1  /* SPDX-License-Identifier: GPL-2.0+ */
2  /*
3   * Copyright (C) 2018 Exceet Electronics GmbH
4   * Copyright (C) 2018 Bootlin
5   *
6   * Author:
7   *	Peter Pan <peterpandong@micron.com>
8   *	Boris Brezillon <boris.brezillon@bootlin.com>
9   */
10  
11  #ifndef __LINUX_SPI_MEM_H
12  #define __LINUX_SPI_MEM_H
13  
14  #include <linux/spi/spi.h>
15  
16  #define SPI_MEM_OP_CMD(__opcode, __buswidth)			\
17  	{							\
18  		.buswidth = __buswidth,				\
19  		.opcode = __opcode,				\
20  		.nbytes = 1,					\
21  	}
22  
23  #define SPI_MEM_OP_ADDR(__nbytes, __val, __buswidth)		\
24  	{							\
25  		.nbytes = __nbytes,				\
26  		.val = __val,					\
27  		.buswidth = __buswidth,				\
28  	}
29  
30  #define SPI_MEM_OP_NO_ADDR	{ }
31  
32  #define SPI_MEM_OP_DUMMY(__nbytes, __buswidth)			\
33  	{							\
34  		.nbytes = __nbytes,				\
35  		.buswidth = __buswidth,				\
36  	}
37  
38  #define SPI_MEM_OP_NO_DUMMY	{ }
39  
40  #define SPI_MEM_OP_DATA_IN(__nbytes, __buf, __buswidth)		\
41  	{							\
42  		.dir = SPI_MEM_DATA_IN,				\
43  		.nbytes = __nbytes,				\
44  		.buf.in = __buf,				\
45  		.buswidth = __buswidth,				\
46  	}
47  
48  #define SPI_MEM_OP_DATA_OUT(__nbytes, __buf, __buswidth)	\
49  	{							\
50  		.dir = SPI_MEM_DATA_OUT,			\
51  		.nbytes = __nbytes,				\
52  		.buf.out = __buf,				\
53  		.buswidth = __buswidth,				\
54  	}
55  
56  #define SPI_MEM_OP_NO_DATA	{ }
57  
58  /**
59   * enum spi_mem_data_dir - describes the direction of a SPI memory data
60   *			   transfer from the controller perspective
61   * @SPI_MEM_NO_DATA: no data transferred
62   * @SPI_MEM_DATA_IN: data coming from the SPI memory
63   * @SPI_MEM_DATA_OUT: data sent to the SPI memory
64   */
65  enum spi_mem_data_dir {
66  	SPI_MEM_NO_DATA,
67  	SPI_MEM_DATA_IN,
68  	SPI_MEM_DATA_OUT,
69  };
70  
71  /**
72   * struct spi_mem_op - describes a SPI memory operation
73   * @cmd.nbytes: number of opcode bytes (only 1 or 2 are valid). The opcode is
74   *		sent MSB-first.
75   * @cmd.buswidth: number of IO lines used to transmit the command
76   * @cmd.opcode: operation opcode
77   * @cmd.dtr: whether the command opcode should be sent in DTR mode or not
78   * @addr.nbytes: number of address bytes to send. Can be zero if the operation
79   *		 does not need to send an address
80   * @addr.buswidth: number of IO lines used to transmit the address cycles
81   * @addr.dtr: whether the address should be sent in DTR mode or not
82   * @addr.val: address value. This value is always sent MSB first on the bus.
83   *	      Note that only @addr.nbytes are taken into account in this
84   *	      address value, so users should make sure the value fits in the
85   *	      assigned number of bytes.
86   * @dummy.nbytes: number of dummy bytes to send after an opcode or address. Can
87   *		  be zero if the operation does not require dummy bytes
88   * @dummy.buswidth: number of IO lanes used to transmit the dummy bytes
89   * @dummy.dtr: whether the dummy bytes should be sent in DTR mode or not
90   * @data.buswidth: number of IO lanes used to send/receive the data
91   * @data.dtr: whether the data should be sent in DTR mode or not
92   * @data.ecc: whether error correction is required or not
93   * @data.dir: direction of the transfer
94   * @data.nbytes: number of data bytes to send/receive. Can be zero if the
95   *		 operation does not involve transferring data
96   * @data.buf.in: input buffer (must be DMA-able)
97   * @data.buf.out: output buffer (must be DMA-able)
98   */
99  struct spi_mem_op {
100  	struct {
101  		u8 nbytes;
102  		u8 buswidth;
103  		u8 dtr : 1;
104  		u8 __pad : 7;
105  		u16 opcode;
106  	} cmd;
107  
108  	struct {
109  		u8 nbytes;
110  		u8 buswidth;
111  		u8 dtr : 1;
112  		u8 __pad : 7;
113  		u64 val;
114  	} addr;
115  
116  	struct {
117  		u8 nbytes;
118  		u8 buswidth;
119  		u8 dtr : 1;
120  		u8 __pad : 7;
121  	} dummy;
122  
123  	struct {
124  		u8 buswidth;
125  		u8 dtr : 1;
126  		u8 ecc : 1;
127  		u8 __pad : 6;
128  		enum spi_mem_data_dir dir;
129  		unsigned int nbytes;
130  		union {
131  			void *in;
132  			const void *out;
133  		} buf;
134  	} data;
135  };
136  
137  #define SPI_MEM_OP(__cmd, __addr, __dummy, __data)		\
138  	{							\
139  		.cmd = __cmd,					\
140  		.addr = __addr,					\
141  		.dummy = __dummy,				\
142  		.data = __data,					\
143  	}
144  
145  /**
146   * struct spi_mem_dirmap_info - Direct mapping information
147   * @op_tmpl: operation template that should be used by the direct mapping when
148   *	     the memory device is accessed
149   * @offset: absolute offset this direct mapping is pointing to
150   * @length: length in byte of this direct mapping
151   *
152   * These information are used by the controller specific implementation to know
153   * the portion of memory that is directly mapped and the spi_mem_op that should
154   * be used to access the device.
155   * A direct mapping is only valid for one direction (read or write) and this
156   * direction is directly encoded in the ->op_tmpl.data.dir field.
157   */
158  struct spi_mem_dirmap_info {
159  	struct spi_mem_op op_tmpl;
160  	u64 offset;
161  	u64 length;
162  };
163  
164  /**
165   * struct spi_mem_dirmap_desc - Direct mapping descriptor
166   * @mem: the SPI memory device this direct mapping is attached to
167   * @info: information passed at direct mapping creation time
168   * @nodirmap: set to 1 if the SPI controller does not implement
169   *	      ->mem_ops->dirmap_create() or when this function returned an
170   *	      error. If @nodirmap is true, all spi_mem_dirmap_{read,write}()
171   *	      calls will use spi_mem_exec_op() to access the memory. This is a
172   *	      degraded mode that allows spi_mem drivers to use the same code
173   *	      no matter whether the controller supports direct mapping or not
174   * @priv: field pointing to controller specific data
175   *
176   * Common part of a direct mapping descriptor. This object is created by
177   * spi_mem_dirmap_create() and controller implementation of ->create_dirmap()
178   * can create/attach direct mapping resources to the descriptor in the ->priv
179   * field.
180   */
181  struct spi_mem_dirmap_desc {
182  	struct spi_mem *mem;
183  	struct spi_mem_dirmap_info info;
184  	unsigned int nodirmap;
185  	void *priv;
186  };
187  
188  /**
189   * struct spi_mem - describes a SPI memory device
190   * @spi: the underlying SPI device
191   * @drvpriv: spi_mem_driver private data
192   * @name: name of the SPI memory device
193   *
194   * Extra information that describe the SPI memory device and may be needed by
195   * the controller to properly handle this device should be placed here.
196   *
197   * One example would be the device size since some controller expose their SPI
198   * mem devices through a io-mapped region.
199   */
200  struct spi_mem {
201  	struct spi_device *spi;
202  	void *drvpriv;
203  	const char *name;
204  };
205  
206  /**
207   * struct spi_mem_set_drvdata() - attach driver private data to a SPI mem
208   *				  device
209   * @mem: memory device
210   * @data: data to attach to the memory device
211   */
spi_mem_set_drvdata(struct spi_mem * mem,void * data)212  static inline void spi_mem_set_drvdata(struct spi_mem *mem, void *data)
213  {
214  	mem->drvpriv = data;
215  }
216  
217  /**
218   * struct spi_mem_get_drvdata() - get driver private data attached to a SPI mem
219   *				  device
220   * @mem: memory device
221   *
222   * Return: the data attached to the mem device.
223   */
spi_mem_get_drvdata(struct spi_mem * mem)224  static inline void *spi_mem_get_drvdata(struct spi_mem *mem)
225  {
226  	return mem->drvpriv;
227  }
228  
229  /**
230   * struct spi_controller_mem_ops - SPI memory operations
231   * @adjust_op_size: shrink the data xfer of an operation to match controller's
232   *		    limitations (can be alignment or max RX/TX size
233   *		    limitations)
234   * @supports_op: check if an operation is supported by the controller
235   * @exec_op: execute a SPI memory operation
236   * @get_name: get a custom name for the SPI mem device from the controller.
237   *	      This might be needed if the controller driver has been ported
238   *	      to use the SPI mem layer and a custom name is used to keep
239   *	      mtdparts compatible.
240   *	      Note that if the implementation of this function allocates memory
241   *	      dynamically, then it should do so with devm_xxx(), as we don't
242   *	      have a ->free_name() function.
243   * @dirmap_create: create a direct mapping descriptor that can later be used to
244   *		   access the memory device. This method is optional
245   * @dirmap_destroy: destroy a memory descriptor previous created by
246   *		    ->dirmap_create()
247   * @dirmap_read: read data from the memory device using the direct mapping
248   *		 created by ->dirmap_create(). The function can return less
249   *		 data than requested (for example when the request is crossing
250   *		 the currently mapped area), and the caller of
251   *		 spi_mem_dirmap_read() is responsible for calling it again in
252   *		 this case.
253   * @dirmap_write: write data to the memory device using the direct mapping
254   *		  created by ->dirmap_create(). The function can return less
255   *		  data than requested (for example when the request is crossing
256   *		  the currently mapped area), and the caller of
257   *		  spi_mem_dirmap_write() is responsible for calling it again in
258   *		  this case.
259   * @poll_status: poll memory device status until (status & mask) == match or
260   *               when the timeout has expired. It fills the data buffer with
261   *               the last status value.
262   *
263   * This interface should be implemented by SPI controllers providing an
264   * high-level interface to execute SPI memory operation, which is usually the
265   * case for QSPI controllers.
266   *
267   * Note on ->dirmap_{read,write}(): drivers should avoid accessing the direct
268   * mapping from the CPU because doing that can stall the CPU waiting for the
269   * SPI mem transaction to finish, and this will make real-time maintainers
270   * unhappy and might make your system less reactive. Instead, drivers should
271   * use DMA to access this direct mapping.
272   */
273  struct spi_controller_mem_ops {
274  	int (*adjust_op_size)(struct spi_mem *mem, struct spi_mem_op *op);
275  	bool (*supports_op)(struct spi_mem *mem,
276  			    const struct spi_mem_op *op);
277  	int (*exec_op)(struct spi_mem *mem,
278  		       const struct spi_mem_op *op);
279  	const char *(*get_name)(struct spi_mem *mem);
280  	int (*dirmap_create)(struct spi_mem_dirmap_desc *desc);
281  	void (*dirmap_destroy)(struct spi_mem_dirmap_desc *desc);
282  	ssize_t (*dirmap_read)(struct spi_mem_dirmap_desc *desc,
283  			       u64 offs, size_t len, void *buf);
284  	ssize_t (*dirmap_write)(struct spi_mem_dirmap_desc *desc,
285  				u64 offs, size_t len, const void *buf);
286  	int (*poll_status)(struct spi_mem *mem,
287  			   const struct spi_mem_op *op,
288  			   u16 mask, u16 match,
289  			   unsigned long initial_delay_us,
290  			   unsigned long polling_rate_us,
291  			   unsigned long timeout_ms);
292  };
293  
294  /**
295   * struct spi_controller_mem_caps - SPI memory controller capabilities
296   * @dtr: Supports DTR operations
297   * @ecc: Supports operations with error correction
298   */
299  struct spi_controller_mem_caps {
300  	bool dtr;
301  	bool ecc;
302  };
303  
304  #define spi_mem_controller_is_capable(ctlr, cap)	\
305  	((ctlr)->mem_caps && (ctlr)->mem_caps->cap)
306  
307  /**
308   * struct spi_mem_driver - SPI memory driver
309   * @spidrv: inherit from a SPI driver
310   * @probe: probe a SPI memory. Usually where detection/initialization takes
311   *	   place
312   * @remove: remove a SPI memory
313   * @shutdown: take appropriate action when the system is shutdown
314   *
315   * This is just a thin wrapper around a spi_driver. The core takes care of
316   * allocating the spi_mem object and forwarding the probe/remove/shutdown
317   * request to the spi_mem_driver. The reason we use this wrapper is because
318   * we might have to stuff more information into the spi_mem struct to let
319   * SPI controllers know more about the SPI memory they interact with, and
320   * having this intermediate layer allows us to do that without adding more
321   * useless fields to the spi_device object.
322   */
323  struct spi_mem_driver {
324  	struct spi_driver spidrv;
325  	int (*probe)(struct spi_mem *mem);
326  	int (*remove)(struct spi_mem *mem);
327  	void (*shutdown)(struct spi_mem *mem);
328  };
329  
330  #if IS_ENABLED(CONFIG_SPI_MEM)
331  int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
332  				       const struct spi_mem_op *op,
333  				       struct sg_table *sg);
334  
335  void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
336  					  const struct spi_mem_op *op,
337  					  struct sg_table *sg);
338  
339  bool spi_mem_default_supports_op(struct spi_mem *mem,
340  				 const struct spi_mem_op *op);
341  #else
342  static inline int
spi_controller_dma_map_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sg)343  spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
344  				   const struct spi_mem_op *op,
345  				   struct sg_table *sg)
346  {
347  	return -ENOTSUPP;
348  }
349  
350  static inline void
spi_controller_dma_unmap_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sg)351  spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
352  				     const struct spi_mem_op *op,
353  				     struct sg_table *sg)
354  {
355  }
356  
357  static inline
spi_mem_default_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)358  bool spi_mem_default_supports_op(struct spi_mem *mem,
359  				 const struct spi_mem_op *op)
360  {
361  	return false;
362  }
363  #endif /* CONFIG_SPI_MEM */
364  
365  int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op);
366  
367  bool spi_mem_supports_op(struct spi_mem *mem,
368  			 const struct spi_mem_op *op);
369  
370  int spi_mem_exec_op(struct spi_mem *mem,
371  		    const struct spi_mem_op *op);
372  
373  const char *spi_mem_get_name(struct spi_mem *mem);
374  
375  struct spi_mem_dirmap_desc *
376  spi_mem_dirmap_create(struct spi_mem *mem,
377  		      const struct spi_mem_dirmap_info *info);
378  void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc);
379  ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
380  			    u64 offs, size_t len, void *buf);
381  ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
382  			     u64 offs, size_t len, const void *buf);
383  struct spi_mem_dirmap_desc *
384  devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem,
385  			   const struct spi_mem_dirmap_info *info);
386  void devm_spi_mem_dirmap_destroy(struct device *dev,
387  				 struct spi_mem_dirmap_desc *desc);
388  
389  int spi_mem_poll_status(struct spi_mem *mem,
390  			const struct spi_mem_op *op,
391  			u16 mask, u16 match,
392  			unsigned long initial_delay_us,
393  			unsigned long polling_delay_us,
394  			u16 timeout_ms);
395  
396  int spi_mem_driver_register_with_owner(struct spi_mem_driver *drv,
397  				       struct module *owner);
398  
399  void spi_mem_driver_unregister(struct spi_mem_driver *drv);
400  
401  #define spi_mem_driver_register(__drv)                                  \
402  	spi_mem_driver_register_with_owner(__drv, THIS_MODULE)
403  
404  #define module_spi_mem_driver(__drv)                                    \
405  	module_driver(__drv, spi_mem_driver_register,                   \
406  		      spi_mem_driver_unregister)
407  
408  #endif /* __LINUX_SPI_MEM_H */
409