1 /*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2017-2018 Intel Corporation
5 */
6
7 #include <linux/pm_runtime.h>
8
9 #include "gt/intel_engine.h"
10 #include "gt/intel_engine_pm.h"
11 #include "gt/intel_engine_regs.h"
12 #include "gt/intel_engine_user.h"
13 #include "gt/intel_gt_pm.h"
14 #include "gt/intel_gt_regs.h"
15 #include "gt/intel_rc6.h"
16 #include "gt/intel_rps.h"
17
18 #include "i915_drv.h"
19 #include "i915_pmu.h"
20 #include "intel_pm.h"
21
22 /* Frequency for the sampling timer for events which need it. */
23 #define FREQUENCY 200
24 #define PERIOD max_t(u64, 10000, NSEC_PER_SEC / FREQUENCY)
25
26 #define ENGINE_SAMPLE_MASK \
27 (BIT(I915_SAMPLE_BUSY) | \
28 BIT(I915_SAMPLE_WAIT) | \
29 BIT(I915_SAMPLE_SEMA))
30
31 static cpumask_t i915_pmu_cpumask;
32 static unsigned int i915_pmu_target_cpu = -1;
33
engine_config_sample(u64 config)34 static u8 engine_config_sample(u64 config)
35 {
36 return config & I915_PMU_SAMPLE_MASK;
37 }
38
engine_event_sample(struct perf_event * event)39 static u8 engine_event_sample(struct perf_event *event)
40 {
41 return engine_config_sample(event->attr.config);
42 }
43
engine_event_class(struct perf_event * event)44 static u8 engine_event_class(struct perf_event *event)
45 {
46 return (event->attr.config >> I915_PMU_CLASS_SHIFT) & 0xff;
47 }
48
engine_event_instance(struct perf_event * event)49 static u8 engine_event_instance(struct perf_event *event)
50 {
51 return (event->attr.config >> I915_PMU_SAMPLE_BITS) & 0xff;
52 }
53
is_engine_config(u64 config)54 static bool is_engine_config(u64 config)
55 {
56 return config < __I915_PMU_OTHER(0);
57 }
58
other_bit(const u64 config)59 static unsigned int other_bit(const u64 config)
60 {
61 unsigned int val;
62
63 switch (config) {
64 case I915_PMU_ACTUAL_FREQUENCY:
65 val = __I915_PMU_ACTUAL_FREQUENCY_ENABLED;
66 break;
67 case I915_PMU_REQUESTED_FREQUENCY:
68 val = __I915_PMU_REQUESTED_FREQUENCY_ENABLED;
69 break;
70 case I915_PMU_RC6_RESIDENCY:
71 val = __I915_PMU_RC6_RESIDENCY_ENABLED;
72 break;
73 default:
74 /*
75 * Events that do not require sampling, or tracking state
76 * transitions between enabled and disabled can be ignored.
77 */
78 return -1;
79 }
80
81 return I915_ENGINE_SAMPLE_COUNT + val;
82 }
83
config_bit(const u64 config)84 static unsigned int config_bit(const u64 config)
85 {
86 if (is_engine_config(config))
87 return engine_config_sample(config);
88 else
89 return other_bit(config);
90 }
91
config_mask(u64 config)92 static u64 config_mask(u64 config)
93 {
94 return BIT_ULL(config_bit(config));
95 }
96
is_engine_event(struct perf_event * event)97 static bool is_engine_event(struct perf_event *event)
98 {
99 return is_engine_config(event->attr.config);
100 }
101
event_bit(struct perf_event * event)102 static unsigned int event_bit(struct perf_event *event)
103 {
104 return config_bit(event->attr.config);
105 }
106
pmu_needs_timer(struct i915_pmu * pmu,bool gpu_active)107 static bool pmu_needs_timer(struct i915_pmu *pmu, bool gpu_active)
108 {
109 struct drm_i915_private *i915 = container_of(pmu, typeof(*i915), pmu);
110 u32 enable;
111
112 /*
113 * Only some counters need the sampling timer.
114 *
115 * We start with a bitmask of all currently enabled events.
116 */
117 enable = pmu->enable;
118
119 /*
120 * Mask out all the ones which do not need the timer, or in
121 * other words keep all the ones that could need the timer.
122 */
123 enable &= config_mask(I915_PMU_ACTUAL_FREQUENCY) |
124 config_mask(I915_PMU_REQUESTED_FREQUENCY) |
125 ENGINE_SAMPLE_MASK;
126
127 /*
128 * When the GPU is idle per-engine counters do not need to be
129 * running so clear those bits out.
130 */
131 if (!gpu_active)
132 enable &= ~ENGINE_SAMPLE_MASK;
133 /*
134 * Also there is software busyness tracking available we do not
135 * need the timer for I915_SAMPLE_BUSY counter.
136 */
137 else if (i915->caps.scheduler & I915_SCHEDULER_CAP_ENGINE_BUSY_STATS)
138 enable &= ~BIT(I915_SAMPLE_BUSY);
139
140 /*
141 * If some bits remain it means we need the sampling timer running.
142 */
143 return enable;
144 }
145
__get_rc6(struct intel_gt * gt)146 static u64 __get_rc6(struct intel_gt *gt)
147 {
148 struct drm_i915_private *i915 = gt->i915;
149 u64 val;
150
151 val = intel_rc6_residency_ns(>->rc6, GEN6_GT_GFX_RC6);
152
153 if (HAS_RC6p(i915))
154 val += intel_rc6_residency_ns(>->rc6, GEN6_GT_GFX_RC6p);
155
156 if (HAS_RC6pp(i915))
157 val += intel_rc6_residency_ns(>->rc6, GEN6_GT_GFX_RC6pp);
158
159 return val;
160 }
161
ktime_since_raw(const ktime_t kt)162 static inline s64 ktime_since_raw(const ktime_t kt)
163 {
164 return ktime_to_ns(ktime_sub(ktime_get_raw(), kt));
165 }
166
get_rc6(struct intel_gt * gt)167 static u64 get_rc6(struct intel_gt *gt)
168 {
169 struct drm_i915_private *i915 = gt->i915;
170 struct i915_pmu *pmu = &i915->pmu;
171 unsigned long flags;
172 bool awake = false;
173 u64 val;
174
175 if (intel_gt_pm_get_if_awake(gt)) {
176 val = __get_rc6(gt);
177 intel_gt_pm_put_async(gt);
178 awake = true;
179 }
180
181 spin_lock_irqsave(&pmu->lock, flags);
182
183 if (awake) {
184 pmu->sample[__I915_SAMPLE_RC6].cur = val;
185 } else {
186 /*
187 * We think we are runtime suspended.
188 *
189 * Report the delta from when the device was suspended to now,
190 * on top of the last known real value, as the approximated RC6
191 * counter value.
192 */
193 val = ktime_since_raw(pmu->sleep_last);
194 val += pmu->sample[__I915_SAMPLE_RC6].cur;
195 }
196
197 if (val < pmu->sample[__I915_SAMPLE_RC6_LAST_REPORTED].cur)
198 val = pmu->sample[__I915_SAMPLE_RC6_LAST_REPORTED].cur;
199 else
200 pmu->sample[__I915_SAMPLE_RC6_LAST_REPORTED].cur = val;
201
202 spin_unlock_irqrestore(&pmu->lock, flags);
203
204 return val;
205 }
206
init_rc6(struct i915_pmu * pmu)207 static void init_rc6(struct i915_pmu *pmu)
208 {
209 struct drm_i915_private *i915 = container_of(pmu, typeof(*i915), pmu);
210 intel_wakeref_t wakeref;
211
212 with_intel_runtime_pm(to_gt(i915)->uncore->rpm, wakeref) {
213 pmu->sample[__I915_SAMPLE_RC6].cur = __get_rc6(to_gt(i915));
214 pmu->sample[__I915_SAMPLE_RC6_LAST_REPORTED].cur =
215 pmu->sample[__I915_SAMPLE_RC6].cur;
216 pmu->sleep_last = ktime_get_raw();
217 }
218 }
219
park_rc6(struct drm_i915_private * i915)220 static void park_rc6(struct drm_i915_private *i915)
221 {
222 struct i915_pmu *pmu = &i915->pmu;
223
224 pmu->sample[__I915_SAMPLE_RC6].cur = __get_rc6(to_gt(i915));
225 pmu->sleep_last = ktime_get_raw();
226 }
227
__i915_pmu_maybe_start_timer(struct i915_pmu * pmu)228 static void __i915_pmu_maybe_start_timer(struct i915_pmu *pmu)
229 {
230 if (!pmu->timer_enabled && pmu_needs_timer(pmu, true)) {
231 pmu->timer_enabled = true;
232 pmu->timer_last = ktime_get();
233 hrtimer_start_range_ns(&pmu->timer,
234 ns_to_ktime(PERIOD), 0,
235 HRTIMER_MODE_REL_PINNED);
236 }
237 }
238
i915_pmu_gt_parked(struct drm_i915_private * i915)239 void i915_pmu_gt_parked(struct drm_i915_private *i915)
240 {
241 struct i915_pmu *pmu = &i915->pmu;
242
243 if (!pmu->base.event_init)
244 return;
245
246 spin_lock_irq(&pmu->lock);
247
248 park_rc6(i915);
249
250 /*
251 * Signal sampling timer to stop if only engine events are enabled and
252 * GPU went idle.
253 */
254 pmu->timer_enabled = pmu_needs_timer(pmu, false);
255
256 spin_unlock_irq(&pmu->lock);
257 }
258
i915_pmu_gt_unparked(struct drm_i915_private * i915)259 void i915_pmu_gt_unparked(struct drm_i915_private *i915)
260 {
261 struct i915_pmu *pmu = &i915->pmu;
262
263 if (!pmu->base.event_init)
264 return;
265
266 spin_lock_irq(&pmu->lock);
267
268 /*
269 * Re-enable sampling timer when GPU goes active.
270 */
271 __i915_pmu_maybe_start_timer(pmu);
272
273 spin_unlock_irq(&pmu->lock);
274 }
275
276 static void
add_sample(struct i915_pmu_sample * sample,u32 val)277 add_sample(struct i915_pmu_sample *sample, u32 val)
278 {
279 sample->cur += val;
280 }
281
exclusive_mmio_access(const struct drm_i915_private * i915)282 static bool exclusive_mmio_access(const struct drm_i915_private *i915)
283 {
284 /*
285 * We have to avoid concurrent mmio cache line access on gen7 or
286 * risk a machine hang. For a fun history lesson dig out the old
287 * userspace intel_gpu_top and run it on Ivybridge or Haswell!
288 */
289 return GRAPHICS_VER(i915) == 7;
290 }
291
engine_sample(struct intel_engine_cs * engine,unsigned int period_ns)292 static void engine_sample(struct intel_engine_cs *engine, unsigned int period_ns)
293 {
294 struct intel_engine_pmu *pmu = &engine->pmu;
295 bool busy;
296 u32 val;
297
298 val = ENGINE_READ_FW(engine, RING_CTL);
299 if (val == 0) /* powerwell off => engine idle */
300 return;
301
302 if (val & RING_WAIT)
303 add_sample(&pmu->sample[I915_SAMPLE_WAIT], period_ns);
304 if (val & RING_WAIT_SEMAPHORE)
305 add_sample(&pmu->sample[I915_SAMPLE_SEMA], period_ns);
306
307 /* No need to sample when busy stats are supported. */
308 if (intel_engine_supports_stats(engine))
309 return;
310
311 /*
312 * While waiting on a semaphore or event, MI_MODE reports the
313 * ring as idle. However, previously using the seqno, and with
314 * execlists sampling, we account for the ring waiting as the
315 * engine being busy. Therefore, we record the sample as being
316 * busy if either waiting or !idle.
317 */
318 busy = val & (RING_WAIT_SEMAPHORE | RING_WAIT);
319 if (!busy) {
320 val = ENGINE_READ_FW(engine, RING_MI_MODE);
321 busy = !(val & MODE_IDLE);
322 }
323 if (busy)
324 add_sample(&pmu->sample[I915_SAMPLE_BUSY], period_ns);
325 }
326
327 static void
engines_sample(struct intel_gt * gt,unsigned int period_ns)328 engines_sample(struct intel_gt *gt, unsigned int period_ns)
329 {
330 struct drm_i915_private *i915 = gt->i915;
331 struct intel_engine_cs *engine;
332 enum intel_engine_id id;
333 unsigned long flags;
334
335 if ((i915->pmu.enable & ENGINE_SAMPLE_MASK) == 0)
336 return;
337
338 if (!intel_gt_pm_is_awake(gt))
339 return;
340
341 for_each_engine(engine, gt, id) {
342 if (!intel_engine_pm_get_if_awake(engine))
343 continue;
344
345 if (exclusive_mmio_access(i915)) {
346 spin_lock_irqsave(&engine->uncore->lock, flags);
347 engine_sample(engine, period_ns);
348 spin_unlock_irqrestore(&engine->uncore->lock, flags);
349 } else {
350 engine_sample(engine, period_ns);
351 }
352
353 intel_engine_pm_put_async(engine);
354 }
355 }
356
357 static void
add_sample_mult(struct i915_pmu_sample * sample,u32 val,u32 mul)358 add_sample_mult(struct i915_pmu_sample *sample, u32 val, u32 mul)
359 {
360 sample->cur += mul_u32_u32(val, mul);
361 }
362
frequency_sampling_enabled(struct i915_pmu * pmu)363 static bool frequency_sampling_enabled(struct i915_pmu *pmu)
364 {
365 return pmu->enable &
366 (config_mask(I915_PMU_ACTUAL_FREQUENCY) |
367 config_mask(I915_PMU_REQUESTED_FREQUENCY));
368 }
369
370 static void
frequency_sample(struct intel_gt * gt,unsigned int period_ns)371 frequency_sample(struct intel_gt *gt, unsigned int period_ns)
372 {
373 struct drm_i915_private *i915 = gt->i915;
374 struct intel_uncore *uncore = gt->uncore;
375 struct i915_pmu *pmu = &i915->pmu;
376 struct intel_rps *rps = >->rps;
377
378 if (!frequency_sampling_enabled(pmu))
379 return;
380
381 /* Report 0/0 (actual/requested) frequency while parked. */
382 if (!intel_gt_pm_get_if_awake(gt))
383 return;
384
385 if (pmu->enable & config_mask(I915_PMU_ACTUAL_FREQUENCY)) {
386 u32 val;
387
388 /*
389 * We take a quick peek here without using forcewake
390 * so that we don't perturb the system under observation
391 * (forcewake => !rc6 => increased power use). We expect
392 * that if the read fails because it is outside of the
393 * mmio power well, then it will return 0 -- in which
394 * case we assume the system is running at the intended
395 * frequency. Fortunately, the read should rarely fail!
396 */
397 val = intel_uncore_read_fw(uncore, GEN6_RPSTAT1);
398 if (val)
399 val = intel_rps_get_cagf(rps, val);
400 else
401 val = rps->cur_freq;
402
403 add_sample_mult(&pmu->sample[__I915_SAMPLE_FREQ_ACT],
404 intel_gpu_freq(rps, val), period_ns / 1000);
405 }
406
407 if (pmu->enable & config_mask(I915_PMU_REQUESTED_FREQUENCY)) {
408 add_sample_mult(&pmu->sample[__I915_SAMPLE_FREQ_REQ],
409 intel_rps_get_requested_frequency(rps),
410 period_ns / 1000);
411 }
412
413 intel_gt_pm_put_async(gt);
414 }
415
i915_sample(struct hrtimer * hrtimer)416 static enum hrtimer_restart i915_sample(struct hrtimer *hrtimer)
417 {
418 struct drm_i915_private *i915 =
419 container_of(hrtimer, struct drm_i915_private, pmu.timer);
420 struct i915_pmu *pmu = &i915->pmu;
421 struct intel_gt *gt = to_gt(i915);
422 unsigned int period_ns;
423 ktime_t now;
424
425 if (!READ_ONCE(pmu->timer_enabled))
426 return HRTIMER_NORESTART;
427
428 now = ktime_get();
429 period_ns = ktime_to_ns(ktime_sub(now, pmu->timer_last));
430 pmu->timer_last = now;
431
432 /*
433 * Strictly speaking the passed in period may not be 100% accurate for
434 * all internal calculation, since some amount of time can be spent on
435 * grabbing the forcewake. However the potential error from timer call-
436 * back delay greatly dominates this so we keep it simple.
437 */
438 engines_sample(gt, period_ns);
439 frequency_sample(gt, period_ns);
440
441 hrtimer_forward(hrtimer, now, ns_to_ktime(PERIOD));
442
443 return HRTIMER_RESTART;
444 }
445
i915_pmu_event_destroy(struct perf_event * event)446 static void i915_pmu_event_destroy(struct perf_event *event)
447 {
448 struct drm_i915_private *i915 =
449 container_of(event->pmu, typeof(*i915), pmu.base);
450
451 drm_WARN_ON(&i915->drm, event->parent);
452
453 drm_dev_put(&i915->drm);
454 }
455
456 static int
engine_event_status(struct intel_engine_cs * engine,enum drm_i915_pmu_engine_sample sample)457 engine_event_status(struct intel_engine_cs *engine,
458 enum drm_i915_pmu_engine_sample sample)
459 {
460 switch (sample) {
461 case I915_SAMPLE_BUSY:
462 case I915_SAMPLE_WAIT:
463 break;
464 case I915_SAMPLE_SEMA:
465 if (GRAPHICS_VER(engine->i915) < 6)
466 return -ENODEV;
467 break;
468 default:
469 return -ENOENT;
470 }
471
472 return 0;
473 }
474
475 static int
config_status(struct drm_i915_private * i915,u64 config)476 config_status(struct drm_i915_private *i915, u64 config)
477 {
478 struct intel_gt *gt = to_gt(i915);
479
480 switch (config) {
481 case I915_PMU_ACTUAL_FREQUENCY:
482 if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
483 /* Requires a mutex for sampling! */
484 return -ENODEV;
485 fallthrough;
486 case I915_PMU_REQUESTED_FREQUENCY:
487 if (GRAPHICS_VER(i915) < 6)
488 return -ENODEV;
489 break;
490 case I915_PMU_INTERRUPTS:
491 break;
492 case I915_PMU_RC6_RESIDENCY:
493 if (!gt->rc6.supported)
494 return -ENODEV;
495 break;
496 case I915_PMU_SOFTWARE_GT_AWAKE_TIME:
497 break;
498 default:
499 return -ENOENT;
500 }
501
502 return 0;
503 }
504
engine_event_init(struct perf_event * event)505 static int engine_event_init(struct perf_event *event)
506 {
507 struct drm_i915_private *i915 =
508 container_of(event->pmu, typeof(*i915), pmu.base);
509 struct intel_engine_cs *engine;
510
511 engine = intel_engine_lookup_user(i915, engine_event_class(event),
512 engine_event_instance(event));
513 if (!engine)
514 return -ENODEV;
515
516 return engine_event_status(engine, engine_event_sample(event));
517 }
518
i915_pmu_event_init(struct perf_event * event)519 static int i915_pmu_event_init(struct perf_event *event)
520 {
521 struct drm_i915_private *i915 =
522 container_of(event->pmu, typeof(*i915), pmu.base);
523 struct i915_pmu *pmu = &i915->pmu;
524 int ret;
525
526 if (pmu->closed)
527 return -ENODEV;
528
529 if (event->attr.type != event->pmu->type)
530 return -ENOENT;
531
532 /* unsupported modes and filters */
533 if (event->attr.sample_period) /* no sampling */
534 return -EINVAL;
535
536 if (has_branch_stack(event))
537 return -EOPNOTSUPP;
538
539 if (event->cpu < 0)
540 return -EINVAL;
541
542 /* only allow running on one cpu at a time */
543 if (!cpumask_test_cpu(event->cpu, &i915_pmu_cpumask))
544 return -EINVAL;
545
546 if (is_engine_event(event))
547 ret = engine_event_init(event);
548 else
549 ret = config_status(i915, event->attr.config);
550 if (ret)
551 return ret;
552
553 if (!event->parent) {
554 drm_dev_get(&i915->drm);
555 event->destroy = i915_pmu_event_destroy;
556 }
557
558 return 0;
559 }
560
__i915_pmu_event_read(struct perf_event * event)561 static u64 __i915_pmu_event_read(struct perf_event *event)
562 {
563 struct drm_i915_private *i915 =
564 container_of(event->pmu, typeof(*i915), pmu.base);
565 struct i915_pmu *pmu = &i915->pmu;
566 u64 val = 0;
567
568 if (is_engine_event(event)) {
569 u8 sample = engine_event_sample(event);
570 struct intel_engine_cs *engine;
571
572 engine = intel_engine_lookup_user(i915,
573 engine_event_class(event),
574 engine_event_instance(event));
575
576 if (drm_WARN_ON_ONCE(&i915->drm, !engine)) {
577 /* Do nothing */
578 } else if (sample == I915_SAMPLE_BUSY &&
579 intel_engine_supports_stats(engine)) {
580 ktime_t unused;
581
582 val = ktime_to_ns(intel_engine_get_busy_time(engine,
583 &unused));
584 } else {
585 val = engine->pmu.sample[sample].cur;
586 }
587 } else {
588 switch (event->attr.config) {
589 case I915_PMU_ACTUAL_FREQUENCY:
590 val =
591 div_u64(pmu->sample[__I915_SAMPLE_FREQ_ACT].cur,
592 USEC_PER_SEC /* to MHz */);
593 break;
594 case I915_PMU_REQUESTED_FREQUENCY:
595 val =
596 div_u64(pmu->sample[__I915_SAMPLE_FREQ_REQ].cur,
597 USEC_PER_SEC /* to MHz */);
598 break;
599 case I915_PMU_INTERRUPTS:
600 val = READ_ONCE(pmu->irq_count);
601 break;
602 case I915_PMU_RC6_RESIDENCY:
603 val = get_rc6(to_gt(i915));
604 break;
605 case I915_PMU_SOFTWARE_GT_AWAKE_TIME:
606 val = ktime_to_ns(intel_gt_get_awake_time(to_gt(i915)));
607 break;
608 }
609 }
610
611 return val;
612 }
613
i915_pmu_event_read(struct perf_event * event)614 static void i915_pmu_event_read(struct perf_event *event)
615 {
616 struct drm_i915_private *i915 =
617 container_of(event->pmu, typeof(*i915), pmu.base);
618 struct hw_perf_event *hwc = &event->hw;
619 struct i915_pmu *pmu = &i915->pmu;
620 u64 prev, new;
621
622 if (pmu->closed) {
623 event->hw.state = PERF_HES_STOPPED;
624 return;
625 }
626 again:
627 prev = local64_read(&hwc->prev_count);
628 new = __i915_pmu_event_read(event);
629
630 if (local64_cmpxchg(&hwc->prev_count, prev, new) != prev)
631 goto again;
632
633 local64_add(new - prev, &event->count);
634 }
635
i915_pmu_enable(struct perf_event * event)636 static void i915_pmu_enable(struct perf_event *event)
637 {
638 struct drm_i915_private *i915 =
639 container_of(event->pmu, typeof(*i915), pmu.base);
640 struct i915_pmu *pmu = &i915->pmu;
641 unsigned long flags;
642 unsigned int bit;
643
644 bit = event_bit(event);
645 if (bit == -1)
646 goto update;
647
648 spin_lock_irqsave(&pmu->lock, flags);
649
650 /*
651 * Update the bitmask of enabled events and increment
652 * the event reference counter.
653 */
654 BUILD_BUG_ON(ARRAY_SIZE(pmu->enable_count) != I915_PMU_MASK_BITS);
655 GEM_BUG_ON(bit >= ARRAY_SIZE(pmu->enable_count));
656 GEM_BUG_ON(pmu->enable_count[bit] == ~0);
657
658 pmu->enable |= BIT_ULL(bit);
659 pmu->enable_count[bit]++;
660
661 /*
662 * Start the sampling timer if needed and not already enabled.
663 */
664 __i915_pmu_maybe_start_timer(pmu);
665
666 /*
667 * For per-engine events the bitmask and reference counting
668 * is stored per engine.
669 */
670 if (is_engine_event(event)) {
671 u8 sample = engine_event_sample(event);
672 struct intel_engine_cs *engine;
673
674 engine = intel_engine_lookup_user(i915,
675 engine_event_class(event),
676 engine_event_instance(event));
677
678 BUILD_BUG_ON(ARRAY_SIZE(engine->pmu.enable_count) !=
679 I915_ENGINE_SAMPLE_COUNT);
680 BUILD_BUG_ON(ARRAY_SIZE(engine->pmu.sample) !=
681 I915_ENGINE_SAMPLE_COUNT);
682 GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.enable_count));
683 GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.sample));
684 GEM_BUG_ON(engine->pmu.enable_count[sample] == ~0);
685
686 engine->pmu.enable |= BIT(sample);
687 engine->pmu.enable_count[sample]++;
688 }
689
690 spin_unlock_irqrestore(&pmu->lock, flags);
691
692 update:
693 /*
694 * Store the current counter value so we can report the correct delta
695 * for all listeners. Even when the event was already enabled and has
696 * an existing non-zero value.
697 */
698 local64_set(&event->hw.prev_count, __i915_pmu_event_read(event));
699 }
700
i915_pmu_disable(struct perf_event * event)701 static void i915_pmu_disable(struct perf_event *event)
702 {
703 struct drm_i915_private *i915 =
704 container_of(event->pmu, typeof(*i915), pmu.base);
705 unsigned int bit = event_bit(event);
706 struct i915_pmu *pmu = &i915->pmu;
707 unsigned long flags;
708
709 if (bit == -1)
710 return;
711
712 spin_lock_irqsave(&pmu->lock, flags);
713
714 if (is_engine_event(event)) {
715 u8 sample = engine_event_sample(event);
716 struct intel_engine_cs *engine;
717
718 engine = intel_engine_lookup_user(i915,
719 engine_event_class(event),
720 engine_event_instance(event));
721
722 GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.enable_count));
723 GEM_BUG_ON(sample >= ARRAY_SIZE(engine->pmu.sample));
724 GEM_BUG_ON(engine->pmu.enable_count[sample] == 0);
725
726 /*
727 * Decrement the reference count and clear the enabled
728 * bitmask when the last listener on an event goes away.
729 */
730 if (--engine->pmu.enable_count[sample] == 0)
731 engine->pmu.enable &= ~BIT(sample);
732 }
733
734 GEM_BUG_ON(bit >= ARRAY_SIZE(pmu->enable_count));
735 GEM_BUG_ON(pmu->enable_count[bit] == 0);
736 /*
737 * Decrement the reference count and clear the enabled
738 * bitmask when the last listener on an event goes away.
739 */
740 if (--pmu->enable_count[bit] == 0) {
741 pmu->enable &= ~BIT_ULL(bit);
742 pmu->timer_enabled &= pmu_needs_timer(pmu, true);
743 }
744
745 spin_unlock_irqrestore(&pmu->lock, flags);
746 }
747
i915_pmu_event_start(struct perf_event * event,int flags)748 static void i915_pmu_event_start(struct perf_event *event, int flags)
749 {
750 struct drm_i915_private *i915 =
751 container_of(event->pmu, typeof(*i915), pmu.base);
752 struct i915_pmu *pmu = &i915->pmu;
753
754 if (pmu->closed)
755 return;
756
757 i915_pmu_enable(event);
758 event->hw.state = 0;
759 }
760
i915_pmu_event_stop(struct perf_event * event,int flags)761 static void i915_pmu_event_stop(struct perf_event *event, int flags)
762 {
763 if (flags & PERF_EF_UPDATE)
764 i915_pmu_event_read(event);
765 i915_pmu_disable(event);
766 event->hw.state = PERF_HES_STOPPED;
767 }
768
i915_pmu_event_add(struct perf_event * event,int flags)769 static int i915_pmu_event_add(struct perf_event *event, int flags)
770 {
771 struct drm_i915_private *i915 =
772 container_of(event->pmu, typeof(*i915), pmu.base);
773 struct i915_pmu *pmu = &i915->pmu;
774
775 if (pmu->closed)
776 return -ENODEV;
777
778 if (flags & PERF_EF_START)
779 i915_pmu_event_start(event, flags);
780
781 return 0;
782 }
783
i915_pmu_event_del(struct perf_event * event,int flags)784 static void i915_pmu_event_del(struct perf_event *event, int flags)
785 {
786 i915_pmu_event_stop(event, PERF_EF_UPDATE);
787 }
788
i915_pmu_event_event_idx(struct perf_event * event)789 static int i915_pmu_event_event_idx(struct perf_event *event)
790 {
791 return 0;
792 }
793
794 struct i915_str_attribute {
795 struct device_attribute attr;
796 const char *str;
797 };
798
i915_pmu_format_show(struct device * dev,struct device_attribute * attr,char * buf)799 static ssize_t i915_pmu_format_show(struct device *dev,
800 struct device_attribute *attr, char *buf)
801 {
802 struct i915_str_attribute *eattr;
803
804 eattr = container_of(attr, struct i915_str_attribute, attr);
805 return sprintf(buf, "%s\n", eattr->str);
806 }
807
808 #define I915_PMU_FORMAT_ATTR(_name, _config) \
809 (&((struct i915_str_attribute[]) { \
810 { .attr = __ATTR(_name, 0444, i915_pmu_format_show, NULL), \
811 .str = _config, } \
812 })[0].attr.attr)
813
814 static struct attribute *i915_pmu_format_attrs[] = {
815 I915_PMU_FORMAT_ATTR(i915_eventid, "config:0-20"),
816 NULL,
817 };
818
819 static const struct attribute_group i915_pmu_format_attr_group = {
820 .name = "format",
821 .attrs = i915_pmu_format_attrs,
822 };
823
824 struct i915_ext_attribute {
825 struct device_attribute attr;
826 unsigned long val;
827 };
828
i915_pmu_event_show(struct device * dev,struct device_attribute * attr,char * buf)829 static ssize_t i915_pmu_event_show(struct device *dev,
830 struct device_attribute *attr, char *buf)
831 {
832 struct i915_ext_attribute *eattr;
833
834 eattr = container_of(attr, struct i915_ext_attribute, attr);
835 return sprintf(buf, "config=0x%lx\n", eattr->val);
836 }
837
cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)838 static ssize_t cpumask_show(struct device *dev,
839 struct device_attribute *attr, char *buf)
840 {
841 return cpumap_print_to_pagebuf(true, buf, &i915_pmu_cpumask);
842 }
843
844 static DEVICE_ATTR_RO(cpumask);
845
846 static struct attribute *i915_cpumask_attrs[] = {
847 &dev_attr_cpumask.attr,
848 NULL,
849 };
850
851 static const struct attribute_group i915_pmu_cpumask_attr_group = {
852 .attrs = i915_cpumask_attrs,
853 };
854
855 #define __event(__config, __name, __unit) \
856 { \
857 .config = (__config), \
858 .name = (__name), \
859 .unit = (__unit), \
860 }
861
862 #define __engine_event(__sample, __name) \
863 { \
864 .sample = (__sample), \
865 .name = (__name), \
866 }
867
868 static struct i915_ext_attribute *
add_i915_attr(struct i915_ext_attribute * attr,const char * name,u64 config)869 add_i915_attr(struct i915_ext_attribute *attr, const char *name, u64 config)
870 {
871 sysfs_attr_init(&attr->attr.attr);
872 attr->attr.attr.name = name;
873 attr->attr.attr.mode = 0444;
874 attr->attr.show = i915_pmu_event_show;
875 attr->val = config;
876
877 return ++attr;
878 }
879
880 static struct perf_pmu_events_attr *
add_pmu_attr(struct perf_pmu_events_attr * attr,const char * name,const char * str)881 add_pmu_attr(struct perf_pmu_events_attr *attr, const char *name,
882 const char *str)
883 {
884 sysfs_attr_init(&attr->attr.attr);
885 attr->attr.attr.name = name;
886 attr->attr.attr.mode = 0444;
887 attr->attr.show = perf_event_sysfs_show;
888 attr->event_str = str;
889
890 return ++attr;
891 }
892
893 static struct attribute **
create_event_attributes(struct i915_pmu * pmu)894 create_event_attributes(struct i915_pmu *pmu)
895 {
896 struct drm_i915_private *i915 = container_of(pmu, typeof(*i915), pmu);
897 static const struct {
898 u64 config;
899 const char *name;
900 const char *unit;
901 } events[] = {
902 __event(I915_PMU_ACTUAL_FREQUENCY, "actual-frequency", "M"),
903 __event(I915_PMU_REQUESTED_FREQUENCY, "requested-frequency", "M"),
904 __event(I915_PMU_INTERRUPTS, "interrupts", NULL),
905 __event(I915_PMU_RC6_RESIDENCY, "rc6-residency", "ns"),
906 __event(I915_PMU_SOFTWARE_GT_AWAKE_TIME, "software-gt-awake-time", "ns"),
907 };
908 static const struct {
909 enum drm_i915_pmu_engine_sample sample;
910 char *name;
911 } engine_events[] = {
912 __engine_event(I915_SAMPLE_BUSY, "busy"),
913 __engine_event(I915_SAMPLE_SEMA, "sema"),
914 __engine_event(I915_SAMPLE_WAIT, "wait"),
915 };
916 unsigned int count = 0;
917 struct perf_pmu_events_attr *pmu_attr = NULL, *pmu_iter;
918 struct i915_ext_attribute *i915_attr = NULL, *i915_iter;
919 struct attribute **attr = NULL, **attr_iter;
920 struct intel_engine_cs *engine;
921 unsigned int i;
922
923 /* Count how many counters we will be exposing. */
924 for (i = 0; i < ARRAY_SIZE(events); i++) {
925 if (!config_status(i915, events[i].config))
926 count++;
927 }
928
929 for_each_uabi_engine(engine, i915) {
930 for (i = 0; i < ARRAY_SIZE(engine_events); i++) {
931 if (!engine_event_status(engine,
932 engine_events[i].sample))
933 count++;
934 }
935 }
936
937 /* Allocate attribute objects and table. */
938 i915_attr = kcalloc(count, sizeof(*i915_attr), GFP_KERNEL);
939 if (!i915_attr)
940 goto err_alloc;
941
942 pmu_attr = kcalloc(count, sizeof(*pmu_attr), GFP_KERNEL);
943 if (!pmu_attr)
944 goto err_alloc;
945
946 /* Max one pointer of each attribute type plus a termination entry. */
947 attr = kcalloc(count * 2 + 1, sizeof(*attr), GFP_KERNEL);
948 if (!attr)
949 goto err_alloc;
950
951 i915_iter = i915_attr;
952 pmu_iter = pmu_attr;
953 attr_iter = attr;
954
955 /* Initialize supported non-engine counters. */
956 for (i = 0; i < ARRAY_SIZE(events); i++) {
957 char *str;
958
959 if (config_status(i915, events[i].config))
960 continue;
961
962 str = kstrdup(events[i].name, GFP_KERNEL);
963 if (!str)
964 goto err;
965
966 *attr_iter++ = &i915_iter->attr.attr;
967 i915_iter = add_i915_attr(i915_iter, str, events[i].config);
968
969 if (events[i].unit) {
970 str = kasprintf(GFP_KERNEL, "%s.unit", events[i].name);
971 if (!str)
972 goto err;
973
974 *attr_iter++ = &pmu_iter->attr.attr;
975 pmu_iter = add_pmu_attr(pmu_iter, str, events[i].unit);
976 }
977 }
978
979 /* Initialize supported engine counters. */
980 for_each_uabi_engine(engine, i915) {
981 for (i = 0; i < ARRAY_SIZE(engine_events); i++) {
982 char *str;
983
984 if (engine_event_status(engine,
985 engine_events[i].sample))
986 continue;
987
988 str = kasprintf(GFP_KERNEL, "%s-%s",
989 engine->name, engine_events[i].name);
990 if (!str)
991 goto err;
992
993 *attr_iter++ = &i915_iter->attr.attr;
994 i915_iter =
995 add_i915_attr(i915_iter, str,
996 __I915_PMU_ENGINE(engine->uabi_class,
997 engine->uabi_instance,
998 engine_events[i].sample));
999
1000 str = kasprintf(GFP_KERNEL, "%s-%s.unit",
1001 engine->name, engine_events[i].name);
1002 if (!str)
1003 goto err;
1004
1005 *attr_iter++ = &pmu_iter->attr.attr;
1006 pmu_iter = add_pmu_attr(pmu_iter, str, "ns");
1007 }
1008 }
1009
1010 pmu->i915_attr = i915_attr;
1011 pmu->pmu_attr = pmu_attr;
1012
1013 return attr;
1014
1015 err:;
1016 for (attr_iter = attr; *attr_iter; attr_iter++)
1017 kfree((*attr_iter)->name);
1018
1019 err_alloc:
1020 kfree(attr);
1021 kfree(i915_attr);
1022 kfree(pmu_attr);
1023
1024 return NULL;
1025 }
1026
free_event_attributes(struct i915_pmu * pmu)1027 static void free_event_attributes(struct i915_pmu *pmu)
1028 {
1029 struct attribute **attr_iter = pmu->events_attr_group.attrs;
1030
1031 for (; *attr_iter; attr_iter++)
1032 kfree((*attr_iter)->name);
1033
1034 kfree(pmu->events_attr_group.attrs);
1035 kfree(pmu->i915_attr);
1036 kfree(pmu->pmu_attr);
1037
1038 pmu->events_attr_group.attrs = NULL;
1039 pmu->i915_attr = NULL;
1040 pmu->pmu_attr = NULL;
1041 }
1042
i915_pmu_cpu_online(unsigned int cpu,struct hlist_node * node)1043 static int i915_pmu_cpu_online(unsigned int cpu, struct hlist_node *node)
1044 {
1045 struct i915_pmu *pmu = hlist_entry_safe(node, typeof(*pmu), cpuhp.node);
1046
1047 GEM_BUG_ON(!pmu->base.event_init);
1048
1049 /* Select the first online CPU as a designated reader. */
1050 if (cpumask_empty(&i915_pmu_cpumask))
1051 cpumask_set_cpu(cpu, &i915_pmu_cpumask);
1052
1053 return 0;
1054 }
1055
i915_pmu_cpu_offline(unsigned int cpu,struct hlist_node * node)1056 static int i915_pmu_cpu_offline(unsigned int cpu, struct hlist_node *node)
1057 {
1058 struct i915_pmu *pmu = hlist_entry_safe(node, typeof(*pmu), cpuhp.node);
1059 unsigned int target = i915_pmu_target_cpu;
1060
1061 GEM_BUG_ON(!pmu->base.event_init);
1062
1063 /*
1064 * Unregistering an instance generates a CPU offline event which we must
1065 * ignore to avoid incorrectly modifying the shared i915_pmu_cpumask.
1066 */
1067 if (pmu->closed)
1068 return 0;
1069
1070 if (cpumask_test_and_clear_cpu(cpu, &i915_pmu_cpumask)) {
1071 target = cpumask_any_but(topology_sibling_cpumask(cpu), cpu);
1072
1073 /* Migrate events if there is a valid target */
1074 if (target < nr_cpu_ids) {
1075 cpumask_set_cpu(target, &i915_pmu_cpumask);
1076 i915_pmu_target_cpu = target;
1077 }
1078 }
1079
1080 if (target < nr_cpu_ids && target != pmu->cpuhp.cpu) {
1081 perf_pmu_migrate_context(&pmu->base, cpu, target);
1082 pmu->cpuhp.cpu = target;
1083 }
1084
1085 return 0;
1086 }
1087
1088 static enum cpuhp_state cpuhp_slot = CPUHP_INVALID;
1089
i915_pmu_init(void)1090 int i915_pmu_init(void)
1091 {
1092 int ret;
1093
1094 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
1095 "perf/x86/intel/i915:online",
1096 i915_pmu_cpu_online,
1097 i915_pmu_cpu_offline);
1098 if (ret < 0)
1099 pr_notice("Failed to setup cpuhp state for i915 PMU! (%d)\n",
1100 ret);
1101 else
1102 cpuhp_slot = ret;
1103
1104 return 0;
1105 }
1106
i915_pmu_exit(void)1107 void i915_pmu_exit(void)
1108 {
1109 if (cpuhp_slot != CPUHP_INVALID)
1110 cpuhp_remove_multi_state(cpuhp_slot);
1111 }
1112
i915_pmu_register_cpuhp_state(struct i915_pmu * pmu)1113 static int i915_pmu_register_cpuhp_state(struct i915_pmu *pmu)
1114 {
1115 if (cpuhp_slot == CPUHP_INVALID)
1116 return -EINVAL;
1117
1118 return cpuhp_state_add_instance(cpuhp_slot, &pmu->cpuhp.node);
1119 }
1120
i915_pmu_unregister_cpuhp_state(struct i915_pmu * pmu)1121 static void i915_pmu_unregister_cpuhp_state(struct i915_pmu *pmu)
1122 {
1123 cpuhp_state_remove_instance(cpuhp_slot, &pmu->cpuhp.node);
1124 }
1125
is_igp(struct drm_i915_private * i915)1126 static bool is_igp(struct drm_i915_private *i915)
1127 {
1128 struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1129
1130 /* IGP is 0000:00:02.0 */
1131 return pci_domain_nr(pdev->bus) == 0 &&
1132 pdev->bus->number == 0 &&
1133 PCI_SLOT(pdev->devfn) == 2 &&
1134 PCI_FUNC(pdev->devfn) == 0;
1135 }
1136
i915_pmu_register(struct drm_i915_private * i915)1137 void i915_pmu_register(struct drm_i915_private *i915)
1138 {
1139 struct i915_pmu *pmu = &i915->pmu;
1140 const struct attribute_group *attr_groups[] = {
1141 &i915_pmu_format_attr_group,
1142 &pmu->events_attr_group,
1143 &i915_pmu_cpumask_attr_group,
1144 NULL
1145 };
1146
1147 int ret = -ENOMEM;
1148
1149 if (GRAPHICS_VER(i915) <= 2) {
1150 drm_info(&i915->drm, "PMU not supported for this GPU.");
1151 return;
1152 }
1153
1154 spin_lock_init(&pmu->lock);
1155 hrtimer_init(&pmu->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1156 pmu->timer.function = i915_sample;
1157 pmu->cpuhp.cpu = -1;
1158 init_rc6(pmu);
1159
1160 if (!is_igp(i915)) {
1161 pmu->name = kasprintf(GFP_KERNEL,
1162 "i915_%s",
1163 dev_name(i915->drm.dev));
1164 if (pmu->name) {
1165 /* tools/perf reserves colons as special. */
1166 strreplace((char *)pmu->name, ':', '_');
1167 }
1168 } else {
1169 pmu->name = "i915";
1170 }
1171 if (!pmu->name)
1172 goto err;
1173
1174 pmu->events_attr_group.name = "events";
1175 pmu->events_attr_group.attrs = create_event_attributes(pmu);
1176 if (!pmu->events_attr_group.attrs)
1177 goto err_name;
1178
1179 pmu->base.attr_groups = kmemdup(attr_groups, sizeof(attr_groups),
1180 GFP_KERNEL);
1181 if (!pmu->base.attr_groups)
1182 goto err_attr;
1183
1184 pmu->base.module = THIS_MODULE;
1185 pmu->base.task_ctx_nr = perf_invalid_context;
1186 pmu->base.event_init = i915_pmu_event_init;
1187 pmu->base.add = i915_pmu_event_add;
1188 pmu->base.del = i915_pmu_event_del;
1189 pmu->base.start = i915_pmu_event_start;
1190 pmu->base.stop = i915_pmu_event_stop;
1191 pmu->base.read = i915_pmu_event_read;
1192 pmu->base.event_idx = i915_pmu_event_event_idx;
1193
1194 ret = perf_pmu_register(&pmu->base, pmu->name, -1);
1195 if (ret)
1196 goto err_groups;
1197
1198 ret = i915_pmu_register_cpuhp_state(pmu);
1199 if (ret)
1200 goto err_unreg;
1201
1202 return;
1203
1204 err_unreg:
1205 perf_pmu_unregister(&pmu->base);
1206 err_groups:
1207 kfree(pmu->base.attr_groups);
1208 err_attr:
1209 pmu->base.event_init = NULL;
1210 free_event_attributes(pmu);
1211 err_name:
1212 if (!is_igp(i915))
1213 kfree(pmu->name);
1214 err:
1215 drm_notice(&i915->drm, "Failed to register PMU!\n");
1216 }
1217
i915_pmu_unregister(struct drm_i915_private * i915)1218 void i915_pmu_unregister(struct drm_i915_private *i915)
1219 {
1220 struct i915_pmu *pmu = &i915->pmu;
1221
1222 if (!pmu->base.event_init)
1223 return;
1224
1225 /*
1226 * "Disconnect" the PMU callbacks - since all are atomic synchronize_rcu
1227 * ensures all currently executing ones will have exited before we
1228 * proceed with unregistration.
1229 */
1230 pmu->closed = true;
1231 synchronize_rcu();
1232
1233 hrtimer_cancel(&pmu->timer);
1234
1235 i915_pmu_unregister_cpuhp_state(pmu);
1236
1237 perf_pmu_unregister(&pmu->base);
1238 pmu->base.event_init = NULL;
1239 kfree(pmu->base.attr_groups);
1240 if (!is_igp(i915))
1241 kfree(pmu->name);
1242 free_event_attributes(pmu);
1243 }
1244