1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Tehuti Networks(R) Network Driver
4 * ethtool interface implementation
5 * Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
6 */
7
8 /*
9 * RX HW/SW interaction overview
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 * There are 2 types of RX communication channels between driver and NIC.
12 * 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
13 * traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
14 * info about buffer's location, size and ID. An ID field is used to identify a
15 * buffer when it's returned with data via RXD Fifo (see below)
16 * 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
17 * filled by HW and is readen by SW. Each descriptor holds status and ID.
18 * HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
19 * via dma moves it into host memory, builds new RXD descriptor with same ID,
20 * pushes it into RXD Fifo and raises interrupt to indicate new RX data.
21 *
22 * Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
23 * One holds 1.5K packets and another - 26K packets. Depending on incoming
24 * packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
25 * filled with data, HW builds new RXD descriptor for it and push it into single
26 * RXD Fifo.
27 *
28 * RX SW Data Structures
29 * ~~~~~~~~~~~~~~~~~~~~~
30 * skb db - used to keep track of all skbs owned by SW and their dma addresses.
31 * For RX case, ownership lasts from allocating new empty skb for RXF until
32 * accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
33 * skb db. Implemented as array with bitmask.
34 * fifo - keeps info about fifo's size and location, relevant HW registers,
35 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
36 * Implemented as simple struct.
37 *
38 * RX SW Execution Flow
39 * ~~~~~~~~~~~~~~~~~~~~
40 * Upon initialization (ifconfig up) driver creates RX fifos and initializes
41 * relevant registers. At the end of init phase, driver enables interrupts.
42 * NIC sees that there is no RXF buffers and raises
43 * RD_INTR interrupt, isr fills skbs and Rx begins.
44 * Driver has two receive operation modes:
45 * NAPI - interrupt-driven mixed with polling
46 * interrupt-driven only
47 *
48 * Interrupt-driven only flow is following. When buffer is ready, HW raises
49 * interrupt and isr is called. isr collects all available packets
50 * (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
51
52 * Rx buffer allocation note
53 * ~~~~~~~~~~~~~~~~~~~~~~~~~
54 * Driver cares to feed such amount of RxF descriptors that respective amount of
55 * RxD descriptors can not fill entire RxD fifo. The main reason is lack of
56 * overflow check in Bordeaux for RxD fifo free/used size.
57 * FIXME: this is NOT fully implemented, more work should be done
58 *
59 */
60
61 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62
63 #include "tehuti.h"
64
65 static const struct pci_device_id bdx_pci_tbl[] = {
66 { PCI_VDEVICE(TEHUTI, 0x3009), },
67 { PCI_VDEVICE(TEHUTI, 0x3010), },
68 { PCI_VDEVICE(TEHUTI, 0x3014), },
69 { 0 }
70 };
71
72 MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
73
74 /* Definitions needed by ISR or NAPI functions */
75 static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
76 static void bdx_tx_cleanup(struct bdx_priv *priv);
77 static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
78
79 /* Definitions needed by FW loading */
80 static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
81
82 /* Definitions needed by hw_start */
83 static int bdx_tx_init(struct bdx_priv *priv);
84 static int bdx_rx_init(struct bdx_priv *priv);
85
86 /* Definitions needed by bdx_close */
87 static void bdx_rx_free(struct bdx_priv *priv);
88 static void bdx_tx_free(struct bdx_priv *priv);
89
90 /* Definitions needed by bdx_probe */
91 static void bdx_set_ethtool_ops(struct net_device *netdev);
92
93 /*************************************************************************
94 * Print Info *
95 *************************************************************************/
96
print_hw_id(struct pci_dev * pdev)97 static void print_hw_id(struct pci_dev *pdev)
98 {
99 struct pci_nic *nic = pci_get_drvdata(pdev);
100 u16 pci_link_status = 0;
101 u16 pci_ctrl = 0;
102
103 pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
104 pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
105
106 pr_info("%s%s\n", BDX_NIC_NAME,
107 nic->port_num == 1 ? "" : ", 2-Port");
108 pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
109 readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
110 readl(nic->regs + FPGA_SEED),
111 GET_LINK_STATUS_LANES(pci_link_status),
112 GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
113 }
114
print_fw_id(struct pci_nic * nic)115 static void print_fw_id(struct pci_nic *nic)
116 {
117 pr_info("fw 0x%x\n", readl(nic->regs + FW_VER));
118 }
119
print_eth_id(struct net_device * ndev)120 static void print_eth_id(struct net_device *ndev)
121 {
122 netdev_info(ndev, "%s, Port %c\n",
123 BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B');
124
125 }
126
127 /*************************************************************************
128 * Code *
129 *************************************************************************/
130
131 #define bdx_enable_interrupts(priv) \
132 do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
133 #define bdx_disable_interrupts(priv) \
134 do { WRITE_REG(priv, regIMR, 0); } while (0)
135
136 /**
137 * bdx_fifo_init - create TX/RX descriptor fifo for host-NIC communication.
138 * @priv: NIC private structure
139 * @f: fifo to initialize
140 * @fsz_type: fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
141 * @reg_CFG0: offsets of registers relative to base address
142 * @reg_CFG1: offsets of registers relative to base address
143 * @reg_RPTR: offsets of registers relative to base address
144 * @reg_WPTR: offsets of registers relative to base address
145 *
146 * 1K extra space is allocated at the end of the fifo to simplify
147 * processing of descriptors that wraps around fifo's end
148 *
149 * Returns 0 on success, negative value on failure
150 *
151 */
152 static int
bdx_fifo_init(struct bdx_priv * priv,struct fifo * f,int fsz_type,u16 reg_CFG0,u16 reg_CFG1,u16 reg_RPTR,u16 reg_WPTR)153 bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
154 u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
155 {
156 u16 memsz = FIFO_SIZE * (1 << fsz_type);
157
158 memset(f, 0, sizeof(struct fifo));
159 /* dma_alloc_coherent gives us 4k-aligned memory */
160 f->va = dma_alloc_coherent(&priv->pdev->dev, memsz + FIFO_EXTRA_SPACE,
161 &f->da, GFP_ATOMIC);
162 if (!f->va) {
163 pr_err("dma_alloc_coherent failed\n");
164 RET(-ENOMEM);
165 }
166 f->reg_CFG0 = reg_CFG0;
167 f->reg_CFG1 = reg_CFG1;
168 f->reg_RPTR = reg_RPTR;
169 f->reg_WPTR = reg_WPTR;
170 f->rptr = 0;
171 f->wptr = 0;
172 f->memsz = memsz;
173 f->size_mask = memsz - 1;
174 WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
175 WRITE_REG(priv, reg_CFG1, H32_64(f->da));
176
177 RET(0);
178 }
179
180 /**
181 * bdx_fifo_free - free all resources used by fifo
182 * @priv: NIC private structure
183 * @f: fifo to release
184 */
bdx_fifo_free(struct bdx_priv * priv,struct fifo * f)185 static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
186 {
187 ENTER;
188 if (f->va) {
189 dma_free_coherent(&priv->pdev->dev,
190 f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
191 f->va = NULL;
192 }
193 RET();
194 }
195
196 /**
197 * bdx_link_changed - notifies OS about hw link state.
198 * @priv: hw adapter structure
199 */
bdx_link_changed(struct bdx_priv * priv)200 static void bdx_link_changed(struct bdx_priv *priv)
201 {
202 u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
203
204 if (!link) {
205 if (netif_carrier_ok(priv->ndev)) {
206 netif_stop_queue(priv->ndev);
207 netif_carrier_off(priv->ndev);
208 netdev_err(priv->ndev, "Link Down\n");
209 }
210 } else {
211 if (!netif_carrier_ok(priv->ndev)) {
212 netif_wake_queue(priv->ndev);
213 netif_carrier_on(priv->ndev);
214 netdev_err(priv->ndev, "Link Up\n");
215 }
216 }
217 }
218
bdx_isr_extra(struct bdx_priv * priv,u32 isr)219 static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
220 {
221 if (isr & IR_RX_FREE_0) {
222 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
223 DBG("RX_FREE_0\n");
224 }
225
226 if (isr & IR_LNKCHG0)
227 bdx_link_changed(priv);
228
229 if (isr & IR_PCIE_LINK)
230 netdev_err(priv->ndev, "PCI-E Link Fault\n");
231
232 if (isr & IR_PCIE_TOUT)
233 netdev_err(priv->ndev, "PCI-E Time Out\n");
234
235 }
236
237 /**
238 * bdx_isr_napi - Interrupt Service Routine for Bordeaux NIC
239 * @irq: interrupt number
240 * @dev: network device
241 *
242 * Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
243 *
244 * It reads ISR register to know interrupt reasons, and proceed them one by one.
245 * Reasons of interest are:
246 * RX_DESC - new packet has arrived and RXD fifo holds its descriptor
247 * RX_FREE - number of free Rx buffers in RXF fifo gets low
248 * TX_FREE - packet was transmited and RXF fifo holds its descriptor
249 */
250
bdx_isr_napi(int irq,void * dev)251 static irqreturn_t bdx_isr_napi(int irq, void *dev)
252 {
253 struct net_device *ndev = dev;
254 struct bdx_priv *priv = netdev_priv(ndev);
255 u32 isr;
256
257 ENTER;
258 isr = (READ_REG(priv, regISR) & IR_RUN);
259 if (unlikely(!isr)) {
260 bdx_enable_interrupts(priv);
261 return IRQ_NONE; /* Not our interrupt */
262 }
263
264 if (isr & IR_EXTRA)
265 bdx_isr_extra(priv, isr);
266
267 if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
268 if (likely(napi_schedule_prep(&priv->napi))) {
269 __napi_schedule(&priv->napi);
270 RET(IRQ_HANDLED);
271 } else {
272 /* NOTE: we get here if intr has slipped into window
273 * between these lines in bdx_poll:
274 * bdx_enable_interrupts(priv);
275 * return 0;
276 * currently intrs are disabled (since we read ISR),
277 * and we have failed to register next poll.
278 * so we read the regs to trigger chip
279 * and allow further interupts. */
280 READ_REG(priv, regTXF_WPTR_0);
281 READ_REG(priv, regRXD_WPTR_0);
282 }
283 }
284
285 bdx_enable_interrupts(priv);
286 RET(IRQ_HANDLED);
287 }
288
bdx_poll(struct napi_struct * napi,int budget)289 static int bdx_poll(struct napi_struct *napi, int budget)
290 {
291 struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
292 int work_done;
293
294 ENTER;
295 bdx_tx_cleanup(priv);
296 work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
297 if ((work_done < budget) ||
298 (priv->napi_stop++ >= 30)) {
299 DBG("rx poll is done. backing to isr-driven\n");
300
301 /* from time to time we exit to let NAPI layer release
302 * device lock and allow waiting tasks (eg rmmod) to advance) */
303 priv->napi_stop = 0;
304
305 napi_complete_done(napi, work_done);
306 bdx_enable_interrupts(priv);
307 }
308 return work_done;
309 }
310
311 /**
312 * bdx_fw_load - loads firmware to NIC
313 * @priv: NIC private structure
314 *
315 * Firmware is loaded via TXD fifo, so it must be initialized first.
316 * Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
317 * can have few of them). So all drivers use semaphore register to choose one
318 * that will actually load FW to NIC.
319 */
320
bdx_fw_load(struct bdx_priv * priv)321 static int bdx_fw_load(struct bdx_priv *priv)
322 {
323 const struct firmware *fw = NULL;
324 int master, i;
325 int rc;
326
327 ENTER;
328 master = READ_REG(priv, regINIT_SEMAPHORE);
329 if (!READ_REG(priv, regINIT_STATUS) && master) {
330 rc = request_firmware(&fw, "tehuti/bdx.bin", &priv->pdev->dev);
331 if (rc)
332 goto out;
333 bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size);
334 mdelay(100);
335 }
336 for (i = 0; i < 200; i++) {
337 if (READ_REG(priv, regINIT_STATUS)) {
338 rc = 0;
339 goto out;
340 }
341 mdelay(2);
342 }
343 rc = -EIO;
344 out:
345 if (master)
346 WRITE_REG(priv, regINIT_SEMAPHORE, 1);
347
348 release_firmware(fw);
349
350 if (rc) {
351 netdev_err(priv->ndev, "firmware loading failed\n");
352 if (rc == -EIO)
353 DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
354 READ_REG(priv, regVPC),
355 READ_REG(priv, regVIC),
356 READ_REG(priv, regINIT_STATUS), i);
357 RET(rc);
358 } else {
359 DBG("%s: firmware loading success\n", priv->ndev->name);
360 RET(0);
361 }
362 }
363
bdx_restore_mac(struct net_device * ndev,struct bdx_priv * priv)364 static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
365 {
366 u32 val;
367
368 ENTER;
369 DBG("mac0=%x mac1=%x mac2=%x\n",
370 READ_REG(priv, regUNC_MAC0_A),
371 READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
372
373 val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
374 WRITE_REG(priv, regUNC_MAC2_A, val);
375 val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
376 WRITE_REG(priv, regUNC_MAC1_A, val);
377 val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
378 WRITE_REG(priv, regUNC_MAC0_A, val);
379
380 DBG("mac0=%x mac1=%x mac2=%x\n",
381 READ_REG(priv, regUNC_MAC0_A),
382 READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
383 RET();
384 }
385
386 /**
387 * bdx_hw_start - inits registers and starts HW's Rx and Tx engines
388 * @priv: NIC private structure
389 */
bdx_hw_start(struct bdx_priv * priv)390 static int bdx_hw_start(struct bdx_priv *priv)
391 {
392 int rc = -EIO;
393 struct net_device *ndev = priv->ndev;
394
395 ENTER;
396 bdx_link_changed(priv);
397
398 /* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
399 WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
400 WRITE_REG(priv, regPAUSE_QUANT, 0x96);
401 WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
402 WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
403 WRITE_REG(priv, regRX_FULLNESS, 0);
404 WRITE_REG(priv, regTX_FULLNESS, 0);
405 WRITE_REG(priv, regCTRLST,
406 regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
407
408 WRITE_REG(priv, regVGLB, 0);
409 WRITE_REG(priv, regMAX_FRAME_A,
410 priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
411
412 DBG("RDINTCM=%08x\n", priv->rdintcm); /*NOTE: test script uses this */
413 WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
414 WRITE_REG(priv, regRDINTCM2, 0); /*cpu_to_le32(rcm.val)); */
415
416 DBG("TDINTCM=%08x\n", priv->tdintcm); /*NOTE: test script uses this */
417 WRITE_REG(priv, regTDINTCM0, priv->tdintcm); /* old val = 0x300064 */
418
419 /* Enable timer interrupt once in 2 secs. */
420 /*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
421 bdx_restore_mac(priv->ndev, priv);
422
423 WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
424 GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
425
426 #define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
427
428 rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE,
429 ndev->name, ndev);
430 if (rc)
431 goto err_irq;
432 bdx_enable_interrupts(priv);
433
434 RET(0);
435
436 err_irq:
437 RET(rc);
438 }
439
bdx_hw_stop(struct bdx_priv * priv)440 static void bdx_hw_stop(struct bdx_priv *priv)
441 {
442 ENTER;
443 bdx_disable_interrupts(priv);
444 free_irq(priv->pdev->irq, priv->ndev);
445
446 netif_carrier_off(priv->ndev);
447 netif_stop_queue(priv->ndev);
448
449 RET();
450 }
451
bdx_hw_reset_direct(void __iomem * regs)452 static int bdx_hw_reset_direct(void __iomem *regs)
453 {
454 u32 val, i;
455 ENTER;
456
457 /* reset sequences: read, write 1, read, write 0 */
458 val = readl(regs + regCLKPLL);
459 writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
460 udelay(50);
461 val = readl(regs + regCLKPLL);
462 writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
463
464 /* check that the PLLs are locked and reset ended */
465 for (i = 0; i < 70; i++, mdelay(10))
466 if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
467 /* do any PCI-E read transaction */
468 readl(regs + regRXD_CFG0_0);
469 return 0;
470 }
471 pr_err("HW reset failed\n");
472 return 1; /* failure */
473 }
474
bdx_hw_reset(struct bdx_priv * priv)475 static int bdx_hw_reset(struct bdx_priv *priv)
476 {
477 u32 val, i;
478 ENTER;
479
480 if (priv->port == 0) {
481 /* reset sequences: read, write 1, read, write 0 */
482 val = READ_REG(priv, regCLKPLL);
483 WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
484 udelay(50);
485 val = READ_REG(priv, regCLKPLL);
486 WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
487 }
488 /* check that the PLLs are locked and reset ended */
489 for (i = 0; i < 70; i++, mdelay(10))
490 if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
491 /* do any PCI-E read transaction */
492 READ_REG(priv, regRXD_CFG0_0);
493 return 0;
494 }
495 pr_err("HW reset failed\n");
496 return 1; /* failure */
497 }
498
bdx_sw_reset(struct bdx_priv * priv)499 static int bdx_sw_reset(struct bdx_priv *priv)
500 {
501 int i;
502
503 ENTER;
504 /* 1. load MAC (obsolete) */
505 /* 2. disable Rx (and Tx) */
506 WRITE_REG(priv, regGMAC_RXF_A, 0);
507 mdelay(100);
508 /* 3. disable port */
509 WRITE_REG(priv, regDIS_PORT, 1);
510 /* 4. disable queue */
511 WRITE_REG(priv, regDIS_QU, 1);
512 /* 5. wait until hw is disabled */
513 for (i = 0; i < 50; i++) {
514 if (READ_REG(priv, regRST_PORT) & 1)
515 break;
516 mdelay(10);
517 }
518 if (i == 50)
519 netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n");
520
521 /* 6. disable intrs */
522 WRITE_REG(priv, regRDINTCM0, 0);
523 WRITE_REG(priv, regTDINTCM0, 0);
524 WRITE_REG(priv, regIMR, 0);
525 READ_REG(priv, regISR);
526
527 /* 7. reset queue */
528 WRITE_REG(priv, regRST_QU, 1);
529 /* 8. reset port */
530 WRITE_REG(priv, regRST_PORT, 1);
531 /* 9. zero all read and write pointers */
532 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
533 DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
534 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
535 WRITE_REG(priv, i, 0);
536 /* 10. unseet port disable */
537 WRITE_REG(priv, regDIS_PORT, 0);
538 /* 11. unset queue disable */
539 WRITE_REG(priv, regDIS_QU, 0);
540 /* 12. unset queue reset */
541 WRITE_REG(priv, regRST_QU, 0);
542 /* 13. unset port reset */
543 WRITE_REG(priv, regRST_PORT, 0);
544 /* 14. enable Rx */
545 /* skiped. will be done later */
546 /* 15. save MAC (obsolete) */
547 for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
548 DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
549
550 RET(0);
551 }
552
553 /* bdx_reset - performs right type of reset depending on hw type */
bdx_reset(struct bdx_priv * priv)554 static int bdx_reset(struct bdx_priv *priv)
555 {
556 ENTER;
557 RET((priv->pdev->device == 0x3009)
558 ? bdx_hw_reset(priv)
559 : bdx_sw_reset(priv));
560 }
561
562 /**
563 * bdx_close - Disables a network interface
564 * @ndev: network interface device structure
565 *
566 * Returns 0, this is not allowed to fail
567 *
568 * The close entry point is called when an interface is de-activated
569 * by the OS. The hardware is still under the drivers control, but
570 * needs to be disabled. A global MAC reset is issued to stop the
571 * hardware, and all transmit and receive resources are freed.
572 **/
bdx_close(struct net_device * ndev)573 static int bdx_close(struct net_device *ndev)
574 {
575 struct bdx_priv *priv = NULL;
576
577 ENTER;
578 priv = netdev_priv(ndev);
579
580 napi_disable(&priv->napi);
581
582 bdx_reset(priv);
583 bdx_hw_stop(priv);
584 bdx_rx_free(priv);
585 bdx_tx_free(priv);
586 RET(0);
587 }
588
589 /**
590 * bdx_open - Called when a network interface is made active
591 * @ndev: network interface device structure
592 *
593 * Returns 0 on success, negative value on failure
594 *
595 * The open entry point is called when a network interface is made
596 * active by the system (IFF_UP). At this point all resources needed
597 * for transmit and receive operations are allocated, the interrupt
598 * handler is registered with the OS, the watchdog timer is started,
599 * and the stack is notified that the interface is ready.
600 **/
bdx_open(struct net_device * ndev)601 static int bdx_open(struct net_device *ndev)
602 {
603 struct bdx_priv *priv;
604 int rc;
605
606 ENTER;
607 priv = netdev_priv(ndev);
608 bdx_reset(priv);
609 if (netif_running(ndev))
610 netif_stop_queue(priv->ndev);
611
612 if ((rc = bdx_tx_init(priv)) ||
613 (rc = bdx_rx_init(priv)) ||
614 (rc = bdx_fw_load(priv)))
615 goto err;
616
617 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
618
619 rc = bdx_hw_start(priv);
620 if (rc)
621 goto err;
622
623 napi_enable(&priv->napi);
624
625 print_fw_id(priv->nic);
626
627 RET(0);
628
629 err:
630 bdx_close(ndev);
631 RET(rc);
632 }
633
bdx_range_check(struct bdx_priv * priv,u32 offset)634 static int bdx_range_check(struct bdx_priv *priv, u32 offset)
635 {
636 return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
637 -EINVAL : 0;
638 }
639
bdx_siocdevprivate(struct net_device * ndev,struct ifreq * ifr,void __user * udata,int cmd)640 static int bdx_siocdevprivate(struct net_device *ndev, struct ifreq *ifr,
641 void __user *udata, int cmd)
642 {
643 struct bdx_priv *priv = netdev_priv(ndev);
644 u32 data[3];
645 int error;
646
647 ENTER;
648
649 DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
650 if (cmd != SIOCDEVPRIVATE) {
651 error = copy_from_user(data, udata, sizeof(data));
652 if (error) {
653 pr_err("can't copy from user\n");
654 RET(-EFAULT);
655 }
656 DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
657 } else {
658 return -EOPNOTSUPP;
659 }
660
661 if (!capable(CAP_SYS_RAWIO))
662 return -EPERM;
663
664 switch (data[0]) {
665
666 case BDX_OP_READ:
667 error = bdx_range_check(priv, data[1]);
668 if (error < 0)
669 return error;
670 data[2] = READ_REG(priv, data[1]);
671 DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
672 data[2]);
673 error = copy_to_user(udata, data, sizeof(data));
674 if (error)
675 RET(-EFAULT);
676 break;
677
678 case BDX_OP_WRITE:
679 error = bdx_range_check(priv, data[1]);
680 if (error < 0)
681 return error;
682 WRITE_REG(priv, data[1], data[2]);
683 DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
684 break;
685
686 default:
687 RET(-EOPNOTSUPP);
688 }
689 return 0;
690 }
691
692 /**
693 * __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
694 * @ndev: network device
695 * @vid: VLAN vid
696 * @enable: enable or disable vlan
697 *
698 * Passes VLAN filter table to hardware
699 */
__bdx_vlan_rx_vid(struct net_device * ndev,uint16_t vid,int enable)700 static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
701 {
702 struct bdx_priv *priv = netdev_priv(ndev);
703 u32 reg, bit, val;
704
705 ENTER;
706 DBG2("vid=%d value=%d\n", (int)vid, enable);
707 if (unlikely(vid >= 4096)) {
708 pr_err("invalid VID: %u (> 4096)\n", vid);
709 RET();
710 }
711 reg = regVLAN_0 + (vid / 32) * 4;
712 bit = 1 << vid % 32;
713 val = READ_REG(priv, reg);
714 DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
715 if (enable)
716 val |= bit;
717 else
718 val &= ~bit;
719 DBG2("new val %x\n", val);
720 WRITE_REG(priv, reg, val);
721 RET();
722 }
723
724 /**
725 * bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
726 * @ndev: network device
727 * @proto: unused
728 * @vid: VLAN vid to add
729 */
bdx_vlan_rx_add_vid(struct net_device * ndev,__be16 proto,u16 vid)730 static int bdx_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
731 {
732 __bdx_vlan_rx_vid(ndev, vid, 1);
733 return 0;
734 }
735
736 /**
737 * bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
738 * @ndev: network device
739 * @proto: unused
740 * @vid: VLAN vid to kill
741 */
bdx_vlan_rx_kill_vid(struct net_device * ndev,__be16 proto,u16 vid)742 static int bdx_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
743 {
744 __bdx_vlan_rx_vid(ndev, vid, 0);
745 return 0;
746 }
747
748 /**
749 * bdx_change_mtu - Change the Maximum Transfer Unit
750 * @ndev: network interface device structure
751 * @new_mtu: new value for maximum frame size
752 *
753 * Returns 0 on success, negative on failure
754 */
bdx_change_mtu(struct net_device * ndev,int new_mtu)755 static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
756 {
757 ENTER;
758
759 ndev->mtu = new_mtu;
760 if (netif_running(ndev)) {
761 bdx_close(ndev);
762 bdx_open(ndev);
763 }
764 RET(0);
765 }
766
bdx_setmulti(struct net_device * ndev)767 static void bdx_setmulti(struct net_device *ndev)
768 {
769 struct bdx_priv *priv = netdev_priv(ndev);
770
771 u32 rxf_val =
772 GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
773 int i;
774
775 ENTER;
776 /* IMF - imperfect (hash) rx multicat filter */
777 /* PMF - perfect rx multicat filter */
778
779 /* FIXME: RXE(OFF) */
780 if (ndev->flags & IFF_PROMISC) {
781 rxf_val |= GMAC_RX_FILTER_PRM;
782 } else if (ndev->flags & IFF_ALLMULTI) {
783 /* set IMF to accept all multicast frmaes */
784 for (i = 0; i < MAC_MCST_HASH_NUM; i++)
785 WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
786 } else if (!netdev_mc_empty(ndev)) {
787 u8 hash;
788 struct netdev_hw_addr *ha;
789 u32 reg, val;
790
791 /* set IMF to deny all multicast frames */
792 for (i = 0; i < MAC_MCST_HASH_NUM; i++)
793 WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
794 /* set PMF to deny all multicast frames */
795 for (i = 0; i < MAC_MCST_NUM; i++) {
796 WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
797 WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
798 }
799
800 /* use PMF to accept first MAC_MCST_NUM (15) addresses */
801 /* TBD: sort addresses and write them in ascending order
802 * into RX_MAC_MCST regs. we skip this phase now and accept ALL
803 * multicast frames throu IMF */
804 /* accept the rest of addresses throu IMF */
805 netdev_for_each_mc_addr(ha, ndev) {
806 hash = 0;
807 for (i = 0; i < ETH_ALEN; i++)
808 hash ^= ha->addr[i];
809 reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
810 val = READ_REG(priv, reg);
811 val |= (1 << (hash % 32));
812 WRITE_REG(priv, reg, val);
813 }
814
815 } else {
816 DBG("only own mac %d\n", netdev_mc_count(ndev));
817 rxf_val |= GMAC_RX_FILTER_AB;
818 }
819 WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
820 /* enable RX */
821 /* FIXME: RXE(ON) */
822 RET();
823 }
824
bdx_set_mac(struct net_device * ndev,void * p)825 static int bdx_set_mac(struct net_device *ndev, void *p)
826 {
827 struct bdx_priv *priv = netdev_priv(ndev);
828 struct sockaddr *addr = p;
829
830 ENTER;
831 /*
832 if (netif_running(dev))
833 return -EBUSY
834 */
835 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
836 bdx_restore_mac(ndev, priv);
837 RET(0);
838 }
839
bdx_read_mac(struct bdx_priv * priv)840 static int bdx_read_mac(struct bdx_priv *priv)
841 {
842 u16 macAddress[3], i;
843 ENTER;
844
845 macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
846 macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
847 macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
848 macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
849 macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
850 macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
851 for (i = 0; i < 3; i++) {
852 priv->ndev->dev_addr[i * 2 + 1] = macAddress[i];
853 priv->ndev->dev_addr[i * 2] = macAddress[i] >> 8;
854 }
855 RET(0);
856 }
857
bdx_read_l2stat(struct bdx_priv * priv,int reg)858 static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
859 {
860 u64 val;
861
862 val = READ_REG(priv, reg);
863 val |= ((u64) READ_REG(priv, reg + 8)) << 32;
864 return val;
865 }
866
867 /*Do the statistics-update work*/
bdx_update_stats(struct bdx_priv * priv)868 static void bdx_update_stats(struct bdx_priv *priv)
869 {
870 struct bdx_stats *stats = &priv->hw_stats;
871 u64 *stats_vector = (u64 *) stats;
872 int i;
873 int addr;
874
875 /*Fill HW structure */
876 addr = 0x7200;
877 /*First 12 statistics - 0x7200 - 0x72B0 */
878 for (i = 0; i < 12; i++) {
879 stats_vector[i] = bdx_read_l2stat(priv, addr);
880 addr += 0x10;
881 }
882 BDX_ASSERT(addr != 0x72C0);
883 /* 0x72C0-0x72E0 RSRV */
884 addr = 0x72F0;
885 for (; i < 16; i++) {
886 stats_vector[i] = bdx_read_l2stat(priv, addr);
887 addr += 0x10;
888 }
889 BDX_ASSERT(addr != 0x7330);
890 /* 0x7330-0x7360 RSRV */
891 addr = 0x7370;
892 for (; i < 19; i++) {
893 stats_vector[i] = bdx_read_l2stat(priv, addr);
894 addr += 0x10;
895 }
896 BDX_ASSERT(addr != 0x73A0);
897 /* 0x73A0-0x73B0 RSRV */
898 addr = 0x73C0;
899 for (; i < 23; i++) {
900 stats_vector[i] = bdx_read_l2stat(priv, addr);
901 addr += 0x10;
902 }
903 BDX_ASSERT(addr != 0x7400);
904 BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
905 }
906
907 static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
908 u16 rxd_vlan);
909 static void print_rxfd(struct rxf_desc *rxfd);
910
911 /*************************************************************************
912 * Rx DB *
913 *************************************************************************/
914
bdx_rxdb_destroy(struct rxdb * db)915 static void bdx_rxdb_destroy(struct rxdb *db)
916 {
917 vfree(db);
918 }
919
bdx_rxdb_create(int nelem)920 static struct rxdb *bdx_rxdb_create(int nelem)
921 {
922 struct rxdb *db;
923 int i;
924
925 db = vmalloc(sizeof(struct rxdb)
926 + (nelem * sizeof(int))
927 + (nelem * sizeof(struct rx_map)));
928 if (likely(db != NULL)) {
929 db->stack = (int *)(db + 1);
930 db->elems = (void *)(db->stack + nelem);
931 db->nelem = nelem;
932 db->top = nelem;
933 for (i = 0; i < nelem; i++)
934 db->stack[i] = nelem - i - 1; /* to make first allocs
935 close to db struct*/
936 }
937
938 return db;
939 }
940
bdx_rxdb_alloc_elem(struct rxdb * db)941 static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
942 {
943 BDX_ASSERT(db->top <= 0);
944 return db->stack[--(db->top)];
945 }
946
bdx_rxdb_addr_elem(struct rxdb * db,int n)947 static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
948 {
949 BDX_ASSERT((n < 0) || (n >= db->nelem));
950 return db->elems + n;
951 }
952
bdx_rxdb_available(struct rxdb * db)953 static inline int bdx_rxdb_available(struct rxdb *db)
954 {
955 return db->top;
956 }
957
bdx_rxdb_free_elem(struct rxdb * db,int n)958 static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
959 {
960 BDX_ASSERT((n >= db->nelem) || (n < 0));
961 db->stack[(db->top)++] = n;
962 }
963
964 /*************************************************************************
965 * Rx Init *
966 *************************************************************************/
967
968 /**
969 * bdx_rx_init - initialize RX all related HW and SW resources
970 * @priv: NIC private structure
971 *
972 * Returns 0 on success, negative value on failure
973 *
974 * It creates rxf and rxd fifos, update relevant HW registers, preallocate
975 * skb for rx. It assumes that Rx is desabled in HW
976 * funcs are grouped for better cache usage
977 *
978 * RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
979 * filled and packets will be dropped by nic without getting into host or
980 * cousing interrupt. Anyway, in that condition, host has no chance to process
981 * all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
982 */
983
984 /* TBD: ensure proper packet size */
985
bdx_rx_init(struct bdx_priv * priv)986 static int bdx_rx_init(struct bdx_priv *priv)
987 {
988 ENTER;
989
990 if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
991 regRXD_CFG0_0, regRXD_CFG1_0,
992 regRXD_RPTR_0, regRXD_WPTR_0))
993 goto err_mem;
994 if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
995 regRXF_CFG0_0, regRXF_CFG1_0,
996 regRXF_RPTR_0, regRXF_WPTR_0))
997 goto err_mem;
998 priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
999 sizeof(struct rxf_desc));
1000 if (!priv->rxdb)
1001 goto err_mem;
1002
1003 priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
1004 return 0;
1005
1006 err_mem:
1007 netdev_err(priv->ndev, "Rx init failed\n");
1008 return -ENOMEM;
1009 }
1010
1011 /**
1012 * bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
1013 * @priv: NIC private structure
1014 * @f: RXF fifo
1015 */
bdx_rx_free_skbs(struct bdx_priv * priv,struct rxf_fifo * f)1016 static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1017 {
1018 struct rx_map *dm;
1019 struct rxdb *db = priv->rxdb;
1020 u16 i;
1021
1022 ENTER;
1023 DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
1024 db->nelem - bdx_rxdb_available(db));
1025 while (bdx_rxdb_available(db) > 0) {
1026 i = bdx_rxdb_alloc_elem(db);
1027 dm = bdx_rxdb_addr_elem(db, i);
1028 dm->dma = 0;
1029 }
1030 for (i = 0; i < db->nelem; i++) {
1031 dm = bdx_rxdb_addr_elem(db, i);
1032 if (dm->dma) {
1033 dma_unmap_single(&priv->pdev->dev, dm->dma,
1034 f->m.pktsz, DMA_FROM_DEVICE);
1035 dev_kfree_skb(dm->skb);
1036 }
1037 }
1038 }
1039
1040 /**
1041 * bdx_rx_free - release all Rx resources
1042 * @priv: NIC private structure
1043 *
1044 * It assumes that Rx is desabled in HW
1045 */
bdx_rx_free(struct bdx_priv * priv)1046 static void bdx_rx_free(struct bdx_priv *priv)
1047 {
1048 ENTER;
1049 if (priv->rxdb) {
1050 bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
1051 bdx_rxdb_destroy(priv->rxdb);
1052 priv->rxdb = NULL;
1053 }
1054 bdx_fifo_free(priv, &priv->rxf_fifo0.m);
1055 bdx_fifo_free(priv, &priv->rxd_fifo0.m);
1056
1057 RET();
1058 }
1059
1060 /*************************************************************************
1061 * Rx Engine *
1062 *************************************************************************/
1063
1064 /**
1065 * bdx_rx_alloc_skbs - fill rxf fifo with new skbs
1066 * @priv: nic's private structure
1067 * @f: RXF fifo that needs skbs
1068 *
1069 * It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
1070 * skb's virtual and physical addresses are stored in skb db.
1071 * To calculate free space, func uses cached values of RPTR and WPTR
1072 * When needed, it also updates RPTR and WPTR.
1073 */
1074
1075 /* TBD: do not update WPTR if no desc were written */
1076
bdx_rx_alloc_skbs(struct bdx_priv * priv,struct rxf_fifo * f)1077 static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
1078 {
1079 struct sk_buff *skb;
1080 struct rxf_desc *rxfd;
1081 struct rx_map *dm;
1082 int dno, delta, idx;
1083 struct rxdb *db = priv->rxdb;
1084
1085 ENTER;
1086 dno = bdx_rxdb_available(db) - 1;
1087 while (dno > 0) {
1088 skb = netdev_alloc_skb(priv->ndev, f->m.pktsz + NET_IP_ALIGN);
1089 if (!skb)
1090 break;
1091
1092 skb_reserve(skb, NET_IP_ALIGN);
1093
1094 idx = bdx_rxdb_alloc_elem(db);
1095 dm = bdx_rxdb_addr_elem(db, idx);
1096 dm->dma = dma_map_single(&priv->pdev->dev, skb->data,
1097 f->m.pktsz, DMA_FROM_DEVICE);
1098 dm->skb = skb;
1099 rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1100 rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1101 rxfd->va_lo = idx;
1102 rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1103 rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1104 rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1105 print_rxfd(rxfd);
1106
1107 f->m.wptr += sizeof(struct rxf_desc);
1108 delta = f->m.wptr - f->m.memsz;
1109 if (unlikely(delta >= 0)) {
1110 f->m.wptr = delta;
1111 if (delta > 0) {
1112 memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1113 DBG("wrapped descriptor\n");
1114 }
1115 }
1116 dno--;
1117 }
1118 /*TBD: to do - delayed rxf wptr like in txd */
1119 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1120 RET();
1121 }
1122
1123 static inline void
NETIF_RX_MUX(struct bdx_priv * priv,u32 rxd_val1,u16 rxd_vlan,struct sk_buff * skb)1124 NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
1125 struct sk_buff *skb)
1126 {
1127 ENTER;
1128 DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1));
1129 if (GET_RXD_VTAG(rxd_val1)) {
1130 DBG("%s: vlan rcv vlan '%x' vtag '%x'\n",
1131 priv->ndev->name,
1132 GET_RXD_VLAN_ID(rxd_vlan),
1133 GET_RXD_VTAG(rxd_val1));
1134 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), GET_RXD_VLAN_TCI(rxd_vlan));
1135 }
1136 netif_receive_skb(skb);
1137 }
1138
bdx_recycle_skb(struct bdx_priv * priv,struct rxd_desc * rxdd)1139 static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
1140 {
1141 struct rxf_desc *rxfd;
1142 struct rx_map *dm;
1143 struct rxf_fifo *f;
1144 struct rxdb *db;
1145 int delta;
1146
1147 ENTER;
1148 DBG("priv=%p rxdd=%p\n", priv, rxdd);
1149 f = &priv->rxf_fifo0;
1150 db = priv->rxdb;
1151 DBG("db=%p f=%p\n", db, f);
1152 dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1153 DBG("dm=%p\n", dm);
1154 rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
1155 rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
1156 rxfd->va_lo = rxdd->va_lo;
1157 rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
1158 rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
1159 rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
1160 print_rxfd(rxfd);
1161
1162 f->m.wptr += sizeof(struct rxf_desc);
1163 delta = f->m.wptr - f->m.memsz;
1164 if (unlikely(delta >= 0)) {
1165 f->m.wptr = delta;
1166 if (delta > 0) {
1167 memcpy(f->m.va, f->m.va + f->m.memsz, delta);
1168 DBG("wrapped descriptor\n");
1169 }
1170 }
1171 RET();
1172 }
1173
1174 /**
1175 * bdx_rx_receive - receives full packets from RXD fifo and pass them to OS
1176 * NOTE: a special treatment is given to non-continuous descriptors
1177 * that start near the end, wraps around and continue at the beginning. a second
1178 * part is copied right after the first, and then descriptor is interpreted as
1179 * normal. fifo has an extra space to allow such operations
1180 * @priv: nic's private structure
1181 * @f: RXF fifo that needs skbs
1182 * @budget: maximum number of packets to receive
1183 */
1184
1185 /* TBD: replace memcpy func call by explicite inline asm */
1186
bdx_rx_receive(struct bdx_priv * priv,struct rxd_fifo * f,int budget)1187 static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
1188 {
1189 struct net_device *ndev = priv->ndev;
1190 struct sk_buff *skb, *skb2;
1191 struct rxd_desc *rxdd;
1192 struct rx_map *dm;
1193 struct rxf_fifo *rxf_fifo;
1194 int tmp_len, size;
1195 int done = 0;
1196 int max_done = BDX_MAX_RX_DONE;
1197 struct rxdb *db = NULL;
1198 /* Unmarshalled descriptor - copy of descriptor in host order */
1199 u32 rxd_val1;
1200 u16 len;
1201 u16 rxd_vlan;
1202
1203 ENTER;
1204 max_done = budget;
1205
1206 f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
1207
1208 size = f->m.wptr - f->m.rptr;
1209 if (size < 0)
1210 size = f->m.memsz + size; /* size is negative :-) */
1211
1212 while (size > 0) {
1213
1214 rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
1215 rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
1216
1217 len = CPU_CHIP_SWAP16(rxdd->len);
1218
1219 rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
1220
1221 print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
1222
1223 tmp_len = GET_RXD_BC(rxd_val1) << 3;
1224 BDX_ASSERT(tmp_len <= 0);
1225 size -= tmp_len;
1226 if (size < 0) /* test for partially arrived descriptor */
1227 break;
1228
1229 f->m.rptr += tmp_len;
1230
1231 tmp_len = f->m.rptr - f->m.memsz;
1232 if (unlikely(tmp_len >= 0)) {
1233 f->m.rptr = tmp_len;
1234 if (tmp_len > 0) {
1235 DBG("wrapped desc rptr=%d tmp_len=%d\n",
1236 f->m.rptr, tmp_len);
1237 memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
1238 }
1239 }
1240
1241 if (unlikely(GET_RXD_ERR(rxd_val1))) {
1242 DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
1243 ndev->stats.rx_errors++;
1244 bdx_recycle_skb(priv, rxdd);
1245 continue;
1246 }
1247
1248 rxf_fifo = &priv->rxf_fifo0;
1249 db = priv->rxdb;
1250 dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
1251 skb = dm->skb;
1252
1253 if (len < BDX_COPYBREAK &&
1254 (skb2 = netdev_alloc_skb(priv->ndev, len + NET_IP_ALIGN))) {
1255 skb_reserve(skb2, NET_IP_ALIGN);
1256 /*skb_put(skb2, len); */
1257 dma_sync_single_for_cpu(&priv->pdev->dev, dm->dma,
1258 rxf_fifo->m.pktsz,
1259 DMA_FROM_DEVICE);
1260 memcpy(skb2->data, skb->data, len);
1261 bdx_recycle_skb(priv, rxdd);
1262 skb = skb2;
1263 } else {
1264 dma_unmap_single(&priv->pdev->dev, dm->dma,
1265 rxf_fifo->m.pktsz, DMA_FROM_DEVICE);
1266 bdx_rxdb_free_elem(db, rxdd->va_lo);
1267 }
1268
1269 ndev->stats.rx_bytes += len;
1270
1271 skb_put(skb, len);
1272 skb->protocol = eth_type_trans(skb, ndev);
1273
1274 /* Non-IP packets aren't checksum-offloaded */
1275 if (GET_RXD_PKT_ID(rxd_val1) == 0)
1276 skb_checksum_none_assert(skb);
1277 else
1278 skb->ip_summed = CHECKSUM_UNNECESSARY;
1279
1280 NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
1281
1282 if (++done >= max_done)
1283 break;
1284 }
1285
1286 ndev->stats.rx_packets += done;
1287
1288 /* FIXME: do smth to minimize pci accesses */
1289 WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1290
1291 bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
1292
1293 RET(done);
1294 }
1295
1296 /*************************************************************************
1297 * Debug / Temprorary Code *
1298 *************************************************************************/
print_rxdd(struct rxd_desc * rxdd,u32 rxd_val1,u16 len,u16 rxd_vlan)1299 static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
1300 u16 rxd_vlan)
1301 {
1302 DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
1303 GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
1304 GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
1305 GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
1306 GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
1307 GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
1308 rxdd->va_hi);
1309 }
1310
print_rxfd(struct rxf_desc * rxfd)1311 static void print_rxfd(struct rxf_desc *rxfd)
1312 {
1313 DBG("=== RxF desc CHIP ORDER/ENDIANNESS =============\n"
1314 "info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
1315 rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
1316 }
1317
1318 /*
1319 * TX HW/SW interaction overview
1320 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1321 * There are 2 types of TX communication channels between driver and NIC.
1322 * 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
1323 * 2) TX Data Fifo - TXD - holds descriptors of full buffers.
1324 *
1325 * Currently NIC supports TSO, checksuming and gather DMA
1326 * UFO and IP fragmentation is on the way
1327 *
1328 * RX SW Data Structures
1329 * ~~~~~~~~~~~~~~~~~~~~~
1330 * txdb - used to keep track of all skbs owned by SW and their dma addresses.
1331 * For TX case, ownership lasts from geting packet via hard_xmit and until HW
1332 * acknowledges sent by TXF descriptors.
1333 * Implemented as cyclic buffer.
1334 * fifo - keeps info about fifo's size and location, relevant HW registers,
1335 * usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
1336 * Implemented as simple struct.
1337 *
1338 * TX SW Execution Flow
1339 * ~~~~~~~~~~~~~~~~~~~~
1340 * OS calls driver's hard_xmit method with packet to sent.
1341 * Driver creates DMA mappings, builds TXD descriptors and kicks HW
1342 * by updating TXD WPTR.
1343 * When packet is sent, HW write us TXF descriptor and SW frees original skb.
1344 * To prevent TXD fifo overflow without reading HW registers every time,
1345 * SW deploys "tx level" technique.
1346 * Upon strart up, tx level is initialized to TXD fifo length.
1347 * For every sent packet, SW gets its TXD descriptor sizei
1348 * (from precalculated array) and substructs it from tx level.
1349 * The size is also stored in txdb. When TXF ack arrives, SW fetch size of
1350 * original TXD descriptor from txdb and adds it to tx level.
1351 * When Tx level drops under some predefined treshhold, the driver
1352 * stops the TX queue. When TX level rises above that level,
1353 * the tx queue is enabled again.
1354 *
1355 * This technique avoids eccessive reading of RPTR and WPTR registers.
1356 * As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
1357 */
1358
1359 /**
1360 * __bdx_tx_db_ptr_next - helper function, increment read/write pointer + wrap
1361 * @db: tx data base
1362 * @pptr: read or write pointer
1363 */
__bdx_tx_db_ptr_next(struct txdb * db,struct tx_map ** pptr)1364 static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
1365 {
1366 BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */
1367
1368 BDX_ASSERT(*pptr != db->rptr && /* expect either read */
1369 *pptr != db->wptr); /* or write pointer */
1370
1371 BDX_ASSERT(*pptr < db->start || /* pointer has to be */
1372 *pptr >= db->end); /* in range */
1373
1374 ++*pptr;
1375 if (unlikely(*pptr == db->end))
1376 *pptr = db->start;
1377 }
1378
1379 /**
1380 * bdx_tx_db_inc_rptr - increment read pointer
1381 * @db: tx data base
1382 */
bdx_tx_db_inc_rptr(struct txdb * db)1383 static inline void bdx_tx_db_inc_rptr(struct txdb *db)
1384 {
1385 BDX_ASSERT(db->rptr == db->wptr); /* can't read from empty db */
1386 __bdx_tx_db_ptr_next(db, &db->rptr);
1387 }
1388
1389 /**
1390 * bdx_tx_db_inc_wptr - increment write pointer
1391 * @db: tx data base
1392 */
bdx_tx_db_inc_wptr(struct txdb * db)1393 static inline void bdx_tx_db_inc_wptr(struct txdb *db)
1394 {
1395 __bdx_tx_db_ptr_next(db, &db->wptr);
1396 BDX_ASSERT(db->rptr == db->wptr); /* we can not get empty db as
1397 a result of write */
1398 }
1399
1400 /**
1401 * bdx_tx_db_init - creates and initializes tx db
1402 * @d: tx data base
1403 * @sz_type: size of tx fifo
1404 *
1405 * Returns 0 on success, error code otherwise
1406 */
bdx_tx_db_init(struct txdb * d,int sz_type)1407 static int bdx_tx_db_init(struct txdb *d, int sz_type)
1408 {
1409 int memsz = FIFO_SIZE * (1 << (sz_type + 1));
1410
1411 d->start = vmalloc(memsz);
1412 if (!d->start)
1413 return -ENOMEM;
1414
1415 /*
1416 * In order to differentiate between db is empty and db is full
1417 * states at least one element should always be empty in order to
1418 * avoid rptr == wptr which means db is empty
1419 */
1420 d->size = memsz / sizeof(struct tx_map) - 1;
1421 d->end = d->start + d->size + 1; /* just after last element */
1422
1423 /* all dbs are created equally empty */
1424 d->rptr = d->start;
1425 d->wptr = d->start;
1426
1427 return 0;
1428 }
1429
1430 /**
1431 * bdx_tx_db_close - closes tx db and frees all memory
1432 * @d: tx data base
1433 */
bdx_tx_db_close(struct txdb * d)1434 static void bdx_tx_db_close(struct txdb *d)
1435 {
1436 BDX_ASSERT(d == NULL);
1437
1438 vfree(d->start);
1439 d->start = NULL;
1440 }
1441
1442 /*************************************************************************
1443 * Tx Engine *
1444 *************************************************************************/
1445
1446 /* sizes of tx desc (including padding if needed) as function
1447 * of skb's frag number */
1448 static struct {
1449 u16 bytes;
1450 u16 qwords; /* qword = 64 bit */
1451 } txd_sizes[MAX_SKB_FRAGS + 1];
1452
1453 /**
1454 * bdx_tx_map_skb - creates and stores dma mappings for skb's data blocks
1455 * @priv: NIC private structure
1456 * @skb: socket buffer to map
1457 * @txdd: TX descriptor to use
1458 *
1459 * It makes dma mappings for skb's data blocks and writes them to PBL of
1460 * new tx descriptor. It also stores them in the tx db, so they could be
1461 * unmaped after data was sent. It is reponsibility of a caller to make
1462 * sure that there is enough space in the tx db. Last element holds pointer
1463 * to skb itself and marked with zero length
1464 */
1465 static inline void
bdx_tx_map_skb(struct bdx_priv * priv,struct sk_buff * skb,struct txd_desc * txdd)1466 bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
1467 struct txd_desc *txdd)
1468 {
1469 struct txdb *db = &priv->txdb;
1470 struct pbl *pbl = &txdd->pbl[0];
1471 int nr_frags = skb_shinfo(skb)->nr_frags;
1472 int i;
1473
1474 db->wptr->len = skb_headlen(skb);
1475 db->wptr->addr.dma = dma_map_single(&priv->pdev->dev, skb->data,
1476 db->wptr->len, DMA_TO_DEVICE);
1477 pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1478 pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1479 pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1480 DBG("=== pbl len: 0x%x ================\n", pbl->len);
1481 DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
1482 DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
1483 bdx_tx_db_inc_wptr(db);
1484
1485 for (i = 0; i < nr_frags; i++) {
1486 const skb_frag_t *frag;
1487
1488 frag = &skb_shinfo(skb)->frags[i];
1489 db->wptr->len = skb_frag_size(frag);
1490 db->wptr->addr.dma = skb_frag_dma_map(&priv->pdev->dev, frag,
1491 0, skb_frag_size(frag),
1492 DMA_TO_DEVICE);
1493
1494 pbl++;
1495 pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
1496 pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
1497 pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
1498 bdx_tx_db_inc_wptr(db);
1499 }
1500
1501 /* add skb clean up info. */
1502 db->wptr->len = -txd_sizes[nr_frags].bytes;
1503 db->wptr->addr.skb = skb;
1504 bdx_tx_db_inc_wptr(db);
1505 }
1506
1507 /* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
1508 * number of frags is used as index to fetch correct descriptors size,
1509 * instead of calculating it each time */
init_txd_sizes(void)1510 static void __init init_txd_sizes(void)
1511 {
1512 int i, lwords;
1513
1514 /* 7 - is number of lwords in txd with one phys buffer
1515 * 3 - is number of lwords used for every additional phys buffer */
1516 for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
1517 lwords = 7 + (i * 3);
1518 if (lwords & 1)
1519 lwords++; /* pad it with 1 lword */
1520 txd_sizes[i].qwords = lwords >> 1;
1521 txd_sizes[i].bytes = lwords << 2;
1522 }
1523 }
1524
1525 /* bdx_tx_init - initialize all Tx related stuff.
1526 * Namely, TXD and TXF fifos, database etc */
bdx_tx_init(struct bdx_priv * priv)1527 static int bdx_tx_init(struct bdx_priv *priv)
1528 {
1529 if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
1530 regTXD_CFG0_0,
1531 regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
1532 goto err_mem;
1533 if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
1534 regTXF_CFG0_0,
1535 regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
1536 goto err_mem;
1537
1538 /* The TX db has to keep mappings for all packets sent (on TxD)
1539 * and not yet reclaimed (on TxF) */
1540 if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
1541 goto err_mem;
1542
1543 priv->tx_level = BDX_MAX_TX_LEVEL;
1544 #ifdef BDX_DELAY_WPTR
1545 priv->tx_update_mark = priv->tx_level - 1024;
1546 #endif
1547 return 0;
1548
1549 err_mem:
1550 netdev_err(priv->ndev, "Tx init failed\n");
1551 return -ENOMEM;
1552 }
1553
1554 /**
1555 * bdx_tx_space - calculates available space in TX fifo
1556 * @priv: NIC private structure
1557 *
1558 * Returns available space in TX fifo in bytes
1559 */
bdx_tx_space(struct bdx_priv * priv)1560 static inline int bdx_tx_space(struct bdx_priv *priv)
1561 {
1562 struct txd_fifo *f = &priv->txd_fifo0;
1563 int fsize;
1564
1565 f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
1566 fsize = f->m.rptr - f->m.wptr;
1567 if (fsize <= 0)
1568 fsize = f->m.memsz + fsize;
1569 return fsize;
1570 }
1571
1572 /**
1573 * bdx_tx_transmit - send packet to NIC
1574 * @skb: packet to send
1575 * @ndev: network device assigned to NIC
1576 * Return codes:
1577 * o NETDEV_TX_OK everything ok.
1578 * o NETDEV_TX_BUSY Cannot transmit packet, try later
1579 * Usually a bug, means queue start/stop flow control is broken in
1580 * the driver. Note: the driver must NOT put the skb in its DMA ring.
1581 */
bdx_tx_transmit(struct sk_buff * skb,struct net_device * ndev)1582 static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb,
1583 struct net_device *ndev)
1584 {
1585 struct bdx_priv *priv = netdev_priv(ndev);
1586 struct txd_fifo *f = &priv->txd_fifo0;
1587 int txd_checksum = 7; /* full checksum */
1588 int txd_lgsnd = 0;
1589 int txd_vlan_id = 0;
1590 int txd_vtag = 0;
1591 int txd_mss = 0;
1592
1593 int nr_frags = skb_shinfo(skb)->nr_frags;
1594 struct txd_desc *txdd;
1595 int len;
1596 unsigned long flags;
1597
1598 ENTER;
1599 local_irq_save(flags);
1600 spin_lock(&priv->tx_lock);
1601
1602 /* build tx descriptor */
1603 BDX_ASSERT(f->m.wptr >= f->m.memsz); /* started with valid wptr */
1604 txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
1605 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
1606 txd_checksum = 0;
1607
1608 if (skb_shinfo(skb)->gso_size) {
1609 txd_mss = skb_shinfo(skb)->gso_size;
1610 txd_lgsnd = 1;
1611 DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
1612 txd_mss);
1613 }
1614
1615 if (skb_vlan_tag_present(skb)) {
1616 /*Cut VLAN ID to 12 bits */
1617 txd_vlan_id = skb_vlan_tag_get(skb) & BITS_MASK(12);
1618 txd_vtag = 1;
1619 }
1620
1621 txdd->length = CPU_CHIP_SWAP16(skb->len);
1622 txdd->mss = CPU_CHIP_SWAP16(txd_mss);
1623 txdd->txd_val1 =
1624 CPU_CHIP_SWAP32(TXD_W1_VAL
1625 (txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
1626 txd_lgsnd, txd_vlan_id));
1627 DBG("=== TxD desc =====================\n");
1628 DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
1629 DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
1630
1631 bdx_tx_map_skb(priv, skb, txdd);
1632
1633 /* increment TXD write pointer. In case of
1634 fifo wrapping copy reminder of the descriptor
1635 to the beginning */
1636 f->m.wptr += txd_sizes[nr_frags].bytes;
1637 len = f->m.wptr - f->m.memsz;
1638 if (unlikely(len >= 0)) {
1639 f->m.wptr = len;
1640 if (len > 0) {
1641 BDX_ASSERT(len > f->m.memsz);
1642 memcpy(f->m.va, f->m.va + f->m.memsz, len);
1643 }
1644 }
1645 BDX_ASSERT(f->m.wptr >= f->m.memsz); /* finished with valid wptr */
1646
1647 priv->tx_level -= txd_sizes[nr_frags].bytes;
1648 BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1649 #ifdef BDX_DELAY_WPTR
1650 if (priv->tx_level > priv->tx_update_mark) {
1651 /* Force memory writes to complete before letting h/w
1652 know there are new descriptors to fetch.
1653 (might be needed on platforms like IA64)
1654 wmb(); */
1655 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1656 } else {
1657 if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
1658 priv->tx_noupd = 0;
1659 WRITE_REG(priv, f->m.reg_WPTR,
1660 f->m.wptr & TXF_WPTR_WR_PTR);
1661 }
1662 }
1663 #else
1664 /* Force memory writes to complete before letting h/w
1665 know there are new descriptors to fetch.
1666 (might be needed on platforms like IA64)
1667 wmb(); */
1668 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1669
1670 #endif
1671 #ifdef BDX_LLTX
1672 netif_trans_update(ndev); /* NETIF_F_LLTX driver :( */
1673 #endif
1674 ndev->stats.tx_packets++;
1675 ndev->stats.tx_bytes += skb->len;
1676
1677 if (priv->tx_level < BDX_MIN_TX_LEVEL) {
1678 DBG("%s: %s: TX Q STOP level %d\n",
1679 BDX_DRV_NAME, ndev->name, priv->tx_level);
1680 netif_stop_queue(ndev);
1681 }
1682
1683 spin_unlock_irqrestore(&priv->tx_lock, flags);
1684 return NETDEV_TX_OK;
1685 }
1686
1687 /**
1688 * bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
1689 * @priv: bdx adapter
1690 *
1691 * It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
1692 * that those packets were sent
1693 */
bdx_tx_cleanup(struct bdx_priv * priv)1694 static void bdx_tx_cleanup(struct bdx_priv *priv)
1695 {
1696 struct txf_fifo *f = &priv->txf_fifo0;
1697 struct txdb *db = &priv->txdb;
1698 int tx_level = 0;
1699
1700 ENTER;
1701 f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
1702 BDX_ASSERT(f->m.rptr >= f->m.memsz); /* started with valid rptr */
1703
1704 while (f->m.wptr != f->m.rptr) {
1705 f->m.rptr += BDX_TXF_DESC_SZ;
1706 f->m.rptr &= f->m.size_mask;
1707
1708 /* unmap all the fragments */
1709 /* first has to come tx_maps containing dma */
1710 BDX_ASSERT(db->rptr->len == 0);
1711 do {
1712 BDX_ASSERT(db->rptr->addr.dma == 0);
1713 dma_unmap_page(&priv->pdev->dev, db->rptr->addr.dma,
1714 db->rptr->len, DMA_TO_DEVICE);
1715 bdx_tx_db_inc_rptr(db);
1716 } while (db->rptr->len > 0);
1717 tx_level -= db->rptr->len; /* '-' koz len is negative */
1718
1719 /* now should come skb pointer - free it */
1720 dev_consume_skb_irq(db->rptr->addr.skb);
1721 bdx_tx_db_inc_rptr(db);
1722 }
1723
1724 /* let h/w know which TXF descriptors were cleaned */
1725 BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
1726 WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
1727
1728 /* We reclaimed resources, so in case the Q is stopped by xmit callback,
1729 * we resume the transmission and use tx_lock to synchronize with xmit.*/
1730 spin_lock(&priv->tx_lock);
1731 priv->tx_level += tx_level;
1732 BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
1733 #ifdef BDX_DELAY_WPTR
1734 if (priv->tx_noupd) {
1735 priv->tx_noupd = 0;
1736 WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
1737 priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
1738 }
1739 #endif
1740
1741 if (unlikely(netif_queue_stopped(priv->ndev) &&
1742 netif_carrier_ok(priv->ndev) &&
1743 (priv->tx_level >= BDX_MIN_TX_LEVEL))) {
1744 DBG("%s: %s: TX Q WAKE level %d\n",
1745 BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
1746 netif_wake_queue(priv->ndev);
1747 }
1748 spin_unlock(&priv->tx_lock);
1749 }
1750
1751 /**
1752 * bdx_tx_free_skbs - frees all skbs from TXD fifo.
1753 * @priv: NIC private structure
1754 *
1755 * It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
1756 */
bdx_tx_free_skbs(struct bdx_priv * priv)1757 static void bdx_tx_free_skbs(struct bdx_priv *priv)
1758 {
1759 struct txdb *db = &priv->txdb;
1760
1761 ENTER;
1762 while (db->rptr != db->wptr) {
1763 if (likely(db->rptr->len))
1764 dma_unmap_page(&priv->pdev->dev, db->rptr->addr.dma,
1765 db->rptr->len, DMA_TO_DEVICE);
1766 else
1767 dev_kfree_skb(db->rptr->addr.skb);
1768 bdx_tx_db_inc_rptr(db);
1769 }
1770 RET();
1771 }
1772
1773 /* bdx_tx_free - frees all Tx resources */
bdx_tx_free(struct bdx_priv * priv)1774 static void bdx_tx_free(struct bdx_priv *priv)
1775 {
1776 ENTER;
1777 bdx_tx_free_skbs(priv);
1778 bdx_fifo_free(priv, &priv->txd_fifo0.m);
1779 bdx_fifo_free(priv, &priv->txf_fifo0.m);
1780 bdx_tx_db_close(&priv->txdb);
1781 }
1782
1783 /**
1784 * bdx_tx_push_desc - push descriptor to TxD fifo
1785 * @priv: NIC private structure
1786 * @data: desc's data
1787 * @size: desc's size
1788 *
1789 * Pushes desc to TxD fifo and overlaps it if needed.
1790 * NOTE: this func does not check for available space. this is responsibility
1791 * of the caller. Neither does it check that data size is smaller than
1792 * fifo size.
1793 */
bdx_tx_push_desc(struct bdx_priv * priv,void * data,int size)1794 static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
1795 {
1796 struct txd_fifo *f = &priv->txd_fifo0;
1797 int i = f->m.memsz - f->m.wptr;
1798
1799 if (size == 0)
1800 return;
1801
1802 if (i > size) {
1803 memcpy(f->m.va + f->m.wptr, data, size);
1804 f->m.wptr += size;
1805 } else {
1806 memcpy(f->m.va + f->m.wptr, data, i);
1807 f->m.wptr = size - i;
1808 memcpy(f->m.va, data + i, f->m.wptr);
1809 }
1810 WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
1811 }
1812
1813 /**
1814 * bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
1815 * @priv: NIC private structure
1816 * @data: desc's data
1817 * @size: desc's size
1818 *
1819 * NOTE: this func does check for available space and, if necessary, waits for
1820 * NIC to read existing data before writing new one.
1821 */
bdx_tx_push_desc_safe(struct bdx_priv * priv,void * data,int size)1822 static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
1823 {
1824 int timer = 0;
1825 ENTER;
1826
1827 while (size > 0) {
1828 /* we substruct 8 because when fifo is full rptr == wptr
1829 which also means that fifo is empty, we can understand
1830 the difference, but could hw do the same ??? :) */
1831 int avail = bdx_tx_space(priv) - 8;
1832 if (avail <= 0) {
1833 if (timer++ > 300) { /* prevent endless loop */
1834 DBG("timeout while writing desc to TxD fifo\n");
1835 break;
1836 }
1837 udelay(50); /* give hw a chance to clean fifo */
1838 continue;
1839 }
1840 avail = min(avail, size);
1841 DBG("about to push %d bytes starting %p size %d\n", avail,
1842 data, size);
1843 bdx_tx_push_desc(priv, data, avail);
1844 size -= avail;
1845 data += avail;
1846 }
1847 RET();
1848 }
1849
1850 static const struct net_device_ops bdx_netdev_ops = {
1851 .ndo_open = bdx_open,
1852 .ndo_stop = bdx_close,
1853 .ndo_start_xmit = bdx_tx_transmit,
1854 .ndo_validate_addr = eth_validate_addr,
1855 .ndo_siocdevprivate = bdx_siocdevprivate,
1856 .ndo_set_rx_mode = bdx_setmulti,
1857 .ndo_change_mtu = bdx_change_mtu,
1858 .ndo_set_mac_address = bdx_set_mac,
1859 .ndo_vlan_rx_add_vid = bdx_vlan_rx_add_vid,
1860 .ndo_vlan_rx_kill_vid = bdx_vlan_rx_kill_vid,
1861 };
1862
1863 /**
1864 * bdx_probe - Device Initialization Routine
1865 * @pdev: PCI device information struct
1866 * @ent: entry in bdx_pci_tbl
1867 *
1868 * Returns 0 on success, negative on failure
1869 *
1870 * bdx_probe initializes an adapter identified by a pci_dev structure.
1871 * The OS initialization, configuring of the adapter private structure,
1872 * and a hardware reset occur.
1873 *
1874 * functions and their order used as explained in
1875 * /usr/src/linux/Documentation/DMA-{API,mapping}.txt
1876 *
1877 */
1878
1879 /* TBD: netif_msg should be checked and implemented. I disable it for now */
1880 static int
bdx_probe(struct pci_dev * pdev,const struct pci_device_id * ent)1881 bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1882 {
1883 struct net_device *ndev;
1884 struct bdx_priv *priv;
1885 int err, pci_using_dac, port;
1886 unsigned long pciaddr;
1887 u32 regionSize;
1888 struct pci_nic *nic;
1889
1890 ENTER;
1891
1892 nic = vmalloc(sizeof(*nic));
1893 if (!nic)
1894 RET(-ENOMEM);
1895
1896 /************** pci *****************/
1897 err = pci_enable_device(pdev);
1898 if (err) /* it triggers interrupt, dunno why. */
1899 goto err_pci; /* it's not a problem though */
1900
1901 if (!(err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) &&
1902 !(err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)))) {
1903 pci_using_dac = 1;
1904 } else {
1905 if ((err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) ||
1906 (err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
1907 pr_err("No usable DMA configuration, aborting\n");
1908 goto err_dma;
1909 }
1910 pci_using_dac = 0;
1911 }
1912
1913 err = pci_request_regions(pdev, BDX_DRV_NAME);
1914 if (err)
1915 goto err_dma;
1916
1917 pci_set_master(pdev);
1918
1919 pciaddr = pci_resource_start(pdev, 0);
1920 if (!pciaddr) {
1921 err = -EIO;
1922 pr_err("no MMIO resource\n");
1923 goto err_out_res;
1924 }
1925 regionSize = pci_resource_len(pdev, 0);
1926 if (regionSize < BDX_REGS_SIZE) {
1927 err = -EIO;
1928 pr_err("MMIO resource (%x) too small\n", regionSize);
1929 goto err_out_res;
1930 }
1931
1932 nic->regs = ioremap(pciaddr, regionSize);
1933 if (!nic->regs) {
1934 err = -EIO;
1935 pr_err("ioremap failed\n");
1936 goto err_out_res;
1937 }
1938
1939 if (pdev->irq < 2) {
1940 err = -EIO;
1941 pr_err("invalid irq (%d)\n", pdev->irq);
1942 goto err_out_iomap;
1943 }
1944 pci_set_drvdata(pdev, nic);
1945
1946 if (pdev->device == 0x3014)
1947 nic->port_num = 2;
1948 else
1949 nic->port_num = 1;
1950
1951 print_hw_id(pdev);
1952
1953 bdx_hw_reset_direct(nic->regs);
1954
1955 nic->irq_type = IRQ_INTX;
1956 #ifdef BDX_MSI
1957 if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
1958 err = pci_enable_msi(pdev);
1959 if (err)
1960 pr_err("Can't enable msi. error is %d\n", err);
1961 else
1962 nic->irq_type = IRQ_MSI;
1963 } else
1964 DBG("HW does not support MSI\n");
1965 #endif
1966
1967 /************** netdev **************/
1968 for (port = 0; port < nic->port_num; port++) {
1969 ndev = alloc_etherdev(sizeof(struct bdx_priv));
1970 if (!ndev) {
1971 err = -ENOMEM;
1972 goto err_out_iomap;
1973 }
1974
1975 ndev->netdev_ops = &bdx_netdev_ops;
1976 ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
1977
1978 bdx_set_ethtool_ops(ndev); /* ethtool interface */
1979
1980 /* these fields are used for info purposes only
1981 * so we can have them same for all ports of the board */
1982 ndev->if_port = port;
1983 ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO
1984 | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1985 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_RXCSUM
1986 ;
1987 ndev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1988 NETIF_F_TSO | NETIF_F_HW_VLAN_CTAG_TX;
1989
1990 if (pci_using_dac)
1991 ndev->features |= NETIF_F_HIGHDMA;
1992
1993 /************** priv ****************/
1994 priv = nic->priv[port] = netdev_priv(ndev);
1995
1996 priv->pBdxRegs = nic->regs + port * 0x8000;
1997 priv->port = port;
1998 priv->pdev = pdev;
1999 priv->ndev = ndev;
2000 priv->nic = nic;
2001 priv->msg_enable = BDX_DEF_MSG_ENABLE;
2002
2003 netif_napi_add(ndev, &priv->napi, bdx_poll, 64);
2004
2005 if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
2006 DBG("HW statistics not supported\n");
2007 priv->stats_flag = 0;
2008 } else {
2009 priv->stats_flag = 1;
2010 }
2011
2012 /* Initialize fifo sizes. */
2013 priv->txd_size = 2;
2014 priv->txf_size = 2;
2015 priv->rxd_size = 2;
2016 priv->rxf_size = 3;
2017
2018 /* Initialize the initial coalescing registers. */
2019 priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
2020 priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
2021
2022 /* ndev->xmit_lock spinlock is not used.
2023 * Private priv->tx_lock is used for synchronization
2024 * between transmit and TX irq cleanup. In addition
2025 * set multicast list callback has to use priv->tx_lock.
2026 */
2027 #ifdef BDX_LLTX
2028 ndev->features |= NETIF_F_LLTX;
2029 #endif
2030 /* MTU range: 60 - 16384 */
2031 ndev->min_mtu = ETH_ZLEN;
2032 ndev->max_mtu = BDX_MAX_MTU;
2033
2034 spin_lock_init(&priv->tx_lock);
2035
2036 /*bdx_hw_reset(priv); */
2037 if (bdx_read_mac(priv)) {
2038 pr_err("load MAC address failed\n");
2039 err = -EFAULT;
2040 goto err_out_iomap;
2041 }
2042 SET_NETDEV_DEV(ndev, &pdev->dev);
2043 err = register_netdev(ndev);
2044 if (err) {
2045 pr_err("register_netdev failed\n");
2046 goto err_out_free;
2047 }
2048 netif_carrier_off(ndev);
2049 netif_stop_queue(ndev);
2050
2051 print_eth_id(ndev);
2052 }
2053 RET(0);
2054
2055 err_out_free:
2056 free_netdev(ndev);
2057 err_out_iomap:
2058 iounmap(nic->regs);
2059 err_out_res:
2060 pci_release_regions(pdev);
2061 err_dma:
2062 pci_disable_device(pdev);
2063 err_pci:
2064 vfree(nic);
2065
2066 RET(err);
2067 }
2068
2069 /****************** Ethtool interface *********************/
2070 /* get strings for statistics counters */
2071 static const char
2072 bdx_stat_names[][ETH_GSTRING_LEN] = {
2073 "InUCast", /* 0x7200 */
2074 "InMCast", /* 0x7210 */
2075 "InBCast", /* 0x7220 */
2076 "InPkts", /* 0x7230 */
2077 "InErrors", /* 0x7240 */
2078 "InDropped", /* 0x7250 */
2079 "FrameTooLong", /* 0x7260 */
2080 "FrameSequenceErrors", /* 0x7270 */
2081 "InVLAN", /* 0x7280 */
2082 "InDroppedDFE", /* 0x7290 */
2083 "InDroppedIntFull", /* 0x72A0 */
2084 "InFrameAlignErrors", /* 0x72B0 */
2085
2086 /* 0x72C0-0x72E0 RSRV */
2087
2088 "OutUCast", /* 0x72F0 */
2089 "OutMCast", /* 0x7300 */
2090 "OutBCast", /* 0x7310 */
2091 "OutPkts", /* 0x7320 */
2092
2093 /* 0x7330-0x7360 RSRV */
2094
2095 "OutVLAN", /* 0x7370 */
2096 "InUCastOctects", /* 0x7380 */
2097 "OutUCastOctects", /* 0x7390 */
2098
2099 /* 0x73A0-0x73B0 RSRV */
2100
2101 "InBCastOctects", /* 0x73C0 */
2102 "OutBCastOctects", /* 0x73D0 */
2103 "InOctects", /* 0x73E0 */
2104 "OutOctects", /* 0x73F0 */
2105 };
2106
2107 /*
2108 * bdx_get_link_ksettings - get device-specific settings
2109 * @netdev
2110 * @ecmd
2111 */
bdx_get_link_ksettings(struct net_device * netdev,struct ethtool_link_ksettings * ecmd)2112 static int bdx_get_link_ksettings(struct net_device *netdev,
2113 struct ethtool_link_ksettings *ecmd)
2114 {
2115 ethtool_link_ksettings_zero_link_mode(ecmd, supported);
2116 ethtool_link_ksettings_add_link_mode(ecmd, supported,
2117 10000baseT_Full);
2118 ethtool_link_ksettings_add_link_mode(ecmd, supported, FIBRE);
2119 ethtool_link_ksettings_zero_link_mode(ecmd, advertising);
2120 ethtool_link_ksettings_add_link_mode(ecmd, advertising,
2121 10000baseT_Full);
2122 ethtool_link_ksettings_add_link_mode(ecmd, advertising, FIBRE);
2123
2124 ecmd->base.speed = SPEED_10000;
2125 ecmd->base.duplex = DUPLEX_FULL;
2126 ecmd->base.port = PORT_FIBRE;
2127 ecmd->base.autoneg = AUTONEG_DISABLE;
2128
2129 return 0;
2130 }
2131
2132 /*
2133 * bdx_get_drvinfo - report driver information
2134 * @netdev
2135 * @drvinfo
2136 */
2137 static void
bdx_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)2138 bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
2139 {
2140 struct bdx_priv *priv = netdev_priv(netdev);
2141
2142 strlcpy(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
2143 strlcpy(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
2144 strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
2145 strlcpy(drvinfo->bus_info, pci_name(priv->pdev),
2146 sizeof(drvinfo->bus_info));
2147 }
2148
2149 /*
2150 * bdx_get_coalesce - get interrupt coalescing parameters
2151 * @netdev
2152 * @ecoal
2153 */
bdx_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ecoal,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)2154 static int bdx_get_coalesce(struct net_device *netdev,
2155 struct ethtool_coalesce *ecoal,
2156 struct kernel_ethtool_coalesce *kernel_coal,
2157 struct netlink_ext_ack *extack)
2158 {
2159 u32 rdintcm;
2160 u32 tdintcm;
2161 struct bdx_priv *priv = netdev_priv(netdev);
2162
2163 rdintcm = priv->rdintcm;
2164 tdintcm = priv->tdintcm;
2165
2166 /* PCK_TH measures in multiples of FIFO bytes
2167 We translate to packets */
2168 ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
2169 ecoal->rx_max_coalesced_frames =
2170 ((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
2171
2172 ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
2173 ecoal->tx_max_coalesced_frames =
2174 ((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
2175
2176 /* adaptive parameters ignored */
2177 return 0;
2178 }
2179
2180 /*
2181 * bdx_set_coalesce - set interrupt coalescing parameters
2182 * @netdev
2183 * @ecoal
2184 */
bdx_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ecoal,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)2185 static int bdx_set_coalesce(struct net_device *netdev,
2186 struct ethtool_coalesce *ecoal,
2187 struct kernel_ethtool_coalesce *kernel_coal,
2188 struct netlink_ext_ack *extack)
2189 {
2190 u32 rdintcm;
2191 u32 tdintcm;
2192 struct bdx_priv *priv = netdev_priv(netdev);
2193 int rx_coal;
2194 int tx_coal;
2195 int rx_max_coal;
2196 int tx_max_coal;
2197
2198 /* Check for valid input */
2199 rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
2200 tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
2201 rx_max_coal = ecoal->rx_max_coalesced_frames;
2202 tx_max_coal = ecoal->tx_max_coalesced_frames;
2203
2204 /* Translate from packets to multiples of FIFO bytes */
2205 rx_max_coal =
2206 (((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
2207 / PCK_TH_MULT);
2208 tx_max_coal =
2209 (((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
2210 / PCK_TH_MULT);
2211
2212 if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) ||
2213 (rx_max_coal > 0xF) || (tx_max_coal > 0xF))
2214 return -EINVAL;
2215
2216 rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
2217 GET_RXF_TH(priv->rdintcm), rx_max_coal);
2218 tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
2219 tx_max_coal);
2220
2221 priv->rdintcm = rdintcm;
2222 priv->tdintcm = tdintcm;
2223
2224 WRITE_REG(priv, regRDINTCM0, rdintcm);
2225 WRITE_REG(priv, regTDINTCM0, tdintcm);
2226
2227 return 0;
2228 }
2229
2230 /* Convert RX fifo size to number of pending packets */
bdx_rx_fifo_size_to_packets(int rx_size)2231 static inline int bdx_rx_fifo_size_to_packets(int rx_size)
2232 {
2233 return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc);
2234 }
2235
2236 /* Convert TX fifo size to number of pending packets */
bdx_tx_fifo_size_to_packets(int tx_size)2237 static inline int bdx_tx_fifo_size_to_packets(int tx_size)
2238 {
2239 return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ;
2240 }
2241
2242 /*
2243 * bdx_get_ringparam - report ring sizes
2244 * @netdev
2245 * @ring
2246 */
2247 static void
bdx_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)2248 bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2249 {
2250 struct bdx_priv *priv = netdev_priv(netdev);
2251
2252 /*max_pending - the maximum-sized FIFO we allow */
2253 ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
2254 ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
2255 ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
2256 ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
2257 }
2258
2259 /*
2260 * bdx_set_ringparam - set ring sizes
2261 * @netdev
2262 * @ring
2263 */
2264 static int
bdx_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)2265 bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring)
2266 {
2267 struct bdx_priv *priv = netdev_priv(netdev);
2268 int rx_size = 0;
2269 int tx_size = 0;
2270
2271 for (; rx_size < 4; rx_size++) {
2272 if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
2273 break;
2274 }
2275 if (rx_size == 4)
2276 rx_size = 3;
2277
2278 for (; tx_size < 4; tx_size++) {
2279 if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
2280 break;
2281 }
2282 if (tx_size == 4)
2283 tx_size = 3;
2284
2285 /*Is there anything to do? */
2286 if ((rx_size == priv->rxf_size) &&
2287 (tx_size == priv->txd_size))
2288 return 0;
2289
2290 priv->rxf_size = rx_size;
2291 if (rx_size > 1)
2292 priv->rxd_size = rx_size - 1;
2293 else
2294 priv->rxd_size = rx_size;
2295
2296 priv->txf_size = priv->txd_size = tx_size;
2297
2298 if (netif_running(netdev)) {
2299 bdx_close(netdev);
2300 bdx_open(netdev);
2301 }
2302 return 0;
2303 }
2304
2305 /*
2306 * bdx_get_strings - return a set of strings that describe the requested objects
2307 * @netdev
2308 * @data
2309 */
bdx_get_strings(struct net_device * netdev,u32 stringset,u8 * data)2310 static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2311 {
2312 switch (stringset) {
2313 case ETH_SS_STATS:
2314 memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
2315 break;
2316 }
2317 }
2318
2319 /*
2320 * bdx_get_sset_count - return number of statistics or tests
2321 * @netdev
2322 */
bdx_get_sset_count(struct net_device * netdev,int stringset)2323 static int bdx_get_sset_count(struct net_device *netdev, int stringset)
2324 {
2325 struct bdx_priv *priv = netdev_priv(netdev);
2326
2327 switch (stringset) {
2328 case ETH_SS_STATS:
2329 BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
2330 != sizeof(struct bdx_stats) / sizeof(u64));
2331 return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0;
2332 }
2333
2334 return -EINVAL;
2335 }
2336
2337 /*
2338 * bdx_get_ethtool_stats - return device's hardware L2 statistics
2339 * @netdev
2340 * @stats
2341 * @data
2342 */
bdx_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats * stats,u64 * data)2343 static void bdx_get_ethtool_stats(struct net_device *netdev,
2344 struct ethtool_stats *stats, u64 *data)
2345 {
2346 struct bdx_priv *priv = netdev_priv(netdev);
2347
2348 if (priv->stats_flag) {
2349
2350 /* Update stats from HW */
2351 bdx_update_stats(priv);
2352
2353 /* Copy data to user buffer */
2354 memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
2355 }
2356 }
2357
2358 /*
2359 * bdx_set_ethtool_ops - ethtool interface implementation
2360 * @netdev
2361 */
bdx_set_ethtool_ops(struct net_device * netdev)2362 static void bdx_set_ethtool_ops(struct net_device *netdev)
2363 {
2364 static const struct ethtool_ops bdx_ethtool_ops = {
2365 .supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2366 ETHTOOL_COALESCE_MAX_FRAMES,
2367 .get_drvinfo = bdx_get_drvinfo,
2368 .get_link = ethtool_op_get_link,
2369 .get_coalesce = bdx_get_coalesce,
2370 .set_coalesce = bdx_set_coalesce,
2371 .get_ringparam = bdx_get_ringparam,
2372 .set_ringparam = bdx_set_ringparam,
2373 .get_strings = bdx_get_strings,
2374 .get_sset_count = bdx_get_sset_count,
2375 .get_ethtool_stats = bdx_get_ethtool_stats,
2376 .get_link_ksettings = bdx_get_link_ksettings,
2377 };
2378
2379 netdev->ethtool_ops = &bdx_ethtool_ops;
2380 }
2381
2382 /**
2383 * bdx_remove - Device Removal Routine
2384 * @pdev: PCI device information struct
2385 *
2386 * bdx_remove is called by the PCI subsystem to alert the driver
2387 * that it should release a PCI device. The could be caused by a
2388 * Hot-Plug event, or because the driver is going to be removed from
2389 * memory.
2390 **/
bdx_remove(struct pci_dev * pdev)2391 static void bdx_remove(struct pci_dev *pdev)
2392 {
2393 struct pci_nic *nic = pci_get_drvdata(pdev);
2394 struct net_device *ndev;
2395 int port;
2396
2397 for (port = 0; port < nic->port_num; port++) {
2398 ndev = nic->priv[port]->ndev;
2399 unregister_netdev(ndev);
2400 free_netdev(ndev);
2401 }
2402
2403 /*bdx_hw_reset_direct(nic->regs); */
2404 #ifdef BDX_MSI
2405 if (nic->irq_type == IRQ_MSI)
2406 pci_disable_msi(pdev);
2407 #endif
2408
2409 iounmap(nic->regs);
2410 pci_release_regions(pdev);
2411 pci_disable_device(pdev);
2412 vfree(nic);
2413
2414 RET();
2415 }
2416
2417 static struct pci_driver bdx_pci_driver = {
2418 .name = BDX_DRV_NAME,
2419 .id_table = bdx_pci_tbl,
2420 .probe = bdx_probe,
2421 .remove = bdx_remove,
2422 };
2423
2424 /*
2425 * print_driver_id - print parameters of the driver build
2426 */
print_driver_id(void)2427 static void __init print_driver_id(void)
2428 {
2429 pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION);
2430 pr_info("Options: hw_csum %s\n", BDX_MSI_STRING);
2431 }
2432
bdx_module_init(void)2433 static int __init bdx_module_init(void)
2434 {
2435 ENTER;
2436 init_txd_sizes();
2437 print_driver_id();
2438 RET(pci_register_driver(&bdx_pci_driver));
2439 }
2440
2441 module_init(bdx_module_init);
2442
bdx_module_exit(void)2443 static void __exit bdx_module_exit(void)
2444 {
2445 ENTER;
2446 pci_unregister_driver(&bdx_pci_driver);
2447 RET();
2448 }
2449
2450 module_exit(bdx_module_exit);
2451
2452 MODULE_LICENSE("GPL");
2453 MODULE_AUTHOR(DRIVER_AUTHOR);
2454 MODULE_DESCRIPTION(BDX_DRV_DESC);
2455 MODULE_FIRMWARE("tehuti/bdx.bin");
2456