : 0);
799 ret = mtk_nfc_do_write_page(mtd, chip, bufpoi, page, len);
800
801 if (!raw)
802 mtk_ecc_disable(nfc->ecc);
803
804 if (ret)
805 return ret;
806
807 return nand_prog_page_end_op(chip);
808 }
809
mtk_nfc_write_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,const u8 * buf,int oob_on,int page)810 static int mtk_nfc_write_page_hwecc(struct mtd_info *mtd,
811 struct nand_chip *chip, const u8 *buf,
812 int oob_on, int page)
813 {
814 return mtk_nfc_write_page(mtd, chip, buf, page, 0);
815 }
816
mtk_nfc_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const u8 * buf,int oob_on,int pg)817 static int mtk_nfc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
818 const u8 *buf, int oob_on, int pg)
819 {
820 struct mtk_nfc *nfc = nand_get_controller_data(chip);
821
822 mtk_nfc_format_page(mtd, buf);
823 return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1);
824 }
825
mtk_nfc_write_subpage_hwecc(struct mtd_info * mtd,struct nand_chip * chip,u32 offset,u32 data_len,const u8 * buf,int oob_on,int page)826 static int mtk_nfc_write_subpage_hwecc(struct mtd_info *mtd,
827 struct nand_chip *chip, u32 offset,
828 u32 data_len, const u8 *buf,
829 int oob_on, int page)
830 {
831 struct mtk_nfc *nfc = nand_get_controller_data(chip);
832 int ret;
833
834 ret = mtk_nfc_format_subpage(mtd, offset, data_len, buf);
835 if (ret < 0)
836 return ret;
837
838 /* use the data in the private buffer (now with FDM and CRC) */
839 return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1);
840 }
841
mtk_nfc_write_oob_std(struct mtd_info * mtd,struct nand_chip * chip,int page)842 static int mtk_nfc_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
843 int page)
844 {
845 return mtk_nfc_write_page_raw(mtd, chip, NULL, 1, page);
846 }
847
mtk_nfc_update_ecc_stats(struct mtd_info * mtd,u8 * buf,u32 sectors)848 static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 sectors)
849 {
850 struct nand_chip *chip = mtd_to_nand(mtd);
851 struct mtk_nfc *nfc = nand_get_controller_data(chip);
852 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
853 struct mtk_ecc_stats stats;
854 int rc, i;
855
856 rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE;
857 if (rc) {
858 memset(buf, 0xff, sectors * chip->ecc.size);
859 for (i = 0; i < sectors; i++)
860 memset(oob_ptr(chip, i), 0xff, mtk_nand->fdm.reg_size);
861 return 0;
862 }
863
864 mtk_ecc_get_stats(nfc->ecc, &stats, sectors);
865 mtd->ecc_stats.corrected += stats.corrected;
866 mtd->ecc_stats.failed += stats.failed;
867
868 return stats.bitflips;
869 }
870
mtk_nfc_read_subpage(struct mtd_info * mtd,struct nand_chip * chip,u32 data_offs,u32 readlen,u8 * bufpoi,int page,int raw)871 static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
872 u32 data_offs, u32 readlen,
873 u8 *bufpoi, int page, int raw)
874 {
875 struct mtk_nfc *nfc = nand_get_controller_data(chip);
876 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
877 u32 spare = mtk_nand->spare_per_sector;
878 u32 column, sectors, start, end, reg;
879 dma_addr_t addr;
880 int bitflips;
881 size_t len;
882 u8 *buf;
883 int rc;
884
885 start = data_offs / chip->ecc.size;
886 end = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size);
887
888 sectors = end - start;
889 column = start * (chip->ecc.size + spare);
890
891 len = sectors * chip->ecc.size + (raw ? sectors * spare : 0);
892 buf = bufpoi + start * chip->ecc.size;
893
894 nand_read_page_op(chip, page, column, NULL, 0);
895
896 addr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE);
897 rc = dma_mapping_error(nfc->dev, addr);
898 if (rc) {
899 dev_err(nfc->dev, "dma mapping error\n");
900
901 return -EINVAL;
902 }
903
904 reg = nfi_readw(nfc, NFI_CNFG);
905 reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_AHB;
906 if (!raw) {
907 reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN;
908 nfi_writew(nfc, reg, NFI_CNFG);
909
910 nfc->ecc_cfg.mode = ECC_NFI_MODE;
911 nfc->ecc_cfg.sectors = sectors;
912 nfc->ecc_cfg.op = ECC_DECODE;
913 rc = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg);
914 if (rc) {
915 dev_err(nfc->dev, "ecc enable\n");
916 /* clear NFI_CNFG */
917 reg &= ~(CNFG_DMA_BURST_EN | CNFG_AHB | CNFG_READ_EN |
918 CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
919 nfi_writew(nfc, reg, NFI_CNFG);
920 dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
921
922 return rc;
923 }
924 } else {
925 nfi_writew(nfc, reg, NFI_CNFG);
926 }
927
928 nfi_writel(nfc, sectors << CON_SEC_SHIFT, NFI_CON);
929 nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN);
930 nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR);
931
932 init_completion(&nfc->done);
933 reg = nfi_readl(nfc, NFI_CON) | CON_BRD;
934 nfi_writel(nfc, reg, NFI_CON);
935 nfi_writew(nfc, STAR_EN, NFI_STRDATA);
936
937 rc = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500));
938 if (!rc)
939 dev_warn(nfc->dev, "read ahb/dma done timeout\n");
940
941 rc = readl_poll_timeout_atomic(nfc->regs + NFI_BYTELEN, reg,
942 ADDRCNTR_SEC(reg) >= sectors, 10,
943 MTK_TIMEOUT);
944 if (rc < 0) {
945 dev_err(nfc->dev, "subpage done timeout\n");
946 bitflips = -EIO;
947 } else {
948 bitflips = 0;
949 if (!raw) {
950 rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE);
951 bitflips = rc < 0 ? -ETIMEDOUT :
952 mtk_nfc_update_ecc_stats(mtd, buf, sectors);
953 mtk_nfc_read_fdm(chip, start, sectors);
954 }
955 }
956
957 dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE);
958
959 if (raw)
960 goto done;
961
962 mtk_ecc_disable(nfc->ecc);
963
964 if (clamp(mtk_nand->bad_mark.sec, start, end) == mtk_nand->bad_mark.sec)
965 mtk_nand->bad_mark.bm_swap(mtd, bufpoi, raw);
966 done:
967 nfi_writel(nfc, 0, NFI_CON);
968
969 return bitflips;
970 }
971
mtk_nfc_read_subpage_hwecc(struct mtd_info * mtd,struct nand_chip * chip,u32 off,u32 len,u8 * p,int pg)972 static int mtk_nfc_read_subpage_hwecc(struct mtd_info *mtd,
973 struct nand_chip *chip, u32 off,
974 u32 len, u8 *p, int pg)
975 {
976 return mtk_nfc_read_subpage(mtd, chip, off, len, p, pg, 0);
977 }
978
mtk_nfc_read_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,u8 * p,int oob_on,int pg)979 static int mtk_nfc_read_page_hwecc(struct mtd_info *mtd,
980 struct nand_chip *chip, u8 *p,
981 int oob_on, int pg)
982 {
983 return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0);
984 }
985
mtk_nfc_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,u8 * buf,int oob_on,int page)986 static int mtk_nfc_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
987 u8 *buf, int oob_on, int page)
988 {
989 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
990 struct mtk_nfc *nfc = nand_get_controller_data(chip);
991 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
992 int i, ret;
993
994 memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize);
995 ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, nfc->buffer,
996 page, 1);
997 if (ret < 0)
998 return ret;
999
1000 for (i = 0; i < chip->ecc.steps; i++) {
1001 memcpy(oob_ptr(chip, i), mtk_oob_ptr(chip, i), fdm->reg_size);
1002
1003 if (i == mtk_nand->bad_mark.sec)
1004 mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1);
1005
1006 if (buf)
1007 memcpy(data_ptr(chip, buf, i), mtk_data_ptr(chip, i),
1008 chip->ecc.size);
1009 }
1010
1011 return ret;
1012 }
1013
mtk_nfc_read_oob_std(struct mtd_info * mtd,struct nand_chip * chip,int page)1014 static int mtk_nfc_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1015 int page)
1016 {
1017 return mtk_nfc_read_page_raw(mtd, chip, NULL, 1, page);
1018 }
1019
mtk_nfc_hw_init(struct mtk_nfc * nfc)1020 static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc)
1021 {
1022 /*
1023 * CNRNB: nand ready/busy register
1024 * -------------------------------
1025 * 7:4: timeout register for polling the NAND busy/ready signal
1026 * 0 : poll the status of the busy/ready signal after [7:4]*16 cycles.
1027 */
1028 nfi_writew(nfc, 0xf1, NFI_CNRNB);
1029 nfi_writel(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT);
1030
1031 mtk_nfc_hw_reset(nfc);
1032
1033 nfi_readl(nfc, NFI_INTR_STA);
1034 nfi_writel(nfc, 0, NFI_INTR_EN);
1035 }
1036
mtk_nfc_irq(int irq,void * id)1037 static irqreturn_t mtk_nfc_irq(int irq, void *id)
1038 {
1039 struct mtk_nfc *nfc = id;
1040 u16 sta, ien;
1041
1042 sta = nfi_readw(nfc, NFI_INTR_STA);
1043 ien = nfi_readw(nfc, NFI_INTR_EN);
1044
1045 if (!(sta & ien))
1046 return IRQ_NONE;
1047
1048 nfi_writew(nfc, ~sta & ien, NFI_INTR_EN);
1049 complete(&nfc->done);
1050
1051 return IRQ_HANDLED;
1052 }
1053
mtk_nfc_enable_clk(struct device * dev,struct mtk_nfc_clk * clk)1054 static int mtk_nfc_enable_clk(struct device *dev, struct mtk_nfc_clk *clk)
1055 {
1056 int ret;
1057
1058 ret = clk_prepare_enable(clk->nfi_clk);
1059 if (ret) {
1060 dev_err(dev, "failed to enable nfi clk\n");
1061 return ret;
1062 }
1063
1064 ret = clk_prepare_enable(clk->pad_clk);
1065 if (ret) {
1066 dev_err(dev, "failed to enable pad clk\n");
1067 clk_disable_unprepare(clk->nfi_clk);
1068 return ret;
1069 }
1070
1071 return 0;
1072 }
1073
mtk_nfc_disable_clk(struct mtk_nfc_clk * clk)1074 static void mtk_nfc_disable_clk(struct mtk_nfc_clk *clk)
1075 {
1076 clk_disable_unprepare(clk->nfi_clk);
1077 clk_disable_unprepare(clk->pad_clk);
1078 }
1079
mtk_nfc_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oob_region)1080 static int mtk_nfc_ooblayout_free(struct mtd_info *mtd, int section,
1081 struct mtd_oob_region *oob_region)
1082 {
1083 struct nand_chip *chip = mtd_to_nand(mtd);
1084 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1085 struct mtk_nfc_fdm *fdm = &mtk_nand->fdm;
1086 u32 eccsteps;
1087
1088 eccsteps = mtd->writesize / chip->ecc.size;
1089
1090 if (section >= eccsteps)
1091 return -ERANGE;
1092
1093 oob_region->length = fdm->reg_size - fdm->ecc_size;
1094 oob_region->offset = section * fdm->reg_size + fdm->ecc_size;
1095
1096 return 0;
1097 }
1098
mtk_nfc_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oob_region)1099 static int mtk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
1100 struct mtd_oob_region *oob_region)
1101 {
1102 struct nand_chip *chip = mtd_to_nand(mtd);
1103 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1104 u32 eccsteps;
1105
1106 if (section)
1107 return -ERANGE;
1108
1109 eccsteps = mtd->writesize / chip->ecc.size;
1110 oob_region->offset = mtk_nand->fdm.reg_size * eccsteps;
1111 oob_region->length = mtd->oobsize - oob_region->offset;
1112
1113 return 0;
1114 }
1115
1116 static const struct mtd_ooblayout_ops mtk_nfc_ooblayout_ops = {
1117 .free = mtk_nfc_ooblayout_free,
1118 .ecc = mtk_nfc_ooblayout_ecc,
1119 };
1120
mtk_nfc_set_fdm(struct mtk_nfc_fdm * fdm,struct mtd_info * mtd)1121 static void mtk_nfc_set_fdm(struct mtk_nfc_fdm *fdm, struct mtd_info *mtd)
1122 {
1123 struct nand_chip *nand = mtd_to_nand(mtd);
1124 struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand);
1125 struct mtk_nfc *nfc = nand_get_controller_data(nand);
1126 u32 ecc_bytes;
1127
1128 ecc_bytes = DIV_ROUND_UP(nand->ecc.strength *
1129 mtk_ecc_get_parity_bits(nfc->ecc), 8);
1130
1131 fdm->reg_size = chip->spare_per_sector - ecc_bytes;
1132 if (fdm->reg_size > NFI_FDM_MAX_SIZE)
1133 fdm->reg_size = NFI_FDM_MAX_SIZE;
1134
1135 /* bad block mark storage */
1136 fdm->ecc_size = 1;
1137 }
1138
mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl * bm_ctl,struct mtd_info * mtd)1139 static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl,
1140 struct mtd_info *mtd)
1141 {
1142 struct nand_chip *nand = mtd_to_nand(mtd);
1143
1144 if (mtd->writesize == 512) {
1145 bm_ctl->bm_swap = mtk_nfc_no_bad_mark_swap;
1146 } else {
1147 bm_ctl->bm_swap = mtk_nfc_bad_mark_swap;
1148 bm_ctl->sec = mtd->writesize / mtk_data_len(nand);
1149 bm_ctl->pos = mtd->writesize % mtk_data_len(nand);
1150 }
1151 }
1152
mtk_nfc_set_spare_per_sector(u32 * sps,struct mtd_info * mtd)1153 static int mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd)
1154 {
1155 struct nand_chip *nand = mtd_to_nand(mtd);
1156 struct mtk_nfc *nfc = nand_get_controller_data(nand);
1157 const u8 *spare = nfc->caps->spare_size;
1158 u32 eccsteps, i, closest_spare = 0;
1159
1160 eccsteps = mtd->writesize / nand->ecc.size;
1161 *sps = mtd->oobsize / eccsteps;
1162
1163 if (nand->ecc.size == 1024)
1164 *sps >>= 1;
1165
1166 if (*sps < MTK_NFC_MIN_SPARE)
1167 return -EINVAL;
1168
1169 for (i = 0; i < nfc->caps->num_spare_size; i++) {
1170 if (*sps >= spare[i] && spare[i] >= spare[closest_spare]) {
1171 closest_spare = i;
1172 if (*sps == spare[i])
1173 break;
1174 }
1175 }
1176
1177 *sps = spare[closest_spare];
1178
1179 if (nand->ecc.size == 1024)
1180 *sps <<= 1;
1181
1182 return 0;
1183 }
1184
mtk_nfc_ecc_init(struct device * dev,struct mtd_info * mtd)1185 static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd)
1186 {
1187 struct nand_chip *nand = mtd_to_nand(mtd);
1188 struct mtk_nfc *nfc = nand_get_controller_data(nand);
1189 u32 spare;
1190 int free, ret;
1191
1192 /* support only ecc hw mode */
1193 if (nand->ecc.mode != NAND_ECC_HW) {
1194 dev_err(dev, "ecc.mode not supported\n");
1195 return -EINVAL;
1196 }
1197
1198 /* if optional dt settings not present */
1199 if (!nand->ecc.size || !nand->ecc.strength) {
1200 /* use datasheet requirements */
1201 nand->ecc.strength = nand->ecc_strength_ds;
1202 nand->ecc.size = nand->ecc_step_ds;
1203
1204 /*
1205 * align eccstrength and eccsize
1206 * this controller only supports 512 and 1024 sizes
1207 */
1208 if (nand->ecc.size < 1024) {
1209 if (mtd->writesize > 512 &&
1210 nfc->caps->max_sector_size > 512) {
1211 nand->ecc.size = 1024;
1212 nand->ecc.strength <<= 1;
1213 } else {
1214 nand->ecc.size = 512;
1215 }
1216 } else {
1217 nand->ecc.size = 1024;
1218 }
1219
1220 ret = mtk_nfc_set_spare_per_sector(&spare, mtd);
1221 if (ret)
1222 return ret;
1223
1224 /* calculate oob bytes except ecc parity data */
1225 free = (nand->ecc.strength * mtk_ecc_get_parity_bits(nfc->ecc)
1226 + 7) >> 3;
1227 free = spare - free;
1228
1229 /*
1230 * enhance ecc strength if oob left is bigger than max FDM size
1231 * or reduce ecc strength if oob size is not enough for ecc
1232 * parity data.
1233 */
1234 if (free > NFI_FDM_MAX_SIZE) {
1235 spare -= NFI_FDM_MAX_SIZE;
1236 nand->ecc.strength = (spare << 3) /
1237 mtk_ecc_get_parity_bits(nfc->ecc);
1238 } else if (free < 0) {
1239 spare -= NFI_FDM_MIN_SIZE;
1240 nand->ecc.strength = (spare << 3) /
1241 mtk_ecc_get_parity_bits(nfc->ecc);
1242 }
1243 }
1244
1245 mtk_ecc_adjust_strength(nfc->ecc, &nand->ecc.strength);
1246
1247 dev_info(dev, "eccsize %d eccstrength %d\n",
1248 nand->ecc.size, nand->ecc.strength);
1249
1250 return 0;
1251 }
1252
mtk_nfc_attach_chip(struct nand_chip * chip)1253 static int mtk_nfc_attach_chip(struct nand_chip *chip)
1254 {
1255 struct mtd_info *mtd = nand_to_mtd(chip);
1256 struct device *dev = mtd->dev.parent;
1257 struct mtk_nfc *nfc = nand_get_controller_data(chip);
1258 struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip);
1259 int len;
1260 int ret;
1261
1262 if (chip->options & NAND_BUSWIDTH_16) {
1263 dev_err(dev, "16bits buswidth not supported");
1264 return -EINVAL;
1265 }
1266
1267 /* store bbt magic in page, cause OOB is not protected */
1268 if (chip->bbt_options & NAND_BBT_USE_FLASH)
1269 chip->bbt_options |= NAND_BBT_NO_OOB;
1270
1271 ret = mtk_nfc_ecc_init(dev, mtd);
1272 if (ret)
1273 return ret;
1274
1275 ret = mtk_nfc_set_spare_per_sector(&mtk_nand->spare_per_sector, mtd);
1276 if (ret)
1277 return ret;
1278
1279 mtk_nfc_set_fdm(&mtk_nand->fdm, mtd);
1280 mtk_nfc_set_bad_mark_ctl(&mtk_nand->bad_mark, mtd);
1281
1282 len = mtd->writesize + mtd->oobsize;
1283 nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL);
1284 if (!nfc->buffer)
1285 return -ENOMEM;
1286
1287 return 0;
1288 }
1289
1290 static const struct nand_controller_ops mtk_nfc_controller_ops = {
1291 .attach_chip = mtk_nfc_attach_chip,
1292 };
1293
mtk_nfc_nand_chip_init(struct device * dev,struct mtk_nfc * nfc,struct device_node * np)1294 static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc,
1295 struct device_node *np)
1296 {
1297 struct mtk_nfc_nand_chip *chip;
1298 struct nand_chip *nand;
1299 struct mtd_info *mtd;
1300 int nsels;
1301 u32 tmp;
1302 int ret;
1303 int i;
1304
1305 if (!of_get_property(np, "reg", &nsels))
1306 return -ENODEV;
1307
1308 nsels /= sizeof(u32);
1309 if (!nsels || nsels > MTK_NAND_MAX_NSELS) {
1310 dev_err(dev, "invalid reg property size %d\n", nsels);
1311 return -EINVAL;
1312 }
1313
1314 chip = devm_kzalloc(dev, sizeof(*chip) + nsels * sizeof(u8),
1315 GFP_KERNEL);
1316 if (!chip)
1317 return -ENOMEM;
1318
1319 chip->nsels = nsels;
1320 for (i = 0; i < nsels; i++) {
1321 ret = of_property_read_u32_index(np, "reg", i, &tmp);
1322 if (ret) {
1323 dev_err(dev, "reg property failure : %d\n", ret);
1324 return ret;
1325 }
1326 chip->sels[i] = tmp;
1327 }
1328
1329 nand = &chip->nand;
1330 nand->controller = &nfc->controller;
1331
1332 nand_set_flash_node(nand, np);
1333 nand_set_controller_data(nand, nfc);
1334
1335 nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_SUBPAGE_READ;
1336 nand->dev_ready = mtk_nfc_dev_ready;
1337 nand->select_chip = mtk_nfc_select_chip;
1338 nand->write_byte = mtk_nfc_write_byte;
1339 nand->write_buf = mtk_nfc_write_buf;
1340 nand->read_byte = mtk_nfc_read_byte;
1341 nand->read_buf = mtk_nfc_read_buf;
1342 nand->cmd_ctrl = mtk_nfc_cmd_ctrl;
1343 nand->setup_data_interface = mtk_nfc_setup_data_interface;
1344
1345 /* set default mode in case dt entry is missing */
1346 nand->ecc.mode = NAND_ECC_HW;
1347
1348 nand->ecc.write_subpage = mtk_nfc_write_subpage_hwecc;
1349 nand->ecc.write_page_raw = mtk_nfc_write_page_raw;
1350 nand->ecc.write_page = mtk_nfc_write_page_hwecc;
1351 nand->ecc.write_oob_raw = mtk_nfc_write_oob_std;
1352 nand->ecc.write_oob = mtk_nfc_write_oob_std;
1353
1354 nand->ecc.read_subpage = mtk_nfc_read_subpage_hwecc;
1355 nand->ecc.read_page_raw = mtk_nfc_read_page_raw;
1356 nand->ecc.read_page = mtk_nfc_read_page_hwecc;
1357 nand->ecc.read_oob_raw = mtk_nfc_read_oob_std;
1358 nand->ecc.read_oob = mtk_nfc_read_oob_std;
1359
1360 mtd = nand_to_mtd(nand);
1361 mtd->owner = THIS_MODULE;
1362 mtd->dev.parent = dev;
1363 mtd->name = MTK_NAME;
1364 mtd_set_ooblayout(mtd, &mtk_nfc_ooblayout_ops);
1365
1366 mtk_nfc_hw_init(nfc);
1367
1368 ret = nand_scan(mtd, nsels);
1369 if (ret)
1370 return ret;
1371
1372 ret = mtd_device_register(mtd, NULL, 0);
1373 if (ret) {
1374 dev_err(dev, "mtd parse partition error\n");
1375 nand_release(mtd);
1376 return ret;
1377 }
1378
1379 list_add_tail(&chip->node, &nfc->chips);
1380
1381 return 0;
1382 }
1383
mtk_nfc_nand_chips_init(struct device * dev,struct mtk_nfc * nfc)1384 static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc)
1385 {
1386 struct device_node *np = dev->of_node;
1387 struct device_node *nand_np;
1388 int ret;
1389
1390 for_each_child_of_node(np, nand_np) {
1391 ret = mtk_nfc_nand_chip_init(dev, nfc, nand_np);
1392 if (ret) {
1393 of_node_put(nand_np);
1394 return ret;
1395 }
1396 }
1397
1398 return 0;
1399 }
1400
1401 static const struct mtk_nfc_caps mtk_nfc_caps_mt2701 = {
1402 .spare_size = spare_size_mt2701,
1403 .num_spare_size = 16,
1404 .pageformat_spare_shift = 4,
1405 .nfi_clk_div = 1,
1406 .max_sector = 16,
1407 .max_sector_size = 1024,
1408 };
1409
1410 static const struct mtk_nfc_caps mtk_nfc_caps_mt2712 = {
1411 .spare_size = spare_size_mt2712,
1412 .num_spare_size = 19,
1413 .pageformat_spare_shift = 16,
1414 .nfi_clk_div = 2,
1415 .max_sector = 16,
1416 .max_sector_size = 1024,
1417 };
1418
1419 static const struct mtk_nfc_caps mtk_nfc_caps_mt7622 = {
1420 .spare_size = spare_size_mt7622,
1421 .num_spare_size = 4,
1422 .pageformat_spare_shift = 4,
1423 .nfi_clk_div = 1,
1424 .max_sector = 8,
1425 .max_sector_size = 512,
1426 };
1427
1428 static const struct of_device_id mtk_nfc_id_table[] = {
1429 {
1430 .compatible = "mediatek,mt2701-nfc",
1431 .data = &mtk_nfc_caps_mt2701,
1432 }, {
1433 .compatible = "mediatek,mt2712-nfc",
1434 .data = &mtk_nfc_caps_mt2712,
1435 }, {
1436 .compatible = "mediatek,mt7622-nfc",
1437 .data = &mtk_nfc_caps_mt7622,
1438 },
1439 {}
1440 };
1441 MODULE_DEVICE_TABLE(of, mtk_nfc_id_table);
1442
mtk_nfc_probe(struct platform_device * pdev)1443 static int mtk_nfc_probe(struct platform_device *pdev)
1444 {
1445 struct device *dev = &pdev->dev;
1446 struct device_node *np = dev->of_node;
1447 struct mtk_nfc *nfc;
1448 struct resource *res;
1449 int ret, irq;
1450
1451 nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1452 if (!nfc)
1453 return -ENOMEM;
1454
1455 spin_lock_init(&nfc->controller.lock);
1456 init_waitqueue_head(&nfc->controller.wq);
1457 INIT_LIST_HEAD(&nfc->chips);
1458 nfc->controller.ops = &mtk_nfc_controller_ops;
1459
1460 /* probe defer if not ready */
1461 nfc->ecc = of_mtk_ecc_get(np);
1462 if (IS_ERR(nfc->ecc))
1463 return PTR_ERR(nfc->ecc);
1464 else if (!nfc->ecc)
1465 return -ENODEV;
1466
1467 nfc->caps = of_device_get_match_data(dev);
1468 nfc->dev = dev;
1469
1470 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1471 nfc->regs = devm_ioremap_resource(dev, res);
1472 if (IS_ERR(nfc->regs)) {
1473 ret = PTR_ERR(nfc->regs);
1474 goto release_ecc;
1475 }
1476
1477 nfc->clk.nfi_clk = devm_clk_get(dev, "nfi_clk");
1478 if (IS_ERR(nfc->clk.nfi_clk)) {
1479 dev_err(dev, "no clk\n");
1480 ret = PTR_ERR(nfc->clk.nfi_clk);
1481 goto release_ecc;
1482 }
1483
1484 nfc->clk.pad_clk = devm_clk_get(dev, "pad_clk");
1485 if (IS_ERR(nfc->clk.pad_clk)) {
1486 dev_err(dev, "no pad clk\n");
1487 ret = PTR_ERR(nfc->clk.pad_clk);
1488 goto release_ecc;
1489 }
1490
1491 ret = mtk_nfc_enable_clk(dev, &nfc->clk);
1492 if (ret)
1493 goto release_ecc;
1494
1495 irq = platform_get_irq(pdev, 0);
1496 if (irq < 0) {
1497 dev_err(dev, "no nfi irq resource\n");
1498 ret = -EINVAL;
1499 goto clk_disable;
1500 }
1501
1502 ret = devm_request_irq(dev, irq, mtk_nfc_irq, 0x0, "mtk-nand", nfc);
1503 if (ret) {
1504 dev_err(dev, "failed to request nfi irq\n");
1505 goto clk_disable;
1506 }
1507
1508 ret = dma_set_mask(dev, DMA_BIT_MASK(32));
1509 if (ret) {
1510 dev_err(dev, "failed to set dma mask\n");
1511 goto clk_disable;
1512 }
1513
1514 platform_set_drvdata(pdev, nfc);
1515
1516 ret = mtk_nfc_nand_chips_init(dev, nfc);
1517 if (ret) {
1518 dev_err(dev, "failed to init nand chips\n");
1519 goto clk_disable;
1520 }
1521
1522 return 0;
1523
1524 clk_disable:
1525 mtk_nfc_disable_clk(&nfc->clk);
1526
1527 release_ecc:
1528 mtk_ecc_release(nfc->ecc);
1529
1530 return ret;
1531 }
1532
mtk_nfc_remove(struct platform_device * pdev)1533 static int mtk_nfc_remove(struct platform_device *pdev)
1534 {
1535 struct mtk_nfc *nfc = platform_get_drvdata(pdev);
1536 struct mtk_nfc_nand_chip *chip;
1537
1538 while (!list_empty(&nfc->chips)) {
1539 chip = list_first_entry(&nfc->chips, struct mtk_nfc_nand_chip,
1540 node);
1541 nand_release(nand_to_mtd(&chip->nand));
1542 list_del(&chip->node);
1543 }
1544
1545 mtk_ecc_release(nfc->ecc);
1546 mtk_nfc_disable_clk(&nfc->clk);
1547
1548 return 0;
1549 }
1550
1551 #ifdef CONFIG_PM_SLEEP
mtk_nfc_suspend(struct device * dev)1552 static int mtk_nfc_suspend(struct device *dev)
1553 {
1554 struct mtk_nfc *nfc = dev_get_drvdata(dev);
1555
1556 mtk_nfc_disable_clk(&nfc->clk);
1557
1558 return 0;
1559 }
1560
mtk_nfc_resume(struct device * dev)1561 static int mtk_nfc_resume(struct device *dev)
1562 {
1563 struct mtk_nfc *nfc = dev_get_drvdata(dev);
1564 struct mtk_nfc_nand_chip *chip;
1565 struct nand_chip *nand;
1566 int ret;
1567 u32 i;
1568
1569 udelay(200);
1570
1571 ret = mtk_nfc_enable_clk(dev, &nfc->clk);
1572 if (ret)
1573 return ret;
1574
1575 /* reset NAND chip if VCC was powered off */
1576 list_for_each_entry(chip, &nfc->chips, node) {
1577 nand = &chip->nand;
1578 for (i = 0; i < chip->nsels; i++)
1579 nand_reset(nand, i);
1580 }
1581
1582 return 0;
1583 }
1584
1585 static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume);
1586 #endif
1587
1588 static struct platform_driver mtk_nfc_driver = {
1589 .probe = mtk_nfc_probe,
1590 .remove = mtk_nfc_remove,
1591 .driver = {
1592 .name = MTK_NAME,
1593 .of_match_table = mtk_nfc_id_table,
1594 #ifdef CONFIG_PM_SLEEP
1595 .pm = &mtk_nfc_pm_ops,
1596 #endif
1597 },
1598 };
1599
1600 module_platform_driver(mtk_nfc_driver);
1601
1602 MODULE_LICENSE("GPL");
1603 MODULE_AUTHOR("Xiaolei Li <xiaolei.li@mediatek.com>");
1604 MODULE_DESCRIPTION("MTK Nand Flash Controller Driver");
1605