1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
15 *
16 * Andi Kleen - Fix a few bad bugs and races.
17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18 */
19
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84
85 static const struct bpf_func_proto *
86 bpf_sk_base_func_proto(enum bpf_func_id func_id);
87
copy_bpf_fprog_from_user(struct sock_fprog * dst,sockptr_t src,int len)88 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
89 {
90 if (in_compat_syscall()) {
91 struct compat_sock_fprog f32;
92
93 if (len != sizeof(f32))
94 return -EINVAL;
95 if (copy_from_sockptr(&f32, src, sizeof(f32)))
96 return -EFAULT;
97 memset(dst, 0, sizeof(*dst));
98 dst->len = f32.len;
99 dst->filter = compat_ptr(f32.filter);
100 } else {
101 if (len != sizeof(*dst))
102 return -EINVAL;
103 if (copy_from_sockptr(dst, src, sizeof(*dst)))
104 return -EFAULT;
105 }
106
107 return 0;
108 }
109 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
110
111 /**
112 * sk_filter_trim_cap - run a packet through a socket filter
113 * @sk: sock associated with &sk_buff
114 * @skb: buffer to filter
115 * @cap: limit on how short the eBPF program may trim the packet
116 *
117 * Run the eBPF program and then cut skb->data to correct size returned by
118 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
119 * than pkt_len we keep whole skb->data. This is the socket level
120 * wrapper to bpf_prog_run. It returns 0 if the packet should
121 * be accepted or -EPERM if the packet should be tossed.
122 *
123 */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)124 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
125 {
126 int err;
127 struct sk_filter *filter;
128
129 /*
130 * If the skb was allocated from pfmemalloc reserves, only
131 * allow SOCK_MEMALLOC sockets to use it as this socket is
132 * helping free memory
133 */
134 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
135 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
136 return -ENOMEM;
137 }
138 err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
139 if (err)
140 return err;
141
142 err = security_sock_rcv_skb(sk, skb);
143 if (err)
144 return err;
145
146 rcu_read_lock();
147 filter = rcu_dereference(sk->sk_filter);
148 if (filter) {
149 struct sock *save_sk = skb->sk;
150 unsigned int pkt_len;
151
152 skb->sk = sk;
153 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
154 skb->sk = save_sk;
155 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
156 }
157 rcu_read_unlock();
158
159 return err;
160 }
161 EXPORT_SYMBOL(sk_filter_trim_cap);
162
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)163 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
164 {
165 return skb_get_poff(skb);
166 }
167
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)168 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
169 {
170 struct nlattr *nla;
171
172 if (skb_is_nonlinear(skb))
173 return 0;
174
175 if (skb->len < sizeof(struct nlattr))
176 return 0;
177
178 if (a > skb->len - sizeof(struct nlattr))
179 return 0;
180
181 nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
182 if (nla)
183 return (void *) nla - (void *) skb->data;
184
185 return 0;
186 }
187
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)188 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
189 {
190 struct nlattr *nla;
191
192 if (skb_is_nonlinear(skb))
193 return 0;
194
195 if (skb->len < sizeof(struct nlattr))
196 return 0;
197
198 if (a > skb->len - sizeof(struct nlattr))
199 return 0;
200
201 nla = (struct nlattr *) &skb->data[a];
202 if (nla->nla_len > skb->len - a)
203 return 0;
204
205 nla = nla_find_nested(nla, x);
206 if (nla)
207 return (void *) nla - (void *) skb->data;
208
209 return 0;
210 }
211
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)212 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
213 data, int, headlen, int, offset)
214 {
215 u8 tmp, *ptr;
216 const int len = sizeof(tmp);
217
218 if (offset >= 0) {
219 if (headlen - offset >= len)
220 return *(u8 *)(data + offset);
221 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
222 return tmp;
223 } else {
224 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
225 if (likely(ptr))
226 return *(u8 *)ptr;
227 }
228
229 return -EFAULT;
230 }
231
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)232 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
233 int, offset)
234 {
235 return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
236 offset);
237 }
238
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)239 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
240 data, int, headlen, int, offset)
241 {
242 __be16 tmp, *ptr;
243 const int len = sizeof(tmp);
244
245 if (offset >= 0) {
246 if (headlen - offset >= len)
247 return get_unaligned_be16(data + offset);
248 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
249 return be16_to_cpu(tmp);
250 } else {
251 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
252 if (likely(ptr))
253 return get_unaligned_be16(ptr);
254 }
255
256 return -EFAULT;
257 }
258
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)259 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
260 int, offset)
261 {
262 return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
263 offset);
264 }
265
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)266 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
267 data, int, headlen, int, offset)
268 {
269 __be32 tmp, *ptr;
270 const int len = sizeof(tmp);
271
272 if (likely(offset >= 0)) {
273 if (headlen - offset >= len)
274 return get_unaligned_be32(data + offset);
275 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
276 return be32_to_cpu(tmp);
277 } else {
278 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
279 if (likely(ptr))
280 return get_unaligned_be32(ptr);
281 }
282
283 return -EFAULT;
284 }
285
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)286 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
287 int, offset)
288 {
289 return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
290 offset);
291 }
292
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)293 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
294 struct bpf_insn *insn_buf)
295 {
296 struct bpf_insn *insn = insn_buf;
297
298 switch (skb_field) {
299 case SKF_AD_MARK:
300 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
301
302 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
303 offsetof(struct sk_buff, mark));
304 break;
305
306 case SKF_AD_PKTTYPE:
307 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
308 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
309 #ifdef __BIG_ENDIAN_BITFIELD
310 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
311 #endif
312 break;
313
314 case SKF_AD_QUEUE:
315 BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
316
317 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
318 offsetof(struct sk_buff, queue_mapping));
319 break;
320
321 case SKF_AD_VLAN_TAG:
322 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
323
324 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
325 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
326 offsetof(struct sk_buff, vlan_tci));
327 break;
328 case SKF_AD_VLAN_TAG_PRESENT:
329 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
330 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
331 offsetof(struct sk_buff, vlan_all));
332 *insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
333 *insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
334 break;
335 }
336
337 return insn - insn_buf;
338 }
339
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)340 static bool convert_bpf_extensions(struct sock_filter *fp,
341 struct bpf_insn **insnp)
342 {
343 struct bpf_insn *insn = *insnp;
344 u32 cnt;
345
346 switch (fp->k) {
347 case SKF_AD_OFF + SKF_AD_PROTOCOL:
348 BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
349
350 /* A = *(u16 *) (CTX + offsetof(protocol)) */
351 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
352 offsetof(struct sk_buff, protocol));
353 /* A = ntohs(A) [emitting a nop or swap16] */
354 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
355 break;
356
357 case SKF_AD_OFF + SKF_AD_PKTTYPE:
358 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
359 insn += cnt - 1;
360 break;
361
362 case SKF_AD_OFF + SKF_AD_IFINDEX:
363 case SKF_AD_OFF + SKF_AD_HATYPE:
364 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
365 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
366
367 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
368 BPF_REG_TMP, BPF_REG_CTX,
369 offsetof(struct sk_buff, dev));
370 /* if (tmp != 0) goto pc + 1 */
371 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
372 *insn++ = BPF_EXIT_INSN();
373 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
374 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
375 offsetof(struct net_device, ifindex));
376 else
377 *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
378 offsetof(struct net_device, type));
379 break;
380
381 case SKF_AD_OFF + SKF_AD_MARK:
382 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
383 insn += cnt - 1;
384 break;
385
386 case SKF_AD_OFF + SKF_AD_RXHASH:
387 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
388
389 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
390 offsetof(struct sk_buff, hash));
391 break;
392
393 case SKF_AD_OFF + SKF_AD_QUEUE:
394 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
395 insn += cnt - 1;
396 break;
397
398 case SKF_AD_OFF + SKF_AD_VLAN_TAG:
399 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
400 BPF_REG_A, BPF_REG_CTX, insn);
401 insn += cnt - 1;
402 break;
403
404 case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
405 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
406 BPF_REG_A, BPF_REG_CTX, insn);
407 insn += cnt - 1;
408 break;
409
410 case SKF_AD_OFF + SKF_AD_VLAN_TPID:
411 BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
412
413 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
414 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
415 offsetof(struct sk_buff, vlan_proto));
416 /* A = ntohs(A) [emitting a nop or swap16] */
417 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
418 break;
419
420 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
421 case SKF_AD_OFF + SKF_AD_NLATTR:
422 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
423 case SKF_AD_OFF + SKF_AD_CPU:
424 case SKF_AD_OFF + SKF_AD_RANDOM:
425 /* arg1 = CTX */
426 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
427 /* arg2 = A */
428 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
429 /* arg3 = X */
430 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
431 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
432 switch (fp->k) {
433 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
434 *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
435 break;
436 case SKF_AD_OFF + SKF_AD_NLATTR:
437 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
438 break;
439 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
440 *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
441 break;
442 case SKF_AD_OFF + SKF_AD_CPU:
443 *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
444 break;
445 case SKF_AD_OFF + SKF_AD_RANDOM:
446 *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
447 bpf_user_rnd_init_once();
448 break;
449 }
450 break;
451
452 case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
453 /* A ^= X */
454 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
455 break;
456
457 default:
458 /* This is just a dummy call to avoid letting the compiler
459 * evict __bpf_call_base() as an optimization. Placed here
460 * where no-one bothers.
461 */
462 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
463 return false;
464 }
465
466 *insnp = insn;
467 return true;
468 }
469
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)470 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
471 {
472 const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
473 int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
474 bool endian = BPF_SIZE(fp->code) == BPF_H ||
475 BPF_SIZE(fp->code) == BPF_W;
476 bool indirect = BPF_MODE(fp->code) == BPF_IND;
477 const int ip_align = NET_IP_ALIGN;
478 struct bpf_insn *insn = *insnp;
479 int offset = fp->k;
480
481 if (!indirect &&
482 ((unaligned_ok && offset >= 0) ||
483 (!unaligned_ok && offset >= 0 &&
484 offset + ip_align >= 0 &&
485 offset + ip_align % size == 0))) {
486 bool ldx_off_ok = offset <= S16_MAX;
487
488 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
489 if (offset)
490 *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
491 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
492 size, 2 + endian + (!ldx_off_ok * 2));
493 if (ldx_off_ok) {
494 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
495 BPF_REG_D, offset);
496 } else {
497 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
498 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
499 *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
500 BPF_REG_TMP, 0);
501 }
502 if (endian)
503 *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
504 *insn++ = BPF_JMP_A(8);
505 }
506
507 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
508 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
509 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
510 if (!indirect) {
511 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
512 } else {
513 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
514 if (fp->k)
515 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
516 }
517
518 switch (BPF_SIZE(fp->code)) {
519 case BPF_B:
520 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
521 break;
522 case BPF_H:
523 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
524 break;
525 case BPF_W:
526 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
527 break;
528 default:
529 return false;
530 }
531
532 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
533 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
534 *insn = BPF_EXIT_INSN();
535
536 *insnp = insn;
537 return true;
538 }
539
540 /**
541 * bpf_convert_filter - convert filter program
542 * @prog: the user passed filter program
543 * @len: the length of the user passed filter program
544 * @new_prog: allocated 'struct bpf_prog' or NULL
545 * @new_len: pointer to store length of converted program
546 * @seen_ld_abs: bool whether we've seen ld_abs/ind
547 *
548 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
549 * style extended BPF (eBPF).
550 * Conversion workflow:
551 *
552 * 1) First pass for calculating the new program length:
553 * bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
554 *
555 * 2) 2nd pass to remap in two passes: 1st pass finds new
556 * jump offsets, 2nd pass remapping:
557 * bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
558 */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)559 static int bpf_convert_filter(struct sock_filter *prog, int len,
560 struct bpf_prog *new_prog, int *new_len,
561 bool *seen_ld_abs)
562 {
563 int new_flen = 0, pass = 0, target, i, stack_off;
564 struct bpf_insn *new_insn, *first_insn = NULL;
565 struct sock_filter *fp;
566 int *addrs = NULL;
567 u8 bpf_src;
568
569 BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
570 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
571
572 if (len <= 0 || len > BPF_MAXINSNS)
573 return -EINVAL;
574
575 if (new_prog) {
576 first_insn = new_prog->insnsi;
577 addrs = kcalloc(len, sizeof(*addrs),
578 GFP_KERNEL | __GFP_NOWARN);
579 if (!addrs)
580 return -ENOMEM;
581 }
582
583 do_pass:
584 new_insn = first_insn;
585 fp = prog;
586
587 /* Classic BPF related prologue emission. */
588 if (new_prog) {
589 /* Classic BPF expects A and X to be reset first. These need
590 * to be guaranteed to be the first two instructions.
591 */
592 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
593 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
594
595 /* All programs must keep CTX in callee saved BPF_REG_CTX.
596 * In eBPF case it's done by the compiler, here we need to
597 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
598 */
599 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
600 if (*seen_ld_abs) {
601 /* For packet access in classic BPF, cache skb->data
602 * in callee-saved BPF R8 and skb->len - skb->data_len
603 * (headlen) in BPF R9. Since classic BPF is read-only
604 * on CTX, we only need to cache it once.
605 */
606 *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
607 BPF_REG_D, BPF_REG_CTX,
608 offsetof(struct sk_buff, data));
609 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
610 offsetof(struct sk_buff, len));
611 *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
612 offsetof(struct sk_buff, data_len));
613 *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
614 }
615 } else {
616 new_insn += 3;
617 }
618
619 for (i = 0; i < len; fp++, i++) {
620 struct bpf_insn tmp_insns[32] = { };
621 struct bpf_insn *insn = tmp_insns;
622
623 if (addrs)
624 addrs[i] = new_insn - first_insn;
625
626 switch (fp->code) {
627 /* All arithmetic insns and skb loads map as-is. */
628 case BPF_ALU | BPF_ADD | BPF_X:
629 case BPF_ALU | BPF_ADD | BPF_K:
630 case BPF_ALU | BPF_SUB | BPF_X:
631 case BPF_ALU | BPF_SUB | BPF_K:
632 case BPF_ALU | BPF_AND | BPF_X:
633 case BPF_ALU | BPF_AND | BPF_K:
634 case BPF_ALU | BPF_OR | BPF_X:
635 case BPF_ALU | BPF_OR | BPF_K:
636 case BPF_ALU | BPF_LSH | BPF_X:
637 case BPF_ALU | BPF_LSH | BPF_K:
638 case BPF_ALU | BPF_RSH | BPF_X:
639 case BPF_ALU | BPF_RSH | BPF_K:
640 case BPF_ALU | BPF_XOR | BPF_X:
641 case BPF_ALU | BPF_XOR | BPF_K:
642 case BPF_ALU | BPF_MUL | BPF_X:
643 case BPF_ALU | BPF_MUL | BPF_K:
644 case BPF_ALU | BPF_DIV | BPF_X:
645 case BPF_ALU | BPF_DIV | BPF_K:
646 case BPF_ALU | BPF_MOD | BPF_X:
647 case BPF_ALU | BPF_MOD | BPF_K:
648 case BPF_ALU | BPF_NEG:
649 case BPF_LD | BPF_ABS | BPF_W:
650 case BPF_LD | BPF_ABS | BPF_H:
651 case BPF_LD | BPF_ABS | BPF_B:
652 case BPF_LD | BPF_IND | BPF_W:
653 case BPF_LD | BPF_IND | BPF_H:
654 case BPF_LD | BPF_IND | BPF_B:
655 /* Check for overloaded BPF extension and
656 * directly convert it if found, otherwise
657 * just move on with mapping.
658 */
659 if (BPF_CLASS(fp->code) == BPF_LD &&
660 BPF_MODE(fp->code) == BPF_ABS &&
661 convert_bpf_extensions(fp, &insn))
662 break;
663 if (BPF_CLASS(fp->code) == BPF_LD &&
664 convert_bpf_ld_abs(fp, &insn)) {
665 *seen_ld_abs = true;
666 break;
667 }
668
669 if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
670 fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
671 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
672 /* Error with exception code on div/mod by 0.
673 * For cBPF programs, this was always return 0.
674 */
675 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
676 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
677 *insn++ = BPF_EXIT_INSN();
678 }
679
680 *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
681 break;
682
683 /* Jump transformation cannot use BPF block macros
684 * everywhere as offset calculation and target updates
685 * require a bit more work than the rest, i.e. jump
686 * opcodes map as-is, but offsets need adjustment.
687 */
688
689 #define BPF_EMIT_JMP \
690 do { \
691 const s32 off_min = S16_MIN, off_max = S16_MAX; \
692 s32 off; \
693 \
694 if (target >= len || target < 0) \
695 goto err; \
696 off = addrs ? addrs[target] - addrs[i] - 1 : 0; \
697 /* Adjust pc relative offset for 2nd or 3rd insn. */ \
698 off -= insn - tmp_insns; \
699 /* Reject anything not fitting into insn->off. */ \
700 if (off < off_min || off > off_max) \
701 goto err; \
702 insn->off = off; \
703 } while (0)
704
705 case BPF_JMP | BPF_JA:
706 target = i + fp->k + 1;
707 insn->code = fp->code;
708 BPF_EMIT_JMP;
709 break;
710
711 case BPF_JMP | BPF_JEQ | BPF_K:
712 case BPF_JMP | BPF_JEQ | BPF_X:
713 case BPF_JMP | BPF_JSET | BPF_K:
714 case BPF_JMP | BPF_JSET | BPF_X:
715 case BPF_JMP | BPF_JGT | BPF_K:
716 case BPF_JMP | BPF_JGT | BPF_X:
717 case BPF_JMP | BPF_JGE | BPF_K:
718 case BPF_JMP | BPF_JGE | BPF_X:
719 if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
720 /* BPF immediates are signed, zero extend
721 * immediate into tmp register and use it
722 * in compare insn.
723 */
724 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
725
726 insn->dst_reg = BPF_REG_A;
727 insn->src_reg = BPF_REG_TMP;
728 bpf_src = BPF_X;
729 } else {
730 insn->dst_reg = BPF_REG_A;
731 insn->imm = fp->k;
732 bpf_src = BPF_SRC(fp->code);
733 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
734 }
735
736 /* Common case where 'jump_false' is next insn. */
737 if (fp->jf == 0) {
738 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
739 target = i + fp->jt + 1;
740 BPF_EMIT_JMP;
741 break;
742 }
743
744 /* Convert some jumps when 'jump_true' is next insn. */
745 if (fp->jt == 0) {
746 switch (BPF_OP(fp->code)) {
747 case BPF_JEQ:
748 insn->code = BPF_JMP | BPF_JNE | bpf_src;
749 break;
750 case BPF_JGT:
751 insn->code = BPF_JMP | BPF_JLE | bpf_src;
752 break;
753 case BPF_JGE:
754 insn->code = BPF_JMP | BPF_JLT | bpf_src;
755 break;
756 default:
757 goto jmp_rest;
758 }
759
760 target = i + fp->jf + 1;
761 BPF_EMIT_JMP;
762 break;
763 }
764 jmp_rest:
765 /* Other jumps are mapped into two insns: Jxx and JA. */
766 target = i + fp->jt + 1;
767 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
768 BPF_EMIT_JMP;
769 insn++;
770
771 insn->code = BPF_JMP | BPF_JA;
772 target = i + fp->jf + 1;
773 BPF_EMIT_JMP;
774 break;
775
776 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
777 case BPF_LDX | BPF_MSH | BPF_B: {
778 struct sock_filter tmp = {
779 .code = BPF_LD | BPF_ABS | BPF_B,
780 .k = fp->k,
781 };
782
783 *seen_ld_abs = true;
784
785 /* X = A */
786 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
787 /* A = BPF_R0 = *(u8 *) (skb->data + K) */
788 convert_bpf_ld_abs(&tmp, &insn);
789 insn++;
790 /* A &= 0xf */
791 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
792 /* A <<= 2 */
793 *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
794 /* tmp = X */
795 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
796 /* X = A */
797 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
798 /* A = tmp */
799 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
800 break;
801 }
802 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
803 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
804 */
805 case BPF_RET | BPF_A:
806 case BPF_RET | BPF_K:
807 if (BPF_RVAL(fp->code) == BPF_K)
808 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
809 0, fp->k);
810 *insn = BPF_EXIT_INSN();
811 break;
812
813 /* Store to stack. */
814 case BPF_ST:
815 case BPF_STX:
816 stack_off = fp->k * 4 + 4;
817 *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
818 BPF_ST ? BPF_REG_A : BPF_REG_X,
819 -stack_off);
820 /* check_load_and_stores() verifies that classic BPF can
821 * load from stack only after write, so tracking
822 * stack_depth for ST|STX insns is enough
823 */
824 if (new_prog && new_prog->aux->stack_depth < stack_off)
825 new_prog->aux->stack_depth = stack_off;
826 break;
827
828 /* Load from stack. */
829 case BPF_LD | BPF_MEM:
830 case BPF_LDX | BPF_MEM:
831 stack_off = fp->k * 4 + 4;
832 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
833 BPF_REG_A : BPF_REG_X, BPF_REG_FP,
834 -stack_off);
835 break;
836
837 /* A = K or X = K */
838 case BPF_LD | BPF_IMM:
839 case BPF_LDX | BPF_IMM:
840 *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
841 BPF_REG_A : BPF_REG_X, fp->k);
842 break;
843
844 /* X = A */
845 case BPF_MISC | BPF_TAX:
846 *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
847 break;
848
849 /* A = X */
850 case BPF_MISC | BPF_TXA:
851 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
852 break;
853
854 /* A = skb->len or X = skb->len */
855 case BPF_LD | BPF_W | BPF_LEN:
856 case BPF_LDX | BPF_W | BPF_LEN:
857 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
858 BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
859 offsetof(struct sk_buff, len));
860 break;
861
862 /* Access seccomp_data fields. */
863 case BPF_LDX | BPF_ABS | BPF_W:
864 /* A = *(u32 *) (ctx + K) */
865 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
866 break;
867
868 /* Unknown instruction. */
869 default:
870 goto err;
871 }
872
873 insn++;
874 if (new_prog)
875 memcpy(new_insn, tmp_insns,
876 sizeof(*insn) * (insn - tmp_insns));
877 new_insn += insn - tmp_insns;
878 }
879
880 if (!new_prog) {
881 /* Only calculating new length. */
882 *new_len = new_insn - first_insn;
883 if (*seen_ld_abs)
884 *new_len += 4; /* Prologue bits. */
885 return 0;
886 }
887
888 pass++;
889 if (new_flen != new_insn - first_insn) {
890 new_flen = new_insn - first_insn;
891 if (pass > 2)
892 goto err;
893 goto do_pass;
894 }
895
896 kfree(addrs);
897 BUG_ON(*new_len != new_flen);
898 return 0;
899 err:
900 kfree(addrs);
901 return -EINVAL;
902 }
903
904 /* Security:
905 *
906 * As we dont want to clear mem[] array for each packet going through
907 * __bpf_prog_run(), we check that filter loaded by user never try to read
908 * a cell if not previously written, and we check all branches to be sure
909 * a malicious user doesn't try to abuse us.
910 */
check_load_and_stores(const struct sock_filter * filter,int flen)911 static int check_load_and_stores(const struct sock_filter *filter, int flen)
912 {
913 u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
914 int pc, ret = 0;
915
916 BUILD_BUG_ON(BPF_MEMWORDS > 16);
917
918 masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
919 if (!masks)
920 return -ENOMEM;
921
922 memset(masks, 0xff, flen * sizeof(*masks));
923
924 for (pc = 0; pc < flen; pc++) {
925 memvalid &= masks[pc];
926
927 switch (filter[pc].code) {
928 case BPF_ST:
929 case BPF_STX:
930 memvalid |= (1 << filter[pc].k);
931 break;
932 case BPF_LD | BPF_MEM:
933 case BPF_LDX | BPF_MEM:
934 if (!(memvalid & (1 << filter[pc].k))) {
935 ret = -EINVAL;
936 goto error;
937 }
938 break;
939 case BPF_JMP | BPF_JA:
940 /* A jump must set masks on target */
941 masks[pc + 1 + filter[pc].k] &= memvalid;
942 memvalid = ~0;
943 break;
944 case BPF_JMP | BPF_JEQ | BPF_K:
945 case BPF_JMP | BPF_JEQ | BPF_X:
946 case BPF_JMP | BPF_JGE | BPF_K:
947 case BPF_JMP | BPF_JGE | BPF_X:
948 case BPF_JMP | BPF_JGT | BPF_K:
949 case BPF_JMP | BPF_JGT | BPF_X:
950 case BPF_JMP | BPF_JSET | BPF_K:
951 case BPF_JMP | BPF_JSET | BPF_X:
952 /* A jump must set masks on targets */
953 masks[pc + 1 + filter[pc].jt] &= memvalid;
954 masks[pc + 1 + filter[pc].jf] &= memvalid;
955 memvalid = ~0;
956 break;
957 }
958 }
959 error:
960 kfree(masks);
961 return ret;
962 }
963
chk_code_allowed(u16 code_to_probe)964 static bool chk_code_allowed(u16 code_to_probe)
965 {
966 static const bool codes[] = {
967 /* 32 bit ALU operations */
968 [BPF_ALU | BPF_ADD | BPF_K] = true,
969 [BPF_ALU | BPF_ADD | BPF_X] = true,
970 [BPF_ALU | BPF_SUB | BPF_K] = true,
971 [BPF_ALU | BPF_SUB | BPF_X] = true,
972 [BPF_ALU | BPF_MUL | BPF_K] = true,
973 [BPF_ALU | BPF_MUL | BPF_X] = true,
974 [BPF_ALU | BPF_DIV | BPF_K] = true,
975 [BPF_ALU | BPF_DIV | BPF_X] = true,
976 [BPF_ALU | BPF_MOD | BPF_K] = true,
977 [BPF_ALU | BPF_MOD | BPF_X] = true,
978 [BPF_ALU | BPF_AND | BPF_K] = true,
979 [BPF_ALU | BPF_AND | BPF_X] = true,
980 [BPF_ALU | BPF_OR | BPF_K] = true,
981 [BPF_ALU | BPF_OR | BPF_X] = true,
982 [BPF_ALU | BPF_XOR | BPF_K] = true,
983 [BPF_ALU | BPF_XOR | BPF_X] = true,
984 [BPF_ALU | BPF_LSH | BPF_K] = true,
985 [BPF_ALU | BPF_LSH | BPF_X] = true,
986 [BPF_ALU | BPF_RSH | BPF_K] = true,
987 [BPF_ALU | BPF_RSH | BPF_X] = true,
988 [BPF_ALU | BPF_NEG] = true,
989 /* Load instructions */
990 [BPF_LD | BPF_W | BPF_ABS] = true,
991 [BPF_LD | BPF_H | BPF_ABS] = true,
992 [BPF_LD | BPF_B | BPF_ABS] = true,
993 [BPF_LD | BPF_W | BPF_LEN] = true,
994 [BPF_LD | BPF_W | BPF_IND] = true,
995 [BPF_LD | BPF_H | BPF_IND] = true,
996 [BPF_LD | BPF_B | BPF_IND] = true,
997 [BPF_LD | BPF_IMM] = true,
998 [BPF_LD | BPF_MEM] = true,
999 [BPF_LDX | BPF_W | BPF_LEN] = true,
1000 [BPF_LDX | BPF_B | BPF_MSH] = true,
1001 [BPF_LDX | BPF_IMM] = true,
1002 [BPF_LDX | BPF_MEM] = true,
1003 /* Store instructions */
1004 [BPF_ST] = true,
1005 [BPF_STX] = true,
1006 /* Misc instructions */
1007 [BPF_MISC | BPF_TAX] = true,
1008 [BPF_MISC | BPF_TXA] = true,
1009 /* Return instructions */
1010 [BPF_RET | BPF_K] = true,
1011 [BPF_RET | BPF_A] = true,
1012 /* Jump instructions */
1013 [BPF_JMP | BPF_JA] = true,
1014 [BPF_JMP | BPF_JEQ | BPF_K] = true,
1015 [BPF_JMP | BPF_JEQ | BPF_X] = true,
1016 [BPF_JMP | BPF_JGE | BPF_K] = true,
1017 [BPF_JMP | BPF_JGE | BPF_X] = true,
1018 [BPF_JMP | BPF_JGT | BPF_K] = true,
1019 [BPF_JMP | BPF_JGT | BPF_X] = true,
1020 [BPF_JMP | BPF_JSET | BPF_K] = true,
1021 [BPF_JMP | BPF_JSET | BPF_X] = true,
1022 };
1023
1024 if (code_to_probe >= ARRAY_SIZE(codes))
1025 return false;
1026
1027 return codes[code_to_probe];
1028 }
1029
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1030 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1031 unsigned int flen)
1032 {
1033 if (filter == NULL)
1034 return false;
1035 if (flen == 0 || flen > BPF_MAXINSNS)
1036 return false;
1037
1038 return true;
1039 }
1040
1041 /**
1042 * bpf_check_classic - verify socket filter code
1043 * @filter: filter to verify
1044 * @flen: length of filter
1045 *
1046 * Check the user's filter code. If we let some ugly
1047 * filter code slip through kaboom! The filter must contain
1048 * no references or jumps that are out of range, no illegal
1049 * instructions, and must end with a RET instruction.
1050 *
1051 * All jumps are forward as they are not signed.
1052 *
1053 * Returns 0 if the rule set is legal or -EINVAL if not.
1054 */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1055 static int bpf_check_classic(const struct sock_filter *filter,
1056 unsigned int flen)
1057 {
1058 bool anc_found;
1059 int pc;
1060
1061 /* Check the filter code now */
1062 for (pc = 0; pc < flen; pc++) {
1063 const struct sock_filter *ftest = &filter[pc];
1064
1065 /* May we actually operate on this code? */
1066 if (!chk_code_allowed(ftest->code))
1067 return -EINVAL;
1068
1069 /* Some instructions need special checks */
1070 switch (ftest->code) {
1071 case BPF_ALU | BPF_DIV | BPF_K:
1072 case BPF_ALU | BPF_MOD | BPF_K:
1073 /* Check for division by zero */
1074 if (ftest->k == 0)
1075 return -EINVAL;
1076 break;
1077 case BPF_ALU | BPF_LSH | BPF_K:
1078 case BPF_ALU | BPF_RSH | BPF_K:
1079 if (ftest->k >= 32)
1080 return -EINVAL;
1081 break;
1082 case BPF_LD | BPF_MEM:
1083 case BPF_LDX | BPF_MEM:
1084 case BPF_ST:
1085 case BPF_STX:
1086 /* Check for invalid memory addresses */
1087 if (ftest->k >= BPF_MEMWORDS)
1088 return -EINVAL;
1089 break;
1090 case BPF_JMP | BPF_JA:
1091 /* Note, the large ftest->k might cause loops.
1092 * Compare this with conditional jumps below,
1093 * where offsets are limited. --ANK (981016)
1094 */
1095 if (ftest->k >= (unsigned int)(flen - pc - 1))
1096 return -EINVAL;
1097 break;
1098 case BPF_JMP | BPF_JEQ | BPF_K:
1099 case BPF_JMP | BPF_JEQ | BPF_X:
1100 case BPF_JMP | BPF_JGE | BPF_K:
1101 case BPF_JMP | BPF_JGE | BPF_X:
1102 case BPF_JMP | BPF_JGT | BPF_K:
1103 case BPF_JMP | BPF_JGT | BPF_X:
1104 case BPF_JMP | BPF_JSET | BPF_K:
1105 case BPF_JMP | BPF_JSET | BPF_X:
1106 /* Both conditionals must be safe */
1107 if (pc + ftest->jt + 1 >= flen ||
1108 pc + ftest->jf + 1 >= flen)
1109 return -EINVAL;
1110 break;
1111 case BPF_LD | BPF_W | BPF_ABS:
1112 case BPF_LD | BPF_H | BPF_ABS:
1113 case BPF_LD | BPF_B | BPF_ABS:
1114 anc_found = false;
1115 if (bpf_anc_helper(ftest) & BPF_ANC)
1116 anc_found = true;
1117 /* Ancillary operation unknown or unsupported */
1118 if (anc_found == false && ftest->k >= SKF_AD_OFF)
1119 return -EINVAL;
1120 }
1121 }
1122
1123 /* Last instruction must be a RET code */
1124 switch (filter[flen - 1].code) {
1125 case BPF_RET | BPF_K:
1126 case BPF_RET | BPF_A:
1127 return check_load_and_stores(filter, flen);
1128 }
1129
1130 return -EINVAL;
1131 }
1132
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1133 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1134 const struct sock_fprog *fprog)
1135 {
1136 unsigned int fsize = bpf_classic_proglen(fprog);
1137 struct sock_fprog_kern *fkprog;
1138
1139 fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1140 if (!fp->orig_prog)
1141 return -ENOMEM;
1142
1143 fkprog = fp->orig_prog;
1144 fkprog->len = fprog->len;
1145
1146 fkprog->filter = kmemdup(fp->insns, fsize,
1147 GFP_KERNEL | __GFP_NOWARN);
1148 if (!fkprog->filter) {
1149 kfree(fp->orig_prog);
1150 return -ENOMEM;
1151 }
1152
1153 return 0;
1154 }
1155
bpf_release_orig_filter(struct bpf_prog * fp)1156 static void bpf_release_orig_filter(struct bpf_prog *fp)
1157 {
1158 struct sock_fprog_kern *fprog = fp->orig_prog;
1159
1160 if (fprog) {
1161 kfree(fprog->filter);
1162 kfree(fprog);
1163 }
1164 }
1165
__bpf_prog_release(struct bpf_prog * prog)1166 static void __bpf_prog_release(struct bpf_prog *prog)
1167 {
1168 if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1169 bpf_prog_put(prog);
1170 } else {
1171 bpf_release_orig_filter(prog);
1172 bpf_prog_free(prog);
1173 }
1174 }
1175
__sk_filter_release(struct sk_filter * fp)1176 static void __sk_filter_release(struct sk_filter *fp)
1177 {
1178 __bpf_prog_release(fp->prog);
1179 kfree(fp);
1180 }
1181
1182 /**
1183 * sk_filter_release_rcu - Release a socket filter by rcu_head
1184 * @rcu: rcu_head that contains the sk_filter to free
1185 */
sk_filter_release_rcu(struct rcu_head * rcu)1186 static void sk_filter_release_rcu(struct rcu_head *rcu)
1187 {
1188 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1189
1190 __sk_filter_release(fp);
1191 }
1192
1193 /**
1194 * sk_filter_release - release a socket filter
1195 * @fp: filter to remove
1196 *
1197 * Remove a filter from a socket and release its resources.
1198 */
sk_filter_release(struct sk_filter * fp)1199 static void sk_filter_release(struct sk_filter *fp)
1200 {
1201 if (refcount_dec_and_test(&fp->refcnt))
1202 call_rcu(&fp->rcu, sk_filter_release_rcu);
1203 }
1204
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1205 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1206 {
1207 u32 filter_size = bpf_prog_size(fp->prog->len);
1208
1209 atomic_sub(filter_size, &sk->sk_omem_alloc);
1210 sk_filter_release(fp);
1211 }
1212
1213 /* try to charge the socket memory if there is space available
1214 * return true on success
1215 */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1216 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1217 {
1218 u32 filter_size = bpf_prog_size(fp->prog->len);
1219 int optmem_max = READ_ONCE(sysctl_optmem_max);
1220
1221 /* same check as in sock_kmalloc() */
1222 if (filter_size <= optmem_max &&
1223 atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1224 atomic_add(filter_size, &sk->sk_omem_alloc);
1225 return true;
1226 }
1227 return false;
1228 }
1229
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1230 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1231 {
1232 if (!refcount_inc_not_zero(&fp->refcnt))
1233 return false;
1234
1235 if (!__sk_filter_charge(sk, fp)) {
1236 sk_filter_release(fp);
1237 return false;
1238 }
1239 return true;
1240 }
1241
bpf_migrate_filter(struct bpf_prog * fp)1242 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1243 {
1244 struct sock_filter *old_prog;
1245 struct bpf_prog *old_fp;
1246 int err, new_len, old_len = fp->len;
1247 bool seen_ld_abs = false;
1248
1249 /* We are free to overwrite insns et al right here as it won't be used at
1250 * this point in time anymore internally after the migration to the eBPF
1251 * instruction representation.
1252 */
1253 BUILD_BUG_ON(sizeof(struct sock_filter) !=
1254 sizeof(struct bpf_insn));
1255
1256 /* Conversion cannot happen on overlapping memory areas,
1257 * so we need to keep the user BPF around until the 2nd
1258 * pass. At this time, the user BPF is stored in fp->insns.
1259 */
1260 old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1261 GFP_KERNEL | __GFP_NOWARN);
1262 if (!old_prog) {
1263 err = -ENOMEM;
1264 goto out_err;
1265 }
1266
1267 /* 1st pass: calculate the new program length. */
1268 err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1269 &seen_ld_abs);
1270 if (err)
1271 goto out_err_free;
1272
1273 /* Expand fp for appending the new filter representation. */
1274 old_fp = fp;
1275 fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1276 if (!fp) {
1277 /* The old_fp is still around in case we couldn't
1278 * allocate new memory, so uncharge on that one.
1279 */
1280 fp = old_fp;
1281 err = -ENOMEM;
1282 goto out_err_free;
1283 }
1284
1285 fp->len = new_len;
1286
1287 /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1288 err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1289 &seen_ld_abs);
1290 if (err)
1291 /* 2nd bpf_convert_filter() can fail only if it fails
1292 * to allocate memory, remapping must succeed. Note,
1293 * that at this time old_fp has already been released
1294 * by krealloc().
1295 */
1296 goto out_err_free;
1297
1298 fp = bpf_prog_select_runtime(fp, &err);
1299 if (err)
1300 goto out_err_free;
1301
1302 kfree(old_prog);
1303 return fp;
1304
1305 out_err_free:
1306 kfree(old_prog);
1307 out_err:
1308 __bpf_prog_release(fp);
1309 return ERR_PTR(err);
1310 }
1311
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1312 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1313 bpf_aux_classic_check_t trans)
1314 {
1315 int err;
1316
1317 fp->bpf_func = NULL;
1318 fp->jited = 0;
1319
1320 err = bpf_check_classic(fp->insns, fp->len);
1321 if (err) {
1322 __bpf_prog_release(fp);
1323 return ERR_PTR(err);
1324 }
1325
1326 /* There might be additional checks and transformations
1327 * needed on classic filters, f.e. in case of seccomp.
1328 */
1329 if (trans) {
1330 err = trans(fp->insns, fp->len);
1331 if (err) {
1332 __bpf_prog_release(fp);
1333 return ERR_PTR(err);
1334 }
1335 }
1336
1337 /* Probe if we can JIT compile the filter and if so, do
1338 * the compilation of the filter.
1339 */
1340 bpf_jit_compile(fp);
1341
1342 /* JIT compiler couldn't process this filter, so do the eBPF translation
1343 * for the optimized interpreter.
1344 */
1345 if (!fp->jited)
1346 fp = bpf_migrate_filter(fp);
1347
1348 return fp;
1349 }
1350
1351 /**
1352 * bpf_prog_create - create an unattached filter
1353 * @pfp: the unattached filter that is created
1354 * @fprog: the filter program
1355 *
1356 * Create a filter independent of any socket. We first run some
1357 * sanity checks on it to make sure it does not explode on us later.
1358 * If an error occurs or there is insufficient memory for the filter
1359 * a negative errno code is returned. On success the return is zero.
1360 */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1361 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1362 {
1363 unsigned int fsize = bpf_classic_proglen(fprog);
1364 struct bpf_prog *fp;
1365
1366 /* Make sure new filter is there and in the right amounts. */
1367 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1368 return -EINVAL;
1369
1370 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1371 if (!fp)
1372 return -ENOMEM;
1373
1374 memcpy(fp->insns, fprog->filter, fsize);
1375
1376 fp->len = fprog->len;
1377 /* Since unattached filters are not copied back to user
1378 * space through sk_get_filter(), we do not need to hold
1379 * a copy here, and can spare us the work.
1380 */
1381 fp->orig_prog = NULL;
1382
1383 /* bpf_prepare_filter() already takes care of freeing
1384 * memory in case something goes wrong.
1385 */
1386 fp = bpf_prepare_filter(fp, NULL);
1387 if (IS_ERR(fp))
1388 return PTR_ERR(fp);
1389
1390 *pfp = fp;
1391 return 0;
1392 }
1393 EXPORT_SYMBOL_GPL(bpf_prog_create);
1394
1395 /**
1396 * bpf_prog_create_from_user - create an unattached filter from user buffer
1397 * @pfp: the unattached filter that is created
1398 * @fprog: the filter program
1399 * @trans: post-classic verifier transformation handler
1400 * @save_orig: save classic BPF program
1401 *
1402 * This function effectively does the same as bpf_prog_create(), only
1403 * that it builds up its insns buffer from user space provided buffer.
1404 * It also allows for passing a bpf_aux_classic_check_t handler.
1405 */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1406 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1407 bpf_aux_classic_check_t trans, bool save_orig)
1408 {
1409 unsigned int fsize = bpf_classic_proglen(fprog);
1410 struct bpf_prog *fp;
1411 int err;
1412
1413 /* Make sure new filter is there and in the right amounts. */
1414 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1415 return -EINVAL;
1416
1417 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1418 if (!fp)
1419 return -ENOMEM;
1420
1421 if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1422 __bpf_prog_free(fp);
1423 return -EFAULT;
1424 }
1425
1426 fp->len = fprog->len;
1427 fp->orig_prog = NULL;
1428
1429 if (save_orig) {
1430 err = bpf_prog_store_orig_filter(fp, fprog);
1431 if (err) {
1432 __bpf_prog_free(fp);
1433 return -ENOMEM;
1434 }
1435 }
1436
1437 /* bpf_prepare_filter() already takes care of freeing
1438 * memory in case something goes wrong.
1439 */
1440 fp = bpf_prepare_filter(fp, trans);
1441 if (IS_ERR(fp))
1442 return PTR_ERR(fp);
1443
1444 *pfp = fp;
1445 return 0;
1446 }
1447 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1448
bpf_prog_destroy(struct bpf_prog * fp)1449 void bpf_prog_destroy(struct bpf_prog *fp)
1450 {
1451 __bpf_prog_release(fp);
1452 }
1453 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1454
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1455 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1456 {
1457 struct sk_filter *fp, *old_fp;
1458
1459 fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1460 if (!fp)
1461 return -ENOMEM;
1462
1463 fp->prog = prog;
1464
1465 if (!__sk_filter_charge(sk, fp)) {
1466 kfree(fp);
1467 return -ENOMEM;
1468 }
1469 refcount_set(&fp->refcnt, 1);
1470
1471 old_fp = rcu_dereference_protected(sk->sk_filter,
1472 lockdep_sock_is_held(sk));
1473 rcu_assign_pointer(sk->sk_filter, fp);
1474
1475 if (old_fp)
1476 sk_filter_uncharge(sk, old_fp);
1477
1478 return 0;
1479 }
1480
1481 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1482 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1483 {
1484 unsigned int fsize = bpf_classic_proglen(fprog);
1485 struct bpf_prog *prog;
1486 int err;
1487
1488 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1489 return ERR_PTR(-EPERM);
1490
1491 /* Make sure new filter is there and in the right amounts. */
1492 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1493 return ERR_PTR(-EINVAL);
1494
1495 prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1496 if (!prog)
1497 return ERR_PTR(-ENOMEM);
1498
1499 if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1500 __bpf_prog_free(prog);
1501 return ERR_PTR(-EFAULT);
1502 }
1503
1504 prog->len = fprog->len;
1505
1506 err = bpf_prog_store_orig_filter(prog, fprog);
1507 if (err) {
1508 __bpf_prog_free(prog);
1509 return ERR_PTR(-ENOMEM);
1510 }
1511
1512 /* bpf_prepare_filter() already takes care of freeing
1513 * memory in case something goes wrong.
1514 */
1515 return bpf_prepare_filter(prog, NULL);
1516 }
1517
1518 /**
1519 * sk_attach_filter - attach a socket filter
1520 * @fprog: the filter program
1521 * @sk: the socket to use
1522 *
1523 * Attach the user's filter code. We first run some sanity checks on
1524 * it to make sure it does not explode on us later. If an error
1525 * occurs or there is insufficient memory for the filter a negative
1526 * errno code is returned. On success the return is zero.
1527 */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1528 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1529 {
1530 struct bpf_prog *prog = __get_filter(fprog, sk);
1531 int err;
1532
1533 if (IS_ERR(prog))
1534 return PTR_ERR(prog);
1535
1536 err = __sk_attach_prog(prog, sk);
1537 if (err < 0) {
1538 __bpf_prog_release(prog);
1539 return err;
1540 }
1541
1542 return 0;
1543 }
1544 EXPORT_SYMBOL_GPL(sk_attach_filter);
1545
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1546 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1547 {
1548 struct bpf_prog *prog = __get_filter(fprog, sk);
1549 int err;
1550
1551 if (IS_ERR(prog))
1552 return PTR_ERR(prog);
1553
1554 if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1555 err = -ENOMEM;
1556 else
1557 err = reuseport_attach_prog(sk, prog);
1558
1559 if (err)
1560 __bpf_prog_release(prog);
1561
1562 return err;
1563 }
1564
__get_bpf(u32 ufd,struct sock * sk)1565 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1566 {
1567 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1568 return ERR_PTR(-EPERM);
1569
1570 return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1571 }
1572
sk_attach_bpf(u32 ufd,struct sock * sk)1573 int sk_attach_bpf(u32 ufd, struct sock *sk)
1574 {
1575 struct bpf_prog *prog = __get_bpf(ufd, sk);
1576 int err;
1577
1578 if (IS_ERR(prog))
1579 return PTR_ERR(prog);
1580
1581 err = __sk_attach_prog(prog, sk);
1582 if (err < 0) {
1583 bpf_prog_put(prog);
1584 return err;
1585 }
1586
1587 return 0;
1588 }
1589
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1590 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1591 {
1592 struct bpf_prog *prog;
1593 int err;
1594
1595 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1596 return -EPERM;
1597
1598 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1599 if (PTR_ERR(prog) == -EINVAL)
1600 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1601 if (IS_ERR(prog))
1602 return PTR_ERR(prog);
1603
1604 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1605 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1606 * bpf prog (e.g. sockmap). It depends on the
1607 * limitation imposed by bpf_prog_load().
1608 * Hence, sysctl_optmem_max is not checked.
1609 */
1610 if ((sk->sk_type != SOCK_STREAM &&
1611 sk->sk_type != SOCK_DGRAM) ||
1612 (sk->sk_protocol != IPPROTO_UDP &&
1613 sk->sk_protocol != IPPROTO_TCP) ||
1614 (sk->sk_family != AF_INET &&
1615 sk->sk_family != AF_INET6)) {
1616 err = -ENOTSUPP;
1617 goto err_prog_put;
1618 }
1619 } else {
1620 /* BPF_PROG_TYPE_SOCKET_FILTER */
1621 if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1622 err = -ENOMEM;
1623 goto err_prog_put;
1624 }
1625 }
1626
1627 err = reuseport_attach_prog(sk, prog);
1628 err_prog_put:
1629 if (err)
1630 bpf_prog_put(prog);
1631
1632 return err;
1633 }
1634
sk_reuseport_prog_free(struct bpf_prog * prog)1635 void sk_reuseport_prog_free(struct bpf_prog *prog)
1636 {
1637 if (!prog)
1638 return;
1639
1640 if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1641 bpf_prog_put(prog);
1642 else
1643 bpf_prog_destroy(prog);
1644 }
1645
1646 struct bpf_scratchpad {
1647 union {
1648 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1649 u8 buff[MAX_BPF_STACK];
1650 };
1651 };
1652
1653 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1654
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1655 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1656 unsigned int write_len)
1657 {
1658 return skb_ensure_writable(skb, write_len);
1659 }
1660
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1661 static inline int bpf_try_make_writable(struct sk_buff *skb,
1662 unsigned int write_len)
1663 {
1664 int err = __bpf_try_make_writable(skb, write_len);
1665
1666 bpf_compute_data_pointers(skb);
1667 return err;
1668 }
1669
bpf_try_make_head_writable(struct sk_buff * skb)1670 static int bpf_try_make_head_writable(struct sk_buff *skb)
1671 {
1672 return bpf_try_make_writable(skb, skb_headlen(skb));
1673 }
1674
bpf_push_mac_rcsum(struct sk_buff * skb)1675 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1676 {
1677 if (skb_at_tc_ingress(skb))
1678 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1679 }
1680
bpf_pull_mac_rcsum(struct sk_buff * skb)1681 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1682 {
1683 if (skb_at_tc_ingress(skb))
1684 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1685 }
1686
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1687 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1688 const void *, from, u32, len, u64, flags)
1689 {
1690 void *ptr;
1691
1692 if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1693 return -EINVAL;
1694 if (unlikely(offset > INT_MAX))
1695 return -EFAULT;
1696 if (unlikely(bpf_try_make_writable(skb, offset + len)))
1697 return -EFAULT;
1698
1699 ptr = skb->data + offset;
1700 if (flags & BPF_F_RECOMPUTE_CSUM)
1701 __skb_postpull_rcsum(skb, ptr, len, offset);
1702
1703 memcpy(ptr, from, len);
1704
1705 if (flags & BPF_F_RECOMPUTE_CSUM)
1706 __skb_postpush_rcsum(skb, ptr, len, offset);
1707 if (flags & BPF_F_INVALIDATE_HASH)
1708 skb_clear_hash(skb);
1709
1710 return 0;
1711 }
1712
1713 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1714 .func = bpf_skb_store_bytes,
1715 .gpl_only = false,
1716 .ret_type = RET_INTEGER,
1717 .arg1_type = ARG_PTR_TO_CTX,
1718 .arg2_type = ARG_ANYTHING,
1719 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1720 .arg4_type = ARG_CONST_SIZE,
1721 .arg5_type = ARG_ANYTHING,
1722 };
1723
__bpf_skb_store_bytes(struct sk_buff * skb,u32 offset,const void * from,u32 len,u64 flags)1724 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1725 u32 len, u64 flags)
1726 {
1727 return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1728 }
1729
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1730 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1731 void *, to, u32, len)
1732 {
1733 void *ptr;
1734
1735 if (unlikely(offset > INT_MAX))
1736 goto err_clear;
1737
1738 ptr = skb_header_pointer(skb, offset, len, to);
1739 if (unlikely(!ptr))
1740 goto err_clear;
1741 if (ptr != to)
1742 memcpy(to, ptr, len);
1743
1744 return 0;
1745 err_clear:
1746 memset(to, 0, len);
1747 return -EFAULT;
1748 }
1749
1750 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1751 .func = bpf_skb_load_bytes,
1752 .gpl_only = false,
1753 .ret_type = RET_INTEGER,
1754 .arg1_type = ARG_PTR_TO_CTX,
1755 .arg2_type = ARG_ANYTHING,
1756 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1757 .arg4_type = ARG_CONST_SIZE,
1758 };
1759
__bpf_skb_load_bytes(const struct sk_buff * skb,u32 offset,void * to,u32 len)1760 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1761 {
1762 return ____bpf_skb_load_bytes(skb, offset, to, len);
1763 }
1764
BPF_CALL_4(bpf_flow_dissector_load_bytes,const struct bpf_flow_dissector *,ctx,u32,offset,void *,to,u32,len)1765 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1766 const struct bpf_flow_dissector *, ctx, u32, offset,
1767 void *, to, u32, len)
1768 {
1769 void *ptr;
1770
1771 if (unlikely(offset > 0xffff))
1772 goto err_clear;
1773
1774 if (unlikely(!ctx->skb))
1775 goto err_clear;
1776
1777 ptr = skb_header_pointer(ctx->skb, offset, len, to);
1778 if (unlikely(!ptr))
1779 goto err_clear;
1780 if (ptr != to)
1781 memcpy(to, ptr, len);
1782
1783 return 0;
1784 err_clear:
1785 memset(to, 0, len);
1786 return -EFAULT;
1787 }
1788
1789 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1790 .func = bpf_flow_dissector_load_bytes,
1791 .gpl_only = false,
1792 .ret_type = RET_INTEGER,
1793 .arg1_type = ARG_PTR_TO_CTX,
1794 .arg2_type = ARG_ANYTHING,
1795 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1796 .arg4_type = ARG_CONST_SIZE,
1797 };
1798
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1799 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1800 u32, offset, void *, to, u32, len, u32, start_header)
1801 {
1802 u8 *end = skb_tail_pointer(skb);
1803 u8 *start, *ptr;
1804
1805 if (unlikely(offset > 0xffff))
1806 goto err_clear;
1807
1808 switch (start_header) {
1809 case BPF_HDR_START_MAC:
1810 if (unlikely(!skb_mac_header_was_set(skb)))
1811 goto err_clear;
1812 start = skb_mac_header(skb);
1813 break;
1814 case BPF_HDR_START_NET:
1815 start = skb_network_header(skb);
1816 break;
1817 default:
1818 goto err_clear;
1819 }
1820
1821 ptr = start + offset;
1822
1823 if (likely(ptr + len <= end)) {
1824 memcpy(to, ptr, len);
1825 return 0;
1826 }
1827
1828 err_clear:
1829 memset(to, 0, len);
1830 return -EFAULT;
1831 }
1832
1833 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1834 .func = bpf_skb_load_bytes_relative,
1835 .gpl_only = false,
1836 .ret_type = RET_INTEGER,
1837 .arg1_type = ARG_PTR_TO_CTX,
1838 .arg2_type = ARG_ANYTHING,
1839 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1840 .arg4_type = ARG_CONST_SIZE,
1841 .arg5_type = ARG_ANYTHING,
1842 };
1843
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1844 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1845 {
1846 /* Idea is the following: should the needed direct read/write
1847 * test fail during runtime, we can pull in more data and redo
1848 * again, since implicitly, we invalidate previous checks here.
1849 *
1850 * Or, since we know how much we need to make read/writeable,
1851 * this can be done once at the program beginning for direct
1852 * access case. By this we overcome limitations of only current
1853 * headroom being accessible.
1854 */
1855 return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1856 }
1857
1858 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1859 .func = bpf_skb_pull_data,
1860 .gpl_only = false,
1861 .ret_type = RET_INTEGER,
1862 .arg1_type = ARG_PTR_TO_CTX,
1863 .arg2_type = ARG_ANYTHING,
1864 };
1865
BPF_CALL_1(bpf_sk_fullsock,struct sock *,sk)1866 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1867 {
1868 return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1869 }
1870
1871 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1872 .func = bpf_sk_fullsock,
1873 .gpl_only = false,
1874 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
1875 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
1876 };
1877
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1878 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1879 unsigned int write_len)
1880 {
1881 return __bpf_try_make_writable(skb, write_len);
1882 }
1883
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1884 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1885 {
1886 /* Idea is the following: should the needed direct read/write
1887 * test fail during runtime, we can pull in more data and redo
1888 * again, since implicitly, we invalidate previous checks here.
1889 *
1890 * Or, since we know how much we need to make read/writeable,
1891 * this can be done once at the program beginning for direct
1892 * access case. By this we overcome limitations of only current
1893 * headroom being accessible.
1894 */
1895 return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1896 }
1897
1898 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1899 .func = sk_skb_pull_data,
1900 .gpl_only = false,
1901 .ret_type = RET_INTEGER,
1902 .arg1_type = ARG_PTR_TO_CTX,
1903 .arg2_type = ARG_ANYTHING,
1904 };
1905
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1906 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1907 u64, from, u64, to, u64, flags)
1908 {
1909 __sum16 *ptr;
1910
1911 if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1912 return -EINVAL;
1913 if (unlikely(offset > 0xffff || offset & 1))
1914 return -EFAULT;
1915 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1916 return -EFAULT;
1917
1918 ptr = (__sum16 *)(skb->data + offset);
1919 switch (flags & BPF_F_HDR_FIELD_MASK) {
1920 case 0:
1921 if (unlikely(from != 0))
1922 return -EINVAL;
1923
1924 csum_replace_by_diff(ptr, to);
1925 break;
1926 case 2:
1927 csum_replace2(ptr, from, to);
1928 break;
1929 case 4:
1930 csum_replace4(ptr, from, to);
1931 break;
1932 default:
1933 return -EINVAL;
1934 }
1935
1936 return 0;
1937 }
1938
1939 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1940 .func = bpf_l3_csum_replace,
1941 .gpl_only = false,
1942 .ret_type = RET_INTEGER,
1943 .arg1_type = ARG_PTR_TO_CTX,
1944 .arg2_type = ARG_ANYTHING,
1945 .arg3_type = ARG_ANYTHING,
1946 .arg4_type = ARG_ANYTHING,
1947 .arg5_type = ARG_ANYTHING,
1948 };
1949
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1950 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1951 u64, from, u64, to, u64, flags)
1952 {
1953 bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1954 bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1955 bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1956 __sum16 *ptr;
1957
1958 if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1959 BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1960 return -EINVAL;
1961 if (unlikely(offset > 0xffff || offset & 1))
1962 return -EFAULT;
1963 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1964 return -EFAULT;
1965
1966 ptr = (__sum16 *)(skb->data + offset);
1967 if (is_mmzero && !do_mforce && !*ptr)
1968 return 0;
1969
1970 switch (flags & BPF_F_HDR_FIELD_MASK) {
1971 case 0:
1972 if (unlikely(from != 0))
1973 return -EINVAL;
1974
1975 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1976 break;
1977 case 2:
1978 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1979 break;
1980 case 4:
1981 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1982 break;
1983 default:
1984 return -EINVAL;
1985 }
1986
1987 if (is_mmzero && !*ptr)
1988 *ptr = CSUM_MANGLED_0;
1989 return 0;
1990 }
1991
1992 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1993 .func = bpf_l4_csum_replace,
1994 .gpl_only = false,
1995 .ret_type = RET_INTEGER,
1996 .arg1_type = ARG_PTR_TO_CTX,
1997 .arg2_type = ARG_ANYTHING,
1998 .arg3_type = ARG_ANYTHING,
1999 .arg4_type = ARG_ANYTHING,
2000 .arg5_type = ARG_ANYTHING,
2001 };
2002
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)2003 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2004 __be32 *, to, u32, to_size, __wsum, seed)
2005 {
2006 struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
2007 u32 diff_size = from_size + to_size;
2008 int i, j = 0;
2009
2010 /* This is quite flexible, some examples:
2011 *
2012 * from_size == 0, to_size > 0, seed := csum --> pushing data
2013 * from_size > 0, to_size == 0, seed := csum --> pulling data
2014 * from_size > 0, to_size > 0, seed := 0 --> diffing data
2015 *
2016 * Even for diffing, from_size and to_size don't need to be equal.
2017 */
2018 if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2019 diff_size > sizeof(sp->diff)))
2020 return -EINVAL;
2021
2022 for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2023 sp->diff[j] = ~from[i];
2024 for (i = 0; i < to_size / sizeof(__be32); i++, j++)
2025 sp->diff[j] = to[i];
2026
2027 return csum_partial(sp->diff, diff_size, seed);
2028 }
2029
2030 static const struct bpf_func_proto bpf_csum_diff_proto = {
2031 .func = bpf_csum_diff,
2032 .gpl_only = false,
2033 .pkt_access = true,
2034 .ret_type = RET_INTEGER,
2035 .arg1_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2036 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
2037 .arg3_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2038 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
2039 .arg5_type = ARG_ANYTHING,
2040 };
2041
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)2042 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2043 {
2044 /* The interface is to be used in combination with bpf_csum_diff()
2045 * for direct packet writes. csum rotation for alignment as well
2046 * as emulating csum_sub() can be done from the eBPF program.
2047 */
2048 if (skb->ip_summed == CHECKSUM_COMPLETE)
2049 return (skb->csum = csum_add(skb->csum, csum));
2050
2051 return -ENOTSUPP;
2052 }
2053
2054 static const struct bpf_func_proto bpf_csum_update_proto = {
2055 .func = bpf_csum_update,
2056 .gpl_only = false,
2057 .ret_type = RET_INTEGER,
2058 .arg1_type = ARG_PTR_TO_CTX,
2059 .arg2_type = ARG_ANYTHING,
2060 };
2061
BPF_CALL_2(bpf_csum_level,struct sk_buff *,skb,u64,level)2062 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2063 {
2064 /* The interface is to be used in combination with bpf_skb_adjust_room()
2065 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2066 * is passed as flags, for example.
2067 */
2068 switch (level) {
2069 case BPF_CSUM_LEVEL_INC:
2070 __skb_incr_checksum_unnecessary(skb);
2071 break;
2072 case BPF_CSUM_LEVEL_DEC:
2073 __skb_decr_checksum_unnecessary(skb);
2074 break;
2075 case BPF_CSUM_LEVEL_RESET:
2076 __skb_reset_checksum_unnecessary(skb);
2077 break;
2078 case BPF_CSUM_LEVEL_QUERY:
2079 return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2080 skb->csum_level : -EACCES;
2081 default:
2082 return -EINVAL;
2083 }
2084
2085 return 0;
2086 }
2087
2088 static const struct bpf_func_proto bpf_csum_level_proto = {
2089 .func = bpf_csum_level,
2090 .gpl_only = false,
2091 .ret_type = RET_INTEGER,
2092 .arg1_type = ARG_PTR_TO_CTX,
2093 .arg2_type = ARG_ANYTHING,
2094 };
2095
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)2096 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2097 {
2098 return dev_forward_skb_nomtu(dev, skb);
2099 }
2100
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)2101 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2102 struct sk_buff *skb)
2103 {
2104 int ret = ____dev_forward_skb(dev, skb, false);
2105
2106 if (likely(!ret)) {
2107 skb->dev = dev;
2108 ret = netif_rx(skb);
2109 }
2110
2111 return ret;
2112 }
2113
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)2114 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2115 {
2116 int ret;
2117
2118 if (dev_xmit_recursion()) {
2119 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2120 kfree_skb(skb);
2121 return -ENETDOWN;
2122 }
2123
2124 skb->dev = dev;
2125 skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb));
2126 skb_clear_tstamp(skb);
2127
2128 dev_xmit_recursion_inc();
2129 ret = dev_queue_xmit(skb);
2130 dev_xmit_recursion_dec();
2131
2132 return ret;
2133 }
2134
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2135 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2136 u32 flags)
2137 {
2138 unsigned int mlen = skb_network_offset(skb);
2139
2140 if (unlikely(skb->len <= mlen)) {
2141 kfree_skb(skb);
2142 return -ERANGE;
2143 }
2144
2145 if (mlen) {
2146 __skb_pull(skb, mlen);
2147
2148 /* At ingress, the mac header has already been pulled once.
2149 * At egress, skb_pospull_rcsum has to be done in case that
2150 * the skb is originated from ingress (i.e. a forwarded skb)
2151 * to ensure that rcsum starts at net header.
2152 */
2153 if (!skb_at_tc_ingress(skb))
2154 skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2155 }
2156 skb_pop_mac_header(skb);
2157 skb_reset_mac_len(skb);
2158 return flags & BPF_F_INGRESS ?
2159 __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2160 }
2161
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2162 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2163 u32 flags)
2164 {
2165 /* Verify that a link layer header is carried */
2166 if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2167 kfree_skb(skb);
2168 return -ERANGE;
2169 }
2170
2171 bpf_push_mac_rcsum(skb);
2172 return flags & BPF_F_INGRESS ?
2173 __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2174 }
2175
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2176 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2177 u32 flags)
2178 {
2179 if (dev_is_mac_header_xmit(dev))
2180 return __bpf_redirect_common(skb, dev, flags);
2181 else
2182 return __bpf_redirect_no_mac(skb, dev, flags);
2183 }
2184
2185 #if IS_ENABLED(CONFIG_IPV6)
bpf_out_neigh_v6(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2186 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2187 struct net_device *dev, struct bpf_nh_params *nh)
2188 {
2189 u32 hh_len = LL_RESERVED_SPACE(dev);
2190 const struct in6_addr *nexthop;
2191 struct dst_entry *dst = NULL;
2192 struct neighbour *neigh;
2193
2194 if (dev_xmit_recursion()) {
2195 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2196 goto out_drop;
2197 }
2198
2199 skb->dev = dev;
2200 skb_clear_tstamp(skb);
2201
2202 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2203 skb = skb_expand_head(skb, hh_len);
2204 if (!skb)
2205 return -ENOMEM;
2206 }
2207
2208 rcu_read_lock();
2209 if (!nh) {
2210 dst = skb_dst(skb);
2211 nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2212 &ipv6_hdr(skb)->daddr);
2213 } else {
2214 nexthop = &nh->ipv6_nh;
2215 }
2216 neigh = ip_neigh_gw6(dev, nexthop);
2217 if (likely(!IS_ERR(neigh))) {
2218 int ret;
2219
2220 sock_confirm_neigh(skb, neigh);
2221 local_bh_disable();
2222 dev_xmit_recursion_inc();
2223 ret = neigh_output(neigh, skb, false);
2224 dev_xmit_recursion_dec();
2225 local_bh_enable();
2226 rcu_read_unlock();
2227 return ret;
2228 }
2229 rcu_read_unlock_bh();
2230 if (dst)
2231 IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2232 out_drop:
2233 kfree_skb(skb);
2234 return -ENETDOWN;
2235 }
2236
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2237 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2238 struct bpf_nh_params *nh)
2239 {
2240 const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2241 struct net *net = dev_net(dev);
2242 int err, ret = NET_XMIT_DROP;
2243
2244 if (!nh) {
2245 struct dst_entry *dst;
2246 struct flowi6 fl6 = {
2247 .flowi6_flags = FLOWI_FLAG_ANYSRC,
2248 .flowi6_mark = skb->mark,
2249 .flowlabel = ip6_flowinfo(ip6h),
2250 .flowi6_oif = dev->ifindex,
2251 .flowi6_proto = ip6h->nexthdr,
2252 .daddr = ip6h->daddr,
2253 .saddr = ip6h->saddr,
2254 };
2255
2256 dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2257 if (IS_ERR(dst))
2258 goto out_drop;
2259
2260 skb_dst_set(skb, dst);
2261 } else if (nh->nh_family != AF_INET6) {
2262 goto out_drop;
2263 }
2264
2265 err = bpf_out_neigh_v6(net, skb, dev, nh);
2266 if (unlikely(net_xmit_eval(err)))
2267 dev->stats.tx_errors++;
2268 else
2269 ret = NET_XMIT_SUCCESS;
2270 goto out_xmit;
2271 out_drop:
2272 dev->stats.tx_errors++;
2273 kfree_skb(skb);
2274 out_xmit:
2275 return ret;
2276 }
2277 #else
__bpf_redirect_neigh_v6(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2278 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2279 struct bpf_nh_params *nh)
2280 {
2281 kfree_skb(skb);
2282 return NET_XMIT_DROP;
2283 }
2284 #endif /* CONFIG_IPV6 */
2285
2286 #if IS_ENABLED(CONFIG_INET)
bpf_out_neigh_v4(struct net * net,struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2287 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2288 struct net_device *dev, struct bpf_nh_params *nh)
2289 {
2290 u32 hh_len = LL_RESERVED_SPACE(dev);
2291 struct neighbour *neigh;
2292 bool is_v6gw = false;
2293
2294 if (dev_xmit_recursion()) {
2295 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2296 goto out_drop;
2297 }
2298
2299 skb->dev = dev;
2300 skb_clear_tstamp(skb);
2301
2302 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2303 skb = skb_expand_head(skb, hh_len);
2304 if (!skb)
2305 return -ENOMEM;
2306 }
2307
2308 rcu_read_lock();
2309 if (!nh) {
2310 struct dst_entry *dst = skb_dst(skb);
2311 struct rtable *rt = container_of(dst, struct rtable, dst);
2312
2313 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2314 } else if (nh->nh_family == AF_INET6) {
2315 neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2316 is_v6gw = true;
2317 } else if (nh->nh_family == AF_INET) {
2318 neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2319 } else {
2320 rcu_read_unlock();
2321 goto out_drop;
2322 }
2323
2324 if (likely(!IS_ERR(neigh))) {
2325 int ret;
2326
2327 sock_confirm_neigh(skb, neigh);
2328 local_bh_disable();
2329 dev_xmit_recursion_inc();
2330 ret = neigh_output(neigh, skb, is_v6gw);
2331 dev_xmit_recursion_dec();
2332 local_bh_enable();
2333 rcu_read_unlock();
2334 return ret;
2335 }
2336 rcu_read_unlock();
2337 out_drop:
2338 kfree_skb(skb);
2339 return -ENETDOWN;
2340 }
2341
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2342 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2343 struct bpf_nh_params *nh)
2344 {
2345 const struct iphdr *ip4h = ip_hdr(skb);
2346 struct net *net = dev_net(dev);
2347 int err, ret = NET_XMIT_DROP;
2348
2349 if (!nh) {
2350 struct flowi4 fl4 = {
2351 .flowi4_flags = FLOWI_FLAG_ANYSRC,
2352 .flowi4_mark = skb->mark,
2353 .flowi4_tos = RT_TOS(ip4h->tos),
2354 .flowi4_oif = dev->ifindex,
2355 .flowi4_proto = ip4h->protocol,
2356 .daddr = ip4h->daddr,
2357 .saddr = ip4h->saddr,
2358 };
2359 struct rtable *rt;
2360
2361 rt = ip_route_output_flow(net, &fl4, NULL);
2362 if (IS_ERR(rt))
2363 goto out_drop;
2364 if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2365 ip_rt_put(rt);
2366 goto out_drop;
2367 }
2368
2369 skb_dst_set(skb, &rt->dst);
2370 }
2371
2372 err = bpf_out_neigh_v4(net, skb, dev, nh);
2373 if (unlikely(net_xmit_eval(err)))
2374 dev->stats.tx_errors++;
2375 else
2376 ret = NET_XMIT_SUCCESS;
2377 goto out_xmit;
2378 out_drop:
2379 dev->stats.tx_errors++;
2380 kfree_skb(skb);
2381 out_xmit:
2382 return ret;
2383 }
2384 #else
__bpf_redirect_neigh_v4(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2385 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2386 struct bpf_nh_params *nh)
2387 {
2388 kfree_skb(skb);
2389 return NET_XMIT_DROP;
2390 }
2391 #endif /* CONFIG_INET */
2392
__bpf_redirect_neigh(struct sk_buff * skb,struct net_device * dev,struct bpf_nh_params * nh)2393 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2394 struct bpf_nh_params *nh)
2395 {
2396 struct ethhdr *ethh = eth_hdr(skb);
2397
2398 if (unlikely(skb->mac_header >= skb->network_header))
2399 goto out;
2400 bpf_push_mac_rcsum(skb);
2401 if (is_multicast_ether_addr(ethh->h_dest))
2402 goto out;
2403
2404 skb_pull(skb, sizeof(*ethh));
2405 skb_unset_mac_header(skb);
2406 skb_reset_network_header(skb);
2407
2408 if (skb->protocol == htons(ETH_P_IP))
2409 return __bpf_redirect_neigh_v4(skb, dev, nh);
2410 else if (skb->protocol == htons(ETH_P_IPV6))
2411 return __bpf_redirect_neigh_v6(skb, dev, nh);
2412 out:
2413 kfree_skb(skb);
2414 return -ENOTSUPP;
2415 }
2416
2417 /* Internal, non-exposed redirect flags. */
2418 enum {
2419 BPF_F_NEIGH = (1ULL << 1),
2420 BPF_F_PEER = (1ULL << 2),
2421 BPF_F_NEXTHOP = (1ULL << 3),
2422 #define BPF_F_REDIRECT_INTERNAL (BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2423 };
2424
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2425 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2426 {
2427 struct net_device *dev;
2428 struct sk_buff *clone;
2429 int ret;
2430
2431 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2432 return -EINVAL;
2433
2434 dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2435 if (unlikely(!dev))
2436 return -EINVAL;
2437
2438 clone = skb_clone(skb, GFP_ATOMIC);
2439 if (unlikely(!clone))
2440 return -ENOMEM;
2441
2442 /* For direct write, we need to keep the invariant that the skbs
2443 * we're dealing with need to be uncloned. Should uncloning fail
2444 * here, we need to free the just generated clone to unclone once
2445 * again.
2446 */
2447 ret = bpf_try_make_head_writable(skb);
2448 if (unlikely(ret)) {
2449 kfree_skb(clone);
2450 return -ENOMEM;
2451 }
2452
2453 return __bpf_redirect(clone, dev, flags);
2454 }
2455
2456 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2457 .func = bpf_clone_redirect,
2458 .gpl_only = false,
2459 .ret_type = RET_INTEGER,
2460 .arg1_type = ARG_PTR_TO_CTX,
2461 .arg2_type = ARG_ANYTHING,
2462 .arg3_type = ARG_ANYTHING,
2463 };
2464
2465 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2466 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2467
skb_do_redirect(struct sk_buff * skb)2468 int skb_do_redirect(struct sk_buff *skb)
2469 {
2470 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2471 struct net *net = dev_net(skb->dev);
2472 struct net_device *dev;
2473 u32 flags = ri->flags;
2474
2475 dev = dev_get_by_index_rcu(net, ri->tgt_index);
2476 ri->tgt_index = 0;
2477 ri->flags = 0;
2478 if (unlikely(!dev))
2479 goto out_drop;
2480 if (flags & BPF_F_PEER) {
2481 const struct net_device_ops *ops = dev->netdev_ops;
2482
2483 if (unlikely(!ops->ndo_get_peer_dev ||
2484 !skb_at_tc_ingress(skb)))
2485 goto out_drop;
2486 dev = ops->ndo_get_peer_dev(dev);
2487 if (unlikely(!dev ||
2488 !(dev->flags & IFF_UP) ||
2489 net_eq(net, dev_net(dev))))
2490 goto out_drop;
2491 skb->dev = dev;
2492 return -EAGAIN;
2493 }
2494 return flags & BPF_F_NEIGH ?
2495 __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2496 &ri->nh : NULL) :
2497 __bpf_redirect(skb, dev, flags);
2498 out_drop:
2499 kfree_skb(skb);
2500 return -EINVAL;
2501 }
2502
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2503 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2504 {
2505 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2506
2507 if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2508 return TC_ACT_SHOT;
2509
2510 ri->flags = flags;
2511 ri->tgt_index = ifindex;
2512
2513 return TC_ACT_REDIRECT;
2514 }
2515
2516 static const struct bpf_func_proto bpf_redirect_proto = {
2517 .func = bpf_redirect,
2518 .gpl_only = false,
2519 .ret_type = RET_INTEGER,
2520 .arg1_type = ARG_ANYTHING,
2521 .arg2_type = ARG_ANYTHING,
2522 };
2523
BPF_CALL_2(bpf_redirect_peer,u32,ifindex,u64,flags)2524 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2525 {
2526 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2527
2528 if (unlikely(flags))
2529 return TC_ACT_SHOT;
2530
2531 ri->flags = BPF_F_PEER;
2532 ri->tgt_index = ifindex;
2533
2534 return TC_ACT_REDIRECT;
2535 }
2536
2537 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2538 .func = bpf_redirect_peer,
2539 .gpl_only = false,
2540 .ret_type = RET_INTEGER,
2541 .arg1_type = ARG_ANYTHING,
2542 .arg2_type = ARG_ANYTHING,
2543 };
2544
BPF_CALL_4(bpf_redirect_neigh,u32,ifindex,struct bpf_redir_neigh *,params,int,plen,u64,flags)2545 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2546 int, plen, u64, flags)
2547 {
2548 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2549
2550 if (unlikely((plen && plen < sizeof(*params)) || flags))
2551 return TC_ACT_SHOT;
2552
2553 ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2554 ri->tgt_index = ifindex;
2555
2556 BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2557 if (plen)
2558 memcpy(&ri->nh, params, sizeof(ri->nh));
2559
2560 return TC_ACT_REDIRECT;
2561 }
2562
2563 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2564 .func = bpf_redirect_neigh,
2565 .gpl_only = false,
2566 .ret_type = RET_INTEGER,
2567 .arg1_type = ARG_ANYTHING,
2568 .arg2_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2569 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
2570 .arg4_type = ARG_ANYTHING,
2571 };
2572
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg *,msg,u32,bytes)2573 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2574 {
2575 msg->apply_bytes = bytes;
2576 return 0;
2577 }
2578
2579 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2580 .func = bpf_msg_apply_bytes,
2581 .gpl_only = false,
2582 .ret_type = RET_INTEGER,
2583 .arg1_type = ARG_PTR_TO_CTX,
2584 .arg2_type = ARG_ANYTHING,
2585 };
2586
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg *,msg,u32,bytes)2587 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2588 {
2589 msg->cork_bytes = bytes;
2590 return 0;
2591 }
2592
2593 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2594 .func = bpf_msg_cork_bytes,
2595 .gpl_only = false,
2596 .ret_type = RET_INTEGER,
2597 .arg1_type = ARG_PTR_TO_CTX,
2598 .arg2_type = ARG_ANYTHING,
2599 };
2600
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg *,msg,u32,start,u32,end,u64,flags)2601 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2602 u32, end, u64, flags)
2603 {
2604 u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2605 u32 first_sge, last_sge, i, shift, bytes_sg_total;
2606 struct scatterlist *sge;
2607 u8 *raw, *to, *from;
2608 struct page *page;
2609
2610 if (unlikely(flags || end <= start))
2611 return -EINVAL;
2612
2613 /* First find the starting scatterlist element */
2614 i = msg->sg.start;
2615 do {
2616 offset += len;
2617 len = sk_msg_elem(msg, i)->length;
2618 if (start < offset + len)
2619 break;
2620 sk_msg_iter_var_next(i);
2621 } while (i != msg->sg.end);
2622
2623 if (unlikely(start >= offset + len))
2624 return -EINVAL;
2625
2626 first_sge = i;
2627 /* The start may point into the sg element so we need to also
2628 * account for the headroom.
2629 */
2630 bytes_sg_total = start - offset + bytes;
2631 if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2632 goto out;
2633
2634 /* At this point we need to linearize multiple scatterlist
2635 * elements or a single shared page. Either way we need to
2636 * copy into a linear buffer exclusively owned by BPF. Then
2637 * place the buffer in the scatterlist and fixup the original
2638 * entries by removing the entries now in the linear buffer
2639 * and shifting the remaining entries. For now we do not try
2640 * to copy partial entries to avoid complexity of running out
2641 * of sg_entry slots. The downside is reading a single byte
2642 * will copy the entire sg entry.
2643 */
2644 do {
2645 copy += sk_msg_elem(msg, i)->length;
2646 sk_msg_iter_var_next(i);
2647 if (bytes_sg_total <= copy)
2648 break;
2649 } while (i != msg->sg.end);
2650 last_sge = i;
2651
2652 if (unlikely(bytes_sg_total > copy))
2653 return -EINVAL;
2654
2655 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2656 get_order(copy));
2657 if (unlikely(!page))
2658 return -ENOMEM;
2659
2660 raw = page_address(page);
2661 i = first_sge;
2662 do {
2663 sge = sk_msg_elem(msg, i);
2664 from = sg_virt(sge);
2665 len = sge->length;
2666 to = raw + poffset;
2667
2668 memcpy(to, from, len);
2669 poffset += len;
2670 sge->length = 0;
2671 put_page(sg_page(sge));
2672
2673 sk_msg_iter_var_next(i);
2674 } while (i != last_sge);
2675
2676 sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2677
2678 /* To repair sg ring we need to shift entries. If we only
2679 * had a single entry though we can just replace it and
2680 * be done. Otherwise walk the ring and shift the entries.
2681 */
2682 WARN_ON_ONCE(last_sge == first_sge);
2683 shift = last_sge > first_sge ?
2684 last_sge - first_sge - 1 :
2685 NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2686 if (!shift)
2687 goto out;
2688
2689 i = first_sge;
2690 sk_msg_iter_var_next(i);
2691 do {
2692 u32 move_from;
2693
2694 if (i + shift >= NR_MSG_FRAG_IDS)
2695 move_from = i + shift - NR_MSG_FRAG_IDS;
2696 else
2697 move_from = i + shift;
2698 if (move_from == msg->sg.end)
2699 break;
2700
2701 msg->sg.data[i] = msg->sg.data[move_from];
2702 msg->sg.data[move_from].length = 0;
2703 msg->sg.data[move_from].page_link = 0;
2704 msg->sg.data[move_from].offset = 0;
2705 sk_msg_iter_var_next(i);
2706 } while (1);
2707
2708 msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2709 msg->sg.end - shift + NR_MSG_FRAG_IDS :
2710 msg->sg.end - shift;
2711 out:
2712 msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2713 msg->data_end = msg->data + bytes;
2714 return 0;
2715 }
2716
2717 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2718 .func = bpf_msg_pull_data,
2719 .gpl_only = false,
2720 .ret_type = RET_INTEGER,
2721 .arg1_type = ARG_PTR_TO_CTX,
2722 .arg2_type = ARG_ANYTHING,
2723 .arg3_type = ARG_ANYTHING,
2724 .arg4_type = ARG_ANYTHING,
2725 };
2726
BPF_CALL_4(bpf_msg_push_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2727 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2728 u32, len, u64, flags)
2729 {
2730 struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2731 u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2732 u8 *raw, *to, *from;
2733 struct page *page;
2734
2735 if (unlikely(flags))
2736 return -EINVAL;
2737
2738 if (unlikely(len == 0))
2739 return 0;
2740
2741 /* First find the starting scatterlist element */
2742 i = msg->sg.start;
2743 do {
2744 offset += l;
2745 l = sk_msg_elem(msg, i)->length;
2746
2747 if (start < offset + l)
2748 break;
2749 sk_msg_iter_var_next(i);
2750 } while (i != msg->sg.end);
2751
2752 if (start >= offset + l)
2753 return -EINVAL;
2754
2755 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2756
2757 /* If no space available will fallback to copy, we need at
2758 * least one scatterlist elem available to push data into
2759 * when start aligns to the beginning of an element or two
2760 * when it falls inside an element. We handle the start equals
2761 * offset case because its the common case for inserting a
2762 * header.
2763 */
2764 if (!space || (space == 1 && start != offset))
2765 copy = msg->sg.data[i].length;
2766
2767 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2768 get_order(copy + len));
2769 if (unlikely(!page))
2770 return -ENOMEM;
2771
2772 if (copy) {
2773 int front, back;
2774
2775 raw = page_address(page);
2776
2777 psge = sk_msg_elem(msg, i);
2778 front = start - offset;
2779 back = psge->length - front;
2780 from = sg_virt(psge);
2781
2782 if (front)
2783 memcpy(raw, from, front);
2784
2785 if (back) {
2786 from += front;
2787 to = raw + front + len;
2788
2789 memcpy(to, from, back);
2790 }
2791
2792 put_page(sg_page(psge));
2793 } else if (start - offset) {
2794 psge = sk_msg_elem(msg, i);
2795 rsge = sk_msg_elem_cpy(msg, i);
2796
2797 psge->length = start - offset;
2798 rsge.length -= psge->length;
2799 rsge.offset += start;
2800
2801 sk_msg_iter_var_next(i);
2802 sg_unmark_end(psge);
2803 sg_unmark_end(&rsge);
2804 sk_msg_iter_next(msg, end);
2805 }
2806
2807 /* Slot(s) to place newly allocated data */
2808 new = i;
2809
2810 /* Shift one or two slots as needed */
2811 if (!copy) {
2812 sge = sk_msg_elem_cpy(msg, i);
2813
2814 sk_msg_iter_var_next(i);
2815 sg_unmark_end(&sge);
2816 sk_msg_iter_next(msg, end);
2817
2818 nsge = sk_msg_elem_cpy(msg, i);
2819 if (rsge.length) {
2820 sk_msg_iter_var_next(i);
2821 nnsge = sk_msg_elem_cpy(msg, i);
2822 }
2823
2824 while (i != msg->sg.end) {
2825 msg->sg.data[i] = sge;
2826 sge = nsge;
2827 sk_msg_iter_var_next(i);
2828 if (rsge.length) {
2829 nsge = nnsge;
2830 nnsge = sk_msg_elem_cpy(msg, i);
2831 } else {
2832 nsge = sk_msg_elem_cpy(msg, i);
2833 }
2834 }
2835 }
2836
2837 /* Place newly allocated data buffer */
2838 sk_mem_charge(msg->sk, len);
2839 msg->sg.size += len;
2840 __clear_bit(new, msg->sg.copy);
2841 sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2842 if (rsge.length) {
2843 get_page(sg_page(&rsge));
2844 sk_msg_iter_var_next(new);
2845 msg->sg.data[new] = rsge;
2846 }
2847
2848 sk_msg_compute_data_pointers(msg);
2849 return 0;
2850 }
2851
2852 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2853 .func = bpf_msg_push_data,
2854 .gpl_only = false,
2855 .ret_type = RET_INTEGER,
2856 .arg1_type = ARG_PTR_TO_CTX,
2857 .arg2_type = ARG_ANYTHING,
2858 .arg3_type = ARG_ANYTHING,
2859 .arg4_type = ARG_ANYTHING,
2860 };
2861
sk_msg_shift_left(struct sk_msg * msg,int i)2862 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2863 {
2864 int prev;
2865
2866 do {
2867 prev = i;
2868 sk_msg_iter_var_next(i);
2869 msg->sg.data[prev] = msg->sg.data[i];
2870 } while (i != msg->sg.end);
2871
2872 sk_msg_iter_prev(msg, end);
2873 }
2874
sk_msg_shift_right(struct sk_msg * msg,int i)2875 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2876 {
2877 struct scatterlist tmp, sge;
2878
2879 sk_msg_iter_next(msg, end);
2880 sge = sk_msg_elem_cpy(msg, i);
2881 sk_msg_iter_var_next(i);
2882 tmp = sk_msg_elem_cpy(msg, i);
2883
2884 while (i != msg->sg.end) {
2885 msg->sg.data[i] = sge;
2886 sk_msg_iter_var_next(i);
2887 sge = tmp;
2888 tmp = sk_msg_elem_cpy(msg, i);
2889 }
2890 }
2891
BPF_CALL_4(bpf_msg_pop_data,struct sk_msg *,msg,u32,start,u32,len,u64,flags)2892 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2893 u32, len, u64, flags)
2894 {
2895 u32 i = 0, l = 0, space, offset = 0;
2896 u64 last = start + len;
2897 int pop;
2898
2899 if (unlikely(flags))
2900 return -EINVAL;
2901
2902 /* First find the starting scatterlist element */
2903 i = msg->sg.start;
2904 do {
2905 offset += l;
2906 l = sk_msg_elem(msg, i)->length;
2907
2908 if (start < offset + l)
2909 break;
2910 sk_msg_iter_var_next(i);
2911 } while (i != msg->sg.end);
2912
2913 /* Bounds checks: start and pop must be inside message */
2914 if (start >= offset + l || last >= msg->sg.size)
2915 return -EINVAL;
2916
2917 space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2918
2919 pop = len;
2920 /* --------------| offset
2921 * -| start |-------- len -------|
2922 *
2923 * |----- a ----|-------- pop -------|----- b ----|
2924 * |______________________________________________| length
2925 *
2926 *
2927 * a: region at front of scatter element to save
2928 * b: region at back of scatter element to save when length > A + pop
2929 * pop: region to pop from element, same as input 'pop' here will be
2930 * decremented below per iteration.
2931 *
2932 * Two top-level cases to handle when start != offset, first B is non
2933 * zero and second B is zero corresponding to when a pop includes more
2934 * than one element.
2935 *
2936 * Then if B is non-zero AND there is no space allocate space and
2937 * compact A, B regions into page. If there is space shift ring to
2938 * the rigth free'ing the next element in ring to place B, leaving
2939 * A untouched except to reduce length.
2940 */
2941 if (start != offset) {
2942 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2943 int a = start;
2944 int b = sge->length - pop - a;
2945
2946 sk_msg_iter_var_next(i);
2947
2948 if (pop < sge->length - a) {
2949 if (space) {
2950 sge->length = a;
2951 sk_msg_shift_right(msg, i);
2952 nsge = sk_msg_elem(msg, i);
2953 get_page(sg_page(sge));
2954 sg_set_page(nsge,
2955 sg_page(sge),
2956 b, sge->offset + pop + a);
2957 } else {
2958 struct page *page, *orig;
2959 u8 *to, *from;
2960
2961 page = alloc_pages(__GFP_NOWARN |
2962 __GFP_COMP | GFP_ATOMIC,
2963 get_order(a + b));
2964 if (unlikely(!page))
2965 return -ENOMEM;
2966
2967 sge->length = a;
2968 orig = sg_page(sge);
2969 from = sg_virt(sge);
2970 to = page_address(page);
2971 memcpy(to, from, a);
2972 memcpy(to + a, from + a + pop, b);
2973 sg_set_page(sge, page, a + b, 0);
2974 put_page(orig);
2975 }
2976 pop = 0;
2977 } else if (pop >= sge->length - a) {
2978 pop -= (sge->length - a);
2979 sge->length = a;
2980 }
2981 }
2982
2983 /* From above the current layout _must_ be as follows,
2984 *
2985 * -| offset
2986 * -| start
2987 *
2988 * |---- pop ---|---------------- b ------------|
2989 * |____________________________________________| length
2990 *
2991 * Offset and start of the current msg elem are equal because in the
2992 * previous case we handled offset != start and either consumed the
2993 * entire element and advanced to the next element OR pop == 0.
2994 *
2995 * Two cases to handle here are first pop is less than the length
2996 * leaving some remainder b above. Simply adjust the element's layout
2997 * in this case. Or pop >= length of the element so that b = 0. In this
2998 * case advance to next element decrementing pop.
2999 */
3000 while (pop) {
3001 struct scatterlist *sge = sk_msg_elem(msg, i);
3002
3003 if (pop < sge->length) {
3004 sge->length -= pop;
3005 sge->offset += pop;
3006 pop = 0;
3007 } else {
3008 pop -= sge->length;
3009 sk_msg_shift_left(msg, i);
3010 }
3011 sk_msg_iter_var_next(i);
3012 }
3013
3014 sk_mem_uncharge(msg->sk, len - pop);
3015 msg->sg.size -= (len - pop);
3016 sk_msg_compute_data_pointers(msg);
3017 return 0;
3018 }
3019
3020 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3021 .func = bpf_msg_pop_data,
3022 .gpl_only = false,
3023 .ret_type = RET_INTEGER,
3024 .arg1_type = ARG_PTR_TO_CTX,
3025 .arg2_type = ARG_ANYTHING,
3026 .arg3_type = ARG_ANYTHING,
3027 .arg4_type = ARG_ANYTHING,
3028 };
3029
3030 #ifdef CONFIG_CGROUP_NET_CLASSID
BPF_CALL_0(bpf_get_cgroup_classid_curr)3031 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3032 {
3033 return __task_get_classid(current);
3034 }
3035
3036 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3037 .func = bpf_get_cgroup_classid_curr,
3038 .gpl_only = false,
3039 .ret_type = RET_INTEGER,
3040 };
3041
BPF_CALL_1(bpf_skb_cgroup_classid,const struct sk_buff *,skb)3042 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3043 {
3044 struct sock *sk = skb_to_full_sk(skb);
3045
3046 if (!sk || !sk_fullsock(sk))
3047 return 0;
3048
3049 return sock_cgroup_classid(&sk->sk_cgrp_data);
3050 }
3051
3052 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3053 .func = bpf_skb_cgroup_classid,
3054 .gpl_only = false,
3055 .ret_type = RET_INTEGER,
3056 .arg1_type = ARG_PTR_TO_CTX,
3057 };
3058 #endif
3059
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)3060 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3061 {
3062 return task_get_classid(skb);
3063 }
3064
3065 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3066 .func = bpf_get_cgroup_classid,
3067 .gpl_only = false,
3068 .ret_type = RET_INTEGER,
3069 .arg1_type = ARG_PTR_TO_CTX,
3070 };
3071
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)3072 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3073 {
3074 return dst_tclassid(skb);
3075 }
3076
3077 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3078 .func = bpf_get_route_realm,
3079 .gpl_only = false,
3080 .ret_type = RET_INTEGER,
3081 .arg1_type = ARG_PTR_TO_CTX,
3082 };
3083
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)3084 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3085 {
3086 /* If skb_clear_hash() was called due to mangling, we can
3087 * trigger SW recalculation here. Later access to hash
3088 * can then use the inline skb->hash via context directly
3089 * instead of calling this helper again.
3090 */
3091 return skb_get_hash(skb);
3092 }
3093
3094 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3095 .func = bpf_get_hash_recalc,
3096 .gpl_only = false,
3097 .ret_type = RET_INTEGER,
3098 .arg1_type = ARG_PTR_TO_CTX,
3099 };
3100
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)3101 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3102 {
3103 /* After all direct packet write, this can be used once for
3104 * triggering a lazy recalc on next skb_get_hash() invocation.
3105 */
3106 skb_clear_hash(skb);
3107 return 0;
3108 }
3109
3110 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3111 .func = bpf_set_hash_invalid,
3112 .gpl_only = false,
3113 .ret_type = RET_INTEGER,
3114 .arg1_type = ARG_PTR_TO_CTX,
3115 };
3116
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)3117 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3118 {
3119 /* Set user specified hash as L4(+), so that it gets returned
3120 * on skb_get_hash() call unless BPF prog later on triggers a
3121 * skb_clear_hash().
3122 */
3123 __skb_set_sw_hash(skb, hash, true);
3124 return 0;
3125 }
3126
3127 static const struct bpf_func_proto bpf_set_hash_proto = {
3128 .func = bpf_set_hash,
3129 .gpl_only = false,
3130 .ret_type = RET_INTEGER,
3131 .arg1_type = ARG_PTR_TO_CTX,
3132 .arg2_type = ARG_ANYTHING,
3133 };
3134
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)3135 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3136 u16, vlan_tci)
3137 {
3138 int ret;
3139
3140 if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3141 vlan_proto != htons(ETH_P_8021AD)))
3142 vlan_proto = htons(ETH_P_8021Q);
3143
3144 bpf_push_mac_rcsum(skb);
3145 ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3146 bpf_pull_mac_rcsum(skb);
3147
3148 bpf_compute_data_pointers(skb);
3149 return ret;
3150 }
3151
3152 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3153 .func = bpf_skb_vlan_push,
3154 .gpl_only = false,
3155 .ret_type = RET_INTEGER,
3156 .arg1_type = ARG_PTR_TO_CTX,
3157 .arg2_type = ARG_ANYTHING,
3158 .arg3_type = ARG_ANYTHING,
3159 };
3160
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)3161 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3162 {
3163 int ret;
3164
3165 bpf_push_mac_rcsum(skb);
3166 ret = skb_vlan_pop(skb);
3167 bpf_pull_mac_rcsum(skb);
3168
3169 bpf_compute_data_pointers(skb);
3170 return ret;
3171 }
3172
3173 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3174 .func = bpf_skb_vlan_pop,
3175 .gpl_only = false,
3176 .ret_type = RET_INTEGER,
3177 .arg1_type = ARG_PTR_TO_CTX,
3178 };
3179
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)3180 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3181 {
3182 /* Caller already did skb_cow() with len as headroom,
3183 * so no need to do it here.
3184 */
3185 skb_push(skb, len);
3186 memmove(skb->data, skb->data + len, off);
3187 memset(skb->data + off, 0, len);
3188
3189 /* No skb_postpush_rcsum(skb, skb->data + off, len)
3190 * needed here as it does not change the skb->csum
3191 * result for checksum complete when summing over
3192 * zeroed blocks.
3193 */
3194 return 0;
3195 }
3196
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)3197 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3198 {
3199 void *old_data;
3200
3201 /* skb_ensure_writable() is not needed here, as we're
3202 * already working on an uncloned skb.
3203 */
3204 if (unlikely(!pskb_may_pull(skb, off + len)))
3205 return -ENOMEM;
3206
3207 old_data = skb->data;
3208 __skb_pull(skb, len);
3209 skb_postpull_rcsum(skb, old_data + off, len);
3210 memmove(skb->data, old_data, off);
3211
3212 return 0;
3213 }
3214
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)3215 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3216 {
3217 bool trans_same = skb->transport_header == skb->network_header;
3218 int ret;
3219
3220 /* There's no need for __skb_push()/__skb_pull() pair to
3221 * get to the start of the mac header as we're guaranteed
3222 * to always start from here under eBPF.
3223 */
3224 ret = bpf_skb_generic_push(skb, off, len);
3225 if (likely(!ret)) {
3226 skb->mac_header -= len;
3227 skb->network_header -= len;
3228 if (trans_same)
3229 skb->transport_header = skb->network_header;
3230 }
3231
3232 return ret;
3233 }
3234
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)3235 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3236 {
3237 bool trans_same = skb->transport_header == skb->network_header;
3238 int ret;
3239
3240 /* Same here, __skb_push()/__skb_pull() pair not needed. */
3241 ret = bpf_skb_generic_pop(skb, off, len);
3242 if (likely(!ret)) {
3243 skb->mac_header += len;
3244 skb->network_header += len;
3245 if (trans_same)
3246 skb->transport_header = skb->network_header;
3247 }
3248
3249 return ret;
3250 }
3251
bpf_skb_proto_4_to_6(struct sk_buff * skb)3252 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3253 {
3254 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3255 u32 off = skb_mac_header_len(skb);
3256 int ret;
3257
3258 ret = skb_cow(skb, len_diff);
3259 if (unlikely(ret < 0))
3260 return ret;
3261
3262 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3263 if (unlikely(ret < 0))
3264 return ret;
3265
3266 if (skb_is_gso(skb)) {
3267 struct skb_shared_info *shinfo = skb_shinfo(skb);
3268
3269 /* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3270 if (shinfo->gso_type & SKB_GSO_TCPV4) {
3271 shinfo->gso_type &= ~SKB_GSO_TCPV4;
3272 shinfo->gso_type |= SKB_GSO_TCPV6;
3273 }
3274 }
3275
3276 skb->protocol = htons(ETH_P_IPV6);
3277 skb_clear_hash(skb);
3278
3279 return 0;
3280 }
3281
bpf_skb_proto_6_to_4(struct sk_buff * skb)3282 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3283 {
3284 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3285 u32 off = skb_mac_header_len(skb);
3286 int ret;
3287
3288 ret = skb_unclone(skb, GFP_ATOMIC);
3289 if (unlikely(ret < 0))
3290 return ret;
3291
3292 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3293 if (unlikely(ret < 0))
3294 return ret;
3295
3296 if (skb_is_gso(skb)) {
3297 struct skb_shared_info *shinfo = skb_shinfo(skb);
3298
3299 /* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3300 if (shinfo->gso_type & SKB_GSO_TCPV6) {
3301 shinfo->gso_type &= ~SKB_GSO_TCPV6;
3302 shinfo->gso_type |= SKB_GSO_TCPV4;
3303 }
3304 }
3305
3306 skb->protocol = htons(ETH_P_IP);
3307 skb_clear_hash(skb);
3308
3309 return 0;
3310 }
3311
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)3312 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3313 {
3314 __be16 from_proto = skb->protocol;
3315
3316 if (from_proto == htons(ETH_P_IP) &&
3317 to_proto == htons(ETH_P_IPV6))
3318 return bpf_skb_proto_4_to_6(skb);
3319
3320 if (from_proto == htons(ETH_P_IPV6) &&
3321 to_proto == htons(ETH_P_IP))
3322 return bpf_skb_proto_6_to_4(skb);
3323
3324 return -ENOTSUPP;
3325 }
3326
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)3327 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3328 u64, flags)
3329 {
3330 int ret;
3331
3332 if (unlikely(flags))
3333 return -EINVAL;
3334
3335 /* General idea is that this helper does the basic groundwork
3336 * needed for changing the protocol, and eBPF program fills the
3337 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3338 * and other helpers, rather than passing a raw buffer here.
3339 *
3340 * The rationale is to keep this minimal and without a need to
3341 * deal with raw packet data. F.e. even if we would pass buffers
3342 * here, the program still needs to call the bpf_lX_csum_replace()
3343 * helpers anyway. Plus, this way we keep also separation of
3344 * concerns, since f.e. bpf_skb_store_bytes() should only take
3345 * care of stores.
3346 *
3347 * Currently, additional options and extension header space are
3348 * not supported, but flags register is reserved so we can adapt
3349 * that. For offloads, we mark packet as dodgy, so that headers
3350 * need to be verified first.
3351 */
3352 ret = bpf_skb_proto_xlat(skb, proto);
3353 bpf_compute_data_pointers(skb);
3354 return ret;
3355 }
3356
3357 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3358 .func = bpf_skb_change_proto,
3359 .gpl_only = false,
3360 .ret_type = RET_INTEGER,
3361 .arg1_type = ARG_PTR_TO_CTX,
3362 .arg2_type = ARG_ANYTHING,
3363 .arg3_type = ARG_ANYTHING,
3364 };
3365
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)3366 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3367 {
3368 /* We only allow a restricted subset to be changed for now. */
3369 if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3370 !skb_pkt_type_ok(pkt_type)))
3371 return -EINVAL;
3372
3373 skb->pkt_type = pkt_type;
3374 return 0;
3375 }
3376
3377 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3378 .func = bpf_skb_change_type,
3379 .gpl_only = false,
3380 .ret_type = RET_INTEGER,
3381 .arg1_type = ARG_PTR_TO_CTX,
3382 .arg2_type = ARG_ANYTHING,
3383 };
3384
bpf_skb_net_base_len(const struct sk_buff * skb)3385 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3386 {
3387 switch (skb->protocol) {
3388 case htons(ETH_P_IP):
3389 return sizeof(struct iphdr);
3390 case htons(ETH_P_IPV6):
3391 return sizeof(struct ipv6hdr);
3392 default:
3393 return ~0U;
3394 }
3395 }
3396
3397 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3398 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3399
3400 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK (BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3401 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3402
3403 #define BPF_F_ADJ_ROOM_MASK (BPF_F_ADJ_ROOM_FIXED_GSO | \
3404 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3405 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3406 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3407 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3408 BPF_F_ADJ_ROOM_ENCAP_L2( \
3409 BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3410 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3411
bpf_skb_net_grow(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3412 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3413 u64 flags)
3414 {
3415 u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3416 bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3417 u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3418 unsigned int gso_type = SKB_GSO_DODGY;
3419 int ret;
3420
3421 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3422 /* udp gso_size delineates datagrams, only allow if fixed */
3423 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3424 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3425 return -ENOTSUPP;
3426 }
3427
3428 ret = skb_cow_head(skb, len_diff);
3429 if (unlikely(ret < 0))
3430 return ret;
3431
3432 if (encap) {
3433 if (skb->protocol != htons(ETH_P_IP) &&
3434 skb->protocol != htons(ETH_P_IPV6))
3435 return -ENOTSUPP;
3436
3437 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3438 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3439 return -EINVAL;
3440
3441 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3442 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3443 return -EINVAL;
3444
3445 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3446 inner_mac_len < ETH_HLEN)
3447 return -EINVAL;
3448
3449 if (skb->encapsulation)
3450 return -EALREADY;
3451
3452 mac_len = skb->network_header - skb->mac_header;
3453 inner_net = skb->network_header;
3454 if (inner_mac_len > len_diff)
3455 return -EINVAL;
3456 inner_trans = skb->transport_header;
3457 }
3458
3459 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3460 if (unlikely(ret < 0))
3461 return ret;
3462
3463 if (encap) {
3464 skb->inner_mac_header = inner_net - inner_mac_len;
3465 skb->inner_network_header = inner_net;
3466 skb->inner_transport_header = inner_trans;
3467
3468 if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3469 skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3470 else
3471 skb_set_inner_protocol(skb, skb->protocol);
3472
3473 skb->encapsulation = 1;
3474 skb_set_network_header(skb, mac_len);
3475
3476 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3477 gso_type |= SKB_GSO_UDP_TUNNEL;
3478 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3479 gso_type |= SKB_GSO_GRE;
3480 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3481 gso_type |= SKB_GSO_IPXIP6;
3482 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3483 gso_type |= SKB_GSO_IPXIP4;
3484
3485 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3486 flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3487 int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3488 sizeof(struct ipv6hdr) :
3489 sizeof(struct iphdr);
3490
3491 skb_set_transport_header(skb, mac_len + nh_len);
3492 }
3493
3494 /* Match skb->protocol to new outer l3 protocol */
3495 if (skb->protocol == htons(ETH_P_IP) &&
3496 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3497 skb->protocol = htons(ETH_P_IPV6);
3498 else if (skb->protocol == htons(ETH_P_IPV6) &&
3499 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3500 skb->protocol = htons(ETH_P_IP);
3501 }
3502
3503 if (skb_is_gso(skb)) {
3504 struct skb_shared_info *shinfo = skb_shinfo(skb);
3505
3506 /* Due to header grow, MSS needs to be downgraded. */
3507 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3508 skb_decrease_gso_size(shinfo, len_diff);
3509
3510 /* Header must be checked, and gso_segs recomputed. */
3511 shinfo->gso_type |= gso_type;
3512 shinfo->gso_segs = 0;
3513 }
3514
3515 return 0;
3516 }
3517
bpf_skb_net_shrink(struct sk_buff * skb,u32 off,u32 len_diff,u64 flags)3518 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3519 u64 flags)
3520 {
3521 int ret;
3522
3523 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3524 BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3525 BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3526 return -EINVAL;
3527
3528 if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3529 /* udp gso_size delineates datagrams, only allow if fixed */
3530 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3531 !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3532 return -ENOTSUPP;
3533 }
3534
3535 ret = skb_unclone(skb, GFP_ATOMIC);
3536 if (unlikely(ret < 0))
3537 return ret;
3538
3539 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3540 if (unlikely(ret < 0))
3541 return ret;
3542
3543 /* Match skb->protocol to new outer l3 protocol */
3544 if (skb->protocol == htons(ETH_P_IP) &&
3545 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3546 skb->protocol = htons(ETH_P_IPV6);
3547 else if (skb->protocol == htons(ETH_P_IPV6) &&
3548 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3549 skb->protocol = htons(ETH_P_IP);
3550
3551 if (skb_is_gso(skb)) {
3552 struct skb_shared_info *shinfo = skb_shinfo(skb);
3553
3554 /* Due to header shrink, MSS can be upgraded. */
3555 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3556 skb_increase_gso_size(shinfo, len_diff);
3557
3558 /* Header must be checked, and gso_segs recomputed. */
3559 shinfo->gso_type |= SKB_GSO_DODGY;
3560 shinfo->gso_segs = 0;
3561 }
3562
3563 return 0;
3564 }
3565
3566 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3567
BPF_CALL_4(sk_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3568 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3569 u32, mode, u64, flags)
3570 {
3571 u32 len_diff_abs = abs(len_diff);
3572 bool shrink = len_diff < 0;
3573 int ret = 0;
3574
3575 if (unlikely(flags || mode))
3576 return -EINVAL;
3577 if (unlikely(len_diff_abs > 0xfffU))
3578 return -EFAULT;
3579
3580 if (!shrink) {
3581 ret = skb_cow(skb, len_diff);
3582 if (unlikely(ret < 0))
3583 return ret;
3584 __skb_push(skb, len_diff_abs);
3585 memset(skb->data, 0, len_diff_abs);
3586 } else {
3587 if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3588 return -ENOMEM;
3589 __skb_pull(skb, len_diff_abs);
3590 }
3591 if (tls_sw_has_ctx_rx(skb->sk)) {
3592 struct strp_msg *rxm = strp_msg(skb);
3593
3594 rxm->full_len += len_diff;
3595 }
3596 return ret;
3597 }
3598
3599 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3600 .func = sk_skb_adjust_room,
3601 .gpl_only = false,
3602 .ret_type = RET_INTEGER,
3603 .arg1_type = ARG_PTR_TO_CTX,
3604 .arg2_type = ARG_ANYTHING,
3605 .arg3_type = ARG_ANYTHING,
3606 .arg4_type = ARG_ANYTHING,
3607 };
3608
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)3609 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3610 u32, mode, u64, flags)
3611 {
3612 u32 len_cur, len_diff_abs = abs(len_diff);
3613 u32 len_min = bpf_skb_net_base_len(skb);
3614 u32 len_max = BPF_SKB_MAX_LEN;
3615 __be16 proto = skb->protocol;
3616 bool shrink = len_diff < 0;
3617 u32 off;
3618 int ret;
3619
3620 if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3621 BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3622 return -EINVAL;
3623 if (unlikely(len_diff_abs > 0xfffU))
3624 return -EFAULT;
3625 if (unlikely(proto != htons(ETH_P_IP) &&
3626 proto != htons(ETH_P_IPV6)))
3627 return -ENOTSUPP;
3628
3629 off = skb_mac_header_len(skb);
3630 switch (mode) {
3631 case BPF_ADJ_ROOM_NET:
3632 off += bpf_skb_net_base_len(skb);
3633 break;
3634 case BPF_ADJ_ROOM_MAC:
3635 break;
3636 default:
3637 return -ENOTSUPP;
3638 }
3639
3640 if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3641 if (!shrink)
3642 return -EINVAL;
3643
3644 switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3645 case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3646 len_min = sizeof(struct iphdr);
3647 break;
3648 case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3649 len_min = sizeof(struct ipv6hdr);
3650 break;
3651 default:
3652 return -EINVAL;
3653 }
3654 }
3655
3656 len_cur = skb->len - skb_network_offset(skb);
3657 if ((shrink && (len_diff_abs >= len_cur ||
3658 len_cur - len_diff_abs < len_min)) ||
3659 (!shrink && (skb->len + len_diff_abs > len_max &&
3660 !skb_is_gso(skb))))
3661 return -ENOTSUPP;
3662
3663 ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3664 bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3665 if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3666 __skb_reset_checksum_unnecessary(skb);
3667
3668 bpf_compute_data_pointers(skb);
3669 return ret;
3670 }
3671
3672 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3673 .func = bpf_skb_adjust_room,
3674 .gpl_only = false,
3675 .ret_type = RET_INTEGER,
3676 .arg1_type = ARG_PTR_TO_CTX,
3677 .arg2_type = ARG_ANYTHING,
3678 .arg3_type = ARG_ANYTHING,
3679 .arg4_type = ARG_ANYTHING,
3680 };
3681
__bpf_skb_min_len(const struct sk_buff * skb)3682 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3683 {
3684 u32 min_len = skb_network_offset(skb);
3685
3686 if (skb_transport_header_was_set(skb))
3687 min_len = skb_transport_offset(skb);
3688 if (skb->ip_summed == CHECKSUM_PARTIAL)
3689 min_len = skb_checksum_start_offset(skb) +
3690 skb->csum_offset + sizeof(__sum16);
3691 return min_len;
3692 }
3693
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)3694 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3695 {
3696 unsigned int old_len = skb->len;
3697 int ret;
3698
3699 ret = __skb_grow_rcsum(skb, new_len);
3700 if (!ret)
3701 memset(skb->data + old_len, 0, new_len - old_len);
3702 return ret;
3703 }
3704
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)3705 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3706 {
3707 return __skb_trim_rcsum(skb, new_len);
3708 }
3709
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)3710 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3711 u64 flags)
3712 {
3713 u32 max_len = BPF_SKB_MAX_LEN;
3714 u32 min_len = __bpf_skb_min_len(skb);
3715 int ret;
3716
3717 if (unlikely(flags || new_len > max_len || new_len < min_len))
3718 return -EINVAL;
3719 if (skb->encapsulation)
3720 return -ENOTSUPP;
3721
3722 /* The basic idea of this helper is that it's performing the
3723 * needed work to either grow or trim an skb, and eBPF program
3724 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3725 * bpf_lX_csum_replace() and others rather than passing a raw
3726 * buffer here. This one is a slow path helper and intended
3727 * for replies with control messages.
3728 *
3729 * Like in bpf_skb_change_proto(), we want to keep this rather
3730 * minimal and without protocol specifics so that we are able
3731 * to separate concerns as in bpf_skb_store_bytes() should only
3732 * be the one responsible for writing buffers.
3733 *
3734 * It's really expected to be a slow path operation here for
3735 * control message replies, so we're implicitly linearizing,
3736 * uncloning and drop offloads from the skb by this.
3737 */
3738 ret = __bpf_try_make_writable(skb, skb->len);
3739 if (!ret) {
3740 if (new_len > skb->len)
3741 ret = bpf_skb_grow_rcsum(skb, new_len);
3742 else if (new_len < skb->len)
3743 ret = bpf_skb_trim_rcsum(skb, new_len);
3744 if (!ret && skb_is_gso(skb))
3745 skb_gso_reset(skb);
3746 }
3747 return ret;
3748 }
3749
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3750 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3751 u64, flags)
3752 {
3753 int ret = __bpf_skb_change_tail(skb, new_len, flags);
3754
3755 bpf_compute_data_pointers(skb);
3756 return ret;
3757 }
3758
3759 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3760 .func = bpf_skb_change_tail,
3761 .gpl_only = false,
3762 .ret_type = RET_INTEGER,
3763 .arg1_type = ARG_PTR_TO_CTX,
3764 .arg2_type = ARG_ANYTHING,
3765 .arg3_type = ARG_ANYTHING,
3766 };
3767
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)3768 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3769 u64, flags)
3770 {
3771 return __bpf_skb_change_tail(skb, new_len, flags);
3772 }
3773
3774 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3775 .func = sk_skb_change_tail,
3776 .gpl_only = false,
3777 .ret_type = RET_INTEGER,
3778 .arg1_type = ARG_PTR_TO_CTX,
3779 .arg2_type = ARG_ANYTHING,
3780 .arg3_type = ARG_ANYTHING,
3781 };
3782
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3783 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3784 u64 flags)
3785 {
3786 u32 max_len = BPF_SKB_MAX_LEN;
3787 u32 new_len = skb->len + head_room;
3788 int ret;
3789
3790 if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3791 new_len < skb->len))
3792 return -EINVAL;
3793
3794 ret = skb_cow(skb, head_room);
3795 if (likely(!ret)) {
3796 /* Idea for this helper is that we currently only
3797 * allow to expand on mac header. This means that
3798 * skb->protocol network header, etc, stay as is.
3799 * Compared to bpf_skb_change_tail(), we're more
3800 * flexible due to not needing to linearize or
3801 * reset GSO. Intention for this helper is to be
3802 * used by an L3 skb that needs to push mac header
3803 * for redirection into L2 device.
3804 */
3805 __skb_push(skb, head_room);
3806 memset(skb->data, 0, head_room);
3807 skb_reset_mac_header(skb);
3808 skb_reset_mac_len(skb);
3809 }
3810
3811 return ret;
3812 }
3813
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3814 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3815 u64, flags)
3816 {
3817 int ret = __bpf_skb_change_head(skb, head_room, flags);
3818
3819 bpf_compute_data_pointers(skb);
3820 return ret;
3821 }
3822
3823 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3824 .func = bpf_skb_change_head,
3825 .gpl_only = false,
3826 .ret_type = RET_INTEGER,
3827 .arg1_type = ARG_PTR_TO_CTX,
3828 .arg2_type = ARG_ANYTHING,
3829 .arg3_type = ARG_ANYTHING,
3830 };
3831
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3832 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3833 u64, flags)
3834 {
3835 return __bpf_skb_change_head(skb, head_room, flags);
3836 }
3837
3838 static const struct bpf_func_proto sk_skb_change_head_proto = {
3839 .func = sk_skb_change_head,
3840 .gpl_only = false,
3841 .ret_type = RET_INTEGER,
3842 .arg1_type = ARG_PTR_TO_CTX,
3843 .arg2_type = ARG_ANYTHING,
3844 .arg3_type = ARG_ANYTHING,
3845 };
3846
BPF_CALL_1(bpf_xdp_get_buff_len,struct xdp_buff *,xdp)3847 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3848 {
3849 return xdp_get_buff_len(xdp);
3850 }
3851
3852 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3853 .func = bpf_xdp_get_buff_len,
3854 .gpl_only = false,
3855 .ret_type = RET_INTEGER,
3856 .arg1_type = ARG_PTR_TO_CTX,
3857 };
3858
3859 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3860
3861 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3862 .func = bpf_xdp_get_buff_len,
3863 .gpl_only = false,
3864 .arg1_type = ARG_PTR_TO_BTF_ID,
3865 .arg1_btf_id = &bpf_xdp_get_buff_len_bpf_ids[0],
3866 };
3867
xdp_get_metalen(const struct xdp_buff * xdp)3868 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3869 {
3870 return xdp_data_meta_unsupported(xdp) ? 0 :
3871 xdp->data - xdp->data_meta;
3872 }
3873
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3874 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3875 {
3876 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3877 unsigned long metalen = xdp_get_metalen(xdp);
3878 void *data_start = xdp_frame_end + metalen;
3879 void *data = xdp->data + offset;
3880
3881 if (unlikely(data < data_start ||
3882 data > xdp->data_end - ETH_HLEN))
3883 return -EINVAL;
3884
3885 if (metalen)
3886 memmove(xdp->data_meta + offset,
3887 xdp->data_meta, metalen);
3888 xdp->data_meta += offset;
3889 xdp->data = data;
3890
3891 return 0;
3892 }
3893
3894 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3895 .func = bpf_xdp_adjust_head,
3896 .gpl_only = false,
3897 .ret_type = RET_INTEGER,
3898 .arg1_type = ARG_PTR_TO_CTX,
3899 .arg2_type = ARG_ANYTHING,
3900 };
3901
bpf_xdp_copy_buf(struct xdp_buff * xdp,unsigned long off,void * buf,unsigned long len,bool flush)3902 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3903 void *buf, unsigned long len, bool flush)
3904 {
3905 unsigned long ptr_len, ptr_off = 0;
3906 skb_frag_t *next_frag, *end_frag;
3907 struct skb_shared_info *sinfo;
3908 void *src, *dst;
3909 u8 *ptr_buf;
3910
3911 if (likely(xdp->data_end - xdp->data >= off + len)) {
3912 src = flush ? buf : xdp->data + off;
3913 dst = flush ? xdp->data + off : buf;
3914 memcpy(dst, src, len);
3915 return;
3916 }
3917
3918 sinfo = xdp_get_shared_info_from_buff(xdp);
3919 end_frag = &sinfo->frags[sinfo->nr_frags];
3920 next_frag = &sinfo->frags[0];
3921
3922 ptr_len = xdp->data_end - xdp->data;
3923 ptr_buf = xdp->data;
3924
3925 while (true) {
3926 if (off < ptr_off + ptr_len) {
3927 unsigned long copy_off = off - ptr_off;
3928 unsigned long copy_len = min(len, ptr_len - copy_off);
3929
3930 src = flush ? buf : ptr_buf + copy_off;
3931 dst = flush ? ptr_buf + copy_off : buf;
3932 memcpy(dst, src, copy_len);
3933
3934 off += copy_len;
3935 len -= copy_len;
3936 buf += copy_len;
3937 }
3938
3939 if (!len || next_frag == end_frag)
3940 break;
3941
3942 ptr_off += ptr_len;
3943 ptr_buf = skb_frag_address(next_frag);
3944 ptr_len = skb_frag_size(next_frag);
3945 next_frag++;
3946 }
3947 }
3948
bpf_xdp_pointer(struct xdp_buff * xdp,u32 offset,u32 len)3949 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3950 {
3951 u32 size = xdp->data_end - xdp->data;
3952 struct skb_shared_info *sinfo;
3953 void *addr = xdp->data;
3954 int i;
3955
3956 if (unlikely(offset > 0xffff || len > 0xffff))
3957 return ERR_PTR(-EFAULT);
3958
3959 if (unlikely(offset + len > xdp_get_buff_len(xdp)))
3960 return ERR_PTR(-EINVAL);
3961
3962 if (likely(offset < size)) /* linear area */
3963 goto out;
3964
3965 sinfo = xdp_get_shared_info_from_buff(xdp);
3966 offset -= size;
3967 for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
3968 u32 frag_size = skb_frag_size(&sinfo->frags[i]);
3969
3970 if (offset < frag_size) {
3971 addr = skb_frag_address(&sinfo->frags[i]);
3972 size = frag_size;
3973 break;
3974 }
3975 offset -= frag_size;
3976 }
3977 out:
3978 return offset + len <= size ? addr + offset : NULL;
3979 }
3980
BPF_CALL_4(bpf_xdp_load_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)3981 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
3982 void *, buf, u32, len)
3983 {
3984 void *ptr;
3985
3986 ptr = bpf_xdp_pointer(xdp, offset, len);
3987 if (IS_ERR(ptr))
3988 return PTR_ERR(ptr);
3989
3990 if (!ptr)
3991 bpf_xdp_copy_buf(xdp, offset, buf, len, false);
3992 else
3993 memcpy(buf, ptr, len);
3994
3995 return 0;
3996 }
3997
3998 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
3999 .func = bpf_xdp_load_bytes,
4000 .gpl_only = false,
4001 .ret_type = RET_INTEGER,
4002 .arg1_type = ARG_PTR_TO_CTX,
4003 .arg2_type = ARG_ANYTHING,
4004 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
4005 .arg4_type = ARG_CONST_SIZE,
4006 };
4007
__bpf_xdp_load_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4008 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4009 {
4010 return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4011 }
4012
BPF_CALL_4(bpf_xdp_store_bytes,struct xdp_buff *,xdp,u32,offset,void *,buf,u32,len)4013 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4014 void *, buf, u32, len)
4015 {
4016 void *ptr;
4017
4018 ptr = bpf_xdp_pointer(xdp, offset, len);
4019 if (IS_ERR(ptr))
4020 return PTR_ERR(ptr);
4021
4022 if (!ptr)
4023 bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4024 else
4025 memcpy(ptr, buf, len);
4026
4027 return 0;
4028 }
4029
4030 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4031 .func = bpf_xdp_store_bytes,
4032 .gpl_only = false,
4033 .ret_type = RET_INTEGER,
4034 .arg1_type = ARG_PTR_TO_CTX,
4035 .arg2_type = ARG_ANYTHING,
4036 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
4037 .arg4_type = ARG_CONST_SIZE,
4038 };
4039
__bpf_xdp_store_bytes(struct xdp_buff * xdp,u32 offset,void * buf,u32 len)4040 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4041 {
4042 return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4043 }
4044
bpf_xdp_frags_increase_tail(struct xdp_buff * xdp,int offset)4045 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4046 {
4047 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4048 skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4049 struct xdp_rxq_info *rxq = xdp->rxq;
4050 unsigned int tailroom;
4051
4052 if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4053 return -EOPNOTSUPP;
4054
4055 tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4056 if (unlikely(offset > tailroom))
4057 return -EINVAL;
4058
4059 memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4060 skb_frag_size_add(frag, offset);
4061 sinfo->xdp_frags_size += offset;
4062
4063 return 0;
4064 }
4065
bpf_xdp_frags_shrink_tail(struct xdp_buff * xdp,int offset)4066 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4067 {
4068 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4069 int i, n_frags_free = 0, len_free = 0;
4070
4071 if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4072 return -EINVAL;
4073
4074 for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4075 skb_frag_t *frag = &sinfo->frags[i];
4076 int shrink = min_t(int, offset, skb_frag_size(frag));
4077
4078 len_free += shrink;
4079 offset -= shrink;
4080
4081 if (skb_frag_size(frag) == shrink) {
4082 struct page *page = skb_frag_page(frag);
4083
4084 __xdp_return(page_address(page), &xdp->rxq->mem,
4085 false, NULL);
4086 n_frags_free++;
4087 } else {
4088 skb_frag_size_sub(frag, shrink);
4089 break;
4090 }
4091 }
4092 sinfo->nr_frags -= n_frags_free;
4093 sinfo->xdp_frags_size -= len_free;
4094
4095 if (unlikely(!sinfo->nr_frags)) {
4096 xdp_buff_clear_frags_flag(xdp);
4097 xdp->data_end -= offset;
4098 }
4099
4100 return 0;
4101 }
4102
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)4103 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4104 {
4105 void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4106 void *data_end = xdp->data_end + offset;
4107
4108 if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4109 if (offset < 0)
4110 return bpf_xdp_frags_shrink_tail(xdp, -offset);
4111
4112 return bpf_xdp_frags_increase_tail(xdp, offset);
4113 }
4114
4115 /* Notice that xdp_data_hard_end have reserved some tailroom */
4116 if (unlikely(data_end > data_hard_end))
4117 return -EINVAL;
4118
4119 if (unlikely(data_end < xdp->data + ETH_HLEN))
4120 return -EINVAL;
4121
4122 /* Clear memory area on grow, can contain uninit kernel memory */
4123 if (offset > 0)
4124 memset(xdp->data_end, 0, offset);
4125
4126 xdp->data_end = data_end;
4127
4128 return 0;
4129 }
4130
4131 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4132 .func = bpf_xdp_adjust_tail,
4133 .gpl_only = false,
4134 .ret_type = RET_INTEGER,
4135 .arg1_type = ARG_PTR_TO_CTX,
4136 .arg2_type = ARG_ANYTHING,
4137 };
4138
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)4139 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4140 {
4141 void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4142 void *meta = xdp->data_meta + offset;
4143 unsigned long metalen = xdp->data - meta;
4144
4145 if (xdp_data_meta_unsupported(xdp))
4146 return -ENOTSUPP;
4147 if (unlikely(meta < xdp_frame_end ||
4148 meta > xdp->data))
4149 return -EINVAL;
4150 if (unlikely(xdp_metalen_invalid(metalen)))
4151 return -EACCES;
4152
4153 xdp->data_meta = meta;
4154
4155 return 0;
4156 }
4157
4158 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4159 .func = bpf_xdp_adjust_meta,
4160 .gpl_only = false,
4161 .ret_type = RET_INTEGER,
4162 .arg1_type = ARG_PTR_TO_CTX,
4163 .arg2_type = ARG_ANYTHING,
4164 };
4165
4166 /**
4167 * DOC: xdp redirect
4168 *
4169 * XDP_REDIRECT works by a three-step process, implemented in the functions
4170 * below:
4171 *
4172 * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4173 * of the redirect and store it (along with some other metadata) in a per-CPU
4174 * struct bpf_redirect_info.
4175 *
4176 * 2. When the program returns the XDP_REDIRECT return code, the driver will
4177 * call xdp_do_redirect() which will use the information in struct
4178 * bpf_redirect_info to actually enqueue the frame into a map type-specific
4179 * bulk queue structure.
4180 *
4181 * 3. Before exiting its NAPI poll loop, the driver will call
4182 * xdp_do_flush(), which will flush all the different bulk queues,
4183 * thus completing the redirect. Note that xdp_do_flush() must be
4184 * called before napi_complete_done() in the driver, as the
4185 * XDP_REDIRECT logic relies on being inside a single NAPI instance
4186 * through to the xdp_do_flush() call for RCU protection of all
4187 * in-kernel data structures.
4188 */
4189 /*
4190 * Pointers to the map entries will be kept around for this whole sequence of
4191 * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4192 * the core code; instead, the RCU protection relies on everything happening
4193 * inside a single NAPI poll sequence, which means it's between a pair of calls
4194 * to local_bh_disable()/local_bh_enable().
4195 *
4196 * The map entries are marked as __rcu and the map code makes sure to
4197 * dereference those pointers with rcu_dereference_check() in a way that works
4198 * for both sections that to hold an rcu_read_lock() and sections that are
4199 * called from NAPI without a separate rcu_read_lock(). The code below does not
4200 * use RCU annotations, but relies on those in the map code.
4201 */
xdp_do_flush(void)4202 void xdp_do_flush(void)
4203 {
4204 __dev_flush();
4205 __cpu_map_flush();
4206 __xsk_map_flush();
4207 }
4208 EXPORT_SYMBOL_GPL(xdp_do_flush);
4209
bpf_clear_redirect_map(struct bpf_map * map)4210 void bpf_clear_redirect_map(struct bpf_map *map)
4211 {
4212 struct bpf_redirect_info *ri;
4213 int cpu;
4214
4215 for_each_possible_cpu(cpu) {
4216 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4217 /* Avoid polluting remote cacheline due to writes if
4218 * not needed. Once we pass this test, we need the
4219 * cmpxchg() to make sure it hasn't been changed in
4220 * the meantime by remote CPU.
4221 */
4222 if (unlikely(READ_ONCE(ri->map) == map))
4223 cmpxchg(&ri->map, map, NULL);
4224 }
4225 }
4226
4227 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4228 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4229
xdp_master_redirect(struct xdp_buff * xdp)4230 u32 xdp_master_redirect(struct xdp_buff *xdp)
4231 {
4232 struct net_device *master, *slave;
4233 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4234
4235 master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4236 slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4237 if (slave && slave != xdp->rxq->dev) {
4238 /* The target device is different from the receiving device, so
4239 * redirect it to the new device.
4240 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4241 * drivers to unmap the packet from their rx ring.
4242 */
4243 ri->tgt_index = slave->ifindex;
4244 ri->map_id = INT_MAX;
4245 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4246 return XDP_REDIRECT;
4247 }
4248 return XDP_TX;
4249 }
4250 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4251
__xdp_do_redirect_xsk(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4252 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4253 struct net_device *dev,
4254 struct xdp_buff *xdp,
4255 struct bpf_prog *xdp_prog)
4256 {
4257 enum bpf_map_type map_type = ri->map_type;
4258 void *fwd = ri->tgt_value;
4259 u32 map_id = ri->map_id;
4260 int err;
4261
4262 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4263 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4264
4265 err = __xsk_map_redirect(fwd, xdp);
4266 if (unlikely(err))
4267 goto err;
4268
4269 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4270 return 0;
4271 err:
4272 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4273 return err;
4274 }
4275
__xdp_do_redirect_frame(struct bpf_redirect_info * ri,struct net_device * dev,struct xdp_frame * xdpf,struct bpf_prog * xdp_prog)4276 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4277 struct net_device *dev,
4278 struct xdp_frame *xdpf,
4279 struct bpf_prog *xdp_prog)
4280 {
4281 enum bpf_map_type map_type = ri->map_type;
4282 void *fwd = ri->tgt_value;
4283 u32 map_id = ri->map_id;
4284 struct bpf_map *map;
4285 int err;
4286
4287 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4288 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4289
4290 if (unlikely(!xdpf)) {
4291 err = -EOVERFLOW;
4292 goto err;
4293 }
4294
4295 switch (map_type) {
4296 case BPF_MAP_TYPE_DEVMAP:
4297 fallthrough;
4298 case BPF_MAP_TYPE_DEVMAP_HASH:
4299 map = READ_ONCE(ri->map);
4300 if (unlikely(map)) {
4301 WRITE_ONCE(ri->map, NULL);
4302 err = dev_map_enqueue_multi(xdpf, dev, map,
4303 ri->flags & BPF_F_EXCLUDE_INGRESS);
4304 } else {
4305 err = dev_map_enqueue(fwd, xdpf, dev);
4306 }
4307 break;
4308 case BPF_MAP_TYPE_CPUMAP:
4309 err = cpu_map_enqueue(fwd, xdpf, dev);
4310 break;
4311 case BPF_MAP_TYPE_UNSPEC:
4312 if (map_id == INT_MAX) {
4313 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4314 if (unlikely(!fwd)) {
4315 err = -EINVAL;
4316 break;
4317 }
4318 err = dev_xdp_enqueue(fwd, xdpf, dev);
4319 break;
4320 }
4321 fallthrough;
4322 default:
4323 err = -EBADRQC;
4324 }
4325
4326 if (unlikely(err))
4327 goto err;
4328
4329 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4330 return 0;
4331 err:
4332 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4333 return err;
4334 }
4335
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4336 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4337 struct bpf_prog *xdp_prog)
4338 {
4339 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4340 enum bpf_map_type map_type = ri->map_type;
4341
4342 if (map_type == BPF_MAP_TYPE_XSKMAP)
4343 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4344
4345 return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4346 xdp_prog);
4347 }
4348 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4349
xdp_do_redirect_frame(struct net_device * dev,struct xdp_buff * xdp,struct xdp_frame * xdpf,struct bpf_prog * xdp_prog)4350 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4351 struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4352 {
4353 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4354 enum bpf_map_type map_type = ri->map_type;
4355
4356 if (map_type == BPF_MAP_TYPE_XSKMAP)
4357 return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4358
4359 return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4360 }
4361 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4362
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,void * fwd,enum bpf_map_type map_type,u32 map_id)4363 static int xdp_do_generic_redirect_map(struct net_device *dev,
4364 struct sk_buff *skb,
4365 struct xdp_buff *xdp,
4366 struct bpf_prog *xdp_prog,
4367 void *fwd,
4368 enum bpf_map_type map_type, u32 map_id)
4369 {
4370 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4371 struct bpf_map *map;
4372 int err;
4373
4374 switch (map_type) {
4375 case BPF_MAP_TYPE_DEVMAP:
4376 fallthrough;
4377 case BPF_MAP_TYPE_DEVMAP_HASH:
4378 map = READ_ONCE(ri->map);
4379 if (unlikely(map)) {
4380 WRITE_ONCE(ri->map, NULL);
4381 err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4382 ri->flags & BPF_F_EXCLUDE_INGRESS);
4383 } else {
4384 err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4385 }
4386 if (unlikely(err))
4387 goto err;
4388 break;
4389 case BPF_MAP_TYPE_XSKMAP:
4390 err = xsk_generic_rcv(fwd, xdp);
4391 if (err)
4392 goto err;
4393 consume_skb(skb);
4394 break;
4395 case BPF_MAP_TYPE_CPUMAP:
4396 err = cpu_map_generic_redirect(fwd, skb);
4397 if (unlikely(err))
4398 goto err;
4399 break;
4400 default:
4401 err = -EBADRQC;
4402 goto err;
4403 }
4404
4405 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4406 return 0;
4407 err:
4408 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4409 return err;
4410 }
4411
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4412 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4413 struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4414 {
4415 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4416 enum bpf_map_type map_type = ri->map_type;
4417 void *fwd = ri->tgt_value;
4418 u32 map_id = ri->map_id;
4419 int err;
4420
4421 ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4422 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4423
4424 if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4425 fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4426 if (unlikely(!fwd)) {
4427 err = -EINVAL;
4428 goto err;
4429 }
4430
4431 err = xdp_ok_fwd_dev(fwd, skb->len);
4432 if (unlikely(err))
4433 goto err;
4434
4435 skb->dev = fwd;
4436 _trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4437 generic_xdp_tx(skb, xdp_prog);
4438 return 0;
4439 }
4440
4441 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4442 err:
4443 _trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4444 return err;
4445 }
4446
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)4447 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4448 {
4449 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4450
4451 if (unlikely(flags))
4452 return XDP_ABORTED;
4453
4454 /* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4455 * by map_idr) is used for ifindex based XDP redirect.
4456 */
4457 ri->tgt_index = ifindex;
4458 ri->map_id = INT_MAX;
4459 ri->map_type = BPF_MAP_TYPE_UNSPEC;
4460
4461 return XDP_REDIRECT;
4462 }
4463
4464 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4465 .func = bpf_xdp_redirect,
4466 .gpl_only = false,
4467 .ret_type = RET_INTEGER,
4468 .arg1_type = ARG_ANYTHING,
4469 .arg2_type = ARG_ANYTHING,
4470 };
4471
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u64,key,u64,flags)4472 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4473 u64, flags)
4474 {
4475 return map->ops->map_redirect(map, key, flags);
4476 }
4477
4478 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4479 .func = bpf_xdp_redirect_map,
4480 .gpl_only = false,
4481 .ret_type = RET_INTEGER,
4482 .arg1_type = ARG_CONST_MAP_PTR,
4483 .arg2_type = ARG_ANYTHING,
4484 .arg3_type = ARG_ANYTHING,
4485 };
4486
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)4487 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4488 unsigned long off, unsigned long len)
4489 {
4490 void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4491
4492 if (unlikely(!ptr))
4493 return len;
4494 if (ptr != dst_buff)
4495 memcpy(dst_buff, ptr, len);
4496
4497 return 0;
4498 }
4499
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4500 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4501 u64, flags, void *, meta, u64, meta_size)
4502 {
4503 u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4504
4505 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4506 return -EINVAL;
4507 if (unlikely(!skb || skb_size > skb->len))
4508 return -EFAULT;
4509
4510 return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4511 bpf_skb_copy);
4512 }
4513
4514 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4515 .func = bpf_skb_event_output,
4516 .gpl_only = true,
4517 .ret_type = RET_INTEGER,
4518 .arg1_type = ARG_PTR_TO_CTX,
4519 .arg2_type = ARG_CONST_MAP_PTR,
4520 .arg3_type = ARG_ANYTHING,
4521 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4522 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4523 };
4524
4525 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4526
4527 const struct bpf_func_proto bpf_skb_output_proto = {
4528 .func = bpf_skb_event_output,
4529 .gpl_only = true,
4530 .ret_type = RET_INTEGER,
4531 .arg1_type = ARG_PTR_TO_BTF_ID,
4532 .arg1_btf_id = &bpf_skb_output_btf_ids[0],
4533 .arg2_type = ARG_CONST_MAP_PTR,
4534 .arg3_type = ARG_ANYTHING,
4535 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4536 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4537 };
4538
bpf_tunnel_key_af(u64 flags)4539 static unsigned short bpf_tunnel_key_af(u64 flags)
4540 {
4541 return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4542 }
4543
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)4544 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4545 u32, size, u64, flags)
4546 {
4547 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4548 u8 compat[sizeof(struct bpf_tunnel_key)];
4549 void *to_orig = to;
4550 int err;
4551
4552 if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4553 BPF_F_TUNINFO_FLAGS)))) {
4554 err = -EINVAL;
4555 goto err_clear;
4556 }
4557 if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4558 err = -EPROTO;
4559 goto err_clear;
4560 }
4561 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4562 err = -EINVAL;
4563 switch (size) {
4564 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4565 case offsetof(struct bpf_tunnel_key, tunnel_label):
4566 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4567 goto set_compat;
4568 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4569 /* Fixup deprecated structure layouts here, so we have
4570 * a common path later on.
4571 */
4572 if (ip_tunnel_info_af(info) != AF_INET)
4573 goto err_clear;
4574 set_compat:
4575 to = (struct bpf_tunnel_key *)compat;
4576 break;
4577 default:
4578 goto err_clear;
4579 }
4580 }
4581
4582 to->tunnel_id = be64_to_cpu(info->key.tun_id);
4583 to->tunnel_tos = info->key.tos;
4584 to->tunnel_ttl = info->key.ttl;
4585 if (flags & BPF_F_TUNINFO_FLAGS)
4586 to->tunnel_flags = info->key.tun_flags;
4587 else
4588 to->tunnel_ext = 0;
4589
4590 if (flags & BPF_F_TUNINFO_IPV6) {
4591 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4592 sizeof(to->remote_ipv6));
4593 memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4594 sizeof(to->local_ipv6));
4595 to->tunnel_label = be32_to_cpu(info->key.label);
4596 } else {
4597 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4598 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4599 to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4600 memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4601 to->tunnel_label = 0;
4602 }
4603
4604 if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4605 memcpy(to_orig, to, size);
4606
4607 return 0;
4608 err_clear:
4609 memset(to_orig, 0, size);
4610 return err;
4611 }
4612
4613 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4614 .func = bpf_skb_get_tunnel_key,
4615 .gpl_only = false,
4616 .ret_type = RET_INTEGER,
4617 .arg1_type = ARG_PTR_TO_CTX,
4618 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
4619 .arg3_type = ARG_CONST_SIZE,
4620 .arg4_type = ARG_ANYTHING,
4621 };
4622
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)4623 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4624 {
4625 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4626 int err;
4627
4628 if (unlikely(!info ||
4629 !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4630 err = -ENOENT;
4631 goto err_clear;
4632 }
4633 if (unlikely(size < info->options_len)) {
4634 err = -ENOMEM;
4635 goto err_clear;
4636 }
4637
4638 ip_tunnel_info_opts_get(to, info);
4639 if (size > info->options_len)
4640 memset(to + info->options_len, 0, size - info->options_len);
4641
4642 return info->options_len;
4643 err_clear:
4644 memset(to, 0, size);
4645 return err;
4646 }
4647
4648 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4649 .func = bpf_skb_get_tunnel_opt,
4650 .gpl_only = false,
4651 .ret_type = RET_INTEGER,
4652 .arg1_type = ARG_PTR_TO_CTX,
4653 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
4654 .arg3_type = ARG_CONST_SIZE,
4655 };
4656
4657 static struct metadata_dst __percpu *md_dst;
4658
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)4659 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4660 const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4661 {
4662 struct metadata_dst *md = this_cpu_ptr(md_dst);
4663 u8 compat[sizeof(struct bpf_tunnel_key)];
4664 struct ip_tunnel_info *info;
4665
4666 if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4667 BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4668 BPF_F_NO_TUNNEL_KEY)))
4669 return -EINVAL;
4670 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4671 switch (size) {
4672 case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4673 case offsetof(struct bpf_tunnel_key, tunnel_label):
4674 case offsetof(struct bpf_tunnel_key, tunnel_ext):
4675 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4676 /* Fixup deprecated structure layouts here, so we have
4677 * a common path later on.
4678 */
4679 memcpy(compat, from, size);
4680 memset(compat + size, 0, sizeof(compat) - size);
4681 from = (const struct bpf_tunnel_key *) compat;
4682 break;
4683 default:
4684 return -EINVAL;
4685 }
4686 }
4687 if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4688 from->tunnel_ext))
4689 return -EINVAL;
4690
4691 skb_dst_drop(skb);
4692 dst_hold((struct dst_entry *) md);
4693 skb_dst_set(skb, (struct dst_entry *) md);
4694
4695 info = &md->u.tun_info;
4696 memset(info, 0, sizeof(*info));
4697 info->mode = IP_TUNNEL_INFO_TX;
4698
4699 info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4700 if (flags & BPF_F_DONT_FRAGMENT)
4701 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4702 if (flags & BPF_F_ZERO_CSUM_TX)
4703 info->key.tun_flags &= ~TUNNEL_CSUM;
4704 if (flags & BPF_F_SEQ_NUMBER)
4705 info->key.tun_flags |= TUNNEL_SEQ;
4706 if (flags & BPF_F_NO_TUNNEL_KEY)
4707 info->key.tun_flags &= ~TUNNEL_KEY;
4708
4709 info->key.tun_id = cpu_to_be64(from->tunnel_id);
4710 info->key.tos = from->tunnel_tos;
4711 info->key.ttl = from->tunnel_ttl;
4712
4713 if (flags & BPF_F_TUNINFO_IPV6) {
4714 info->mode |= IP_TUNNEL_INFO_IPV6;
4715 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4716 sizeof(from->remote_ipv6));
4717 memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4718 sizeof(from->local_ipv6));
4719 info->key.label = cpu_to_be32(from->tunnel_label) &
4720 IPV6_FLOWLABEL_MASK;
4721 } else {
4722 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4723 info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4724 info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4725 }
4726
4727 return 0;
4728 }
4729
4730 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4731 .func = bpf_skb_set_tunnel_key,
4732 .gpl_only = false,
4733 .ret_type = RET_INTEGER,
4734 .arg1_type = ARG_PTR_TO_CTX,
4735 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4736 .arg3_type = ARG_CONST_SIZE,
4737 .arg4_type = ARG_ANYTHING,
4738 };
4739
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)4740 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4741 const u8 *, from, u32, size)
4742 {
4743 struct ip_tunnel_info *info = skb_tunnel_info(skb);
4744 const struct metadata_dst *md = this_cpu_ptr(md_dst);
4745
4746 if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4747 return -EINVAL;
4748 if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4749 return -ENOMEM;
4750
4751 ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4752
4753 return 0;
4754 }
4755
4756 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4757 .func = bpf_skb_set_tunnel_opt,
4758 .gpl_only = false,
4759 .ret_type = RET_INTEGER,
4760 .arg1_type = ARG_PTR_TO_CTX,
4761 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4762 .arg3_type = ARG_CONST_SIZE,
4763 };
4764
4765 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)4766 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4767 {
4768 if (!md_dst) {
4769 struct metadata_dst __percpu *tmp;
4770
4771 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4772 METADATA_IP_TUNNEL,
4773 GFP_KERNEL);
4774 if (!tmp)
4775 return NULL;
4776 if (cmpxchg(&md_dst, NULL, tmp))
4777 metadata_dst_free_percpu(tmp);
4778 }
4779
4780 switch (which) {
4781 case BPF_FUNC_skb_set_tunnel_key:
4782 return &bpf_skb_set_tunnel_key_proto;
4783 case BPF_FUNC_skb_set_tunnel_opt:
4784 return &bpf_skb_set_tunnel_opt_proto;
4785 default:
4786 return NULL;
4787 }
4788 }
4789
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)4790 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4791 u32, idx)
4792 {
4793 struct bpf_array *array = container_of(map, struct bpf_array, map);
4794 struct cgroup *cgrp;
4795 struct sock *sk;
4796
4797 sk = skb_to_full_sk(skb);
4798 if (!sk || !sk_fullsock(sk))
4799 return -ENOENT;
4800 if (unlikely(idx >= array->map.max_entries))
4801 return -E2BIG;
4802
4803 cgrp = READ_ONCE(array->ptrs[idx]);
4804 if (unlikely(!cgrp))
4805 return -EAGAIN;
4806
4807 return sk_under_cgroup_hierarchy(sk, cgrp);
4808 }
4809
4810 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4811 .func = bpf_skb_under_cgroup,
4812 .gpl_only = false,
4813 .ret_type = RET_INTEGER,
4814 .arg1_type = ARG_PTR_TO_CTX,
4815 .arg2_type = ARG_CONST_MAP_PTR,
4816 .arg3_type = ARG_ANYTHING,
4817 };
4818
4819 #ifdef CONFIG_SOCK_CGROUP_DATA
__bpf_sk_cgroup_id(struct sock * sk)4820 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4821 {
4822 struct cgroup *cgrp;
4823
4824 sk = sk_to_full_sk(sk);
4825 if (!sk || !sk_fullsock(sk))
4826 return 0;
4827
4828 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4829 return cgroup_id(cgrp);
4830 }
4831
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)4832 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4833 {
4834 return __bpf_sk_cgroup_id(skb->sk);
4835 }
4836
4837 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4838 .func = bpf_skb_cgroup_id,
4839 .gpl_only = false,
4840 .ret_type = RET_INTEGER,
4841 .arg1_type = ARG_PTR_TO_CTX,
4842 };
4843
__bpf_sk_ancestor_cgroup_id(struct sock * sk,int ancestor_level)4844 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4845 int ancestor_level)
4846 {
4847 struct cgroup *ancestor;
4848 struct cgroup *cgrp;
4849
4850 sk = sk_to_full_sk(sk);
4851 if (!sk || !sk_fullsock(sk))
4852 return 0;
4853
4854 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4855 ancestor = cgroup_ancestor(cgrp, ancestor_level);
4856 if (!ancestor)
4857 return 0;
4858
4859 return cgroup_id(ancestor);
4860 }
4861
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)4862 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4863 ancestor_level)
4864 {
4865 return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4866 }
4867
4868 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4869 .func = bpf_skb_ancestor_cgroup_id,
4870 .gpl_only = false,
4871 .ret_type = RET_INTEGER,
4872 .arg1_type = ARG_PTR_TO_CTX,
4873 .arg2_type = ARG_ANYTHING,
4874 };
4875
BPF_CALL_1(bpf_sk_cgroup_id,struct sock *,sk)4876 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4877 {
4878 return __bpf_sk_cgroup_id(sk);
4879 }
4880
4881 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4882 .func = bpf_sk_cgroup_id,
4883 .gpl_only = false,
4884 .ret_type = RET_INTEGER,
4885 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4886 };
4887
BPF_CALL_2(bpf_sk_ancestor_cgroup_id,struct sock *,sk,int,ancestor_level)4888 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4889 {
4890 return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4891 }
4892
4893 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4894 .func = bpf_sk_ancestor_cgroup_id,
4895 .gpl_only = false,
4896 .ret_type = RET_INTEGER,
4897 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4898 .arg2_type = ARG_ANYTHING,
4899 };
4900 #endif
4901
bpf_xdp_copy(void * dst,const void * ctx,unsigned long off,unsigned long len)4902 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4903 unsigned long off, unsigned long len)
4904 {
4905 struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4906
4907 bpf_xdp_copy_buf(xdp, off, dst, len, false);
4908 return 0;
4909 }
4910
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)4911 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4912 u64, flags, void *, meta, u64, meta_size)
4913 {
4914 u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4915
4916 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4917 return -EINVAL;
4918
4919 if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4920 return -EFAULT;
4921
4922 return bpf_event_output(map, flags, meta, meta_size, xdp,
4923 xdp_size, bpf_xdp_copy);
4924 }
4925
4926 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4927 .func = bpf_xdp_event_output,
4928 .gpl_only = true,
4929 .ret_type = RET_INTEGER,
4930 .arg1_type = ARG_PTR_TO_CTX,
4931 .arg2_type = ARG_CONST_MAP_PTR,
4932 .arg3_type = ARG_ANYTHING,
4933 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4934 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4935 };
4936
4937 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4938
4939 const struct bpf_func_proto bpf_xdp_output_proto = {
4940 .func = bpf_xdp_event_output,
4941 .gpl_only = true,
4942 .ret_type = RET_INTEGER,
4943 .arg1_type = ARG_PTR_TO_BTF_ID,
4944 .arg1_btf_id = &bpf_xdp_output_btf_ids[0],
4945 .arg2_type = ARG_CONST_MAP_PTR,
4946 .arg3_type = ARG_ANYTHING,
4947 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
4948 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
4949 };
4950
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)4951 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4952 {
4953 return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4954 }
4955
4956 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4957 .func = bpf_get_socket_cookie,
4958 .gpl_only = false,
4959 .ret_type = RET_INTEGER,
4960 .arg1_type = ARG_PTR_TO_CTX,
4961 };
4962
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)4963 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4964 {
4965 return __sock_gen_cookie(ctx->sk);
4966 }
4967
4968 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4969 .func = bpf_get_socket_cookie_sock_addr,
4970 .gpl_only = false,
4971 .ret_type = RET_INTEGER,
4972 .arg1_type = ARG_PTR_TO_CTX,
4973 };
4974
BPF_CALL_1(bpf_get_socket_cookie_sock,struct sock *,ctx)4975 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4976 {
4977 return __sock_gen_cookie(ctx);
4978 }
4979
4980 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4981 .func = bpf_get_socket_cookie_sock,
4982 .gpl_only = false,
4983 .ret_type = RET_INTEGER,
4984 .arg1_type = ARG_PTR_TO_CTX,
4985 };
4986
BPF_CALL_1(bpf_get_socket_ptr_cookie,struct sock *,sk)4987 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4988 {
4989 return sk ? sock_gen_cookie(sk) : 0;
4990 }
4991
4992 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4993 .func = bpf_get_socket_ptr_cookie,
4994 .gpl_only = false,
4995 .ret_type = RET_INTEGER,
4996 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
4997 };
4998
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)4999 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5000 {
5001 return __sock_gen_cookie(ctx->sk);
5002 }
5003
5004 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5005 .func = bpf_get_socket_cookie_sock_ops,
5006 .gpl_only = false,
5007 .ret_type = RET_INTEGER,
5008 .arg1_type = ARG_PTR_TO_CTX,
5009 };
5010
__bpf_get_netns_cookie(struct sock * sk)5011 static u64 __bpf_get_netns_cookie(struct sock *sk)
5012 {
5013 const struct net *net = sk ? sock_net(sk) : &init_net;
5014
5015 return net->net_cookie;
5016 }
5017
BPF_CALL_1(bpf_get_netns_cookie_sock,struct sock *,ctx)5018 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5019 {
5020 return __bpf_get_netns_cookie(ctx);
5021 }
5022
5023 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5024 .func = bpf_get_netns_cookie_sock,
5025 .gpl_only = false,
5026 .ret_type = RET_INTEGER,
5027 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5028 };
5029
BPF_CALL_1(bpf_get_netns_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)5030 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5031 {
5032 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5033 }
5034
5035 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5036 .func = bpf_get_netns_cookie_sock_addr,
5037 .gpl_only = false,
5038 .ret_type = RET_INTEGER,
5039 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5040 };
5041
BPF_CALL_1(bpf_get_netns_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)5042 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5043 {
5044 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5045 }
5046
5047 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5048 .func = bpf_get_netns_cookie_sock_ops,
5049 .gpl_only = false,
5050 .ret_type = RET_INTEGER,
5051 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5052 };
5053
BPF_CALL_1(bpf_get_netns_cookie_sk_msg,struct sk_msg *,ctx)5054 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5055 {
5056 return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5057 }
5058
5059 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5060 .func = bpf_get_netns_cookie_sk_msg,
5061 .gpl_only = false,
5062 .ret_type = RET_INTEGER,
5063 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
5064 };
5065
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)5066 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5067 {
5068 struct sock *sk = sk_to_full_sk(skb->sk);
5069 kuid_t kuid;
5070
5071 if (!sk || !sk_fullsock(sk))
5072 return overflowuid;
5073 kuid = sock_net_uid(sock_net(sk), sk);
5074 return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5075 }
5076
5077 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5078 .func = bpf_get_socket_uid,
5079 .gpl_only = false,
5080 .ret_type = RET_INTEGER,
5081 .arg1_type = ARG_PTR_TO_CTX,
5082 };
5083
sol_socket_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5084 static int sol_socket_sockopt(struct sock *sk, int optname,
5085 char *optval, int *optlen,
5086 bool getopt)
5087 {
5088 switch (optname) {
5089 case SO_REUSEADDR:
5090 case SO_SNDBUF:
5091 case SO_RCVBUF:
5092 case SO_KEEPALIVE:
5093 case SO_PRIORITY:
5094 case SO_REUSEPORT:
5095 case SO_RCVLOWAT:
5096 case SO_MARK:
5097 case SO_MAX_PACING_RATE:
5098 case SO_BINDTOIFINDEX:
5099 case SO_TXREHASH:
5100 if (*optlen != sizeof(int))
5101 return -EINVAL;
5102 break;
5103 case SO_BINDTODEVICE:
5104 break;
5105 default:
5106 return -EINVAL;
5107 }
5108
5109 if (getopt) {
5110 if (optname == SO_BINDTODEVICE)
5111 return -EINVAL;
5112 return sk_getsockopt(sk, SOL_SOCKET, optname,
5113 KERNEL_SOCKPTR(optval),
5114 KERNEL_SOCKPTR(optlen));
5115 }
5116
5117 return sk_setsockopt(sk, SOL_SOCKET, optname,
5118 KERNEL_SOCKPTR(optval), *optlen);
5119 }
5120
bpf_sol_tcp_setsockopt(struct sock * sk,int optname,char * optval,int optlen)5121 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5122 char *optval, int optlen)
5123 {
5124 struct tcp_sock *tp = tcp_sk(sk);
5125 unsigned long timeout;
5126 int val;
5127
5128 if (optlen != sizeof(int))
5129 return -EINVAL;
5130
5131 val = *(int *)optval;
5132
5133 /* Only some options are supported */
5134 switch (optname) {
5135 case TCP_BPF_IW:
5136 if (val <= 0 || tp->data_segs_out > tp->syn_data)
5137 return -EINVAL;
5138 tcp_snd_cwnd_set(tp, val);
5139 break;
5140 case TCP_BPF_SNDCWND_CLAMP:
5141 if (val <= 0)
5142 return -EINVAL;
5143 tp->snd_cwnd_clamp = val;
5144 tp->snd_ssthresh = val;
5145 break;
5146 case TCP_BPF_DELACK_MAX:
5147 timeout = usecs_to_jiffies(val);
5148 if (timeout > TCP_DELACK_MAX ||
5149 timeout < TCP_TIMEOUT_MIN)
5150 return -EINVAL;
5151 inet_csk(sk)->icsk_delack_max = timeout;
5152 break;
5153 case TCP_BPF_RTO_MIN:
5154 timeout = usecs_to_jiffies(val);
5155 if (timeout > TCP_RTO_MIN ||
5156 timeout < TCP_TIMEOUT_MIN)
5157 return -EINVAL;
5158 inet_csk(sk)->icsk_rto_min = timeout;
5159 break;
5160 default:
5161 return -EINVAL;
5162 }
5163
5164 return 0;
5165 }
5166
sol_tcp_sockopt_congestion(struct sock * sk,char * optval,int * optlen,bool getopt)5167 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5168 int *optlen, bool getopt)
5169 {
5170 struct tcp_sock *tp;
5171 int ret;
5172
5173 if (*optlen < 2)
5174 return -EINVAL;
5175
5176 if (getopt) {
5177 if (!inet_csk(sk)->icsk_ca_ops)
5178 return -EINVAL;
5179 /* BPF expects NULL-terminated tcp-cc string */
5180 optval[--(*optlen)] = '\0';
5181 return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5182 KERNEL_SOCKPTR(optval),
5183 KERNEL_SOCKPTR(optlen));
5184 }
5185
5186 /* "cdg" is the only cc that alloc a ptr
5187 * in inet_csk_ca area. The bpf-tcp-cc may
5188 * overwrite this ptr after switching to cdg.
5189 */
5190 if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5191 return -ENOTSUPP;
5192
5193 /* It stops this looping
5194 *
5195 * .init => bpf_setsockopt(tcp_cc) => .init =>
5196 * bpf_setsockopt(tcp_cc)" => .init => ....
5197 *
5198 * The second bpf_setsockopt(tcp_cc) is not allowed
5199 * in order to break the loop when both .init
5200 * are the same bpf prog.
5201 *
5202 * This applies even the second bpf_setsockopt(tcp_cc)
5203 * does not cause a loop. This limits only the first
5204 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5205 * pick a fallback cc (eg. peer does not support ECN)
5206 * and the second '.init' cannot fallback to
5207 * another.
5208 */
5209 tp = tcp_sk(sk);
5210 if (tp->bpf_chg_cc_inprogress)
5211 return -EBUSY;
5212
5213 tp->bpf_chg_cc_inprogress = 1;
5214 ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5215 KERNEL_SOCKPTR(optval), *optlen);
5216 tp->bpf_chg_cc_inprogress = 0;
5217 return ret;
5218 }
5219
sol_tcp_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5220 static int sol_tcp_sockopt(struct sock *sk, int optname,
5221 char *optval, int *optlen,
5222 bool getopt)
5223 {
5224 if (sk->sk_protocol != IPPROTO_TCP)
5225 return -EINVAL;
5226
5227 switch (optname) {
5228 case TCP_NODELAY:
5229 case TCP_MAXSEG:
5230 case TCP_KEEPIDLE:
5231 case TCP_KEEPINTVL:
5232 case TCP_KEEPCNT:
5233 case TCP_SYNCNT:
5234 case TCP_WINDOW_CLAMP:
5235 case TCP_THIN_LINEAR_TIMEOUTS:
5236 case TCP_USER_TIMEOUT:
5237 case TCP_NOTSENT_LOWAT:
5238 case TCP_SAVE_SYN:
5239 if (*optlen != sizeof(int))
5240 return -EINVAL;
5241 break;
5242 case TCP_CONGESTION:
5243 return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5244 case TCP_SAVED_SYN:
5245 if (*optlen < 1)
5246 return -EINVAL;
5247 break;
5248 default:
5249 if (getopt)
5250 return -EINVAL;
5251 return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5252 }
5253
5254 if (getopt) {
5255 if (optname == TCP_SAVED_SYN) {
5256 struct tcp_sock *tp = tcp_sk(sk);
5257
5258 if (!tp->saved_syn ||
5259 *optlen > tcp_saved_syn_len(tp->saved_syn))
5260 return -EINVAL;
5261 memcpy(optval, tp->saved_syn->data, *optlen);
5262 /* It cannot free tp->saved_syn here because it
5263 * does not know if the user space still needs it.
5264 */
5265 return 0;
5266 }
5267
5268 return do_tcp_getsockopt(sk, SOL_TCP, optname,
5269 KERNEL_SOCKPTR(optval),
5270 KERNEL_SOCKPTR(optlen));
5271 }
5272
5273 return do_tcp_setsockopt(sk, SOL_TCP, optname,
5274 KERNEL_SOCKPTR(optval), *optlen);
5275 }
5276
sol_ip_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5277 static int sol_ip_sockopt(struct sock *sk, int optname,
5278 char *optval, int *optlen,
5279 bool getopt)
5280 {
5281 if (sk->sk_family != AF_INET)
5282 return -EINVAL;
5283
5284 switch (optname) {
5285 case IP_TOS:
5286 if (*optlen != sizeof(int))
5287 return -EINVAL;
5288 break;
5289 default:
5290 return -EINVAL;
5291 }
5292
5293 if (getopt)
5294 return do_ip_getsockopt(sk, SOL_IP, optname,
5295 KERNEL_SOCKPTR(optval),
5296 KERNEL_SOCKPTR(optlen));
5297
5298 return do_ip_setsockopt(sk, SOL_IP, optname,
5299 KERNEL_SOCKPTR(optval), *optlen);
5300 }
5301
sol_ipv6_sockopt(struct sock * sk,int optname,char * optval,int * optlen,bool getopt)5302 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5303 char *optval, int *optlen,
5304 bool getopt)
5305 {
5306 if (sk->sk_family != AF_INET6)
5307 return -EINVAL;
5308
5309 switch (optname) {
5310 case IPV6_TCLASS:
5311 case IPV6_AUTOFLOWLABEL:
5312 if (*optlen != sizeof(int))
5313 return -EINVAL;
5314 break;
5315 default:
5316 return -EINVAL;
5317 }
5318
5319 if (getopt)
5320 return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5321 KERNEL_SOCKPTR(optval),
5322 KERNEL_SOCKPTR(optlen));
5323
5324 return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5325 KERNEL_SOCKPTR(optval), *optlen);
5326 }
5327
__bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5328 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5329 char *optval, int optlen)
5330 {
5331 if (!sk_fullsock(sk))
5332 return -EINVAL;
5333
5334 if (level == SOL_SOCKET)
5335 return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5336 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5337 return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5338 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5339 return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5340 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5341 return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5342
5343 return -EINVAL;
5344 }
5345
_bpf_setsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5346 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5347 char *optval, int optlen)
5348 {
5349 if (sk_fullsock(sk))
5350 sock_owned_by_me(sk);
5351 return __bpf_setsockopt(sk, level, optname, optval, optlen);
5352 }
5353
__bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5354 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5355 char *optval, int optlen)
5356 {
5357 int err, saved_optlen = optlen;
5358
5359 if (!sk_fullsock(sk)) {
5360 err = -EINVAL;
5361 goto done;
5362 }
5363
5364 if (level == SOL_SOCKET)
5365 err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5366 else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5367 err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5368 else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5369 err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5370 else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5371 err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5372 else
5373 err = -EINVAL;
5374
5375 done:
5376 if (err)
5377 optlen = 0;
5378 if (optlen < saved_optlen)
5379 memset(optval + optlen, 0, saved_optlen - optlen);
5380 return err;
5381 }
5382
_bpf_getsockopt(struct sock * sk,int level,int optname,char * optval,int optlen)5383 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5384 char *optval, int optlen)
5385 {
5386 if (sk_fullsock(sk))
5387 sock_owned_by_me(sk);
5388 return __bpf_getsockopt(sk, level, optname, optval, optlen);
5389 }
5390
BPF_CALL_5(bpf_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5391 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5392 int, optname, char *, optval, int, optlen)
5393 {
5394 return _bpf_setsockopt(sk, level, optname, optval, optlen);
5395 }
5396
5397 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5398 .func = bpf_sk_setsockopt,
5399 .gpl_only = false,
5400 .ret_type = RET_INTEGER,
5401 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5402 .arg2_type = ARG_ANYTHING,
5403 .arg3_type = ARG_ANYTHING,
5404 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5405 .arg5_type = ARG_CONST_SIZE,
5406 };
5407
BPF_CALL_5(bpf_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5408 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5409 int, optname, char *, optval, int, optlen)
5410 {
5411 return _bpf_getsockopt(sk, level, optname, optval, optlen);
5412 }
5413
5414 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5415 .func = bpf_sk_getsockopt,
5416 .gpl_only = false,
5417 .ret_type = RET_INTEGER,
5418 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5419 .arg2_type = ARG_ANYTHING,
5420 .arg3_type = ARG_ANYTHING,
5421 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5422 .arg5_type = ARG_CONST_SIZE,
5423 };
5424
BPF_CALL_5(bpf_unlocked_sk_setsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5425 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5426 int, optname, char *, optval, int, optlen)
5427 {
5428 return __bpf_setsockopt(sk, level, optname, optval, optlen);
5429 }
5430
5431 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5432 .func = bpf_unlocked_sk_setsockopt,
5433 .gpl_only = false,
5434 .ret_type = RET_INTEGER,
5435 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5436 .arg2_type = ARG_ANYTHING,
5437 .arg3_type = ARG_ANYTHING,
5438 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5439 .arg5_type = ARG_CONST_SIZE,
5440 };
5441
BPF_CALL_5(bpf_unlocked_sk_getsockopt,struct sock *,sk,int,level,int,optname,char *,optval,int,optlen)5442 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5443 int, optname, char *, optval, int, optlen)
5444 {
5445 return __bpf_getsockopt(sk, level, optname, optval, optlen);
5446 }
5447
5448 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5449 .func = bpf_unlocked_sk_getsockopt,
5450 .gpl_only = false,
5451 .ret_type = RET_INTEGER,
5452 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5453 .arg2_type = ARG_ANYTHING,
5454 .arg3_type = ARG_ANYTHING,
5455 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5456 .arg5_type = ARG_CONST_SIZE,
5457 };
5458
BPF_CALL_5(bpf_sock_addr_setsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5459 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5460 int, level, int, optname, char *, optval, int, optlen)
5461 {
5462 return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5463 }
5464
5465 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5466 .func = bpf_sock_addr_setsockopt,
5467 .gpl_only = false,
5468 .ret_type = RET_INTEGER,
5469 .arg1_type = ARG_PTR_TO_CTX,
5470 .arg2_type = ARG_ANYTHING,
5471 .arg3_type = ARG_ANYTHING,
5472 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5473 .arg5_type = ARG_CONST_SIZE,
5474 };
5475
BPF_CALL_5(bpf_sock_addr_getsockopt,struct bpf_sock_addr_kern *,ctx,int,level,int,optname,char *,optval,int,optlen)5476 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5477 int, level, int, optname, char *, optval, int, optlen)
5478 {
5479 return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5480 }
5481
5482 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5483 .func = bpf_sock_addr_getsockopt,
5484 .gpl_only = false,
5485 .ret_type = RET_INTEGER,
5486 .arg1_type = ARG_PTR_TO_CTX,
5487 .arg2_type = ARG_ANYTHING,
5488 .arg3_type = ARG_ANYTHING,
5489 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5490 .arg5_type = ARG_CONST_SIZE,
5491 };
5492
BPF_CALL_5(bpf_sock_ops_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5493 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5494 int, level, int, optname, char *, optval, int, optlen)
5495 {
5496 return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5497 }
5498
5499 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5500 .func = bpf_sock_ops_setsockopt,
5501 .gpl_only = false,
5502 .ret_type = RET_INTEGER,
5503 .arg1_type = ARG_PTR_TO_CTX,
5504 .arg2_type = ARG_ANYTHING,
5505 .arg3_type = ARG_ANYTHING,
5506 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5507 .arg5_type = ARG_CONST_SIZE,
5508 };
5509
bpf_sock_ops_get_syn(struct bpf_sock_ops_kern * bpf_sock,int optname,const u8 ** start)5510 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5511 int optname, const u8 **start)
5512 {
5513 struct sk_buff *syn_skb = bpf_sock->syn_skb;
5514 const u8 *hdr_start;
5515 int ret;
5516
5517 if (syn_skb) {
5518 /* sk is a request_sock here */
5519
5520 if (optname == TCP_BPF_SYN) {
5521 hdr_start = syn_skb->data;
5522 ret = tcp_hdrlen(syn_skb);
5523 } else if (optname == TCP_BPF_SYN_IP) {
5524 hdr_start = skb_network_header(syn_skb);
5525 ret = skb_network_header_len(syn_skb) +
5526 tcp_hdrlen(syn_skb);
5527 } else {
5528 /* optname == TCP_BPF_SYN_MAC */
5529 hdr_start = skb_mac_header(syn_skb);
5530 ret = skb_mac_header_len(syn_skb) +
5531 skb_network_header_len(syn_skb) +
5532 tcp_hdrlen(syn_skb);
5533 }
5534 } else {
5535 struct sock *sk = bpf_sock->sk;
5536 struct saved_syn *saved_syn;
5537
5538 if (sk->sk_state == TCP_NEW_SYN_RECV)
5539 /* synack retransmit. bpf_sock->syn_skb will
5540 * not be available. It has to resort to
5541 * saved_syn (if it is saved).
5542 */
5543 saved_syn = inet_reqsk(sk)->saved_syn;
5544 else
5545 saved_syn = tcp_sk(sk)->saved_syn;
5546
5547 if (!saved_syn)
5548 return -ENOENT;
5549
5550 if (optname == TCP_BPF_SYN) {
5551 hdr_start = saved_syn->data +
5552 saved_syn->mac_hdrlen +
5553 saved_syn->network_hdrlen;
5554 ret = saved_syn->tcp_hdrlen;
5555 } else if (optname == TCP_BPF_SYN_IP) {
5556 hdr_start = saved_syn->data +
5557 saved_syn->mac_hdrlen;
5558 ret = saved_syn->network_hdrlen +
5559 saved_syn->tcp_hdrlen;
5560 } else {
5561 /* optname == TCP_BPF_SYN_MAC */
5562
5563 /* TCP_SAVE_SYN may not have saved the mac hdr */
5564 if (!saved_syn->mac_hdrlen)
5565 return -ENOENT;
5566
5567 hdr_start = saved_syn->data;
5568 ret = saved_syn->mac_hdrlen +
5569 saved_syn->network_hdrlen +
5570 saved_syn->tcp_hdrlen;
5571 }
5572 }
5573
5574 *start = hdr_start;
5575 return ret;
5576 }
5577
BPF_CALL_5(bpf_sock_ops_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)5578 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5579 int, level, int, optname, char *, optval, int, optlen)
5580 {
5581 if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5582 optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5583 int ret, copy_len = 0;
5584 const u8 *start;
5585
5586 ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5587 if (ret > 0) {
5588 copy_len = ret;
5589 if (optlen < copy_len) {
5590 copy_len = optlen;
5591 ret = -ENOSPC;
5592 }
5593
5594 memcpy(optval, start, copy_len);
5595 }
5596
5597 /* Zero out unused buffer at the end */
5598 memset(optval + copy_len, 0, optlen - copy_len);
5599
5600 return ret;
5601 }
5602
5603 return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5604 }
5605
5606 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5607 .func = bpf_sock_ops_getsockopt,
5608 .gpl_only = false,
5609 .ret_type = RET_INTEGER,
5610 .arg1_type = ARG_PTR_TO_CTX,
5611 .arg2_type = ARG_ANYTHING,
5612 .arg3_type = ARG_ANYTHING,
5613 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
5614 .arg5_type = ARG_CONST_SIZE,
5615 };
5616
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)5617 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5618 int, argval)
5619 {
5620 struct sock *sk = bpf_sock->sk;
5621 int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5622
5623 if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5624 return -EINVAL;
5625
5626 tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5627
5628 return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5629 }
5630
5631 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5632 .func = bpf_sock_ops_cb_flags_set,
5633 .gpl_only = false,
5634 .ret_type = RET_INTEGER,
5635 .arg1_type = ARG_PTR_TO_CTX,
5636 .arg2_type = ARG_ANYTHING,
5637 };
5638
5639 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5640 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5641
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)5642 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5643 int, addr_len)
5644 {
5645 #ifdef CONFIG_INET
5646 struct sock *sk = ctx->sk;
5647 u32 flags = BIND_FROM_BPF;
5648 int err;
5649
5650 err = -EINVAL;
5651 if (addr_len < offsetofend(struct sockaddr, sa_family))
5652 return err;
5653 if (addr->sa_family == AF_INET) {
5654 if (addr_len < sizeof(struct sockaddr_in))
5655 return err;
5656 if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5657 flags |= BIND_FORCE_ADDRESS_NO_PORT;
5658 return __inet_bind(sk, addr, addr_len, flags);
5659 #if IS_ENABLED(CONFIG_IPV6)
5660 } else if (addr->sa_family == AF_INET6) {
5661 if (addr_len < SIN6_LEN_RFC2133)
5662 return err;
5663 if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5664 flags |= BIND_FORCE_ADDRESS_NO_PORT;
5665 /* ipv6_bpf_stub cannot be NULL, since it's called from
5666 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5667 */
5668 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5669 #endif /* CONFIG_IPV6 */
5670 }
5671 #endif /* CONFIG_INET */
5672
5673 return -EAFNOSUPPORT;
5674 }
5675
5676 static const struct bpf_func_proto bpf_bind_proto = {
5677 .func = bpf_bind,
5678 .gpl_only = false,
5679 .ret_type = RET_INTEGER,
5680 .arg1_type = ARG_PTR_TO_CTX,
5681 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
5682 .arg3_type = ARG_CONST_SIZE,
5683 };
5684
5685 #ifdef CONFIG_XFRM
5686
5687 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5688 (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5689
5690 struct metadata_dst __percpu *xfrm_bpf_md_dst;
5691 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5692
5693 #endif
5694
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)5695 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5696 struct bpf_xfrm_state *, to, u32, size, u64, flags)
5697 {
5698 const struct sec_path *sp = skb_sec_path(skb);
5699 const struct xfrm_state *x;
5700
5701 if (!sp || unlikely(index >= sp->len || flags))
5702 goto err_clear;
5703
5704 x = sp->xvec[index];
5705
5706 if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5707 goto err_clear;
5708
5709 to->reqid = x->props.reqid;
5710 to->spi = x->id.spi;
5711 to->family = x->props.family;
5712 to->ext = 0;
5713
5714 if (to->family == AF_INET6) {
5715 memcpy(to->remote_ipv6, x->props.saddr.a6,
5716 sizeof(to->remote_ipv6));
5717 } else {
5718 to->remote_ipv4 = x->props.saddr.a4;
5719 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5720 }
5721
5722 return 0;
5723 err_clear:
5724 memset(to, 0, size);
5725 return -EINVAL;
5726 }
5727
5728 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5729 .func = bpf_skb_get_xfrm_state,
5730 .gpl_only = false,
5731 .ret_type = RET_INTEGER,
5732 .arg1_type = ARG_PTR_TO_CTX,
5733 .arg2_type = ARG_ANYTHING,
5734 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
5735 .arg4_type = ARG_CONST_SIZE,
5736 .arg5_type = ARG_ANYTHING,
5737 };
5738 #endif
5739
5740 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,u32 mtu)5741 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5742 {
5743 params->h_vlan_TCI = 0;
5744 params->h_vlan_proto = 0;
5745 if (mtu)
5746 params->mtu_result = mtu; /* union with tot_len */
5747
5748 return 0;
5749 }
5750 #endif
5751
5752 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5753 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5754 u32 flags, bool check_mtu)
5755 {
5756 struct fib_nh_common *nhc;
5757 struct in_device *in_dev;
5758 struct neighbour *neigh;
5759 struct net_device *dev;
5760 struct fib_result res;
5761 struct flowi4 fl4;
5762 u32 mtu = 0;
5763 int err;
5764
5765 dev = dev_get_by_index_rcu(net, params->ifindex);
5766 if (unlikely(!dev))
5767 return -ENODEV;
5768
5769 /* verify forwarding is enabled on this interface */
5770 in_dev = __in_dev_get_rcu(dev);
5771 if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5772 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5773
5774 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5775 fl4.flowi4_iif = 1;
5776 fl4.flowi4_oif = params->ifindex;
5777 } else {
5778 fl4.flowi4_iif = params->ifindex;
5779 fl4.flowi4_oif = 0;
5780 }
5781 fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5782 fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5783 fl4.flowi4_flags = 0;
5784
5785 fl4.flowi4_proto = params->l4_protocol;
5786 fl4.daddr = params->ipv4_dst;
5787 fl4.saddr = params->ipv4_src;
5788 fl4.fl4_sport = params->sport;
5789 fl4.fl4_dport = params->dport;
5790 fl4.flowi4_multipath_hash = 0;
5791
5792 if (flags & BPF_FIB_LOOKUP_DIRECT) {
5793 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5794 struct fib_table *tb;
5795
5796 if (flags & BPF_FIB_LOOKUP_TBID) {
5797 tbid = params->tbid;
5798 /* zero out for vlan output */
5799 params->tbid = 0;
5800 }
5801
5802 tb = fib_get_table(net, tbid);
5803 if (unlikely(!tb))
5804 return BPF_FIB_LKUP_RET_NOT_FWDED;
5805
5806 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5807 } else {
5808 fl4.flowi4_mark = 0;
5809 fl4.flowi4_secid = 0;
5810 fl4.flowi4_tun_key.tun_id = 0;
5811 fl4.flowi4_uid = sock_net_uid(net, NULL);
5812
5813 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5814 }
5815
5816 if (err) {
5817 /* map fib lookup errors to RTN_ type */
5818 if (err == -EINVAL)
5819 return BPF_FIB_LKUP_RET_BLACKHOLE;
5820 if (err == -EHOSTUNREACH)
5821 return BPF_FIB_LKUP_RET_UNREACHABLE;
5822 if (err == -EACCES)
5823 return BPF_FIB_LKUP_RET_PROHIBIT;
5824
5825 return BPF_FIB_LKUP_RET_NOT_FWDED;
5826 }
5827
5828 if (res.type != RTN_UNICAST)
5829 return BPF_FIB_LKUP_RET_NOT_FWDED;
5830
5831 if (fib_info_num_path(res.fi) > 1)
5832 fib_select_path(net, &res, &fl4, NULL);
5833
5834 if (check_mtu) {
5835 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5836 if (params->tot_len > mtu) {
5837 params->mtu_result = mtu; /* union with tot_len */
5838 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5839 }
5840 }
5841
5842 nhc = res.nhc;
5843
5844 /* do not handle lwt encaps right now */
5845 if (nhc->nhc_lwtstate)
5846 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5847
5848 dev = nhc->nhc_dev;
5849
5850 params->rt_metric = res.fi->fib_priority;
5851 params->ifindex = dev->ifindex;
5852
5853 /* xdp and cls_bpf programs are run in RCU-bh so
5854 * rcu_read_lock_bh is not needed here
5855 */
5856 if (likely(nhc->nhc_gw_family != AF_INET6)) {
5857 if (nhc->nhc_gw_family)
5858 params->ipv4_dst = nhc->nhc_gw.ipv4;
5859 } else {
5860 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5861
5862 params->family = AF_INET6;
5863 *dst = nhc->nhc_gw.ipv6;
5864 }
5865
5866 if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5867 goto set_fwd_params;
5868
5869 if (likely(nhc->nhc_gw_family != AF_INET6))
5870 neigh = __ipv4_neigh_lookup_noref(dev,
5871 (__force u32)params->ipv4_dst);
5872 else
5873 neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
5874
5875 if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
5876 return BPF_FIB_LKUP_RET_NO_NEIGH;
5877 memcpy(params->dmac, neigh->ha, ETH_ALEN);
5878 memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5879
5880 set_fwd_params:
5881 return bpf_fib_set_fwd_params(params, mtu);
5882 }
5883 #endif
5884
5885 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)5886 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5887 u32 flags, bool check_mtu)
5888 {
5889 struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5890 struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5891 struct fib6_result res = {};
5892 struct neighbour *neigh;
5893 struct net_device *dev;
5894 struct inet6_dev *idev;
5895 struct flowi6 fl6;
5896 int strict = 0;
5897 int oif, err;
5898 u32 mtu = 0;
5899
5900 /* link local addresses are never forwarded */
5901 if (rt6_need_strict(dst) || rt6_need_strict(src))
5902 return BPF_FIB_LKUP_RET_NOT_FWDED;
5903
5904 dev = dev_get_by_index_rcu(net, params->ifindex);
5905 if (unlikely(!dev))
5906 return -ENODEV;
5907
5908 idev = __in6_dev_get_safely(dev);
5909 if (unlikely(!idev || !idev->cnf.forwarding))
5910 return BPF_FIB_LKUP_RET_FWD_DISABLED;
5911
5912 if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5913 fl6.flowi6_iif = 1;
5914 oif = fl6.flowi6_oif = params->ifindex;
5915 } else {
5916 oif = fl6.flowi6_iif = params->ifindex;
5917 fl6.flowi6_oif = 0;
5918 strict = RT6_LOOKUP_F_HAS_SADDR;
5919 }
5920 fl6.flowlabel = params->flowinfo;
5921 fl6.flowi6_scope = 0;
5922 fl6.flowi6_flags = 0;
5923 fl6.mp_hash = 0;
5924
5925 fl6.flowi6_proto = params->l4_protocol;
5926 fl6.daddr = *dst;
5927 fl6.saddr = *src;
5928 fl6.fl6_sport = params->sport;
5929 fl6.fl6_dport = params->dport;
5930
5931 if (flags & BPF_FIB_LOOKUP_DIRECT) {
5932 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5933 struct fib6_table *tb;
5934
5935 if (flags & BPF_FIB_LOOKUP_TBID) {
5936 tbid = params->tbid;
5937 /* zero out for vlan output */
5938 params->tbid = 0;
5939 }
5940
5941 tb = ipv6_stub->fib6_get_table(net, tbid);
5942 if (unlikely(!tb))
5943 return BPF_FIB_LKUP_RET_NOT_FWDED;
5944
5945 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5946 strict);
5947 } else {
5948 fl6.flowi6_mark = 0;
5949 fl6.flowi6_secid = 0;
5950 fl6.flowi6_tun_key.tun_id = 0;
5951 fl6.flowi6_uid = sock_net_uid(net, NULL);
5952
5953 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5954 }
5955
5956 if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5957 res.f6i == net->ipv6.fib6_null_entry))
5958 return BPF_FIB_LKUP_RET_NOT_FWDED;
5959
5960 switch (res.fib6_type) {
5961 /* only unicast is forwarded */
5962 case RTN_UNICAST:
5963 break;
5964 case RTN_BLACKHOLE:
5965 return BPF_FIB_LKUP_RET_BLACKHOLE;
5966 case RTN_UNREACHABLE:
5967 return BPF_FIB_LKUP_RET_UNREACHABLE;
5968 case RTN_PROHIBIT:
5969 return BPF_FIB_LKUP_RET_PROHIBIT;
5970 default:
5971 return BPF_FIB_LKUP_RET_NOT_FWDED;
5972 }
5973
5974 ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5975 fl6.flowi6_oif != 0, NULL, strict);
5976
5977 if (check_mtu) {
5978 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5979 if (params->tot_len > mtu) {
5980 params->mtu_result = mtu; /* union with tot_len */
5981 return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5982 }
5983 }
5984
5985 if (res.nh->fib_nh_lws)
5986 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5987
5988 if (res.nh->fib_nh_gw_family)
5989 *dst = res.nh->fib_nh_gw6;
5990
5991 dev = res.nh->fib_nh_dev;
5992 params->rt_metric = res.f6i->fib6_metric;
5993 params->ifindex = dev->ifindex;
5994
5995 if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5996 goto set_fwd_params;
5997
5998 /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5999 * not needed here.
6000 */
6001 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
6002 if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6003 return BPF_FIB_LKUP_RET_NO_NEIGH;
6004 memcpy(params->dmac, neigh->ha, ETH_ALEN);
6005 memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6006
6007 set_fwd_params:
6008 return bpf_fib_set_fwd_params(params, mtu);
6009 }
6010 #endif
6011
6012 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6013 BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID)
6014
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)6015 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6016 struct bpf_fib_lookup *, params, int, plen, u32, flags)
6017 {
6018 if (plen < sizeof(*params))
6019 return -EINVAL;
6020
6021 if (flags & ~BPF_FIB_LOOKUP_MASK)
6022 return -EINVAL;
6023
6024 switch (params->family) {
6025 #if IS_ENABLED(CONFIG_INET)
6026 case AF_INET:
6027 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6028 flags, true);
6029 #endif
6030 #if IS_ENABLED(CONFIG_IPV6)
6031 case AF_INET6:
6032 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6033 flags, true);
6034 #endif
6035 }
6036 return -EAFNOSUPPORT;
6037 }
6038
6039 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6040 .func = bpf_xdp_fib_lookup,
6041 .gpl_only = true,
6042 .ret_type = RET_INTEGER,
6043 .arg1_type = ARG_PTR_TO_CTX,
6044 .arg2_type = ARG_PTR_TO_MEM,
6045 .arg3_type = ARG_CONST_SIZE,
6046 .arg4_type = ARG_ANYTHING,
6047 };
6048
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)6049 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6050 struct bpf_fib_lookup *, params, int, plen, u32, flags)
6051 {
6052 struct net *net = dev_net(skb->dev);
6053 int rc = -EAFNOSUPPORT;
6054 bool check_mtu = false;
6055
6056 if (plen < sizeof(*params))
6057 return -EINVAL;
6058
6059 if (flags & ~BPF_FIB_LOOKUP_MASK)
6060 return -EINVAL;
6061
6062 if (params->tot_len)
6063 check_mtu = true;
6064
6065 switch (params->family) {
6066 #if IS_ENABLED(CONFIG_INET)
6067 case AF_INET:
6068 rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6069 break;
6070 #endif
6071 #if IS_ENABLED(CONFIG_IPV6)
6072 case AF_INET6:
6073 rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6074 break;
6075 #endif
6076 }
6077
6078 if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6079 struct net_device *dev;
6080
6081 /* When tot_len isn't provided by user, check skb
6082 * against MTU of FIB lookup resulting net_device
6083 */
6084 dev = dev_get_by_index_rcu(net, params->ifindex);
6085 if (!is_skb_forwardable(dev, skb))
6086 rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6087
6088 params->mtu_result = dev->mtu; /* union with tot_len */
6089 }
6090
6091 return rc;
6092 }
6093
6094 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6095 .func = bpf_skb_fib_lookup,
6096 .gpl_only = true,
6097 .ret_type = RET_INTEGER,
6098 .arg1_type = ARG_PTR_TO_CTX,
6099 .arg2_type = ARG_PTR_TO_MEM,
6100 .arg3_type = ARG_CONST_SIZE,
6101 .arg4_type = ARG_ANYTHING,
6102 };
6103
__dev_via_ifindex(struct net_device * dev_curr,u32 ifindex)6104 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6105 u32 ifindex)
6106 {
6107 struct net *netns = dev_net(dev_curr);
6108
6109 /* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6110 if (ifindex == 0)
6111 return dev_curr;
6112
6113 return dev_get_by_index_rcu(netns, ifindex);
6114 }
6115
BPF_CALL_5(bpf_skb_check_mtu,struct sk_buff *,skb,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6116 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6117 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6118 {
6119 int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6120 struct net_device *dev = skb->dev;
6121 int skb_len, dev_len;
6122 int mtu;
6123
6124 if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6125 return -EINVAL;
6126
6127 if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6128 return -EINVAL;
6129
6130 dev = __dev_via_ifindex(dev, ifindex);
6131 if (unlikely(!dev))
6132 return -ENODEV;
6133
6134 mtu = READ_ONCE(dev->mtu);
6135
6136 dev_len = mtu + dev->hard_header_len;
6137
6138 /* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6139 skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6140
6141 skb_len += len_diff; /* minus result pass check */
6142 if (skb_len <= dev_len) {
6143 ret = BPF_MTU_CHK_RET_SUCCESS;
6144 goto out;
6145 }
6146 /* At this point, skb->len exceed MTU, but as it include length of all
6147 * segments, it can still be below MTU. The SKB can possibly get
6148 * re-segmented in transmit path (see validate_xmit_skb). Thus, user
6149 * must choose if segs are to be MTU checked.
6150 */
6151 if (skb_is_gso(skb)) {
6152 ret = BPF_MTU_CHK_RET_SUCCESS;
6153
6154 if (flags & BPF_MTU_CHK_SEGS &&
6155 !skb_gso_validate_network_len(skb, mtu))
6156 ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6157 }
6158 out:
6159 /* BPF verifier guarantees valid pointer */
6160 *mtu_len = mtu;
6161
6162 return ret;
6163 }
6164
BPF_CALL_5(bpf_xdp_check_mtu,struct xdp_buff *,xdp,u32,ifindex,u32 *,mtu_len,s32,len_diff,u64,flags)6165 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6166 u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6167 {
6168 struct net_device *dev = xdp->rxq->dev;
6169 int xdp_len = xdp->data_end - xdp->data;
6170 int ret = BPF_MTU_CHK_RET_SUCCESS;
6171 int mtu, dev_len;
6172
6173 /* XDP variant doesn't support multi-buffer segment check (yet) */
6174 if (unlikely(flags))
6175 return -EINVAL;
6176
6177 dev = __dev_via_ifindex(dev, ifindex);
6178 if (unlikely(!dev))
6179 return -ENODEV;
6180
6181 mtu = READ_ONCE(dev->mtu);
6182
6183 /* Add L2-header as dev MTU is L3 size */
6184 dev_len = mtu + dev->hard_header_len;
6185
6186 /* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6187 if (*mtu_len)
6188 xdp_len = *mtu_len + dev->hard_header_len;
6189
6190 xdp_len += len_diff; /* minus result pass check */
6191 if (xdp_len > dev_len)
6192 ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6193
6194 /* BPF verifier guarantees valid pointer */
6195 *mtu_len = mtu;
6196
6197 return ret;
6198 }
6199
6200 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6201 .func = bpf_skb_check_mtu,
6202 .gpl_only = true,
6203 .ret_type = RET_INTEGER,
6204 .arg1_type = ARG_PTR_TO_CTX,
6205 .arg2_type = ARG_ANYTHING,
6206 .arg3_type = ARG_PTR_TO_INT,
6207 .arg4_type = ARG_ANYTHING,
6208 .arg5_type = ARG_ANYTHING,
6209 };
6210
6211 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6212 .func = bpf_xdp_check_mtu,
6213 .gpl_only = true,
6214 .ret_type = RET_INTEGER,
6215 .arg1_type = ARG_PTR_TO_CTX,
6216 .arg2_type = ARG_ANYTHING,
6217 .arg3_type = ARG_PTR_TO_INT,
6218 .arg4_type = ARG_ANYTHING,
6219 .arg5_type = ARG_ANYTHING,
6220 };
6221
6222 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)6223 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6224 {
6225 int err;
6226 struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6227
6228 if (!seg6_validate_srh(srh, len, false))
6229 return -EINVAL;
6230
6231 switch (type) {
6232 case BPF_LWT_ENCAP_SEG6_INLINE:
6233 if (skb->protocol != htons(ETH_P_IPV6))
6234 return -EBADMSG;
6235
6236 err = seg6_do_srh_inline(skb, srh);
6237 break;
6238 case BPF_LWT_ENCAP_SEG6:
6239 skb_reset_inner_headers(skb);
6240 skb->encapsulation = 1;
6241 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6242 break;
6243 default:
6244 return -EINVAL;
6245 }
6246
6247 bpf_compute_data_pointers(skb);
6248 if (err)
6249 return err;
6250
6251 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6252
6253 return seg6_lookup_nexthop(skb, NULL, 0);
6254 }
6255 #endif /* CONFIG_IPV6_SEG6_BPF */
6256
6257 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
bpf_push_ip_encap(struct sk_buff * skb,void * hdr,u32 len,bool ingress)6258 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6259 bool ingress)
6260 {
6261 return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6262 }
6263 #endif
6264
BPF_CALL_4(bpf_lwt_in_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6265 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6266 u32, len)
6267 {
6268 switch (type) {
6269 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6270 case BPF_LWT_ENCAP_SEG6:
6271 case BPF_LWT_ENCAP_SEG6_INLINE:
6272 return bpf_push_seg6_encap(skb, type, hdr, len);
6273 #endif
6274 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6275 case BPF_LWT_ENCAP_IP:
6276 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6277 #endif
6278 default:
6279 return -EINVAL;
6280 }
6281 }
6282
BPF_CALL_4(bpf_lwt_xmit_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)6283 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6284 void *, hdr, u32, len)
6285 {
6286 switch (type) {
6287 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6288 case BPF_LWT_ENCAP_IP:
6289 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6290 #endif
6291 default:
6292 return -EINVAL;
6293 }
6294 }
6295
6296 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6297 .func = bpf_lwt_in_push_encap,
6298 .gpl_only = false,
6299 .ret_type = RET_INTEGER,
6300 .arg1_type = ARG_PTR_TO_CTX,
6301 .arg2_type = ARG_ANYTHING,
6302 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6303 .arg4_type = ARG_CONST_SIZE
6304 };
6305
6306 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6307 .func = bpf_lwt_xmit_push_encap,
6308 .gpl_only = false,
6309 .ret_type = RET_INTEGER,
6310 .arg1_type = ARG_PTR_TO_CTX,
6311 .arg2_type = ARG_ANYTHING,
6312 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6313 .arg4_type = ARG_CONST_SIZE
6314 };
6315
6316 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)6317 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6318 const void *, from, u32, len)
6319 {
6320 struct seg6_bpf_srh_state *srh_state =
6321 this_cpu_ptr(&seg6_bpf_srh_states);
6322 struct ipv6_sr_hdr *srh = srh_state->srh;
6323 void *srh_tlvs, *srh_end, *ptr;
6324 int srhoff = 0;
6325
6326 if (srh == NULL)
6327 return -EINVAL;
6328
6329 srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6330 srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6331
6332 ptr = skb->data + offset;
6333 if (ptr >= srh_tlvs && ptr + len <= srh_end)
6334 srh_state->valid = false;
6335 else if (ptr < (void *)&srh->flags ||
6336 ptr + len > (void *)&srh->segments)
6337 return -EFAULT;
6338
6339 if (unlikely(bpf_try_make_writable(skb, offset + len)))
6340 return -EFAULT;
6341 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6342 return -EINVAL;
6343 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6344
6345 memcpy(skb->data + offset, from, len);
6346 return 0;
6347 }
6348
6349 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6350 .func = bpf_lwt_seg6_store_bytes,
6351 .gpl_only = false,
6352 .ret_type = RET_INTEGER,
6353 .arg1_type = ARG_PTR_TO_CTX,
6354 .arg2_type = ARG_ANYTHING,
6355 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6356 .arg4_type = ARG_CONST_SIZE
6357 };
6358
bpf_update_srh_state(struct sk_buff * skb)6359 static void bpf_update_srh_state(struct sk_buff *skb)
6360 {
6361 struct seg6_bpf_srh_state *srh_state =
6362 this_cpu_ptr(&seg6_bpf_srh_states);
6363 int srhoff = 0;
6364
6365 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6366 srh_state->srh = NULL;
6367 } else {
6368 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6369 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6370 srh_state->valid = true;
6371 }
6372 }
6373
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)6374 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6375 u32, action, void *, param, u32, param_len)
6376 {
6377 struct seg6_bpf_srh_state *srh_state =
6378 this_cpu_ptr(&seg6_bpf_srh_states);
6379 int hdroff = 0;
6380 int err;
6381
6382 switch (action) {
6383 case SEG6_LOCAL_ACTION_END_X:
6384 if (!seg6_bpf_has_valid_srh(skb))
6385 return -EBADMSG;
6386 if (param_len != sizeof(struct in6_addr))
6387 return -EINVAL;
6388 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6389 case SEG6_LOCAL_ACTION_END_T:
6390 if (!seg6_bpf_has_valid_srh(skb))
6391 return -EBADMSG;
6392 if (param_len != sizeof(int))
6393 return -EINVAL;
6394 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6395 case SEG6_LOCAL_ACTION_END_DT6:
6396 if (!seg6_bpf_has_valid_srh(skb))
6397 return -EBADMSG;
6398 if (param_len != sizeof(int))
6399 return -EINVAL;
6400
6401 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6402 return -EBADMSG;
6403 if (!pskb_pull(skb, hdroff))
6404 return -EBADMSG;
6405
6406 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6407 skb_reset_network_header(skb);
6408 skb_reset_transport_header(skb);
6409 skb->encapsulation = 0;
6410
6411 bpf_compute_data_pointers(skb);
6412 bpf_update_srh_state(skb);
6413 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6414 case SEG6_LOCAL_ACTION_END_B6:
6415 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6416 return -EBADMSG;
6417 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6418 param, param_len);
6419 if (!err)
6420 bpf_update_srh_state(skb);
6421
6422 return err;
6423 case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6424 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6425 return -EBADMSG;
6426 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6427 param, param_len);
6428 if (!err)
6429 bpf_update_srh_state(skb);
6430
6431 return err;
6432 default:
6433 return -EINVAL;
6434 }
6435 }
6436
6437 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6438 .func = bpf_lwt_seg6_action,
6439 .gpl_only = false,
6440 .ret_type = RET_INTEGER,
6441 .arg1_type = ARG_PTR_TO_CTX,
6442 .arg2_type = ARG_ANYTHING,
6443 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6444 .arg4_type = ARG_CONST_SIZE
6445 };
6446
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)6447 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6448 s32, len)
6449 {
6450 struct seg6_bpf_srh_state *srh_state =
6451 this_cpu_ptr(&seg6_bpf_srh_states);
6452 struct ipv6_sr_hdr *srh = srh_state->srh;
6453 void *srh_end, *srh_tlvs, *ptr;
6454 struct ipv6hdr *hdr;
6455 int srhoff = 0;
6456 int ret;
6457
6458 if (unlikely(srh == NULL))
6459 return -EINVAL;
6460
6461 srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6462 ((srh->first_segment + 1) << 4));
6463 srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6464 srh_state->hdrlen);
6465 ptr = skb->data + offset;
6466
6467 if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6468 return -EFAULT;
6469 if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6470 return -EFAULT;
6471
6472 if (len > 0) {
6473 ret = skb_cow_head(skb, len);
6474 if (unlikely(ret < 0))
6475 return ret;
6476
6477 ret = bpf_skb_net_hdr_push(skb, offset, len);
6478 } else {
6479 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6480 }
6481
6482 bpf_compute_data_pointers(skb);
6483 if (unlikely(ret < 0))
6484 return ret;
6485
6486 hdr = (struct ipv6hdr *)skb->data;
6487 hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6488
6489 if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6490 return -EINVAL;
6491 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6492 srh_state->hdrlen += len;
6493 srh_state->valid = false;
6494 return 0;
6495 }
6496
6497 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6498 .func = bpf_lwt_seg6_adjust_srh,
6499 .gpl_only = false,
6500 .ret_type = RET_INTEGER,
6501 .arg1_type = ARG_PTR_TO_CTX,
6502 .arg2_type = ARG_ANYTHING,
6503 .arg3_type = ARG_ANYTHING,
6504 };
6505 #endif /* CONFIG_IPV6_SEG6_BPF */
6506
6507 #ifdef CONFIG_INET
sk_lookup(struct net * net,struct bpf_sock_tuple * tuple,int dif,int sdif,u8 family,u8 proto)6508 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6509 int dif, int sdif, u8 family, u8 proto)
6510 {
6511 struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6512 bool refcounted = false;
6513 struct sock *sk = NULL;
6514
6515 if (family == AF_INET) {
6516 __be32 src4 = tuple->ipv4.saddr;
6517 __be32 dst4 = tuple->ipv4.daddr;
6518
6519 if (proto == IPPROTO_TCP)
6520 sk = __inet_lookup(net, hinfo, NULL, 0,
6521 src4, tuple->ipv4.sport,
6522 dst4, tuple->ipv4.dport,
6523 dif, sdif, &refcounted);
6524 else
6525 sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6526 dst4, tuple->ipv4.dport,
6527 dif, sdif, net->ipv4.udp_table, NULL);
6528 #if IS_ENABLED(CONFIG_IPV6)
6529 } else {
6530 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6531 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6532
6533 if (proto == IPPROTO_TCP)
6534 sk = __inet6_lookup(net, hinfo, NULL, 0,
6535 src6, tuple->ipv6.sport,
6536 dst6, ntohs(tuple->ipv6.dport),
6537 dif, sdif, &refcounted);
6538 else if (likely(ipv6_bpf_stub))
6539 sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6540 src6, tuple->ipv6.sport,
6541 dst6, tuple->ipv6.dport,
6542 dif, sdif,
6543 net->ipv4.udp_table, NULL);
6544 #endif
6545 }
6546
6547 if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6548 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6549 sk = NULL;
6550 }
6551 return sk;
6552 }
6553
6554 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6555 * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6556 */
6557 static struct sock *
__bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6558 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6559 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6560 u64 flags, int sdif)
6561 {
6562 struct sock *sk = NULL;
6563 struct net *net;
6564 u8 family;
6565
6566 if (len == sizeof(tuple->ipv4))
6567 family = AF_INET;
6568 else if (len == sizeof(tuple->ipv6))
6569 family = AF_INET6;
6570 else
6571 return NULL;
6572
6573 if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6574 goto out;
6575
6576 if (sdif < 0) {
6577 if (family == AF_INET)
6578 sdif = inet_sdif(skb);
6579 else
6580 sdif = inet6_sdif(skb);
6581 }
6582
6583 if ((s32)netns_id < 0) {
6584 net = caller_net;
6585 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6586 } else {
6587 net = get_net_ns_by_id(caller_net, netns_id);
6588 if (unlikely(!net))
6589 goto out;
6590 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6591 put_net(net);
6592 }
6593
6594 out:
6595 return sk;
6596 }
6597
6598 static struct sock *
__bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,struct net * caller_net,u32 ifindex,u8 proto,u64 netns_id,u64 flags,int sdif)6599 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6600 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6601 u64 flags, int sdif)
6602 {
6603 struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6604 ifindex, proto, netns_id, flags,
6605 sdif);
6606
6607 if (sk) {
6608 struct sock *sk2 = sk_to_full_sk(sk);
6609
6610 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6611 * sock refcnt is decremented to prevent a request_sock leak.
6612 */
6613 if (!sk_fullsock(sk2))
6614 sk2 = NULL;
6615 if (sk2 != sk) {
6616 sock_gen_put(sk);
6617 /* Ensure there is no need to bump sk2 refcnt */
6618 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6619 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6620 return NULL;
6621 }
6622 sk = sk2;
6623 }
6624 }
6625
6626 return sk;
6627 }
6628
6629 static struct sock *
bpf_skc_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6630 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6631 u8 proto, u64 netns_id, u64 flags)
6632 {
6633 struct net *caller_net;
6634 int ifindex;
6635
6636 if (skb->dev) {
6637 caller_net = dev_net(skb->dev);
6638 ifindex = skb->dev->ifindex;
6639 } else {
6640 caller_net = sock_net(skb->sk);
6641 ifindex = 0;
6642 }
6643
6644 return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6645 netns_id, flags, -1);
6646 }
6647
6648 static struct sock *
bpf_sk_lookup(struct sk_buff * skb,struct bpf_sock_tuple * tuple,u32 len,u8 proto,u64 netns_id,u64 flags)6649 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6650 u8 proto, u64 netns_id, u64 flags)
6651 {
6652 struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6653 flags);
6654
6655 if (sk) {
6656 struct sock *sk2 = sk_to_full_sk(sk);
6657
6658 /* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6659 * sock refcnt is decremented to prevent a request_sock leak.
6660 */
6661 if (!sk_fullsock(sk2))
6662 sk2 = NULL;
6663 if (sk2 != sk) {
6664 sock_gen_put(sk);
6665 /* Ensure there is no need to bump sk2 refcnt */
6666 if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6667 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6668 return NULL;
6669 }
6670 sk = sk2;
6671 }
6672 }
6673
6674 return sk;
6675 }
6676
BPF_CALL_5(bpf_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6677 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6678 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6679 {
6680 return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6681 netns_id, flags);
6682 }
6683
6684 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6685 .func = bpf_skc_lookup_tcp,
6686 .gpl_only = false,
6687 .pkt_access = true,
6688 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6689 .arg1_type = ARG_PTR_TO_CTX,
6690 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6691 .arg3_type = ARG_CONST_SIZE,
6692 .arg4_type = ARG_ANYTHING,
6693 .arg5_type = ARG_ANYTHING,
6694 };
6695
BPF_CALL_5(bpf_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6696 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6697 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6698 {
6699 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6700 netns_id, flags);
6701 }
6702
6703 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6704 .func = bpf_sk_lookup_tcp,
6705 .gpl_only = false,
6706 .pkt_access = true,
6707 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6708 .arg1_type = ARG_PTR_TO_CTX,
6709 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6710 .arg3_type = ARG_CONST_SIZE,
6711 .arg4_type = ARG_ANYTHING,
6712 .arg5_type = ARG_ANYTHING,
6713 };
6714
BPF_CALL_5(bpf_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6715 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6716 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6717 {
6718 return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6719 netns_id, flags);
6720 }
6721
6722 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6723 .func = bpf_sk_lookup_udp,
6724 .gpl_only = false,
6725 .pkt_access = true,
6726 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6727 .arg1_type = ARG_PTR_TO_CTX,
6728 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6729 .arg3_type = ARG_CONST_SIZE,
6730 .arg4_type = ARG_ANYTHING,
6731 .arg5_type = ARG_ANYTHING,
6732 };
6733
BPF_CALL_5(bpf_tc_skc_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6734 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6735 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6736 {
6737 struct net_device *dev = skb->dev;
6738 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6739 struct net *caller_net = dev_net(dev);
6740
6741 return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
6742 ifindex, IPPROTO_TCP, netns_id,
6743 flags, sdif);
6744 }
6745
6746 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
6747 .func = bpf_tc_skc_lookup_tcp,
6748 .gpl_only = false,
6749 .pkt_access = true,
6750 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6751 .arg1_type = ARG_PTR_TO_CTX,
6752 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6753 .arg3_type = ARG_CONST_SIZE,
6754 .arg4_type = ARG_ANYTHING,
6755 .arg5_type = ARG_ANYTHING,
6756 };
6757
BPF_CALL_5(bpf_tc_sk_lookup_tcp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6758 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
6759 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6760 {
6761 struct net_device *dev = skb->dev;
6762 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6763 struct net *caller_net = dev_net(dev);
6764
6765 return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6766 ifindex, IPPROTO_TCP, netns_id,
6767 flags, sdif);
6768 }
6769
6770 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
6771 .func = bpf_tc_sk_lookup_tcp,
6772 .gpl_only = false,
6773 .pkt_access = true,
6774 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6775 .arg1_type = ARG_PTR_TO_CTX,
6776 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6777 .arg3_type = ARG_CONST_SIZE,
6778 .arg4_type = ARG_ANYTHING,
6779 .arg5_type = ARG_ANYTHING,
6780 };
6781
BPF_CALL_5(bpf_tc_sk_lookup_udp,struct sk_buff *,skb,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6782 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
6783 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6784 {
6785 struct net_device *dev = skb->dev;
6786 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6787 struct net *caller_net = dev_net(dev);
6788
6789 return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6790 ifindex, IPPROTO_UDP, netns_id,
6791 flags, sdif);
6792 }
6793
6794 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
6795 .func = bpf_tc_sk_lookup_udp,
6796 .gpl_only = false,
6797 .pkt_access = true,
6798 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6799 .arg1_type = ARG_PTR_TO_CTX,
6800 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6801 .arg3_type = ARG_CONST_SIZE,
6802 .arg4_type = ARG_ANYTHING,
6803 .arg5_type = ARG_ANYTHING,
6804 };
6805
BPF_CALL_1(bpf_sk_release,struct sock *,sk)6806 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6807 {
6808 if (sk && sk_is_refcounted(sk))
6809 sock_gen_put(sk);
6810 return 0;
6811 }
6812
6813 static const struct bpf_func_proto bpf_sk_release_proto = {
6814 .func = bpf_sk_release,
6815 .gpl_only = false,
6816 .ret_type = RET_INTEGER,
6817 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6818 };
6819
BPF_CALL_5(bpf_xdp_sk_lookup_udp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6820 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6821 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6822 {
6823 struct net_device *dev = ctx->rxq->dev;
6824 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6825 struct net *caller_net = dev_net(dev);
6826
6827 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6828 ifindex, IPPROTO_UDP, netns_id,
6829 flags, sdif);
6830 }
6831
6832 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6833 .func = bpf_xdp_sk_lookup_udp,
6834 .gpl_only = false,
6835 .pkt_access = true,
6836 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6837 .arg1_type = ARG_PTR_TO_CTX,
6838 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6839 .arg3_type = ARG_CONST_SIZE,
6840 .arg4_type = ARG_ANYTHING,
6841 .arg5_type = ARG_ANYTHING,
6842 };
6843
BPF_CALL_5(bpf_xdp_skc_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6844 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6845 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6846 {
6847 struct net_device *dev = ctx->rxq->dev;
6848 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6849 struct net *caller_net = dev_net(dev);
6850
6851 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6852 ifindex, IPPROTO_TCP, netns_id,
6853 flags, sdif);
6854 }
6855
6856 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6857 .func = bpf_xdp_skc_lookup_tcp,
6858 .gpl_only = false,
6859 .pkt_access = true,
6860 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6861 .arg1_type = ARG_PTR_TO_CTX,
6862 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6863 .arg3_type = ARG_CONST_SIZE,
6864 .arg4_type = ARG_ANYTHING,
6865 .arg5_type = ARG_ANYTHING,
6866 };
6867
BPF_CALL_5(bpf_xdp_sk_lookup_tcp,struct xdp_buff *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u32,netns_id,u64,flags)6868 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6869 struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6870 {
6871 struct net_device *dev = ctx->rxq->dev;
6872 int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6873 struct net *caller_net = dev_net(dev);
6874
6875 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6876 ifindex, IPPROTO_TCP, netns_id,
6877 flags, sdif);
6878 }
6879
6880 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6881 .func = bpf_xdp_sk_lookup_tcp,
6882 .gpl_only = false,
6883 .pkt_access = true,
6884 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6885 .arg1_type = ARG_PTR_TO_CTX,
6886 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6887 .arg3_type = ARG_CONST_SIZE,
6888 .arg4_type = ARG_ANYTHING,
6889 .arg5_type = ARG_ANYTHING,
6890 };
6891
BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6892 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6893 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6894 {
6895 return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6896 sock_net(ctx->sk), 0,
6897 IPPROTO_TCP, netns_id, flags,
6898 -1);
6899 }
6900
6901 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6902 .func = bpf_sock_addr_skc_lookup_tcp,
6903 .gpl_only = false,
6904 .ret_type = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6905 .arg1_type = ARG_PTR_TO_CTX,
6906 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6907 .arg3_type = ARG_CONST_SIZE,
6908 .arg4_type = ARG_ANYTHING,
6909 .arg5_type = ARG_ANYTHING,
6910 };
6911
BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6912 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6913 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6914 {
6915 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6916 sock_net(ctx->sk), 0, IPPROTO_TCP,
6917 netns_id, flags, -1);
6918 }
6919
6920 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6921 .func = bpf_sock_addr_sk_lookup_tcp,
6922 .gpl_only = false,
6923 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6924 .arg1_type = ARG_PTR_TO_CTX,
6925 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6926 .arg3_type = ARG_CONST_SIZE,
6927 .arg4_type = ARG_ANYTHING,
6928 .arg5_type = ARG_ANYTHING,
6929 };
6930
BPF_CALL_5(bpf_sock_addr_sk_lookup_udp,struct bpf_sock_addr_kern *,ctx,struct bpf_sock_tuple *,tuple,u32,len,u64,netns_id,u64,flags)6931 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6932 struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6933 {
6934 return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6935 sock_net(ctx->sk), 0, IPPROTO_UDP,
6936 netns_id, flags, -1);
6937 }
6938
6939 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6940 .func = bpf_sock_addr_sk_lookup_udp,
6941 .gpl_only = false,
6942 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
6943 .arg1_type = ARG_PTR_TO_CTX,
6944 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
6945 .arg3_type = ARG_CONST_SIZE,
6946 .arg4_type = ARG_ANYTHING,
6947 .arg5_type = ARG_ANYTHING,
6948 };
6949
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)6950 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6951 struct bpf_insn_access_aux *info)
6952 {
6953 if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6954 icsk_retransmits))
6955 return false;
6956
6957 if (off % size != 0)
6958 return false;
6959
6960 switch (off) {
6961 case offsetof(struct bpf_tcp_sock, bytes_received):
6962 case offsetof(struct bpf_tcp_sock, bytes_acked):
6963 return size == sizeof(__u64);
6964 default:
6965 return size == sizeof(__u32);
6966 }
6967 }
6968
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6969 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6970 const struct bpf_insn *si,
6971 struct bpf_insn *insn_buf,
6972 struct bpf_prog *prog, u32 *target_size)
6973 {
6974 struct bpf_insn *insn = insn_buf;
6975
6976 #define BPF_TCP_SOCK_GET_COMMON(FIELD) \
6977 do { \
6978 BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) > \
6979 sizeof_field(struct bpf_tcp_sock, FIELD)); \
6980 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6981 si->dst_reg, si->src_reg, \
6982 offsetof(struct tcp_sock, FIELD)); \
6983 } while (0)
6984
6985 #define BPF_INET_SOCK_GET_COMMON(FIELD) \
6986 do { \
6987 BUILD_BUG_ON(sizeof_field(struct inet_connection_sock, \
6988 FIELD) > \
6989 sizeof_field(struct bpf_tcp_sock, FIELD)); \
6990 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
6991 struct inet_connection_sock, \
6992 FIELD), \
6993 si->dst_reg, si->src_reg, \
6994 offsetof( \
6995 struct inet_connection_sock, \
6996 FIELD)); \
6997 } while (0)
6998
6999 BTF_TYPE_EMIT(struct bpf_tcp_sock);
7000
7001 switch (si->off) {
7002 case offsetof(struct bpf_tcp_sock, rtt_min):
7003 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7004 sizeof(struct minmax));
7005 BUILD_BUG_ON(sizeof(struct minmax) <
7006 sizeof(struct minmax_sample));
7007
7008 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7009 offsetof(struct tcp_sock, rtt_min) +
7010 offsetof(struct minmax_sample, v));
7011 break;
7012 case offsetof(struct bpf_tcp_sock, snd_cwnd):
7013 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7014 break;
7015 case offsetof(struct bpf_tcp_sock, srtt_us):
7016 BPF_TCP_SOCK_GET_COMMON(srtt_us);
7017 break;
7018 case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7019 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7020 break;
7021 case offsetof(struct bpf_tcp_sock, rcv_nxt):
7022 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7023 break;
7024 case offsetof(struct bpf_tcp_sock, snd_nxt):
7025 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7026 break;
7027 case offsetof(struct bpf_tcp_sock, snd_una):
7028 BPF_TCP_SOCK_GET_COMMON(snd_una);
7029 break;
7030 case offsetof(struct bpf_tcp_sock, mss_cache):
7031 BPF_TCP_SOCK_GET_COMMON(mss_cache);
7032 break;
7033 case offsetof(struct bpf_tcp_sock, ecn_flags):
7034 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7035 break;
7036 case offsetof(struct bpf_tcp_sock, rate_delivered):
7037 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7038 break;
7039 case offsetof(struct bpf_tcp_sock, rate_interval_us):
7040 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7041 break;
7042 case offsetof(struct bpf_tcp_sock, packets_out):
7043 BPF_TCP_SOCK_GET_COMMON(packets_out);
7044 break;
7045 case offsetof(struct bpf_tcp_sock, retrans_out):
7046 BPF_TCP_SOCK_GET_COMMON(retrans_out);
7047 break;
7048 case offsetof(struct bpf_tcp_sock, total_retrans):
7049 BPF_TCP_SOCK_GET_COMMON(total_retrans);
7050 break;
7051 case offsetof(struct bpf_tcp_sock, segs_in):
7052 BPF_TCP_SOCK_GET_COMMON(segs_in);
7053 break;
7054 case offsetof(struct bpf_tcp_sock, data_segs_in):
7055 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7056 break;
7057 case offsetof(struct bpf_tcp_sock, segs_out):
7058 BPF_TCP_SOCK_GET_COMMON(segs_out);
7059 break;
7060 case offsetof(struct bpf_tcp_sock, data_segs_out):
7061 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7062 break;
7063 case offsetof(struct bpf_tcp_sock, lost_out):
7064 BPF_TCP_SOCK_GET_COMMON(lost_out);
7065 break;
7066 case offsetof(struct bpf_tcp_sock, sacked_out):
7067 BPF_TCP_SOCK_GET_COMMON(sacked_out);
7068 break;
7069 case offsetof(struct bpf_tcp_sock, bytes_received):
7070 BPF_TCP_SOCK_GET_COMMON(bytes_received);
7071 break;
7072 case offsetof(struct bpf_tcp_sock, bytes_acked):
7073 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7074 break;
7075 case offsetof(struct bpf_tcp_sock, dsack_dups):
7076 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7077 break;
7078 case offsetof(struct bpf_tcp_sock, delivered):
7079 BPF_TCP_SOCK_GET_COMMON(delivered);
7080 break;
7081 case offsetof(struct bpf_tcp_sock, delivered_ce):
7082 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7083 break;
7084 case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7085 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7086 break;
7087 }
7088
7089 return insn - insn_buf;
7090 }
7091
BPF_CALL_1(bpf_tcp_sock,struct sock *,sk)7092 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7093 {
7094 if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7095 return (unsigned long)sk;
7096
7097 return (unsigned long)NULL;
7098 }
7099
7100 const struct bpf_func_proto bpf_tcp_sock_proto = {
7101 .func = bpf_tcp_sock,
7102 .gpl_only = false,
7103 .ret_type = RET_PTR_TO_TCP_SOCK_OR_NULL,
7104 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
7105 };
7106
BPF_CALL_1(bpf_get_listener_sock,struct sock *,sk)7107 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7108 {
7109 sk = sk_to_full_sk(sk);
7110
7111 if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7112 return (unsigned long)sk;
7113
7114 return (unsigned long)NULL;
7115 }
7116
7117 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7118 .func = bpf_get_listener_sock,
7119 .gpl_only = false,
7120 .ret_type = RET_PTR_TO_SOCKET_OR_NULL,
7121 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
7122 };
7123
BPF_CALL_1(bpf_skb_ecn_set_ce,struct sk_buff *,skb)7124 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7125 {
7126 unsigned int iphdr_len;
7127
7128 switch (skb_protocol(skb, true)) {
7129 case cpu_to_be16(ETH_P_IP):
7130 iphdr_len = sizeof(struct iphdr);
7131 break;
7132 case cpu_to_be16(ETH_P_IPV6):
7133 iphdr_len = sizeof(struct ipv6hdr);
7134 break;
7135 default:
7136 return 0;
7137 }
7138
7139 if (skb_headlen(skb) < iphdr_len)
7140 return 0;
7141
7142 if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7143 return 0;
7144
7145 return INET_ECN_set_ce(skb);
7146 }
7147
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)7148 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7149 struct bpf_insn_access_aux *info)
7150 {
7151 if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7152 return false;
7153
7154 if (off % size != 0)
7155 return false;
7156
7157 switch (off) {
7158 default:
7159 return size == sizeof(__u32);
7160 }
7161 }
7162
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7163 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7164 const struct bpf_insn *si,
7165 struct bpf_insn *insn_buf,
7166 struct bpf_prog *prog, u32 *target_size)
7167 {
7168 struct bpf_insn *insn = insn_buf;
7169
7170 #define BPF_XDP_SOCK_GET(FIELD) \
7171 do { \
7172 BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) > \
7173 sizeof_field(struct bpf_xdp_sock, FIELD)); \
7174 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7175 si->dst_reg, si->src_reg, \
7176 offsetof(struct xdp_sock, FIELD)); \
7177 } while (0)
7178
7179 switch (si->off) {
7180 case offsetof(struct bpf_xdp_sock, queue_id):
7181 BPF_XDP_SOCK_GET(queue_id);
7182 break;
7183 }
7184
7185 return insn - insn_buf;
7186 }
7187
7188 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7189 .func = bpf_skb_ecn_set_ce,
7190 .gpl_only = false,
7191 .ret_type = RET_INTEGER,
7192 .arg1_type = ARG_PTR_TO_CTX,
7193 };
7194
BPF_CALL_5(bpf_tcp_check_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7195 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7196 struct tcphdr *, th, u32, th_len)
7197 {
7198 #ifdef CONFIG_SYN_COOKIES
7199 u32 cookie;
7200 int ret;
7201
7202 if (unlikely(!sk || th_len < sizeof(*th)))
7203 return -EINVAL;
7204
7205 /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7206 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7207 return -EINVAL;
7208
7209 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7210 return -EINVAL;
7211
7212 if (!th->ack || th->rst || th->syn)
7213 return -ENOENT;
7214
7215 if (unlikely(iph_len < sizeof(struct iphdr)))
7216 return -EINVAL;
7217
7218 if (tcp_synq_no_recent_overflow(sk))
7219 return -ENOENT;
7220
7221 cookie = ntohl(th->ack_seq) - 1;
7222
7223 /* Both struct iphdr and struct ipv6hdr have the version field at the
7224 * same offset so we can cast to the shorter header (struct iphdr).
7225 */
7226 switch (((struct iphdr *)iph)->version) {
7227 case 4:
7228 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7229 return -EINVAL;
7230
7231 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7232 break;
7233
7234 #if IS_BUILTIN(CONFIG_IPV6)
7235 case 6:
7236 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7237 return -EINVAL;
7238
7239 if (sk->sk_family != AF_INET6)
7240 return -EINVAL;
7241
7242 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7243 break;
7244 #endif /* CONFIG_IPV6 */
7245
7246 default:
7247 return -EPROTONOSUPPORT;
7248 }
7249
7250 if (ret > 0)
7251 return 0;
7252
7253 return -ENOENT;
7254 #else
7255 return -ENOTSUPP;
7256 #endif
7257 }
7258
7259 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7260 .func = bpf_tcp_check_syncookie,
7261 .gpl_only = true,
7262 .pkt_access = true,
7263 .ret_type = RET_INTEGER,
7264 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7265 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7266 .arg3_type = ARG_CONST_SIZE,
7267 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7268 .arg5_type = ARG_CONST_SIZE,
7269 };
7270
BPF_CALL_5(bpf_tcp_gen_syncookie,struct sock *,sk,void *,iph,u32,iph_len,struct tcphdr *,th,u32,th_len)7271 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7272 struct tcphdr *, th, u32, th_len)
7273 {
7274 #ifdef CONFIG_SYN_COOKIES
7275 u32 cookie;
7276 u16 mss;
7277
7278 if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7279 return -EINVAL;
7280
7281 if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7282 return -EINVAL;
7283
7284 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7285 return -ENOENT;
7286
7287 if (!th->syn || th->ack || th->fin || th->rst)
7288 return -EINVAL;
7289
7290 if (unlikely(iph_len < sizeof(struct iphdr)))
7291 return -EINVAL;
7292
7293 /* Both struct iphdr and struct ipv6hdr have the version field at the
7294 * same offset so we can cast to the shorter header (struct iphdr).
7295 */
7296 switch (((struct iphdr *)iph)->version) {
7297 case 4:
7298 if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7299 return -EINVAL;
7300
7301 mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7302 break;
7303
7304 #if IS_BUILTIN(CONFIG_IPV6)
7305 case 6:
7306 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7307 return -EINVAL;
7308
7309 if (sk->sk_family != AF_INET6)
7310 return -EINVAL;
7311
7312 mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7313 break;
7314 #endif /* CONFIG_IPV6 */
7315
7316 default:
7317 return -EPROTONOSUPPORT;
7318 }
7319 if (mss == 0)
7320 return -ENOENT;
7321
7322 return cookie | ((u64)mss << 32);
7323 #else
7324 return -EOPNOTSUPP;
7325 #endif /* CONFIG_SYN_COOKIES */
7326 }
7327
7328 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7329 .func = bpf_tcp_gen_syncookie,
7330 .gpl_only = true, /* __cookie_v*_init_sequence() is GPL */
7331 .pkt_access = true,
7332 .ret_type = RET_INTEGER,
7333 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7334 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7335 .arg3_type = ARG_CONST_SIZE,
7336 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7337 .arg5_type = ARG_CONST_SIZE,
7338 };
7339
BPF_CALL_3(bpf_sk_assign,struct sk_buff *,skb,struct sock *,sk,u64,flags)7340 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7341 {
7342 if (!sk || flags != 0)
7343 return -EINVAL;
7344 if (!skb_at_tc_ingress(skb))
7345 return -EOPNOTSUPP;
7346 if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7347 return -ENETUNREACH;
7348 if (sk_unhashed(sk))
7349 return -EOPNOTSUPP;
7350 if (sk_is_refcounted(sk) &&
7351 unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7352 return -ENOENT;
7353
7354 skb_orphan(skb);
7355 skb->sk = sk;
7356 skb->destructor = sock_pfree;
7357
7358 return 0;
7359 }
7360
7361 static const struct bpf_func_proto bpf_sk_assign_proto = {
7362 .func = bpf_sk_assign,
7363 .gpl_only = false,
7364 .ret_type = RET_INTEGER,
7365 .arg1_type = ARG_PTR_TO_CTX,
7366 .arg2_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7367 .arg3_type = ARG_ANYTHING,
7368 };
7369
bpf_search_tcp_opt(const u8 * op,const u8 * opend,u8 search_kind,const u8 * magic,u8 magic_len,bool * eol)7370 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7371 u8 search_kind, const u8 *magic,
7372 u8 magic_len, bool *eol)
7373 {
7374 u8 kind, kind_len;
7375
7376 *eol = false;
7377
7378 while (op < opend) {
7379 kind = op[0];
7380
7381 if (kind == TCPOPT_EOL) {
7382 *eol = true;
7383 return ERR_PTR(-ENOMSG);
7384 } else if (kind == TCPOPT_NOP) {
7385 op++;
7386 continue;
7387 }
7388
7389 if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7390 /* Something is wrong in the received header.
7391 * Follow the TCP stack's tcp_parse_options()
7392 * and just bail here.
7393 */
7394 return ERR_PTR(-EFAULT);
7395
7396 kind_len = op[1];
7397 if (search_kind == kind) {
7398 if (!magic_len)
7399 return op;
7400
7401 if (magic_len > kind_len - 2)
7402 return ERR_PTR(-ENOMSG);
7403
7404 if (!memcmp(&op[2], magic, magic_len))
7405 return op;
7406 }
7407
7408 op += kind_len;
7409 }
7410
7411 return ERR_PTR(-ENOMSG);
7412 }
7413
BPF_CALL_4(bpf_sock_ops_load_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,void *,search_res,u32,len,u64,flags)7414 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7415 void *, search_res, u32, len, u64, flags)
7416 {
7417 bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7418 const u8 *op, *opend, *magic, *search = search_res;
7419 u8 search_kind, search_len, copy_len, magic_len;
7420 int ret;
7421
7422 /* 2 byte is the minimal option len except TCPOPT_NOP and
7423 * TCPOPT_EOL which are useless for the bpf prog to learn
7424 * and this helper disallow loading them also.
7425 */
7426 if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7427 return -EINVAL;
7428
7429 search_kind = search[0];
7430 search_len = search[1];
7431
7432 if (search_len > len || search_kind == TCPOPT_NOP ||
7433 search_kind == TCPOPT_EOL)
7434 return -EINVAL;
7435
7436 if (search_kind == TCPOPT_EXP || search_kind == 253) {
7437 /* 16 or 32 bit magic. +2 for kind and kind length */
7438 if (search_len != 4 && search_len != 6)
7439 return -EINVAL;
7440 magic = &search[2];
7441 magic_len = search_len - 2;
7442 } else {
7443 if (search_len)
7444 return -EINVAL;
7445 magic = NULL;
7446 magic_len = 0;
7447 }
7448
7449 if (load_syn) {
7450 ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7451 if (ret < 0)
7452 return ret;
7453
7454 opend = op + ret;
7455 op += sizeof(struct tcphdr);
7456 } else {
7457 if (!bpf_sock->skb ||
7458 bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7459 /* This bpf_sock->op cannot call this helper */
7460 return -EPERM;
7461
7462 opend = bpf_sock->skb_data_end;
7463 op = bpf_sock->skb->data + sizeof(struct tcphdr);
7464 }
7465
7466 op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7467 &eol);
7468 if (IS_ERR(op))
7469 return PTR_ERR(op);
7470
7471 copy_len = op[1];
7472 ret = copy_len;
7473 if (copy_len > len) {
7474 ret = -ENOSPC;
7475 copy_len = len;
7476 }
7477
7478 memcpy(search_res, op, copy_len);
7479 return ret;
7480 }
7481
7482 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7483 .func = bpf_sock_ops_load_hdr_opt,
7484 .gpl_only = false,
7485 .ret_type = RET_INTEGER,
7486 .arg1_type = ARG_PTR_TO_CTX,
7487 .arg2_type = ARG_PTR_TO_MEM,
7488 .arg3_type = ARG_CONST_SIZE,
7489 .arg4_type = ARG_ANYTHING,
7490 };
7491
BPF_CALL_4(bpf_sock_ops_store_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,const void *,from,u32,len,u64,flags)7492 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7493 const void *, from, u32, len, u64, flags)
7494 {
7495 u8 new_kind, new_kind_len, magic_len = 0, *opend;
7496 const u8 *op, *new_op, *magic = NULL;
7497 struct sk_buff *skb;
7498 bool eol;
7499
7500 if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7501 return -EPERM;
7502
7503 if (len < 2 || flags)
7504 return -EINVAL;
7505
7506 new_op = from;
7507 new_kind = new_op[0];
7508 new_kind_len = new_op[1];
7509
7510 if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7511 new_kind == TCPOPT_EOL)
7512 return -EINVAL;
7513
7514 if (new_kind_len > bpf_sock->remaining_opt_len)
7515 return -ENOSPC;
7516
7517 /* 253 is another experimental kind */
7518 if (new_kind == TCPOPT_EXP || new_kind == 253) {
7519 if (new_kind_len < 4)
7520 return -EINVAL;
7521 /* Match for the 2 byte magic also.
7522 * RFC 6994: the magic could be 2 or 4 bytes.
7523 * Hence, matching by 2 byte only is on the
7524 * conservative side but it is the right
7525 * thing to do for the 'search-for-duplication'
7526 * purpose.
7527 */
7528 magic = &new_op[2];
7529 magic_len = 2;
7530 }
7531
7532 /* Check for duplication */
7533 skb = bpf_sock->skb;
7534 op = skb->data + sizeof(struct tcphdr);
7535 opend = bpf_sock->skb_data_end;
7536
7537 op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7538 &eol);
7539 if (!IS_ERR(op))
7540 return -EEXIST;
7541
7542 if (PTR_ERR(op) != -ENOMSG)
7543 return PTR_ERR(op);
7544
7545 if (eol)
7546 /* The option has been ended. Treat it as no more
7547 * header option can be written.
7548 */
7549 return -ENOSPC;
7550
7551 /* No duplication found. Store the header option. */
7552 memcpy(opend, from, new_kind_len);
7553
7554 bpf_sock->remaining_opt_len -= new_kind_len;
7555 bpf_sock->skb_data_end += new_kind_len;
7556
7557 return 0;
7558 }
7559
7560 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7561 .func = bpf_sock_ops_store_hdr_opt,
7562 .gpl_only = false,
7563 .ret_type = RET_INTEGER,
7564 .arg1_type = ARG_PTR_TO_CTX,
7565 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7566 .arg3_type = ARG_CONST_SIZE,
7567 .arg4_type = ARG_ANYTHING,
7568 };
7569
BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt,struct bpf_sock_ops_kern *,bpf_sock,u32,len,u64,flags)7570 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7571 u32, len, u64, flags)
7572 {
7573 if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7574 return -EPERM;
7575
7576 if (flags || len < 2)
7577 return -EINVAL;
7578
7579 if (len > bpf_sock->remaining_opt_len)
7580 return -ENOSPC;
7581
7582 bpf_sock->remaining_opt_len -= len;
7583
7584 return 0;
7585 }
7586
7587 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7588 .func = bpf_sock_ops_reserve_hdr_opt,
7589 .gpl_only = false,
7590 .ret_type = RET_INTEGER,
7591 .arg1_type = ARG_PTR_TO_CTX,
7592 .arg2_type = ARG_ANYTHING,
7593 .arg3_type = ARG_ANYTHING,
7594 };
7595
BPF_CALL_3(bpf_skb_set_tstamp,struct sk_buff *,skb,u64,tstamp,u32,tstamp_type)7596 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7597 u64, tstamp, u32, tstamp_type)
7598 {
7599 /* skb_clear_delivery_time() is done for inet protocol */
7600 if (skb->protocol != htons(ETH_P_IP) &&
7601 skb->protocol != htons(ETH_P_IPV6))
7602 return -EOPNOTSUPP;
7603
7604 switch (tstamp_type) {
7605 case BPF_SKB_TSTAMP_DELIVERY_MONO:
7606 if (!tstamp)
7607 return -EINVAL;
7608 skb->tstamp = tstamp;
7609 skb->mono_delivery_time = 1;
7610 break;
7611 case BPF_SKB_TSTAMP_UNSPEC:
7612 if (tstamp)
7613 return -EINVAL;
7614 skb->tstamp = 0;
7615 skb->mono_delivery_time = 0;
7616 break;
7617 default:
7618 return -EINVAL;
7619 }
7620
7621 return 0;
7622 }
7623
7624 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7625 .func = bpf_skb_set_tstamp,
7626 .gpl_only = false,
7627 .ret_type = RET_INTEGER,
7628 .arg1_type = ARG_PTR_TO_CTX,
7629 .arg2_type = ARG_ANYTHING,
7630 .arg3_type = ARG_ANYTHING,
7631 };
7632
7633 #ifdef CONFIG_SYN_COOKIES
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th,u32,th_len)7634 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7635 struct tcphdr *, th, u32, th_len)
7636 {
7637 u32 cookie;
7638 u16 mss;
7639
7640 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7641 return -EINVAL;
7642
7643 mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7644 cookie = __cookie_v4_init_sequence(iph, th, &mss);
7645
7646 return cookie | ((u64)mss << 32);
7647 }
7648
7649 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7650 .func = bpf_tcp_raw_gen_syncookie_ipv4,
7651 .gpl_only = true, /* __cookie_v4_init_sequence() is GPL */
7652 .pkt_access = true,
7653 .ret_type = RET_INTEGER,
7654 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7655 .arg1_size = sizeof(struct iphdr),
7656 .arg2_type = ARG_PTR_TO_MEM,
7657 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7658 };
7659
BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th,u32,th_len)7660 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7661 struct tcphdr *, th, u32, th_len)
7662 {
7663 #if IS_BUILTIN(CONFIG_IPV6)
7664 const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7665 sizeof(struct ipv6hdr);
7666 u32 cookie;
7667 u16 mss;
7668
7669 if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7670 return -EINVAL;
7671
7672 mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7673 cookie = __cookie_v6_init_sequence(iph, th, &mss);
7674
7675 return cookie | ((u64)mss << 32);
7676 #else
7677 return -EPROTONOSUPPORT;
7678 #endif
7679 }
7680
7681 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7682 .func = bpf_tcp_raw_gen_syncookie_ipv6,
7683 .gpl_only = true, /* __cookie_v6_init_sequence() is GPL */
7684 .pkt_access = true,
7685 .ret_type = RET_INTEGER,
7686 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7687 .arg1_size = sizeof(struct ipv6hdr),
7688 .arg2_type = ARG_PTR_TO_MEM,
7689 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
7690 };
7691
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4,struct iphdr *,iph,struct tcphdr *,th)7692 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7693 struct tcphdr *, th)
7694 {
7695 u32 cookie = ntohl(th->ack_seq) - 1;
7696
7697 if (__cookie_v4_check(iph, th, cookie) > 0)
7698 return 0;
7699
7700 return -EACCES;
7701 }
7702
7703 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7704 .func = bpf_tcp_raw_check_syncookie_ipv4,
7705 .gpl_only = true, /* __cookie_v4_check is GPL */
7706 .pkt_access = true,
7707 .ret_type = RET_INTEGER,
7708 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7709 .arg1_size = sizeof(struct iphdr),
7710 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7711 .arg2_size = sizeof(struct tcphdr),
7712 };
7713
BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6,struct ipv6hdr *,iph,struct tcphdr *,th)7714 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7715 struct tcphdr *, th)
7716 {
7717 #if IS_BUILTIN(CONFIG_IPV6)
7718 u32 cookie = ntohl(th->ack_seq) - 1;
7719
7720 if (__cookie_v6_check(iph, th, cookie) > 0)
7721 return 0;
7722
7723 return -EACCES;
7724 #else
7725 return -EPROTONOSUPPORT;
7726 #endif
7727 }
7728
7729 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7730 .func = bpf_tcp_raw_check_syncookie_ipv6,
7731 .gpl_only = true, /* __cookie_v6_check is GPL */
7732 .pkt_access = true,
7733 .ret_type = RET_INTEGER,
7734 .arg1_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7735 .arg1_size = sizeof(struct ipv6hdr),
7736 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM,
7737 .arg2_size = sizeof(struct tcphdr),
7738 };
7739 #endif /* CONFIG_SYN_COOKIES */
7740
7741 #endif /* CONFIG_INET */
7742
bpf_helper_changes_pkt_data(void * func)7743 bool bpf_helper_changes_pkt_data(void *func)
7744 {
7745 if (func == bpf_skb_vlan_push ||
7746 func == bpf_skb_vlan_pop ||
7747 func == bpf_skb_store_bytes ||
7748 func == bpf_skb_change_proto ||
7749 func == bpf_skb_change_head ||
7750 func == sk_skb_change_head ||
7751 func == bpf_skb_change_tail ||
7752 func == sk_skb_change_tail ||
7753 func == bpf_skb_adjust_room ||
7754 func == sk_skb_adjust_room ||
7755 func == bpf_skb_pull_data ||
7756 func == sk_skb_pull_data ||
7757 func == bpf_clone_redirect ||
7758 func == bpf_l3_csum_replace ||
7759 func == bpf_l4_csum_replace ||
7760 func == bpf_xdp_adjust_head ||
7761 func == bpf_xdp_adjust_meta ||
7762 func == bpf_msg_pull_data ||
7763 func == bpf_msg_push_data ||
7764 func == bpf_msg_pop_data ||
7765 func == bpf_xdp_adjust_tail ||
7766 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7767 func == bpf_lwt_seg6_store_bytes ||
7768 func == bpf_lwt_seg6_adjust_srh ||
7769 func == bpf_lwt_seg6_action ||
7770 #endif
7771 #ifdef CONFIG_INET
7772 func == bpf_sock_ops_store_hdr_opt ||
7773 #endif
7774 func == bpf_lwt_in_push_encap ||
7775 func == bpf_lwt_xmit_push_encap)
7776 return true;
7777
7778 return false;
7779 }
7780
7781 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7782 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7783
7784 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7785 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7786 {
7787 const struct bpf_func_proto *func_proto;
7788
7789 func_proto = cgroup_common_func_proto(func_id, prog);
7790 if (func_proto)
7791 return func_proto;
7792
7793 func_proto = cgroup_current_func_proto(func_id, prog);
7794 if (func_proto)
7795 return func_proto;
7796
7797 switch (func_id) {
7798 case BPF_FUNC_get_socket_cookie:
7799 return &bpf_get_socket_cookie_sock_proto;
7800 case BPF_FUNC_get_netns_cookie:
7801 return &bpf_get_netns_cookie_sock_proto;
7802 case BPF_FUNC_perf_event_output:
7803 return &bpf_event_output_data_proto;
7804 case BPF_FUNC_sk_storage_get:
7805 return &bpf_sk_storage_get_cg_sock_proto;
7806 case BPF_FUNC_ktime_get_coarse_ns:
7807 return &bpf_ktime_get_coarse_ns_proto;
7808 default:
7809 return bpf_base_func_proto(func_id);
7810 }
7811 }
7812
7813 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7814 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7815 {
7816 const struct bpf_func_proto *func_proto;
7817
7818 func_proto = cgroup_common_func_proto(func_id, prog);
7819 if (func_proto)
7820 return func_proto;
7821
7822 func_proto = cgroup_current_func_proto(func_id, prog);
7823 if (func_proto)
7824 return func_proto;
7825
7826 switch (func_id) {
7827 case BPF_FUNC_bind:
7828 switch (prog->expected_attach_type) {
7829 case BPF_CGROUP_INET4_CONNECT:
7830 case BPF_CGROUP_INET6_CONNECT:
7831 return &bpf_bind_proto;
7832 default:
7833 return NULL;
7834 }
7835 case BPF_FUNC_get_socket_cookie:
7836 return &bpf_get_socket_cookie_sock_addr_proto;
7837 case BPF_FUNC_get_netns_cookie:
7838 return &bpf_get_netns_cookie_sock_addr_proto;
7839 case BPF_FUNC_perf_event_output:
7840 return &bpf_event_output_data_proto;
7841 #ifdef CONFIG_INET
7842 case BPF_FUNC_sk_lookup_tcp:
7843 return &bpf_sock_addr_sk_lookup_tcp_proto;
7844 case BPF_FUNC_sk_lookup_udp:
7845 return &bpf_sock_addr_sk_lookup_udp_proto;
7846 case BPF_FUNC_sk_release:
7847 return &bpf_sk_release_proto;
7848 case BPF_FUNC_skc_lookup_tcp:
7849 return &bpf_sock_addr_skc_lookup_tcp_proto;
7850 #endif /* CONFIG_INET */
7851 case BPF_FUNC_sk_storage_get:
7852 return &bpf_sk_storage_get_proto;
7853 case BPF_FUNC_sk_storage_delete:
7854 return &bpf_sk_storage_delete_proto;
7855 case BPF_FUNC_setsockopt:
7856 switch (prog->expected_attach_type) {
7857 case BPF_CGROUP_INET4_BIND:
7858 case BPF_CGROUP_INET6_BIND:
7859 case BPF_CGROUP_INET4_CONNECT:
7860 case BPF_CGROUP_INET6_CONNECT:
7861 case BPF_CGROUP_UDP4_RECVMSG:
7862 case BPF_CGROUP_UDP6_RECVMSG:
7863 case BPF_CGROUP_UDP4_SENDMSG:
7864 case BPF_CGROUP_UDP6_SENDMSG:
7865 case BPF_CGROUP_INET4_GETPEERNAME:
7866 case BPF_CGROUP_INET6_GETPEERNAME:
7867 case BPF_CGROUP_INET4_GETSOCKNAME:
7868 case BPF_CGROUP_INET6_GETSOCKNAME:
7869 return &bpf_sock_addr_setsockopt_proto;
7870 default:
7871 return NULL;
7872 }
7873 case BPF_FUNC_getsockopt:
7874 switch (prog->expected_attach_type) {
7875 case BPF_CGROUP_INET4_BIND:
7876 case BPF_CGROUP_INET6_BIND:
7877 case BPF_CGROUP_INET4_CONNECT:
7878 case BPF_CGROUP_INET6_CONNECT:
7879 case BPF_CGROUP_UDP4_RECVMSG:
7880 case BPF_CGROUP_UDP6_RECVMSG:
7881 case BPF_CGROUP_UDP4_SENDMSG:
7882 case BPF_CGROUP_UDP6_SENDMSG:
7883 case BPF_CGROUP_INET4_GETPEERNAME:
7884 case BPF_CGROUP_INET6_GETPEERNAME:
7885 case BPF_CGROUP_INET4_GETSOCKNAME:
7886 case BPF_CGROUP_INET6_GETSOCKNAME:
7887 return &bpf_sock_addr_getsockopt_proto;
7888 default:
7889 return NULL;
7890 }
7891 default:
7892 return bpf_sk_base_func_proto(func_id);
7893 }
7894 }
7895
7896 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7897 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7898 {
7899 switch (func_id) {
7900 case BPF_FUNC_skb_load_bytes:
7901 return &bpf_skb_load_bytes_proto;
7902 case BPF_FUNC_skb_load_bytes_relative:
7903 return &bpf_skb_load_bytes_relative_proto;
7904 case BPF_FUNC_get_socket_cookie:
7905 return &bpf_get_socket_cookie_proto;
7906 case BPF_FUNC_get_socket_uid:
7907 return &bpf_get_socket_uid_proto;
7908 case BPF_FUNC_perf_event_output:
7909 return &bpf_skb_event_output_proto;
7910 default:
7911 return bpf_sk_base_func_proto(func_id);
7912 }
7913 }
7914
7915 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7916 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7917
7918 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7919 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7920 {
7921 const struct bpf_func_proto *func_proto;
7922
7923 func_proto = cgroup_common_func_proto(func_id, prog);
7924 if (func_proto)
7925 return func_proto;
7926
7927 switch (func_id) {
7928 case BPF_FUNC_sk_fullsock:
7929 return &bpf_sk_fullsock_proto;
7930 case BPF_FUNC_sk_storage_get:
7931 return &bpf_sk_storage_get_proto;
7932 case BPF_FUNC_sk_storage_delete:
7933 return &bpf_sk_storage_delete_proto;
7934 case BPF_FUNC_perf_event_output:
7935 return &bpf_skb_event_output_proto;
7936 #ifdef CONFIG_SOCK_CGROUP_DATA
7937 case BPF_FUNC_skb_cgroup_id:
7938 return &bpf_skb_cgroup_id_proto;
7939 case BPF_FUNC_skb_ancestor_cgroup_id:
7940 return &bpf_skb_ancestor_cgroup_id_proto;
7941 case BPF_FUNC_sk_cgroup_id:
7942 return &bpf_sk_cgroup_id_proto;
7943 case BPF_FUNC_sk_ancestor_cgroup_id:
7944 return &bpf_sk_ancestor_cgroup_id_proto;
7945 #endif
7946 #ifdef CONFIG_INET
7947 case BPF_FUNC_sk_lookup_tcp:
7948 return &bpf_sk_lookup_tcp_proto;
7949 case BPF_FUNC_sk_lookup_udp:
7950 return &bpf_sk_lookup_udp_proto;
7951 case BPF_FUNC_sk_release:
7952 return &bpf_sk_release_proto;
7953 case BPF_FUNC_skc_lookup_tcp:
7954 return &bpf_skc_lookup_tcp_proto;
7955 case BPF_FUNC_tcp_sock:
7956 return &bpf_tcp_sock_proto;
7957 case BPF_FUNC_get_listener_sock:
7958 return &bpf_get_listener_sock_proto;
7959 case BPF_FUNC_skb_ecn_set_ce:
7960 return &bpf_skb_ecn_set_ce_proto;
7961 #endif
7962 default:
7963 return sk_filter_func_proto(func_id, prog);
7964 }
7965 }
7966
7967 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7968 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7969 {
7970 switch (func_id) {
7971 case BPF_FUNC_skb_store_bytes:
7972 return &bpf_skb_store_bytes_proto;
7973 case BPF_FUNC_skb_load_bytes:
7974 return &bpf_skb_load_bytes_proto;
7975 case BPF_FUNC_skb_load_bytes_relative:
7976 return &bpf_skb_load_bytes_relative_proto;
7977 case BPF_FUNC_skb_pull_data:
7978 return &bpf_skb_pull_data_proto;
7979 case BPF_FUNC_csum_diff:
7980 return &bpf_csum_diff_proto;
7981 case BPF_FUNC_csum_update:
7982 return &bpf_csum_update_proto;
7983 case BPF_FUNC_csum_level:
7984 return &bpf_csum_level_proto;
7985 case BPF_FUNC_l3_csum_replace:
7986 return &bpf_l3_csum_replace_proto;
7987 case BPF_FUNC_l4_csum_replace:
7988 return &bpf_l4_csum_replace_proto;
7989 case BPF_FUNC_clone_redirect:
7990 return &bpf_clone_redirect_proto;
7991 case BPF_FUNC_get_cgroup_classid:
7992 return &bpf_get_cgroup_classid_proto;
7993 case BPF_FUNC_skb_vlan_push:
7994 return &bpf_skb_vlan_push_proto;
7995 case BPF_FUNC_skb_vlan_pop:
7996 return &bpf_skb_vlan_pop_proto;
7997 case BPF_FUNC_skb_change_proto:
7998 return &bpf_skb_change_proto_proto;
7999 case BPF_FUNC_skb_change_type:
8000 return &bpf_skb_change_type_proto;
8001 case BPF_FUNC_skb_adjust_room:
8002 return &bpf_skb_adjust_room_proto;
8003 case BPF_FUNC_skb_change_tail:
8004 return &bpf_skb_change_tail_proto;
8005 case BPF_FUNC_skb_change_head:
8006 return &bpf_skb_change_head_proto;
8007 case BPF_FUNC_skb_get_tunnel_key:
8008 return &bpf_skb_get_tunnel_key_proto;
8009 case BPF_FUNC_skb_set_tunnel_key:
8010 return bpf_get_skb_set_tunnel_proto(func_id);
8011 case BPF_FUNC_skb_get_tunnel_opt:
8012 return &bpf_skb_get_tunnel_opt_proto;
8013 case BPF_FUNC_skb_set_tunnel_opt:
8014 return bpf_get_skb_set_tunnel_proto(func_id);
8015 case BPF_FUNC_redirect:
8016 return &bpf_redirect_proto;
8017 case BPF_FUNC_redirect_neigh:
8018 return &bpf_redirect_neigh_proto;
8019 case BPF_FUNC_redirect_peer:
8020 return &bpf_redirect_peer_proto;
8021 case BPF_FUNC_get_route_realm:
8022 return &bpf_get_route_realm_proto;
8023 case BPF_FUNC_get_hash_recalc:
8024 return &bpf_get_hash_recalc_proto;
8025 case BPF_FUNC_set_hash_invalid:
8026 return &bpf_set_hash_invalid_proto;
8027 case BPF_FUNC_set_hash:
8028 return &bpf_set_hash_proto;
8029 case BPF_FUNC_perf_event_output:
8030 return &bpf_skb_event_output_proto;
8031 case BPF_FUNC_get_smp_processor_id:
8032 return &bpf_get_smp_processor_id_proto;
8033 case BPF_FUNC_skb_under_cgroup:
8034 return &bpf_skb_under_cgroup_proto;
8035 case BPF_FUNC_get_socket_cookie:
8036 return &bpf_get_socket_cookie_proto;
8037 case BPF_FUNC_get_socket_uid:
8038 return &bpf_get_socket_uid_proto;
8039 case BPF_FUNC_fib_lookup:
8040 return &bpf_skb_fib_lookup_proto;
8041 case BPF_FUNC_check_mtu:
8042 return &bpf_skb_check_mtu_proto;
8043 case BPF_FUNC_sk_fullsock:
8044 return &bpf_sk_fullsock_proto;
8045 case BPF_FUNC_sk_storage_get:
8046 return &bpf_sk_storage_get_proto;
8047 case BPF_FUNC_sk_storage_delete:
8048 return &bpf_sk_storage_delete_proto;
8049 #ifdef CONFIG_XFRM
8050 case BPF_FUNC_skb_get_xfrm_state:
8051 return &bpf_skb_get_xfrm_state_proto;
8052 #endif
8053 #ifdef CONFIG_CGROUP_NET_CLASSID
8054 case BPF_FUNC_skb_cgroup_classid:
8055 return &bpf_skb_cgroup_classid_proto;
8056 #endif
8057 #ifdef CONFIG_SOCK_CGROUP_DATA
8058 case BPF_FUNC_skb_cgroup_id:
8059 return &bpf_skb_cgroup_id_proto;
8060 case BPF_FUNC_skb_ancestor_cgroup_id:
8061 return &bpf_skb_ancestor_cgroup_id_proto;
8062 #endif
8063 #ifdef CONFIG_INET
8064 case BPF_FUNC_sk_lookup_tcp:
8065 return &bpf_tc_sk_lookup_tcp_proto;
8066 case BPF_FUNC_sk_lookup_udp:
8067 return &bpf_tc_sk_lookup_udp_proto;
8068 case BPF_FUNC_sk_release:
8069 return &bpf_sk_release_proto;
8070 case BPF_FUNC_tcp_sock:
8071 return &bpf_tcp_sock_proto;
8072 case BPF_FUNC_get_listener_sock:
8073 return &bpf_get_listener_sock_proto;
8074 case BPF_FUNC_skc_lookup_tcp:
8075 return &bpf_tc_skc_lookup_tcp_proto;
8076 case BPF_FUNC_tcp_check_syncookie:
8077 return &bpf_tcp_check_syncookie_proto;
8078 case BPF_FUNC_skb_ecn_set_ce:
8079 return &bpf_skb_ecn_set_ce_proto;
8080 case BPF_FUNC_tcp_gen_syncookie:
8081 return &bpf_tcp_gen_syncookie_proto;
8082 case BPF_FUNC_sk_assign:
8083 return &bpf_sk_assign_proto;
8084 case BPF_FUNC_skb_set_tstamp:
8085 return &bpf_skb_set_tstamp_proto;
8086 #ifdef CONFIG_SYN_COOKIES
8087 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8088 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8089 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8090 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8091 case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8092 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8093 case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8094 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8095 #endif
8096 #endif
8097 default:
8098 return bpf_sk_base_func_proto(func_id);
8099 }
8100 }
8101
8102 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8103 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8104 {
8105 switch (func_id) {
8106 case BPF_FUNC_perf_event_output:
8107 return &bpf_xdp_event_output_proto;
8108 case BPF_FUNC_get_smp_processor_id:
8109 return &bpf_get_smp_processor_id_proto;
8110 case BPF_FUNC_csum_diff:
8111 return &bpf_csum_diff_proto;
8112 case BPF_FUNC_xdp_adjust_head:
8113 return &bpf_xdp_adjust_head_proto;
8114 case BPF_FUNC_xdp_adjust_meta:
8115 return &bpf_xdp_adjust_meta_proto;
8116 case BPF_FUNC_redirect:
8117 return &bpf_xdp_redirect_proto;
8118 case BPF_FUNC_redirect_map:
8119 return &bpf_xdp_redirect_map_proto;
8120 case BPF_FUNC_xdp_adjust_tail:
8121 return &bpf_xdp_adjust_tail_proto;
8122 case BPF_FUNC_xdp_get_buff_len:
8123 return &bpf_xdp_get_buff_len_proto;
8124 case BPF_FUNC_xdp_load_bytes:
8125 return &bpf_xdp_load_bytes_proto;
8126 case BPF_FUNC_xdp_store_bytes:
8127 return &bpf_xdp_store_bytes_proto;
8128 case BPF_FUNC_fib_lookup:
8129 return &bpf_xdp_fib_lookup_proto;
8130 case BPF_FUNC_check_mtu:
8131 return &bpf_xdp_check_mtu_proto;
8132 #ifdef CONFIG_INET
8133 case BPF_FUNC_sk_lookup_udp:
8134 return &bpf_xdp_sk_lookup_udp_proto;
8135 case BPF_FUNC_sk_lookup_tcp:
8136 return &bpf_xdp_sk_lookup_tcp_proto;
8137 case BPF_FUNC_sk_release:
8138 return &bpf_sk_release_proto;
8139 case BPF_FUNC_skc_lookup_tcp:
8140 return &bpf_xdp_skc_lookup_tcp_proto;
8141 case BPF_FUNC_tcp_check_syncookie:
8142 return &bpf_tcp_check_syncookie_proto;
8143 case BPF_FUNC_tcp_gen_syncookie:
8144 return &bpf_tcp_gen_syncookie_proto;
8145 #ifdef CONFIG_SYN_COOKIES
8146 case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8147 return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8148 case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8149 return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8150 case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8151 return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8152 case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8153 return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8154 #endif
8155 #endif
8156 default:
8157 return bpf_sk_base_func_proto(func_id);
8158 }
8159
8160 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8161 /* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8162 * kfuncs are defined in two different modules, and we want to be able
8163 * to use them interchangably with the same BTF type ID. Because modules
8164 * can't de-duplicate BTF IDs between each other, we need the type to be
8165 * referenced in the vmlinux BTF or the verifier will get confused about
8166 * the different types. So we add this dummy type reference which will
8167 * be included in vmlinux BTF, allowing both modules to refer to the
8168 * same type ID.
8169 */
8170 BTF_TYPE_EMIT(struct nf_conn___init);
8171 #endif
8172 }
8173
8174 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8175 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8176
8177 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8178 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8179 {
8180 const struct bpf_func_proto *func_proto;
8181
8182 func_proto = cgroup_common_func_proto(func_id, prog);
8183 if (func_proto)
8184 return func_proto;
8185
8186 switch (func_id) {
8187 case BPF_FUNC_setsockopt:
8188 return &bpf_sock_ops_setsockopt_proto;
8189 case BPF_FUNC_getsockopt:
8190 return &bpf_sock_ops_getsockopt_proto;
8191 case BPF_FUNC_sock_ops_cb_flags_set:
8192 return &bpf_sock_ops_cb_flags_set_proto;
8193 case BPF_FUNC_sock_map_update:
8194 return &bpf_sock_map_update_proto;
8195 case BPF_FUNC_sock_hash_update:
8196 return &bpf_sock_hash_update_proto;
8197 case BPF_FUNC_get_socket_cookie:
8198 return &bpf_get_socket_cookie_sock_ops_proto;
8199 case BPF_FUNC_perf_event_output:
8200 return &bpf_event_output_data_proto;
8201 case BPF_FUNC_sk_storage_get:
8202 return &bpf_sk_storage_get_proto;
8203 case BPF_FUNC_sk_storage_delete:
8204 return &bpf_sk_storage_delete_proto;
8205 case BPF_FUNC_get_netns_cookie:
8206 return &bpf_get_netns_cookie_sock_ops_proto;
8207 #ifdef CONFIG_INET
8208 case BPF_FUNC_load_hdr_opt:
8209 return &bpf_sock_ops_load_hdr_opt_proto;
8210 case BPF_FUNC_store_hdr_opt:
8211 return &bpf_sock_ops_store_hdr_opt_proto;
8212 case BPF_FUNC_reserve_hdr_opt:
8213 return &bpf_sock_ops_reserve_hdr_opt_proto;
8214 case BPF_FUNC_tcp_sock:
8215 return &bpf_tcp_sock_proto;
8216 #endif /* CONFIG_INET */
8217 default:
8218 return bpf_sk_base_func_proto(func_id);
8219 }
8220 }
8221
8222 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8223 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8224
8225 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8226 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8227 {
8228 switch (func_id) {
8229 case BPF_FUNC_msg_redirect_map:
8230 return &bpf_msg_redirect_map_proto;
8231 case BPF_FUNC_msg_redirect_hash:
8232 return &bpf_msg_redirect_hash_proto;
8233 case BPF_FUNC_msg_apply_bytes:
8234 return &bpf_msg_apply_bytes_proto;
8235 case BPF_FUNC_msg_cork_bytes:
8236 return &bpf_msg_cork_bytes_proto;
8237 case BPF_FUNC_msg_pull_data:
8238 return &bpf_msg_pull_data_proto;
8239 case BPF_FUNC_msg_push_data:
8240 return &bpf_msg_push_data_proto;
8241 case BPF_FUNC_msg_pop_data:
8242 return &bpf_msg_pop_data_proto;
8243 case BPF_FUNC_perf_event_output:
8244 return &bpf_event_output_data_proto;
8245 case BPF_FUNC_get_current_uid_gid:
8246 return &bpf_get_current_uid_gid_proto;
8247 case BPF_FUNC_get_current_pid_tgid:
8248 return &bpf_get_current_pid_tgid_proto;
8249 case BPF_FUNC_sk_storage_get:
8250 return &bpf_sk_storage_get_proto;
8251 case BPF_FUNC_sk_storage_delete:
8252 return &bpf_sk_storage_delete_proto;
8253 case BPF_FUNC_get_netns_cookie:
8254 return &bpf_get_netns_cookie_sk_msg_proto;
8255 #ifdef CONFIG_CGROUP_NET_CLASSID
8256 case BPF_FUNC_get_cgroup_classid:
8257 return &bpf_get_cgroup_classid_curr_proto;
8258 #endif
8259 default:
8260 return bpf_sk_base_func_proto(func_id);
8261 }
8262 }
8263
8264 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8265 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8266
8267 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8268 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8269 {
8270 switch (func_id) {
8271 case BPF_FUNC_skb_store_bytes:
8272 return &bpf_skb_store_bytes_proto;
8273 case BPF_FUNC_skb_load_bytes:
8274 return &bpf_skb_load_bytes_proto;
8275 case BPF_FUNC_skb_pull_data:
8276 return &sk_skb_pull_data_proto;
8277 case BPF_FUNC_skb_change_tail:
8278 return &sk_skb_change_tail_proto;
8279 case BPF_FUNC_skb_change_head:
8280 return &sk_skb_change_head_proto;
8281 case BPF_FUNC_skb_adjust_room:
8282 return &sk_skb_adjust_room_proto;
8283 case BPF_FUNC_get_socket_cookie:
8284 return &bpf_get_socket_cookie_proto;
8285 case BPF_FUNC_get_socket_uid:
8286 return &bpf_get_socket_uid_proto;
8287 case BPF_FUNC_sk_redirect_map:
8288 return &bpf_sk_redirect_map_proto;
8289 case BPF_FUNC_sk_redirect_hash:
8290 return &bpf_sk_redirect_hash_proto;
8291 case BPF_FUNC_perf_event_output:
8292 return &bpf_skb_event_output_proto;
8293 #ifdef CONFIG_INET
8294 case BPF_FUNC_sk_lookup_tcp:
8295 return &bpf_sk_lookup_tcp_proto;
8296 case BPF_FUNC_sk_lookup_udp:
8297 return &bpf_sk_lookup_udp_proto;
8298 case BPF_FUNC_sk_release:
8299 return &bpf_sk_release_proto;
8300 case BPF_FUNC_skc_lookup_tcp:
8301 return &bpf_skc_lookup_tcp_proto;
8302 #endif
8303 default:
8304 return bpf_sk_base_func_proto(func_id);
8305 }
8306 }
8307
8308 static const struct bpf_func_proto *
flow_dissector_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8309 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8310 {
8311 switch (func_id) {
8312 case BPF_FUNC_skb_load_bytes:
8313 return &bpf_flow_dissector_load_bytes_proto;
8314 default:
8315 return bpf_sk_base_func_proto(func_id);
8316 }
8317 }
8318
8319 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8320 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8321 {
8322 switch (func_id) {
8323 case BPF_FUNC_skb_load_bytes:
8324 return &bpf_skb_load_bytes_proto;
8325 case BPF_FUNC_skb_pull_data:
8326 return &bpf_skb_pull_data_proto;
8327 case BPF_FUNC_csum_diff:
8328 return &bpf_csum_diff_proto;
8329 case BPF_FUNC_get_cgroup_classid:
8330 return &bpf_get_cgroup_classid_proto;
8331 case BPF_FUNC_get_route_realm:
8332 return &bpf_get_route_realm_proto;
8333 case BPF_FUNC_get_hash_recalc:
8334 return &bpf_get_hash_recalc_proto;
8335 case BPF_FUNC_perf_event_output:
8336 return &bpf_skb_event_output_proto;
8337 case BPF_FUNC_get_smp_processor_id:
8338 return &bpf_get_smp_processor_id_proto;
8339 case BPF_FUNC_skb_under_cgroup:
8340 return &bpf_skb_under_cgroup_proto;
8341 default:
8342 return bpf_sk_base_func_proto(func_id);
8343 }
8344 }
8345
8346 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8347 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8348 {
8349 switch (func_id) {
8350 case BPF_FUNC_lwt_push_encap:
8351 return &bpf_lwt_in_push_encap_proto;
8352 default:
8353 return lwt_out_func_proto(func_id, prog);
8354 }
8355 }
8356
8357 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8358 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8359 {
8360 switch (func_id) {
8361 case BPF_FUNC_skb_get_tunnel_key:
8362 return &bpf_skb_get_tunnel_key_proto;
8363 case BPF_FUNC_skb_set_tunnel_key:
8364 return bpf_get_skb_set_tunnel_proto(func_id);
8365 case BPF_FUNC_skb_get_tunnel_opt:
8366 return &bpf_skb_get_tunnel_opt_proto;
8367 case BPF_FUNC_skb_set_tunnel_opt:
8368 return bpf_get_skb_set_tunnel_proto(func_id);
8369 case BPF_FUNC_redirect:
8370 return &bpf_redirect_proto;
8371 case BPF_FUNC_clone_redirect:
8372 return &bpf_clone_redirect_proto;
8373 case BPF_FUNC_skb_change_tail:
8374 return &bpf_skb_change_tail_proto;
8375 case BPF_FUNC_skb_change_head:
8376 return &bpf_skb_change_head_proto;
8377 case BPF_FUNC_skb_store_bytes:
8378 return &bpf_skb_store_bytes_proto;
8379 case BPF_FUNC_csum_update:
8380 return &bpf_csum_update_proto;
8381 case BPF_FUNC_csum_level:
8382 return &bpf_csum_level_proto;
8383 case BPF_FUNC_l3_csum_replace:
8384 return &bpf_l3_csum_replace_proto;
8385 case BPF_FUNC_l4_csum_replace:
8386 return &bpf_l4_csum_replace_proto;
8387 case BPF_FUNC_set_hash_invalid:
8388 return &bpf_set_hash_invalid_proto;
8389 case BPF_FUNC_lwt_push_encap:
8390 return &bpf_lwt_xmit_push_encap_proto;
8391 default:
8392 return lwt_out_func_proto(func_id, prog);
8393 }
8394 }
8395
8396 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)8397 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8398 {
8399 switch (func_id) {
8400 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8401 case BPF_FUNC_lwt_seg6_store_bytes:
8402 return &bpf_lwt_seg6_store_bytes_proto;
8403 case BPF_FUNC_lwt_seg6_action:
8404 return &bpf_lwt_seg6_action_proto;
8405 case BPF_FUNC_lwt_seg6_adjust_srh:
8406 return &bpf_lwt_seg6_adjust_srh_proto;
8407 #endif
8408 default:
8409 return lwt_out_func_proto(func_id, prog);
8410 }
8411 }
8412
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8413 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8414 const struct bpf_prog *prog,
8415 struct bpf_insn_access_aux *info)
8416 {
8417 const int size_default = sizeof(__u32);
8418
8419 if (off < 0 || off >= sizeof(struct __sk_buff))
8420 return false;
8421
8422 /* The verifier guarantees that size > 0. */
8423 if (off % size != 0)
8424 return false;
8425
8426 switch (off) {
8427 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8428 if (off + size > offsetofend(struct __sk_buff, cb[4]))
8429 return false;
8430 break;
8431 case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8432 case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8433 case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8434 case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8435 case bpf_ctx_range(struct __sk_buff, data):
8436 case bpf_ctx_range(struct __sk_buff, data_meta):
8437 case bpf_ctx_range(struct __sk_buff, data_end):
8438 if (size != size_default)
8439 return false;
8440 break;
8441 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8442 return false;
8443 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8444 if (type == BPF_WRITE || size != sizeof(__u64))
8445 return false;
8446 break;
8447 case bpf_ctx_range(struct __sk_buff, tstamp):
8448 if (size != sizeof(__u64))
8449 return false;
8450 break;
8451 case offsetof(struct __sk_buff, sk):
8452 if (type == BPF_WRITE || size != sizeof(__u64))
8453 return false;
8454 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8455 break;
8456 case offsetof(struct __sk_buff, tstamp_type):
8457 return false;
8458 case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8459 /* Explicitly prohibit access to padding in __sk_buff. */
8460 return false;
8461 default:
8462 /* Only narrow read access allowed for now. */
8463 if (type == BPF_WRITE) {
8464 if (size != size_default)
8465 return false;
8466 } else {
8467 bpf_ctx_record_field_size(info, size_default);
8468 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8469 return false;
8470 }
8471 }
8472
8473 return true;
8474 }
8475
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8476 static bool sk_filter_is_valid_access(int off, int size,
8477 enum bpf_access_type type,
8478 const struct bpf_prog *prog,
8479 struct bpf_insn_access_aux *info)
8480 {
8481 switch (off) {
8482 case bpf_ctx_range(struct __sk_buff, tc_classid):
8483 case bpf_ctx_range(struct __sk_buff, data):
8484 case bpf_ctx_range(struct __sk_buff, data_meta):
8485 case bpf_ctx_range(struct __sk_buff, data_end):
8486 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8487 case bpf_ctx_range(struct __sk_buff, tstamp):
8488 case bpf_ctx_range(struct __sk_buff, wire_len):
8489 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8490 return false;
8491 }
8492
8493 if (type == BPF_WRITE) {
8494 switch (off) {
8495 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8496 break;
8497 default:
8498 return false;
8499 }
8500 }
8501
8502 return bpf_skb_is_valid_access(off, size, type, prog, info);
8503 }
8504
cg_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8505 static bool cg_skb_is_valid_access(int off, int size,
8506 enum bpf_access_type type,
8507 const struct bpf_prog *prog,
8508 struct bpf_insn_access_aux *info)
8509 {
8510 switch (off) {
8511 case bpf_ctx_range(struct __sk_buff, tc_classid):
8512 case bpf_ctx_range(struct __sk_buff, data_meta):
8513 case bpf_ctx_range(struct __sk_buff, wire_len):
8514 return false;
8515 case bpf_ctx_range(struct __sk_buff, data):
8516 case bpf_ctx_range(struct __sk_buff, data_end):
8517 if (!bpf_capable())
8518 return false;
8519 break;
8520 }
8521
8522 if (type == BPF_WRITE) {
8523 switch (off) {
8524 case bpf_ctx_range(struct __sk_buff, mark):
8525 case bpf_ctx_range(struct __sk_buff, priority):
8526 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8527 break;
8528 case bpf_ctx_range(struct __sk_buff, tstamp):
8529 if (!bpf_capable())
8530 return false;
8531 break;
8532 default:
8533 return false;
8534 }
8535 }
8536
8537 switch (off) {
8538 case bpf_ctx_range(struct __sk_buff, data):
8539 info->reg_type = PTR_TO_PACKET;
8540 break;
8541 case bpf_ctx_range(struct __sk_buff, data_end):
8542 info->reg_type = PTR_TO_PACKET_END;
8543 break;
8544 }
8545
8546 return bpf_skb_is_valid_access(off, size, type, prog, info);
8547 }
8548
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8549 static bool lwt_is_valid_access(int off, int size,
8550 enum bpf_access_type type,
8551 const struct bpf_prog *prog,
8552 struct bpf_insn_access_aux *info)
8553 {
8554 switch (off) {
8555 case bpf_ctx_range(struct __sk_buff, tc_classid):
8556 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8557 case bpf_ctx_range(struct __sk_buff, data_meta):
8558 case bpf_ctx_range(struct __sk_buff, tstamp):
8559 case bpf_ctx_range(struct __sk_buff, wire_len):
8560 case bpf_ctx_range(struct __sk_buff, hwtstamp):
8561 return false;
8562 }
8563
8564 if (type == BPF_WRITE) {
8565 switch (off) {
8566 case bpf_ctx_range(struct __sk_buff, mark):
8567 case bpf_ctx_range(struct __sk_buff, priority):
8568 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8569 break;
8570 default:
8571 return false;
8572 }
8573 }
8574
8575 switch (off) {
8576 case bpf_ctx_range(struct __sk_buff, data):
8577 info->reg_type = PTR_TO_PACKET;
8578 break;
8579 case bpf_ctx_range(struct __sk_buff, data_end):
8580 info->reg_type = PTR_TO_PACKET_END;
8581 break;
8582 }
8583
8584 return bpf_skb_is_valid_access(off, size, type, prog, info);
8585 }
8586
8587 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)8588 static bool __sock_filter_check_attach_type(int off,
8589 enum bpf_access_type access_type,
8590 enum bpf_attach_type attach_type)
8591 {
8592 switch (off) {
8593 case offsetof(struct bpf_sock, bound_dev_if):
8594 case offsetof(struct bpf_sock, mark):
8595 case offsetof(struct bpf_sock, priority):
8596 switch (attach_type) {
8597 case BPF_CGROUP_INET_SOCK_CREATE:
8598 case BPF_CGROUP_INET_SOCK_RELEASE:
8599 goto full_access;
8600 default:
8601 return false;
8602 }
8603 case bpf_ctx_range(struct bpf_sock, src_ip4):
8604 switch (attach_type) {
8605 case BPF_CGROUP_INET4_POST_BIND:
8606 goto read_only;
8607 default:
8608 return false;
8609 }
8610 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8611 switch (attach_type) {
8612 case BPF_CGROUP_INET6_POST_BIND:
8613 goto read_only;
8614 default:
8615 return false;
8616 }
8617 case bpf_ctx_range(struct bpf_sock, src_port):
8618 switch (attach_type) {
8619 case BPF_CGROUP_INET4_POST_BIND:
8620 case BPF_CGROUP_INET6_POST_BIND:
8621 goto read_only;
8622 default:
8623 return false;
8624 }
8625 }
8626 read_only:
8627 return access_type == BPF_READ;
8628 full_access:
8629 return true;
8630 }
8631
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8632 bool bpf_sock_common_is_valid_access(int off, int size,
8633 enum bpf_access_type type,
8634 struct bpf_insn_access_aux *info)
8635 {
8636 switch (off) {
8637 case bpf_ctx_range_till(struct bpf_sock, type, priority):
8638 return false;
8639 default:
8640 return bpf_sock_is_valid_access(off, size, type, info);
8641 }
8642 }
8643
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)8644 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8645 struct bpf_insn_access_aux *info)
8646 {
8647 const int size_default = sizeof(__u32);
8648 int field_size;
8649
8650 if (off < 0 || off >= sizeof(struct bpf_sock))
8651 return false;
8652 if (off % size != 0)
8653 return false;
8654
8655 switch (off) {
8656 case offsetof(struct bpf_sock, state):
8657 case offsetof(struct bpf_sock, family):
8658 case offsetof(struct bpf_sock, type):
8659 case offsetof(struct bpf_sock, protocol):
8660 case offsetof(struct bpf_sock, src_port):
8661 case offsetof(struct bpf_sock, rx_queue_mapping):
8662 case bpf_ctx_range(struct bpf_sock, src_ip4):
8663 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8664 case bpf_ctx_range(struct bpf_sock, dst_ip4):
8665 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8666 bpf_ctx_record_field_size(info, size_default);
8667 return bpf_ctx_narrow_access_ok(off, size, size_default);
8668 case bpf_ctx_range(struct bpf_sock, dst_port):
8669 field_size = size == size_default ?
8670 size_default : sizeof_field(struct bpf_sock, dst_port);
8671 bpf_ctx_record_field_size(info, field_size);
8672 return bpf_ctx_narrow_access_ok(off, size, field_size);
8673 case offsetofend(struct bpf_sock, dst_port) ...
8674 offsetof(struct bpf_sock, dst_ip4) - 1:
8675 return false;
8676 }
8677
8678 return size == size_default;
8679 }
8680
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8681 static bool sock_filter_is_valid_access(int off, int size,
8682 enum bpf_access_type type,
8683 const struct bpf_prog *prog,
8684 struct bpf_insn_access_aux *info)
8685 {
8686 if (!bpf_sock_is_valid_access(off, size, type, info))
8687 return false;
8688 return __sock_filter_check_attach_type(off, type,
8689 prog->expected_attach_type);
8690 }
8691
bpf_noop_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8692 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8693 const struct bpf_prog *prog)
8694 {
8695 /* Neither direct read nor direct write requires any preliminary
8696 * action.
8697 */
8698 return 0;
8699 }
8700
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)8701 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8702 const struct bpf_prog *prog, int drop_verdict)
8703 {
8704 struct bpf_insn *insn = insn_buf;
8705
8706 if (!direct_write)
8707 return 0;
8708
8709 /* if (!skb->cloned)
8710 * goto start;
8711 *
8712 * (Fast-path, otherwise approximation that we might be
8713 * a clone, do the rest in helper.)
8714 */
8715 *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8716 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8717 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8718
8719 /* ret = bpf_skb_pull_data(skb, 0); */
8720 *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8721 *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8722 *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8723 BPF_FUNC_skb_pull_data);
8724 /* if (!ret)
8725 * goto restore;
8726 * return TC_ACT_SHOT;
8727 */
8728 *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8729 *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8730 *insn++ = BPF_EXIT_INSN();
8731
8732 /* restore: */
8733 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8734 /* start: */
8735 *insn++ = prog->insnsi[0];
8736
8737 return insn - insn_buf;
8738 }
8739
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)8740 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8741 struct bpf_insn *insn_buf)
8742 {
8743 bool indirect = BPF_MODE(orig->code) == BPF_IND;
8744 struct bpf_insn *insn = insn_buf;
8745
8746 if (!indirect) {
8747 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8748 } else {
8749 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8750 if (orig->imm)
8751 *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8752 }
8753 /* We're guaranteed here that CTX is in R6. */
8754 *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8755
8756 switch (BPF_SIZE(orig->code)) {
8757 case BPF_B:
8758 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8759 break;
8760 case BPF_H:
8761 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8762 break;
8763 case BPF_W:
8764 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8765 break;
8766 }
8767
8768 *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8769 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8770 *insn++ = BPF_EXIT_INSN();
8771
8772 return insn - insn_buf;
8773 }
8774
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)8775 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8776 const struct bpf_prog *prog)
8777 {
8778 return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8779 }
8780
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8781 static bool tc_cls_act_is_valid_access(int off, int size,
8782 enum bpf_access_type type,
8783 const struct bpf_prog *prog,
8784 struct bpf_insn_access_aux *info)
8785 {
8786 if (type == BPF_WRITE) {
8787 switch (off) {
8788 case bpf_ctx_range(struct __sk_buff, mark):
8789 case bpf_ctx_range(struct __sk_buff, tc_index):
8790 case bpf_ctx_range(struct __sk_buff, priority):
8791 case bpf_ctx_range(struct __sk_buff, tc_classid):
8792 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8793 case bpf_ctx_range(struct __sk_buff, tstamp):
8794 case bpf_ctx_range(struct __sk_buff, queue_mapping):
8795 break;
8796 default:
8797 return false;
8798 }
8799 }
8800
8801 switch (off) {
8802 case bpf_ctx_range(struct __sk_buff, data):
8803 info->reg_type = PTR_TO_PACKET;
8804 break;
8805 case bpf_ctx_range(struct __sk_buff, data_meta):
8806 info->reg_type = PTR_TO_PACKET_META;
8807 break;
8808 case bpf_ctx_range(struct __sk_buff, data_end):
8809 info->reg_type = PTR_TO_PACKET_END;
8810 break;
8811 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8812 return false;
8813 case offsetof(struct __sk_buff, tstamp_type):
8814 /* The convert_ctx_access() on reading and writing
8815 * __sk_buff->tstamp depends on whether the bpf prog
8816 * has used __sk_buff->tstamp_type or not.
8817 * Thus, we need to set prog->tstamp_type_access
8818 * earlier during is_valid_access() here.
8819 */
8820 ((struct bpf_prog *)prog)->tstamp_type_access = 1;
8821 return size == sizeof(__u8);
8822 }
8823
8824 return bpf_skb_is_valid_access(off, size, type, prog, info);
8825 }
8826
8827 DEFINE_MUTEX(nf_conn_btf_access_lock);
8828 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
8829
8830 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
8831 const struct bpf_reg_state *reg,
8832 int off, int size);
8833 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
8834
tc_cls_act_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)8835 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
8836 const struct bpf_reg_state *reg,
8837 int off, int size)
8838 {
8839 int ret = -EACCES;
8840
8841 mutex_lock(&nf_conn_btf_access_lock);
8842 if (nfct_btf_struct_access)
8843 ret = nfct_btf_struct_access(log, reg, off, size);
8844 mutex_unlock(&nf_conn_btf_access_lock);
8845
8846 return ret;
8847 }
8848
__is_valid_xdp_access(int off,int size)8849 static bool __is_valid_xdp_access(int off, int size)
8850 {
8851 if (off < 0 || off >= sizeof(struct xdp_md))
8852 return false;
8853 if (off % size != 0)
8854 return false;
8855 if (size != sizeof(__u32))
8856 return false;
8857
8858 return true;
8859 }
8860
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8861 static bool xdp_is_valid_access(int off, int size,
8862 enum bpf_access_type type,
8863 const struct bpf_prog *prog,
8864 struct bpf_insn_access_aux *info)
8865 {
8866 if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8867 switch (off) {
8868 case offsetof(struct xdp_md, egress_ifindex):
8869 return false;
8870 }
8871 }
8872
8873 if (type == BPF_WRITE) {
8874 if (bpf_prog_is_offloaded(prog->aux)) {
8875 switch (off) {
8876 case offsetof(struct xdp_md, rx_queue_index):
8877 return __is_valid_xdp_access(off, size);
8878 }
8879 }
8880 return false;
8881 }
8882
8883 switch (off) {
8884 case offsetof(struct xdp_md, data):
8885 info->reg_type = PTR_TO_PACKET;
8886 break;
8887 case offsetof(struct xdp_md, data_meta):
8888 info->reg_type = PTR_TO_PACKET_META;
8889 break;
8890 case offsetof(struct xdp_md, data_end):
8891 info->reg_type = PTR_TO_PACKET_END;
8892 break;
8893 }
8894
8895 return __is_valid_xdp_access(off, size);
8896 }
8897
bpf_warn_invalid_xdp_action(struct net_device * dev,struct bpf_prog * prog,u32 act)8898 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8899 {
8900 const u32 act_max = XDP_REDIRECT;
8901
8902 pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
8903 act > act_max ? "Illegal" : "Driver unsupported",
8904 act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
8905 }
8906 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8907
xdp_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)8908 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
8909 const struct bpf_reg_state *reg,
8910 int off, int size)
8911 {
8912 int ret = -EACCES;
8913
8914 mutex_lock(&nf_conn_btf_access_lock);
8915 if (nfct_btf_struct_access)
8916 ret = nfct_btf_struct_access(log, reg, off, size);
8917 mutex_unlock(&nf_conn_btf_access_lock);
8918
8919 return ret;
8920 }
8921
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)8922 static bool sock_addr_is_valid_access(int off, int size,
8923 enum bpf_access_type type,
8924 const struct bpf_prog *prog,
8925 struct bpf_insn_access_aux *info)
8926 {
8927 const int size_default = sizeof(__u32);
8928
8929 if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8930 return false;
8931 if (off % size != 0)
8932 return false;
8933
8934 /* Disallow access to IPv6 fields from IPv4 contex and vise
8935 * versa.
8936 */
8937 switch (off) {
8938 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8939 switch (prog->expected_attach_type) {
8940 case BPF_CGROUP_INET4_BIND:
8941 case BPF_CGROUP_INET4_CONNECT:
8942 case BPF_CGROUP_INET4_GETPEERNAME:
8943 case BPF_CGROUP_INET4_GETSOCKNAME:
8944 case BPF_CGROUP_UDP4_SENDMSG:
8945 case BPF_CGROUP_UDP4_RECVMSG:
8946 break;
8947 default:
8948 return false;
8949 }
8950 break;
8951 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8952 switch (prog->expected_attach_type) {
8953 case BPF_CGROUP_INET6_BIND:
8954 case BPF_CGROUP_INET6_CONNECT:
8955 case BPF_CGROUP_INET6_GETPEERNAME:
8956 case BPF_CGROUP_INET6_GETSOCKNAME:
8957 case BPF_CGROUP_UDP6_SENDMSG:
8958 case BPF_CGROUP_UDP6_RECVMSG:
8959 break;
8960 default:
8961 return false;
8962 }
8963 break;
8964 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8965 switch (prog->expected_attach_type) {
8966 case BPF_CGROUP_UDP4_SENDMSG:
8967 break;
8968 default:
8969 return false;
8970 }
8971 break;
8972 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8973 msg_src_ip6[3]):
8974 switch (prog->expected_attach_type) {
8975 case BPF_CGROUP_UDP6_SENDMSG:
8976 break;
8977 default:
8978 return false;
8979 }
8980 break;
8981 }
8982
8983 switch (off) {
8984 case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8985 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8986 case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8987 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8988 msg_src_ip6[3]):
8989 case bpf_ctx_range(struct bpf_sock_addr, user_port):
8990 if (type == BPF_READ) {
8991 bpf_ctx_record_field_size(info, size_default);
8992
8993 if (bpf_ctx_wide_access_ok(off, size,
8994 struct bpf_sock_addr,
8995 user_ip6))
8996 return true;
8997
8998 if (bpf_ctx_wide_access_ok(off, size,
8999 struct bpf_sock_addr,
9000 msg_src_ip6))
9001 return true;
9002
9003 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9004 return false;
9005 } else {
9006 if (bpf_ctx_wide_access_ok(off, size,
9007 struct bpf_sock_addr,
9008 user_ip6))
9009 return true;
9010
9011 if (bpf_ctx_wide_access_ok(off, size,
9012 struct bpf_sock_addr,
9013 msg_src_ip6))
9014 return true;
9015
9016 if (size != size_default)
9017 return false;
9018 }
9019 break;
9020 case offsetof(struct bpf_sock_addr, sk):
9021 if (type != BPF_READ)
9022 return false;
9023 if (size != sizeof(__u64))
9024 return false;
9025 info->reg_type = PTR_TO_SOCKET;
9026 break;
9027 default:
9028 if (type == BPF_READ) {
9029 if (size != size_default)
9030 return false;
9031 } else {
9032 return false;
9033 }
9034 }
9035
9036 return true;
9037 }
9038
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9039 static bool sock_ops_is_valid_access(int off, int size,
9040 enum bpf_access_type type,
9041 const struct bpf_prog *prog,
9042 struct bpf_insn_access_aux *info)
9043 {
9044 const int size_default = sizeof(__u32);
9045
9046 if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9047 return false;
9048
9049 /* The verifier guarantees that size > 0. */
9050 if (off % size != 0)
9051 return false;
9052
9053 if (type == BPF_WRITE) {
9054 switch (off) {
9055 case offsetof(struct bpf_sock_ops, reply):
9056 case offsetof(struct bpf_sock_ops, sk_txhash):
9057 if (size != size_default)
9058 return false;
9059 break;
9060 default:
9061 return false;
9062 }
9063 } else {
9064 switch (off) {
9065 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9066 bytes_acked):
9067 if (size != sizeof(__u64))
9068 return false;
9069 break;
9070 case offsetof(struct bpf_sock_ops, sk):
9071 if (size != sizeof(__u64))
9072 return false;
9073 info->reg_type = PTR_TO_SOCKET_OR_NULL;
9074 break;
9075 case offsetof(struct bpf_sock_ops, skb_data):
9076 if (size != sizeof(__u64))
9077 return false;
9078 info->reg_type = PTR_TO_PACKET;
9079 break;
9080 case offsetof(struct bpf_sock_ops, skb_data_end):
9081 if (size != sizeof(__u64))
9082 return false;
9083 info->reg_type = PTR_TO_PACKET_END;
9084 break;
9085 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9086 bpf_ctx_record_field_size(info, size_default);
9087 return bpf_ctx_narrow_access_ok(off, size,
9088 size_default);
9089 case offsetof(struct bpf_sock_ops, skb_hwtstamp):
9090 if (size != sizeof(__u64))
9091 return false;
9092 break;
9093 default:
9094 if (size != size_default)
9095 return false;
9096 break;
9097 }
9098 }
9099
9100 return true;
9101 }
9102
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)9103 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9104 const struct bpf_prog *prog)
9105 {
9106 return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9107 }
9108
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9109 static bool sk_skb_is_valid_access(int off, int size,
9110 enum bpf_access_type type,
9111 const struct bpf_prog *prog,
9112 struct bpf_insn_access_aux *info)
9113 {
9114 switch (off) {
9115 case bpf_ctx_range(struct __sk_buff, tc_classid):
9116 case bpf_ctx_range(struct __sk_buff, data_meta):
9117 case bpf_ctx_range(struct __sk_buff, tstamp):
9118 case bpf_ctx_range(struct __sk_buff, wire_len):
9119 case bpf_ctx_range(struct __sk_buff, hwtstamp):
9120 return false;
9121 }
9122
9123 if (type == BPF_WRITE) {
9124 switch (off) {
9125 case bpf_ctx_range(struct __sk_buff, tc_index):
9126 case bpf_ctx_range(struct __sk_buff, priority):
9127 break;
9128 default:
9129 return false;
9130 }
9131 }
9132
9133 switch (off) {
9134 case bpf_ctx_range(struct __sk_buff, mark):
9135 return false;
9136 case bpf_ctx_range(struct __sk_buff, data):
9137 info->reg_type = PTR_TO_PACKET;
9138 break;
9139 case bpf_ctx_range(struct __sk_buff, data_end):
9140 info->reg_type = PTR_TO_PACKET_END;
9141 break;
9142 }
9143
9144 return bpf_skb_is_valid_access(off, size, type, prog, info);
9145 }
9146
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9147 static bool sk_msg_is_valid_access(int off, int size,
9148 enum bpf_access_type type,
9149 const struct bpf_prog *prog,
9150 struct bpf_insn_access_aux *info)
9151 {
9152 if (type == BPF_WRITE)
9153 return false;
9154
9155 if (off % size != 0)
9156 return false;
9157
9158 switch (off) {
9159 case offsetof(struct sk_msg_md, data):
9160 info->reg_type = PTR_TO_PACKET;
9161 if (size != sizeof(__u64))
9162 return false;
9163 break;
9164 case offsetof(struct sk_msg_md, data_end):
9165 info->reg_type = PTR_TO_PACKET_END;
9166 if (size != sizeof(__u64))
9167 return false;
9168 break;
9169 case offsetof(struct sk_msg_md, sk):
9170 if (size != sizeof(__u64))
9171 return false;
9172 info->reg_type = PTR_TO_SOCKET;
9173 break;
9174 case bpf_ctx_range(struct sk_msg_md, family):
9175 case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9176 case bpf_ctx_range(struct sk_msg_md, local_ip4):
9177 case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9178 case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9179 case bpf_ctx_range(struct sk_msg_md, remote_port):
9180 case bpf_ctx_range(struct sk_msg_md, local_port):
9181 case bpf_ctx_range(struct sk_msg_md, size):
9182 if (size != sizeof(__u32))
9183 return false;
9184 break;
9185 default:
9186 return false;
9187 }
9188 return true;
9189 }
9190
flow_dissector_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)9191 static bool flow_dissector_is_valid_access(int off, int size,
9192 enum bpf_access_type type,
9193 const struct bpf_prog *prog,
9194 struct bpf_insn_access_aux *info)
9195 {
9196 const int size_default = sizeof(__u32);
9197
9198 if (off < 0 || off >= sizeof(struct __sk_buff))
9199 return false;
9200
9201 if (type == BPF_WRITE)
9202 return false;
9203
9204 switch (off) {
9205 case bpf_ctx_range(struct __sk_buff, data):
9206 if (size != size_default)
9207 return false;
9208 info->reg_type = PTR_TO_PACKET;
9209 return true;
9210 case bpf_ctx_range(struct __sk_buff, data_end):
9211 if (size != size_default)
9212 return false;
9213 info->reg_type = PTR_TO_PACKET_END;
9214 return true;
9215 case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9216 if (size != sizeof(__u64))
9217 return false;
9218 info->reg_type = PTR_TO_FLOW_KEYS;
9219 return true;
9220 default:
9221 return false;
9222 }
9223 }
9224
flow_dissector_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9225 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9226 const struct bpf_insn *si,
9227 struct bpf_insn *insn_buf,
9228 struct bpf_prog *prog,
9229 u32 *target_size)
9230
9231 {
9232 struct bpf_insn *insn = insn_buf;
9233
9234 switch (si->off) {
9235 case offsetof(struct __sk_buff, data):
9236 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9237 si->dst_reg, si->src_reg,
9238 offsetof(struct bpf_flow_dissector, data));
9239 break;
9240
9241 case offsetof(struct __sk_buff, data_end):
9242 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9243 si->dst_reg, si->src_reg,
9244 offsetof(struct bpf_flow_dissector, data_end));
9245 break;
9246
9247 case offsetof(struct __sk_buff, flow_keys):
9248 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9249 si->dst_reg, si->src_reg,
9250 offsetof(struct bpf_flow_dissector, flow_keys));
9251 break;
9252 }
9253
9254 return insn - insn_buf;
9255 }
9256
bpf_convert_tstamp_type_read(const struct bpf_insn * si,struct bpf_insn * insn)9257 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9258 struct bpf_insn *insn)
9259 {
9260 __u8 value_reg = si->dst_reg;
9261 __u8 skb_reg = si->src_reg;
9262 /* AX is needed because src_reg and dst_reg could be the same */
9263 __u8 tmp_reg = BPF_REG_AX;
9264
9265 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9266 SKB_BF_MONO_TC_OFFSET);
9267 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9268 SKB_MONO_DELIVERY_TIME_MASK, 2);
9269 *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9270 *insn++ = BPF_JMP_A(1);
9271 *insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9272
9273 return insn;
9274 }
9275
bpf_convert_shinfo_access(__u8 dst_reg,__u8 skb_reg,struct bpf_insn * insn)9276 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9277 struct bpf_insn *insn)
9278 {
9279 /* si->dst_reg = skb_shinfo(SKB); */
9280 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9281 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9282 BPF_REG_AX, skb_reg,
9283 offsetof(struct sk_buff, end));
9284 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9285 dst_reg, skb_reg,
9286 offsetof(struct sk_buff, head));
9287 *insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9288 #else
9289 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9290 dst_reg, skb_reg,
9291 offsetof(struct sk_buff, end));
9292 #endif
9293
9294 return insn;
9295 }
9296
bpf_convert_tstamp_read(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9297 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9298 const struct bpf_insn *si,
9299 struct bpf_insn *insn)
9300 {
9301 __u8 value_reg = si->dst_reg;
9302 __u8 skb_reg = si->src_reg;
9303
9304 #ifdef CONFIG_NET_XGRESS
9305 /* If the tstamp_type is read,
9306 * the bpf prog is aware the tstamp could have delivery time.
9307 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9308 */
9309 if (!prog->tstamp_type_access) {
9310 /* AX is needed because src_reg and dst_reg could be the same */
9311 __u8 tmp_reg = BPF_REG_AX;
9312
9313 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9314 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9315 TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9316 *insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9317 TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9318 /* skb->tc_at_ingress && skb->mono_delivery_time,
9319 * read 0 as the (rcv) timestamp.
9320 */
9321 *insn++ = BPF_MOV64_IMM(value_reg, 0);
9322 *insn++ = BPF_JMP_A(1);
9323 }
9324 #endif
9325
9326 *insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9327 offsetof(struct sk_buff, tstamp));
9328 return insn;
9329 }
9330
bpf_convert_tstamp_write(const struct bpf_prog * prog,const struct bpf_insn * si,struct bpf_insn * insn)9331 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9332 const struct bpf_insn *si,
9333 struct bpf_insn *insn)
9334 {
9335 __u8 value_reg = si->src_reg;
9336 __u8 skb_reg = si->dst_reg;
9337
9338 #ifdef CONFIG_NET_XGRESS
9339 /* If the tstamp_type is read,
9340 * the bpf prog is aware the tstamp could have delivery time.
9341 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9342 * Otherwise, writing at ingress will have to clear the
9343 * mono_delivery_time bit also.
9344 */
9345 if (!prog->tstamp_type_access) {
9346 __u8 tmp_reg = BPF_REG_AX;
9347
9348 *insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9349 /* Writing __sk_buff->tstamp as ingress, goto <clear> */
9350 *insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9351 /* goto <store> */
9352 *insn++ = BPF_JMP_A(2);
9353 /* <clear>: mono_delivery_time */
9354 *insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9355 *insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9356 }
9357 #endif
9358
9359 /* <store>: skb->tstamp = tstamp */
9360 *insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9361 skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9362 return insn;
9363 }
9364
9365 #define BPF_EMIT_STORE(size, si, off) \
9366 BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM, \
9367 (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9368
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9369 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9370 const struct bpf_insn *si,
9371 struct bpf_insn *insn_buf,
9372 struct bpf_prog *prog, u32 *target_size)
9373 {
9374 struct bpf_insn *insn = insn_buf;
9375 int off;
9376
9377 switch (si->off) {
9378 case offsetof(struct __sk_buff, len):
9379 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9380 bpf_target_off(struct sk_buff, len, 4,
9381 target_size));
9382 break;
9383
9384 case offsetof(struct __sk_buff, protocol):
9385 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9386 bpf_target_off(struct sk_buff, protocol, 2,
9387 target_size));
9388 break;
9389
9390 case offsetof(struct __sk_buff, vlan_proto):
9391 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9392 bpf_target_off(struct sk_buff, vlan_proto, 2,
9393 target_size));
9394 break;
9395
9396 case offsetof(struct __sk_buff, priority):
9397 if (type == BPF_WRITE)
9398 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9399 bpf_target_off(struct sk_buff, priority, 4,
9400 target_size));
9401 else
9402 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9403 bpf_target_off(struct sk_buff, priority, 4,
9404 target_size));
9405 break;
9406
9407 case offsetof(struct __sk_buff, ingress_ifindex):
9408 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9409 bpf_target_off(struct sk_buff, skb_iif, 4,
9410 target_size));
9411 break;
9412
9413 case offsetof(struct __sk_buff, ifindex):
9414 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9415 si->dst_reg, si->src_reg,
9416 offsetof(struct sk_buff, dev));
9417 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9418 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9419 bpf_target_off(struct net_device, ifindex, 4,
9420 target_size));
9421 break;
9422
9423 case offsetof(struct __sk_buff, hash):
9424 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9425 bpf_target_off(struct sk_buff, hash, 4,
9426 target_size));
9427 break;
9428
9429 case offsetof(struct __sk_buff, mark):
9430 if (type == BPF_WRITE)
9431 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9432 bpf_target_off(struct sk_buff, mark, 4,
9433 target_size));
9434 else
9435 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9436 bpf_target_off(struct sk_buff, mark, 4,
9437 target_size));
9438 break;
9439
9440 case offsetof(struct __sk_buff, pkt_type):
9441 *target_size = 1;
9442 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9443 PKT_TYPE_OFFSET);
9444 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9445 #ifdef __BIG_ENDIAN_BITFIELD
9446 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9447 #endif
9448 break;
9449
9450 case offsetof(struct __sk_buff, queue_mapping):
9451 if (type == BPF_WRITE) {
9452 u32 off = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9453
9454 if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9455 *insn++ = BPF_JMP_A(0); /* noop */
9456 break;
9457 }
9458
9459 if (BPF_CLASS(si->code) == BPF_STX)
9460 *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9461 *insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9462 } else {
9463 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9464 bpf_target_off(struct sk_buff,
9465 queue_mapping,
9466 2, target_size));
9467 }
9468 break;
9469
9470 case offsetof(struct __sk_buff, vlan_present):
9471 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9472 bpf_target_off(struct sk_buff,
9473 vlan_all, 4, target_size));
9474 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9475 *insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9476 break;
9477
9478 case offsetof(struct __sk_buff, vlan_tci):
9479 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9480 bpf_target_off(struct sk_buff, vlan_tci, 2,
9481 target_size));
9482 break;
9483
9484 case offsetof(struct __sk_buff, cb[0]) ...
9485 offsetofend(struct __sk_buff, cb[4]) - 1:
9486 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9487 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9488 offsetof(struct qdisc_skb_cb, data)) %
9489 sizeof(__u64));
9490
9491 prog->cb_access = 1;
9492 off = si->off;
9493 off -= offsetof(struct __sk_buff, cb[0]);
9494 off += offsetof(struct sk_buff, cb);
9495 off += offsetof(struct qdisc_skb_cb, data);
9496 if (type == BPF_WRITE)
9497 *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9498 else
9499 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9500 si->src_reg, off);
9501 break;
9502
9503 case offsetof(struct __sk_buff, tc_classid):
9504 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9505
9506 off = si->off;
9507 off -= offsetof(struct __sk_buff, tc_classid);
9508 off += offsetof(struct sk_buff, cb);
9509 off += offsetof(struct qdisc_skb_cb, tc_classid);
9510 *target_size = 2;
9511 if (type == BPF_WRITE)
9512 *insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9513 else
9514 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9515 si->src_reg, off);
9516 break;
9517
9518 case offsetof(struct __sk_buff, data):
9519 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9520 si->dst_reg, si->src_reg,
9521 offsetof(struct sk_buff, data));
9522 break;
9523
9524 case offsetof(struct __sk_buff, data_meta):
9525 off = si->off;
9526 off -= offsetof(struct __sk_buff, data_meta);
9527 off += offsetof(struct sk_buff, cb);
9528 off += offsetof(struct bpf_skb_data_end, data_meta);
9529 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9530 si->src_reg, off);
9531 break;
9532
9533 case offsetof(struct __sk_buff, data_end):
9534 off = si->off;
9535 off -= offsetof(struct __sk_buff, data_end);
9536 off += offsetof(struct sk_buff, cb);
9537 off += offsetof(struct bpf_skb_data_end, data_end);
9538 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9539 si->src_reg, off);
9540 break;
9541
9542 case offsetof(struct __sk_buff, tc_index):
9543 #ifdef CONFIG_NET_SCHED
9544 if (type == BPF_WRITE)
9545 *insn++ = BPF_EMIT_STORE(BPF_H, si,
9546 bpf_target_off(struct sk_buff, tc_index, 2,
9547 target_size));
9548 else
9549 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9550 bpf_target_off(struct sk_buff, tc_index, 2,
9551 target_size));
9552 #else
9553 *target_size = 2;
9554 if (type == BPF_WRITE)
9555 *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9556 else
9557 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9558 #endif
9559 break;
9560
9561 case offsetof(struct __sk_buff, napi_id):
9562 #if defined(CONFIG_NET_RX_BUSY_POLL)
9563 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9564 bpf_target_off(struct sk_buff, napi_id, 4,
9565 target_size));
9566 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9567 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9568 #else
9569 *target_size = 4;
9570 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9571 #endif
9572 break;
9573 case offsetof(struct __sk_buff, family):
9574 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9575
9576 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9577 si->dst_reg, si->src_reg,
9578 offsetof(struct sk_buff, sk));
9579 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9580 bpf_target_off(struct sock_common,
9581 skc_family,
9582 2, target_size));
9583 break;
9584 case offsetof(struct __sk_buff, remote_ip4):
9585 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9586
9587 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9588 si->dst_reg, si->src_reg,
9589 offsetof(struct sk_buff, sk));
9590 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9591 bpf_target_off(struct sock_common,
9592 skc_daddr,
9593 4, target_size));
9594 break;
9595 case offsetof(struct __sk_buff, local_ip4):
9596 BUILD_BUG_ON(sizeof_field(struct sock_common,
9597 skc_rcv_saddr) != 4);
9598
9599 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9600 si->dst_reg, si->src_reg,
9601 offsetof(struct sk_buff, sk));
9602 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9603 bpf_target_off(struct sock_common,
9604 skc_rcv_saddr,
9605 4, target_size));
9606 break;
9607 case offsetof(struct __sk_buff, remote_ip6[0]) ...
9608 offsetof(struct __sk_buff, remote_ip6[3]):
9609 #if IS_ENABLED(CONFIG_IPV6)
9610 BUILD_BUG_ON(sizeof_field(struct sock_common,
9611 skc_v6_daddr.s6_addr32[0]) != 4);
9612
9613 off = si->off;
9614 off -= offsetof(struct __sk_buff, remote_ip6[0]);
9615
9616 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9617 si->dst_reg, si->src_reg,
9618 offsetof(struct sk_buff, sk));
9619 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9620 offsetof(struct sock_common,
9621 skc_v6_daddr.s6_addr32[0]) +
9622 off);
9623 #else
9624 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9625 #endif
9626 break;
9627 case offsetof(struct __sk_buff, local_ip6[0]) ...
9628 offsetof(struct __sk_buff, local_ip6[3]):
9629 #if IS_ENABLED(CONFIG_IPV6)
9630 BUILD_BUG_ON(sizeof_field(struct sock_common,
9631 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9632
9633 off = si->off;
9634 off -= offsetof(struct __sk_buff, local_ip6[0]);
9635
9636 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9637 si->dst_reg, si->src_reg,
9638 offsetof(struct sk_buff, sk));
9639 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9640 offsetof(struct sock_common,
9641 skc_v6_rcv_saddr.s6_addr32[0]) +
9642 off);
9643 #else
9644 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9645 #endif
9646 break;
9647
9648 case offsetof(struct __sk_buff, remote_port):
9649 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9650
9651 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9652 si->dst_reg, si->src_reg,
9653 offsetof(struct sk_buff, sk));
9654 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9655 bpf_target_off(struct sock_common,
9656 skc_dport,
9657 2, target_size));
9658 #ifndef __BIG_ENDIAN_BITFIELD
9659 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9660 #endif
9661 break;
9662
9663 case offsetof(struct __sk_buff, local_port):
9664 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9665
9666 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9667 si->dst_reg, si->src_reg,
9668 offsetof(struct sk_buff, sk));
9669 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9670 bpf_target_off(struct sock_common,
9671 skc_num, 2, target_size));
9672 break;
9673
9674 case offsetof(struct __sk_buff, tstamp):
9675 BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9676
9677 if (type == BPF_WRITE)
9678 insn = bpf_convert_tstamp_write(prog, si, insn);
9679 else
9680 insn = bpf_convert_tstamp_read(prog, si, insn);
9681 break;
9682
9683 case offsetof(struct __sk_buff, tstamp_type):
9684 insn = bpf_convert_tstamp_type_read(si, insn);
9685 break;
9686
9687 case offsetof(struct __sk_buff, gso_segs):
9688 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9689 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9690 si->dst_reg, si->dst_reg,
9691 bpf_target_off(struct skb_shared_info,
9692 gso_segs, 2,
9693 target_size));
9694 break;
9695 case offsetof(struct __sk_buff, gso_size):
9696 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9697 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9698 si->dst_reg, si->dst_reg,
9699 bpf_target_off(struct skb_shared_info,
9700 gso_size, 2,
9701 target_size));
9702 break;
9703 case offsetof(struct __sk_buff, wire_len):
9704 BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9705
9706 off = si->off;
9707 off -= offsetof(struct __sk_buff, wire_len);
9708 off += offsetof(struct sk_buff, cb);
9709 off += offsetof(struct qdisc_skb_cb, pkt_len);
9710 *target_size = 4;
9711 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9712 break;
9713
9714 case offsetof(struct __sk_buff, sk):
9715 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9716 si->dst_reg, si->src_reg,
9717 offsetof(struct sk_buff, sk));
9718 break;
9719 case offsetof(struct __sk_buff, hwtstamp):
9720 BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9721 BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9722
9723 insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9724 *insn++ = BPF_LDX_MEM(BPF_DW,
9725 si->dst_reg, si->dst_reg,
9726 bpf_target_off(struct skb_shared_info,
9727 hwtstamps, 8,
9728 target_size));
9729 break;
9730 }
9731
9732 return insn - insn_buf;
9733 }
9734
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9735 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9736 const struct bpf_insn *si,
9737 struct bpf_insn *insn_buf,
9738 struct bpf_prog *prog, u32 *target_size)
9739 {
9740 struct bpf_insn *insn = insn_buf;
9741 int off;
9742
9743 switch (si->off) {
9744 case offsetof(struct bpf_sock, bound_dev_if):
9745 BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9746
9747 if (type == BPF_WRITE)
9748 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9749 offsetof(struct sock, sk_bound_dev_if));
9750 else
9751 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9752 offsetof(struct sock, sk_bound_dev_if));
9753 break;
9754
9755 case offsetof(struct bpf_sock, mark):
9756 BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9757
9758 if (type == BPF_WRITE)
9759 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9760 offsetof(struct sock, sk_mark));
9761 else
9762 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9763 offsetof(struct sock, sk_mark));
9764 break;
9765
9766 case offsetof(struct bpf_sock, priority):
9767 BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9768
9769 if (type == BPF_WRITE)
9770 *insn++ = BPF_EMIT_STORE(BPF_W, si,
9771 offsetof(struct sock, sk_priority));
9772 else
9773 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9774 offsetof(struct sock, sk_priority));
9775 break;
9776
9777 case offsetof(struct bpf_sock, family):
9778 *insn++ = BPF_LDX_MEM(
9779 BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9780 si->dst_reg, si->src_reg,
9781 bpf_target_off(struct sock_common,
9782 skc_family,
9783 sizeof_field(struct sock_common,
9784 skc_family),
9785 target_size));
9786 break;
9787
9788 case offsetof(struct bpf_sock, type):
9789 *insn++ = BPF_LDX_MEM(
9790 BPF_FIELD_SIZEOF(struct sock, sk_type),
9791 si->dst_reg, si->src_reg,
9792 bpf_target_off(struct sock, sk_type,
9793 sizeof_field(struct sock, sk_type),
9794 target_size));
9795 break;
9796
9797 case offsetof(struct bpf_sock, protocol):
9798 *insn++ = BPF_LDX_MEM(
9799 BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9800 si->dst_reg, si->src_reg,
9801 bpf_target_off(struct sock, sk_protocol,
9802 sizeof_field(struct sock, sk_protocol),
9803 target_size));
9804 break;
9805
9806 case offsetof(struct bpf_sock, src_ip4):
9807 *insn++ = BPF_LDX_MEM(
9808 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9809 bpf_target_off(struct sock_common, skc_rcv_saddr,
9810 sizeof_field(struct sock_common,
9811 skc_rcv_saddr),
9812 target_size));
9813 break;
9814
9815 case offsetof(struct bpf_sock, dst_ip4):
9816 *insn++ = BPF_LDX_MEM(
9817 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9818 bpf_target_off(struct sock_common, skc_daddr,
9819 sizeof_field(struct sock_common,
9820 skc_daddr),
9821 target_size));
9822 break;
9823
9824 case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9825 #if IS_ENABLED(CONFIG_IPV6)
9826 off = si->off;
9827 off -= offsetof(struct bpf_sock, src_ip6[0]);
9828 *insn++ = BPF_LDX_MEM(
9829 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9830 bpf_target_off(
9831 struct sock_common,
9832 skc_v6_rcv_saddr.s6_addr32[0],
9833 sizeof_field(struct sock_common,
9834 skc_v6_rcv_saddr.s6_addr32[0]),
9835 target_size) + off);
9836 #else
9837 (void)off;
9838 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9839 #endif
9840 break;
9841
9842 case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9843 #if IS_ENABLED(CONFIG_IPV6)
9844 off = si->off;
9845 off -= offsetof(struct bpf_sock, dst_ip6[0]);
9846 *insn++ = BPF_LDX_MEM(
9847 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9848 bpf_target_off(struct sock_common,
9849 skc_v6_daddr.s6_addr32[0],
9850 sizeof_field(struct sock_common,
9851 skc_v6_daddr.s6_addr32[0]),
9852 target_size) + off);
9853 #else
9854 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9855 *target_size = 4;
9856 #endif
9857 break;
9858
9859 case offsetof(struct bpf_sock, src_port):
9860 *insn++ = BPF_LDX_MEM(
9861 BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9862 si->dst_reg, si->src_reg,
9863 bpf_target_off(struct sock_common, skc_num,
9864 sizeof_field(struct sock_common,
9865 skc_num),
9866 target_size));
9867 break;
9868
9869 case offsetof(struct bpf_sock, dst_port):
9870 *insn++ = BPF_LDX_MEM(
9871 BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9872 si->dst_reg, si->src_reg,
9873 bpf_target_off(struct sock_common, skc_dport,
9874 sizeof_field(struct sock_common,
9875 skc_dport),
9876 target_size));
9877 break;
9878
9879 case offsetof(struct bpf_sock, state):
9880 *insn++ = BPF_LDX_MEM(
9881 BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9882 si->dst_reg, si->src_reg,
9883 bpf_target_off(struct sock_common, skc_state,
9884 sizeof_field(struct sock_common,
9885 skc_state),
9886 target_size));
9887 break;
9888 case offsetof(struct bpf_sock, rx_queue_mapping):
9889 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9890 *insn++ = BPF_LDX_MEM(
9891 BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9892 si->dst_reg, si->src_reg,
9893 bpf_target_off(struct sock, sk_rx_queue_mapping,
9894 sizeof_field(struct sock,
9895 sk_rx_queue_mapping),
9896 target_size));
9897 *insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9898 1);
9899 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9900 #else
9901 *insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9902 *target_size = 2;
9903 #endif
9904 break;
9905 }
9906
9907 return insn - insn_buf;
9908 }
9909
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9910 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9911 const struct bpf_insn *si,
9912 struct bpf_insn *insn_buf,
9913 struct bpf_prog *prog, u32 *target_size)
9914 {
9915 struct bpf_insn *insn = insn_buf;
9916
9917 switch (si->off) {
9918 case offsetof(struct __sk_buff, ifindex):
9919 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9920 si->dst_reg, si->src_reg,
9921 offsetof(struct sk_buff, dev));
9922 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9923 bpf_target_off(struct net_device, ifindex, 4,
9924 target_size));
9925 break;
9926 default:
9927 return bpf_convert_ctx_access(type, si, insn_buf, prog,
9928 target_size);
9929 }
9930
9931 return insn - insn_buf;
9932 }
9933
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)9934 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9935 const struct bpf_insn *si,
9936 struct bpf_insn *insn_buf,
9937 struct bpf_prog *prog, u32 *target_size)
9938 {
9939 struct bpf_insn *insn = insn_buf;
9940
9941 switch (si->off) {
9942 case offsetof(struct xdp_md, data):
9943 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9944 si->dst_reg, si->src_reg,
9945 offsetof(struct xdp_buff, data));
9946 break;
9947 case offsetof(struct xdp_md, data_meta):
9948 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9949 si->dst_reg, si->src_reg,
9950 offsetof(struct xdp_buff, data_meta));
9951 break;
9952 case offsetof(struct xdp_md, data_end):
9953 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9954 si->dst_reg, si->src_reg,
9955 offsetof(struct xdp_buff, data_end));
9956 break;
9957 case offsetof(struct xdp_md, ingress_ifindex):
9958 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9959 si->dst_reg, si->src_reg,
9960 offsetof(struct xdp_buff, rxq));
9961 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9962 si->dst_reg, si->dst_reg,
9963 offsetof(struct xdp_rxq_info, dev));
9964 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9965 offsetof(struct net_device, ifindex));
9966 break;
9967 case offsetof(struct xdp_md, rx_queue_index):
9968 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9969 si->dst_reg, si->src_reg,
9970 offsetof(struct xdp_buff, rxq));
9971 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9972 offsetof(struct xdp_rxq_info,
9973 queue_index));
9974 break;
9975 case offsetof(struct xdp_md, egress_ifindex):
9976 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9977 si->dst_reg, si->src_reg,
9978 offsetof(struct xdp_buff, txq));
9979 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9980 si->dst_reg, si->dst_reg,
9981 offsetof(struct xdp_txq_info, dev));
9982 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9983 offsetof(struct net_device, ifindex));
9984 break;
9985 }
9986
9987 return insn - insn_buf;
9988 }
9989
9990 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9991 * context Structure, F is Field in context structure that contains a pointer
9992 * to Nested Structure of type NS that has the field NF.
9993 *
9994 * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9995 * sure that SIZE is not greater than actual size of S.F.NF.
9996 *
9997 * If offset OFF is provided, the load happens from that offset relative to
9998 * offset of NF.
9999 */
10000 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF) \
10001 do { \
10002 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg, \
10003 si->src_reg, offsetof(S, F)); \
10004 *insn++ = BPF_LDX_MEM( \
10005 SIZE, si->dst_reg, si->dst_reg, \
10006 bpf_target_off(NS, NF, sizeof_field(NS, NF), \
10007 target_size) \
10008 + OFF); \
10009 } while (0)
10010
10011 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF) \
10012 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, \
10013 BPF_FIELD_SIZEOF(NS, NF), 0)
10014
10015 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10016 * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10017 *
10018 * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10019 * "register" since two registers available in convert_ctx_access are not
10020 * enough: we can't override neither SRC, since it contains value to store, nor
10021 * DST since it contains pointer to context that may be used by later
10022 * instructions. But we need a temporary place to save pointer to nested
10023 * structure whose field we want to store to.
10024 */
10025 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF) \
10026 do { \
10027 int tmp_reg = BPF_REG_9; \
10028 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
10029 --tmp_reg; \
10030 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \
10031 --tmp_reg; \
10032 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg, \
10033 offsetof(S, TF)); \
10034 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg, \
10035 si->dst_reg, offsetof(S, F)); \
10036 *insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code), \
10037 tmp_reg, si->src_reg, \
10038 bpf_target_off(NS, NF, sizeof_field(NS, NF), \
10039 target_size) \
10040 + OFF, \
10041 si->imm); \
10042 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg, \
10043 offsetof(S, TF)); \
10044 } while (0)
10045
10046 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10047 TF) \
10048 do { \
10049 if (type == BPF_WRITE) { \
10050 SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, \
10051 OFF, TF); \
10052 } else { \
10053 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF( \
10054 S, NS, F, NF, SIZE, OFF); \
10055 } \
10056 } while (0)
10057
10058 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF) \
10059 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( \
10060 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
10061
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10062 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10063 const struct bpf_insn *si,
10064 struct bpf_insn *insn_buf,
10065 struct bpf_prog *prog, u32 *target_size)
10066 {
10067 int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10068 struct bpf_insn *insn = insn_buf;
10069
10070 switch (si->off) {
10071 case offsetof(struct bpf_sock_addr, user_family):
10072 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10073 struct sockaddr, uaddr, sa_family);
10074 break;
10075
10076 case offsetof(struct bpf_sock_addr, user_ip4):
10077 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10078 struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10079 sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10080 break;
10081
10082 case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10083 off = si->off;
10084 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10085 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10086 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10087 sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10088 tmp_reg);
10089 break;
10090
10091 case offsetof(struct bpf_sock_addr, user_port):
10092 /* To get port we need to know sa_family first and then treat
10093 * sockaddr as either sockaddr_in or sockaddr_in6.
10094 * Though we can simplify since port field has same offset and
10095 * size in both structures.
10096 * Here we check this invariant and use just one of the
10097 * structures if it's true.
10098 */
10099 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10100 offsetof(struct sockaddr_in6, sin6_port));
10101 BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10102 sizeof_field(struct sockaddr_in6, sin6_port));
10103 /* Account for sin6_port being smaller than user_port. */
10104 port_size = min(port_size, BPF_LDST_BYTES(si));
10105 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10106 struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10107 sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10108 break;
10109
10110 case offsetof(struct bpf_sock_addr, family):
10111 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10112 struct sock, sk, sk_family);
10113 break;
10114
10115 case offsetof(struct bpf_sock_addr, type):
10116 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10117 struct sock, sk, sk_type);
10118 break;
10119
10120 case offsetof(struct bpf_sock_addr, protocol):
10121 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10122 struct sock, sk, sk_protocol);
10123 break;
10124
10125 case offsetof(struct bpf_sock_addr, msg_src_ip4):
10126 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
10127 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10128 struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10129 s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10130 break;
10131
10132 case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10133 msg_src_ip6[3]):
10134 off = si->off;
10135 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10136 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10137 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10138 struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10139 s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10140 break;
10141 case offsetof(struct bpf_sock_addr, sk):
10142 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10143 si->dst_reg, si->src_reg,
10144 offsetof(struct bpf_sock_addr_kern, sk));
10145 break;
10146 }
10147
10148 return insn - insn_buf;
10149 }
10150
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10151 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10152 const struct bpf_insn *si,
10153 struct bpf_insn *insn_buf,
10154 struct bpf_prog *prog,
10155 u32 *target_size)
10156 {
10157 struct bpf_insn *insn = insn_buf;
10158 int off;
10159
10160 /* Helper macro for adding read access to tcp_sock or sock fields. */
10161 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
10162 do { \
10163 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2; \
10164 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
10165 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
10166 if (si->dst_reg == reg || si->src_reg == reg) \
10167 reg--; \
10168 if (si->dst_reg == reg || si->src_reg == reg) \
10169 reg--; \
10170 if (si->dst_reg == si->src_reg) { \
10171 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
10172 offsetof(struct bpf_sock_ops_kern, \
10173 temp)); \
10174 fullsock_reg = reg; \
10175 jmp += 2; \
10176 } \
10177 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10178 struct bpf_sock_ops_kern, \
10179 is_fullsock), \
10180 fullsock_reg, si->src_reg, \
10181 offsetof(struct bpf_sock_ops_kern, \
10182 is_fullsock)); \
10183 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
10184 if (si->dst_reg == si->src_reg) \
10185 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10186 offsetof(struct bpf_sock_ops_kern, \
10187 temp)); \
10188 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10189 struct bpf_sock_ops_kern, sk),\
10190 si->dst_reg, si->src_reg, \
10191 offsetof(struct bpf_sock_ops_kern, sk));\
10192 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ, \
10193 OBJ_FIELD), \
10194 si->dst_reg, si->dst_reg, \
10195 offsetof(OBJ, OBJ_FIELD)); \
10196 if (si->dst_reg == si->src_reg) { \
10197 *insn++ = BPF_JMP_A(1); \
10198 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10199 offsetof(struct bpf_sock_ops_kern, \
10200 temp)); \
10201 } \
10202 } while (0)
10203
10204 #define SOCK_OPS_GET_SK() \
10205 do { \
10206 int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1; \
10207 if (si->dst_reg == reg || si->src_reg == reg) \
10208 reg--; \
10209 if (si->dst_reg == reg || si->src_reg == reg) \
10210 reg--; \
10211 if (si->dst_reg == si->src_reg) { \
10212 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, \
10213 offsetof(struct bpf_sock_ops_kern, \
10214 temp)); \
10215 fullsock_reg = reg; \
10216 jmp += 2; \
10217 } \
10218 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10219 struct bpf_sock_ops_kern, \
10220 is_fullsock), \
10221 fullsock_reg, si->src_reg, \
10222 offsetof(struct bpf_sock_ops_kern, \
10223 is_fullsock)); \
10224 *insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp); \
10225 if (si->dst_reg == si->src_reg) \
10226 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10227 offsetof(struct bpf_sock_ops_kern, \
10228 temp)); \
10229 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10230 struct bpf_sock_ops_kern, sk),\
10231 si->dst_reg, si->src_reg, \
10232 offsetof(struct bpf_sock_ops_kern, sk));\
10233 if (si->dst_reg == si->src_reg) { \
10234 *insn++ = BPF_JMP_A(1); \
10235 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg, \
10236 offsetof(struct bpf_sock_ops_kern, \
10237 temp)); \
10238 } \
10239 } while (0)
10240
10241 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10242 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10243
10244 /* Helper macro for adding write access to tcp_sock or sock fields.
10245 * The macro is called with two registers, dst_reg which contains a pointer
10246 * to ctx (context) and src_reg which contains the value that should be
10247 * stored. However, we need an additional register since we cannot overwrite
10248 * dst_reg because it may be used later in the program.
10249 * Instead we "borrow" one of the other register. We first save its value
10250 * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10251 * it at the end of the macro.
10252 */
10253 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \
10254 do { \
10255 int reg = BPF_REG_9; \
10256 BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) > \
10257 sizeof_field(struct bpf_sock_ops, BPF_FIELD)); \
10258 if (si->dst_reg == reg || si->src_reg == reg) \
10259 reg--; \
10260 if (si->dst_reg == reg || si->src_reg == reg) \
10261 reg--; \
10262 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg, \
10263 offsetof(struct bpf_sock_ops_kern, \
10264 temp)); \
10265 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10266 struct bpf_sock_ops_kern, \
10267 is_fullsock), \
10268 reg, si->dst_reg, \
10269 offsetof(struct bpf_sock_ops_kern, \
10270 is_fullsock)); \
10271 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2); \
10272 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \
10273 struct bpf_sock_ops_kern, sk),\
10274 reg, si->dst_reg, \
10275 offsetof(struct bpf_sock_ops_kern, sk));\
10276 *insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) | \
10277 BPF_MEM | BPF_CLASS(si->code), \
10278 reg, si->src_reg, \
10279 offsetof(OBJ, OBJ_FIELD), \
10280 si->imm); \
10281 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg, \
10282 offsetof(struct bpf_sock_ops_kern, \
10283 temp)); \
10284 } while (0)
10285
10286 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE) \
10287 do { \
10288 if (TYPE == BPF_WRITE) \
10289 SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
10290 else \
10291 SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \
10292 } while (0)
10293
10294 switch (si->off) {
10295 case offsetof(struct bpf_sock_ops, op):
10296 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10297 op),
10298 si->dst_reg, si->src_reg,
10299 offsetof(struct bpf_sock_ops_kern, op));
10300 break;
10301
10302 case offsetof(struct bpf_sock_ops, replylong[0]) ...
10303 offsetof(struct bpf_sock_ops, replylong[3]):
10304 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10305 sizeof_field(struct bpf_sock_ops_kern, reply));
10306 BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10307 sizeof_field(struct bpf_sock_ops_kern, replylong));
10308 off = si->off;
10309 off -= offsetof(struct bpf_sock_ops, replylong[0]);
10310 off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10311 if (type == BPF_WRITE)
10312 *insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10313 else
10314 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10315 off);
10316 break;
10317
10318 case offsetof(struct bpf_sock_ops, family):
10319 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10320
10321 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10322 struct bpf_sock_ops_kern, sk),
10323 si->dst_reg, si->src_reg,
10324 offsetof(struct bpf_sock_ops_kern, sk));
10325 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10326 offsetof(struct sock_common, skc_family));
10327 break;
10328
10329 case offsetof(struct bpf_sock_ops, remote_ip4):
10330 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10331
10332 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10333 struct bpf_sock_ops_kern, sk),
10334 si->dst_reg, si->src_reg,
10335 offsetof(struct bpf_sock_ops_kern, sk));
10336 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10337 offsetof(struct sock_common, skc_daddr));
10338 break;
10339
10340 case offsetof(struct bpf_sock_ops, local_ip4):
10341 BUILD_BUG_ON(sizeof_field(struct sock_common,
10342 skc_rcv_saddr) != 4);
10343
10344 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10345 struct bpf_sock_ops_kern, sk),
10346 si->dst_reg, si->src_reg,
10347 offsetof(struct bpf_sock_ops_kern, sk));
10348 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10349 offsetof(struct sock_common,
10350 skc_rcv_saddr));
10351 break;
10352
10353 case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10354 offsetof(struct bpf_sock_ops, remote_ip6[3]):
10355 #if IS_ENABLED(CONFIG_IPV6)
10356 BUILD_BUG_ON(sizeof_field(struct sock_common,
10357 skc_v6_daddr.s6_addr32[0]) != 4);
10358
10359 off = si->off;
10360 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10361 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10362 struct bpf_sock_ops_kern, sk),
10363 si->dst_reg, si->src_reg,
10364 offsetof(struct bpf_sock_ops_kern, sk));
10365 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10366 offsetof(struct sock_common,
10367 skc_v6_daddr.s6_addr32[0]) +
10368 off);
10369 #else
10370 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10371 #endif
10372 break;
10373
10374 case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10375 offsetof(struct bpf_sock_ops, local_ip6[3]):
10376 #if IS_ENABLED(CONFIG_IPV6)
10377 BUILD_BUG_ON(sizeof_field(struct sock_common,
10378 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10379
10380 off = si->off;
10381 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10382 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10383 struct bpf_sock_ops_kern, sk),
10384 si->dst_reg, si->src_reg,
10385 offsetof(struct bpf_sock_ops_kern, sk));
10386 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10387 offsetof(struct sock_common,
10388 skc_v6_rcv_saddr.s6_addr32[0]) +
10389 off);
10390 #else
10391 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10392 #endif
10393 break;
10394
10395 case offsetof(struct bpf_sock_ops, remote_port):
10396 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10397
10398 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10399 struct bpf_sock_ops_kern, sk),
10400 si->dst_reg, si->src_reg,
10401 offsetof(struct bpf_sock_ops_kern, sk));
10402 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10403 offsetof(struct sock_common, skc_dport));
10404 #ifndef __BIG_ENDIAN_BITFIELD
10405 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10406 #endif
10407 break;
10408
10409 case offsetof(struct bpf_sock_ops, local_port):
10410 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10411
10412 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10413 struct bpf_sock_ops_kern, sk),
10414 si->dst_reg, si->src_reg,
10415 offsetof(struct bpf_sock_ops_kern, sk));
10416 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10417 offsetof(struct sock_common, skc_num));
10418 break;
10419
10420 case offsetof(struct bpf_sock_ops, is_fullsock):
10421 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10422 struct bpf_sock_ops_kern,
10423 is_fullsock),
10424 si->dst_reg, si->src_reg,
10425 offsetof(struct bpf_sock_ops_kern,
10426 is_fullsock));
10427 break;
10428
10429 case offsetof(struct bpf_sock_ops, state):
10430 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10431
10432 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10433 struct bpf_sock_ops_kern, sk),
10434 si->dst_reg, si->src_reg,
10435 offsetof(struct bpf_sock_ops_kern, sk));
10436 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10437 offsetof(struct sock_common, skc_state));
10438 break;
10439
10440 case offsetof(struct bpf_sock_ops, rtt_min):
10441 BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10442 sizeof(struct minmax));
10443 BUILD_BUG_ON(sizeof(struct minmax) <
10444 sizeof(struct minmax_sample));
10445
10446 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10447 struct bpf_sock_ops_kern, sk),
10448 si->dst_reg, si->src_reg,
10449 offsetof(struct bpf_sock_ops_kern, sk));
10450 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10451 offsetof(struct tcp_sock, rtt_min) +
10452 sizeof_field(struct minmax_sample, t));
10453 break;
10454
10455 case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10456 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10457 struct tcp_sock);
10458 break;
10459
10460 case offsetof(struct bpf_sock_ops, sk_txhash):
10461 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10462 struct sock, type);
10463 break;
10464 case offsetof(struct bpf_sock_ops, snd_cwnd):
10465 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10466 break;
10467 case offsetof(struct bpf_sock_ops, srtt_us):
10468 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10469 break;
10470 case offsetof(struct bpf_sock_ops, snd_ssthresh):
10471 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10472 break;
10473 case offsetof(struct bpf_sock_ops, rcv_nxt):
10474 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10475 break;
10476 case offsetof(struct bpf_sock_ops, snd_nxt):
10477 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10478 break;
10479 case offsetof(struct bpf_sock_ops, snd_una):
10480 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10481 break;
10482 case offsetof(struct bpf_sock_ops, mss_cache):
10483 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10484 break;
10485 case offsetof(struct bpf_sock_ops, ecn_flags):
10486 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10487 break;
10488 case offsetof(struct bpf_sock_ops, rate_delivered):
10489 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10490 break;
10491 case offsetof(struct bpf_sock_ops, rate_interval_us):
10492 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10493 break;
10494 case offsetof(struct bpf_sock_ops, packets_out):
10495 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10496 break;
10497 case offsetof(struct bpf_sock_ops, retrans_out):
10498 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10499 break;
10500 case offsetof(struct bpf_sock_ops, total_retrans):
10501 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10502 break;
10503 case offsetof(struct bpf_sock_ops, segs_in):
10504 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10505 break;
10506 case offsetof(struct bpf_sock_ops, data_segs_in):
10507 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10508 break;
10509 case offsetof(struct bpf_sock_ops, segs_out):
10510 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10511 break;
10512 case offsetof(struct bpf_sock_ops, data_segs_out):
10513 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10514 break;
10515 case offsetof(struct bpf_sock_ops, lost_out):
10516 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10517 break;
10518 case offsetof(struct bpf_sock_ops, sacked_out):
10519 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10520 break;
10521 case offsetof(struct bpf_sock_ops, bytes_received):
10522 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10523 break;
10524 case offsetof(struct bpf_sock_ops, bytes_acked):
10525 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10526 break;
10527 case offsetof(struct bpf_sock_ops, sk):
10528 SOCK_OPS_GET_SK();
10529 break;
10530 case offsetof(struct bpf_sock_ops, skb_data_end):
10531 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10532 skb_data_end),
10533 si->dst_reg, si->src_reg,
10534 offsetof(struct bpf_sock_ops_kern,
10535 skb_data_end));
10536 break;
10537 case offsetof(struct bpf_sock_ops, skb_data):
10538 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10539 skb),
10540 si->dst_reg, si->src_reg,
10541 offsetof(struct bpf_sock_ops_kern,
10542 skb));
10543 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10544 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10545 si->dst_reg, si->dst_reg,
10546 offsetof(struct sk_buff, data));
10547 break;
10548 case offsetof(struct bpf_sock_ops, skb_len):
10549 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10550 skb),
10551 si->dst_reg, si->src_reg,
10552 offsetof(struct bpf_sock_ops_kern,
10553 skb));
10554 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10555 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10556 si->dst_reg, si->dst_reg,
10557 offsetof(struct sk_buff, len));
10558 break;
10559 case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10560 off = offsetof(struct sk_buff, cb);
10561 off += offsetof(struct tcp_skb_cb, tcp_flags);
10562 *target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10563 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10564 skb),
10565 si->dst_reg, si->src_reg,
10566 offsetof(struct bpf_sock_ops_kern,
10567 skb));
10568 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10569 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10570 tcp_flags),
10571 si->dst_reg, si->dst_reg, off);
10572 break;
10573 case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10574 struct bpf_insn *jmp_on_null_skb;
10575
10576 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10577 skb),
10578 si->dst_reg, si->src_reg,
10579 offsetof(struct bpf_sock_ops_kern,
10580 skb));
10581 /* Reserve one insn to test skb == NULL */
10582 jmp_on_null_skb = insn++;
10583 insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10584 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10585 bpf_target_off(struct skb_shared_info,
10586 hwtstamps, 8,
10587 target_size));
10588 *jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10589 insn - jmp_on_null_skb - 1);
10590 break;
10591 }
10592 }
10593 return insn - insn_buf;
10594 }
10595
10596 /* data_end = skb->data + skb_headlen() */
bpf_convert_data_end_access(const struct bpf_insn * si,struct bpf_insn * insn)10597 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10598 struct bpf_insn *insn)
10599 {
10600 int reg;
10601 int temp_reg_off = offsetof(struct sk_buff, cb) +
10602 offsetof(struct sk_skb_cb, temp_reg);
10603
10604 if (si->src_reg == si->dst_reg) {
10605 /* We need an extra register, choose and save a register. */
10606 reg = BPF_REG_9;
10607 if (si->src_reg == reg || si->dst_reg == reg)
10608 reg--;
10609 if (si->src_reg == reg || si->dst_reg == reg)
10610 reg--;
10611 *insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10612 } else {
10613 reg = si->dst_reg;
10614 }
10615
10616 /* reg = skb->data */
10617 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10618 reg, si->src_reg,
10619 offsetof(struct sk_buff, data));
10620 /* AX = skb->len */
10621 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10622 BPF_REG_AX, si->src_reg,
10623 offsetof(struct sk_buff, len));
10624 /* reg = skb->data + skb->len */
10625 *insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10626 /* AX = skb->data_len */
10627 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10628 BPF_REG_AX, si->src_reg,
10629 offsetof(struct sk_buff, data_len));
10630
10631 /* reg = skb->data + skb->len - skb->data_len */
10632 *insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10633
10634 if (si->src_reg == si->dst_reg) {
10635 /* Restore the saved register */
10636 *insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10637 *insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10638 *insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10639 }
10640
10641 return insn;
10642 }
10643
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10644 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10645 const struct bpf_insn *si,
10646 struct bpf_insn *insn_buf,
10647 struct bpf_prog *prog, u32 *target_size)
10648 {
10649 struct bpf_insn *insn = insn_buf;
10650 int off;
10651
10652 switch (si->off) {
10653 case offsetof(struct __sk_buff, data_end):
10654 insn = bpf_convert_data_end_access(si, insn);
10655 break;
10656 case offsetof(struct __sk_buff, cb[0]) ...
10657 offsetofend(struct __sk_buff, cb[4]) - 1:
10658 BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10659 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10660 offsetof(struct sk_skb_cb, data)) %
10661 sizeof(__u64));
10662
10663 prog->cb_access = 1;
10664 off = si->off;
10665 off -= offsetof(struct __sk_buff, cb[0]);
10666 off += offsetof(struct sk_buff, cb);
10667 off += offsetof(struct sk_skb_cb, data);
10668 if (type == BPF_WRITE)
10669 *insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
10670 else
10671 *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10672 si->src_reg, off);
10673 break;
10674
10675
10676 default:
10677 return bpf_convert_ctx_access(type, si, insn_buf, prog,
10678 target_size);
10679 }
10680
10681 return insn - insn_buf;
10682 }
10683
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)10684 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10685 const struct bpf_insn *si,
10686 struct bpf_insn *insn_buf,
10687 struct bpf_prog *prog, u32 *target_size)
10688 {
10689 struct bpf_insn *insn = insn_buf;
10690 #if IS_ENABLED(CONFIG_IPV6)
10691 int off;
10692 #endif
10693
10694 /* convert ctx uses the fact sg element is first in struct */
10695 BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10696
10697 switch (si->off) {
10698 case offsetof(struct sk_msg_md, data):
10699 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10700 si->dst_reg, si->src_reg,
10701 offsetof(struct sk_msg, data));
10702 break;
10703 case offsetof(struct sk_msg_md, data_end):
10704 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10705 si->dst_reg, si->src_reg,
10706 offsetof(struct sk_msg, data_end));
10707 break;
10708 case offsetof(struct sk_msg_md, family):
10709 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10710
10711 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10712 struct sk_msg, sk),
10713 si->dst_reg, si->src_reg,
10714 offsetof(struct sk_msg, sk));
10715 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10716 offsetof(struct sock_common, skc_family));
10717 break;
10718
10719 case offsetof(struct sk_msg_md, remote_ip4):
10720 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10721
10722 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10723 struct sk_msg, sk),
10724 si->dst_reg, si->src_reg,
10725 offsetof(struct sk_msg, sk));
10726 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10727 offsetof(struct sock_common, skc_daddr));
10728 break;
10729
10730 case offsetof(struct sk_msg_md, local_ip4):
10731 BUILD_BUG_ON(sizeof_field(struct sock_common,
10732 skc_rcv_saddr) != 4);
10733
10734 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10735 struct sk_msg, sk),
10736 si->dst_reg, si->src_reg,
10737 offsetof(struct sk_msg, sk));
10738 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10739 offsetof(struct sock_common,
10740 skc_rcv_saddr));
10741 break;
10742
10743 case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10744 offsetof(struct sk_msg_md, remote_ip6[3]):
10745 #if IS_ENABLED(CONFIG_IPV6)
10746 BUILD_BUG_ON(sizeof_field(struct sock_common,
10747 skc_v6_daddr.s6_addr32[0]) != 4);
10748
10749 off = si->off;
10750 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10751 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10752 struct sk_msg, sk),
10753 si->dst_reg, si->src_reg,
10754 offsetof(struct sk_msg, sk));
10755 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10756 offsetof(struct sock_common,
10757 skc_v6_daddr.s6_addr32[0]) +
10758 off);
10759 #else
10760 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10761 #endif
10762 break;
10763
10764 case offsetof(struct sk_msg_md, local_ip6[0]) ...
10765 offsetof(struct sk_msg_md, local_ip6[3]):
10766 #if IS_ENABLED(CONFIG_IPV6)
10767 BUILD_BUG_ON(sizeof_field(struct sock_common,
10768 skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10769
10770 off = si->off;
10771 off -= offsetof(struct sk_msg_md, local_ip6[0]);
10772 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10773 struct sk_msg, sk),
10774 si->dst_reg, si->src_reg,
10775 offsetof(struct sk_msg, sk));
10776 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10777 offsetof(struct sock_common,
10778 skc_v6_rcv_saddr.s6_addr32[0]) +
10779 off);
10780 #else
10781 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10782 #endif
10783 break;
10784
10785 case offsetof(struct sk_msg_md, remote_port):
10786 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10787
10788 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10789 struct sk_msg, sk),
10790 si->dst_reg, si->src_reg,
10791 offsetof(struct sk_msg, sk));
10792 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10793 offsetof(struct sock_common, skc_dport));
10794 #ifndef __BIG_ENDIAN_BITFIELD
10795 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10796 #endif
10797 break;
10798
10799 case offsetof(struct sk_msg_md, local_port):
10800 BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10801
10802 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10803 struct sk_msg, sk),
10804 si->dst_reg, si->src_reg,
10805 offsetof(struct sk_msg, sk));
10806 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10807 offsetof(struct sock_common, skc_num));
10808 break;
10809
10810 case offsetof(struct sk_msg_md, size):
10811 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10812 si->dst_reg, si->src_reg,
10813 offsetof(struct sk_msg_sg, size));
10814 break;
10815
10816 case offsetof(struct sk_msg_md, sk):
10817 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10818 si->dst_reg, si->src_reg,
10819 offsetof(struct sk_msg, sk));
10820 break;
10821 }
10822
10823 return insn - insn_buf;
10824 }
10825
10826 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10827 .get_func_proto = sk_filter_func_proto,
10828 .is_valid_access = sk_filter_is_valid_access,
10829 .convert_ctx_access = bpf_convert_ctx_access,
10830 .gen_ld_abs = bpf_gen_ld_abs,
10831 };
10832
10833 const struct bpf_prog_ops sk_filter_prog_ops = {
10834 .test_run = bpf_prog_test_run_skb,
10835 };
10836
10837 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10838 .get_func_proto = tc_cls_act_func_proto,
10839 .is_valid_access = tc_cls_act_is_valid_access,
10840 .convert_ctx_access = tc_cls_act_convert_ctx_access,
10841 .gen_prologue = tc_cls_act_prologue,
10842 .gen_ld_abs = bpf_gen_ld_abs,
10843 .btf_struct_access = tc_cls_act_btf_struct_access,
10844 };
10845
10846 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10847 .test_run = bpf_prog_test_run_skb,
10848 };
10849
10850 const struct bpf_verifier_ops xdp_verifier_ops = {
10851 .get_func_proto = xdp_func_proto,
10852 .is_valid_access = xdp_is_valid_access,
10853 .convert_ctx_access = xdp_convert_ctx_access,
10854 .gen_prologue = bpf_noop_prologue,
10855 .btf_struct_access = xdp_btf_struct_access,
10856 };
10857
10858 const struct bpf_prog_ops xdp_prog_ops = {
10859 .test_run = bpf_prog_test_run_xdp,
10860 };
10861
10862 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10863 .get_func_proto = cg_skb_func_proto,
10864 .is_valid_access = cg_skb_is_valid_access,
10865 .convert_ctx_access = bpf_convert_ctx_access,
10866 };
10867
10868 const struct bpf_prog_ops cg_skb_prog_ops = {
10869 .test_run = bpf_prog_test_run_skb,
10870 };
10871
10872 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10873 .get_func_proto = lwt_in_func_proto,
10874 .is_valid_access = lwt_is_valid_access,
10875 .convert_ctx_access = bpf_convert_ctx_access,
10876 };
10877
10878 const struct bpf_prog_ops lwt_in_prog_ops = {
10879 .test_run = bpf_prog_test_run_skb,
10880 };
10881
10882 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10883 .get_func_proto = lwt_out_func_proto,
10884 .is_valid_access = lwt_is_valid_access,
10885 .convert_ctx_access = bpf_convert_ctx_access,
10886 };
10887
10888 const struct bpf_prog_ops lwt_out_prog_ops = {
10889 .test_run = bpf_prog_test_run_skb,
10890 };
10891
10892 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10893 .get_func_proto = lwt_xmit_func_proto,
10894 .is_valid_access = lwt_is_valid_access,
10895 .convert_ctx_access = bpf_convert_ctx_access,
10896 .gen_prologue = tc_cls_act_prologue,
10897 };
10898
10899 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10900 .test_run = bpf_prog_test_run_skb,
10901 };
10902
10903 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10904 .get_func_proto = lwt_seg6local_func_proto,
10905 .is_valid_access = lwt_is_valid_access,
10906 .convert_ctx_access = bpf_convert_ctx_access,
10907 };
10908
10909 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10910 .test_run = bpf_prog_test_run_skb,
10911 };
10912
10913 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10914 .get_func_proto = sock_filter_func_proto,
10915 .is_valid_access = sock_filter_is_valid_access,
10916 .convert_ctx_access = bpf_sock_convert_ctx_access,
10917 };
10918
10919 const struct bpf_prog_ops cg_sock_prog_ops = {
10920 };
10921
10922 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10923 .get_func_proto = sock_addr_func_proto,
10924 .is_valid_access = sock_addr_is_valid_access,
10925 .convert_ctx_access = sock_addr_convert_ctx_access,
10926 };
10927
10928 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10929 };
10930
10931 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10932 .get_func_proto = sock_ops_func_proto,
10933 .is_valid_access = sock_ops_is_valid_access,
10934 .convert_ctx_access = sock_ops_convert_ctx_access,
10935 };
10936
10937 const struct bpf_prog_ops sock_ops_prog_ops = {
10938 };
10939
10940 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10941 .get_func_proto = sk_skb_func_proto,
10942 .is_valid_access = sk_skb_is_valid_access,
10943 .convert_ctx_access = sk_skb_convert_ctx_access,
10944 .gen_prologue = sk_skb_prologue,
10945 };
10946
10947 const struct bpf_prog_ops sk_skb_prog_ops = {
10948 };
10949
10950 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10951 .get_func_proto = sk_msg_func_proto,
10952 .is_valid_access = sk_msg_is_valid_access,
10953 .convert_ctx_access = sk_msg_convert_ctx_access,
10954 .gen_prologue = bpf_noop_prologue,
10955 };
10956
10957 const struct bpf_prog_ops sk_msg_prog_ops = {
10958 };
10959
10960 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10961 .get_func_proto = flow_dissector_func_proto,
10962 .is_valid_access = flow_dissector_is_valid_access,
10963 .convert_ctx_access = flow_dissector_convert_ctx_access,
10964 };
10965
10966 const struct bpf_prog_ops flow_dissector_prog_ops = {
10967 .test_run = bpf_prog_test_run_flow_dissector,
10968 };
10969
sk_detach_filter(struct sock * sk)10970 int sk_detach_filter(struct sock *sk)
10971 {
10972 int ret = -ENOENT;
10973 struct sk_filter *filter;
10974
10975 if (sock_flag(sk, SOCK_FILTER_LOCKED))
10976 return -EPERM;
10977
10978 filter = rcu_dereference_protected(sk->sk_filter,
10979 lockdep_sock_is_held(sk));
10980 if (filter) {
10981 RCU_INIT_POINTER(sk->sk_filter, NULL);
10982 sk_filter_uncharge(sk, filter);
10983 ret = 0;
10984 }
10985
10986 return ret;
10987 }
10988 EXPORT_SYMBOL_GPL(sk_detach_filter);
10989
sk_get_filter(struct sock * sk,sockptr_t optval,unsigned int len)10990 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
10991 {
10992 struct sock_fprog_kern *fprog;
10993 struct sk_filter *filter;
10994 int ret = 0;
10995
10996 sockopt_lock_sock(sk);
10997 filter = rcu_dereference_protected(sk->sk_filter,
10998 lockdep_sock_is_held(sk));
10999 if (!filter)
11000 goto out;
11001
11002 /* We're copying the filter that has been originally attached,
11003 * so no conversion/decode needed anymore. eBPF programs that
11004 * have no original program cannot be dumped through this.
11005 */
11006 ret = -EACCES;
11007 fprog = filter->prog->orig_prog;
11008 if (!fprog)
11009 goto out;
11010
11011 ret = fprog->len;
11012 if (!len)
11013 /* User space only enquires number of filter blocks. */
11014 goto out;
11015
11016 ret = -EINVAL;
11017 if (len < fprog->len)
11018 goto out;
11019
11020 ret = -EFAULT;
11021 if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
11022 goto out;
11023
11024 /* Instead of bytes, the API requests to return the number
11025 * of filter blocks.
11026 */
11027 ret = fprog->len;
11028 out:
11029 sockopt_release_sock(sk);
11030 return ret;
11031 }
11032
11033 #ifdef CONFIG_INET
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11034 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11035 struct sock_reuseport *reuse,
11036 struct sock *sk, struct sk_buff *skb,
11037 struct sock *migrating_sk,
11038 u32 hash)
11039 {
11040 reuse_kern->skb = skb;
11041 reuse_kern->sk = sk;
11042 reuse_kern->selected_sk = NULL;
11043 reuse_kern->migrating_sk = migrating_sk;
11044 reuse_kern->data_end = skb->data + skb_headlen(skb);
11045 reuse_kern->hash = hash;
11046 reuse_kern->reuseport_id = reuse->reuseport_id;
11047 reuse_kern->bind_inany = reuse->bind_inany;
11048 }
11049
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,struct sock * migrating_sk,u32 hash)11050 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11051 struct bpf_prog *prog, struct sk_buff *skb,
11052 struct sock *migrating_sk,
11053 u32 hash)
11054 {
11055 struct sk_reuseport_kern reuse_kern;
11056 enum sk_action action;
11057
11058 bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11059 action = bpf_prog_run(prog, &reuse_kern);
11060
11061 if (action == SK_PASS)
11062 return reuse_kern.selected_sk;
11063 else
11064 return ERR_PTR(-ECONNREFUSED);
11065 }
11066
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)11067 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11068 struct bpf_map *, map, void *, key, u32, flags)
11069 {
11070 bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11071 struct sock_reuseport *reuse;
11072 struct sock *selected_sk;
11073
11074 selected_sk = map->ops->map_lookup_elem(map, key);
11075 if (!selected_sk)
11076 return -ENOENT;
11077
11078 reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11079 if (!reuse) {
11080 /* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11081 if (sk_is_refcounted(selected_sk))
11082 sock_put(selected_sk);
11083
11084 /* reuseport_array has only sk with non NULL sk_reuseport_cb.
11085 * The only (!reuse) case here is - the sk has already been
11086 * unhashed (e.g. by close()), so treat it as -ENOENT.
11087 *
11088 * Other maps (e.g. sock_map) do not provide this guarantee and
11089 * the sk may never be in the reuseport group to begin with.
11090 */
11091 return is_sockarray ? -ENOENT : -EINVAL;
11092 }
11093
11094 if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11095 struct sock *sk = reuse_kern->sk;
11096
11097 if (sk->sk_protocol != selected_sk->sk_protocol)
11098 return -EPROTOTYPE;
11099 else if (sk->sk_family != selected_sk->sk_family)
11100 return -EAFNOSUPPORT;
11101
11102 /* Catch all. Likely bound to a different sockaddr. */
11103 return -EBADFD;
11104 }
11105
11106 reuse_kern->selected_sk = selected_sk;
11107
11108 return 0;
11109 }
11110
11111 static const struct bpf_func_proto sk_select_reuseport_proto = {
11112 .func = sk_select_reuseport,
11113 .gpl_only = false,
11114 .ret_type = RET_INTEGER,
11115 .arg1_type = ARG_PTR_TO_CTX,
11116 .arg2_type = ARG_CONST_MAP_PTR,
11117 .arg3_type = ARG_PTR_TO_MAP_KEY,
11118 .arg4_type = ARG_ANYTHING,
11119 };
11120
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)11121 BPF_CALL_4(sk_reuseport_load_bytes,
11122 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11123 void *, to, u32, len)
11124 {
11125 return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11126 }
11127
11128 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11129 .func = sk_reuseport_load_bytes,
11130 .gpl_only = false,
11131 .ret_type = RET_INTEGER,
11132 .arg1_type = ARG_PTR_TO_CTX,
11133 .arg2_type = ARG_ANYTHING,
11134 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
11135 .arg4_type = ARG_CONST_SIZE,
11136 };
11137
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)11138 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11139 const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11140 void *, to, u32, len, u32, start_header)
11141 {
11142 return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11143 len, start_header);
11144 }
11145
11146 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11147 .func = sk_reuseport_load_bytes_relative,
11148 .gpl_only = false,
11149 .ret_type = RET_INTEGER,
11150 .arg1_type = ARG_PTR_TO_CTX,
11151 .arg2_type = ARG_ANYTHING,
11152 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
11153 .arg4_type = ARG_CONST_SIZE,
11154 .arg5_type = ARG_ANYTHING,
11155 };
11156
11157 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11158 sk_reuseport_func_proto(enum bpf_func_id func_id,
11159 const struct bpf_prog *prog)
11160 {
11161 switch (func_id) {
11162 case BPF_FUNC_sk_select_reuseport:
11163 return &sk_select_reuseport_proto;
11164 case BPF_FUNC_skb_load_bytes:
11165 return &sk_reuseport_load_bytes_proto;
11166 case BPF_FUNC_skb_load_bytes_relative:
11167 return &sk_reuseport_load_bytes_relative_proto;
11168 case BPF_FUNC_get_socket_cookie:
11169 return &bpf_get_socket_ptr_cookie_proto;
11170 case BPF_FUNC_ktime_get_coarse_ns:
11171 return &bpf_ktime_get_coarse_ns_proto;
11172 default:
11173 return bpf_base_func_proto(func_id);
11174 }
11175 }
11176
11177 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11178 sk_reuseport_is_valid_access(int off, int size,
11179 enum bpf_access_type type,
11180 const struct bpf_prog *prog,
11181 struct bpf_insn_access_aux *info)
11182 {
11183 const u32 size_default = sizeof(__u32);
11184
11185 if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11186 off % size || type != BPF_READ)
11187 return false;
11188
11189 switch (off) {
11190 case offsetof(struct sk_reuseport_md, data):
11191 info->reg_type = PTR_TO_PACKET;
11192 return size == sizeof(__u64);
11193
11194 case offsetof(struct sk_reuseport_md, data_end):
11195 info->reg_type = PTR_TO_PACKET_END;
11196 return size == sizeof(__u64);
11197
11198 case offsetof(struct sk_reuseport_md, hash):
11199 return size == size_default;
11200
11201 case offsetof(struct sk_reuseport_md, sk):
11202 info->reg_type = PTR_TO_SOCKET;
11203 return size == sizeof(__u64);
11204
11205 case offsetof(struct sk_reuseport_md, migrating_sk):
11206 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11207 return size == sizeof(__u64);
11208
11209 /* Fields that allow narrowing */
11210 case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11211 if (size < sizeof_field(struct sk_buff, protocol))
11212 return false;
11213 fallthrough;
11214 case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11215 case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11216 case bpf_ctx_range(struct sk_reuseport_md, len):
11217 bpf_ctx_record_field_size(info, size_default);
11218 return bpf_ctx_narrow_access_ok(off, size, size_default);
11219
11220 default:
11221 return false;
11222 }
11223 }
11224
11225 #define SK_REUSEPORT_LOAD_FIELD(F) ({ \
11226 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11227 si->dst_reg, si->src_reg, \
11228 bpf_target_off(struct sk_reuseport_kern, F, \
11229 sizeof_field(struct sk_reuseport_kern, F), \
11230 target_size)); \
11231 })
11232
11233 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD) \
11234 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
11235 struct sk_buff, \
11236 skb, \
11237 SKB_FIELD)
11238
11239 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD) \
11240 SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \
11241 struct sock, \
11242 sk, \
11243 SK_FIELD)
11244
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11245 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11246 const struct bpf_insn *si,
11247 struct bpf_insn *insn_buf,
11248 struct bpf_prog *prog,
11249 u32 *target_size)
11250 {
11251 struct bpf_insn *insn = insn_buf;
11252
11253 switch (si->off) {
11254 case offsetof(struct sk_reuseport_md, data):
11255 SK_REUSEPORT_LOAD_SKB_FIELD(data);
11256 break;
11257
11258 case offsetof(struct sk_reuseport_md, len):
11259 SK_REUSEPORT_LOAD_SKB_FIELD(len);
11260 break;
11261
11262 case offsetof(struct sk_reuseport_md, eth_protocol):
11263 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11264 break;
11265
11266 case offsetof(struct sk_reuseport_md, ip_protocol):
11267 SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11268 break;
11269
11270 case offsetof(struct sk_reuseport_md, data_end):
11271 SK_REUSEPORT_LOAD_FIELD(data_end);
11272 break;
11273
11274 case offsetof(struct sk_reuseport_md, hash):
11275 SK_REUSEPORT_LOAD_FIELD(hash);
11276 break;
11277
11278 case offsetof(struct sk_reuseport_md, bind_inany):
11279 SK_REUSEPORT_LOAD_FIELD(bind_inany);
11280 break;
11281
11282 case offsetof(struct sk_reuseport_md, sk):
11283 SK_REUSEPORT_LOAD_FIELD(sk);
11284 break;
11285
11286 case offsetof(struct sk_reuseport_md, migrating_sk):
11287 SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11288 break;
11289 }
11290
11291 return insn - insn_buf;
11292 }
11293
11294 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11295 .get_func_proto = sk_reuseport_func_proto,
11296 .is_valid_access = sk_reuseport_is_valid_access,
11297 .convert_ctx_access = sk_reuseport_convert_ctx_access,
11298 };
11299
11300 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11301 };
11302
11303 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11304 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11305
BPF_CALL_3(bpf_sk_lookup_assign,struct bpf_sk_lookup_kern *,ctx,struct sock *,sk,u64,flags)11306 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11307 struct sock *, sk, u64, flags)
11308 {
11309 if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11310 BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11311 return -EINVAL;
11312 if (unlikely(sk && sk_is_refcounted(sk)))
11313 return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11314 if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11315 return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11316 if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11317 return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11318
11319 /* Check if socket is suitable for packet L3/L4 protocol */
11320 if (sk && sk->sk_protocol != ctx->protocol)
11321 return -EPROTOTYPE;
11322 if (sk && sk->sk_family != ctx->family &&
11323 (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11324 return -EAFNOSUPPORT;
11325
11326 if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11327 return -EEXIST;
11328
11329 /* Select socket as lookup result */
11330 ctx->selected_sk = sk;
11331 ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11332 return 0;
11333 }
11334
11335 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11336 .func = bpf_sk_lookup_assign,
11337 .gpl_only = false,
11338 .ret_type = RET_INTEGER,
11339 .arg1_type = ARG_PTR_TO_CTX,
11340 .arg2_type = ARG_PTR_TO_SOCKET_OR_NULL,
11341 .arg3_type = ARG_ANYTHING,
11342 };
11343
11344 static const struct bpf_func_proto *
sk_lookup_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)11345 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11346 {
11347 switch (func_id) {
11348 case BPF_FUNC_perf_event_output:
11349 return &bpf_event_output_data_proto;
11350 case BPF_FUNC_sk_assign:
11351 return &bpf_sk_lookup_assign_proto;
11352 case BPF_FUNC_sk_release:
11353 return &bpf_sk_release_proto;
11354 default:
11355 return bpf_sk_base_func_proto(func_id);
11356 }
11357 }
11358
sk_lookup_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)11359 static bool sk_lookup_is_valid_access(int off, int size,
11360 enum bpf_access_type type,
11361 const struct bpf_prog *prog,
11362 struct bpf_insn_access_aux *info)
11363 {
11364 if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11365 return false;
11366 if (off % size != 0)
11367 return false;
11368 if (type != BPF_READ)
11369 return false;
11370
11371 switch (off) {
11372 case offsetof(struct bpf_sk_lookup, sk):
11373 info->reg_type = PTR_TO_SOCKET_OR_NULL;
11374 return size == sizeof(__u64);
11375
11376 case bpf_ctx_range(struct bpf_sk_lookup, family):
11377 case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11378 case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11379 case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11380 case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11381 case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11382 case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11383 case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11384 bpf_ctx_record_field_size(info, sizeof(__u32));
11385 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11386
11387 case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11388 /* Allow 4-byte access to 2-byte field for backward compatibility */
11389 if (size == sizeof(__u32))
11390 return true;
11391 bpf_ctx_record_field_size(info, sizeof(__be16));
11392 return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11393
11394 case offsetofend(struct bpf_sk_lookup, remote_port) ...
11395 offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11396 /* Allow access to zero padding for backward compatibility */
11397 bpf_ctx_record_field_size(info, sizeof(__u16));
11398 return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11399
11400 default:
11401 return false;
11402 }
11403 }
11404
sk_lookup_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)11405 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11406 const struct bpf_insn *si,
11407 struct bpf_insn *insn_buf,
11408 struct bpf_prog *prog,
11409 u32 *target_size)
11410 {
11411 struct bpf_insn *insn = insn_buf;
11412
11413 switch (si->off) {
11414 case offsetof(struct bpf_sk_lookup, sk):
11415 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11416 offsetof(struct bpf_sk_lookup_kern, selected_sk));
11417 break;
11418
11419 case offsetof(struct bpf_sk_lookup, family):
11420 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11421 bpf_target_off(struct bpf_sk_lookup_kern,
11422 family, 2, target_size));
11423 break;
11424
11425 case offsetof(struct bpf_sk_lookup, protocol):
11426 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11427 bpf_target_off(struct bpf_sk_lookup_kern,
11428 protocol, 2, target_size));
11429 break;
11430
11431 case offsetof(struct bpf_sk_lookup, remote_ip4):
11432 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11433 bpf_target_off(struct bpf_sk_lookup_kern,
11434 v4.saddr, 4, target_size));
11435 break;
11436
11437 case offsetof(struct bpf_sk_lookup, local_ip4):
11438 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11439 bpf_target_off(struct bpf_sk_lookup_kern,
11440 v4.daddr, 4, target_size));
11441 break;
11442
11443 case bpf_ctx_range_till(struct bpf_sk_lookup,
11444 remote_ip6[0], remote_ip6[3]): {
11445 #if IS_ENABLED(CONFIG_IPV6)
11446 int off = si->off;
11447
11448 off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11449 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11450 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11451 offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11452 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11453 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11454 #else
11455 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11456 #endif
11457 break;
11458 }
11459 case bpf_ctx_range_till(struct bpf_sk_lookup,
11460 local_ip6[0], local_ip6[3]): {
11461 #if IS_ENABLED(CONFIG_IPV6)
11462 int off = si->off;
11463
11464 off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11465 off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11466 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11467 offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11468 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11469 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11470 #else
11471 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11472 #endif
11473 break;
11474 }
11475 case offsetof(struct bpf_sk_lookup, remote_port):
11476 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11477 bpf_target_off(struct bpf_sk_lookup_kern,
11478 sport, 2, target_size));
11479 break;
11480
11481 case offsetofend(struct bpf_sk_lookup, remote_port):
11482 *target_size = 2;
11483 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11484 break;
11485
11486 case offsetof(struct bpf_sk_lookup, local_port):
11487 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11488 bpf_target_off(struct bpf_sk_lookup_kern,
11489 dport, 2, target_size));
11490 break;
11491
11492 case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11493 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11494 bpf_target_off(struct bpf_sk_lookup_kern,
11495 ingress_ifindex, 4, target_size));
11496 break;
11497 }
11498
11499 return insn - insn_buf;
11500 }
11501
11502 const struct bpf_prog_ops sk_lookup_prog_ops = {
11503 .test_run = bpf_prog_test_run_sk_lookup,
11504 };
11505
11506 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11507 .get_func_proto = sk_lookup_func_proto,
11508 .is_valid_access = sk_lookup_is_valid_access,
11509 .convert_ctx_access = sk_lookup_convert_ctx_access,
11510 };
11511
11512 #endif /* CONFIG_INET */
11513
DEFINE_BPF_DISPATCHER(xdp)11514 DEFINE_BPF_DISPATCHER(xdp)
11515
11516 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11517 {
11518 bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11519 }
11520
BTF_ID_LIST_GLOBAL(btf_sock_ids,MAX_BTF_SOCK_TYPE)11521 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11522 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11523 BTF_SOCK_TYPE_xxx
11524 #undef BTF_SOCK_TYPE
11525
11526 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11527 {
11528 /* tcp6_sock type is not generated in dwarf and hence btf,
11529 * trigger an explicit type generation here.
11530 */
11531 BTF_TYPE_EMIT(struct tcp6_sock);
11532 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11533 sk->sk_family == AF_INET6)
11534 return (unsigned long)sk;
11535
11536 return (unsigned long)NULL;
11537 }
11538
11539 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11540 .func = bpf_skc_to_tcp6_sock,
11541 .gpl_only = false,
11542 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11543 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11544 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11545 };
11546
BPF_CALL_1(bpf_skc_to_tcp_sock,struct sock *,sk)11547 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11548 {
11549 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11550 return (unsigned long)sk;
11551
11552 return (unsigned long)NULL;
11553 }
11554
11555 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11556 .func = bpf_skc_to_tcp_sock,
11557 .gpl_only = false,
11558 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11559 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11560 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11561 };
11562
BPF_CALL_1(bpf_skc_to_tcp_timewait_sock,struct sock *,sk)11563 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11564 {
11565 /* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11566 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11567 */
11568 BTF_TYPE_EMIT(struct inet_timewait_sock);
11569 BTF_TYPE_EMIT(struct tcp_timewait_sock);
11570
11571 #ifdef CONFIG_INET
11572 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11573 return (unsigned long)sk;
11574 #endif
11575
11576 #if IS_BUILTIN(CONFIG_IPV6)
11577 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11578 return (unsigned long)sk;
11579 #endif
11580
11581 return (unsigned long)NULL;
11582 }
11583
11584 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11585 .func = bpf_skc_to_tcp_timewait_sock,
11586 .gpl_only = false,
11587 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11588 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11589 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11590 };
11591
BPF_CALL_1(bpf_skc_to_tcp_request_sock,struct sock *,sk)11592 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11593 {
11594 #ifdef CONFIG_INET
11595 if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11596 return (unsigned long)sk;
11597 #endif
11598
11599 #if IS_BUILTIN(CONFIG_IPV6)
11600 if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11601 return (unsigned long)sk;
11602 #endif
11603
11604 return (unsigned long)NULL;
11605 }
11606
11607 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11608 .func = bpf_skc_to_tcp_request_sock,
11609 .gpl_only = false,
11610 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11611 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11612 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11613 };
11614
BPF_CALL_1(bpf_skc_to_udp6_sock,struct sock *,sk)11615 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11616 {
11617 /* udp6_sock type is not generated in dwarf and hence btf,
11618 * trigger an explicit type generation here.
11619 */
11620 BTF_TYPE_EMIT(struct udp6_sock);
11621 if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11622 sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11623 return (unsigned long)sk;
11624
11625 return (unsigned long)NULL;
11626 }
11627
11628 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11629 .func = bpf_skc_to_udp6_sock,
11630 .gpl_only = false,
11631 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11632 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11633 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11634 };
11635
BPF_CALL_1(bpf_skc_to_unix_sock,struct sock *,sk)11636 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11637 {
11638 /* unix_sock type is not generated in dwarf and hence btf,
11639 * trigger an explicit type generation here.
11640 */
11641 BTF_TYPE_EMIT(struct unix_sock);
11642 if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11643 return (unsigned long)sk;
11644
11645 return (unsigned long)NULL;
11646 }
11647
11648 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11649 .func = bpf_skc_to_unix_sock,
11650 .gpl_only = false,
11651 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11652 .arg1_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11653 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11654 };
11655
BPF_CALL_1(bpf_skc_to_mptcp_sock,struct sock *,sk)11656 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11657 {
11658 BTF_TYPE_EMIT(struct mptcp_sock);
11659 return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11660 }
11661
11662 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11663 .func = bpf_skc_to_mptcp_sock,
11664 .gpl_only = false,
11665 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11666 .arg1_type = ARG_PTR_TO_SOCK_COMMON,
11667 .ret_btf_id = &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11668 };
11669
BPF_CALL_1(bpf_sock_from_file,struct file *,file)11670 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11671 {
11672 return (unsigned long)sock_from_file(file);
11673 }
11674
11675 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11676 BTF_ID(struct, socket)
11677 BTF_ID(struct, file)
11678
11679 const struct bpf_func_proto bpf_sock_from_file_proto = {
11680 .func = bpf_sock_from_file,
11681 .gpl_only = false,
11682 .ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
11683 .ret_btf_id = &bpf_sock_from_file_btf_ids[0],
11684 .arg1_type = ARG_PTR_TO_BTF_ID,
11685 .arg1_btf_id = &bpf_sock_from_file_btf_ids[1],
11686 };
11687
11688 static const struct bpf_func_proto *
bpf_sk_base_func_proto(enum bpf_func_id func_id)11689 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11690 {
11691 const struct bpf_func_proto *func;
11692
11693 switch (func_id) {
11694 case BPF_FUNC_skc_to_tcp6_sock:
11695 func = &bpf_skc_to_tcp6_sock_proto;
11696 break;
11697 case BPF_FUNC_skc_to_tcp_sock:
11698 func = &bpf_skc_to_tcp_sock_proto;
11699 break;
11700 case BPF_FUNC_skc_to_tcp_timewait_sock:
11701 func = &bpf_skc_to_tcp_timewait_sock_proto;
11702 break;
11703 case BPF_FUNC_skc_to_tcp_request_sock:
11704 func = &bpf_skc_to_tcp_request_sock_proto;
11705 break;
11706 case BPF_FUNC_skc_to_udp6_sock:
11707 func = &bpf_skc_to_udp6_sock_proto;
11708 break;
11709 case BPF_FUNC_skc_to_unix_sock:
11710 func = &bpf_skc_to_unix_sock_proto;
11711 break;
11712 case BPF_FUNC_skc_to_mptcp_sock:
11713 func = &bpf_skc_to_mptcp_sock_proto;
11714 break;
11715 case BPF_FUNC_ktime_get_coarse_ns:
11716 return &bpf_ktime_get_coarse_ns_proto;
11717 default:
11718 return bpf_base_func_proto(func_id);
11719 }
11720
11721 if (!perfmon_capable())
11722 return NULL;
11723
11724 return func;
11725 }
11726
11727 __diag_push();
11728 __diag_ignore_all("-Wmissing-prototypes",
11729 "Global functions as their definitions will be in vmlinux BTF");
bpf_dynptr_from_skb(struct sk_buff * skb,u64 flags,struct bpf_dynptr_kern * ptr__uninit)11730 __bpf_kfunc int bpf_dynptr_from_skb(struct sk_buff *skb, u64 flags,
11731 struct bpf_dynptr_kern *ptr__uninit)
11732 {
11733 if (flags) {
11734 bpf_dynptr_set_null(ptr__uninit);
11735 return -EINVAL;
11736 }
11737
11738 bpf_dynptr_init(ptr__uninit, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
11739
11740 return 0;
11741 }
11742
bpf_dynptr_from_xdp(struct xdp_buff * xdp,u64 flags,struct bpf_dynptr_kern * ptr__uninit)11743 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_buff *xdp, u64 flags,
11744 struct bpf_dynptr_kern *ptr__uninit)
11745 {
11746 if (flags) {
11747 bpf_dynptr_set_null(ptr__uninit);
11748 return -EINVAL;
11749 }
11750
11751 bpf_dynptr_init(ptr__uninit, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
11752
11753 return 0;
11754 }
11755 __diag_pop();
11756
bpf_dynptr_from_skb_rdonly(struct sk_buff * skb,u64 flags,struct bpf_dynptr_kern * ptr__uninit)11757 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
11758 struct bpf_dynptr_kern *ptr__uninit)
11759 {
11760 int err;
11761
11762 err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
11763 if (err)
11764 return err;
11765
11766 bpf_dynptr_set_rdonly(ptr__uninit);
11767
11768 return 0;
11769 }
11770
11771 BTF_SET8_START(bpf_kfunc_check_set_skb)
11772 BTF_ID_FLAGS(func, bpf_dynptr_from_skb)
11773 BTF_SET8_END(bpf_kfunc_check_set_skb)
11774
11775 BTF_SET8_START(bpf_kfunc_check_set_xdp)
11776 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
11777 BTF_SET8_END(bpf_kfunc_check_set_xdp)
11778
11779 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
11780 .owner = THIS_MODULE,
11781 .set = &bpf_kfunc_check_set_skb,
11782 };
11783
11784 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
11785 .owner = THIS_MODULE,
11786 .set = &bpf_kfunc_check_set_xdp,
11787 };
11788
bpf_kfunc_init(void)11789 static int __init bpf_kfunc_init(void)
11790 {
11791 int ret;
11792
11793 ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
11794 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
11795 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
11796 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
11797 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
11798 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
11799 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
11800 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
11801 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
11802 ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb);
11803 return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
11804 }
11805 late_initcall(bpf_kfunc_init);
11806
11807 /* Disables missing prototype warnings */
11808 __diag_push();
11809 __diag_ignore_all("-Wmissing-prototypes",
11810 "Global functions as their definitions will be in vmlinux BTF");
11811
11812 /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code.
11813 *
11814 * The function expects a non-NULL pointer to a socket, and invokes the
11815 * protocol specific socket destroy handlers.
11816 *
11817 * The helper can only be called from BPF contexts that have acquired the socket
11818 * locks.
11819 *
11820 * Parameters:
11821 * @sock: Pointer to socket to be destroyed
11822 *
11823 * Return:
11824 * On error, may return EPROTONOSUPPORT, EINVAL.
11825 * EPROTONOSUPPORT if protocol specific destroy handler is not supported.
11826 * 0 otherwise
11827 */
bpf_sock_destroy(struct sock_common * sock)11828 __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock)
11829 {
11830 struct sock *sk = (struct sock *)sock;
11831
11832 /* The locking semantics that allow for synchronous execution of the
11833 * destroy handlers are only supported for TCP and UDP.
11834 * Supporting protocols will need to acquire sock lock in the BPF context
11835 * prior to invoking this kfunc.
11836 */
11837 if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP &&
11838 sk->sk_protocol != IPPROTO_UDP))
11839 return -EOPNOTSUPP;
11840
11841 return sk->sk_prot->diag_destroy(sk, ECONNABORTED);
11842 }
11843
11844 __diag_pop()
11845
BTF_SET8_START(bpf_sk_iter_kfunc_ids)11846 BTF_SET8_START(bpf_sk_iter_kfunc_ids)
11847 BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS)
11848 BTF_SET8_END(bpf_sk_iter_kfunc_ids)
11849
11850 static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id)
11851 {
11852 if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) &&
11853 prog->expected_attach_type != BPF_TRACE_ITER)
11854 return -EACCES;
11855 return 0;
11856 }
11857
11858 static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = {
11859 .owner = THIS_MODULE,
11860 .set = &bpf_sk_iter_kfunc_ids,
11861 .filter = tracing_iter_filter,
11862 };
11863
init_subsystem(void)11864 static int init_subsystem(void)
11865 {
11866 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set);
11867 }
11868 late_initcall(init_subsystem);
11869