1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Single-step support.
4 *
5 * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
6 */
7 #include <linux/kernel.h>
8 #include <linux/kprobes.h>
9 #include <linux/ptrace.h>
10 #include <linux/prefetch.h>
11 #include <asm/sstep.h>
12 #include <asm/processor.h>
13 #include <linux/uaccess.h>
14 #include <asm/cpu_has_feature.h>
15 #include <asm/cputable.h>
16 #include <asm/disassemble.h>
17
18 #ifdef CONFIG_PPC64
19 /* Bits in SRR1 that are copied from MSR */
20 #define MSR_MASK 0xffffffff87c0ffffUL
21 #else
22 #define MSR_MASK 0x87c0ffff
23 #endif
24
25 /* Bits in XER */
26 #define XER_SO 0x80000000U
27 #define XER_OV 0x40000000U
28 #define XER_CA 0x20000000U
29 #define XER_OV32 0x00080000U
30 #define XER_CA32 0x00040000U
31
32 #ifdef CONFIG_VSX
33 #define VSX_REGISTER_XTP(rd) ((((rd) & 1) << 5) | ((rd) & 0xfe))
34 #endif
35
36 #ifdef CONFIG_PPC_FPU
37 /*
38 * Functions in ldstfp.S
39 */
40 extern void get_fpr(int rn, double *p);
41 extern void put_fpr(int rn, const double *p);
42 extern void get_vr(int rn, __vector128 *p);
43 extern void put_vr(int rn, __vector128 *p);
44 extern void load_vsrn(int vsr, const void *p);
45 extern void store_vsrn(int vsr, void *p);
46 extern void conv_sp_to_dp(const float *sp, double *dp);
47 extern void conv_dp_to_sp(const double *dp, float *sp);
48 #endif
49
50 #ifdef __powerpc64__
51 /*
52 * Functions in quad.S
53 */
54 extern int do_lq(unsigned long ea, unsigned long *regs);
55 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
56 extern int do_lqarx(unsigned long ea, unsigned long *regs);
57 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
58 unsigned int *crp);
59 #endif
60
61 #ifdef __LITTLE_ENDIAN__
62 #define IS_LE 1
63 #define IS_BE 0
64 #else
65 #define IS_LE 0
66 #define IS_BE 1
67 #endif
68
69 /*
70 * Emulate the truncation of 64 bit values in 32-bit mode.
71 */
truncate_if_32bit(unsigned long msr,unsigned long val)72 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
73 unsigned long val)
74 {
75 if ((msr & MSR_64BIT) == 0)
76 val &= 0xffffffffUL;
77 return val;
78 }
79
80 /*
81 * Determine whether a conditional branch instruction would branch.
82 */
branch_taken(unsigned int instr,const struct pt_regs * regs,struct instruction_op * op)83 static nokprobe_inline int branch_taken(unsigned int instr,
84 const struct pt_regs *regs,
85 struct instruction_op *op)
86 {
87 unsigned int bo = (instr >> 21) & 0x1f;
88 unsigned int bi;
89
90 if ((bo & 4) == 0) {
91 /* decrement counter */
92 op->type |= DECCTR;
93 if (((bo >> 1) & 1) ^ (regs->ctr == 1))
94 return 0;
95 }
96 if ((bo & 0x10) == 0) {
97 /* check bit from CR */
98 bi = (instr >> 16) & 0x1f;
99 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
100 return 0;
101 }
102 return 1;
103 }
104
address_ok(struct pt_regs * regs,unsigned long ea,int nb)105 static nokprobe_inline long address_ok(struct pt_regs *regs,
106 unsigned long ea, int nb)
107 {
108 if (!user_mode(regs))
109 return 1;
110 if (access_ok((void __user *)ea, nb))
111 return 1;
112 if (access_ok((void __user *)ea, 1))
113 /* Access overlaps the end of the user region */
114 regs->dar = TASK_SIZE_MAX - 1;
115 else
116 regs->dar = ea;
117 return 0;
118 }
119
120 /*
121 * Calculate effective address for a D-form instruction
122 */
dform_ea(unsigned int instr,const struct pt_regs * regs)123 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
124 const struct pt_regs *regs)
125 {
126 int ra;
127 unsigned long ea;
128
129 ra = (instr >> 16) & 0x1f;
130 ea = (signed short) instr; /* sign-extend */
131 if (ra)
132 ea += regs->gpr[ra];
133
134 return ea;
135 }
136
137 #ifdef __powerpc64__
138 /*
139 * Calculate effective address for a DS-form instruction
140 */
dsform_ea(unsigned int instr,const struct pt_regs * regs)141 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
142 const struct pt_regs *regs)
143 {
144 int ra;
145 unsigned long ea;
146
147 ra = (instr >> 16) & 0x1f;
148 ea = (signed short) (instr & ~3); /* sign-extend */
149 if (ra)
150 ea += regs->gpr[ra];
151
152 return ea;
153 }
154
155 /*
156 * Calculate effective address for a DQ-form instruction
157 */
dqform_ea(unsigned int instr,const struct pt_regs * regs)158 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
159 const struct pt_regs *regs)
160 {
161 int ra;
162 unsigned long ea;
163
164 ra = (instr >> 16) & 0x1f;
165 ea = (signed short) (instr & ~0xf); /* sign-extend */
166 if (ra)
167 ea += regs->gpr[ra];
168
169 return ea;
170 }
171 #endif /* __powerpc64 */
172
173 /*
174 * Calculate effective address for an X-form instruction
175 */
xform_ea(unsigned int instr,const struct pt_regs * regs)176 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
177 const struct pt_regs *regs)
178 {
179 int ra, rb;
180 unsigned long ea;
181
182 ra = (instr >> 16) & 0x1f;
183 rb = (instr >> 11) & 0x1f;
184 ea = regs->gpr[rb];
185 if (ra)
186 ea += regs->gpr[ra];
187
188 return ea;
189 }
190
191 /*
192 * Calculate effective address for a MLS:D-form / 8LS:D-form
193 * prefixed instruction
194 */
mlsd_8lsd_ea(unsigned int instr,unsigned int suffix,const struct pt_regs * regs)195 static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr,
196 unsigned int suffix,
197 const struct pt_regs *regs)
198 {
199 int ra, prefix_r;
200 unsigned int dd;
201 unsigned long ea, d0, d1, d;
202
203 prefix_r = GET_PREFIX_R(instr);
204 ra = GET_PREFIX_RA(suffix);
205
206 d0 = instr & 0x3ffff;
207 d1 = suffix & 0xffff;
208 d = (d0 << 16) | d1;
209
210 /*
211 * sign extend a 34 bit number
212 */
213 dd = (unsigned int)(d >> 2);
214 ea = (signed int)dd;
215 ea = (ea << 2) | (d & 0x3);
216
217 if (!prefix_r && ra)
218 ea += regs->gpr[ra];
219 else if (!prefix_r && !ra)
220 ; /* Leave ea as is */
221 else if (prefix_r)
222 ea += regs->nip;
223
224 /*
225 * (prefix_r && ra) is an invalid form. Should already be
226 * checked for by caller!
227 */
228
229 return ea;
230 }
231
232 /*
233 * Return the largest power of 2, not greater than sizeof(unsigned long),
234 * such that x is a multiple of it.
235 */
max_align(unsigned long x)236 static nokprobe_inline unsigned long max_align(unsigned long x)
237 {
238 x |= sizeof(unsigned long);
239 return x & -x; /* isolates rightmost bit */
240 }
241
byterev_2(unsigned long x)242 static nokprobe_inline unsigned long byterev_2(unsigned long x)
243 {
244 return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
245 }
246
byterev_4(unsigned long x)247 static nokprobe_inline unsigned long byterev_4(unsigned long x)
248 {
249 return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
250 ((x & 0xff00) << 8) | ((x & 0xff) << 24);
251 }
252
253 #ifdef __powerpc64__
byterev_8(unsigned long x)254 static nokprobe_inline unsigned long byterev_8(unsigned long x)
255 {
256 return (byterev_4(x) << 32) | byterev_4(x >> 32);
257 }
258 #endif
259
do_byte_reverse(void * ptr,int nb)260 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
261 {
262 switch (nb) {
263 case 2:
264 *(u16 *)ptr = byterev_2(*(u16 *)ptr);
265 break;
266 case 4:
267 *(u32 *)ptr = byterev_4(*(u32 *)ptr);
268 break;
269 #ifdef __powerpc64__
270 case 8:
271 *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
272 break;
273 case 16: {
274 unsigned long *up = (unsigned long *)ptr;
275 unsigned long tmp;
276 tmp = byterev_8(up[0]);
277 up[0] = byterev_8(up[1]);
278 up[1] = tmp;
279 break;
280 }
281 case 32: {
282 unsigned long *up = (unsigned long *)ptr;
283 unsigned long tmp;
284
285 tmp = byterev_8(up[0]);
286 up[0] = byterev_8(up[3]);
287 up[3] = tmp;
288 tmp = byterev_8(up[2]);
289 up[2] = byterev_8(up[1]);
290 up[1] = tmp;
291 break;
292 }
293
294 #endif
295 default:
296 WARN_ON_ONCE(1);
297 }
298 }
299
300 static __always_inline int
__read_mem_aligned(unsigned long * dest,unsigned long ea,int nb,struct pt_regs * regs)301 __read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
302 {
303 unsigned long x = 0;
304
305 switch (nb) {
306 case 1:
307 unsafe_get_user(x, (unsigned char __user *)ea, Efault);
308 break;
309 case 2:
310 unsafe_get_user(x, (unsigned short __user *)ea, Efault);
311 break;
312 case 4:
313 unsafe_get_user(x, (unsigned int __user *)ea, Efault);
314 break;
315 #ifdef __powerpc64__
316 case 8:
317 unsafe_get_user(x, (unsigned long __user *)ea, Efault);
318 break;
319 #endif
320 }
321 *dest = x;
322 return 0;
323
324 Efault:
325 regs->dar = ea;
326 return -EFAULT;
327 }
328
329 static nokprobe_inline int
read_mem_aligned(unsigned long * dest,unsigned long ea,int nb,struct pt_regs * regs)330 read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
331 {
332 int err;
333
334 if (is_kernel_addr(ea))
335 return __read_mem_aligned(dest, ea, nb, regs);
336
337 if (user_read_access_begin((void __user *)ea, nb)) {
338 err = __read_mem_aligned(dest, ea, nb, regs);
339 user_read_access_end();
340 } else {
341 err = -EFAULT;
342 regs->dar = ea;
343 }
344
345 return err;
346 }
347
348 /*
349 * Copy from userspace to a buffer, using the largest possible
350 * aligned accesses, up to sizeof(long).
351 */
__copy_mem_in(u8 * dest,unsigned long ea,int nb,struct pt_regs * regs)352 static __always_inline int __copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
353 {
354 int c;
355
356 for (; nb > 0; nb -= c) {
357 c = max_align(ea);
358 if (c > nb)
359 c = max_align(nb);
360 switch (c) {
361 case 1:
362 unsafe_get_user(*dest, (u8 __user *)ea, Efault);
363 break;
364 case 2:
365 unsafe_get_user(*(u16 *)dest, (u16 __user *)ea, Efault);
366 break;
367 case 4:
368 unsafe_get_user(*(u32 *)dest, (u32 __user *)ea, Efault);
369 break;
370 #ifdef __powerpc64__
371 case 8:
372 unsafe_get_user(*(u64 *)dest, (u64 __user *)ea, Efault);
373 break;
374 #endif
375 }
376 dest += c;
377 ea += c;
378 }
379 return 0;
380
381 Efault:
382 regs->dar = ea;
383 return -EFAULT;
384 }
385
copy_mem_in(u8 * dest,unsigned long ea,int nb,struct pt_regs * regs)386 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
387 {
388 int err;
389
390 if (is_kernel_addr(ea))
391 return __copy_mem_in(dest, ea, nb, regs);
392
393 if (user_read_access_begin((void __user *)ea, nb)) {
394 err = __copy_mem_in(dest, ea, nb, regs);
395 user_read_access_end();
396 } else {
397 err = -EFAULT;
398 regs->dar = ea;
399 }
400
401 return err;
402 }
403
read_mem_unaligned(unsigned long * dest,unsigned long ea,int nb,struct pt_regs * regs)404 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
405 unsigned long ea, int nb,
406 struct pt_regs *regs)
407 {
408 union {
409 unsigned long ul;
410 u8 b[sizeof(unsigned long)];
411 } u;
412 int i;
413 int err;
414
415 u.ul = 0;
416 i = IS_BE ? sizeof(unsigned long) - nb : 0;
417 err = copy_mem_in(&u.b[i], ea, nb, regs);
418 if (!err)
419 *dest = u.ul;
420 return err;
421 }
422
423 /*
424 * Read memory at address ea for nb bytes, return 0 for success
425 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
426 * If nb < sizeof(long), the result is right-justified on BE systems.
427 */
read_mem(unsigned long * dest,unsigned long ea,int nb,struct pt_regs * regs)428 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
429 struct pt_regs *regs)
430 {
431 if (!address_ok(regs, ea, nb))
432 return -EFAULT;
433 if ((ea & (nb - 1)) == 0)
434 return read_mem_aligned(dest, ea, nb, regs);
435 return read_mem_unaligned(dest, ea, nb, regs);
436 }
437 NOKPROBE_SYMBOL(read_mem);
438
439 static __always_inline int
__write_mem_aligned(unsigned long val,unsigned long ea,int nb,struct pt_regs * regs)440 __write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
441 {
442 switch (nb) {
443 case 1:
444 unsafe_put_user(val, (unsigned char __user *)ea, Efault);
445 break;
446 case 2:
447 unsafe_put_user(val, (unsigned short __user *)ea, Efault);
448 break;
449 case 4:
450 unsafe_put_user(val, (unsigned int __user *)ea, Efault);
451 break;
452 #ifdef __powerpc64__
453 case 8:
454 unsafe_put_user(val, (unsigned long __user *)ea, Efault);
455 break;
456 #endif
457 }
458 return 0;
459
460 Efault:
461 regs->dar = ea;
462 return -EFAULT;
463 }
464
465 static nokprobe_inline int
write_mem_aligned(unsigned long val,unsigned long ea,int nb,struct pt_regs * regs)466 write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
467 {
468 int err;
469
470 if (is_kernel_addr(ea))
471 return __write_mem_aligned(val, ea, nb, regs);
472
473 if (user_write_access_begin((void __user *)ea, nb)) {
474 err = __write_mem_aligned(val, ea, nb, regs);
475 user_write_access_end();
476 } else {
477 err = -EFAULT;
478 regs->dar = ea;
479 }
480
481 return err;
482 }
483
484 /*
485 * Copy from a buffer to userspace, using the largest possible
486 * aligned accesses, up to sizeof(long).
487 */
__copy_mem_out(u8 * dest,unsigned long ea,int nb,struct pt_regs * regs)488 static __always_inline int __copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
489 {
490 int c;
491
492 for (; nb > 0; nb -= c) {
493 c = max_align(ea);
494 if (c > nb)
495 c = max_align(nb);
496 switch (c) {
497 case 1:
498 unsafe_put_user(*dest, (u8 __user *)ea, Efault);
499 break;
500 case 2:
501 unsafe_put_user(*(u16 *)dest, (u16 __user *)ea, Efault);
502 break;
503 case 4:
504 unsafe_put_user(*(u32 *)dest, (u32 __user *)ea, Efault);
505 break;
506 #ifdef __powerpc64__
507 case 8:
508 unsafe_put_user(*(u64 *)dest, (u64 __user *)ea, Efault);
509 break;
510 #endif
511 }
512 dest += c;
513 ea += c;
514 }
515 return 0;
516
517 Efault:
518 regs->dar = ea;
519 return -EFAULT;
520 }
521
copy_mem_out(u8 * dest,unsigned long ea,int nb,struct pt_regs * regs)522 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
523 {
524 int err;
525
526 if (is_kernel_addr(ea))
527 return __copy_mem_out(dest, ea, nb, regs);
528
529 if (user_write_access_begin((void __user *)ea, nb)) {
530 err = __copy_mem_out(dest, ea, nb, regs);
531 user_write_access_end();
532 } else {
533 err = -EFAULT;
534 regs->dar = ea;
535 }
536
537 return err;
538 }
539
write_mem_unaligned(unsigned long val,unsigned long ea,int nb,struct pt_regs * regs)540 static nokprobe_inline int write_mem_unaligned(unsigned long val,
541 unsigned long ea, int nb,
542 struct pt_regs *regs)
543 {
544 union {
545 unsigned long ul;
546 u8 b[sizeof(unsigned long)];
547 } u;
548 int i;
549
550 u.ul = val;
551 i = IS_BE ? sizeof(unsigned long) - nb : 0;
552 return copy_mem_out(&u.b[i], ea, nb, regs);
553 }
554
555 /*
556 * Write memory at address ea for nb bytes, return 0 for success
557 * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8.
558 */
write_mem(unsigned long val,unsigned long ea,int nb,struct pt_regs * regs)559 static int write_mem(unsigned long val, unsigned long ea, int nb,
560 struct pt_regs *regs)
561 {
562 if (!address_ok(regs, ea, nb))
563 return -EFAULT;
564 if ((ea & (nb - 1)) == 0)
565 return write_mem_aligned(val, ea, nb, regs);
566 return write_mem_unaligned(val, ea, nb, regs);
567 }
568 NOKPROBE_SYMBOL(write_mem);
569
570 #ifdef CONFIG_PPC_FPU
571 /*
572 * These access either the real FP register or the image in the
573 * thread_struct, depending on regs->msr & MSR_FP.
574 */
do_fp_load(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)575 static int do_fp_load(struct instruction_op *op, unsigned long ea,
576 struct pt_regs *regs, bool cross_endian)
577 {
578 int err, rn, nb;
579 union {
580 int i;
581 unsigned int u;
582 float f;
583 double d[2];
584 unsigned long l[2];
585 u8 b[2 * sizeof(double)];
586 } u;
587
588 nb = GETSIZE(op->type);
589 if (!address_ok(regs, ea, nb))
590 return -EFAULT;
591 rn = op->reg;
592 err = copy_mem_in(u.b, ea, nb, regs);
593 if (err)
594 return err;
595 if (unlikely(cross_endian)) {
596 do_byte_reverse(u.b, min(nb, 8));
597 if (nb == 16)
598 do_byte_reverse(&u.b[8], 8);
599 }
600 preempt_disable();
601 if (nb == 4) {
602 if (op->type & FPCONV)
603 conv_sp_to_dp(&u.f, &u.d[0]);
604 else if (op->type & SIGNEXT)
605 u.l[0] = u.i;
606 else
607 u.l[0] = u.u;
608 }
609 if (regs->msr & MSR_FP)
610 put_fpr(rn, &u.d[0]);
611 else
612 current->thread.TS_FPR(rn) = u.l[0];
613 if (nb == 16) {
614 /* lfdp */
615 rn |= 1;
616 if (regs->msr & MSR_FP)
617 put_fpr(rn, &u.d[1]);
618 else
619 current->thread.TS_FPR(rn) = u.l[1];
620 }
621 preempt_enable();
622 return 0;
623 }
624 NOKPROBE_SYMBOL(do_fp_load);
625
do_fp_store(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)626 static int do_fp_store(struct instruction_op *op, unsigned long ea,
627 struct pt_regs *regs, bool cross_endian)
628 {
629 int rn, nb;
630 union {
631 unsigned int u;
632 float f;
633 double d[2];
634 unsigned long l[2];
635 u8 b[2 * sizeof(double)];
636 } u;
637
638 nb = GETSIZE(op->type);
639 if (!address_ok(regs, ea, nb))
640 return -EFAULT;
641 rn = op->reg;
642 preempt_disable();
643 if (regs->msr & MSR_FP)
644 get_fpr(rn, &u.d[0]);
645 else
646 u.l[0] = current->thread.TS_FPR(rn);
647 if (nb == 4) {
648 if (op->type & FPCONV)
649 conv_dp_to_sp(&u.d[0], &u.f);
650 else
651 u.u = u.l[0];
652 }
653 if (nb == 16) {
654 rn |= 1;
655 if (regs->msr & MSR_FP)
656 get_fpr(rn, &u.d[1]);
657 else
658 u.l[1] = current->thread.TS_FPR(rn);
659 }
660 preempt_enable();
661 if (unlikely(cross_endian)) {
662 do_byte_reverse(u.b, min(nb, 8));
663 if (nb == 16)
664 do_byte_reverse(&u.b[8], 8);
665 }
666 return copy_mem_out(u.b, ea, nb, regs);
667 }
668 NOKPROBE_SYMBOL(do_fp_store);
669 #endif
670
671 #ifdef CONFIG_ALTIVEC
672 /* For Altivec/VMX, no need to worry about alignment */
do_vec_load(int rn,unsigned long ea,int size,struct pt_regs * regs,bool cross_endian)673 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
674 int size, struct pt_regs *regs,
675 bool cross_endian)
676 {
677 int err;
678 union {
679 __vector128 v;
680 u8 b[sizeof(__vector128)];
681 } u = {};
682
683 if (!address_ok(regs, ea & ~0xfUL, 16))
684 return -EFAULT;
685 /* align to multiple of size */
686 ea &= ~(size - 1);
687 err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
688 if (err)
689 return err;
690 if (unlikely(cross_endian))
691 do_byte_reverse(&u.b[ea & 0xf], size);
692 preempt_disable();
693 if (regs->msr & MSR_VEC)
694 put_vr(rn, &u.v);
695 else
696 current->thread.vr_state.vr[rn] = u.v;
697 preempt_enable();
698 return 0;
699 }
700
do_vec_store(int rn,unsigned long ea,int size,struct pt_regs * regs,bool cross_endian)701 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
702 int size, struct pt_regs *regs,
703 bool cross_endian)
704 {
705 union {
706 __vector128 v;
707 u8 b[sizeof(__vector128)];
708 } u;
709
710 if (!address_ok(regs, ea & ~0xfUL, 16))
711 return -EFAULT;
712 /* align to multiple of size */
713 ea &= ~(size - 1);
714
715 preempt_disable();
716 if (regs->msr & MSR_VEC)
717 get_vr(rn, &u.v);
718 else
719 u.v = current->thread.vr_state.vr[rn];
720 preempt_enable();
721 if (unlikely(cross_endian))
722 do_byte_reverse(&u.b[ea & 0xf], size);
723 return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
724 }
725 #endif /* CONFIG_ALTIVEC */
726
727 #ifdef __powerpc64__
emulate_lq(struct pt_regs * regs,unsigned long ea,int reg,bool cross_endian)728 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
729 int reg, bool cross_endian)
730 {
731 int err;
732
733 if (!address_ok(regs, ea, 16))
734 return -EFAULT;
735 /* if aligned, should be atomic */
736 if ((ea & 0xf) == 0) {
737 err = do_lq(ea, ®s->gpr[reg]);
738 } else {
739 err = read_mem(®s->gpr[reg + IS_LE], ea, 8, regs);
740 if (!err)
741 err = read_mem(®s->gpr[reg + IS_BE], ea + 8, 8, regs);
742 }
743 if (!err && unlikely(cross_endian))
744 do_byte_reverse(®s->gpr[reg], 16);
745 return err;
746 }
747
emulate_stq(struct pt_regs * regs,unsigned long ea,int reg,bool cross_endian)748 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
749 int reg, bool cross_endian)
750 {
751 int err;
752 unsigned long vals[2];
753
754 if (!address_ok(regs, ea, 16))
755 return -EFAULT;
756 vals[0] = regs->gpr[reg];
757 vals[1] = regs->gpr[reg + 1];
758 if (unlikely(cross_endian))
759 do_byte_reverse(vals, 16);
760
761 /* if aligned, should be atomic */
762 if ((ea & 0xf) == 0)
763 return do_stq(ea, vals[0], vals[1]);
764
765 err = write_mem(vals[IS_LE], ea, 8, regs);
766 if (!err)
767 err = write_mem(vals[IS_BE], ea + 8, 8, regs);
768 return err;
769 }
770 #endif /* __powerpc64 */
771
772 #ifdef CONFIG_VSX
emulate_vsx_load(struct instruction_op * op,union vsx_reg * reg,const void * mem,bool rev)773 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
774 const void *mem, bool rev)
775 {
776 int size, read_size;
777 int i, j;
778 const unsigned int *wp;
779 const unsigned short *hp;
780 const unsigned char *bp;
781
782 size = GETSIZE(op->type);
783 reg->d[0] = reg->d[1] = 0;
784
785 switch (op->element_size) {
786 case 32:
787 /* [p]lxvp[x] */
788 case 16:
789 /* whole vector; lxv[x] or lxvl[l] */
790 if (size == 0)
791 break;
792 memcpy(reg, mem, size);
793 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
794 rev = !rev;
795 if (rev)
796 do_byte_reverse(reg, size);
797 break;
798 case 8:
799 /* scalar loads, lxvd2x, lxvdsx */
800 read_size = (size >= 8) ? 8 : size;
801 i = IS_LE ? 8 : 8 - read_size;
802 memcpy(®->b[i], mem, read_size);
803 if (rev)
804 do_byte_reverse(®->b[i], 8);
805 if (size < 8) {
806 if (op->type & SIGNEXT) {
807 /* size == 4 is the only case here */
808 reg->d[IS_LE] = (signed int) reg->d[IS_LE];
809 } else if (op->vsx_flags & VSX_FPCONV) {
810 preempt_disable();
811 conv_sp_to_dp(®->fp[1 + IS_LE],
812 ®->dp[IS_LE]);
813 preempt_enable();
814 }
815 } else {
816 if (size == 16) {
817 unsigned long v = *(unsigned long *)(mem + 8);
818 reg->d[IS_BE] = !rev ? v : byterev_8(v);
819 } else if (op->vsx_flags & VSX_SPLAT)
820 reg->d[IS_BE] = reg->d[IS_LE];
821 }
822 break;
823 case 4:
824 /* lxvw4x, lxvwsx */
825 wp = mem;
826 for (j = 0; j < size / 4; ++j) {
827 i = IS_LE ? 3 - j : j;
828 reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
829 }
830 if (op->vsx_flags & VSX_SPLAT) {
831 u32 val = reg->w[IS_LE ? 3 : 0];
832 for (; j < 4; ++j) {
833 i = IS_LE ? 3 - j : j;
834 reg->w[i] = val;
835 }
836 }
837 break;
838 case 2:
839 /* lxvh8x */
840 hp = mem;
841 for (j = 0; j < size / 2; ++j) {
842 i = IS_LE ? 7 - j : j;
843 reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
844 }
845 break;
846 case 1:
847 /* lxvb16x */
848 bp = mem;
849 for (j = 0; j < size; ++j) {
850 i = IS_LE ? 15 - j : j;
851 reg->b[i] = *bp++;
852 }
853 break;
854 }
855 }
856 EXPORT_SYMBOL_GPL(emulate_vsx_load);
857 NOKPROBE_SYMBOL(emulate_vsx_load);
858
emulate_vsx_store(struct instruction_op * op,const union vsx_reg * reg,void * mem,bool rev)859 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
860 void *mem, bool rev)
861 {
862 int size, write_size;
863 int i, j;
864 union vsx_reg buf;
865 unsigned int *wp;
866 unsigned short *hp;
867 unsigned char *bp;
868
869 size = GETSIZE(op->type);
870
871 switch (op->element_size) {
872 case 32:
873 /* [p]stxvp[x] */
874 if (size == 0)
875 break;
876 if (rev) {
877 /* reverse 32 bytes */
878 union vsx_reg buf32[2];
879 buf32[0].d[0] = byterev_8(reg[1].d[1]);
880 buf32[0].d[1] = byterev_8(reg[1].d[0]);
881 buf32[1].d[0] = byterev_8(reg[0].d[1]);
882 buf32[1].d[1] = byterev_8(reg[0].d[0]);
883 memcpy(mem, buf32, size);
884 } else {
885 memcpy(mem, reg, size);
886 }
887 break;
888 case 16:
889 /* stxv, stxvx, stxvl, stxvll */
890 if (size == 0)
891 break;
892 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
893 rev = !rev;
894 if (rev) {
895 /* reverse 16 bytes */
896 buf.d[0] = byterev_8(reg->d[1]);
897 buf.d[1] = byterev_8(reg->d[0]);
898 reg = &buf;
899 }
900 memcpy(mem, reg, size);
901 break;
902 case 8:
903 /* scalar stores, stxvd2x */
904 write_size = (size >= 8) ? 8 : size;
905 i = IS_LE ? 8 : 8 - write_size;
906 if (size < 8 && op->vsx_flags & VSX_FPCONV) {
907 buf.d[0] = buf.d[1] = 0;
908 preempt_disable();
909 conv_dp_to_sp(®->dp[IS_LE], &buf.fp[1 + IS_LE]);
910 preempt_enable();
911 reg = &buf;
912 }
913 memcpy(mem, ®->b[i], write_size);
914 if (size == 16)
915 memcpy(mem + 8, ®->d[IS_BE], 8);
916 if (unlikely(rev)) {
917 do_byte_reverse(mem, write_size);
918 if (size == 16)
919 do_byte_reverse(mem + 8, 8);
920 }
921 break;
922 case 4:
923 /* stxvw4x */
924 wp = mem;
925 for (j = 0; j < size / 4; ++j) {
926 i = IS_LE ? 3 - j : j;
927 *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
928 }
929 break;
930 case 2:
931 /* stxvh8x */
932 hp = mem;
933 for (j = 0; j < size / 2; ++j) {
934 i = IS_LE ? 7 - j : j;
935 *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
936 }
937 break;
938 case 1:
939 /* stvxb16x */
940 bp = mem;
941 for (j = 0; j < size; ++j) {
942 i = IS_LE ? 15 - j : j;
943 *bp++ = reg->b[i];
944 }
945 break;
946 }
947 }
948 EXPORT_SYMBOL_GPL(emulate_vsx_store);
949 NOKPROBE_SYMBOL(emulate_vsx_store);
950
do_vsx_load(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)951 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
952 unsigned long ea, struct pt_regs *regs,
953 bool cross_endian)
954 {
955 int reg = op->reg;
956 int i, j, nr_vsx_regs;
957 u8 mem[32];
958 union vsx_reg buf[2];
959 int size = GETSIZE(op->type);
960
961 if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
962 return -EFAULT;
963
964 nr_vsx_regs = max(1ul, size / sizeof(__vector128));
965 emulate_vsx_load(op, buf, mem, cross_endian);
966 preempt_disable();
967 if (reg < 32) {
968 /* FP regs + extensions */
969 if (regs->msr & MSR_FP) {
970 for (i = 0; i < nr_vsx_regs; i++) {
971 j = IS_LE ? nr_vsx_regs - i - 1 : i;
972 load_vsrn(reg + i, &buf[j].v);
973 }
974 } else {
975 for (i = 0; i < nr_vsx_regs; i++) {
976 j = IS_LE ? nr_vsx_regs - i - 1 : i;
977 current->thread.fp_state.fpr[reg + i][0] = buf[j].d[0];
978 current->thread.fp_state.fpr[reg + i][1] = buf[j].d[1];
979 }
980 }
981 } else {
982 if (regs->msr & MSR_VEC) {
983 for (i = 0; i < nr_vsx_regs; i++) {
984 j = IS_LE ? nr_vsx_regs - i - 1 : i;
985 load_vsrn(reg + i, &buf[j].v);
986 }
987 } else {
988 for (i = 0; i < nr_vsx_regs; i++) {
989 j = IS_LE ? nr_vsx_regs - i - 1 : i;
990 current->thread.vr_state.vr[reg - 32 + i] = buf[j].v;
991 }
992 }
993 }
994 preempt_enable();
995 return 0;
996 }
997
do_vsx_store(struct instruction_op * op,unsigned long ea,struct pt_regs * regs,bool cross_endian)998 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
999 unsigned long ea, struct pt_regs *regs,
1000 bool cross_endian)
1001 {
1002 int reg = op->reg;
1003 int i, j, nr_vsx_regs;
1004 u8 mem[32];
1005 union vsx_reg buf[2];
1006 int size = GETSIZE(op->type);
1007
1008 if (!address_ok(regs, ea, size))
1009 return -EFAULT;
1010
1011 nr_vsx_regs = max(1ul, size / sizeof(__vector128));
1012 preempt_disable();
1013 if (reg < 32) {
1014 /* FP regs + extensions */
1015 if (regs->msr & MSR_FP) {
1016 for (i = 0; i < nr_vsx_regs; i++) {
1017 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1018 store_vsrn(reg + i, &buf[j].v);
1019 }
1020 } else {
1021 for (i = 0; i < nr_vsx_regs; i++) {
1022 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1023 buf[j].d[0] = current->thread.fp_state.fpr[reg + i][0];
1024 buf[j].d[1] = current->thread.fp_state.fpr[reg + i][1];
1025 }
1026 }
1027 } else {
1028 if (regs->msr & MSR_VEC) {
1029 for (i = 0; i < nr_vsx_regs; i++) {
1030 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1031 store_vsrn(reg + i, &buf[j].v);
1032 }
1033 } else {
1034 for (i = 0; i < nr_vsx_regs; i++) {
1035 j = IS_LE ? nr_vsx_regs - i - 1 : i;
1036 buf[j].v = current->thread.vr_state.vr[reg - 32 + i];
1037 }
1038 }
1039 }
1040 preempt_enable();
1041 emulate_vsx_store(op, buf, mem, cross_endian);
1042 return copy_mem_out(mem, ea, size, regs);
1043 }
1044 #endif /* CONFIG_VSX */
1045
__emulate_dcbz(unsigned long ea)1046 static __always_inline int __emulate_dcbz(unsigned long ea)
1047 {
1048 unsigned long i;
1049 unsigned long size = l1_dcache_bytes();
1050
1051 for (i = 0; i < size; i += sizeof(long))
1052 unsafe_put_user(0, (unsigned long __user *)(ea + i), Efault);
1053
1054 return 0;
1055
1056 Efault:
1057 return -EFAULT;
1058 }
1059
emulate_dcbz(unsigned long ea,struct pt_regs * regs)1060 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
1061 {
1062 int err;
1063 unsigned long size = l1_dcache_bytes();
1064
1065 ea = truncate_if_32bit(regs->msr, ea);
1066 ea &= ~(size - 1);
1067 if (!address_ok(regs, ea, size))
1068 return -EFAULT;
1069
1070 if (is_kernel_addr(ea)) {
1071 err = __emulate_dcbz(ea);
1072 } else if (user_write_access_begin((void __user *)ea, size)) {
1073 err = __emulate_dcbz(ea);
1074 user_write_access_end();
1075 } else {
1076 err = -EFAULT;
1077 }
1078
1079 if (err)
1080 regs->dar = ea;
1081
1082
1083 return err;
1084 }
1085 NOKPROBE_SYMBOL(emulate_dcbz);
1086
1087 #define __put_user_asmx(x, addr, err, op, cr) \
1088 __asm__ __volatile__( \
1089 ".machine push\n" \
1090 ".machine power8\n" \
1091 "1: " op " %2,0,%3\n" \
1092 ".machine pop\n" \
1093 " mfcr %1\n" \
1094 "2:\n" \
1095 ".section .fixup,\"ax\"\n" \
1096 "3: li %0,%4\n" \
1097 " b 2b\n" \
1098 ".previous\n" \
1099 EX_TABLE(1b, 3b) \
1100 : "=r" (err), "=r" (cr) \
1101 : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
1102
1103 #define __get_user_asmx(x, addr, err, op) \
1104 __asm__ __volatile__( \
1105 ".machine push\n" \
1106 ".machine power8\n" \
1107 "1: "op" %1,0,%2\n" \
1108 ".machine pop\n" \
1109 "2:\n" \
1110 ".section .fixup,\"ax\"\n" \
1111 "3: li %0,%3\n" \
1112 " b 2b\n" \
1113 ".previous\n" \
1114 EX_TABLE(1b, 3b) \
1115 : "=r" (err), "=r" (x) \
1116 : "r" (addr), "i" (-EFAULT), "0" (err))
1117
1118 #define __cacheop_user_asmx(addr, err, op) \
1119 __asm__ __volatile__( \
1120 "1: "op" 0,%1\n" \
1121 "2:\n" \
1122 ".section .fixup,\"ax\"\n" \
1123 "3: li %0,%3\n" \
1124 " b 2b\n" \
1125 ".previous\n" \
1126 EX_TABLE(1b, 3b) \
1127 : "=r" (err) \
1128 : "r" (addr), "i" (-EFAULT), "0" (err))
1129
set_cr0(const struct pt_regs * regs,struct instruction_op * op)1130 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
1131 struct instruction_op *op)
1132 {
1133 long val = op->val;
1134
1135 op->type |= SETCC;
1136 op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
1137 if (!(regs->msr & MSR_64BIT))
1138 val = (int) val;
1139 if (val < 0)
1140 op->ccval |= 0x80000000;
1141 else if (val > 0)
1142 op->ccval |= 0x40000000;
1143 else
1144 op->ccval |= 0x20000000;
1145 }
1146
set_ca32(struct instruction_op * op,bool val)1147 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
1148 {
1149 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1150 if (val)
1151 op->xerval |= XER_CA32;
1152 else
1153 op->xerval &= ~XER_CA32;
1154 }
1155 }
1156
add_with_carry(const struct pt_regs * regs,struct instruction_op * op,int rd,unsigned long val1,unsigned long val2,unsigned long carry_in)1157 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
1158 struct instruction_op *op, int rd,
1159 unsigned long val1, unsigned long val2,
1160 unsigned long carry_in)
1161 {
1162 unsigned long val = val1 + val2;
1163
1164 if (carry_in)
1165 ++val;
1166 op->type = COMPUTE | SETREG | SETXER;
1167 op->reg = rd;
1168 op->val = val;
1169 val = truncate_if_32bit(regs->msr, val);
1170 val1 = truncate_if_32bit(regs->msr, val1);
1171 op->xerval = regs->xer;
1172 if (val < val1 || (carry_in && val == val1))
1173 op->xerval |= XER_CA;
1174 else
1175 op->xerval &= ~XER_CA;
1176
1177 set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1178 (carry_in && (unsigned int)val == (unsigned int)val1));
1179 }
1180
do_cmp_signed(const struct pt_regs * regs,struct instruction_op * op,long v1,long v2,int crfld)1181 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1182 struct instruction_op *op,
1183 long v1, long v2, int crfld)
1184 {
1185 unsigned int crval, shift;
1186
1187 op->type = COMPUTE | SETCC;
1188 crval = (regs->xer >> 31) & 1; /* get SO bit */
1189 if (v1 < v2)
1190 crval |= 8;
1191 else if (v1 > v2)
1192 crval |= 4;
1193 else
1194 crval |= 2;
1195 shift = (7 - crfld) * 4;
1196 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1197 }
1198
do_cmp_unsigned(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,unsigned long v2,int crfld)1199 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1200 struct instruction_op *op,
1201 unsigned long v1,
1202 unsigned long v2, int crfld)
1203 {
1204 unsigned int crval, shift;
1205
1206 op->type = COMPUTE | SETCC;
1207 crval = (regs->xer >> 31) & 1; /* get SO bit */
1208 if (v1 < v2)
1209 crval |= 8;
1210 else if (v1 > v2)
1211 crval |= 4;
1212 else
1213 crval |= 2;
1214 shift = (7 - crfld) * 4;
1215 op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1216 }
1217
do_cmpb(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,unsigned long v2)1218 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1219 struct instruction_op *op,
1220 unsigned long v1, unsigned long v2)
1221 {
1222 unsigned long long out_val, mask;
1223 int i;
1224
1225 out_val = 0;
1226 for (i = 0; i < 8; i++) {
1227 mask = 0xffUL << (i * 8);
1228 if ((v1 & mask) == (v2 & mask))
1229 out_val |= mask;
1230 }
1231 op->val = out_val;
1232 }
1233
1234 /*
1235 * The size parameter is used to adjust the equivalent popcnt instruction.
1236 * popcntb = 8, popcntw = 32, popcntd = 64
1237 */
do_popcnt(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,int size)1238 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1239 struct instruction_op *op,
1240 unsigned long v1, int size)
1241 {
1242 unsigned long long out = v1;
1243
1244 out -= (out >> 1) & 0x5555555555555555ULL;
1245 out = (0x3333333333333333ULL & out) +
1246 (0x3333333333333333ULL & (out >> 2));
1247 out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1248
1249 if (size == 8) { /* popcntb */
1250 op->val = out;
1251 return;
1252 }
1253 out += out >> 8;
1254 out += out >> 16;
1255 if (size == 32) { /* popcntw */
1256 op->val = out & 0x0000003f0000003fULL;
1257 return;
1258 }
1259
1260 out = (out + (out >> 32)) & 0x7f;
1261 op->val = out; /* popcntd */
1262 }
1263
1264 #ifdef CONFIG_PPC64
do_bpermd(const struct pt_regs * regs,struct instruction_op * op,unsigned long v1,unsigned long v2)1265 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1266 struct instruction_op *op,
1267 unsigned long v1, unsigned long v2)
1268 {
1269 unsigned char perm, idx;
1270 unsigned int i;
1271
1272 perm = 0;
1273 for (i = 0; i < 8; i++) {
1274 idx = (v1 >> (i * 8)) & 0xff;
1275 if (idx < 64)
1276 if (v2 & PPC_BIT(idx))
1277 perm |= 1 << i;
1278 }
1279 op->val = perm;
1280 }
1281 #endif /* CONFIG_PPC64 */
1282 /*
1283 * The size parameter adjusts the equivalent prty instruction.
1284 * prtyw = 32, prtyd = 64
1285 */
do_prty(const struct pt_regs * regs,struct instruction_op * op,unsigned long v,int size)1286 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1287 struct instruction_op *op,
1288 unsigned long v, int size)
1289 {
1290 unsigned long long res = v ^ (v >> 8);
1291
1292 res ^= res >> 16;
1293 if (size == 32) { /* prtyw */
1294 op->val = res & 0x0000000100000001ULL;
1295 return;
1296 }
1297
1298 res ^= res >> 32;
1299 op->val = res & 1; /*prtyd */
1300 }
1301
trap_compare(long v1,long v2)1302 static nokprobe_inline int trap_compare(long v1, long v2)
1303 {
1304 int ret = 0;
1305
1306 if (v1 < v2)
1307 ret |= 0x10;
1308 else if (v1 > v2)
1309 ret |= 0x08;
1310 else
1311 ret |= 0x04;
1312 if ((unsigned long)v1 < (unsigned long)v2)
1313 ret |= 0x02;
1314 else if ((unsigned long)v1 > (unsigned long)v2)
1315 ret |= 0x01;
1316 return ret;
1317 }
1318
1319 /*
1320 * Elements of 32-bit rotate and mask instructions.
1321 */
1322 #define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \
1323 ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1324 #ifdef __powerpc64__
1325 #define MASK64_L(mb) (~0UL >> (mb))
1326 #define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me))
1327 #define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1328 #define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1329 #else
1330 #define DATA32(x) (x)
1331 #endif
1332 #define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1333
1334 /*
1335 * Decode an instruction, and return information about it in *op
1336 * without changing *regs.
1337 * Integer arithmetic and logical instructions, branches, and barrier
1338 * instructions can be emulated just using the information in *op.
1339 *
1340 * Return value is 1 if the instruction can be emulated just by
1341 * updating *regs with the information in *op, -1 if we need the
1342 * GPRs but *regs doesn't contain the full register set, or 0
1343 * otherwise.
1344 */
analyse_instr(struct instruction_op * op,const struct pt_regs * regs,ppc_inst_t instr)1345 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1346 ppc_inst_t instr)
1347 {
1348 #ifdef CONFIG_PPC64
1349 unsigned int suffixopcode, prefixtype, prefix_r;
1350 #endif
1351 unsigned int opcode, ra, rb, rc, rd, spr, u;
1352 unsigned long int imm;
1353 unsigned long int val, val2;
1354 unsigned int mb, me, sh;
1355 unsigned int word, suffix;
1356 long ival;
1357
1358 word = ppc_inst_val(instr);
1359 suffix = ppc_inst_suffix(instr);
1360
1361 op->type = COMPUTE;
1362
1363 opcode = ppc_inst_primary_opcode(instr);
1364 switch (opcode) {
1365 case 16: /* bc */
1366 op->type = BRANCH;
1367 imm = (signed short)(word & 0xfffc);
1368 if ((word & 2) == 0)
1369 imm += regs->nip;
1370 op->val = truncate_if_32bit(regs->msr, imm);
1371 if (word & 1)
1372 op->type |= SETLK;
1373 if (branch_taken(word, regs, op))
1374 op->type |= BRTAKEN;
1375 return 1;
1376 case 17: /* sc */
1377 if ((word & 0xfe2) == 2)
1378 op->type = SYSCALL;
1379 else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) &&
1380 (word & 0xfe3) == 1) { /* scv */
1381 op->type = SYSCALL_VECTORED_0;
1382 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1383 goto unknown_opcode;
1384 } else
1385 op->type = UNKNOWN;
1386 return 0;
1387 case 18: /* b */
1388 op->type = BRANCH | BRTAKEN;
1389 imm = word & 0x03fffffc;
1390 if (imm & 0x02000000)
1391 imm -= 0x04000000;
1392 if ((word & 2) == 0)
1393 imm += regs->nip;
1394 op->val = truncate_if_32bit(regs->msr, imm);
1395 if (word & 1)
1396 op->type |= SETLK;
1397 return 1;
1398 case 19:
1399 switch ((word >> 1) & 0x3ff) {
1400 case 0: /* mcrf */
1401 op->type = COMPUTE + SETCC;
1402 rd = 7 - ((word >> 23) & 0x7);
1403 ra = 7 - ((word >> 18) & 0x7);
1404 rd *= 4;
1405 ra *= 4;
1406 val = (regs->ccr >> ra) & 0xf;
1407 op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1408 return 1;
1409
1410 case 16: /* bclr */
1411 case 528: /* bcctr */
1412 op->type = BRANCH;
1413 imm = (word & 0x400)? regs->ctr: regs->link;
1414 op->val = truncate_if_32bit(regs->msr, imm);
1415 if (word & 1)
1416 op->type |= SETLK;
1417 if (branch_taken(word, regs, op))
1418 op->type |= BRTAKEN;
1419 return 1;
1420
1421 case 18: /* rfid, scary */
1422 if (regs->msr & MSR_PR)
1423 goto priv;
1424 op->type = RFI;
1425 return 0;
1426
1427 case 150: /* isync */
1428 op->type = BARRIER | BARRIER_ISYNC;
1429 return 1;
1430
1431 case 33: /* crnor */
1432 case 129: /* crandc */
1433 case 193: /* crxor */
1434 case 225: /* crnand */
1435 case 257: /* crand */
1436 case 289: /* creqv */
1437 case 417: /* crorc */
1438 case 449: /* cror */
1439 op->type = COMPUTE + SETCC;
1440 ra = (word >> 16) & 0x1f;
1441 rb = (word >> 11) & 0x1f;
1442 rd = (word >> 21) & 0x1f;
1443 ra = (regs->ccr >> (31 - ra)) & 1;
1444 rb = (regs->ccr >> (31 - rb)) & 1;
1445 val = (word >> (6 + ra * 2 + rb)) & 1;
1446 op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1447 (val << (31 - rd));
1448 return 1;
1449 }
1450 break;
1451 case 31:
1452 switch ((word >> 1) & 0x3ff) {
1453 case 598: /* sync */
1454 op->type = BARRIER + BARRIER_SYNC;
1455 #ifdef __powerpc64__
1456 switch ((word >> 21) & 3) {
1457 case 1: /* lwsync */
1458 op->type = BARRIER + BARRIER_LWSYNC;
1459 break;
1460 case 2: /* ptesync */
1461 op->type = BARRIER + BARRIER_PTESYNC;
1462 break;
1463 }
1464 #endif
1465 return 1;
1466
1467 case 854: /* eieio */
1468 op->type = BARRIER + BARRIER_EIEIO;
1469 return 1;
1470 }
1471 break;
1472 }
1473
1474 rd = (word >> 21) & 0x1f;
1475 ra = (word >> 16) & 0x1f;
1476 rb = (word >> 11) & 0x1f;
1477 rc = (word >> 6) & 0x1f;
1478
1479 switch (opcode) {
1480 #ifdef __powerpc64__
1481 case 1:
1482 if (!cpu_has_feature(CPU_FTR_ARCH_31))
1483 goto unknown_opcode;
1484
1485 prefix_r = GET_PREFIX_R(word);
1486 ra = GET_PREFIX_RA(suffix);
1487 rd = (suffix >> 21) & 0x1f;
1488 op->reg = rd;
1489 op->val = regs->gpr[rd];
1490 suffixopcode = get_op(suffix);
1491 prefixtype = (word >> 24) & 0x3;
1492 switch (prefixtype) {
1493 case 2:
1494 if (prefix_r && ra)
1495 return 0;
1496 switch (suffixopcode) {
1497 case 14: /* paddi */
1498 op->type = COMPUTE | PREFIXED;
1499 op->val = mlsd_8lsd_ea(word, suffix, regs);
1500 goto compute_done;
1501 }
1502 }
1503 break;
1504 case 2: /* tdi */
1505 if (rd & trap_compare(regs->gpr[ra], (short) word))
1506 goto trap;
1507 return 1;
1508 #endif
1509 case 3: /* twi */
1510 if (rd & trap_compare((int)regs->gpr[ra], (short) word))
1511 goto trap;
1512 return 1;
1513
1514 #ifdef __powerpc64__
1515 case 4:
1516 /*
1517 * There are very many instructions with this primary opcode
1518 * introduced in the ISA as early as v2.03. However, the ones
1519 * we currently emulate were all introduced with ISA 3.0
1520 */
1521 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1522 goto unknown_opcode;
1523
1524 switch (word & 0x3f) {
1525 case 48: /* maddhd */
1526 asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1527 "=r" (op->val) : "r" (regs->gpr[ra]),
1528 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1529 goto compute_done;
1530
1531 case 49: /* maddhdu */
1532 asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1533 "=r" (op->val) : "r" (regs->gpr[ra]),
1534 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1535 goto compute_done;
1536
1537 case 51: /* maddld */
1538 asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1539 "=r" (op->val) : "r" (regs->gpr[ra]),
1540 "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1541 goto compute_done;
1542 }
1543
1544 /*
1545 * There are other instructions from ISA 3.0 with the same
1546 * primary opcode which do not have emulation support yet.
1547 */
1548 goto unknown_opcode;
1549 #endif
1550
1551 case 7: /* mulli */
1552 op->val = regs->gpr[ra] * (short) word;
1553 goto compute_done;
1554
1555 case 8: /* subfic */
1556 imm = (short) word;
1557 add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1558 return 1;
1559
1560 case 10: /* cmpli */
1561 imm = (unsigned short) word;
1562 val = regs->gpr[ra];
1563 #ifdef __powerpc64__
1564 if ((rd & 1) == 0)
1565 val = (unsigned int) val;
1566 #endif
1567 do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1568 return 1;
1569
1570 case 11: /* cmpi */
1571 imm = (short) word;
1572 val = regs->gpr[ra];
1573 #ifdef __powerpc64__
1574 if ((rd & 1) == 0)
1575 val = (int) val;
1576 #endif
1577 do_cmp_signed(regs, op, val, imm, rd >> 2);
1578 return 1;
1579
1580 case 12: /* addic */
1581 imm = (short) word;
1582 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1583 return 1;
1584
1585 case 13: /* addic. */
1586 imm = (short) word;
1587 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1588 set_cr0(regs, op);
1589 return 1;
1590
1591 case 14: /* addi */
1592 imm = (short) word;
1593 if (ra)
1594 imm += regs->gpr[ra];
1595 op->val = imm;
1596 goto compute_done;
1597
1598 case 15: /* addis */
1599 imm = ((short) word) << 16;
1600 if (ra)
1601 imm += regs->gpr[ra];
1602 op->val = imm;
1603 goto compute_done;
1604
1605 case 19:
1606 if (((word >> 1) & 0x1f) == 2) {
1607 /* addpcis */
1608 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1609 goto unknown_opcode;
1610 imm = (short) (word & 0xffc1); /* d0 + d2 fields */
1611 imm |= (word >> 15) & 0x3e; /* d1 field */
1612 op->val = regs->nip + (imm << 16) + 4;
1613 goto compute_done;
1614 }
1615 op->type = UNKNOWN;
1616 return 0;
1617
1618 case 20: /* rlwimi */
1619 mb = (word >> 6) & 0x1f;
1620 me = (word >> 1) & 0x1f;
1621 val = DATA32(regs->gpr[rd]);
1622 imm = MASK32(mb, me);
1623 op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1624 goto logical_done;
1625
1626 case 21: /* rlwinm */
1627 mb = (word >> 6) & 0x1f;
1628 me = (word >> 1) & 0x1f;
1629 val = DATA32(regs->gpr[rd]);
1630 op->val = ROTATE(val, rb) & MASK32(mb, me);
1631 goto logical_done;
1632
1633 case 23: /* rlwnm */
1634 mb = (word >> 6) & 0x1f;
1635 me = (word >> 1) & 0x1f;
1636 rb = regs->gpr[rb] & 0x1f;
1637 val = DATA32(regs->gpr[rd]);
1638 op->val = ROTATE(val, rb) & MASK32(mb, me);
1639 goto logical_done;
1640
1641 case 24: /* ori */
1642 op->val = regs->gpr[rd] | (unsigned short) word;
1643 goto logical_done_nocc;
1644
1645 case 25: /* oris */
1646 imm = (unsigned short) word;
1647 op->val = regs->gpr[rd] | (imm << 16);
1648 goto logical_done_nocc;
1649
1650 case 26: /* xori */
1651 op->val = regs->gpr[rd] ^ (unsigned short) word;
1652 goto logical_done_nocc;
1653
1654 case 27: /* xoris */
1655 imm = (unsigned short) word;
1656 op->val = regs->gpr[rd] ^ (imm << 16);
1657 goto logical_done_nocc;
1658
1659 case 28: /* andi. */
1660 op->val = regs->gpr[rd] & (unsigned short) word;
1661 set_cr0(regs, op);
1662 goto logical_done_nocc;
1663
1664 case 29: /* andis. */
1665 imm = (unsigned short) word;
1666 op->val = regs->gpr[rd] & (imm << 16);
1667 set_cr0(regs, op);
1668 goto logical_done_nocc;
1669
1670 #ifdef __powerpc64__
1671 case 30: /* rld* */
1672 mb = ((word >> 6) & 0x1f) | (word & 0x20);
1673 val = regs->gpr[rd];
1674 if ((word & 0x10) == 0) {
1675 sh = rb | ((word & 2) << 4);
1676 val = ROTATE(val, sh);
1677 switch ((word >> 2) & 3) {
1678 case 0: /* rldicl */
1679 val &= MASK64_L(mb);
1680 break;
1681 case 1: /* rldicr */
1682 val &= MASK64_R(mb);
1683 break;
1684 case 2: /* rldic */
1685 val &= MASK64(mb, 63 - sh);
1686 break;
1687 case 3: /* rldimi */
1688 imm = MASK64(mb, 63 - sh);
1689 val = (regs->gpr[ra] & ~imm) |
1690 (val & imm);
1691 }
1692 op->val = val;
1693 goto logical_done;
1694 } else {
1695 sh = regs->gpr[rb] & 0x3f;
1696 val = ROTATE(val, sh);
1697 switch ((word >> 1) & 7) {
1698 case 0: /* rldcl */
1699 op->val = val & MASK64_L(mb);
1700 goto logical_done;
1701 case 1: /* rldcr */
1702 op->val = val & MASK64_R(mb);
1703 goto logical_done;
1704 }
1705 }
1706 #endif
1707 op->type = UNKNOWN; /* illegal instruction */
1708 return 0;
1709
1710 case 31:
1711 /* isel occupies 32 minor opcodes */
1712 if (((word >> 1) & 0x1f) == 15) {
1713 mb = (word >> 6) & 0x1f; /* bc field */
1714 val = (regs->ccr >> (31 - mb)) & 1;
1715 val2 = (ra) ? regs->gpr[ra] : 0;
1716
1717 op->val = (val) ? val2 : regs->gpr[rb];
1718 goto compute_done;
1719 }
1720
1721 switch ((word >> 1) & 0x3ff) {
1722 case 4: /* tw */
1723 if (rd == 0x1f ||
1724 (rd & trap_compare((int)regs->gpr[ra],
1725 (int)regs->gpr[rb])))
1726 goto trap;
1727 return 1;
1728 #ifdef __powerpc64__
1729 case 68: /* td */
1730 if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1731 goto trap;
1732 return 1;
1733 #endif
1734 case 83: /* mfmsr */
1735 if (regs->msr & MSR_PR)
1736 goto priv;
1737 op->type = MFMSR;
1738 op->reg = rd;
1739 return 0;
1740 case 146: /* mtmsr */
1741 if (regs->msr & MSR_PR)
1742 goto priv;
1743 op->type = MTMSR;
1744 op->reg = rd;
1745 op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1746 return 0;
1747 #ifdef CONFIG_PPC64
1748 case 178: /* mtmsrd */
1749 if (regs->msr & MSR_PR)
1750 goto priv;
1751 op->type = MTMSR;
1752 op->reg = rd;
1753 /* only MSR_EE and MSR_RI get changed if bit 15 set */
1754 /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1755 imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1756 op->val = imm;
1757 return 0;
1758 #endif
1759
1760 case 19: /* mfcr */
1761 imm = 0xffffffffUL;
1762 if ((word >> 20) & 1) {
1763 imm = 0xf0000000UL;
1764 for (sh = 0; sh < 8; ++sh) {
1765 if (word & (0x80000 >> sh))
1766 break;
1767 imm >>= 4;
1768 }
1769 }
1770 op->val = regs->ccr & imm;
1771 goto compute_done;
1772
1773 case 128: /* setb */
1774 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1775 goto unknown_opcode;
1776 /*
1777 * 'ra' encodes the CR field number (bfa) in the top 3 bits.
1778 * Since each CR field is 4 bits,
1779 * we can simply mask off the bottom two bits (bfa * 4)
1780 * to yield the first bit in the CR field.
1781 */
1782 ra = ra & ~0x3;
1783 /* 'val' stores bits of the CR field (bfa) */
1784 val = regs->ccr >> (CR0_SHIFT - ra);
1785 /* checks if the LT bit of CR field (bfa) is set */
1786 if (val & 8)
1787 op->val = -1;
1788 /* checks if the GT bit of CR field (bfa) is set */
1789 else if (val & 4)
1790 op->val = 1;
1791 else
1792 op->val = 0;
1793 goto compute_done;
1794
1795 case 144: /* mtcrf */
1796 op->type = COMPUTE + SETCC;
1797 imm = 0xf0000000UL;
1798 val = regs->gpr[rd];
1799 op->ccval = regs->ccr;
1800 for (sh = 0; sh < 8; ++sh) {
1801 if (word & (0x80000 >> sh))
1802 op->ccval = (op->ccval & ~imm) |
1803 (val & imm);
1804 imm >>= 4;
1805 }
1806 return 1;
1807
1808 case 339: /* mfspr */
1809 spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1810 op->type = MFSPR;
1811 op->reg = rd;
1812 op->spr = spr;
1813 if (spr == SPRN_XER || spr == SPRN_LR ||
1814 spr == SPRN_CTR)
1815 return 1;
1816 return 0;
1817
1818 case 467: /* mtspr */
1819 spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1820 op->type = MTSPR;
1821 op->val = regs->gpr[rd];
1822 op->spr = spr;
1823 if (spr == SPRN_XER || spr == SPRN_LR ||
1824 spr == SPRN_CTR)
1825 return 1;
1826 return 0;
1827
1828 /*
1829 * Compare instructions
1830 */
1831 case 0: /* cmp */
1832 val = regs->gpr[ra];
1833 val2 = regs->gpr[rb];
1834 #ifdef __powerpc64__
1835 if ((rd & 1) == 0) {
1836 /* word (32-bit) compare */
1837 val = (int) val;
1838 val2 = (int) val2;
1839 }
1840 #endif
1841 do_cmp_signed(regs, op, val, val2, rd >> 2);
1842 return 1;
1843
1844 case 32: /* cmpl */
1845 val = regs->gpr[ra];
1846 val2 = regs->gpr[rb];
1847 #ifdef __powerpc64__
1848 if ((rd & 1) == 0) {
1849 /* word (32-bit) compare */
1850 val = (unsigned int) val;
1851 val2 = (unsigned int) val2;
1852 }
1853 #endif
1854 do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1855 return 1;
1856
1857 case 508: /* cmpb */
1858 do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1859 goto logical_done_nocc;
1860
1861 /*
1862 * Arithmetic instructions
1863 */
1864 case 8: /* subfc */
1865 add_with_carry(regs, op, rd, ~regs->gpr[ra],
1866 regs->gpr[rb], 1);
1867 goto arith_done;
1868 #ifdef __powerpc64__
1869 case 9: /* mulhdu */
1870 asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1871 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1872 goto arith_done;
1873 #endif
1874 case 10: /* addc */
1875 add_with_carry(regs, op, rd, regs->gpr[ra],
1876 regs->gpr[rb], 0);
1877 goto arith_done;
1878
1879 case 11: /* mulhwu */
1880 asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1881 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1882 goto arith_done;
1883
1884 case 40: /* subf */
1885 op->val = regs->gpr[rb] - regs->gpr[ra];
1886 goto arith_done;
1887 #ifdef __powerpc64__
1888 case 73: /* mulhd */
1889 asm("mulhd %0,%1,%2" : "=r" (op->val) :
1890 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1891 goto arith_done;
1892 #endif
1893 case 75: /* mulhw */
1894 asm("mulhw %0,%1,%2" : "=r" (op->val) :
1895 "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1896 goto arith_done;
1897
1898 case 104: /* neg */
1899 op->val = -regs->gpr[ra];
1900 goto arith_done;
1901
1902 case 136: /* subfe */
1903 add_with_carry(regs, op, rd, ~regs->gpr[ra],
1904 regs->gpr[rb], regs->xer & XER_CA);
1905 goto arith_done;
1906
1907 case 138: /* adde */
1908 add_with_carry(regs, op, rd, regs->gpr[ra],
1909 regs->gpr[rb], regs->xer & XER_CA);
1910 goto arith_done;
1911
1912 case 200: /* subfze */
1913 add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1914 regs->xer & XER_CA);
1915 goto arith_done;
1916
1917 case 202: /* addze */
1918 add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1919 regs->xer & XER_CA);
1920 goto arith_done;
1921
1922 case 232: /* subfme */
1923 add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1924 regs->xer & XER_CA);
1925 goto arith_done;
1926 #ifdef __powerpc64__
1927 case 233: /* mulld */
1928 op->val = regs->gpr[ra] * regs->gpr[rb];
1929 goto arith_done;
1930 #endif
1931 case 234: /* addme */
1932 add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1933 regs->xer & XER_CA);
1934 goto arith_done;
1935
1936 case 235: /* mullw */
1937 op->val = (long)(int) regs->gpr[ra] *
1938 (int) regs->gpr[rb];
1939
1940 goto arith_done;
1941 #ifdef __powerpc64__
1942 case 265: /* modud */
1943 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1944 goto unknown_opcode;
1945 op->val = regs->gpr[ra] % regs->gpr[rb];
1946 goto compute_done;
1947 #endif
1948 case 266: /* add */
1949 op->val = regs->gpr[ra] + regs->gpr[rb];
1950 goto arith_done;
1951
1952 case 267: /* moduw */
1953 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1954 goto unknown_opcode;
1955 op->val = (unsigned int) regs->gpr[ra] %
1956 (unsigned int) regs->gpr[rb];
1957 goto compute_done;
1958 #ifdef __powerpc64__
1959 case 457: /* divdu */
1960 op->val = regs->gpr[ra] / regs->gpr[rb];
1961 goto arith_done;
1962 #endif
1963 case 459: /* divwu */
1964 op->val = (unsigned int) regs->gpr[ra] /
1965 (unsigned int) regs->gpr[rb];
1966 goto arith_done;
1967 #ifdef __powerpc64__
1968 case 489: /* divd */
1969 op->val = (long int) regs->gpr[ra] /
1970 (long int) regs->gpr[rb];
1971 goto arith_done;
1972 #endif
1973 case 491: /* divw */
1974 op->val = (int) regs->gpr[ra] /
1975 (int) regs->gpr[rb];
1976 goto arith_done;
1977 #ifdef __powerpc64__
1978 case 425: /* divde[.] */
1979 asm volatile(PPC_DIVDE(%0, %1, %2) :
1980 "=r" (op->val) : "r" (regs->gpr[ra]),
1981 "r" (regs->gpr[rb]));
1982 goto arith_done;
1983 case 393: /* divdeu[.] */
1984 asm volatile(PPC_DIVDEU(%0, %1, %2) :
1985 "=r" (op->val) : "r" (regs->gpr[ra]),
1986 "r" (regs->gpr[rb]));
1987 goto arith_done;
1988 #endif
1989 case 755: /* darn */
1990 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1991 goto unknown_opcode;
1992 switch (ra & 0x3) {
1993 case 0:
1994 /* 32-bit conditioned */
1995 asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
1996 goto compute_done;
1997
1998 case 1:
1999 /* 64-bit conditioned */
2000 asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
2001 goto compute_done;
2002
2003 case 2:
2004 /* 64-bit raw */
2005 asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
2006 goto compute_done;
2007 }
2008
2009 goto unknown_opcode;
2010 #ifdef __powerpc64__
2011 case 777: /* modsd */
2012 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2013 goto unknown_opcode;
2014 op->val = (long int) regs->gpr[ra] %
2015 (long int) regs->gpr[rb];
2016 goto compute_done;
2017 #endif
2018 case 779: /* modsw */
2019 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2020 goto unknown_opcode;
2021 op->val = (int) regs->gpr[ra] %
2022 (int) regs->gpr[rb];
2023 goto compute_done;
2024
2025
2026 /*
2027 * Logical instructions
2028 */
2029 case 26: /* cntlzw */
2030 val = (unsigned int) regs->gpr[rd];
2031 op->val = ( val ? __builtin_clz(val) : 32 );
2032 goto logical_done;
2033 #ifdef __powerpc64__
2034 case 58: /* cntlzd */
2035 val = regs->gpr[rd];
2036 op->val = ( val ? __builtin_clzl(val) : 64 );
2037 goto logical_done;
2038 #endif
2039 case 28: /* and */
2040 op->val = regs->gpr[rd] & regs->gpr[rb];
2041 goto logical_done;
2042
2043 case 60: /* andc */
2044 op->val = regs->gpr[rd] & ~regs->gpr[rb];
2045 goto logical_done;
2046
2047 case 122: /* popcntb */
2048 do_popcnt(regs, op, regs->gpr[rd], 8);
2049 goto logical_done_nocc;
2050
2051 case 124: /* nor */
2052 op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
2053 goto logical_done;
2054
2055 case 154: /* prtyw */
2056 do_prty(regs, op, regs->gpr[rd], 32);
2057 goto logical_done_nocc;
2058
2059 case 186: /* prtyd */
2060 do_prty(regs, op, regs->gpr[rd], 64);
2061 goto logical_done_nocc;
2062 #ifdef CONFIG_PPC64
2063 case 252: /* bpermd */
2064 do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
2065 goto logical_done_nocc;
2066 #endif
2067 case 284: /* xor */
2068 op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
2069 goto logical_done;
2070
2071 case 316: /* xor */
2072 op->val = regs->gpr[rd] ^ regs->gpr[rb];
2073 goto logical_done;
2074
2075 case 378: /* popcntw */
2076 do_popcnt(regs, op, regs->gpr[rd], 32);
2077 goto logical_done_nocc;
2078
2079 case 412: /* orc */
2080 op->val = regs->gpr[rd] | ~regs->gpr[rb];
2081 goto logical_done;
2082
2083 case 444: /* or */
2084 op->val = regs->gpr[rd] | regs->gpr[rb];
2085 goto logical_done;
2086
2087 case 476: /* nand */
2088 op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
2089 goto logical_done;
2090 #ifdef CONFIG_PPC64
2091 case 506: /* popcntd */
2092 do_popcnt(regs, op, regs->gpr[rd], 64);
2093 goto logical_done_nocc;
2094 #endif
2095 case 538: /* cnttzw */
2096 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2097 goto unknown_opcode;
2098 val = (unsigned int) regs->gpr[rd];
2099 op->val = (val ? __builtin_ctz(val) : 32);
2100 goto logical_done;
2101 #ifdef __powerpc64__
2102 case 570: /* cnttzd */
2103 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2104 goto unknown_opcode;
2105 val = regs->gpr[rd];
2106 op->val = (val ? __builtin_ctzl(val) : 64);
2107 goto logical_done;
2108 #endif
2109 case 922: /* extsh */
2110 op->val = (signed short) regs->gpr[rd];
2111 goto logical_done;
2112
2113 case 954: /* extsb */
2114 op->val = (signed char) regs->gpr[rd];
2115 goto logical_done;
2116 #ifdef __powerpc64__
2117 case 986: /* extsw */
2118 op->val = (signed int) regs->gpr[rd];
2119 goto logical_done;
2120 #endif
2121
2122 /*
2123 * Shift instructions
2124 */
2125 case 24: /* slw */
2126 sh = regs->gpr[rb] & 0x3f;
2127 if (sh < 32)
2128 op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
2129 else
2130 op->val = 0;
2131 goto logical_done;
2132
2133 case 536: /* srw */
2134 sh = regs->gpr[rb] & 0x3f;
2135 if (sh < 32)
2136 op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
2137 else
2138 op->val = 0;
2139 goto logical_done;
2140
2141 case 792: /* sraw */
2142 op->type = COMPUTE + SETREG + SETXER;
2143 sh = regs->gpr[rb] & 0x3f;
2144 ival = (signed int) regs->gpr[rd];
2145 op->val = ival >> (sh < 32 ? sh : 31);
2146 op->xerval = regs->xer;
2147 if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
2148 op->xerval |= XER_CA;
2149 else
2150 op->xerval &= ~XER_CA;
2151 set_ca32(op, op->xerval & XER_CA);
2152 goto logical_done;
2153
2154 case 824: /* srawi */
2155 op->type = COMPUTE + SETREG + SETXER;
2156 sh = rb;
2157 ival = (signed int) regs->gpr[rd];
2158 op->val = ival >> sh;
2159 op->xerval = regs->xer;
2160 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2161 op->xerval |= XER_CA;
2162 else
2163 op->xerval &= ~XER_CA;
2164 set_ca32(op, op->xerval & XER_CA);
2165 goto logical_done;
2166
2167 #ifdef __powerpc64__
2168 case 27: /* sld */
2169 sh = regs->gpr[rb] & 0x7f;
2170 if (sh < 64)
2171 op->val = regs->gpr[rd] << sh;
2172 else
2173 op->val = 0;
2174 goto logical_done;
2175
2176 case 539: /* srd */
2177 sh = regs->gpr[rb] & 0x7f;
2178 if (sh < 64)
2179 op->val = regs->gpr[rd] >> sh;
2180 else
2181 op->val = 0;
2182 goto logical_done;
2183
2184 case 794: /* srad */
2185 op->type = COMPUTE + SETREG + SETXER;
2186 sh = regs->gpr[rb] & 0x7f;
2187 ival = (signed long int) regs->gpr[rd];
2188 op->val = ival >> (sh < 64 ? sh : 63);
2189 op->xerval = regs->xer;
2190 if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
2191 op->xerval |= XER_CA;
2192 else
2193 op->xerval &= ~XER_CA;
2194 set_ca32(op, op->xerval & XER_CA);
2195 goto logical_done;
2196
2197 case 826: /* sradi with sh_5 = 0 */
2198 case 827: /* sradi with sh_5 = 1 */
2199 op->type = COMPUTE + SETREG + SETXER;
2200 sh = rb | ((word & 2) << 4);
2201 ival = (signed long int) regs->gpr[rd];
2202 op->val = ival >> sh;
2203 op->xerval = regs->xer;
2204 if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2205 op->xerval |= XER_CA;
2206 else
2207 op->xerval &= ~XER_CA;
2208 set_ca32(op, op->xerval & XER_CA);
2209 goto logical_done;
2210
2211 case 890: /* extswsli with sh_5 = 0 */
2212 case 891: /* extswsli with sh_5 = 1 */
2213 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2214 goto unknown_opcode;
2215 op->type = COMPUTE + SETREG;
2216 sh = rb | ((word & 2) << 4);
2217 val = (signed int) regs->gpr[rd];
2218 if (sh)
2219 op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
2220 else
2221 op->val = val;
2222 goto logical_done;
2223
2224 #endif /* __powerpc64__ */
2225
2226 /*
2227 * Cache instructions
2228 */
2229 case 54: /* dcbst */
2230 op->type = MKOP(CACHEOP, DCBST, 0);
2231 op->ea = xform_ea(word, regs);
2232 return 0;
2233
2234 case 86: /* dcbf */
2235 op->type = MKOP(CACHEOP, DCBF, 0);
2236 op->ea = xform_ea(word, regs);
2237 return 0;
2238
2239 case 246: /* dcbtst */
2240 op->type = MKOP(CACHEOP, DCBTST, 0);
2241 op->ea = xform_ea(word, regs);
2242 op->reg = rd;
2243 return 0;
2244
2245 case 278: /* dcbt */
2246 op->type = MKOP(CACHEOP, DCBTST, 0);
2247 op->ea = xform_ea(word, regs);
2248 op->reg = rd;
2249 return 0;
2250
2251 case 982: /* icbi */
2252 op->type = MKOP(CACHEOP, ICBI, 0);
2253 op->ea = xform_ea(word, regs);
2254 return 0;
2255
2256 case 1014: /* dcbz */
2257 op->type = MKOP(CACHEOP, DCBZ, 0);
2258 op->ea = xform_ea(word, regs);
2259 return 0;
2260 }
2261 break;
2262 }
2263
2264 /*
2265 * Loads and stores.
2266 */
2267 op->type = UNKNOWN;
2268 op->update_reg = ra;
2269 op->reg = rd;
2270 op->val = regs->gpr[rd];
2271 u = (word >> 20) & UPDATE;
2272 op->vsx_flags = 0;
2273
2274 switch (opcode) {
2275 case 31:
2276 u = word & UPDATE;
2277 op->ea = xform_ea(word, regs);
2278 switch ((word >> 1) & 0x3ff) {
2279 case 20: /* lwarx */
2280 op->type = MKOP(LARX, 0, 4);
2281 break;
2282
2283 case 150: /* stwcx. */
2284 op->type = MKOP(STCX, 0, 4);
2285 break;
2286
2287 #ifdef CONFIG_PPC_HAS_LBARX_LHARX
2288 case 52: /* lbarx */
2289 op->type = MKOP(LARX, 0, 1);
2290 break;
2291
2292 case 694: /* stbcx. */
2293 op->type = MKOP(STCX, 0, 1);
2294 break;
2295
2296 case 116: /* lharx */
2297 op->type = MKOP(LARX, 0, 2);
2298 break;
2299
2300 case 726: /* sthcx. */
2301 op->type = MKOP(STCX, 0, 2);
2302 break;
2303 #endif
2304 #ifdef __powerpc64__
2305 case 84: /* ldarx */
2306 op->type = MKOP(LARX, 0, 8);
2307 break;
2308
2309 case 214: /* stdcx. */
2310 op->type = MKOP(STCX, 0, 8);
2311 break;
2312
2313 case 276: /* lqarx */
2314 if (!((rd & 1) || rd == ra || rd == rb))
2315 op->type = MKOP(LARX, 0, 16);
2316 break;
2317
2318 case 182: /* stqcx. */
2319 if (!(rd & 1))
2320 op->type = MKOP(STCX, 0, 16);
2321 break;
2322 #endif
2323
2324 case 23: /* lwzx */
2325 case 55: /* lwzux */
2326 op->type = MKOP(LOAD, u, 4);
2327 break;
2328
2329 case 87: /* lbzx */
2330 case 119: /* lbzux */
2331 op->type = MKOP(LOAD, u, 1);
2332 break;
2333
2334 #ifdef CONFIG_ALTIVEC
2335 /*
2336 * Note: for the load/store vector element instructions,
2337 * bits of the EA say which field of the VMX register to use.
2338 */
2339 case 7: /* lvebx */
2340 op->type = MKOP(LOAD_VMX, 0, 1);
2341 op->element_size = 1;
2342 break;
2343
2344 case 39: /* lvehx */
2345 op->type = MKOP(LOAD_VMX, 0, 2);
2346 op->element_size = 2;
2347 break;
2348
2349 case 71: /* lvewx */
2350 op->type = MKOP(LOAD_VMX, 0, 4);
2351 op->element_size = 4;
2352 break;
2353
2354 case 103: /* lvx */
2355 case 359: /* lvxl */
2356 op->type = MKOP(LOAD_VMX, 0, 16);
2357 op->element_size = 16;
2358 break;
2359
2360 case 135: /* stvebx */
2361 op->type = MKOP(STORE_VMX, 0, 1);
2362 op->element_size = 1;
2363 break;
2364
2365 case 167: /* stvehx */
2366 op->type = MKOP(STORE_VMX, 0, 2);
2367 op->element_size = 2;
2368 break;
2369
2370 case 199: /* stvewx */
2371 op->type = MKOP(STORE_VMX, 0, 4);
2372 op->element_size = 4;
2373 break;
2374
2375 case 231: /* stvx */
2376 case 487: /* stvxl */
2377 op->type = MKOP(STORE_VMX, 0, 16);
2378 break;
2379 #endif /* CONFIG_ALTIVEC */
2380
2381 #ifdef __powerpc64__
2382 case 21: /* ldx */
2383 case 53: /* ldux */
2384 op->type = MKOP(LOAD, u, 8);
2385 break;
2386
2387 case 149: /* stdx */
2388 case 181: /* stdux */
2389 op->type = MKOP(STORE, u, 8);
2390 break;
2391 #endif
2392
2393 case 151: /* stwx */
2394 case 183: /* stwux */
2395 op->type = MKOP(STORE, u, 4);
2396 break;
2397
2398 case 215: /* stbx */
2399 case 247: /* stbux */
2400 op->type = MKOP(STORE, u, 1);
2401 break;
2402
2403 case 279: /* lhzx */
2404 case 311: /* lhzux */
2405 op->type = MKOP(LOAD, u, 2);
2406 break;
2407
2408 #ifdef __powerpc64__
2409 case 341: /* lwax */
2410 case 373: /* lwaux */
2411 op->type = MKOP(LOAD, SIGNEXT | u, 4);
2412 break;
2413 #endif
2414
2415 case 343: /* lhax */
2416 case 375: /* lhaux */
2417 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2418 break;
2419
2420 case 407: /* sthx */
2421 case 439: /* sthux */
2422 op->type = MKOP(STORE, u, 2);
2423 break;
2424
2425 #ifdef __powerpc64__
2426 case 532: /* ldbrx */
2427 op->type = MKOP(LOAD, BYTEREV, 8);
2428 break;
2429
2430 #endif
2431 case 533: /* lswx */
2432 op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2433 break;
2434
2435 case 534: /* lwbrx */
2436 op->type = MKOP(LOAD, BYTEREV, 4);
2437 break;
2438
2439 case 597: /* lswi */
2440 if (rb == 0)
2441 rb = 32; /* # bytes to load */
2442 op->type = MKOP(LOAD_MULTI, 0, rb);
2443 op->ea = ra ? regs->gpr[ra] : 0;
2444 break;
2445
2446 #ifdef CONFIG_PPC_FPU
2447 case 535: /* lfsx */
2448 case 567: /* lfsux */
2449 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2450 break;
2451
2452 case 599: /* lfdx */
2453 case 631: /* lfdux */
2454 op->type = MKOP(LOAD_FP, u, 8);
2455 break;
2456
2457 case 663: /* stfsx */
2458 case 695: /* stfsux */
2459 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2460 break;
2461
2462 case 727: /* stfdx */
2463 case 759: /* stfdux */
2464 op->type = MKOP(STORE_FP, u, 8);
2465 break;
2466
2467 #ifdef __powerpc64__
2468 case 791: /* lfdpx */
2469 op->type = MKOP(LOAD_FP, 0, 16);
2470 break;
2471
2472 case 855: /* lfiwax */
2473 op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2474 break;
2475
2476 case 887: /* lfiwzx */
2477 op->type = MKOP(LOAD_FP, 0, 4);
2478 break;
2479
2480 case 919: /* stfdpx */
2481 op->type = MKOP(STORE_FP, 0, 16);
2482 break;
2483
2484 case 983: /* stfiwx */
2485 op->type = MKOP(STORE_FP, 0, 4);
2486 break;
2487 #endif /* __powerpc64 */
2488 #endif /* CONFIG_PPC_FPU */
2489
2490 #ifdef __powerpc64__
2491 case 660: /* stdbrx */
2492 op->type = MKOP(STORE, BYTEREV, 8);
2493 op->val = byterev_8(regs->gpr[rd]);
2494 break;
2495
2496 #endif
2497 case 661: /* stswx */
2498 op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2499 break;
2500
2501 case 662: /* stwbrx */
2502 op->type = MKOP(STORE, BYTEREV, 4);
2503 op->val = byterev_4(regs->gpr[rd]);
2504 break;
2505
2506 case 725: /* stswi */
2507 if (rb == 0)
2508 rb = 32; /* # bytes to store */
2509 op->type = MKOP(STORE_MULTI, 0, rb);
2510 op->ea = ra ? regs->gpr[ra] : 0;
2511 break;
2512
2513 case 790: /* lhbrx */
2514 op->type = MKOP(LOAD, BYTEREV, 2);
2515 break;
2516
2517 case 918: /* sthbrx */
2518 op->type = MKOP(STORE, BYTEREV, 2);
2519 op->val = byterev_2(regs->gpr[rd]);
2520 break;
2521
2522 #ifdef CONFIG_VSX
2523 case 12: /* lxsiwzx */
2524 op->reg = rd | ((word & 1) << 5);
2525 op->type = MKOP(LOAD_VSX, 0, 4);
2526 op->element_size = 8;
2527 break;
2528
2529 case 76: /* lxsiwax */
2530 op->reg = rd | ((word & 1) << 5);
2531 op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2532 op->element_size = 8;
2533 break;
2534
2535 case 140: /* stxsiwx */
2536 op->reg = rd | ((word & 1) << 5);
2537 op->type = MKOP(STORE_VSX, 0, 4);
2538 op->element_size = 8;
2539 break;
2540
2541 case 268: /* lxvx */
2542 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2543 goto unknown_opcode;
2544 op->reg = rd | ((word & 1) << 5);
2545 op->type = MKOP(LOAD_VSX, 0, 16);
2546 op->element_size = 16;
2547 op->vsx_flags = VSX_CHECK_VEC;
2548 break;
2549
2550 case 269: /* lxvl */
2551 case 301: { /* lxvll */
2552 int nb;
2553 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2554 goto unknown_opcode;
2555 op->reg = rd | ((word & 1) << 5);
2556 op->ea = ra ? regs->gpr[ra] : 0;
2557 nb = regs->gpr[rb] & 0xff;
2558 if (nb > 16)
2559 nb = 16;
2560 op->type = MKOP(LOAD_VSX, 0, nb);
2561 op->element_size = 16;
2562 op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2563 VSX_CHECK_VEC;
2564 break;
2565 }
2566 case 332: /* lxvdsx */
2567 op->reg = rd | ((word & 1) << 5);
2568 op->type = MKOP(LOAD_VSX, 0, 8);
2569 op->element_size = 8;
2570 op->vsx_flags = VSX_SPLAT;
2571 break;
2572
2573 case 333: /* lxvpx */
2574 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2575 goto unknown_opcode;
2576 op->reg = VSX_REGISTER_XTP(rd);
2577 op->type = MKOP(LOAD_VSX, 0, 32);
2578 op->element_size = 32;
2579 break;
2580
2581 case 364: /* lxvwsx */
2582 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2583 goto unknown_opcode;
2584 op->reg = rd | ((word & 1) << 5);
2585 op->type = MKOP(LOAD_VSX, 0, 4);
2586 op->element_size = 4;
2587 op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2588 break;
2589
2590 case 396: /* stxvx */
2591 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2592 goto unknown_opcode;
2593 op->reg = rd | ((word & 1) << 5);
2594 op->type = MKOP(STORE_VSX, 0, 16);
2595 op->element_size = 16;
2596 op->vsx_flags = VSX_CHECK_VEC;
2597 break;
2598
2599 case 397: /* stxvl */
2600 case 429: { /* stxvll */
2601 int nb;
2602 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2603 goto unknown_opcode;
2604 op->reg = rd | ((word & 1) << 5);
2605 op->ea = ra ? regs->gpr[ra] : 0;
2606 nb = regs->gpr[rb] & 0xff;
2607 if (nb > 16)
2608 nb = 16;
2609 op->type = MKOP(STORE_VSX, 0, nb);
2610 op->element_size = 16;
2611 op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2612 VSX_CHECK_VEC;
2613 break;
2614 }
2615 case 461: /* stxvpx */
2616 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2617 goto unknown_opcode;
2618 op->reg = VSX_REGISTER_XTP(rd);
2619 op->type = MKOP(STORE_VSX, 0, 32);
2620 op->element_size = 32;
2621 break;
2622 case 524: /* lxsspx */
2623 op->reg = rd | ((word & 1) << 5);
2624 op->type = MKOP(LOAD_VSX, 0, 4);
2625 op->element_size = 8;
2626 op->vsx_flags = VSX_FPCONV;
2627 break;
2628
2629 case 588: /* lxsdx */
2630 op->reg = rd | ((word & 1) << 5);
2631 op->type = MKOP(LOAD_VSX, 0, 8);
2632 op->element_size = 8;
2633 break;
2634
2635 case 652: /* stxsspx */
2636 op->reg = rd | ((word & 1) << 5);
2637 op->type = MKOP(STORE_VSX, 0, 4);
2638 op->element_size = 8;
2639 op->vsx_flags = VSX_FPCONV;
2640 break;
2641
2642 case 716: /* stxsdx */
2643 op->reg = rd | ((word & 1) << 5);
2644 op->type = MKOP(STORE_VSX, 0, 8);
2645 op->element_size = 8;
2646 break;
2647
2648 case 780: /* lxvw4x */
2649 op->reg = rd | ((word & 1) << 5);
2650 op->type = MKOP(LOAD_VSX, 0, 16);
2651 op->element_size = 4;
2652 break;
2653
2654 case 781: /* lxsibzx */
2655 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2656 goto unknown_opcode;
2657 op->reg = rd | ((word & 1) << 5);
2658 op->type = MKOP(LOAD_VSX, 0, 1);
2659 op->element_size = 8;
2660 op->vsx_flags = VSX_CHECK_VEC;
2661 break;
2662
2663 case 812: /* lxvh8x */
2664 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2665 goto unknown_opcode;
2666 op->reg = rd | ((word & 1) << 5);
2667 op->type = MKOP(LOAD_VSX, 0, 16);
2668 op->element_size = 2;
2669 op->vsx_flags = VSX_CHECK_VEC;
2670 break;
2671
2672 case 813: /* lxsihzx */
2673 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2674 goto unknown_opcode;
2675 op->reg = rd | ((word & 1) << 5);
2676 op->type = MKOP(LOAD_VSX, 0, 2);
2677 op->element_size = 8;
2678 op->vsx_flags = VSX_CHECK_VEC;
2679 break;
2680
2681 case 844: /* lxvd2x */
2682 op->reg = rd | ((word & 1) << 5);
2683 op->type = MKOP(LOAD_VSX, 0, 16);
2684 op->element_size = 8;
2685 break;
2686
2687 case 876: /* lxvb16x */
2688 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2689 goto unknown_opcode;
2690 op->reg = rd | ((word & 1) << 5);
2691 op->type = MKOP(LOAD_VSX, 0, 16);
2692 op->element_size = 1;
2693 op->vsx_flags = VSX_CHECK_VEC;
2694 break;
2695
2696 case 908: /* stxvw4x */
2697 op->reg = rd | ((word & 1) << 5);
2698 op->type = MKOP(STORE_VSX, 0, 16);
2699 op->element_size = 4;
2700 break;
2701
2702 case 909: /* stxsibx */
2703 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2704 goto unknown_opcode;
2705 op->reg = rd | ((word & 1) << 5);
2706 op->type = MKOP(STORE_VSX, 0, 1);
2707 op->element_size = 8;
2708 op->vsx_flags = VSX_CHECK_VEC;
2709 break;
2710
2711 case 940: /* stxvh8x */
2712 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2713 goto unknown_opcode;
2714 op->reg = rd | ((word & 1) << 5);
2715 op->type = MKOP(STORE_VSX, 0, 16);
2716 op->element_size = 2;
2717 op->vsx_flags = VSX_CHECK_VEC;
2718 break;
2719
2720 case 941: /* stxsihx */
2721 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2722 goto unknown_opcode;
2723 op->reg = rd | ((word & 1) << 5);
2724 op->type = MKOP(STORE_VSX, 0, 2);
2725 op->element_size = 8;
2726 op->vsx_flags = VSX_CHECK_VEC;
2727 break;
2728
2729 case 972: /* stxvd2x */
2730 op->reg = rd | ((word & 1) << 5);
2731 op->type = MKOP(STORE_VSX, 0, 16);
2732 op->element_size = 8;
2733 break;
2734
2735 case 1004: /* stxvb16x */
2736 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2737 goto unknown_opcode;
2738 op->reg = rd | ((word & 1) << 5);
2739 op->type = MKOP(STORE_VSX, 0, 16);
2740 op->element_size = 1;
2741 op->vsx_flags = VSX_CHECK_VEC;
2742 break;
2743
2744 #endif /* CONFIG_VSX */
2745 }
2746 break;
2747
2748 case 32: /* lwz */
2749 case 33: /* lwzu */
2750 op->type = MKOP(LOAD, u, 4);
2751 op->ea = dform_ea(word, regs);
2752 break;
2753
2754 case 34: /* lbz */
2755 case 35: /* lbzu */
2756 op->type = MKOP(LOAD, u, 1);
2757 op->ea = dform_ea(word, regs);
2758 break;
2759
2760 case 36: /* stw */
2761 case 37: /* stwu */
2762 op->type = MKOP(STORE, u, 4);
2763 op->ea = dform_ea(word, regs);
2764 break;
2765
2766 case 38: /* stb */
2767 case 39: /* stbu */
2768 op->type = MKOP(STORE, u, 1);
2769 op->ea = dform_ea(word, regs);
2770 break;
2771
2772 case 40: /* lhz */
2773 case 41: /* lhzu */
2774 op->type = MKOP(LOAD, u, 2);
2775 op->ea = dform_ea(word, regs);
2776 break;
2777
2778 case 42: /* lha */
2779 case 43: /* lhau */
2780 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2781 op->ea = dform_ea(word, regs);
2782 break;
2783
2784 case 44: /* sth */
2785 case 45: /* sthu */
2786 op->type = MKOP(STORE, u, 2);
2787 op->ea = dform_ea(word, regs);
2788 break;
2789
2790 case 46: /* lmw */
2791 if (ra >= rd)
2792 break; /* invalid form, ra in range to load */
2793 op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2794 op->ea = dform_ea(word, regs);
2795 break;
2796
2797 case 47: /* stmw */
2798 op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2799 op->ea = dform_ea(word, regs);
2800 break;
2801
2802 #ifdef CONFIG_PPC_FPU
2803 case 48: /* lfs */
2804 case 49: /* lfsu */
2805 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2806 op->ea = dform_ea(word, regs);
2807 break;
2808
2809 case 50: /* lfd */
2810 case 51: /* lfdu */
2811 op->type = MKOP(LOAD_FP, u, 8);
2812 op->ea = dform_ea(word, regs);
2813 break;
2814
2815 case 52: /* stfs */
2816 case 53: /* stfsu */
2817 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2818 op->ea = dform_ea(word, regs);
2819 break;
2820
2821 case 54: /* stfd */
2822 case 55: /* stfdu */
2823 op->type = MKOP(STORE_FP, u, 8);
2824 op->ea = dform_ea(word, regs);
2825 break;
2826 #endif
2827
2828 #ifdef __powerpc64__
2829 case 56: /* lq */
2830 if (!((rd & 1) || (rd == ra)))
2831 op->type = MKOP(LOAD, 0, 16);
2832 op->ea = dqform_ea(word, regs);
2833 break;
2834 #endif
2835
2836 #ifdef CONFIG_VSX
2837 case 57: /* lfdp, lxsd, lxssp */
2838 op->ea = dsform_ea(word, regs);
2839 switch (word & 3) {
2840 case 0: /* lfdp */
2841 if (rd & 1)
2842 break; /* reg must be even */
2843 op->type = MKOP(LOAD_FP, 0, 16);
2844 break;
2845 case 2: /* lxsd */
2846 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2847 goto unknown_opcode;
2848 op->reg = rd + 32;
2849 op->type = MKOP(LOAD_VSX, 0, 8);
2850 op->element_size = 8;
2851 op->vsx_flags = VSX_CHECK_VEC;
2852 break;
2853 case 3: /* lxssp */
2854 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2855 goto unknown_opcode;
2856 op->reg = rd + 32;
2857 op->type = MKOP(LOAD_VSX, 0, 4);
2858 op->element_size = 8;
2859 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2860 break;
2861 }
2862 break;
2863 #endif /* CONFIG_VSX */
2864
2865 #ifdef __powerpc64__
2866 case 58: /* ld[u], lwa */
2867 op->ea = dsform_ea(word, regs);
2868 switch (word & 3) {
2869 case 0: /* ld */
2870 op->type = MKOP(LOAD, 0, 8);
2871 break;
2872 case 1: /* ldu */
2873 op->type = MKOP(LOAD, UPDATE, 8);
2874 break;
2875 case 2: /* lwa */
2876 op->type = MKOP(LOAD, SIGNEXT, 4);
2877 break;
2878 }
2879 break;
2880 #endif
2881
2882 #ifdef CONFIG_VSX
2883 case 6:
2884 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2885 goto unknown_opcode;
2886 op->ea = dqform_ea(word, regs);
2887 op->reg = VSX_REGISTER_XTP(rd);
2888 op->element_size = 32;
2889 switch (word & 0xf) {
2890 case 0: /* lxvp */
2891 op->type = MKOP(LOAD_VSX, 0, 32);
2892 break;
2893 case 1: /* stxvp */
2894 op->type = MKOP(STORE_VSX, 0, 32);
2895 break;
2896 }
2897 break;
2898
2899 case 61: /* stfdp, lxv, stxsd, stxssp, stxv */
2900 switch (word & 7) {
2901 case 0: /* stfdp with LSB of DS field = 0 */
2902 case 4: /* stfdp with LSB of DS field = 1 */
2903 op->ea = dsform_ea(word, regs);
2904 op->type = MKOP(STORE_FP, 0, 16);
2905 break;
2906
2907 case 1: /* lxv */
2908 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2909 goto unknown_opcode;
2910 op->ea = dqform_ea(word, regs);
2911 if (word & 8)
2912 op->reg = rd + 32;
2913 op->type = MKOP(LOAD_VSX, 0, 16);
2914 op->element_size = 16;
2915 op->vsx_flags = VSX_CHECK_VEC;
2916 break;
2917
2918 case 2: /* stxsd with LSB of DS field = 0 */
2919 case 6: /* stxsd with LSB of DS field = 1 */
2920 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2921 goto unknown_opcode;
2922 op->ea = dsform_ea(word, regs);
2923 op->reg = rd + 32;
2924 op->type = MKOP(STORE_VSX, 0, 8);
2925 op->element_size = 8;
2926 op->vsx_flags = VSX_CHECK_VEC;
2927 break;
2928
2929 case 3: /* stxssp with LSB of DS field = 0 */
2930 case 7: /* stxssp with LSB of DS field = 1 */
2931 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2932 goto unknown_opcode;
2933 op->ea = dsform_ea(word, regs);
2934 op->reg = rd + 32;
2935 op->type = MKOP(STORE_VSX, 0, 4);
2936 op->element_size = 8;
2937 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2938 break;
2939
2940 case 5: /* stxv */
2941 if (!cpu_has_feature(CPU_FTR_ARCH_300))
2942 goto unknown_opcode;
2943 op->ea = dqform_ea(word, regs);
2944 if (word & 8)
2945 op->reg = rd + 32;
2946 op->type = MKOP(STORE_VSX, 0, 16);
2947 op->element_size = 16;
2948 op->vsx_flags = VSX_CHECK_VEC;
2949 break;
2950 }
2951 break;
2952 #endif /* CONFIG_VSX */
2953
2954 #ifdef __powerpc64__
2955 case 62: /* std[u] */
2956 op->ea = dsform_ea(word, regs);
2957 switch (word & 3) {
2958 case 0: /* std */
2959 op->type = MKOP(STORE, 0, 8);
2960 break;
2961 case 1: /* stdu */
2962 op->type = MKOP(STORE, UPDATE, 8);
2963 break;
2964 case 2: /* stq */
2965 if (!(rd & 1))
2966 op->type = MKOP(STORE, 0, 16);
2967 break;
2968 }
2969 break;
2970 case 1: /* Prefixed instructions */
2971 if (!cpu_has_feature(CPU_FTR_ARCH_31))
2972 goto unknown_opcode;
2973
2974 prefix_r = GET_PREFIX_R(word);
2975 ra = GET_PREFIX_RA(suffix);
2976 op->update_reg = ra;
2977 rd = (suffix >> 21) & 0x1f;
2978 op->reg = rd;
2979 op->val = regs->gpr[rd];
2980
2981 suffixopcode = get_op(suffix);
2982 prefixtype = (word >> 24) & 0x3;
2983 switch (prefixtype) {
2984 case 0: /* Type 00 Eight-Byte Load/Store */
2985 if (prefix_r && ra)
2986 break;
2987 op->ea = mlsd_8lsd_ea(word, suffix, regs);
2988 switch (suffixopcode) {
2989 case 41: /* plwa */
2990 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4);
2991 break;
2992 #ifdef CONFIG_VSX
2993 case 42: /* plxsd */
2994 op->reg = rd + 32;
2995 op->type = MKOP(LOAD_VSX, PREFIXED, 8);
2996 op->element_size = 8;
2997 op->vsx_flags = VSX_CHECK_VEC;
2998 break;
2999 case 43: /* plxssp */
3000 op->reg = rd + 32;
3001 op->type = MKOP(LOAD_VSX, PREFIXED, 4);
3002 op->element_size = 8;
3003 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3004 break;
3005 case 46: /* pstxsd */
3006 op->reg = rd + 32;
3007 op->type = MKOP(STORE_VSX, PREFIXED, 8);
3008 op->element_size = 8;
3009 op->vsx_flags = VSX_CHECK_VEC;
3010 break;
3011 case 47: /* pstxssp */
3012 op->reg = rd + 32;
3013 op->type = MKOP(STORE_VSX, PREFIXED, 4);
3014 op->element_size = 8;
3015 op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3016 break;
3017 case 51: /* plxv1 */
3018 op->reg += 32;
3019 fallthrough;
3020 case 50: /* plxv0 */
3021 op->type = MKOP(LOAD_VSX, PREFIXED, 16);
3022 op->element_size = 16;
3023 op->vsx_flags = VSX_CHECK_VEC;
3024 break;
3025 case 55: /* pstxv1 */
3026 op->reg = rd + 32;
3027 fallthrough;
3028 case 54: /* pstxv0 */
3029 op->type = MKOP(STORE_VSX, PREFIXED, 16);
3030 op->element_size = 16;
3031 op->vsx_flags = VSX_CHECK_VEC;
3032 break;
3033 #endif /* CONFIG_VSX */
3034 case 56: /* plq */
3035 op->type = MKOP(LOAD, PREFIXED, 16);
3036 break;
3037 case 57: /* pld */
3038 op->type = MKOP(LOAD, PREFIXED, 8);
3039 break;
3040 #ifdef CONFIG_VSX
3041 case 58: /* plxvp */
3042 op->reg = VSX_REGISTER_XTP(rd);
3043 op->type = MKOP(LOAD_VSX, PREFIXED, 32);
3044 op->element_size = 32;
3045 break;
3046 #endif /* CONFIG_VSX */
3047 case 60: /* pstq */
3048 op->type = MKOP(STORE, PREFIXED, 16);
3049 break;
3050 case 61: /* pstd */
3051 op->type = MKOP(STORE, PREFIXED, 8);
3052 break;
3053 #ifdef CONFIG_VSX
3054 case 62: /* pstxvp */
3055 op->reg = VSX_REGISTER_XTP(rd);
3056 op->type = MKOP(STORE_VSX, PREFIXED, 32);
3057 op->element_size = 32;
3058 break;
3059 #endif /* CONFIG_VSX */
3060 }
3061 break;
3062 case 1: /* Type 01 Eight-Byte Register-to-Register */
3063 break;
3064 case 2: /* Type 10 Modified Load/Store */
3065 if (prefix_r && ra)
3066 break;
3067 op->ea = mlsd_8lsd_ea(word, suffix, regs);
3068 switch (suffixopcode) {
3069 case 32: /* plwz */
3070 op->type = MKOP(LOAD, PREFIXED, 4);
3071 break;
3072 case 34: /* plbz */
3073 op->type = MKOP(LOAD, PREFIXED, 1);
3074 break;
3075 case 36: /* pstw */
3076 op->type = MKOP(STORE, PREFIXED, 4);
3077 break;
3078 case 38: /* pstb */
3079 op->type = MKOP(STORE, PREFIXED, 1);
3080 break;
3081 case 40: /* plhz */
3082 op->type = MKOP(LOAD, PREFIXED, 2);
3083 break;
3084 case 42: /* plha */
3085 op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2);
3086 break;
3087 case 44: /* psth */
3088 op->type = MKOP(STORE, PREFIXED, 2);
3089 break;
3090 case 48: /* plfs */
3091 op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4);
3092 break;
3093 case 50: /* plfd */
3094 op->type = MKOP(LOAD_FP, PREFIXED, 8);
3095 break;
3096 case 52: /* pstfs */
3097 op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4);
3098 break;
3099 case 54: /* pstfd */
3100 op->type = MKOP(STORE_FP, PREFIXED, 8);
3101 break;
3102 }
3103 break;
3104 case 3: /* Type 11 Modified Register-to-Register */
3105 break;
3106 }
3107 #endif /* __powerpc64__ */
3108
3109 }
3110
3111 if (OP_IS_LOAD_STORE(op->type) && (op->type & UPDATE)) {
3112 switch (GETTYPE(op->type)) {
3113 case LOAD:
3114 if (ra == rd)
3115 goto unknown_opcode;
3116 fallthrough;
3117 case STORE:
3118 case LOAD_FP:
3119 case STORE_FP:
3120 if (ra == 0)
3121 goto unknown_opcode;
3122 }
3123 }
3124
3125 #ifdef CONFIG_VSX
3126 if ((GETTYPE(op->type) == LOAD_VSX ||
3127 GETTYPE(op->type) == STORE_VSX) &&
3128 !cpu_has_feature(CPU_FTR_VSX)) {
3129 return -1;
3130 }
3131 #endif /* CONFIG_VSX */
3132
3133 return 0;
3134
3135 unknown_opcode:
3136 op->type = UNKNOWN;
3137 return 0;
3138
3139 logical_done:
3140 if (word & 1)
3141 set_cr0(regs, op);
3142 logical_done_nocc:
3143 op->reg = ra;
3144 op->type |= SETREG;
3145 return 1;
3146
3147 arith_done:
3148 if (word & 1)
3149 set_cr0(regs, op);
3150 compute_done:
3151 op->reg = rd;
3152 op->type |= SETREG;
3153 return 1;
3154
3155 priv:
3156 op->type = INTERRUPT | 0x700;
3157 op->val = SRR1_PROGPRIV;
3158 return 0;
3159
3160 trap:
3161 op->type = INTERRUPT | 0x700;
3162 op->val = SRR1_PROGTRAP;
3163 return 0;
3164 }
3165 EXPORT_SYMBOL_GPL(analyse_instr);
3166 NOKPROBE_SYMBOL(analyse_instr);
3167
3168 /*
3169 * For PPC32 we always use stwu with r1 to change the stack pointer.
3170 * So this emulated store may corrupt the exception frame, now we
3171 * have to provide the exception frame trampoline, which is pushed
3172 * below the kprobed function stack. So we only update gpr[1] but
3173 * don't emulate the real store operation. We will do real store
3174 * operation safely in exception return code by checking this flag.
3175 */
handle_stack_update(unsigned long ea,struct pt_regs * regs)3176 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
3177 {
3178 /*
3179 * Check if we already set since that means we'll
3180 * lose the previous value.
3181 */
3182 WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
3183 set_thread_flag(TIF_EMULATE_STACK_STORE);
3184 return 0;
3185 }
3186
do_signext(unsigned long * valp,int size)3187 static nokprobe_inline void do_signext(unsigned long *valp, int size)
3188 {
3189 switch (size) {
3190 case 2:
3191 *valp = (signed short) *valp;
3192 break;
3193 case 4:
3194 *valp = (signed int) *valp;
3195 break;
3196 }
3197 }
3198
do_byterev(unsigned long * valp,int size)3199 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
3200 {
3201 switch (size) {
3202 case 2:
3203 *valp = byterev_2(*valp);
3204 break;
3205 case 4:
3206 *valp = byterev_4(*valp);
3207 break;
3208 #ifdef __powerpc64__
3209 case 8:
3210 *valp = byterev_8(*valp);
3211 break;
3212 #endif
3213 }
3214 }
3215
3216 /*
3217 * Emulate an instruction that can be executed just by updating
3218 * fields in *regs.
3219 */
emulate_update_regs(struct pt_regs * regs,struct instruction_op * op)3220 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
3221 {
3222 unsigned long next_pc;
3223
3224 next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type));
3225 switch (GETTYPE(op->type)) {
3226 case COMPUTE:
3227 if (op->type & SETREG)
3228 regs->gpr[op->reg] = op->val;
3229 if (op->type & SETCC)
3230 regs->ccr = op->ccval;
3231 if (op->type & SETXER)
3232 regs->xer = op->xerval;
3233 break;
3234
3235 case BRANCH:
3236 if (op->type & SETLK)
3237 regs->link = next_pc;
3238 if (op->type & BRTAKEN)
3239 next_pc = op->val;
3240 if (op->type & DECCTR)
3241 --regs->ctr;
3242 break;
3243
3244 case BARRIER:
3245 switch (op->type & BARRIER_MASK) {
3246 case BARRIER_SYNC:
3247 mb();
3248 break;
3249 case BARRIER_ISYNC:
3250 isync();
3251 break;
3252 case BARRIER_EIEIO:
3253 eieio();
3254 break;
3255 #ifdef CONFIG_PPC64
3256 case BARRIER_LWSYNC:
3257 asm volatile("lwsync" : : : "memory");
3258 break;
3259 case BARRIER_PTESYNC:
3260 asm volatile("ptesync" : : : "memory");
3261 break;
3262 #endif
3263 }
3264 break;
3265
3266 case MFSPR:
3267 switch (op->spr) {
3268 case SPRN_XER:
3269 regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
3270 break;
3271 case SPRN_LR:
3272 regs->gpr[op->reg] = regs->link;
3273 break;
3274 case SPRN_CTR:
3275 regs->gpr[op->reg] = regs->ctr;
3276 break;
3277 default:
3278 WARN_ON_ONCE(1);
3279 }
3280 break;
3281
3282 case MTSPR:
3283 switch (op->spr) {
3284 case SPRN_XER:
3285 regs->xer = op->val & 0xffffffffUL;
3286 break;
3287 case SPRN_LR:
3288 regs->link = op->val;
3289 break;
3290 case SPRN_CTR:
3291 regs->ctr = op->val;
3292 break;
3293 default:
3294 WARN_ON_ONCE(1);
3295 }
3296 break;
3297
3298 default:
3299 WARN_ON_ONCE(1);
3300 }
3301 regs_set_return_ip(regs, next_pc);
3302 }
3303 NOKPROBE_SYMBOL(emulate_update_regs);
3304
3305 /*
3306 * Emulate a previously-analysed load or store instruction.
3307 * Return values are:
3308 * 0 = instruction emulated successfully
3309 * -EFAULT = address out of range or access faulted (regs->dar
3310 * contains the faulting address)
3311 * -EACCES = misaligned access, instruction requires alignment
3312 * -EINVAL = unknown operation in *op
3313 */
emulate_loadstore(struct pt_regs * regs,struct instruction_op * op)3314 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
3315 {
3316 int err, size, type;
3317 int i, rd, nb;
3318 unsigned int cr;
3319 unsigned long val;
3320 unsigned long ea;
3321 bool cross_endian;
3322
3323 err = 0;
3324 size = GETSIZE(op->type);
3325 type = GETTYPE(op->type);
3326 cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
3327 ea = truncate_if_32bit(regs->msr, op->ea);
3328
3329 switch (type) {
3330 case LARX:
3331 if (ea & (size - 1))
3332 return -EACCES; /* can't handle misaligned */
3333 if (!address_ok(regs, ea, size))
3334 return -EFAULT;
3335 err = 0;
3336 val = 0;
3337 switch (size) {
3338 #ifdef CONFIG_PPC_HAS_LBARX_LHARX
3339 case 1:
3340 __get_user_asmx(val, ea, err, "lbarx");
3341 break;
3342 case 2:
3343 __get_user_asmx(val, ea, err, "lharx");
3344 break;
3345 #endif
3346 case 4:
3347 __get_user_asmx(val, ea, err, "lwarx");
3348 break;
3349 #ifdef __powerpc64__
3350 case 8:
3351 __get_user_asmx(val, ea, err, "ldarx");
3352 break;
3353 case 16:
3354 err = do_lqarx(ea, ®s->gpr[op->reg]);
3355 break;
3356 #endif
3357 default:
3358 return -EINVAL;
3359 }
3360 if (err) {
3361 regs->dar = ea;
3362 break;
3363 }
3364 if (size < 16)
3365 regs->gpr[op->reg] = val;
3366 break;
3367
3368 case STCX:
3369 if (ea & (size - 1))
3370 return -EACCES; /* can't handle misaligned */
3371 if (!address_ok(regs, ea, size))
3372 return -EFAULT;
3373 err = 0;
3374 switch (size) {
3375 #ifdef __powerpc64__
3376 case 1:
3377 __put_user_asmx(op->val, ea, err, "stbcx.", cr);
3378 break;
3379 case 2:
3380 __put_user_asmx(op->val, ea, err, "sthcx.", cr);
3381 break;
3382 #endif
3383 case 4:
3384 __put_user_asmx(op->val, ea, err, "stwcx.", cr);
3385 break;
3386 #ifdef __powerpc64__
3387 case 8:
3388 __put_user_asmx(op->val, ea, err, "stdcx.", cr);
3389 break;
3390 case 16:
3391 err = do_stqcx(ea, regs->gpr[op->reg],
3392 regs->gpr[op->reg + 1], &cr);
3393 break;
3394 #endif
3395 default:
3396 return -EINVAL;
3397 }
3398 if (!err)
3399 regs->ccr = (regs->ccr & 0x0fffffff) |
3400 (cr & 0xe0000000) |
3401 ((regs->xer >> 3) & 0x10000000);
3402 else
3403 regs->dar = ea;
3404 break;
3405
3406 case LOAD:
3407 #ifdef __powerpc64__
3408 if (size == 16) {
3409 err = emulate_lq(regs, ea, op->reg, cross_endian);
3410 break;
3411 }
3412 #endif
3413 err = read_mem(®s->gpr[op->reg], ea, size, regs);
3414 if (!err) {
3415 if (op->type & SIGNEXT)
3416 do_signext(®s->gpr[op->reg], size);
3417 if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
3418 do_byterev(®s->gpr[op->reg], size);
3419 }
3420 break;
3421
3422 #ifdef CONFIG_PPC_FPU
3423 case LOAD_FP:
3424 /*
3425 * If the instruction is in userspace, we can emulate it even
3426 * if the VMX state is not live, because we have the state
3427 * stored in the thread_struct. If the instruction is in
3428 * the kernel, we must not touch the state in the thread_struct.
3429 */
3430 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3431 return 0;
3432 err = do_fp_load(op, ea, regs, cross_endian);
3433 break;
3434 #endif
3435 #ifdef CONFIG_ALTIVEC
3436 case LOAD_VMX:
3437 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3438 return 0;
3439 err = do_vec_load(op->reg, ea, size, regs, cross_endian);
3440 break;
3441 #endif
3442 #ifdef CONFIG_VSX
3443 case LOAD_VSX: {
3444 unsigned long msrbit = MSR_VSX;
3445
3446 /*
3447 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3448 * when the target of the instruction is a vector register.
3449 */
3450 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3451 msrbit = MSR_VEC;
3452 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3453 return 0;
3454 err = do_vsx_load(op, ea, regs, cross_endian);
3455 break;
3456 }
3457 #endif
3458 case LOAD_MULTI:
3459 if (!address_ok(regs, ea, size))
3460 return -EFAULT;
3461 rd = op->reg;
3462 for (i = 0; i < size; i += 4) {
3463 unsigned int v32 = 0;
3464
3465 nb = size - i;
3466 if (nb > 4)
3467 nb = 4;
3468 err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3469 if (err)
3470 break;
3471 if (unlikely(cross_endian))
3472 v32 = byterev_4(v32);
3473 regs->gpr[rd] = v32;
3474 ea += 4;
3475 /* reg number wraps from 31 to 0 for lsw[ix] */
3476 rd = (rd + 1) & 0x1f;
3477 }
3478 break;
3479
3480 case STORE:
3481 #ifdef __powerpc64__
3482 if (size == 16) {
3483 err = emulate_stq(regs, ea, op->reg, cross_endian);
3484 break;
3485 }
3486 #endif
3487 if ((op->type & UPDATE) && size == sizeof(long) &&
3488 op->reg == 1 && op->update_reg == 1 &&
3489 !(regs->msr & MSR_PR) &&
3490 ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3491 err = handle_stack_update(ea, regs);
3492 break;
3493 }
3494 if (unlikely(cross_endian))
3495 do_byterev(&op->val, size);
3496 err = write_mem(op->val, ea, size, regs);
3497 break;
3498
3499 #ifdef CONFIG_PPC_FPU
3500 case STORE_FP:
3501 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3502 return 0;
3503 err = do_fp_store(op, ea, regs, cross_endian);
3504 break;
3505 #endif
3506 #ifdef CONFIG_ALTIVEC
3507 case STORE_VMX:
3508 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3509 return 0;
3510 err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3511 break;
3512 #endif
3513 #ifdef CONFIG_VSX
3514 case STORE_VSX: {
3515 unsigned long msrbit = MSR_VSX;
3516
3517 /*
3518 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3519 * when the target of the instruction is a vector register.
3520 */
3521 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3522 msrbit = MSR_VEC;
3523 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3524 return 0;
3525 err = do_vsx_store(op, ea, regs, cross_endian);
3526 break;
3527 }
3528 #endif
3529 case STORE_MULTI:
3530 if (!address_ok(regs, ea, size))
3531 return -EFAULT;
3532 rd = op->reg;
3533 for (i = 0; i < size; i += 4) {
3534 unsigned int v32 = regs->gpr[rd];
3535
3536 nb = size - i;
3537 if (nb > 4)
3538 nb = 4;
3539 if (unlikely(cross_endian))
3540 v32 = byterev_4(v32);
3541 err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3542 if (err)
3543 break;
3544 ea += 4;
3545 /* reg number wraps from 31 to 0 for stsw[ix] */
3546 rd = (rd + 1) & 0x1f;
3547 }
3548 break;
3549
3550 default:
3551 return -EINVAL;
3552 }
3553
3554 if (err)
3555 return err;
3556
3557 if (op->type & UPDATE)
3558 regs->gpr[op->update_reg] = op->ea;
3559
3560 return 0;
3561 }
3562 NOKPROBE_SYMBOL(emulate_loadstore);
3563
3564 /*
3565 * Emulate instructions that cause a transfer of control,
3566 * loads and stores, and a few other instructions.
3567 * Returns 1 if the step was emulated, 0 if not,
3568 * or -1 if the instruction is one that should not be stepped,
3569 * such as an rfid, or a mtmsrd that would clear MSR_RI.
3570 */
emulate_step(struct pt_regs * regs,ppc_inst_t instr)3571 int emulate_step(struct pt_regs *regs, ppc_inst_t instr)
3572 {
3573 struct instruction_op op;
3574 int r, err, type;
3575 unsigned long val;
3576 unsigned long ea;
3577
3578 r = analyse_instr(&op, regs, instr);
3579 if (r < 0)
3580 return r;
3581 if (r > 0) {
3582 emulate_update_regs(regs, &op);
3583 return 1;
3584 }
3585
3586 err = 0;
3587 type = GETTYPE(op.type);
3588
3589 if (OP_IS_LOAD_STORE(type)) {
3590 err = emulate_loadstore(regs, &op);
3591 if (err)
3592 return 0;
3593 goto instr_done;
3594 }
3595
3596 switch (type) {
3597 case CACHEOP:
3598 ea = truncate_if_32bit(regs->msr, op.ea);
3599 if (!address_ok(regs, ea, 8))
3600 return 0;
3601 switch (op.type & CACHEOP_MASK) {
3602 case DCBST:
3603 __cacheop_user_asmx(ea, err, "dcbst");
3604 break;
3605 case DCBF:
3606 __cacheop_user_asmx(ea, err, "dcbf");
3607 break;
3608 case DCBTST:
3609 if (op.reg == 0)
3610 prefetchw((void *) ea);
3611 break;
3612 case DCBT:
3613 if (op.reg == 0)
3614 prefetch((void *) ea);
3615 break;
3616 case ICBI:
3617 __cacheop_user_asmx(ea, err, "icbi");
3618 break;
3619 case DCBZ:
3620 err = emulate_dcbz(ea, regs);
3621 break;
3622 }
3623 if (err) {
3624 regs->dar = ea;
3625 return 0;
3626 }
3627 goto instr_done;
3628
3629 case MFMSR:
3630 regs->gpr[op.reg] = regs->msr & MSR_MASK;
3631 goto instr_done;
3632
3633 case MTMSR:
3634 val = regs->gpr[op.reg];
3635 if ((val & MSR_RI) == 0)
3636 /* can't step mtmsr[d] that would clear MSR_RI */
3637 return -1;
3638 /* here op.val is the mask of bits to change */
3639 regs_set_return_msr(regs, (regs->msr & ~op.val) | (val & op.val));
3640 goto instr_done;
3641
3642 case SYSCALL: /* sc */
3643 /*
3644 * Per ISA v3.1, section 7.5.15 'Trace Interrupt', we can't
3645 * single step a system call instruction:
3646 *
3647 * Successful completion for an instruction means that the
3648 * instruction caused no other interrupt. Thus a Trace
3649 * interrupt never occurs for a System Call or System Call
3650 * Vectored instruction, or for a Trap instruction that
3651 * traps.
3652 */
3653 return -1;
3654 case SYSCALL_VECTORED_0: /* scv 0 */
3655 return -1;
3656 case RFI:
3657 return -1;
3658 }
3659 return 0;
3660
3661 instr_done:
3662 regs_set_return_ip(regs,
3663 truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type)));
3664 return 1;
3665 }
3666 NOKPROBE_SYMBOL(emulate_step);
3667