1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2003 Jana Saout <jana@saout.de>
4 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
5 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
6 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
7 *
8 * This file is released under the GPL.
9 */
10
11 #include <linux/completion.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/key.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-integrity.h>
20 #include <linux/mempool.h>
21 #include <linux/slab.h>
22 #include <linux/crypto.h>
23 #include <linux/workqueue.h>
24 #include <linux/kthread.h>
25 #include <linux/backing-dev.h>
26 #include <linux/atomic.h>
27 #include <linux/scatterlist.h>
28 #include <linux/rbtree.h>
29 #include <linux/ctype.h>
30 #include <asm/page.h>
31 #include <asm/unaligned.h>
32 #include <crypto/hash.h>
33 #include <crypto/md5.h>
34 #include <crypto/skcipher.h>
35 #include <crypto/aead.h>
36 #include <crypto/authenc.h>
37 #include <crypto/utils.h>
38 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
39 #include <linux/key-type.h>
40 #include <keys/user-type.h>
41 #include <keys/encrypted-type.h>
42 #include <keys/trusted-type.h>
43
44 #include <linux/device-mapper.h>
45
46 #include "dm-audit.h"
47
48 #define DM_MSG_PREFIX "crypt"
49
50 /*
51 * context holding the current state of a multi-part conversion
52 */
53 struct convert_context {
54 struct completion restart;
55 struct bio *bio_in;
56 struct bio *bio_out;
57 struct bvec_iter iter_in;
58 struct bvec_iter iter_out;
59 u64 cc_sector;
60 atomic_t cc_pending;
61 union {
62 struct skcipher_request *req;
63 struct aead_request *req_aead;
64 } r;
65
66 };
67
68 /*
69 * per bio private data
70 */
71 struct dm_crypt_io {
72 struct crypt_config *cc;
73 struct bio *base_bio;
74 u8 *integrity_metadata;
75 bool integrity_metadata_from_pool:1;
76 bool in_tasklet:1;
77
78 struct work_struct work;
79 struct tasklet_struct tasklet;
80
81 struct convert_context ctx;
82
83 atomic_t io_pending;
84 blk_status_t error;
85 sector_t sector;
86
87 struct rb_node rb_node;
88 } CRYPTO_MINALIGN_ATTR;
89
90 struct dm_crypt_request {
91 struct convert_context *ctx;
92 struct scatterlist sg_in[4];
93 struct scatterlist sg_out[4];
94 u64 iv_sector;
95 };
96
97 struct crypt_config;
98
99 struct crypt_iv_operations {
100 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
101 const char *opts);
102 void (*dtr)(struct crypt_config *cc);
103 int (*init)(struct crypt_config *cc);
104 int (*wipe)(struct crypt_config *cc);
105 int (*generator)(struct crypt_config *cc, u8 *iv,
106 struct dm_crypt_request *dmreq);
107 int (*post)(struct crypt_config *cc, u8 *iv,
108 struct dm_crypt_request *dmreq);
109 };
110
111 struct iv_benbi_private {
112 int shift;
113 };
114
115 #define LMK_SEED_SIZE 64 /* hash + 0 */
116 struct iv_lmk_private {
117 struct crypto_shash *hash_tfm;
118 u8 *seed;
119 };
120
121 #define TCW_WHITENING_SIZE 16
122 struct iv_tcw_private {
123 struct crypto_shash *crc32_tfm;
124 u8 *iv_seed;
125 u8 *whitening;
126 };
127
128 #define ELEPHANT_MAX_KEY_SIZE 32
129 struct iv_elephant_private {
130 struct crypto_skcipher *tfm;
131 };
132
133 /*
134 * Crypt: maps a linear range of a block device
135 * and encrypts / decrypts at the same time.
136 */
137 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
138 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
139 DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
140 DM_CRYPT_WRITE_INLINE };
141
142 enum cipher_flags {
143 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cipher */
144 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */
145 CRYPT_ENCRYPT_PREPROCESS, /* Must preprocess data for encryption (elephant) */
146 };
147
148 /*
149 * The fields in here must be read only after initialization.
150 */
151 struct crypt_config {
152 struct dm_dev *dev;
153 sector_t start;
154
155 struct percpu_counter n_allocated_pages;
156
157 struct workqueue_struct *io_queue;
158 struct workqueue_struct *crypt_queue;
159
160 spinlock_t write_thread_lock;
161 struct task_struct *write_thread;
162 struct rb_root write_tree;
163
164 char *cipher_string;
165 char *cipher_auth;
166 char *key_string;
167
168 const struct crypt_iv_operations *iv_gen_ops;
169 union {
170 struct iv_benbi_private benbi;
171 struct iv_lmk_private lmk;
172 struct iv_tcw_private tcw;
173 struct iv_elephant_private elephant;
174 } iv_gen_private;
175 u64 iv_offset;
176 unsigned int iv_size;
177 unsigned short sector_size;
178 unsigned char sector_shift;
179
180 union {
181 struct crypto_skcipher **tfms;
182 struct crypto_aead **tfms_aead;
183 } cipher_tfm;
184 unsigned int tfms_count;
185 unsigned long cipher_flags;
186
187 /*
188 * Layout of each crypto request:
189 *
190 * struct skcipher_request
191 * context
192 * padding
193 * struct dm_crypt_request
194 * padding
195 * IV
196 *
197 * The padding is added so that dm_crypt_request and the IV are
198 * correctly aligned.
199 */
200 unsigned int dmreq_start;
201
202 unsigned int per_bio_data_size;
203
204 unsigned long flags;
205 unsigned int key_size;
206 unsigned int key_parts; /* independent parts in key buffer */
207 unsigned int key_extra_size; /* additional keys length */
208 unsigned int key_mac_size; /* MAC key size for authenc(...) */
209
210 unsigned int integrity_tag_size;
211 unsigned int integrity_iv_size;
212 unsigned int on_disk_tag_size;
213
214 /*
215 * pool for per bio private data, crypto requests,
216 * encryption requeusts/buffer pages and integrity tags
217 */
218 unsigned int tag_pool_max_sectors;
219 mempool_t tag_pool;
220 mempool_t req_pool;
221 mempool_t page_pool;
222
223 struct bio_set bs;
224 struct mutex bio_alloc_lock;
225
226 u8 *authenc_key; /* space for keys in authenc() format (if used) */
227 u8 key[];
228 };
229
230 #define MIN_IOS 64
231 #define MAX_TAG_SIZE 480
232 #define POOL_ENTRY_SIZE 512
233
234 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
235 static unsigned int dm_crypt_clients_n;
236 static volatile unsigned long dm_crypt_pages_per_client;
237 #define DM_CRYPT_MEMORY_PERCENT 2
238 #define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_VECS * 16)
239
240 static void crypt_endio(struct bio *clone);
241 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
242 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
243 struct scatterlist *sg);
244
245 static bool crypt_integrity_aead(struct crypt_config *cc);
246
247 /*
248 * Use this to access cipher attributes that are independent of the key.
249 */
any_tfm(struct crypt_config * cc)250 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
251 {
252 return cc->cipher_tfm.tfms[0];
253 }
254
any_tfm_aead(struct crypt_config * cc)255 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
256 {
257 return cc->cipher_tfm.tfms_aead[0];
258 }
259
260 /*
261 * Different IV generation algorithms:
262 *
263 * plain: the initial vector is the 32-bit little-endian version of the sector
264 * number, padded with zeros if necessary.
265 *
266 * plain64: the initial vector is the 64-bit little-endian version of the sector
267 * number, padded with zeros if necessary.
268 *
269 * plain64be: the initial vector is the 64-bit big-endian version of the sector
270 * number, padded with zeros if necessary.
271 *
272 * essiv: "encrypted sector|salt initial vector", the sector number is
273 * encrypted with the bulk cipher using a salt as key. The salt
274 * should be derived from the bulk cipher's key via hashing.
275 *
276 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
277 * (needed for LRW-32-AES and possible other narrow block modes)
278 *
279 * null: the initial vector is always zero. Provides compatibility with
280 * obsolete loop_fish2 devices. Do not use for new devices.
281 *
282 * lmk: Compatible implementation of the block chaining mode used
283 * by the Loop-AES block device encryption system
284 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
285 * It operates on full 512 byte sectors and uses CBC
286 * with an IV derived from the sector number, the data and
287 * optionally extra IV seed.
288 * This means that after decryption the first block
289 * of sector must be tweaked according to decrypted data.
290 * Loop-AES can use three encryption schemes:
291 * version 1: is plain aes-cbc mode
292 * version 2: uses 64 multikey scheme with lmk IV generator
293 * version 3: the same as version 2 with additional IV seed
294 * (it uses 65 keys, last key is used as IV seed)
295 *
296 * tcw: Compatible implementation of the block chaining mode used
297 * by the TrueCrypt device encryption system (prior to version 4.1).
298 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
299 * It operates on full 512 byte sectors and uses CBC
300 * with an IV derived from initial key and the sector number.
301 * In addition, whitening value is applied on every sector, whitening
302 * is calculated from initial key, sector number and mixed using CRC32.
303 * Note that this encryption scheme is vulnerable to watermarking attacks
304 * and should be used for old compatible containers access only.
305 *
306 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
307 * The IV is encrypted little-endian byte-offset (with the same key
308 * and cipher as the volume).
309 *
310 * elephant: The extended version of eboiv with additional Elephant diffuser
311 * used with Bitlocker CBC mode.
312 * This mode was used in older Windows systems
313 * https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
314 */
315
crypt_iv_plain_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)316 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
317 struct dm_crypt_request *dmreq)
318 {
319 memset(iv, 0, cc->iv_size);
320 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
321
322 return 0;
323 }
324
crypt_iv_plain64_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)325 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
326 struct dm_crypt_request *dmreq)
327 {
328 memset(iv, 0, cc->iv_size);
329 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
330
331 return 0;
332 }
333
crypt_iv_plain64be_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)334 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
335 struct dm_crypt_request *dmreq)
336 {
337 memset(iv, 0, cc->iv_size);
338 /* iv_size is at least of size u64; usually it is 16 bytes */
339 *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
340
341 return 0;
342 }
343
crypt_iv_essiv_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)344 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
345 struct dm_crypt_request *dmreq)
346 {
347 /*
348 * ESSIV encryption of the IV is now handled by the crypto API,
349 * so just pass the plain sector number here.
350 */
351 memset(iv, 0, cc->iv_size);
352 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
353
354 return 0;
355 }
356
crypt_iv_benbi_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)357 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
358 const char *opts)
359 {
360 unsigned int bs;
361 int log;
362
363 if (crypt_integrity_aead(cc))
364 bs = crypto_aead_blocksize(any_tfm_aead(cc));
365 else
366 bs = crypto_skcipher_blocksize(any_tfm(cc));
367 log = ilog2(bs);
368
369 /*
370 * We need to calculate how far we must shift the sector count
371 * to get the cipher block count, we use this shift in _gen.
372 */
373 if (1 << log != bs) {
374 ti->error = "cypher blocksize is not a power of 2";
375 return -EINVAL;
376 }
377
378 if (log > 9) {
379 ti->error = "cypher blocksize is > 512";
380 return -EINVAL;
381 }
382
383 cc->iv_gen_private.benbi.shift = 9 - log;
384
385 return 0;
386 }
387
crypt_iv_benbi_dtr(struct crypt_config * cc)388 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
389 {
390 }
391
crypt_iv_benbi_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)392 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
393 struct dm_crypt_request *dmreq)
394 {
395 __be64 val;
396
397 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
398
399 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
400 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
401
402 return 0;
403 }
404
crypt_iv_null_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)405 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
406 struct dm_crypt_request *dmreq)
407 {
408 memset(iv, 0, cc->iv_size);
409
410 return 0;
411 }
412
crypt_iv_lmk_dtr(struct crypt_config * cc)413 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
414 {
415 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
416
417 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
418 crypto_free_shash(lmk->hash_tfm);
419 lmk->hash_tfm = NULL;
420
421 kfree_sensitive(lmk->seed);
422 lmk->seed = NULL;
423 }
424
crypt_iv_lmk_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)425 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
426 const char *opts)
427 {
428 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
429
430 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
431 ti->error = "Unsupported sector size for LMK";
432 return -EINVAL;
433 }
434
435 lmk->hash_tfm = crypto_alloc_shash("md5", 0,
436 CRYPTO_ALG_ALLOCATES_MEMORY);
437 if (IS_ERR(lmk->hash_tfm)) {
438 ti->error = "Error initializing LMK hash";
439 return PTR_ERR(lmk->hash_tfm);
440 }
441
442 /* No seed in LMK version 2 */
443 if (cc->key_parts == cc->tfms_count) {
444 lmk->seed = NULL;
445 return 0;
446 }
447
448 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
449 if (!lmk->seed) {
450 crypt_iv_lmk_dtr(cc);
451 ti->error = "Error kmallocing seed storage in LMK";
452 return -ENOMEM;
453 }
454
455 return 0;
456 }
457
crypt_iv_lmk_init(struct crypt_config * cc)458 static int crypt_iv_lmk_init(struct crypt_config *cc)
459 {
460 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
461 int subkey_size = cc->key_size / cc->key_parts;
462
463 /* LMK seed is on the position of LMK_KEYS + 1 key */
464 if (lmk->seed)
465 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
466 crypto_shash_digestsize(lmk->hash_tfm));
467
468 return 0;
469 }
470
crypt_iv_lmk_wipe(struct crypt_config * cc)471 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
472 {
473 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
474
475 if (lmk->seed)
476 memset(lmk->seed, 0, LMK_SEED_SIZE);
477
478 return 0;
479 }
480
crypt_iv_lmk_one(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq,u8 * data)481 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
482 struct dm_crypt_request *dmreq,
483 u8 *data)
484 {
485 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
486 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
487 struct md5_state md5state;
488 __le32 buf[4];
489 int i, r;
490
491 desc->tfm = lmk->hash_tfm;
492
493 r = crypto_shash_init(desc);
494 if (r)
495 return r;
496
497 if (lmk->seed) {
498 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
499 if (r)
500 return r;
501 }
502
503 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
504 r = crypto_shash_update(desc, data + 16, 16 * 31);
505 if (r)
506 return r;
507
508 /* Sector is cropped to 56 bits here */
509 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
510 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
511 buf[2] = cpu_to_le32(4024);
512 buf[3] = 0;
513 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
514 if (r)
515 return r;
516
517 /* No MD5 padding here */
518 r = crypto_shash_export(desc, &md5state);
519 if (r)
520 return r;
521
522 for (i = 0; i < MD5_HASH_WORDS; i++)
523 __cpu_to_le32s(&md5state.hash[i]);
524 memcpy(iv, &md5state.hash, cc->iv_size);
525
526 return 0;
527 }
528
crypt_iv_lmk_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)529 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
530 struct dm_crypt_request *dmreq)
531 {
532 struct scatterlist *sg;
533 u8 *src;
534 int r = 0;
535
536 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
537 sg = crypt_get_sg_data(cc, dmreq->sg_in);
538 src = kmap_local_page(sg_page(sg));
539 r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
540 kunmap_local(src);
541 } else
542 memset(iv, 0, cc->iv_size);
543
544 return r;
545 }
546
crypt_iv_lmk_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)547 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
548 struct dm_crypt_request *dmreq)
549 {
550 struct scatterlist *sg;
551 u8 *dst;
552 int r;
553
554 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
555 return 0;
556
557 sg = crypt_get_sg_data(cc, dmreq->sg_out);
558 dst = kmap_local_page(sg_page(sg));
559 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
560
561 /* Tweak the first block of plaintext sector */
562 if (!r)
563 crypto_xor(dst + sg->offset, iv, cc->iv_size);
564
565 kunmap_local(dst);
566 return r;
567 }
568
crypt_iv_tcw_dtr(struct crypt_config * cc)569 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
570 {
571 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
572
573 kfree_sensitive(tcw->iv_seed);
574 tcw->iv_seed = NULL;
575 kfree_sensitive(tcw->whitening);
576 tcw->whitening = NULL;
577
578 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
579 crypto_free_shash(tcw->crc32_tfm);
580 tcw->crc32_tfm = NULL;
581 }
582
crypt_iv_tcw_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)583 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
584 const char *opts)
585 {
586 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
587
588 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
589 ti->error = "Unsupported sector size for TCW";
590 return -EINVAL;
591 }
592
593 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
594 ti->error = "Wrong key size for TCW";
595 return -EINVAL;
596 }
597
598 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
599 CRYPTO_ALG_ALLOCATES_MEMORY);
600 if (IS_ERR(tcw->crc32_tfm)) {
601 ti->error = "Error initializing CRC32 in TCW";
602 return PTR_ERR(tcw->crc32_tfm);
603 }
604
605 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
606 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
607 if (!tcw->iv_seed || !tcw->whitening) {
608 crypt_iv_tcw_dtr(cc);
609 ti->error = "Error allocating seed storage in TCW";
610 return -ENOMEM;
611 }
612
613 return 0;
614 }
615
crypt_iv_tcw_init(struct crypt_config * cc)616 static int crypt_iv_tcw_init(struct crypt_config *cc)
617 {
618 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
619 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
620
621 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
622 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
623 TCW_WHITENING_SIZE);
624
625 return 0;
626 }
627
crypt_iv_tcw_wipe(struct crypt_config * cc)628 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
629 {
630 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
631
632 memset(tcw->iv_seed, 0, cc->iv_size);
633 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
634
635 return 0;
636 }
637
crypt_iv_tcw_whitening(struct crypt_config * cc,struct dm_crypt_request * dmreq,u8 * data)638 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
639 struct dm_crypt_request *dmreq,
640 u8 *data)
641 {
642 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
643 __le64 sector = cpu_to_le64(dmreq->iv_sector);
644 u8 buf[TCW_WHITENING_SIZE];
645 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
646 int i, r;
647
648 /* xor whitening with sector number */
649 crypto_xor_cpy(buf, tcw->whitening, (u8 *)§or, 8);
650 crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)§or, 8);
651
652 /* calculate crc32 for every 32bit part and xor it */
653 desc->tfm = tcw->crc32_tfm;
654 for (i = 0; i < 4; i++) {
655 r = crypto_shash_init(desc);
656 if (r)
657 goto out;
658 r = crypto_shash_update(desc, &buf[i * 4], 4);
659 if (r)
660 goto out;
661 r = crypto_shash_final(desc, &buf[i * 4]);
662 if (r)
663 goto out;
664 }
665 crypto_xor(&buf[0], &buf[12], 4);
666 crypto_xor(&buf[4], &buf[8], 4);
667
668 /* apply whitening (8 bytes) to whole sector */
669 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
670 crypto_xor(data + i * 8, buf, 8);
671 out:
672 memzero_explicit(buf, sizeof(buf));
673 return r;
674 }
675
crypt_iv_tcw_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)676 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
677 struct dm_crypt_request *dmreq)
678 {
679 struct scatterlist *sg;
680 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
681 __le64 sector = cpu_to_le64(dmreq->iv_sector);
682 u8 *src;
683 int r = 0;
684
685 /* Remove whitening from ciphertext */
686 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
687 sg = crypt_get_sg_data(cc, dmreq->sg_in);
688 src = kmap_local_page(sg_page(sg));
689 r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
690 kunmap_local(src);
691 }
692
693 /* Calculate IV */
694 crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)§or, 8);
695 if (cc->iv_size > 8)
696 crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)§or,
697 cc->iv_size - 8);
698
699 return r;
700 }
701
crypt_iv_tcw_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)702 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
703 struct dm_crypt_request *dmreq)
704 {
705 struct scatterlist *sg;
706 u8 *dst;
707 int r;
708
709 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
710 return 0;
711
712 /* Apply whitening on ciphertext */
713 sg = crypt_get_sg_data(cc, dmreq->sg_out);
714 dst = kmap_local_page(sg_page(sg));
715 r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
716 kunmap_local(dst);
717
718 return r;
719 }
720
crypt_iv_random_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)721 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
722 struct dm_crypt_request *dmreq)
723 {
724 /* Used only for writes, there must be an additional space to store IV */
725 get_random_bytes(iv, cc->iv_size);
726 return 0;
727 }
728
crypt_iv_eboiv_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)729 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
730 const char *opts)
731 {
732 if (crypt_integrity_aead(cc)) {
733 ti->error = "AEAD transforms not supported for EBOIV";
734 return -EINVAL;
735 }
736
737 if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
738 ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
739 return -EINVAL;
740 }
741
742 return 0;
743 }
744
crypt_iv_eboiv_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)745 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
746 struct dm_crypt_request *dmreq)
747 {
748 struct crypto_skcipher *tfm = any_tfm(cc);
749 struct skcipher_request *req;
750 struct scatterlist src, dst;
751 DECLARE_CRYPTO_WAIT(wait);
752 unsigned int reqsize;
753 int err;
754 u8 *buf;
755
756 reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm);
757 reqsize = ALIGN(reqsize, __alignof__(__le64));
758
759 req = kmalloc(reqsize + cc->iv_size, GFP_NOIO);
760 if (!req)
761 return -ENOMEM;
762
763 skcipher_request_set_tfm(req, tfm);
764
765 buf = (u8 *)req + reqsize;
766 memset(buf, 0, cc->iv_size);
767 *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
768
769 sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
770 sg_init_one(&dst, iv, cc->iv_size);
771 skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
772 skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
773 err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
774 kfree_sensitive(req);
775
776 return err;
777 }
778
crypt_iv_elephant_dtr(struct crypt_config * cc)779 static void crypt_iv_elephant_dtr(struct crypt_config *cc)
780 {
781 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
782
783 crypto_free_skcipher(elephant->tfm);
784 elephant->tfm = NULL;
785 }
786
crypt_iv_elephant_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)787 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
788 const char *opts)
789 {
790 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
791 int r;
792
793 elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
794 CRYPTO_ALG_ALLOCATES_MEMORY);
795 if (IS_ERR(elephant->tfm)) {
796 r = PTR_ERR(elephant->tfm);
797 elephant->tfm = NULL;
798 return r;
799 }
800
801 r = crypt_iv_eboiv_ctr(cc, ti, NULL);
802 if (r)
803 crypt_iv_elephant_dtr(cc);
804 return r;
805 }
806
diffuser_disk_to_cpu(u32 * d,size_t n)807 static void diffuser_disk_to_cpu(u32 *d, size_t n)
808 {
809 #ifndef __LITTLE_ENDIAN
810 int i;
811
812 for (i = 0; i < n; i++)
813 d[i] = le32_to_cpu((__le32)d[i]);
814 #endif
815 }
816
diffuser_cpu_to_disk(__le32 * d,size_t n)817 static void diffuser_cpu_to_disk(__le32 *d, size_t n)
818 {
819 #ifndef __LITTLE_ENDIAN
820 int i;
821
822 for (i = 0; i < n; i++)
823 d[i] = cpu_to_le32((u32)d[i]);
824 #endif
825 }
826
diffuser_a_decrypt(u32 * d,size_t n)827 static void diffuser_a_decrypt(u32 *d, size_t n)
828 {
829 int i, i1, i2, i3;
830
831 for (i = 0; i < 5; i++) {
832 i1 = 0;
833 i2 = n - 2;
834 i3 = n - 5;
835
836 while (i1 < (n - 1)) {
837 d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
838 i1++; i2++; i3++;
839
840 if (i3 >= n)
841 i3 -= n;
842
843 d[i1] += d[i2] ^ d[i3];
844 i1++; i2++; i3++;
845
846 if (i2 >= n)
847 i2 -= n;
848
849 d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
850 i1++; i2++; i3++;
851
852 d[i1] += d[i2] ^ d[i3];
853 i1++; i2++; i3++;
854 }
855 }
856 }
857
diffuser_a_encrypt(u32 * d,size_t n)858 static void diffuser_a_encrypt(u32 *d, size_t n)
859 {
860 int i, i1, i2, i3;
861
862 for (i = 0; i < 5; i++) {
863 i1 = n - 1;
864 i2 = n - 2 - 1;
865 i3 = n - 5 - 1;
866
867 while (i1 > 0) {
868 d[i1] -= d[i2] ^ d[i3];
869 i1--; i2--; i3--;
870
871 d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
872 i1--; i2--; i3--;
873
874 if (i2 < 0)
875 i2 += n;
876
877 d[i1] -= d[i2] ^ d[i3];
878 i1--; i2--; i3--;
879
880 if (i3 < 0)
881 i3 += n;
882
883 d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
884 i1--; i2--; i3--;
885 }
886 }
887 }
888
diffuser_b_decrypt(u32 * d,size_t n)889 static void diffuser_b_decrypt(u32 *d, size_t n)
890 {
891 int i, i1, i2, i3;
892
893 for (i = 0; i < 3; i++) {
894 i1 = 0;
895 i2 = 2;
896 i3 = 5;
897
898 while (i1 < (n - 1)) {
899 d[i1] += d[i2] ^ d[i3];
900 i1++; i2++; i3++;
901
902 d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
903 i1++; i2++; i3++;
904
905 if (i2 >= n)
906 i2 -= n;
907
908 d[i1] += d[i2] ^ d[i3];
909 i1++; i2++; i3++;
910
911 if (i3 >= n)
912 i3 -= n;
913
914 d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
915 i1++; i2++; i3++;
916 }
917 }
918 }
919
diffuser_b_encrypt(u32 * d,size_t n)920 static void diffuser_b_encrypt(u32 *d, size_t n)
921 {
922 int i, i1, i2, i3;
923
924 for (i = 0; i < 3; i++) {
925 i1 = n - 1;
926 i2 = 2 - 1;
927 i3 = 5 - 1;
928
929 while (i1 > 0) {
930 d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
931 i1--; i2--; i3--;
932
933 if (i3 < 0)
934 i3 += n;
935
936 d[i1] -= d[i2] ^ d[i3];
937 i1--; i2--; i3--;
938
939 if (i2 < 0)
940 i2 += n;
941
942 d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
943 i1--; i2--; i3--;
944
945 d[i1] -= d[i2] ^ d[i3];
946 i1--; i2--; i3--;
947 }
948 }
949 }
950
crypt_iv_elephant(struct crypt_config * cc,struct dm_crypt_request * dmreq)951 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
952 {
953 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
954 u8 *es, *ks, *data, *data2, *data_offset;
955 struct skcipher_request *req;
956 struct scatterlist *sg, *sg2, src, dst;
957 DECLARE_CRYPTO_WAIT(wait);
958 int i, r;
959
960 req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
961 es = kzalloc(16, GFP_NOIO); /* Key for AES */
962 ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
963
964 if (!req || !es || !ks) {
965 r = -ENOMEM;
966 goto out;
967 }
968
969 *(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
970
971 /* E(Ks, e(s)) */
972 sg_init_one(&src, es, 16);
973 sg_init_one(&dst, ks, 16);
974 skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
975 skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
976 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
977 if (r)
978 goto out;
979
980 /* E(Ks, e'(s)) */
981 es[15] = 0x80;
982 sg_init_one(&dst, &ks[16], 16);
983 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
984 if (r)
985 goto out;
986
987 sg = crypt_get_sg_data(cc, dmreq->sg_out);
988 data = kmap_local_page(sg_page(sg));
989 data_offset = data + sg->offset;
990
991 /* Cannot modify original bio, copy to sg_out and apply Elephant to it */
992 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
993 sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
994 data2 = kmap_local_page(sg_page(sg2));
995 memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
996 kunmap_local(data2);
997 }
998
999 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
1000 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1001 diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1002 diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1003 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1004 }
1005
1006 for (i = 0; i < (cc->sector_size / 32); i++)
1007 crypto_xor(data_offset + i * 32, ks, 32);
1008
1009 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1010 diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1011 diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1012 diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1013 diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1014 }
1015
1016 kunmap_local(data);
1017 out:
1018 kfree_sensitive(ks);
1019 kfree_sensitive(es);
1020 skcipher_request_free(req);
1021 return r;
1022 }
1023
crypt_iv_elephant_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)1024 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1025 struct dm_crypt_request *dmreq)
1026 {
1027 int r;
1028
1029 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1030 r = crypt_iv_elephant(cc, dmreq);
1031 if (r)
1032 return r;
1033 }
1034
1035 return crypt_iv_eboiv_gen(cc, iv, dmreq);
1036 }
1037
crypt_iv_elephant_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)1038 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1039 struct dm_crypt_request *dmreq)
1040 {
1041 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1042 return crypt_iv_elephant(cc, dmreq);
1043
1044 return 0;
1045 }
1046
crypt_iv_elephant_init(struct crypt_config * cc)1047 static int crypt_iv_elephant_init(struct crypt_config *cc)
1048 {
1049 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1050 int key_offset = cc->key_size - cc->key_extra_size;
1051
1052 return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1053 }
1054
crypt_iv_elephant_wipe(struct crypt_config * cc)1055 static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1056 {
1057 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1058 u8 key[ELEPHANT_MAX_KEY_SIZE];
1059
1060 memset(key, 0, cc->key_extra_size);
1061 return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1062 }
1063
1064 static const struct crypt_iv_operations crypt_iv_plain_ops = {
1065 .generator = crypt_iv_plain_gen
1066 };
1067
1068 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1069 .generator = crypt_iv_plain64_gen
1070 };
1071
1072 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1073 .generator = crypt_iv_plain64be_gen
1074 };
1075
1076 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1077 .generator = crypt_iv_essiv_gen
1078 };
1079
1080 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1081 .ctr = crypt_iv_benbi_ctr,
1082 .dtr = crypt_iv_benbi_dtr,
1083 .generator = crypt_iv_benbi_gen
1084 };
1085
1086 static const struct crypt_iv_operations crypt_iv_null_ops = {
1087 .generator = crypt_iv_null_gen
1088 };
1089
1090 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1091 .ctr = crypt_iv_lmk_ctr,
1092 .dtr = crypt_iv_lmk_dtr,
1093 .init = crypt_iv_lmk_init,
1094 .wipe = crypt_iv_lmk_wipe,
1095 .generator = crypt_iv_lmk_gen,
1096 .post = crypt_iv_lmk_post
1097 };
1098
1099 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1100 .ctr = crypt_iv_tcw_ctr,
1101 .dtr = crypt_iv_tcw_dtr,
1102 .init = crypt_iv_tcw_init,
1103 .wipe = crypt_iv_tcw_wipe,
1104 .generator = crypt_iv_tcw_gen,
1105 .post = crypt_iv_tcw_post
1106 };
1107
1108 static const struct crypt_iv_operations crypt_iv_random_ops = {
1109 .generator = crypt_iv_random_gen
1110 };
1111
1112 static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1113 .ctr = crypt_iv_eboiv_ctr,
1114 .generator = crypt_iv_eboiv_gen
1115 };
1116
1117 static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1118 .ctr = crypt_iv_elephant_ctr,
1119 .dtr = crypt_iv_elephant_dtr,
1120 .init = crypt_iv_elephant_init,
1121 .wipe = crypt_iv_elephant_wipe,
1122 .generator = crypt_iv_elephant_gen,
1123 .post = crypt_iv_elephant_post
1124 };
1125
1126 /*
1127 * Integrity extensions
1128 */
crypt_integrity_aead(struct crypt_config * cc)1129 static bool crypt_integrity_aead(struct crypt_config *cc)
1130 {
1131 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1132 }
1133
crypt_integrity_hmac(struct crypt_config * cc)1134 static bool crypt_integrity_hmac(struct crypt_config *cc)
1135 {
1136 return crypt_integrity_aead(cc) && cc->key_mac_size;
1137 }
1138
1139 /* Get sg containing data */
crypt_get_sg_data(struct crypt_config * cc,struct scatterlist * sg)1140 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1141 struct scatterlist *sg)
1142 {
1143 if (unlikely(crypt_integrity_aead(cc)))
1144 return &sg[2];
1145
1146 return sg;
1147 }
1148
dm_crypt_integrity_io_alloc(struct dm_crypt_io * io,struct bio * bio)1149 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1150 {
1151 struct bio_integrity_payload *bip;
1152 unsigned int tag_len;
1153 int ret;
1154
1155 if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1156 return 0;
1157
1158 bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1159 if (IS_ERR(bip))
1160 return PTR_ERR(bip);
1161
1162 tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1163
1164 bip->bip_iter.bi_sector = io->cc->start + io->sector;
1165
1166 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1167 tag_len, offset_in_page(io->integrity_metadata));
1168 if (unlikely(ret != tag_len))
1169 return -ENOMEM;
1170
1171 return 0;
1172 }
1173
crypt_integrity_ctr(struct crypt_config * cc,struct dm_target * ti)1174 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1175 {
1176 #ifdef CONFIG_BLK_DEV_INTEGRITY
1177 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1178 struct mapped_device *md = dm_table_get_md(ti->table);
1179
1180 /* From now we require underlying device with our integrity profile */
1181 if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1182 ti->error = "Integrity profile not supported.";
1183 return -EINVAL;
1184 }
1185
1186 if (bi->tag_size != cc->on_disk_tag_size ||
1187 bi->tuple_size != cc->on_disk_tag_size) {
1188 ti->error = "Integrity profile tag size mismatch.";
1189 return -EINVAL;
1190 }
1191 if (1 << bi->interval_exp != cc->sector_size) {
1192 ti->error = "Integrity profile sector size mismatch.";
1193 return -EINVAL;
1194 }
1195
1196 if (crypt_integrity_aead(cc)) {
1197 cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1198 DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1199 cc->integrity_tag_size, cc->integrity_iv_size);
1200
1201 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1202 ti->error = "Integrity AEAD auth tag size is not supported.";
1203 return -EINVAL;
1204 }
1205 } else if (cc->integrity_iv_size)
1206 DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1207 cc->integrity_iv_size);
1208
1209 if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1210 ti->error = "Not enough space for integrity tag in the profile.";
1211 return -EINVAL;
1212 }
1213
1214 return 0;
1215 #else
1216 ti->error = "Integrity profile not supported.";
1217 return -EINVAL;
1218 #endif
1219 }
1220
crypt_convert_init(struct crypt_config * cc,struct convert_context * ctx,struct bio * bio_out,struct bio * bio_in,sector_t sector)1221 static void crypt_convert_init(struct crypt_config *cc,
1222 struct convert_context *ctx,
1223 struct bio *bio_out, struct bio *bio_in,
1224 sector_t sector)
1225 {
1226 ctx->bio_in = bio_in;
1227 ctx->bio_out = bio_out;
1228 if (bio_in)
1229 ctx->iter_in = bio_in->bi_iter;
1230 if (bio_out)
1231 ctx->iter_out = bio_out->bi_iter;
1232 ctx->cc_sector = sector + cc->iv_offset;
1233 init_completion(&ctx->restart);
1234 }
1235
dmreq_of_req(struct crypt_config * cc,void * req)1236 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1237 void *req)
1238 {
1239 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1240 }
1241
req_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1242 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1243 {
1244 return (void *)((char *)dmreq - cc->dmreq_start);
1245 }
1246
iv_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1247 static u8 *iv_of_dmreq(struct crypt_config *cc,
1248 struct dm_crypt_request *dmreq)
1249 {
1250 if (crypt_integrity_aead(cc))
1251 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1252 crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1253 else
1254 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1255 crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1256 }
1257
org_iv_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1258 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1259 struct dm_crypt_request *dmreq)
1260 {
1261 return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1262 }
1263
org_sector_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1264 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1265 struct dm_crypt_request *dmreq)
1266 {
1267 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1268
1269 return (__le64 *) ptr;
1270 }
1271
org_tag_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1272 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1273 struct dm_crypt_request *dmreq)
1274 {
1275 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1276 cc->iv_size + sizeof(uint64_t);
1277
1278 return (unsigned int *)ptr;
1279 }
1280
tag_from_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1281 static void *tag_from_dmreq(struct crypt_config *cc,
1282 struct dm_crypt_request *dmreq)
1283 {
1284 struct convert_context *ctx = dmreq->ctx;
1285 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1286
1287 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1288 cc->on_disk_tag_size];
1289 }
1290
iv_tag_from_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1291 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1292 struct dm_crypt_request *dmreq)
1293 {
1294 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1295 }
1296
crypt_convert_block_aead(struct crypt_config * cc,struct convert_context * ctx,struct aead_request * req,unsigned int tag_offset)1297 static int crypt_convert_block_aead(struct crypt_config *cc,
1298 struct convert_context *ctx,
1299 struct aead_request *req,
1300 unsigned int tag_offset)
1301 {
1302 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1303 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1304 struct dm_crypt_request *dmreq;
1305 u8 *iv, *org_iv, *tag_iv, *tag;
1306 __le64 *sector;
1307 int r = 0;
1308
1309 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1310
1311 /* Reject unexpected unaligned bio. */
1312 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1313 return -EIO;
1314
1315 dmreq = dmreq_of_req(cc, req);
1316 dmreq->iv_sector = ctx->cc_sector;
1317 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1318 dmreq->iv_sector >>= cc->sector_shift;
1319 dmreq->ctx = ctx;
1320
1321 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1322
1323 sector = org_sector_of_dmreq(cc, dmreq);
1324 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1325
1326 iv = iv_of_dmreq(cc, dmreq);
1327 org_iv = org_iv_of_dmreq(cc, dmreq);
1328 tag = tag_from_dmreq(cc, dmreq);
1329 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1330
1331 /* AEAD request:
1332 * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1333 * | (authenticated) | (auth+encryption) | |
1334 * | sector_LE | IV | sector in/out | tag in/out |
1335 */
1336 sg_init_table(dmreq->sg_in, 4);
1337 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1338 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1339 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1340 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1341
1342 sg_init_table(dmreq->sg_out, 4);
1343 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1344 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1345 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1346 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1347
1348 if (cc->iv_gen_ops) {
1349 /* For READs use IV stored in integrity metadata */
1350 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1351 memcpy(org_iv, tag_iv, cc->iv_size);
1352 } else {
1353 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1354 if (r < 0)
1355 return r;
1356 /* Store generated IV in integrity metadata */
1357 if (cc->integrity_iv_size)
1358 memcpy(tag_iv, org_iv, cc->iv_size);
1359 }
1360 /* Working copy of IV, to be modified in crypto API */
1361 memcpy(iv, org_iv, cc->iv_size);
1362 }
1363
1364 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1365 if (bio_data_dir(ctx->bio_in) == WRITE) {
1366 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1367 cc->sector_size, iv);
1368 r = crypto_aead_encrypt(req);
1369 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1370 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1371 cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1372 } else {
1373 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1374 cc->sector_size + cc->integrity_tag_size, iv);
1375 r = crypto_aead_decrypt(req);
1376 }
1377
1378 if (r == -EBADMSG) {
1379 sector_t s = le64_to_cpu(*sector);
1380
1381 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1382 ctx->bio_in->bi_bdev, s);
1383 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1384 ctx->bio_in, s, 0);
1385 }
1386
1387 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1388 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1389
1390 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1391 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1392
1393 return r;
1394 }
1395
crypt_convert_block_skcipher(struct crypt_config * cc,struct convert_context * ctx,struct skcipher_request * req,unsigned int tag_offset)1396 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1397 struct convert_context *ctx,
1398 struct skcipher_request *req,
1399 unsigned int tag_offset)
1400 {
1401 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1402 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1403 struct scatterlist *sg_in, *sg_out;
1404 struct dm_crypt_request *dmreq;
1405 u8 *iv, *org_iv, *tag_iv;
1406 __le64 *sector;
1407 int r = 0;
1408
1409 /* Reject unexpected unaligned bio. */
1410 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1411 return -EIO;
1412
1413 dmreq = dmreq_of_req(cc, req);
1414 dmreq->iv_sector = ctx->cc_sector;
1415 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1416 dmreq->iv_sector >>= cc->sector_shift;
1417 dmreq->ctx = ctx;
1418
1419 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1420
1421 iv = iv_of_dmreq(cc, dmreq);
1422 org_iv = org_iv_of_dmreq(cc, dmreq);
1423 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1424
1425 sector = org_sector_of_dmreq(cc, dmreq);
1426 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1427
1428 /* For skcipher we use only the first sg item */
1429 sg_in = &dmreq->sg_in[0];
1430 sg_out = &dmreq->sg_out[0];
1431
1432 sg_init_table(sg_in, 1);
1433 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1434
1435 sg_init_table(sg_out, 1);
1436 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1437
1438 if (cc->iv_gen_ops) {
1439 /* For READs use IV stored in integrity metadata */
1440 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1441 memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1442 } else {
1443 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1444 if (r < 0)
1445 return r;
1446 /* Data can be already preprocessed in generator */
1447 if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1448 sg_in = sg_out;
1449 /* Store generated IV in integrity metadata */
1450 if (cc->integrity_iv_size)
1451 memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1452 }
1453 /* Working copy of IV, to be modified in crypto API */
1454 memcpy(iv, org_iv, cc->iv_size);
1455 }
1456
1457 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1458
1459 if (bio_data_dir(ctx->bio_in) == WRITE)
1460 r = crypto_skcipher_encrypt(req);
1461 else
1462 r = crypto_skcipher_decrypt(req);
1463
1464 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1465 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1466
1467 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1468 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1469
1470 return r;
1471 }
1472
1473 static void kcryptd_async_done(void *async_req, int error);
1474
crypt_alloc_req_skcipher(struct crypt_config * cc,struct convert_context * ctx)1475 static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1476 struct convert_context *ctx)
1477 {
1478 unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
1479
1480 if (!ctx->r.req) {
1481 ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1482 if (!ctx->r.req)
1483 return -ENOMEM;
1484 }
1485
1486 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1487
1488 /*
1489 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1490 * requests if driver request queue is full.
1491 */
1492 skcipher_request_set_callback(ctx->r.req,
1493 CRYPTO_TFM_REQ_MAY_BACKLOG,
1494 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1495
1496 return 0;
1497 }
1498
crypt_alloc_req_aead(struct crypt_config * cc,struct convert_context * ctx)1499 static int crypt_alloc_req_aead(struct crypt_config *cc,
1500 struct convert_context *ctx)
1501 {
1502 if (!ctx->r.req_aead) {
1503 ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1504 if (!ctx->r.req_aead)
1505 return -ENOMEM;
1506 }
1507
1508 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1509
1510 /*
1511 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1512 * requests if driver request queue is full.
1513 */
1514 aead_request_set_callback(ctx->r.req_aead,
1515 CRYPTO_TFM_REQ_MAY_BACKLOG,
1516 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1517
1518 return 0;
1519 }
1520
crypt_alloc_req(struct crypt_config * cc,struct convert_context * ctx)1521 static int crypt_alloc_req(struct crypt_config *cc,
1522 struct convert_context *ctx)
1523 {
1524 if (crypt_integrity_aead(cc))
1525 return crypt_alloc_req_aead(cc, ctx);
1526 else
1527 return crypt_alloc_req_skcipher(cc, ctx);
1528 }
1529
crypt_free_req_skcipher(struct crypt_config * cc,struct skcipher_request * req,struct bio * base_bio)1530 static void crypt_free_req_skcipher(struct crypt_config *cc,
1531 struct skcipher_request *req, struct bio *base_bio)
1532 {
1533 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1534
1535 if ((struct skcipher_request *)(io + 1) != req)
1536 mempool_free(req, &cc->req_pool);
1537 }
1538
crypt_free_req_aead(struct crypt_config * cc,struct aead_request * req,struct bio * base_bio)1539 static void crypt_free_req_aead(struct crypt_config *cc,
1540 struct aead_request *req, struct bio *base_bio)
1541 {
1542 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1543
1544 if ((struct aead_request *)(io + 1) != req)
1545 mempool_free(req, &cc->req_pool);
1546 }
1547
crypt_free_req(struct crypt_config * cc,void * req,struct bio * base_bio)1548 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1549 {
1550 if (crypt_integrity_aead(cc))
1551 crypt_free_req_aead(cc, req, base_bio);
1552 else
1553 crypt_free_req_skcipher(cc, req, base_bio);
1554 }
1555
1556 /*
1557 * Encrypt / decrypt data from one bio to another one (can be the same one)
1558 */
crypt_convert(struct crypt_config * cc,struct convert_context * ctx,bool atomic,bool reset_pending)1559 static blk_status_t crypt_convert(struct crypt_config *cc,
1560 struct convert_context *ctx, bool atomic, bool reset_pending)
1561 {
1562 unsigned int tag_offset = 0;
1563 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1564 int r;
1565
1566 /*
1567 * if reset_pending is set we are dealing with the bio for the first time,
1568 * else we're continuing to work on the previous bio, so don't mess with
1569 * the cc_pending counter
1570 */
1571 if (reset_pending)
1572 atomic_set(&ctx->cc_pending, 1);
1573
1574 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1575
1576 r = crypt_alloc_req(cc, ctx);
1577 if (r) {
1578 complete(&ctx->restart);
1579 return BLK_STS_DEV_RESOURCE;
1580 }
1581
1582 atomic_inc(&ctx->cc_pending);
1583
1584 if (crypt_integrity_aead(cc))
1585 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1586 else
1587 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1588
1589 switch (r) {
1590 /*
1591 * The request was queued by a crypto driver
1592 * but the driver request queue is full, let's wait.
1593 */
1594 case -EBUSY:
1595 if (in_interrupt()) {
1596 if (try_wait_for_completion(&ctx->restart)) {
1597 /*
1598 * we don't have to block to wait for completion,
1599 * so proceed
1600 */
1601 } else {
1602 /*
1603 * we can't wait for completion without blocking
1604 * exit and continue processing in a workqueue
1605 */
1606 ctx->r.req = NULL;
1607 ctx->cc_sector += sector_step;
1608 tag_offset++;
1609 return BLK_STS_DEV_RESOURCE;
1610 }
1611 } else {
1612 wait_for_completion(&ctx->restart);
1613 }
1614 reinit_completion(&ctx->restart);
1615 fallthrough;
1616 /*
1617 * The request is queued and processed asynchronously,
1618 * completion function kcryptd_async_done() will be called.
1619 */
1620 case -EINPROGRESS:
1621 ctx->r.req = NULL;
1622 ctx->cc_sector += sector_step;
1623 tag_offset++;
1624 continue;
1625 /*
1626 * The request was already processed (synchronously).
1627 */
1628 case 0:
1629 atomic_dec(&ctx->cc_pending);
1630 ctx->cc_sector += sector_step;
1631 tag_offset++;
1632 if (!atomic)
1633 cond_resched();
1634 continue;
1635 /*
1636 * There was a data integrity error.
1637 */
1638 case -EBADMSG:
1639 atomic_dec(&ctx->cc_pending);
1640 return BLK_STS_PROTECTION;
1641 /*
1642 * There was an error while processing the request.
1643 */
1644 default:
1645 atomic_dec(&ctx->cc_pending);
1646 return BLK_STS_IOERR;
1647 }
1648 }
1649
1650 return 0;
1651 }
1652
1653 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1654
1655 /*
1656 * Generate a new unfragmented bio with the given size
1657 * This should never violate the device limitations (but only because
1658 * max_segment_size is being constrained to PAGE_SIZE).
1659 *
1660 * This function may be called concurrently. If we allocate from the mempool
1661 * concurrently, there is a possibility of deadlock. For example, if we have
1662 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1663 * the mempool concurrently, it may deadlock in a situation where both processes
1664 * have allocated 128 pages and the mempool is exhausted.
1665 *
1666 * In order to avoid this scenario we allocate the pages under a mutex.
1667 *
1668 * In order to not degrade performance with excessive locking, we try
1669 * non-blocking allocations without a mutex first but on failure we fallback
1670 * to blocking allocations with a mutex.
1671 *
1672 * In order to reduce allocation overhead, we try to allocate compound pages in
1673 * the first pass. If they are not available, we fall back to the mempool.
1674 */
crypt_alloc_buffer(struct dm_crypt_io * io,unsigned int size)1675 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
1676 {
1677 struct crypt_config *cc = io->cc;
1678 struct bio *clone;
1679 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1680 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1681 unsigned int remaining_size;
1682 unsigned int order = MAX_ORDER - 1;
1683
1684 retry:
1685 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1686 mutex_lock(&cc->bio_alloc_lock);
1687
1688 clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1689 GFP_NOIO, &cc->bs);
1690 clone->bi_private = io;
1691 clone->bi_end_io = crypt_endio;
1692
1693 remaining_size = size;
1694
1695 while (remaining_size) {
1696 struct page *pages;
1697 unsigned size_to_add;
1698 unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1699 order = min(order, remaining_order);
1700
1701 while (order > 0) {
1702 pages = alloc_pages(gfp_mask
1703 | __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP,
1704 order);
1705 if (likely(pages != NULL))
1706 goto have_pages;
1707 order--;
1708 }
1709
1710 pages = mempool_alloc(&cc->page_pool, gfp_mask);
1711 if (!pages) {
1712 crypt_free_buffer_pages(cc, clone);
1713 bio_put(clone);
1714 gfp_mask |= __GFP_DIRECT_RECLAIM;
1715 order = 0;
1716 goto retry;
1717 }
1718
1719 have_pages:
1720 size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size);
1721 __bio_add_page(clone, pages, size_to_add, 0);
1722 remaining_size -= size_to_add;
1723 }
1724
1725 /* Allocate space for integrity tags */
1726 if (dm_crypt_integrity_io_alloc(io, clone)) {
1727 crypt_free_buffer_pages(cc, clone);
1728 bio_put(clone);
1729 clone = NULL;
1730 }
1731
1732 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1733 mutex_unlock(&cc->bio_alloc_lock);
1734
1735 return clone;
1736 }
1737
crypt_free_buffer_pages(struct crypt_config * cc,struct bio * clone)1738 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1739 {
1740 struct folio_iter fi;
1741
1742 if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */
1743 bio_for_each_folio_all(fi, clone) {
1744 if (folio_test_large(fi.folio))
1745 folio_put(fi.folio);
1746 else
1747 mempool_free(&fi.folio->page, &cc->page_pool);
1748 }
1749 }
1750 }
1751
crypt_io_init(struct dm_crypt_io * io,struct crypt_config * cc,struct bio * bio,sector_t sector)1752 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1753 struct bio *bio, sector_t sector)
1754 {
1755 io->cc = cc;
1756 io->base_bio = bio;
1757 io->sector = sector;
1758 io->error = 0;
1759 io->ctx.r.req = NULL;
1760 io->integrity_metadata = NULL;
1761 io->integrity_metadata_from_pool = false;
1762 io->in_tasklet = false;
1763 atomic_set(&io->io_pending, 0);
1764 }
1765
crypt_inc_pending(struct dm_crypt_io * io)1766 static void crypt_inc_pending(struct dm_crypt_io *io)
1767 {
1768 atomic_inc(&io->io_pending);
1769 }
1770
kcryptd_io_bio_endio(struct work_struct * work)1771 static void kcryptd_io_bio_endio(struct work_struct *work)
1772 {
1773 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1774
1775 bio_endio(io->base_bio);
1776 }
1777
1778 /*
1779 * One of the bios was finished. Check for completion of
1780 * the whole request and correctly clean up the buffer.
1781 */
crypt_dec_pending(struct dm_crypt_io * io)1782 static void crypt_dec_pending(struct dm_crypt_io *io)
1783 {
1784 struct crypt_config *cc = io->cc;
1785 struct bio *base_bio = io->base_bio;
1786 blk_status_t error = io->error;
1787
1788 if (!atomic_dec_and_test(&io->io_pending))
1789 return;
1790
1791 if (io->ctx.r.req)
1792 crypt_free_req(cc, io->ctx.r.req, base_bio);
1793
1794 if (unlikely(io->integrity_metadata_from_pool))
1795 mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1796 else
1797 kfree(io->integrity_metadata);
1798
1799 base_bio->bi_status = error;
1800
1801 /*
1802 * If we are running this function from our tasklet,
1803 * we can't call bio_endio() here, because it will call
1804 * clone_endio() from dm.c, which in turn will
1805 * free the current struct dm_crypt_io structure with
1806 * our tasklet. In this case we need to delay bio_endio()
1807 * execution to after the tasklet is done and dequeued.
1808 */
1809 if (io->in_tasklet) {
1810 INIT_WORK(&io->work, kcryptd_io_bio_endio);
1811 queue_work(cc->io_queue, &io->work);
1812 return;
1813 }
1814
1815 bio_endio(base_bio);
1816 }
1817
1818 /*
1819 * kcryptd/kcryptd_io:
1820 *
1821 * Needed because it would be very unwise to do decryption in an
1822 * interrupt context.
1823 *
1824 * kcryptd performs the actual encryption or decryption.
1825 *
1826 * kcryptd_io performs the IO submission.
1827 *
1828 * They must be separated as otherwise the final stages could be
1829 * starved by new requests which can block in the first stages due
1830 * to memory allocation.
1831 *
1832 * The work is done per CPU global for all dm-crypt instances.
1833 * They should not depend on each other and do not block.
1834 */
crypt_endio(struct bio * clone)1835 static void crypt_endio(struct bio *clone)
1836 {
1837 struct dm_crypt_io *io = clone->bi_private;
1838 struct crypt_config *cc = io->cc;
1839 unsigned int rw = bio_data_dir(clone);
1840 blk_status_t error;
1841
1842 /*
1843 * free the processed pages
1844 */
1845 if (rw == WRITE)
1846 crypt_free_buffer_pages(cc, clone);
1847
1848 error = clone->bi_status;
1849 bio_put(clone);
1850
1851 if (rw == READ && !error) {
1852 kcryptd_queue_crypt(io);
1853 return;
1854 }
1855
1856 if (unlikely(error))
1857 io->error = error;
1858
1859 crypt_dec_pending(io);
1860 }
1861
1862 #define CRYPT_MAP_READ_GFP GFP_NOWAIT
1863
kcryptd_io_read(struct dm_crypt_io * io,gfp_t gfp)1864 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1865 {
1866 struct crypt_config *cc = io->cc;
1867 struct bio *clone;
1868
1869 /*
1870 * We need the original biovec array in order to decrypt the whole bio
1871 * data *afterwards* -- thanks to immutable biovecs we don't need to
1872 * worry about the block layer modifying the biovec array; so leverage
1873 * bio_alloc_clone().
1874 */
1875 clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1876 if (!clone)
1877 return 1;
1878 clone->bi_private = io;
1879 clone->bi_end_io = crypt_endio;
1880
1881 crypt_inc_pending(io);
1882
1883 clone->bi_iter.bi_sector = cc->start + io->sector;
1884
1885 if (dm_crypt_integrity_io_alloc(io, clone)) {
1886 crypt_dec_pending(io);
1887 bio_put(clone);
1888 return 1;
1889 }
1890
1891 dm_submit_bio_remap(io->base_bio, clone);
1892 return 0;
1893 }
1894
kcryptd_io_read_work(struct work_struct * work)1895 static void kcryptd_io_read_work(struct work_struct *work)
1896 {
1897 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1898
1899 crypt_inc_pending(io);
1900 if (kcryptd_io_read(io, GFP_NOIO))
1901 io->error = BLK_STS_RESOURCE;
1902 crypt_dec_pending(io);
1903 }
1904
kcryptd_queue_read(struct dm_crypt_io * io)1905 static void kcryptd_queue_read(struct dm_crypt_io *io)
1906 {
1907 struct crypt_config *cc = io->cc;
1908
1909 INIT_WORK(&io->work, kcryptd_io_read_work);
1910 queue_work(cc->io_queue, &io->work);
1911 }
1912
kcryptd_io_write(struct dm_crypt_io * io)1913 static void kcryptd_io_write(struct dm_crypt_io *io)
1914 {
1915 struct bio *clone = io->ctx.bio_out;
1916
1917 dm_submit_bio_remap(io->base_bio, clone);
1918 }
1919
1920 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1921
dmcrypt_write(void * data)1922 static int dmcrypt_write(void *data)
1923 {
1924 struct crypt_config *cc = data;
1925 struct dm_crypt_io *io;
1926
1927 while (1) {
1928 struct rb_root write_tree;
1929 struct blk_plug plug;
1930
1931 spin_lock_irq(&cc->write_thread_lock);
1932 continue_locked:
1933
1934 if (!RB_EMPTY_ROOT(&cc->write_tree))
1935 goto pop_from_list;
1936
1937 set_current_state(TASK_INTERRUPTIBLE);
1938
1939 spin_unlock_irq(&cc->write_thread_lock);
1940
1941 if (unlikely(kthread_should_stop())) {
1942 set_current_state(TASK_RUNNING);
1943 break;
1944 }
1945
1946 schedule();
1947
1948 set_current_state(TASK_RUNNING);
1949 spin_lock_irq(&cc->write_thread_lock);
1950 goto continue_locked;
1951
1952 pop_from_list:
1953 write_tree = cc->write_tree;
1954 cc->write_tree = RB_ROOT;
1955 spin_unlock_irq(&cc->write_thread_lock);
1956
1957 BUG_ON(rb_parent(write_tree.rb_node));
1958
1959 /*
1960 * Note: we cannot walk the tree here with rb_next because
1961 * the structures may be freed when kcryptd_io_write is called.
1962 */
1963 blk_start_plug(&plug);
1964 do {
1965 io = crypt_io_from_node(rb_first(&write_tree));
1966 rb_erase(&io->rb_node, &write_tree);
1967 kcryptd_io_write(io);
1968 cond_resched();
1969 } while (!RB_EMPTY_ROOT(&write_tree));
1970 blk_finish_plug(&plug);
1971 }
1972 return 0;
1973 }
1974
kcryptd_crypt_write_io_submit(struct dm_crypt_io * io,int async)1975 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1976 {
1977 struct bio *clone = io->ctx.bio_out;
1978 struct crypt_config *cc = io->cc;
1979 unsigned long flags;
1980 sector_t sector;
1981 struct rb_node **rbp, *parent;
1982
1983 if (unlikely(io->error)) {
1984 crypt_free_buffer_pages(cc, clone);
1985 bio_put(clone);
1986 crypt_dec_pending(io);
1987 return;
1988 }
1989
1990 /* crypt_convert should have filled the clone bio */
1991 BUG_ON(io->ctx.iter_out.bi_size);
1992
1993 clone->bi_iter.bi_sector = cc->start + io->sector;
1994
1995 if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
1996 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
1997 dm_submit_bio_remap(io->base_bio, clone);
1998 return;
1999 }
2000
2001 spin_lock_irqsave(&cc->write_thread_lock, flags);
2002 if (RB_EMPTY_ROOT(&cc->write_tree))
2003 wake_up_process(cc->write_thread);
2004 rbp = &cc->write_tree.rb_node;
2005 parent = NULL;
2006 sector = io->sector;
2007 while (*rbp) {
2008 parent = *rbp;
2009 if (sector < crypt_io_from_node(parent)->sector)
2010 rbp = &(*rbp)->rb_left;
2011 else
2012 rbp = &(*rbp)->rb_right;
2013 }
2014 rb_link_node(&io->rb_node, parent, rbp);
2015 rb_insert_color(&io->rb_node, &cc->write_tree);
2016 spin_unlock_irqrestore(&cc->write_thread_lock, flags);
2017 }
2018
kcryptd_crypt_write_inline(struct crypt_config * cc,struct convert_context * ctx)2019 static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
2020 struct convert_context *ctx)
2021
2022 {
2023 if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
2024 return false;
2025
2026 /*
2027 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
2028 * constraints so they do not need to be issued inline by
2029 * kcryptd_crypt_write_convert().
2030 */
2031 switch (bio_op(ctx->bio_in)) {
2032 case REQ_OP_WRITE:
2033 case REQ_OP_WRITE_ZEROES:
2034 return true;
2035 default:
2036 return false;
2037 }
2038 }
2039
kcryptd_crypt_write_continue(struct work_struct * work)2040 static void kcryptd_crypt_write_continue(struct work_struct *work)
2041 {
2042 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2043 struct crypt_config *cc = io->cc;
2044 struct convert_context *ctx = &io->ctx;
2045 int crypt_finished;
2046 sector_t sector = io->sector;
2047 blk_status_t r;
2048
2049 wait_for_completion(&ctx->restart);
2050 reinit_completion(&ctx->restart);
2051
2052 r = crypt_convert(cc, &io->ctx, true, false);
2053 if (r)
2054 io->error = r;
2055 crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2056 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2057 /* Wait for completion signaled by kcryptd_async_done() */
2058 wait_for_completion(&ctx->restart);
2059 crypt_finished = 1;
2060 }
2061
2062 /* Encryption was already finished, submit io now */
2063 if (crypt_finished) {
2064 kcryptd_crypt_write_io_submit(io, 0);
2065 io->sector = sector;
2066 }
2067
2068 crypt_dec_pending(io);
2069 }
2070
kcryptd_crypt_write_convert(struct dm_crypt_io * io)2071 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2072 {
2073 struct crypt_config *cc = io->cc;
2074 struct convert_context *ctx = &io->ctx;
2075 struct bio *clone;
2076 int crypt_finished;
2077 sector_t sector = io->sector;
2078 blk_status_t r;
2079
2080 /*
2081 * Prevent io from disappearing until this function completes.
2082 */
2083 crypt_inc_pending(io);
2084 crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
2085
2086 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2087 if (unlikely(!clone)) {
2088 io->error = BLK_STS_IOERR;
2089 goto dec;
2090 }
2091
2092 io->ctx.bio_out = clone;
2093 io->ctx.iter_out = clone->bi_iter;
2094
2095 sector += bio_sectors(clone);
2096
2097 crypt_inc_pending(io);
2098 r = crypt_convert(cc, ctx,
2099 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2100 /*
2101 * Crypto API backlogged the request, because its queue was full
2102 * and we're in softirq context, so continue from a workqueue
2103 * (TODO: is it actually possible to be in softirq in the write path?)
2104 */
2105 if (r == BLK_STS_DEV_RESOURCE) {
2106 INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2107 queue_work(cc->crypt_queue, &io->work);
2108 return;
2109 }
2110 if (r)
2111 io->error = r;
2112 crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2113 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2114 /* Wait for completion signaled by kcryptd_async_done() */
2115 wait_for_completion(&ctx->restart);
2116 crypt_finished = 1;
2117 }
2118
2119 /* Encryption was already finished, submit io now */
2120 if (crypt_finished) {
2121 kcryptd_crypt_write_io_submit(io, 0);
2122 io->sector = sector;
2123 }
2124
2125 dec:
2126 crypt_dec_pending(io);
2127 }
2128
kcryptd_crypt_read_done(struct dm_crypt_io * io)2129 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2130 {
2131 crypt_dec_pending(io);
2132 }
2133
kcryptd_crypt_read_continue(struct work_struct * work)2134 static void kcryptd_crypt_read_continue(struct work_struct *work)
2135 {
2136 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2137 struct crypt_config *cc = io->cc;
2138 blk_status_t r;
2139
2140 wait_for_completion(&io->ctx.restart);
2141 reinit_completion(&io->ctx.restart);
2142
2143 r = crypt_convert(cc, &io->ctx, true, false);
2144 if (r)
2145 io->error = r;
2146
2147 if (atomic_dec_and_test(&io->ctx.cc_pending))
2148 kcryptd_crypt_read_done(io);
2149
2150 crypt_dec_pending(io);
2151 }
2152
kcryptd_crypt_read_convert(struct dm_crypt_io * io)2153 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2154 {
2155 struct crypt_config *cc = io->cc;
2156 blk_status_t r;
2157
2158 crypt_inc_pending(io);
2159
2160 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2161 io->sector);
2162
2163 r = crypt_convert(cc, &io->ctx,
2164 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2165 /*
2166 * Crypto API backlogged the request, because its queue was full
2167 * and we're in softirq context, so continue from a workqueue
2168 */
2169 if (r == BLK_STS_DEV_RESOURCE) {
2170 INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2171 queue_work(cc->crypt_queue, &io->work);
2172 return;
2173 }
2174 if (r)
2175 io->error = r;
2176
2177 if (atomic_dec_and_test(&io->ctx.cc_pending))
2178 kcryptd_crypt_read_done(io);
2179
2180 crypt_dec_pending(io);
2181 }
2182
kcryptd_async_done(void * data,int error)2183 static void kcryptd_async_done(void *data, int error)
2184 {
2185 struct dm_crypt_request *dmreq = data;
2186 struct convert_context *ctx = dmreq->ctx;
2187 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2188 struct crypt_config *cc = io->cc;
2189
2190 /*
2191 * A request from crypto driver backlog is going to be processed now,
2192 * finish the completion and continue in crypt_convert().
2193 * (Callback will be called for the second time for this request.)
2194 */
2195 if (error == -EINPROGRESS) {
2196 complete(&ctx->restart);
2197 return;
2198 }
2199
2200 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2201 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2202
2203 if (error == -EBADMSG) {
2204 sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2205
2206 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2207 ctx->bio_in->bi_bdev, s);
2208 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2209 ctx->bio_in, s, 0);
2210 io->error = BLK_STS_PROTECTION;
2211 } else if (error < 0)
2212 io->error = BLK_STS_IOERR;
2213
2214 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2215
2216 if (!atomic_dec_and_test(&ctx->cc_pending))
2217 return;
2218
2219 /*
2220 * The request is fully completed: for inline writes, let
2221 * kcryptd_crypt_write_convert() do the IO submission.
2222 */
2223 if (bio_data_dir(io->base_bio) == READ) {
2224 kcryptd_crypt_read_done(io);
2225 return;
2226 }
2227
2228 if (kcryptd_crypt_write_inline(cc, ctx)) {
2229 complete(&ctx->restart);
2230 return;
2231 }
2232
2233 kcryptd_crypt_write_io_submit(io, 1);
2234 }
2235
kcryptd_crypt(struct work_struct * work)2236 static void kcryptd_crypt(struct work_struct *work)
2237 {
2238 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2239
2240 if (bio_data_dir(io->base_bio) == READ)
2241 kcryptd_crypt_read_convert(io);
2242 else
2243 kcryptd_crypt_write_convert(io);
2244 }
2245
kcryptd_crypt_tasklet(unsigned long work)2246 static void kcryptd_crypt_tasklet(unsigned long work)
2247 {
2248 kcryptd_crypt((struct work_struct *)work);
2249 }
2250
kcryptd_queue_crypt(struct dm_crypt_io * io)2251 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2252 {
2253 struct crypt_config *cc = io->cc;
2254
2255 if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2256 (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2257 /*
2258 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2259 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2260 * it is being executed with irqs disabled.
2261 */
2262 if (in_hardirq() || irqs_disabled()) {
2263 io->in_tasklet = true;
2264 tasklet_init(&io->tasklet, kcryptd_crypt_tasklet, (unsigned long)&io->work);
2265 tasklet_schedule(&io->tasklet);
2266 return;
2267 }
2268
2269 kcryptd_crypt(&io->work);
2270 return;
2271 }
2272
2273 INIT_WORK(&io->work, kcryptd_crypt);
2274 queue_work(cc->crypt_queue, &io->work);
2275 }
2276
crypt_free_tfms_aead(struct crypt_config * cc)2277 static void crypt_free_tfms_aead(struct crypt_config *cc)
2278 {
2279 if (!cc->cipher_tfm.tfms_aead)
2280 return;
2281
2282 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2283 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2284 cc->cipher_tfm.tfms_aead[0] = NULL;
2285 }
2286
2287 kfree(cc->cipher_tfm.tfms_aead);
2288 cc->cipher_tfm.tfms_aead = NULL;
2289 }
2290
crypt_free_tfms_skcipher(struct crypt_config * cc)2291 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2292 {
2293 unsigned int i;
2294
2295 if (!cc->cipher_tfm.tfms)
2296 return;
2297
2298 for (i = 0; i < cc->tfms_count; i++)
2299 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2300 crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2301 cc->cipher_tfm.tfms[i] = NULL;
2302 }
2303
2304 kfree(cc->cipher_tfm.tfms);
2305 cc->cipher_tfm.tfms = NULL;
2306 }
2307
crypt_free_tfms(struct crypt_config * cc)2308 static void crypt_free_tfms(struct crypt_config *cc)
2309 {
2310 if (crypt_integrity_aead(cc))
2311 crypt_free_tfms_aead(cc);
2312 else
2313 crypt_free_tfms_skcipher(cc);
2314 }
2315
crypt_alloc_tfms_skcipher(struct crypt_config * cc,char * ciphermode)2316 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2317 {
2318 unsigned int i;
2319 int err;
2320
2321 cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2322 sizeof(struct crypto_skcipher *),
2323 GFP_KERNEL);
2324 if (!cc->cipher_tfm.tfms)
2325 return -ENOMEM;
2326
2327 for (i = 0; i < cc->tfms_count; i++) {
2328 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2329 CRYPTO_ALG_ALLOCATES_MEMORY);
2330 if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2331 err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2332 crypt_free_tfms(cc);
2333 return err;
2334 }
2335 }
2336
2337 /*
2338 * dm-crypt performance can vary greatly depending on which crypto
2339 * algorithm implementation is used. Help people debug performance
2340 * problems by logging the ->cra_driver_name.
2341 */
2342 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2343 crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2344 return 0;
2345 }
2346
crypt_alloc_tfms_aead(struct crypt_config * cc,char * ciphermode)2347 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2348 {
2349 int err;
2350
2351 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2352 if (!cc->cipher_tfm.tfms)
2353 return -ENOMEM;
2354
2355 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2356 CRYPTO_ALG_ALLOCATES_MEMORY);
2357 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2358 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2359 crypt_free_tfms(cc);
2360 return err;
2361 }
2362
2363 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2364 crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2365 return 0;
2366 }
2367
crypt_alloc_tfms(struct crypt_config * cc,char * ciphermode)2368 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2369 {
2370 if (crypt_integrity_aead(cc))
2371 return crypt_alloc_tfms_aead(cc, ciphermode);
2372 else
2373 return crypt_alloc_tfms_skcipher(cc, ciphermode);
2374 }
2375
crypt_subkey_size(struct crypt_config * cc)2376 static unsigned int crypt_subkey_size(struct crypt_config *cc)
2377 {
2378 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2379 }
2380
crypt_authenckey_size(struct crypt_config * cc)2381 static unsigned int crypt_authenckey_size(struct crypt_config *cc)
2382 {
2383 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2384 }
2385
2386 /*
2387 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2388 * the key must be for some reason in special format.
2389 * This funcion converts cc->key to this special format.
2390 */
crypt_copy_authenckey(char * p,const void * key,unsigned int enckeylen,unsigned int authkeylen)2391 static void crypt_copy_authenckey(char *p, const void *key,
2392 unsigned int enckeylen, unsigned int authkeylen)
2393 {
2394 struct crypto_authenc_key_param *param;
2395 struct rtattr *rta;
2396
2397 rta = (struct rtattr *)p;
2398 param = RTA_DATA(rta);
2399 param->enckeylen = cpu_to_be32(enckeylen);
2400 rta->rta_len = RTA_LENGTH(sizeof(*param));
2401 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2402 p += RTA_SPACE(sizeof(*param));
2403 memcpy(p, key + enckeylen, authkeylen);
2404 p += authkeylen;
2405 memcpy(p, key, enckeylen);
2406 }
2407
crypt_setkey(struct crypt_config * cc)2408 static int crypt_setkey(struct crypt_config *cc)
2409 {
2410 unsigned int subkey_size;
2411 int err = 0, i, r;
2412
2413 /* Ignore extra keys (which are used for IV etc) */
2414 subkey_size = crypt_subkey_size(cc);
2415
2416 if (crypt_integrity_hmac(cc)) {
2417 if (subkey_size < cc->key_mac_size)
2418 return -EINVAL;
2419
2420 crypt_copy_authenckey(cc->authenc_key, cc->key,
2421 subkey_size - cc->key_mac_size,
2422 cc->key_mac_size);
2423 }
2424
2425 for (i = 0; i < cc->tfms_count; i++) {
2426 if (crypt_integrity_hmac(cc))
2427 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2428 cc->authenc_key, crypt_authenckey_size(cc));
2429 else if (crypt_integrity_aead(cc))
2430 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2431 cc->key + (i * subkey_size),
2432 subkey_size);
2433 else
2434 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2435 cc->key + (i * subkey_size),
2436 subkey_size);
2437 if (r)
2438 err = r;
2439 }
2440
2441 if (crypt_integrity_hmac(cc))
2442 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2443
2444 return err;
2445 }
2446
2447 #ifdef CONFIG_KEYS
2448
contains_whitespace(const char * str)2449 static bool contains_whitespace(const char *str)
2450 {
2451 while (*str)
2452 if (isspace(*str++))
2453 return true;
2454 return false;
2455 }
2456
set_key_user(struct crypt_config * cc,struct key * key)2457 static int set_key_user(struct crypt_config *cc, struct key *key)
2458 {
2459 const struct user_key_payload *ukp;
2460
2461 ukp = user_key_payload_locked(key);
2462 if (!ukp)
2463 return -EKEYREVOKED;
2464
2465 if (cc->key_size != ukp->datalen)
2466 return -EINVAL;
2467
2468 memcpy(cc->key, ukp->data, cc->key_size);
2469
2470 return 0;
2471 }
2472
set_key_encrypted(struct crypt_config * cc,struct key * key)2473 static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2474 {
2475 const struct encrypted_key_payload *ekp;
2476
2477 ekp = key->payload.data[0];
2478 if (!ekp)
2479 return -EKEYREVOKED;
2480
2481 if (cc->key_size != ekp->decrypted_datalen)
2482 return -EINVAL;
2483
2484 memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2485
2486 return 0;
2487 }
2488
set_key_trusted(struct crypt_config * cc,struct key * key)2489 static int set_key_trusted(struct crypt_config *cc, struct key *key)
2490 {
2491 const struct trusted_key_payload *tkp;
2492
2493 tkp = key->payload.data[0];
2494 if (!tkp)
2495 return -EKEYREVOKED;
2496
2497 if (cc->key_size != tkp->key_len)
2498 return -EINVAL;
2499
2500 memcpy(cc->key, tkp->key, cc->key_size);
2501
2502 return 0;
2503 }
2504
crypt_set_keyring_key(struct crypt_config * cc,const char * key_string)2505 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2506 {
2507 char *new_key_string, *key_desc;
2508 int ret;
2509 struct key_type *type;
2510 struct key *key;
2511 int (*set_key)(struct crypt_config *cc, struct key *key);
2512
2513 /*
2514 * Reject key_string with whitespace. dm core currently lacks code for
2515 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2516 */
2517 if (contains_whitespace(key_string)) {
2518 DMERR("whitespace chars not allowed in key string");
2519 return -EINVAL;
2520 }
2521
2522 /* look for next ':' separating key_type from key_description */
2523 key_desc = strchr(key_string, ':');
2524 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2525 return -EINVAL;
2526
2527 if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2528 type = &key_type_logon;
2529 set_key = set_key_user;
2530 } else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2531 type = &key_type_user;
2532 set_key = set_key_user;
2533 } else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2534 !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2535 type = &key_type_encrypted;
2536 set_key = set_key_encrypted;
2537 } else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2538 !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2539 type = &key_type_trusted;
2540 set_key = set_key_trusted;
2541 } else {
2542 return -EINVAL;
2543 }
2544
2545 new_key_string = kstrdup(key_string, GFP_KERNEL);
2546 if (!new_key_string)
2547 return -ENOMEM;
2548
2549 key = request_key(type, key_desc + 1, NULL);
2550 if (IS_ERR(key)) {
2551 kfree_sensitive(new_key_string);
2552 return PTR_ERR(key);
2553 }
2554
2555 down_read(&key->sem);
2556
2557 ret = set_key(cc, key);
2558 if (ret < 0) {
2559 up_read(&key->sem);
2560 key_put(key);
2561 kfree_sensitive(new_key_string);
2562 return ret;
2563 }
2564
2565 up_read(&key->sem);
2566 key_put(key);
2567
2568 /* clear the flag since following operations may invalidate previously valid key */
2569 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2570
2571 ret = crypt_setkey(cc);
2572
2573 if (!ret) {
2574 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2575 kfree_sensitive(cc->key_string);
2576 cc->key_string = new_key_string;
2577 } else
2578 kfree_sensitive(new_key_string);
2579
2580 return ret;
2581 }
2582
get_key_size(char ** key_string)2583 static int get_key_size(char **key_string)
2584 {
2585 char *colon, dummy;
2586 int ret;
2587
2588 if (*key_string[0] != ':')
2589 return strlen(*key_string) >> 1;
2590
2591 /* look for next ':' in key string */
2592 colon = strpbrk(*key_string + 1, ":");
2593 if (!colon)
2594 return -EINVAL;
2595
2596 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2597 return -EINVAL;
2598
2599 *key_string = colon;
2600
2601 /* remaining key string should be :<logon|user>:<key_desc> */
2602
2603 return ret;
2604 }
2605
2606 #else
2607
crypt_set_keyring_key(struct crypt_config * cc,const char * key_string)2608 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2609 {
2610 return -EINVAL;
2611 }
2612
get_key_size(char ** key_string)2613 static int get_key_size(char **key_string)
2614 {
2615 return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2616 }
2617
2618 #endif /* CONFIG_KEYS */
2619
crypt_set_key(struct crypt_config * cc,char * key)2620 static int crypt_set_key(struct crypt_config *cc, char *key)
2621 {
2622 int r = -EINVAL;
2623 int key_string_len = strlen(key);
2624
2625 /* Hyphen (which gives a key_size of zero) means there is no key. */
2626 if (!cc->key_size && strcmp(key, "-"))
2627 goto out;
2628
2629 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2630 if (key[0] == ':') {
2631 r = crypt_set_keyring_key(cc, key + 1);
2632 goto out;
2633 }
2634
2635 /* clear the flag since following operations may invalidate previously valid key */
2636 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2637
2638 /* wipe references to any kernel keyring key */
2639 kfree_sensitive(cc->key_string);
2640 cc->key_string = NULL;
2641
2642 /* Decode key from its hex representation. */
2643 if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2644 goto out;
2645
2646 r = crypt_setkey(cc);
2647 if (!r)
2648 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2649
2650 out:
2651 /* Hex key string not needed after here, so wipe it. */
2652 memset(key, '0', key_string_len);
2653
2654 return r;
2655 }
2656
crypt_wipe_key(struct crypt_config * cc)2657 static int crypt_wipe_key(struct crypt_config *cc)
2658 {
2659 int r;
2660
2661 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2662 get_random_bytes(&cc->key, cc->key_size);
2663
2664 /* Wipe IV private keys */
2665 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2666 r = cc->iv_gen_ops->wipe(cc);
2667 if (r)
2668 return r;
2669 }
2670
2671 kfree_sensitive(cc->key_string);
2672 cc->key_string = NULL;
2673 r = crypt_setkey(cc);
2674 memset(&cc->key, 0, cc->key_size * sizeof(u8));
2675
2676 return r;
2677 }
2678
crypt_calculate_pages_per_client(void)2679 static void crypt_calculate_pages_per_client(void)
2680 {
2681 unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2682
2683 if (!dm_crypt_clients_n)
2684 return;
2685
2686 pages /= dm_crypt_clients_n;
2687 if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2688 pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2689 dm_crypt_pages_per_client = pages;
2690 }
2691
crypt_page_alloc(gfp_t gfp_mask,void * pool_data)2692 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2693 {
2694 struct crypt_config *cc = pool_data;
2695 struct page *page;
2696
2697 /*
2698 * Note, percpu_counter_read_positive() may over (and under) estimate
2699 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2700 * but avoids potential spinlock contention of an exact result.
2701 */
2702 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2703 likely(gfp_mask & __GFP_NORETRY))
2704 return NULL;
2705
2706 page = alloc_page(gfp_mask);
2707 if (likely(page != NULL))
2708 percpu_counter_add(&cc->n_allocated_pages, 1);
2709
2710 return page;
2711 }
2712
crypt_page_free(void * page,void * pool_data)2713 static void crypt_page_free(void *page, void *pool_data)
2714 {
2715 struct crypt_config *cc = pool_data;
2716
2717 __free_page(page);
2718 percpu_counter_sub(&cc->n_allocated_pages, 1);
2719 }
2720
crypt_dtr(struct dm_target * ti)2721 static void crypt_dtr(struct dm_target *ti)
2722 {
2723 struct crypt_config *cc = ti->private;
2724
2725 ti->private = NULL;
2726
2727 if (!cc)
2728 return;
2729
2730 if (cc->write_thread)
2731 kthread_stop(cc->write_thread);
2732
2733 if (cc->io_queue)
2734 destroy_workqueue(cc->io_queue);
2735 if (cc->crypt_queue)
2736 destroy_workqueue(cc->crypt_queue);
2737
2738 crypt_free_tfms(cc);
2739
2740 bioset_exit(&cc->bs);
2741
2742 mempool_exit(&cc->page_pool);
2743 mempool_exit(&cc->req_pool);
2744 mempool_exit(&cc->tag_pool);
2745
2746 WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2747 percpu_counter_destroy(&cc->n_allocated_pages);
2748
2749 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2750 cc->iv_gen_ops->dtr(cc);
2751
2752 if (cc->dev)
2753 dm_put_device(ti, cc->dev);
2754
2755 kfree_sensitive(cc->cipher_string);
2756 kfree_sensitive(cc->key_string);
2757 kfree_sensitive(cc->cipher_auth);
2758 kfree_sensitive(cc->authenc_key);
2759
2760 mutex_destroy(&cc->bio_alloc_lock);
2761
2762 /* Must zero key material before freeing */
2763 kfree_sensitive(cc);
2764
2765 spin_lock(&dm_crypt_clients_lock);
2766 WARN_ON(!dm_crypt_clients_n);
2767 dm_crypt_clients_n--;
2768 crypt_calculate_pages_per_client();
2769 spin_unlock(&dm_crypt_clients_lock);
2770
2771 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2772 }
2773
crypt_ctr_ivmode(struct dm_target * ti,const char * ivmode)2774 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2775 {
2776 struct crypt_config *cc = ti->private;
2777
2778 if (crypt_integrity_aead(cc))
2779 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2780 else
2781 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2782
2783 if (cc->iv_size)
2784 /* at least a 64 bit sector number should fit in our buffer */
2785 cc->iv_size = max(cc->iv_size,
2786 (unsigned int)(sizeof(u64) / sizeof(u8)));
2787 else if (ivmode) {
2788 DMWARN("Selected cipher does not support IVs");
2789 ivmode = NULL;
2790 }
2791
2792 /* Choose ivmode, see comments at iv code. */
2793 if (ivmode == NULL)
2794 cc->iv_gen_ops = NULL;
2795 else if (strcmp(ivmode, "plain") == 0)
2796 cc->iv_gen_ops = &crypt_iv_plain_ops;
2797 else if (strcmp(ivmode, "plain64") == 0)
2798 cc->iv_gen_ops = &crypt_iv_plain64_ops;
2799 else if (strcmp(ivmode, "plain64be") == 0)
2800 cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2801 else if (strcmp(ivmode, "essiv") == 0)
2802 cc->iv_gen_ops = &crypt_iv_essiv_ops;
2803 else if (strcmp(ivmode, "benbi") == 0)
2804 cc->iv_gen_ops = &crypt_iv_benbi_ops;
2805 else if (strcmp(ivmode, "null") == 0)
2806 cc->iv_gen_ops = &crypt_iv_null_ops;
2807 else if (strcmp(ivmode, "eboiv") == 0)
2808 cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2809 else if (strcmp(ivmode, "elephant") == 0) {
2810 cc->iv_gen_ops = &crypt_iv_elephant_ops;
2811 cc->key_parts = 2;
2812 cc->key_extra_size = cc->key_size / 2;
2813 if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2814 return -EINVAL;
2815 set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2816 } else if (strcmp(ivmode, "lmk") == 0) {
2817 cc->iv_gen_ops = &crypt_iv_lmk_ops;
2818 /*
2819 * Version 2 and 3 is recognised according
2820 * to length of provided multi-key string.
2821 * If present (version 3), last key is used as IV seed.
2822 * All keys (including IV seed) are always the same size.
2823 */
2824 if (cc->key_size % cc->key_parts) {
2825 cc->key_parts++;
2826 cc->key_extra_size = cc->key_size / cc->key_parts;
2827 }
2828 } else if (strcmp(ivmode, "tcw") == 0) {
2829 cc->iv_gen_ops = &crypt_iv_tcw_ops;
2830 cc->key_parts += 2; /* IV + whitening */
2831 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2832 } else if (strcmp(ivmode, "random") == 0) {
2833 cc->iv_gen_ops = &crypt_iv_random_ops;
2834 /* Need storage space in integrity fields. */
2835 cc->integrity_iv_size = cc->iv_size;
2836 } else {
2837 ti->error = "Invalid IV mode";
2838 return -EINVAL;
2839 }
2840
2841 return 0;
2842 }
2843
2844 /*
2845 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2846 * The HMAC is needed to calculate tag size (HMAC digest size).
2847 * This should be probably done by crypto-api calls (once available...)
2848 */
crypt_ctr_auth_cipher(struct crypt_config * cc,char * cipher_api)2849 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2850 {
2851 char *start, *end, *mac_alg = NULL;
2852 struct crypto_ahash *mac;
2853
2854 if (!strstarts(cipher_api, "authenc("))
2855 return 0;
2856
2857 start = strchr(cipher_api, '(');
2858 end = strchr(cipher_api, ',');
2859 if (!start || !end || ++start > end)
2860 return -EINVAL;
2861
2862 mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2863 if (!mac_alg)
2864 return -ENOMEM;
2865 strncpy(mac_alg, start, end - start);
2866
2867 mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2868 kfree(mac_alg);
2869
2870 if (IS_ERR(mac))
2871 return PTR_ERR(mac);
2872
2873 cc->key_mac_size = crypto_ahash_digestsize(mac);
2874 crypto_free_ahash(mac);
2875
2876 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2877 if (!cc->authenc_key)
2878 return -ENOMEM;
2879
2880 return 0;
2881 }
2882
crypt_ctr_cipher_new(struct dm_target * ti,char * cipher_in,char * key,char ** ivmode,char ** ivopts)2883 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2884 char **ivmode, char **ivopts)
2885 {
2886 struct crypt_config *cc = ti->private;
2887 char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2888 int ret = -EINVAL;
2889
2890 cc->tfms_count = 1;
2891
2892 /*
2893 * New format (capi: prefix)
2894 * capi:cipher_api_spec-iv:ivopts
2895 */
2896 tmp = &cipher_in[strlen("capi:")];
2897
2898 /* Separate IV options if present, it can contain another '-' in hash name */
2899 *ivopts = strrchr(tmp, ':');
2900 if (*ivopts) {
2901 **ivopts = '\0';
2902 (*ivopts)++;
2903 }
2904 /* Parse IV mode */
2905 *ivmode = strrchr(tmp, '-');
2906 if (*ivmode) {
2907 **ivmode = '\0';
2908 (*ivmode)++;
2909 }
2910 /* The rest is crypto API spec */
2911 cipher_api = tmp;
2912
2913 /* Alloc AEAD, can be used only in new format. */
2914 if (crypt_integrity_aead(cc)) {
2915 ret = crypt_ctr_auth_cipher(cc, cipher_api);
2916 if (ret < 0) {
2917 ti->error = "Invalid AEAD cipher spec";
2918 return ret;
2919 }
2920 }
2921
2922 if (*ivmode && !strcmp(*ivmode, "lmk"))
2923 cc->tfms_count = 64;
2924
2925 if (*ivmode && !strcmp(*ivmode, "essiv")) {
2926 if (!*ivopts) {
2927 ti->error = "Digest algorithm missing for ESSIV mode";
2928 return -EINVAL;
2929 }
2930 ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2931 cipher_api, *ivopts);
2932 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2933 ti->error = "Cannot allocate cipher string";
2934 return -ENOMEM;
2935 }
2936 cipher_api = buf;
2937 }
2938
2939 cc->key_parts = cc->tfms_count;
2940
2941 /* Allocate cipher */
2942 ret = crypt_alloc_tfms(cc, cipher_api);
2943 if (ret < 0) {
2944 ti->error = "Error allocating crypto tfm";
2945 return ret;
2946 }
2947
2948 if (crypt_integrity_aead(cc))
2949 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2950 else
2951 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2952
2953 return 0;
2954 }
2955
crypt_ctr_cipher_old(struct dm_target * ti,char * cipher_in,char * key,char ** ivmode,char ** ivopts)2956 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2957 char **ivmode, char **ivopts)
2958 {
2959 struct crypt_config *cc = ti->private;
2960 char *tmp, *cipher, *chainmode, *keycount;
2961 char *cipher_api = NULL;
2962 int ret = -EINVAL;
2963 char dummy;
2964
2965 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2966 ti->error = "Bad cipher specification";
2967 return -EINVAL;
2968 }
2969
2970 /*
2971 * Legacy dm-crypt cipher specification
2972 * cipher[:keycount]-mode-iv:ivopts
2973 */
2974 tmp = cipher_in;
2975 keycount = strsep(&tmp, "-");
2976 cipher = strsep(&keycount, ":");
2977
2978 if (!keycount)
2979 cc->tfms_count = 1;
2980 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2981 !is_power_of_2(cc->tfms_count)) {
2982 ti->error = "Bad cipher key count specification";
2983 return -EINVAL;
2984 }
2985 cc->key_parts = cc->tfms_count;
2986
2987 chainmode = strsep(&tmp, "-");
2988 *ivmode = strsep(&tmp, ":");
2989 *ivopts = tmp;
2990
2991 /*
2992 * For compatibility with the original dm-crypt mapping format, if
2993 * only the cipher name is supplied, use cbc-plain.
2994 */
2995 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2996 chainmode = "cbc";
2997 *ivmode = "plain";
2998 }
2999
3000 if (strcmp(chainmode, "ecb") && !*ivmode) {
3001 ti->error = "IV mechanism required";
3002 return -EINVAL;
3003 }
3004
3005 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
3006 if (!cipher_api)
3007 goto bad_mem;
3008
3009 if (*ivmode && !strcmp(*ivmode, "essiv")) {
3010 if (!*ivopts) {
3011 ti->error = "Digest algorithm missing for ESSIV mode";
3012 kfree(cipher_api);
3013 return -EINVAL;
3014 }
3015 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3016 "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
3017 } else {
3018 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3019 "%s(%s)", chainmode, cipher);
3020 }
3021 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
3022 kfree(cipher_api);
3023 goto bad_mem;
3024 }
3025
3026 /* Allocate cipher */
3027 ret = crypt_alloc_tfms(cc, cipher_api);
3028 if (ret < 0) {
3029 ti->error = "Error allocating crypto tfm";
3030 kfree(cipher_api);
3031 return ret;
3032 }
3033 kfree(cipher_api);
3034
3035 return 0;
3036 bad_mem:
3037 ti->error = "Cannot allocate cipher strings";
3038 return -ENOMEM;
3039 }
3040
crypt_ctr_cipher(struct dm_target * ti,char * cipher_in,char * key)3041 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3042 {
3043 struct crypt_config *cc = ti->private;
3044 char *ivmode = NULL, *ivopts = NULL;
3045 int ret;
3046
3047 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3048 if (!cc->cipher_string) {
3049 ti->error = "Cannot allocate cipher strings";
3050 return -ENOMEM;
3051 }
3052
3053 if (strstarts(cipher_in, "capi:"))
3054 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3055 else
3056 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3057 if (ret)
3058 return ret;
3059
3060 /* Initialize IV */
3061 ret = crypt_ctr_ivmode(ti, ivmode);
3062 if (ret < 0)
3063 return ret;
3064
3065 /* Initialize and set key */
3066 ret = crypt_set_key(cc, key);
3067 if (ret < 0) {
3068 ti->error = "Error decoding and setting key";
3069 return ret;
3070 }
3071
3072 /* Allocate IV */
3073 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3074 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3075 if (ret < 0) {
3076 ti->error = "Error creating IV";
3077 return ret;
3078 }
3079 }
3080
3081 /* Initialize IV (set keys for ESSIV etc) */
3082 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3083 ret = cc->iv_gen_ops->init(cc);
3084 if (ret < 0) {
3085 ti->error = "Error initialising IV";
3086 return ret;
3087 }
3088 }
3089
3090 /* wipe the kernel key payload copy */
3091 if (cc->key_string)
3092 memset(cc->key, 0, cc->key_size * sizeof(u8));
3093
3094 return ret;
3095 }
3096
crypt_ctr_optional(struct dm_target * ti,unsigned int argc,char ** argv)3097 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3098 {
3099 struct crypt_config *cc = ti->private;
3100 struct dm_arg_set as;
3101 static const struct dm_arg _args[] = {
3102 {0, 8, "Invalid number of feature args"},
3103 };
3104 unsigned int opt_params, val;
3105 const char *opt_string, *sval;
3106 char dummy;
3107 int ret;
3108
3109 /* Optional parameters */
3110 as.argc = argc;
3111 as.argv = argv;
3112
3113 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3114 if (ret)
3115 return ret;
3116
3117 while (opt_params--) {
3118 opt_string = dm_shift_arg(&as);
3119 if (!opt_string) {
3120 ti->error = "Not enough feature arguments";
3121 return -EINVAL;
3122 }
3123
3124 if (!strcasecmp(opt_string, "allow_discards"))
3125 ti->num_discard_bios = 1;
3126
3127 else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3128 set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3129
3130 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3131 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3132 else if (!strcasecmp(opt_string, "no_read_workqueue"))
3133 set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3134 else if (!strcasecmp(opt_string, "no_write_workqueue"))
3135 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3136 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3137 if (val == 0 || val > MAX_TAG_SIZE) {
3138 ti->error = "Invalid integrity arguments";
3139 return -EINVAL;
3140 }
3141 cc->on_disk_tag_size = val;
3142 sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3143 if (!strcasecmp(sval, "aead")) {
3144 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3145 } else if (strcasecmp(sval, "none")) {
3146 ti->error = "Unknown integrity profile";
3147 return -EINVAL;
3148 }
3149
3150 cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3151 if (!cc->cipher_auth)
3152 return -ENOMEM;
3153 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3154 if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3155 cc->sector_size > 4096 ||
3156 (cc->sector_size & (cc->sector_size - 1))) {
3157 ti->error = "Invalid feature value for sector_size";
3158 return -EINVAL;
3159 }
3160 if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3161 ti->error = "Device size is not multiple of sector_size feature";
3162 return -EINVAL;
3163 }
3164 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3165 } else if (!strcasecmp(opt_string, "iv_large_sectors"))
3166 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3167 else {
3168 ti->error = "Invalid feature arguments";
3169 return -EINVAL;
3170 }
3171 }
3172
3173 return 0;
3174 }
3175
3176 #ifdef CONFIG_BLK_DEV_ZONED
crypt_report_zones(struct dm_target * ti,struct dm_report_zones_args * args,unsigned int nr_zones)3177 static int crypt_report_zones(struct dm_target *ti,
3178 struct dm_report_zones_args *args, unsigned int nr_zones)
3179 {
3180 struct crypt_config *cc = ti->private;
3181
3182 return dm_report_zones(cc->dev->bdev, cc->start,
3183 cc->start + dm_target_offset(ti, args->next_sector),
3184 args, nr_zones);
3185 }
3186 #else
3187 #define crypt_report_zones NULL
3188 #endif
3189
3190 /*
3191 * Construct an encryption mapping:
3192 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3193 */
crypt_ctr(struct dm_target * ti,unsigned int argc,char ** argv)3194 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3195 {
3196 struct crypt_config *cc;
3197 const char *devname = dm_table_device_name(ti->table);
3198 int key_size;
3199 unsigned int align_mask;
3200 unsigned long long tmpll;
3201 int ret;
3202 size_t iv_size_padding, additional_req_size;
3203 char dummy;
3204
3205 if (argc < 5) {
3206 ti->error = "Not enough arguments";
3207 return -EINVAL;
3208 }
3209
3210 key_size = get_key_size(&argv[1]);
3211 if (key_size < 0) {
3212 ti->error = "Cannot parse key size";
3213 return -EINVAL;
3214 }
3215
3216 cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3217 if (!cc) {
3218 ti->error = "Cannot allocate encryption context";
3219 return -ENOMEM;
3220 }
3221 cc->key_size = key_size;
3222 cc->sector_size = (1 << SECTOR_SHIFT);
3223 cc->sector_shift = 0;
3224
3225 ti->private = cc;
3226
3227 spin_lock(&dm_crypt_clients_lock);
3228 dm_crypt_clients_n++;
3229 crypt_calculate_pages_per_client();
3230 spin_unlock(&dm_crypt_clients_lock);
3231
3232 ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3233 if (ret < 0)
3234 goto bad;
3235
3236 /* Optional parameters need to be read before cipher constructor */
3237 if (argc > 5) {
3238 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3239 if (ret)
3240 goto bad;
3241 }
3242
3243 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3244 if (ret < 0)
3245 goto bad;
3246
3247 if (crypt_integrity_aead(cc)) {
3248 cc->dmreq_start = sizeof(struct aead_request);
3249 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3250 align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3251 } else {
3252 cc->dmreq_start = sizeof(struct skcipher_request);
3253 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3254 align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3255 }
3256 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3257
3258 if (align_mask < CRYPTO_MINALIGN) {
3259 /* Allocate the padding exactly */
3260 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3261 & align_mask;
3262 } else {
3263 /*
3264 * If the cipher requires greater alignment than kmalloc
3265 * alignment, we don't know the exact position of the
3266 * initialization vector. We must assume worst case.
3267 */
3268 iv_size_padding = align_mask;
3269 }
3270
3271 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */
3272 additional_req_size = sizeof(struct dm_crypt_request) +
3273 iv_size_padding + cc->iv_size +
3274 cc->iv_size +
3275 sizeof(uint64_t) +
3276 sizeof(unsigned int);
3277
3278 ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3279 if (ret) {
3280 ti->error = "Cannot allocate crypt request mempool";
3281 goto bad;
3282 }
3283
3284 cc->per_bio_data_size = ti->per_io_data_size =
3285 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3286 ARCH_DMA_MINALIGN);
3287
3288 ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3289 if (ret) {
3290 ti->error = "Cannot allocate page mempool";
3291 goto bad;
3292 }
3293
3294 ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3295 if (ret) {
3296 ti->error = "Cannot allocate crypt bioset";
3297 goto bad;
3298 }
3299
3300 mutex_init(&cc->bio_alloc_lock);
3301
3302 ret = -EINVAL;
3303 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3304 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3305 ti->error = "Invalid iv_offset sector";
3306 goto bad;
3307 }
3308 cc->iv_offset = tmpll;
3309
3310 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3311 if (ret) {
3312 ti->error = "Device lookup failed";
3313 goto bad;
3314 }
3315
3316 ret = -EINVAL;
3317 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3318 ti->error = "Invalid device sector";
3319 goto bad;
3320 }
3321 cc->start = tmpll;
3322
3323 if (bdev_is_zoned(cc->dev->bdev)) {
3324 /*
3325 * For zoned block devices, we need to preserve the issuer write
3326 * ordering. To do so, disable write workqueues and force inline
3327 * encryption completion.
3328 */
3329 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3330 set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3331
3332 /*
3333 * All zone append writes to a zone of a zoned block device will
3334 * have the same BIO sector, the start of the zone. When the
3335 * cypher IV mode uses sector values, all data targeting a
3336 * zone will be encrypted using the first sector numbers of the
3337 * zone. This will not result in write errors but will
3338 * cause most reads to fail as reads will use the sector values
3339 * for the actual data locations, resulting in IV mismatch.
3340 * To avoid this problem, ask DM core to emulate zone append
3341 * operations with regular writes.
3342 */
3343 DMDEBUG("Zone append operations will be emulated");
3344 ti->emulate_zone_append = true;
3345 }
3346
3347 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3348 ret = crypt_integrity_ctr(cc, ti);
3349 if (ret)
3350 goto bad;
3351
3352 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3353 if (!cc->tag_pool_max_sectors)
3354 cc->tag_pool_max_sectors = 1;
3355
3356 ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3357 cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3358 if (ret) {
3359 ti->error = "Cannot allocate integrity tags mempool";
3360 goto bad;
3361 }
3362
3363 cc->tag_pool_max_sectors <<= cc->sector_shift;
3364 }
3365
3366 ret = -ENOMEM;
3367 cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
3368 if (!cc->io_queue) {
3369 ti->error = "Couldn't create kcryptd io queue";
3370 goto bad;
3371 }
3372
3373 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3374 cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3375 1, devname);
3376 else
3377 cc->crypt_queue = alloc_workqueue("kcryptd/%s",
3378 WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3379 num_online_cpus(), devname);
3380 if (!cc->crypt_queue) {
3381 ti->error = "Couldn't create kcryptd queue";
3382 goto bad;
3383 }
3384
3385 spin_lock_init(&cc->write_thread_lock);
3386 cc->write_tree = RB_ROOT;
3387
3388 cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3389 if (IS_ERR(cc->write_thread)) {
3390 ret = PTR_ERR(cc->write_thread);
3391 cc->write_thread = NULL;
3392 ti->error = "Couldn't spawn write thread";
3393 goto bad;
3394 }
3395
3396 ti->num_flush_bios = 1;
3397 ti->limit_swap_bios = true;
3398 ti->accounts_remapped_io = true;
3399
3400 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3401 return 0;
3402
3403 bad:
3404 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3405 crypt_dtr(ti);
3406 return ret;
3407 }
3408
crypt_map(struct dm_target * ti,struct bio * bio)3409 static int crypt_map(struct dm_target *ti, struct bio *bio)
3410 {
3411 struct dm_crypt_io *io;
3412 struct crypt_config *cc = ti->private;
3413
3414 /*
3415 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3416 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3417 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3418 */
3419 if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3420 bio_op(bio) == REQ_OP_DISCARD)) {
3421 bio_set_dev(bio, cc->dev->bdev);
3422 if (bio_sectors(bio))
3423 bio->bi_iter.bi_sector = cc->start +
3424 dm_target_offset(ti, bio->bi_iter.bi_sector);
3425 return DM_MAPIO_REMAPPED;
3426 }
3427
3428 /*
3429 * Check if bio is too large, split as needed.
3430 */
3431 if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
3432 (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3433 dm_accept_partial_bio(bio, ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
3434
3435 /*
3436 * Ensure that bio is a multiple of internal sector encryption size
3437 * and is aligned to this size as defined in IO hints.
3438 */
3439 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3440 return DM_MAPIO_KILL;
3441
3442 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3443 return DM_MAPIO_KILL;
3444
3445 io = dm_per_bio_data(bio, cc->per_bio_data_size);
3446 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3447
3448 if (cc->on_disk_tag_size) {
3449 unsigned int tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3450
3451 if (unlikely(tag_len > KMALLOC_MAX_SIZE))
3452 io->integrity_metadata = NULL;
3453 else
3454 io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3455
3456 if (unlikely(!io->integrity_metadata)) {
3457 if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3458 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3459 io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3460 io->integrity_metadata_from_pool = true;
3461 }
3462 }
3463
3464 if (crypt_integrity_aead(cc))
3465 io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3466 else
3467 io->ctx.r.req = (struct skcipher_request *)(io + 1);
3468
3469 if (bio_data_dir(io->base_bio) == READ) {
3470 if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3471 kcryptd_queue_read(io);
3472 } else
3473 kcryptd_queue_crypt(io);
3474
3475 return DM_MAPIO_SUBMITTED;
3476 }
3477
hex2asc(unsigned char c)3478 static char hex2asc(unsigned char c)
3479 {
3480 return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
3481 }
3482
crypt_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)3483 static void crypt_status(struct dm_target *ti, status_type_t type,
3484 unsigned int status_flags, char *result, unsigned int maxlen)
3485 {
3486 struct crypt_config *cc = ti->private;
3487 unsigned int i, sz = 0;
3488 int num_feature_args = 0;
3489
3490 switch (type) {
3491 case STATUSTYPE_INFO:
3492 result[0] = '\0';
3493 break;
3494
3495 case STATUSTYPE_TABLE:
3496 DMEMIT("%s ", cc->cipher_string);
3497
3498 if (cc->key_size > 0) {
3499 if (cc->key_string)
3500 DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3501 else {
3502 for (i = 0; i < cc->key_size; i++) {
3503 DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3504 hex2asc(cc->key[i] & 0xf));
3505 }
3506 }
3507 } else
3508 DMEMIT("-");
3509
3510 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3511 cc->dev->name, (unsigned long long)cc->start);
3512
3513 num_feature_args += !!ti->num_discard_bios;
3514 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3515 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3516 num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3517 num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3518 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3519 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3520 if (cc->on_disk_tag_size)
3521 num_feature_args++;
3522 if (num_feature_args) {
3523 DMEMIT(" %d", num_feature_args);
3524 if (ti->num_discard_bios)
3525 DMEMIT(" allow_discards");
3526 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3527 DMEMIT(" same_cpu_crypt");
3528 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3529 DMEMIT(" submit_from_crypt_cpus");
3530 if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3531 DMEMIT(" no_read_workqueue");
3532 if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3533 DMEMIT(" no_write_workqueue");
3534 if (cc->on_disk_tag_size)
3535 DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3536 if (cc->sector_size != (1 << SECTOR_SHIFT))
3537 DMEMIT(" sector_size:%d", cc->sector_size);
3538 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3539 DMEMIT(" iv_large_sectors");
3540 }
3541 break;
3542
3543 case STATUSTYPE_IMA:
3544 DMEMIT_TARGET_NAME_VERSION(ti->type);
3545 DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3546 DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3547 DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3548 'y' : 'n');
3549 DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3550 'y' : 'n');
3551 DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3552 'y' : 'n');
3553 DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3554 'y' : 'n');
3555
3556 if (cc->on_disk_tag_size)
3557 DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3558 cc->on_disk_tag_size, cc->cipher_auth);
3559 if (cc->sector_size != (1 << SECTOR_SHIFT))
3560 DMEMIT(",sector_size=%d", cc->sector_size);
3561 if (cc->cipher_string)
3562 DMEMIT(",cipher_string=%s", cc->cipher_string);
3563
3564 DMEMIT(",key_size=%u", cc->key_size);
3565 DMEMIT(",key_parts=%u", cc->key_parts);
3566 DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3567 DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3568 DMEMIT(";");
3569 break;
3570 }
3571 }
3572
crypt_postsuspend(struct dm_target * ti)3573 static void crypt_postsuspend(struct dm_target *ti)
3574 {
3575 struct crypt_config *cc = ti->private;
3576
3577 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3578 }
3579
crypt_preresume(struct dm_target * ti)3580 static int crypt_preresume(struct dm_target *ti)
3581 {
3582 struct crypt_config *cc = ti->private;
3583
3584 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3585 DMERR("aborting resume - crypt key is not set.");
3586 return -EAGAIN;
3587 }
3588
3589 return 0;
3590 }
3591
crypt_resume(struct dm_target * ti)3592 static void crypt_resume(struct dm_target *ti)
3593 {
3594 struct crypt_config *cc = ti->private;
3595
3596 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3597 }
3598
3599 /* Message interface
3600 * key set <key>
3601 * key wipe
3602 */
crypt_message(struct dm_target * ti,unsigned int argc,char ** argv,char * result,unsigned int maxlen)3603 static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
3604 char *result, unsigned int maxlen)
3605 {
3606 struct crypt_config *cc = ti->private;
3607 int key_size, ret = -EINVAL;
3608
3609 if (argc < 2)
3610 goto error;
3611
3612 if (!strcasecmp(argv[0], "key")) {
3613 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3614 DMWARN("not suspended during key manipulation.");
3615 return -EINVAL;
3616 }
3617 if (argc == 3 && !strcasecmp(argv[1], "set")) {
3618 /* The key size may not be changed. */
3619 key_size = get_key_size(&argv[2]);
3620 if (key_size < 0 || cc->key_size != key_size) {
3621 memset(argv[2], '0', strlen(argv[2]));
3622 return -EINVAL;
3623 }
3624
3625 ret = crypt_set_key(cc, argv[2]);
3626 if (ret)
3627 return ret;
3628 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3629 ret = cc->iv_gen_ops->init(cc);
3630 /* wipe the kernel key payload copy */
3631 if (cc->key_string)
3632 memset(cc->key, 0, cc->key_size * sizeof(u8));
3633 return ret;
3634 }
3635 if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3636 return crypt_wipe_key(cc);
3637 }
3638
3639 error:
3640 DMWARN("unrecognised message received.");
3641 return -EINVAL;
3642 }
3643
crypt_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3644 static int crypt_iterate_devices(struct dm_target *ti,
3645 iterate_devices_callout_fn fn, void *data)
3646 {
3647 struct crypt_config *cc = ti->private;
3648
3649 return fn(ti, cc->dev, cc->start, ti->len, data);
3650 }
3651
crypt_io_hints(struct dm_target * ti,struct queue_limits * limits)3652 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3653 {
3654 struct crypt_config *cc = ti->private;
3655
3656 /*
3657 * Unfortunate constraint that is required to avoid the potential
3658 * for exceeding underlying device's max_segments limits -- due to
3659 * crypt_alloc_buffer() possibly allocating pages for the encryption
3660 * bio that are not as physically contiguous as the original bio.
3661 */
3662 limits->max_segment_size = PAGE_SIZE;
3663
3664 limits->logical_block_size =
3665 max_t(unsigned int, limits->logical_block_size, cc->sector_size);
3666 limits->physical_block_size =
3667 max_t(unsigned int, limits->physical_block_size, cc->sector_size);
3668 limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
3669 limits->dma_alignment = limits->logical_block_size - 1;
3670 }
3671
3672 static struct target_type crypt_target = {
3673 .name = "crypt",
3674 .version = {1, 24, 0},
3675 .module = THIS_MODULE,
3676 .ctr = crypt_ctr,
3677 .dtr = crypt_dtr,
3678 .features = DM_TARGET_ZONED_HM,
3679 .report_zones = crypt_report_zones,
3680 .map = crypt_map,
3681 .status = crypt_status,
3682 .postsuspend = crypt_postsuspend,
3683 .preresume = crypt_preresume,
3684 .resume = crypt_resume,
3685 .message = crypt_message,
3686 .iterate_devices = crypt_iterate_devices,
3687 .io_hints = crypt_io_hints,
3688 };
3689 module_dm(crypt);
3690
3691 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3692 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3693 MODULE_LICENSE("GPL");
3694