1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * intel_pstate.c: Native P state management for Intel processors
4 *
5 * (C) Copyright 2012 Intel Corporation
6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29
30 #include <asm/cpu.h>
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34 #include <asm/cpufeature.h>
35 #include <asm/intel-family.h>
36 #include "../drivers/thermal/intel/thermal_interrupt.h"
37
38 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
39
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
41 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
43
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
47 #endif
48
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52
53 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
54
55 #define EXT_BITS 6
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59
mul_fp(int32_t x,int32_t y)60 static inline int32_t mul_fp(int32_t x, int32_t y)
61 {
62 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63 }
64
div_fp(s64 x,s64 y)65 static inline int32_t div_fp(s64 x, s64 y)
66 {
67 return div64_s64((int64_t)x << FRAC_BITS, y);
68 }
69
ceiling_fp(int32_t x)70 static inline int ceiling_fp(int32_t x)
71 {
72 int mask, ret;
73
74 ret = fp_toint(x);
75 mask = (1 << FRAC_BITS) - 1;
76 if (x & mask)
77 ret += 1;
78 return ret;
79 }
80
mul_ext_fp(u64 x,u64 y)81 static inline u64 mul_ext_fp(u64 x, u64 y)
82 {
83 return (x * y) >> EXT_FRAC_BITS;
84 }
85
div_ext_fp(u64 x,u64 y)86 static inline u64 div_ext_fp(u64 x, u64 y)
87 {
88 return div64_u64(x << EXT_FRAC_BITS, y);
89 }
90
91 /**
92 * struct sample - Store performance sample
93 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
94 * performance during last sample period
95 * @busy_scaled: Scaled busy value which is used to calculate next
96 * P state. This can be different than core_avg_perf
97 * to account for cpu idle period
98 * @aperf: Difference of actual performance frequency clock count
99 * read from APERF MSR between last and current sample
100 * @mperf: Difference of maximum performance frequency clock count
101 * read from MPERF MSR between last and current sample
102 * @tsc: Difference of time stamp counter between last and
103 * current sample
104 * @time: Current time from scheduler
105 *
106 * This structure is used in the cpudata structure to store performance sample
107 * data for choosing next P State.
108 */
109 struct sample {
110 int32_t core_avg_perf;
111 int32_t busy_scaled;
112 u64 aperf;
113 u64 mperf;
114 u64 tsc;
115 u64 time;
116 };
117
118 /**
119 * struct pstate_data - Store P state data
120 * @current_pstate: Current requested P state
121 * @min_pstate: Min P state possible for this platform
122 * @max_pstate: Max P state possible for this platform
123 * @max_pstate_physical:This is physical Max P state for a processor
124 * This can be higher than the max_pstate which can
125 * be limited by platform thermal design power limits
126 * @perf_ctl_scaling: PERF_CTL P-state to frequency scaling factor
127 * @scaling: Scaling factor between performance and frequency
128 * @turbo_pstate: Max Turbo P state possible for this platform
129 * @min_freq: @min_pstate frequency in cpufreq units
130 * @max_freq: @max_pstate frequency in cpufreq units
131 * @turbo_freq: @turbo_pstate frequency in cpufreq units
132 *
133 * Stores the per cpu model P state limits and current P state.
134 */
135 struct pstate_data {
136 int current_pstate;
137 int min_pstate;
138 int max_pstate;
139 int max_pstate_physical;
140 int perf_ctl_scaling;
141 int scaling;
142 int turbo_pstate;
143 unsigned int min_freq;
144 unsigned int max_freq;
145 unsigned int turbo_freq;
146 };
147
148 /**
149 * struct vid_data - Stores voltage information data
150 * @min: VID data for this platform corresponding to
151 * the lowest P state
152 * @max: VID data corresponding to the highest P State.
153 * @turbo: VID data for turbo P state
154 * @ratio: Ratio of (vid max - vid min) /
155 * (max P state - Min P State)
156 *
157 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
158 * This data is used in Atom platforms, where in addition to target P state,
159 * the voltage data needs to be specified to select next P State.
160 */
161 struct vid_data {
162 int min;
163 int max;
164 int turbo;
165 int32_t ratio;
166 };
167
168 /**
169 * struct global_params - Global parameters, mostly tunable via sysfs.
170 * @no_turbo: Whether or not to use turbo P-states.
171 * @turbo_disabled: Whether or not turbo P-states are available at all,
172 * based on the MSR_IA32_MISC_ENABLE value and whether or
173 * not the maximum reported turbo P-state is different from
174 * the maximum reported non-turbo one.
175 * @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq.
176 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
177 * P-state capacity.
178 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
179 * P-state capacity.
180 */
181 struct global_params {
182 bool no_turbo;
183 bool turbo_disabled;
184 bool turbo_disabled_mf;
185 int max_perf_pct;
186 int min_perf_pct;
187 };
188
189 /**
190 * struct cpudata - Per CPU instance data storage
191 * @cpu: CPU number for this instance data
192 * @policy: CPUFreq policy value
193 * @update_util: CPUFreq utility callback information
194 * @update_util_set: CPUFreq utility callback is set
195 * @iowait_boost: iowait-related boost fraction
196 * @last_update: Time of the last update.
197 * @pstate: Stores P state limits for this CPU
198 * @vid: Stores VID limits for this CPU
199 * @last_sample_time: Last Sample time
200 * @aperf_mperf_shift: APERF vs MPERF counting frequency difference
201 * @prev_aperf: Last APERF value read from APERF MSR
202 * @prev_mperf: Last MPERF value read from MPERF MSR
203 * @prev_tsc: Last timestamp counter (TSC) value
204 * @prev_cummulative_iowait: IO Wait time difference from last and
205 * current sample
206 * @sample: Storage for storing last Sample data
207 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
208 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
209 * @acpi_perf_data: Stores ACPI perf information read from _PSS
210 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
211 * @epp_powersave: Last saved HWP energy performance preference
212 * (EPP) or energy performance bias (EPB),
213 * when policy switched to performance
214 * @epp_policy: Last saved policy used to set EPP/EPB
215 * @epp_default: Power on default HWP energy performance
216 * preference/bias
217 * @epp_cached Cached HWP energy-performance preference value
218 * @hwp_req_cached: Cached value of the last HWP Request MSR
219 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
220 * @last_io_update: Last time when IO wake flag was set
221 * @sched_flags: Store scheduler flags for possible cross CPU update
222 * @hwp_boost_min: Last HWP boosted min performance
223 * @suspended: Whether or not the driver has been suspended.
224 * @hwp_notify_work: workqueue for HWP notifications.
225 *
226 * This structure stores per CPU instance data for all CPUs.
227 */
228 struct cpudata {
229 int cpu;
230
231 unsigned int policy;
232 struct update_util_data update_util;
233 bool update_util_set;
234
235 struct pstate_data pstate;
236 struct vid_data vid;
237
238 u64 last_update;
239 u64 last_sample_time;
240 u64 aperf_mperf_shift;
241 u64 prev_aperf;
242 u64 prev_mperf;
243 u64 prev_tsc;
244 u64 prev_cummulative_iowait;
245 struct sample sample;
246 int32_t min_perf_ratio;
247 int32_t max_perf_ratio;
248 #ifdef CONFIG_ACPI
249 struct acpi_processor_performance acpi_perf_data;
250 bool valid_pss_table;
251 #endif
252 unsigned int iowait_boost;
253 s16 epp_powersave;
254 s16 epp_policy;
255 s16 epp_default;
256 s16 epp_cached;
257 u64 hwp_req_cached;
258 u64 hwp_cap_cached;
259 u64 last_io_update;
260 unsigned int sched_flags;
261 u32 hwp_boost_min;
262 bool suspended;
263 struct delayed_work hwp_notify_work;
264 };
265
266 static struct cpudata **all_cpu_data;
267
268 /**
269 * struct pstate_funcs - Per CPU model specific callbacks
270 * @get_max: Callback to get maximum non turbo effective P state
271 * @get_max_physical: Callback to get maximum non turbo physical P state
272 * @get_min: Callback to get minimum P state
273 * @get_turbo: Callback to get turbo P state
274 * @get_scaling: Callback to get frequency scaling factor
275 * @get_cpu_scaling: Get frequency scaling factor for a given cpu
276 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
277 * @get_val: Callback to convert P state to actual MSR write value
278 * @get_vid: Callback to get VID data for Atom platforms
279 *
280 * Core and Atom CPU models have different way to get P State limits. This
281 * structure is used to store those callbacks.
282 */
283 struct pstate_funcs {
284 int (*get_max)(int cpu);
285 int (*get_max_physical)(int cpu);
286 int (*get_min)(int cpu);
287 int (*get_turbo)(int cpu);
288 int (*get_scaling)(void);
289 int (*get_cpu_scaling)(int cpu);
290 int (*get_aperf_mperf_shift)(void);
291 u64 (*get_val)(struct cpudata*, int pstate);
292 void (*get_vid)(struct cpudata *);
293 };
294
295 static struct pstate_funcs pstate_funcs __read_mostly;
296
297 static int hwp_active __read_mostly;
298 static int hwp_mode_bdw __read_mostly;
299 static bool per_cpu_limits __read_mostly;
300 static bool hwp_boost __read_mostly;
301 static bool hwp_forced __read_mostly;
302
303 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
304
305 #define HYBRID_SCALING_FACTOR 78741
306
core_get_scaling(void)307 static inline int core_get_scaling(void)
308 {
309 return 100000;
310 }
311
312 #ifdef CONFIG_ACPI
313 static bool acpi_ppc;
314 #endif
315
316 static struct global_params global;
317
318 static DEFINE_MUTEX(intel_pstate_driver_lock);
319 static DEFINE_MUTEX(intel_pstate_limits_lock);
320
321 #ifdef CONFIG_ACPI
322
intel_pstate_acpi_pm_profile_server(void)323 static bool intel_pstate_acpi_pm_profile_server(void)
324 {
325 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
326 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
327 return true;
328
329 return false;
330 }
331
intel_pstate_get_ppc_enable_status(void)332 static bool intel_pstate_get_ppc_enable_status(void)
333 {
334 if (intel_pstate_acpi_pm_profile_server())
335 return true;
336
337 return acpi_ppc;
338 }
339
340 #ifdef CONFIG_ACPI_CPPC_LIB
341
342 /* The work item is needed to avoid CPU hotplug locking issues */
intel_pstste_sched_itmt_work_fn(struct work_struct * work)343 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
344 {
345 sched_set_itmt_support();
346 }
347
348 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
349
350 #define CPPC_MAX_PERF U8_MAX
351
intel_pstate_set_itmt_prio(int cpu)352 static void intel_pstate_set_itmt_prio(int cpu)
353 {
354 struct cppc_perf_caps cppc_perf;
355 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
356 int ret;
357
358 ret = cppc_get_perf_caps(cpu, &cppc_perf);
359 if (ret)
360 return;
361
362 /*
363 * On some systems with overclocking enabled, CPPC.highest_perf is hardcoded to 0xff.
364 * In this case we can't use CPPC.highest_perf to enable ITMT.
365 * In this case we can look at MSR_HWP_CAPABILITIES bits [8:0] to decide.
366 */
367 if (cppc_perf.highest_perf == CPPC_MAX_PERF)
368 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
369
370 /*
371 * The priorities can be set regardless of whether or not
372 * sched_set_itmt_support(true) has been called and it is valid to
373 * update them at any time after it has been called.
374 */
375 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
376
377 if (max_highest_perf <= min_highest_perf) {
378 if (cppc_perf.highest_perf > max_highest_perf)
379 max_highest_perf = cppc_perf.highest_perf;
380
381 if (cppc_perf.highest_perf < min_highest_perf)
382 min_highest_perf = cppc_perf.highest_perf;
383
384 if (max_highest_perf > min_highest_perf) {
385 /*
386 * This code can be run during CPU online under the
387 * CPU hotplug locks, so sched_set_itmt_support()
388 * cannot be called from here. Queue up a work item
389 * to invoke it.
390 */
391 schedule_work(&sched_itmt_work);
392 }
393 }
394 }
395
intel_pstate_get_cppc_guaranteed(int cpu)396 static int intel_pstate_get_cppc_guaranteed(int cpu)
397 {
398 struct cppc_perf_caps cppc_perf;
399 int ret;
400
401 ret = cppc_get_perf_caps(cpu, &cppc_perf);
402 if (ret)
403 return ret;
404
405 if (cppc_perf.guaranteed_perf)
406 return cppc_perf.guaranteed_perf;
407
408 return cppc_perf.nominal_perf;
409 }
410
intel_pstate_cppc_get_scaling(int cpu)411 static int intel_pstate_cppc_get_scaling(int cpu)
412 {
413 struct cppc_perf_caps cppc_perf;
414 int ret;
415
416 ret = cppc_get_perf_caps(cpu, &cppc_perf);
417
418 /*
419 * If the nominal frequency and the nominal performance are not
420 * zero and the ratio between them is not 100, return the hybrid
421 * scaling factor.
422 */
423 if (!ret && cppc_perf.nominal_perf && cppc_perf.nominal_freq &&
424 cppc_perf.nominal_perf * 100 != cppc_perf.nominal_freq)
425 return HYBRID_SCALING_FACTOR;
426
427 return core_get_scaling();
428 }
429
430 #else /* CONFIG_ACPI_CPPC_LIB */
intel_pstate_set_itmt_prio(int cpu)431 static inline void intel_pstate_set_itmt_prio(int cpu)
432 {
433 }
434 #endif /* CONFIG_ACPI_CPPC_LIB */
435
intel_pstate_init_acpi_perf_limits(struct cpufreq_policy * policy)436 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
437 {
438 struct cpudata *cpu;
439 int ret;
440 int i;
441
442 if (hwp_active) {
443 intel_pstate_set_itmt_prio(policy->cpu);
444 return;
445 }
446
447 if (!intel_pstate_get_ppc_enable_status())
448 return;
449
450 cpu = all_cpu_data[policy->cpu];
451
452 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
453 policy->cpu);
454 if (ret)
455 return;
456
457 /*
458 * Check if the control value in _PSS is for PERF_CTL MSR, which should
459 * guarantee that the states returned by it map to the states in our
460 * list directly.
461 */
462 if (cpu->acpi_perf_data.control_register.space_id !=
463 ACPI_ADR_SPACE_FIXED_HARDWARE)
464 goto err;
465
466 /*
467 * If there is only one entry _PSS, simply ignore _PSS and continue as
468 * usual without taking _PSS into account
469 */
470 if (cpu->acpi_perf_data.state_count < 2)
471 goto err;
472
473 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
474 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
475 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
476 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
477 (u32) cpu->acpi_perf_data.states[i].core_frequency,
478 (u32) cpu->acpi_perf_data.states[i].power,
479 (u32) cpu->acpi_perf_data.states[i].control);
480 }
481
482 cpu->valid_pss_table = true;
483 pr_debug("_PPC limits will be enforced\n");
484
485 return;
486
487 err:
488 cpu->valid_pss_table = false;
489 acpi_processor_unregister_performance(policy->cpu);
490 }
491
intel_pstate_exit_perf_limits(struct cpufreq_policy * policy)492 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
493 {
494 struct cpudata *cpu;
495
496 cpu = all_cpu_data[policy->cpu];
497 if (!cpu->valid_pss_table)
498 return;
499
500 acpi_processor_unregister_performance(policy->cpu);
501 }
502 #else /* CONFIG_ACPI */
intel_pstate_init_acpi_perf_limits(struct cpufreq_policy * policy)503 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
504 {
505 }
506
intel_pstate_exit_perf_limits(struct cpufreq_policy * policy)507 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
508 {
509 }
510
intel_pstate_acpi_pm_profile_server(void)511 static inline bool intel_pstate_acpi_pm_profile_server(void)
512 {
513 return false;
514 }
515 #endif /* CONFIG_ACPI */
516
517 #ifndef CONFIG_ACPI_CPPC_LIB
intel_pstate_get_cppc_guaranteed(int cpu)518 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
519 {
520 return -ENOTSUPP;
521 }
522
intel_pstate_cppc_get_scaling(int cpu)523 static int intel_pstate_cppc_get_scaling(int cpu)
524 {
525 return core_get_scaling();
526 }
527 #endif /* CONFIG_ACPI_CPPC_LIB */
528
529 /**
530 * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
531 * @cpu: Target CPU.
532 *
533 * On hybrid processors, HWP may expose more performance levels than there are
534 * P-states accessible through the PERF_CTL interface. If that happens, the
535 * scaling factor between HWP performance levels and CPU frequency will be less
536 * than the scaling factor between P-state values and CPU frequency.
537 *
538 * In that case, adjust the CPU parameters used in computations accordingly.
539 */
intel_pstate_hybrid_hwp_adjust(struct cpudata * cpu)540 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
541 {
542 int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
543 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
544 int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
545 int scaling = cpu->pstate.scaling;
546
547 pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
548 pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
549 pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
550 pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
551 pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
552 pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
553
554 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling,
555 perf_ctl_scaling);
556 cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
557 perf_ctl_scaling);
558
559 cpu->pstate.max_pstate_physical =
560 DIV_ROUND_UP(perf_ctl_max_phys * perf_ctl_scaling,
561 scaling);
562
563 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
564 /*
565 * Cast the min P-state value retrieved via pstate_funcs.get_min() to
566 * the effective range of HWP performance levels.
567 */
568 cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling);
569 }
570
update_turbo_state(void)571 static inline void update_turbo_state(void)
572 {
573 u64 misc_en;
574 struct cpudata *cpu;
575
576 cpu = all_cpu_data[0];
577 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
578 global.turbo_disabled =
579 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
580 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
581 }
582
min_perf_pct_min(void)583 static int min_perf_pct_min(void)
584 {
585 struct cpudata *cpu = all_cpu_data[0];
586 int turbo_pstate = cpu->pstate.turbo_pstate;
587
588 return turbo_pstate ?
589 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
590 }
591
intel_pstate_get_epb(struct cpudata * cpu_data)592 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
593 {
594 u64 epb;
595 int ret;
596
597 if (!boot_cpu_has(X86_FEATURE_EPB))
598 return -ENXIO;
599
600 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
601 if (ret)
602 return (s16)ret;
603
604 return (s16)(epb & 0x0f);
605 }
606
intel_pstate_get_epp(struct cpudata * cpu_data,u64 hwp_req_data)607 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
608 {
609 s16 epp;
610
611 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
612 /*
613 * When hwp_req_data is 0, means that caller didn't read
614 * MSR_HWP_REQUEST, so need to read and get EPP.
615 */
616 if (!hwp_req_data) {
617 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
618 &hwp_req_data);
619 if (epp)
620 return epp;
621 }
622 epp = (hwp_req_data >> 24) & 0xff;
623 } else {
624 /* When there is no EPP present, HWP uses EPB settings */
625 epp = intel_pstate_get_epb(cpu_data);
626 }
627
628 return epp;
629 }
630
intel_pstate_set_epb(int cpu,s16 pref)631 static int intel_pstate_set_epb(int cpu, s16 pref)
632 {
633 u64 epb;
634 int ret;
635
636 if (!boot_cpu_has(X86_FEATURE_EPB))
637 return -ENXIO;
638
639 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
640 if (ret)
641 return ret;
642
643 epb = (epb & ~0x0f) | pref;
644 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
645
646 return 0;
647 }
648
649 /*
650 * EPP/EPB display strings corresponding to EPP index in the
651 * energy_perf_strings[]
652 * index String
653 *-------------------------------------
654 * 0 default
655 * 1 performance
656 * 2 balance_performance
657 * 3 balance_power
658 * 4 power
659 */
660
661 enum energy_perf_value_index {
662 EPP_INDEX_DEFAULT = 0,
663 EPP_INDEX_PERFORMANCE,
664 EPP_INDEX_BALANCE_PERFORMANCE,
665 EPP_INDEX_BALANCE_POWERSAVE,
666 EPP_INDEX_POWERSAVE,
667 };
668
669 static const char * const energy_perf_strings[] = {
670 [EPP_INDEX_DEFAULT] = "default",
671 [EPP_INDEX_PERFORMANCE] = "performance",
672 [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
673 [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
674 [EPP_INDEX_POWERSAVE] = "power",
675 NULL
676 };
677 static unsigned int epp_values[] = {
678 [EPP_INDEX_DEFAULT] = 0, /* Unused index */
679 [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
680 [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
681 [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
682 [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
683 };
684
intel_pstate_get_energy_pref_index(struct cpudata * cpu_data,int * raw_epp)685 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
686 {
687 s16 epp;
688 int index = -EINVAL;
689
690 *raw_epp = 0;
691 epp = intel_pstate_get_epp(cpu_data, 0);
692 if (epp < 0)
693 return epp;
694
695 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
696 if (epp == epp_values[EPP_INDEX_PERFORMANCE])
697 return EPP_INDEX_PERFORMANCE;
698 if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
699 return EPP_INDEX_BALANCE_PERFORMANCE;
700 if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
701 return EPP_INDEX_BALANCE_POWERSAVE;
702 if (epp == epp_values[EPP_INDEX_POWERSAVE])
703 return EPP_INDEX_POWERSAVE;
704 *raw_epp = epp;
705 return 0;
706 } else if (boot_cpu_has(X86_FEATURE_EPB)) {
707 /*
708 * Range:
709 * 0x00-0x03 : Performance
710 * 0x04-0x07 : Balance performance
711 * 0x08-0x0B : Balance power
712 * 0x0C-0x0F : Power
713 * The EPB is a 4 bit value, but our ranges restrict the
714 * value which can be set. Here only using top two bits
715 * effectively.
716 */
717 index = (epp >> 2) + 1;
718 }
719
720 return index;
721 }
722
intel_pstate_set_epp(struct cpudata * cpu,u32 epp)723 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
724 {
725 int ret;
726
727 /*
728 * Use the cached HWP Request MSR value, because in the active mode the
729 * register itself may be updated by intel_pstate_hwp_boost_up() or
730 * intel_pstate_hwp_boost_down() at any time.
731 */
732 u64 value = READ_ONCE(cpu->hwp_req_cached);
733
734 value &= ~GENMASK_ULL(31, 24);
735 value |= (u64)epp << 24;
736 /*
737 * The only other updater of hwp_req_cached in the active mode,
738 * intel_pstate_hwp_set(), is called under the same lock as this
739 * function, so it cannot run in parallel with the update below.
740 */
741 WRITE_ONCE(cpu->hwp_req_cached, value);
742 ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
743 if (!ret)
744 cpu->epp_cached = epp;
745
746 return ret;
747 }
748
intel_pstate_set_energy_pref_index(struct cpudata * cpu_data,int pref_index,bool use_raw,u32 raw_epp)749 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
750 int pref_index, bool use_raw,
751 u32 raw_epp)
752 {
753 int epp = -EINVAL;
754 int ret;
755
756 if (!pref_index)
757 epp = cpu_data->epp_default;
758
759 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
760 if (use_raw)
761 epp = raw_epp;
762 else if (epp == -EINVAL)
763 epp = epp_values[pref_index];
764
765 /*
766 * To avoid confusion, refuse to set EPP to any values different
767 * from 0 (performance) if the current policy is "performance",
768 * because those values would be overridden.
769 */
770 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
771 return -EBUSY;
772
773 ret = intel_pstate_set_epp(cpu_data, epp);
774 } else {
775 if (epp == -EINVAL)
776 epp = (pref_index - 1) << 2;
777 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
778 }
779
780 return ret;
781 }
782
show_energy_performance_available_preferences(struct cpufreq_policy * policy,char * buf)783 static ssize_t show_energy_performance_available_preferences(
784 struct cpufreq_policy *policy, char *buf)
785 {
786 int i = 0;
787 int ret = 0;
788
789 while (energy_perf_strings[i] != NULL)
790 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
791
792 ret += sprintf(&buf[ret], "\n");
793
794 return ret;
795 }
796
797 cpufreq_freq_attr_ro(energy_performance_available_preferences);
798
799 static struct cpufreq_driver intel_pstate;
800
store_energy_performance_preference(struct cpufreq_policy * policy,const char * buf,size_t count)801 static ssize_t store_energy_performance_preference(
802 struct cpufreq_policy *policy, const char *buf, size_t count)
803 {
804 struct cpudata *cpu = all_cpu_data[policy->cpu];
805 char str_preference[21];
806 bool raw = false;
807 ssize_t ret;
808 u32 epp = 0;
809
810 ret = sscanf(buf, "%20s", str_preference);
811 if (ret != 1)
812 return -EINVAL;
813
814 ret = match_string(energy_perf_strings, -1, str_preference);
815 if (ret < 0) {
816 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
817 return ret;
818
819 ret = kstrtouint(buf, 10, &epp);
820 if (ret)
821 return ret;
822
823 if (epp > 255)
824 return -EINVAL;
825
826 raw = true;
827 }
828
829 /*
830 * This function runs with the policy R/W semaphore held, which
831 * guarantees that the driver pointer will not change while it is
832 * running.
833 */
834 if (!intel_pstate_driver)
835 return -EAGAIN;
836
837 mutex_lock(&intel_pstate_limits_lock);
838
839 if (intel_pstate_driver == &intel_pstate) {
840 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
841 } else {
842 /*
843 * In the passive mode the governor needs to be stopped on the
844 * target CPU before the EPP update and restarted after it,
845 * which is super-heavy-weight, so make sure it is worth doing
846 * upfront.
847 */
848 if (!raw)
849 epp = ret ? epp_values[ret] : cpu->epp_default;
850
851 if (cpu->epp_cached != epp) {
852 int err;
853
854 cpufreq_stop_governor(policy);
855 ret = intel_pstate_set_epp(cpu, epp);
856 err = cpufreq_start_governor(policy);
857 if (!ret)
858 ret = err;
859 } else {
860 ret = 0;
861 }
862 }
863
864 mutex_unlock(&intel_pstate_limits_lock);
865
866 return ret ?: count;
867 }
868
show_energy_performance_preference(struct cpufreq_policy * policy,char * buf)869 static ssize_t show_energy_performance_preference(
870 struct cpufreq_policy *policy, char *buf)
871 {
872 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
873 int preference, raw_epp;
874
875 preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
876 if (preference < 0)
877 return preference;
878
879 if (raw_epp)
880 return sprintf(buf, "%d\n", raw_epp);
881 else
882 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
883 }
884
885 cpufreq_freq_attr_rw(energy_performance_preference);
886
show_base_frequency(struct cpufreq_policy * policy,char * buf)887 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
888 {
889 struct cpudata *cpu = all_cpu_data[policy->cpu];
890 int ratio, freq;
891
892 ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
893 if (ratio <= 0) {
894 u64 cap;
895
896 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
897 ratio = HWP_GUARANTEED_PERF(cap);
898 }
899
900 freq = ratio * cpu->pstate.scaling;
901 if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
902 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
903
904 return sprintf(buf, "%d\n", freq);
905 }
906
907 cpufreq_freq_attr_ro(base_frequency);
908
909 static struct freq_attr *hwp_cpufreq_attrs[] = {
910 &energy_performance_preference,
911 &energy_performance_available_preferences,
912 &base_frequency,
913 NULL,
914 };
915
__intel_pstate_get_hwp_cap(struct cpudata * cpu)916 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
917 {
918 u64 cap;
919
920 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
921 WRITE_ONCE(cpu->hwp_cap_cached, cap);
922 cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
923 cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
924 }
925
intel_pstate_get_hwp_cap(struct cpudata * cpu)926 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
927 {
928 int scaling = cpu->pstate.scaling;
929
930 __intel_pstate_get_hwp_cap(cpu);
931
932 cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
933 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
934 if (scaling != cpu->pstate.perf_ctl_scaling) {
935 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
936
937 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
938 perf_ctl_scaling);
939 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
940 perf_ctl_scaling);
941 }
942 }
943
intel_pstate_hwp_set(unsigned int cpu)944 static void intel_pstate_hwp_set(unsigned int cpu)
945 {
946 struct cpudata *cpu_data = all_cpu_data[cpu];
947 int max, min;
948 u64 value;
949 s16 epp;
950
951 max = cpu_data->max_perf_ratio;
952 min = cpu_data->min_perf_ratio;
953
954 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
955 min = max;
956
957 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
958
959 value &= ~HWP_MIN_PERF(~0L);
960 value |= HWP_MIN_PERF(min);
961
962 value &= ~HWP_MAX_PERF(~0L);
963 value |= HWP_MAX_PERF(max);
964
965 if (cpu_data->epp_policy == cpu_data->policy)
966 goto skip_epp;
967
968 cpu_data->epp_policy = cpu_data->policy;
969
970 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
971 epp = intel_pstate_get_epp(cpu_data, value);
972 cpu_data->epp_powersave = epp;
973 /* If EPP read was failed, then don't try to write */
974 if (epp < 0)
975 goto skip_epp;
976
977 epp = 0;
978 } else {
979 /* skip setting EPP, when saved value is invalid */
980 if (cpu_data->epp_powersave < 0)
981 goto skip_epp;
982
983 /*
984 * No need to restore EPP when it is not zero. This
985 * means:
986 * - Policy is not changed
987 * - user has manually changed
988 * - Error reading EPB
989 */
990 epp = intel_pstate_get_epp(cpu_data, value);
991 if (epp)
992 goto skip_epp;
993
994 epp = cpu_data->epp_powersave;
995 }
996 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
997 value &= ~GENMASK_ULL(31, 24);
998 value |= (u64)epp << 24;
999 } else {
1000 intel_pstate_set_epb(cpu, epp);
1001 }
1002 skip_epp:
1003 WRITE_ONCE(cpu_data->hwp_req_cached, value);
1004 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1005 }
1006
1007 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
1008
intel_pstate_hwp_offline(struct cpudata * cpu)1009 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1010 {
1011 u64 value = READ_ONCE(cpu->hwp_req_cached);
1012 int min_perf;
1013
1014 intel_pstate_disable_hwp_interrupt(cpu);
1015
1016 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1017 /*
1018 * In case the EPP has been set to "performance" by the
1019 * active mode "performance" scaling algorithm, replace that
1020 * temporary value with the cached EPP one.
1021 */
1022 value &= ~GENMASK_ULL(31, 24);
1023 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1024 /*
1025 * However, make sure that EPP will be set to "performance" when
1026 * the CPU is brought back online again and the "performance"
1027 * scaling algorithm is still in effect.
1028 */
1029 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1030 }
1031
1032 /*
1033 * Clear the desired perf field in the cached HWP request value to
1034 * prevent nonzero desired values from being leaked into the active
1035 * mode.
1036 */
1037 value &= ~HWP_DESIRED_PERF(~0L);
1038 WRITE_ONCE(cpu->hwp_req_cached, value);
1039
1040 value &= ~GENMASK_ULL(31, 0);
1041 min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1042
1043 /* Set hwp_max = hwp_min */
1044 value |= HWP_MAX_PERF(min_perf);
1045 value |= HWP_MIN_PERF(min_perf);
1046
1047 /* Set EPP to min */
1048 if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1049 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1050
1051 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1052 }
1053
1054 #define POWER_CTL_EE_ENABLE 1
1055 #define POWER_CTL_EE_DISABLE 2
1056
1057 static int power_ctl_ee_state;
1058
set_power_ctl_ee_state(bool input)1059 static void set_power_ctl_ee_state(bool input)
1060 {
1061 u64 power_ctl;
1062
1063 mutex_lock(&intel_pstate_driver_lock);
1064 rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1065 if (input) {
1066 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1067 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1068 } else {
1069 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1070 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1071 }
1072 wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1073 mutex_unlock(&intel_pstate_driver_lock);
1074 }
1075
1076 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1077
intel_pstate_hwp_reenable(struct cpudata * cpu)1078 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1079 {
1080 intel_pstate_hwp_enable(cpu);
1081 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1082 }
1083
intel_pstate_suspend(struct cpufreq_policy * policy)1084 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1085 {
1086 struct cpudata *cpu = all_cpu_data[policy->cpu];
1087
1088 pr_debug("CPU %d suspending\n", cpu->cpu);
1089
1090 cpu->suspended = true;
1091
1092 /* disable HWP interrupt and cancel any pending work */
1093 intel_pstate_disable_hwp_interrupt(cpu);
1094
1095 return 0;
1096 }
1097
intel_pstate_resume(struct cpufreq_policy * policy)1098 static int intel_pstate_resume(struct cpufreq_policy *policy)
1099 {
1100 struct cpudata *cpu = all_cpu_data[policy->cpu];
1101
1102 pr_debug("CPU %d resuming\n", cpu->cpu);
1103
1104 /* Only restore if the system default is changed */
1105 if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1106 set_power_ctl_ee_state(true);
1107 else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1108 set_power_ctl_ee_state(false);
1109
1110 if (cpu->suspended && hwp_active) {
1111 mutex_lock(&intel_pstate_limits_lock);
1112
1113 /* Re-enable HWP, because "online" has not done that. */
1114 intel_pstate_hwp_reenable(cpu);
1115
1116 mutex_unlock(&intel_pstate_limits_lock);
1117 }
1118
1119 cpu->suspended = false;
1120
1121 return 0;
1122 }
1123
intel_pstate_update_policies(void)1124 static void intel_pstate_update_policies(void)
1125 {
1126 int cpu;
1127
1128 for_each_possible_cpu(cpu)
1129 cpufreq_update_policy(cpu);
1130 }
1131
__intel_pstate_update_max_freq(struct cpudata * cpudata,struct cpufreq_policy * policy)1132 static void __intel_pstate_update_max_freq(struct cpudata *cpudata,
1133 struct cpufreq_policy *policy)
1134 {
1135 policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1136 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1137 refresh_frequency_limits(policy);
1138 }
1139
intel_pstate_update_max_freq(unsigned int cpu)1140 static void intel_pstate_update_max_freq(unsigned int cpu)
1141 {
1142 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1143
1144 if (!policy)
1145 return;
1146
1147 __intel_pstate_update_max_freq(all_cpu_data[cpu], policy);
1148
1149 cpufreq_cpu_release(policy);
1150 }
1151
intel_pstate_update_limits(unsigned int cpu)1152 static void intel_pstate_update_limits(unsigned int cpu)
1153 {
1154 mutex_lock(&intel_pstate_driver_lock);
1155
1156 update_turbo_state();
1157 /*
1158 * If turbo has been turned on or off globally, policy limits for
1159 * all CPUs need to be updated to reflect that.
1160 */
1161 if (global.turbo_disabled_mf != global.turbo_disabled) {
1162 global.turbo_disabled_mf = global.turbo_disabled;
1163 arch_set_max_freq_ratio(global.turbo_disabled);
1164 for_each_possible_cpu(cpu)
1165 intel_pstate_update_max_freq(cpu);
1166 } else {
1167 cpufreq_update_policy(cpu);
1168 }
1169
1170 mutex_unlock(&intel_pstate_driver_lock);
1171 }
1172
1173 /************************** sysfs begin ************************/
1174 #define show_one(file_name, object) \
1175 static ssize_t show_##file_name \
1176 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
1177 { \
1178 return sprintf(buf, "%u\n", global.object); \
1179 }
1180
1181 static ssize_t intel_pstate_show_status(char *buf);
1182 static int intel_pstate_update_status(const char *buf, size_t size);
1183
show_status(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1184 static ssize_t show_status(struct kobject *kobj,
1185 struct kobj_attribute *attr, char *buf)
1186 {
1187 ssize_t ret;
1188
1189 mutex_lock(&intel_pstate_driver_lock);
1190 ret = intel_pstate_show_status(buf);
1191 mutex_unlock(&intel_pstate_driver_lock);
1192
1193 return ret;
1194 }
1195
store_status(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1196 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1197 const char *buf, size_t count)
1198 {
1199 char *p = memchr(buf, '\n', count);
1200 int ret;
1201
1202 mutex_lock(&intel_pstate_driver_lock);
1203 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1204 mutex_unlock(&intel_pstate_driver_lock);
1205
1206 return ret < 0 ? ret : count;
1207 }
1208
show_turbo_pct(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1209 static ssize_t show_turbo_pct(struct kobject *kobj,
1210 struct kobj_attribute *attr, char *buf)
1211 {
1212 struct cpudata *cpu;
1213 int total, no_turbo, turbo_pct;
1214 uint32_t turbo_fp;
1215
1216 mutex_lock(&intel_pstate_driver_lock);
1217
1218 if (!intel_pstate_driver) {
1219 mutex_unlock(&intel_pstate_driver_lock);
1220 return -EAGAIN;
1221 }
1222
1223 cpu = all_cpu_data[0];
1224
1225 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1226 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1227 turbo_fp = div_fp(no_turbo, total);
1228 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1229
1230 mutex_unlock(&intel_pstate_driver_lock);
1231
1232 return sprintf(buf, "%u\n", turbo_pct);
1233 }
1234
show_num_pstates(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1235 static ssize_t show_num_pstates(struct kobject *kobj,
1236 struct kobj_attribute *attr, char *buf)
1237 {
1238 struct cpudata *cpu;
1239 int total;
1240
1241 mutex_lock(&intel_pstate_driver_lock);
1242
1243 if (!intel_pstate_driver) {
1244 mutex_unlock(&intel_pstate_driver_lock);
1245 return -EAGAIN;
1246 }
1247
1248 cpu = all_cpu_data[0];
1249 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1250
1251 mutex_unlock(&intel_pstate_driver_lock);
1252
1253 return sprintf(buf, "%u\n", total);
1254 }
1255
show_no_turbo(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1256 static ssize_t show_no_turbo(struct kobject *kobj,
1257 struct kobj_attribute *attr, char *buf)
1258 {
1259 ssize_t ret;
1260
1261 mutex_lock(&intel_pstate_driver_lock);
1262
1263 if (!intel_pstate_driver) {
1264 mutex_unlock(&intel_pstate_driver_lock);
1265 return -EAGAIN;
1266 }
1267
1268 update_turbo_state();
1269 if (global.turbo_disabled)
1270 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1271 else
1272 ret = sprintf(buf, "%u\n", global.no_turbo);
1273
1274 mutex_unlock(&intel_pstate_driver_lock);
1275
1276 return ret;
1277 }
1278
store_no_turbo(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1279 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1280 const char *buf, size_t count)
1281 {
1282 unsigned int input;
1283 int ret;
1284
1285 ret = sscanf(buf, "%u", &input);
1286 if (ret != 1)
1287 return -EINVAL;
1288
1289 mutex_lock(&intel_pstate_driver_lock);
1290
1291 if (!intel_pstate_driver) {
1292 mutex_unlock(&intel_pstate_driver_lock);
1293 return -EAGAIN;
1294 }
1295
1296 mutex_lock(&intel_pstate_limits_lock);
1297
1298 update_turbo_state();
1299 if (global.turbo_disabled) {
1300 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1301 mutex_unlock(&intel_pstate_limits_lock);
1302 mutex_unlock(&intel_pstate_driver_lock);
1303 return -EPERM;
1304 }
1305
1306 global.no_turbo = clamp_t(int, input, 0, 1);
1307
1308 if (global.no_turbo) {
1309 struct cpudata *cpu = all_cpu_data[0];
1310 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1311
1312 /* Squash the global minimum into the permitted range. */
1313 if (global.min_perf_pct > pct)
1314 global.min_perf_pct = pct;
1315 }
1316
1317 mutex_unlock(&intel_pstate_limits_lock);
1318
1319 intel_pstate_update_policies();
1320 arch_set_max_freq_ratio(global.no_turbo);
1321
1322 mutex_unlock(&intel_pstate_driver_lock);
1323
1324 return count;
1325 }
1326
update_qos_request(enum freq_qos_req_type type)1327 static void update_qos_request(enum freq_qos_req_type type)
1328 {
1329 struct freq_qos_request *req;
1330 struct cpufreq_policy *policy;
1331 int i;
1332
1333 for_each_possible_cpu(i) {
1334 struct cpudata *cpu = all_cpu_data[i];
1335 unsigned int freq, perf_pct;
1336
1337 policy = cpufreq_cpu_get(i);
1338 if (!policy)
1339 continue;
1340
1341 req = policy->driver_data;
1342 cpufreq_cpu_put(policy);
1343
1344 if (!req)
1345 continue;
1346
1347 if (hwp_active)
1348 intel_pstate_get_hwp_cap(cpu);
1349
1350 if (type == FREQ_QOS_MIN) {
1351 perf_pct = global.min_perf_pct;
1352 } else {
1353 req++;
1354 perf_pct = global.max_perf_pct;
1355 }
1356
1357 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1358
1359 if (freq_qos_update_request(req, freq) < 0)
1360 pr_warn("Failed to update freq constraint: CPU%d\n", i);
1361 }
1362 }
1363
store_max_perf_pct(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1364 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1365 const char *buf, size_t count)
1366 {
1367 unsigned int input;
1368 int ret;
1369
1370 ret = sscanf(buf, "%u", &input);
1371 if (ret != 1)
1372 return -EINVAL;
1373
1374 mutex_lock(&intel_pstate_driver_lock);
1375
1376 if (!intel_pstate_driver) {
1377 mutex_unlock(&intel_pstate_driver_lock);
1378 return -EAGAIN;
1379 }
1380
1381 mutex_lock(&intel_pstate_limits_lock);
1382
1383 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1384
1385 mutex_unlock(&intel_pstate_limits_lock);
1386
1387 if (intel_pstate_driver == &intel_pstate)
1388 intel_pstate_update_policies();
1389 else
1390 update_qos_request(FREQ_QOS_MAX);
1391
1392 mutex_unlock(&intel_pstate_driver_lock);
1393
1394 return count;
1395 }
1396
store_min_perf_pct(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1397 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1398 const char *buf, size_t count)
1399 {
1400 unsigned int input;
1401 int ret;
1402
1403 ret = sscanf(buf, "%u", &input);
1404 if (ret != 1)
1405 return -EINVAL;
1406
1407 mutex_lock(&intel_pstate_driver_lock);
1408
1409 if (!intel_pstate_driver) {
1410 mutex_unlock(&intel_pstate_driver_lock);
1411 return -EAGAIN;
1412 }
1413
1414 mutex_lock(&intel_pstate_limits_lock);
1415
1416 global.min_perf_pct = clamp_t(int, input,
1417 min_perf_pct_min(), global.max_perf_pct);
1418
1419 mutex_unlock(&intel_pstate_limits_lock);
1420
1421 if (intel_pstate_driver == &intel_pstate)
1422 intel_pstate_update_policies();
1423 else
1424 update_qos_request(FREQ_QOS_MIN);
1425
1426 mutex_unlock(&intel_pstate_driver_lock);
1427
1428 return count;
1429 }
1430
show_hwp_dynamic_boost(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1431 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1432 struct kobj_attribute *attr, char *buf)
1433 {
1434 return sprintf(buf, "%u\n", hwp_boost);
1435 }
1436
store_hwp_dynamic_boost(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1437 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1438 struct kobj_attribute *b,
1439 const char *buf, size_t count)
1440 {
1441 unsigned int input;
1442 int ret;
1443
1444 ret = kstrtouint(buf, 10, &input);
1445 if (ret)
1446 return ret;
1447
1448 mutex_lock(&intel_pstate_driver_lock);
1449 hwp_boost = !!input;
1450 intel_pstate_update_policies();
1451 mutex_unlock(&intel_pstate_driver_lock);
1452
1453 return count;
1454 }
1455
show_energy_efficiency(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1456 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1457 char *buf)
1458 {
1459 u64 power_ctl;
1460 int enable;
1461
1462 rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1463 enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1464 return sprintf(buf, "%d\n", !enable);
1465 }
1466
store_energy_efficiency(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1467 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1468 const char *buf, size_t count)
1469 {
1470 bool input;
1471 int ret;
1472
1473 ret = kstrtobool(buf, &input);
1474 if (ret)
1475 return ret;
1476
1477 set_power_ctl_ee_state(input);
1478
1479 return count;
1480 }
1481
1482 show_one(max_perf_pct, max_perf_pct);
1483 show_one(min_perf_pct, min_perf_pct);
1484
1485 define_one_global_rw(status);
1486 define_one_global_rw(no_turbo);
1487 define_one_global_rw(max_perf_pct);
1488 define_one_global_rw(min_perf_pct);
1489 define_one_global_ro(turbo_pct);
1490 define_one_global_ro(num_pstates);
1491 define_one_global_rw(hwp_dynamic_boost);
1492 define_one_global_rw(energy_efficiency);
1493
1494 static struct attribute *intel_pstate_attributes[] = {
1495 &status.attr,
1496 &no_turbo.attr,
1497 NULL
1498 };
1499
1500 static const struct attribute_group intel_pstate_attr_group = {
1501 .attrs = intel_pstate_attributes,
1502 };
1503
1504 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1505
1506 static struct kobject *intel_pstate_kobject;
1507
intel_pstate_sysfs_expose_params(void)1508 static void __init intel_pstate_sysfs_expose_params(void)
1509 {
1510 struct device *dev_root = bus_get_dev_root(&cpu_subsys);
1511 int rc;
1512
1513 if (dev_root) {
1514 intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj);
1515 put_device(dev_root);
1516 }
1517 if (WARN_ON(!intel_pstate_kobject))
1518 return;
1519
1520 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1521 if (WARN_ON(rc))
1522 return;
1523
1524 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1525 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1526 WARN_ON(rc);
1527
1528 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1529 WARN_ON(rc);
1530 }
1531
1532 /*
1533 * If per cpu limits are enforced there are no global limits, so
1534 * return without creating max/min_perf_pct attributes
1535 */
1536 if (per_cpu_limits)
1537 return;
1538
1539 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1540 WARN_ON(rc);
1541
1542 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1543 WARN_ON(rc);
1544
1545 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1546 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1547 WARN_ON(rc);
1548 }
1549 }
1550
intel_pstate_sysfs_remove(void)1551 static void __init intel_pstate_sysfs_remove(void)
1552 {
1553 if (!intel_pstate_kobject)
1554 return;
1555
1556 sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1557
1558 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1559 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1560 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1561 }
1562
1563 if (!per_cpu_limits) {
1564 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1565 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1566
1567 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1568 sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1569 }
1570
1571 kobject_put(intel_pstate_kobject);
1572 }
1573
intel_pstate_sysfs_expose_hwp_dynamic_boost(void)1574 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1575 {
1576 int rc;
1577
1578 if (!hwp_active)
1579 return;
1580
1581 rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1582 WARN_ON_ONCE(rc);
1583 }
1584
intel_pstate_sysfs_hide_hwp_dynamic_boost(void)1585 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1586 {
1587 if (!hwp_active)
1588 return;
1589
1590 sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1591 }
1592
1593 /************************** sysfs end ************************/
1594
intel_pstate_notify_work(struct work_struct * work)1595 static void intel_pstate_notify_work(struct work_struct *work)
1596 {
1597 struct cpudata *cpudata =
1598 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1599 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu);
1600
1601 if (policy) {
1602 intel_pstate_get_hwp_cap(cpudata);
1603 __intel_pstate_update_max_freq(cpudata, policy);
1604
1605 cpufreq_cpu_release(policy);
1606 }
1607
1608 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1609 }
1610
1611 static DEFINE_SPINLOCK(hwp_notify_lock);
1612 static cpumask_t hwp_intr_enable_mask;
1613
notify_hwp_interrupt(void)1614 void notify_hwp_interrupt(void)
1615 {
1616 unsigned int this_cpu = smp_processor_id();
1617 struct cpudata *cpudata;
1618 unsigned long flags;
1619 u64 value;
1620
1621 if (!READ_ONCE(hwp_active) || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1622 return;
1623
1624 rdmsrl_safe(MSR_HWP_STATUS, &value);
1625 if (!(value & 0x01))
1626 return;
1627
1628 spin_lock_irqsave(&hwp_notify_lock, flags);
1629
1630 if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1631 goto ack_intr;
1632
1633 /*
1634 * Currently we never free all_cpu_data. And we can't reach here
1635 * without this allocated. But for safety for future changes, added
1636 * check.
1637 */
1638 if (unlikely(!READ_ONCE(all_cpu_data)))
1639 goto ack_intr;
1640
1641 /*
1642 * The free is done during cleanup, when cpufreq registry is failed.
1643 * We wouldn't be here if it fails on init or switch status. But for
1644 * future changes, added check.
1645 */
1646 cpudata = READ_ONCE(all_cpu_data[this_cpu]);
1647 if (unlikely(!cpudata))
1648 goto ack_intr;
1649
1650 schedule_delayed_work(&cpudata->hwp_notify_work, msecs_to_jiffies(10));
1651
1652 spin_unlock_irqrestore(&hwp_notify_lock, flags);
1653
1654 return;
1655
1656 ack_intr:
1657 wrmsrl_safe(MSR_HWP_STATUS, 0);
1658 spin_unlock_irqrestore(&hwp_notify_lock, flags);
1659 }
1660
intel_pstate_disable_hwp_interrupt(struct cpudata * cpudata)1661 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1662 {
1663 unsigned long flags;
1664
1665 if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1666 return;
1667
1668 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1669 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1670
1671 spin_lock_irqsave(&hwp_notify_lock, flags);
1672 if (cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask))
1673 cancel_delayed_work(&cpudata->hwp_notify_work);
1674 spin_unlock_irqrestore(&hwp_notify_lock, flags);
1675 }
1676
intel_pstate_enable_hwp_interrupt(struct cpudata * cpudata)1677 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1678 {
1679 /* Enable HWP notification interrupt for guaranteed performance change */
1680 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1681 unsigned long flags;
1682
1683 spin_lock_irqsave(&hwp_notify_lock, flags);
1684 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1685 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1686 spin_unlock_irqrestore(&hwp_notify_lock, flags);
1687
1688 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1689 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01);
1690 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1691 }
1692 }
1693
intel_pstate_update_epp_defaults(struct cpudata * cpudata)1694 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata)
1695 {
1696 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1697
1698 /*
1699 * If this CPU gen doesn't call for change in balance_perf
1700 * EPP return.
1701 */
1702 if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE)
1703 return;
1704
1705 /*
1706 * If the EPP is set by firmware, which means that firmware enabled HWP
1707 * - Is equal or less than 0x80 (default balance_perf EPP)
1708 * - But less performance oriented than performance EPP
1709 * then use this as new balance_perf EPP.
1710 */
1711 if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE &&
1712 cpudata->epp_default > HWP_EPP_PERFORMANCE) {
1713 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default;
1714 return;
1715 }
1716
1717 /*
1718 * Use hard coded value per gen to update the balance_perf
1719 * and default EPP.
1720 */
1721 cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
1722 intel_pstate_set_epp(cpudata, cpudata->epp_default);
1723 }
1724
intel_pstate_hwp_enable(struct cpudata * cpudata)1725 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1726 {
1727 /* First disable HWP notification interrupt till we activate again */
1728 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1729 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1730
1731 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1732
1733 intel_pstate_enable_hwp_interrupt(cpudata);
1734
1735 if (cpudata->epp_default >= 0)
1736 return;
1737
1738 intel_pstate_update_epp_defaults(cpudata);
1739 }
1740
atom_get_min_pstate(int not_used)1741 static int atom_get_min_pstate(int not_used)
1742 {
1743 u64 value;
1744
1745 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1746 return (value >> 8) & 0x7F;
1747 }
1748
atom_get_max_pstate(int not_used)1749 static int atom_get_max_pstate(int not_used)
1750 {
1751 u64 value;
1752
1753 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1754 return (value >> 16) & 0x7F;
1755 }
1756
atom_get_turbo_pstate(int not_used)1757 static int atom_get_turbo_pstate(int not_used)
1758 {
1759 u64 value;
1760
1761 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1762 return value & 0x7F;
1763 }
1764
atom_get_val(struct cpudata * cpudata,int pstate)1765 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1766 {
1767 u64 val;
1768 int32_t vid_fp;
1769 u32 vid;
1770
1771 val = (u64)pstate << 8;
1772 if (global.no_turbo && !global.turbo_disabled)
1773 val |= (u64)1 << 32;
1774
1775 vid_fp = cpudata->vid.min + mul_fp(
1776 int_tofp(pstate - cpudata->pstate.min_pstate),
1777 cpudata->vid.ratio);
1778
1779 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1780 vid = ceiling_fp(vid_fp);
1781
1782 if (pstate > cpudata->pstate.max_pstate)
1783 vid = cpudata->vid.turbo;
1784
1785 return val | vid;
1786 }
1787
silvermont_get_scaling(void)1788 static int silvermont_get_scaling(void)
1789 {
1790 u64 value;
1791 int i;
1792 /* Defined in Table 35-6 from SDM (Sept 2015) */
1793 static int silvermont_freq_table[] = {
1794 83300, 100000, 133300, 116700, 80000};
1795
1796 rdmsrl(MSR_FSB_FREQ, value);
1797 i = value & 0x7;
1798 WARN_ON(i > 4);
1799
1800 return silvermont_freq_table[i];
1801 }
1802
airmont_get_scaling(void)1803 static int airmont_get_scaling(void)
1804 {
1805 u64 value;
1806 int i;
1807 /* Defined in Table 35-10 from SDM (Sept 2015) */
1808 static int airmont_freq_table[] = {
1809 83300, 100000, 133300, 116700, 80000,
1810 93300, 90000, 88900, 87500};
1811
1812 rdmsrl(MSR_FSB_FREQ, value);
1813 i = value & 0xF;
1814 WARN_ON(i > 8);
1815
1816 return airmont_freq_table[i];
1817 }
1818
atom_get_vid(struct cpudata * cpudata)1819 static void atom_get_vid(struct cpudata *cpudata)
1820 {
1821 u64 value;
1822
1823 rdmsrl(MSR_ATOM_CORE_VIDS, value);
1824 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1825 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1826 cpudata->vid.ratio = div_fp(
1827 cpudata->vid.max - cpudata->vid.min,
1828 int_tofp(cpudata->pstate.max_pstate -
1829 cpudata->pstate.min_pstate));
1830
1831 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1832 cpudata->vid.turbo = value & 0x7f;
1833 }
1834
core_get_min_pstate(int cpu)1835 static int core_get_min_pstate(int cpu)
1836 {
1837 u64 value;
1838
1839 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1840 return (value >> 40) & 0xFF;
1841 }
1842
core_get_max_pstate_physical(int cpu)1843 static int core_get_max_pstate_physical(int cpu)
1844 {
1845 u64 value;
1846
1847 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1848 return (value >> 8) & 0xFF;
1849 }
1850
core_get_tdp_ratio(int cpu,u64 plat_info)1851 static int core_get_tdp_ratio(int cpu, u64 plat_info)
1852 {
1853 /* Check how many TDP levels present */
1854 if (plat_info & 0x600000000) {
1855 u64 tdp_ctrl;
1856 u64 tdp_ratio;
1857 int tdp_msr;
1858 int err;
1859
1860 /* Get the TDP level (0, 1, 2) to get ratios */
1861 err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1862 if (err)
1863 return err;
1864
1865 /* TDP MSR are continuous starting at 0x648 */
1866 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1867 err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
1868 if (err)
1869 return err;
1870
1871 /* For level 1 and 2, bits[23:16] contain the ratio */
1872 if (tdp_ctrl & 0x03)
1873 tdp_ratio >>= 16;
1874
1875 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1876 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1877
1878 return (int)tdp_ratio;
1879 }
1880
1881 return -ENXIO;
1882 }
1883
core_get_max_pstate(int cpu)1884 static int core_get_max_pstate(int cpu)
1885 {
1886 u64 tar;
1887 u64 plat_info;
1888 int max_pstate;
1889 int tdp_ratio;
1890 int err;
1891
1892 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
1893 max_pstate = (plat_info >> 8) & 0xFF;
1894
1895 tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
1896 if (tdp_ratio <= 0)
1897 return max_pstate;
1898
1899 if (hwp_active) {
1900 /* Turbo activation ratio is not used on HWP platforms */
1901 return tdp_ratio;
1902 }
1903
1904 err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
1905 if (!err) {
1906 int tar_levels;
1907
1908 /* Do some sanity checking for safety */
1909 tar_levels = tar & 0xff;
1910 if (tdp_ratio - 1 == tar_levels) {
1911 max_pstate = tar_levels;
1912 pr_debug("max_pstate=TAC %x\n", max_pstate);
1913 }
1914 }
1915
1916 return max_pstate;
1917 }
1918
core_get_turbo_pstate(int cpu)1919 static int core_get_turbo_pstate(int cpu)
1920 {
1921 u64 value;
1922 int nont, ret;
1923
1924 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1925 nont = core_get_max_pstate(cpu);
1926 ret = (value) & 255;
1927 if (ret <= nont)
1928 ret = nont;
1929 return ret;
1930 }
1931
core_get_val(struct cpudata * cpudata,int pstate)1932 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1933 {
1934 u64 val;
1935
1936 val = (u64)pstate << 8;
1937 if (global.no_turbo && !global.turbo_disabled)
1938 val |= (u64)1 << 32;
1939
1940 return val;
1941 }
1942
knl_get_aperf_mperf_shift(void)1943 static int knl_get_aperf_mperf_shift(void)
1944 {
1945 return 10;
1946 }
1947
knl_get_turbo_pstate(int cpu)1948 static int knl_get_turbo_pstate(int cpu)
1949 {
1950 u64 value;
1951 int nont, ret;
1952
1953 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1954 nont = core_get_max_pstate(cpu);
1955 ret = (((value) >> 8) & 0xFF);
1956 if (ret <= nont)
1957 ret = nont;
1958 return ret;
1959 }
1960
hybrid_get_type(void * data)1961 static void hybrid_get_type(void *data)
1962 {
1963 u8 *cpu_type = data;
1964
1965 *cpu_type = get_this_hybrid_cpu_type();
1966 }
1967
hwp_get_cpu_scaling(int cpu)1968 static int hwp_get_cpu_scaling(int cpu)
1969 {
1970 u8 cpu_type = 0;
1971
1972 smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1);
1973 /* P-cores have a smaller perf level-to-freqency scaling factor. */
1974 if (cpu_type == 0x40)
1975 return HYBRID_SCALING_FACTOR;
1976
1977 /* Use default core scaling for E-cores */
1978 if (cpu_type == 0x20)
1979 return core_get_scaling();
1980
1981 /*
1982 * If reached here, this system is either non-hybrid (like Tiger
1983 * Lake) or hybrid-capable (like Alder Lake or Raptor Lake) with
1984 * no E cores (in which case CPUID for hybrid support is 0).
1985 *
1986 * The CPPC nominal_frequency field is 0 for non-hybrid systems,
1987 * so the default core scaling will be used for them.
1988 */
1989 return intel_pstate_cppc_get_scaling(cpu);
1990 }
1991
intel_pstate_set_pstate(struct cpudata * cpu,int pstate)1992 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1993 {
1994 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1995 cpu->pstate.current_pstate = pstate;
1996 /*
1997 * Generally, there is no guarantee that this code will always run on
1998 * the CPU being updated, so force the register update to run on the
1999 * right CPU.
2000 */
2001 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2002 pstate_funcs.get_val(cpu, pstate));
2003 }
2004
intel_pstate_set_min_pstate(struct cpudata * cpu)2005 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
2006 {
2007 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
2008 }
2009
intel_pstate_max_within_limits(struct cpudata * cpu)2010 static void intel_pstate_max_within_limits(struct cpudata *cpu)
2011 {
2012 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
2013
2014 update_turbo_state();
2015 intel_pstate_set_pstate(cpu, pstate);
2016 }
2017
intel_pstate_get_cpu_pstates(struct cpudata * cpu)2018 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
2019 {
2020 int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
2021 int perf_ctl_scaling = pstate_funcs.get_scaling();
2022
2023 cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
2024 cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
2025 cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
2026
2027 if (hwp_active && !hwp_mode_bdw) {
2028 __intel_pstate_get_hwp_cap(cpu);
2029
2030 if (pstate_funcs.get_cpu_scaling) {
2031 cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
2032 if (cpu->pstate.scaling != perf_ctl_scaling)
2033 intel_pstate_hybrid_hwp_adjust(cpu);
2034 } else {
2035 cpu->pstate.scaling = perf_ctl_scaling;
2036 }
2037 } else {
2038 cpu->pstate.scaling = perf_ctl_scaling;
2039 cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
2040 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
2041 }
2042
2043 if (cpu->pstate.scaling == perf_ctl_scaling) {
2044 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2045 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2046 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2047 }
2048
2049 if (pstate_funcs.get_aperf_mperf_shift)
2050 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2051
2052 if (pstate_funcs.get_vid)
2053 pstate_funcs.get_vid(cpu);
2054
2055 intel_pstate_set_min_pstate(cpu);
2056 }
2057
2058 /*
2059 * Long hold time will keep high perf limits for long time,
2060 * which negatively impacts perf/watt for some workloads,
2061 * like specpower. 3ms is based on experiements on some
2062 * workoads.
2063 */
2064 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2065
intel_pstate_hwp_boost_up(struct cpudata * cpu)2066 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2067 {
2068 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2069 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2070 u32 max_limit = (hwp_req & 0xff00) >> 8;
2071 u32 min_limit = (hwp_req & 0xff);
2072 u32 boost_level1;
2073
2074 /*
2075 * Cases to consider (User changes via sysfs or boot time):
2076 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2077 * No boost, return.
2078 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2079 * Should result in one level boost only for P0.
2080 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2081 * Should result in two level boost:
2082 * (min + p1)/2 and P1.
2083 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2084 * Should result in three level boost:
2085 * (min + p1)/2, P1 and P0.
2086 */
2087
2088 /* If max and min are equal or already at max, nothing to boost */
2089 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2090 return;
2091
2092 if (!cpu->hwp_boost_min)
2093 cpu->hwp_boost_min = min_limit;
2094
2095 /* level at half way mark between min and guranteed */
2096 boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2097
2098 if (cpu->hwp_boost_min < boost_level1)
2099 cpu->hwp_boost_min = boost_level1;
2100 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2101 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2102 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2103 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2104 cpu->hwp_boost_min = max_limit;
2105 else
2106 return;
2107
2108 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2109 wrmsrl(MSR_HWP_REQUEST, hwp_req);
2110 cpu->last_update = cpu->sample.time;
2111 }
2112
intel_pstate_hwp_boost_down(struct cpudata * cpu)2113 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2114 {
2115 if (cpu->hwp_boost_min) {
2116 bool expired;
2117
2118 /* Check if we are idle for hold time to boost down */
2119 expired = time_after64(cpu->sample.time, cpu->last_update +
2120 hwp_boost_hold_time_ns);
2121 if (expired) {
2122 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2123 cpu->hwp_boost_min = 0;
2124 }
2125 }
2126 cpu->last_update = cpu->sample.time;
2127 }
2128
intel_pstate_update_util_hwp_local(struct cpudata * cpu,u64 time)2129 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2130 u64 time)
2131 {
2132 cpu->sample.time = time;
2133
2134 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2135 bool do_io = false;
2136
2137 cpu->sched_flags = 0;
2138 /*
2139 * Set iowait_boost flag and update time. Since IO WAIT flag
2140 * is set all the time, we can't just conclude that there is
2141 * some IO bound activity is scheduled on this CPU with just
2142 * one occurrence. If we receive at least two in two
2143 * consecutive ticks, then we treat as boost candidate.
2144 */
2145 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2146 do_io = true;
2147
2148 cpu->last_io_update = time;
2149
2150 if (do_io)
2151 intel_pstate_hwp_boost_up(cpu);
2152
2153 } else {
2154 intel_pstate_hwp_boost_down(cpu);
2155 }
2156 }
2157
intel_pstate_update_util_hwp(struct update_util_data * data,u64 time,unsigned int flags)2158 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2159 u64 time, unsigned int flags)
2160 {
2161 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2162
2163 cpu->sched_flags |= flags;
2164
2165 if (smp_processor_id() == cpu->cpu)
2166 intel_pstate_update_util_hwp_local(cpu, time);
2167 }
2168
intel_pstate_calc_avg_perf(struct cpudata * cpu)2169 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2170 {
2171 struct sample *sample = &cpu->sample;
2172
2173 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2174 }
2175
intel_pstate_sample(struct cpudata * cpu,u64 time)2176 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2177 {
2178 u64 aperf, mperf;
2179 unsigned long flags;
2180 u64 tsc;
2181
2182 local_irq_save(flags);
2183 rdmsrl(MSR_IA32_APERF, aperf);
2184 rdmsrl(MSR_IA32_MPERF, mperf);
2185 tsc = rdtsc();
2186 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2187 local_irq_restore(flags);
2188 return false;
2189 }
2190 local_irq_restore(flags);
2191
2192 cpu->last_sample_time = cpu->sample.time;
2193 cpu->sample.time = time;
2194 cpu->sample.aperf = aperf;
2195 cpu->sample.mperf = mperf;
2196 cpu->sample.tsc = tsc;
2197 cpu->sample.aperf -= cpu->prev_aperf;
2198 cpu->sample.mperf -= cpu->prev_mperf;
2199 cpu->sample.tsc -= cpu->prev_tsc;
2200
2201 cpu->prev_aperf = aperf;
2202 cpu->prev_mperf = mperf;
2203 cpu->prev_tsc = tsc;
2204 /*
2205 * First time this function is invoked in a given cycle, all of the
2206 * previous sample data fields are equal to zero or stale and they must
2207 * be populated with meaningful numbers for things to work, so assume
2208 * that sample.time will always be reset before setting the utilization
2209 * update hook and make the caller skip the sample then.
2210 */
2211 if (cpu->last_sample_time) {
2212 intel_pstate_calc_avg_perf(cpu);
2213 return true;
2214 }
2215 return false;
2216 }
2217
get_avg_frequency(struct cpudata * cpu)2218 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2219 {
2220 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2221 }
2222
get_avg_pstate(struct cpudata * cpu)2223 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2224 {
2225 return mul_ext_fp(cpu->pstate.max_pstate_physical,
2226 cpu->sample.core_avg_perf);
2227 }
2228
get_target_pstate(struct cpudata * cpu)2229 static inline int32_t get_target_pstate(struct cpudata *cpu)
2230 {
2231 struct sample *sample = &cpu->sample;
2232 int32_t busy_frac;
2233 int target, avg_pstate;
2234
2235 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2236 sample->tsc);
2237
2238 if (busy_frac < cpu->iowait_boost)
2239 busy_frac = cpu->iowait_boost;
2240
2241 sample->busy_scaled = busy_frac * 100;
2242
2243 target = global.no_turbo || global.turbo_disabled ?
2244 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2245 target += target >> 2;
2246 target = mul_fp(target, busy_frac);
2247 if (target < cpu->pstate.min_pstate)
2248 target = cpu->pstate.min_pstate;
2249
2250 /*
2251 * If the average P-state during the previous cycle was higher than the
2252 * current target, add 50% of the difference to the target to reduce
2253 * possible performance oscillations and offset possible performance
2254 * loss related to moving the workload from one CPU to another within
2255 * a package/module.
2256 */
2257 avg_pstate = get_avg_pstate(cpu);
2258 if (avg_pstate > target)
2259 target += (avg_pstate - target) >> 1;
2260
2261 return target;
2262 }
2263
intel_pstate_prepare_request(struct cpudata * cpu,int pstate)2264 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2265 {
2266 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2267 int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2268
2269 return clamp_t(int, pstate, min_pstate, max_pstate);
2270 }
2271
intel_pstate_update_pstate(struct cpudata * cpu,int pstate)2272 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2273 {
2274 if (pstate == cpu->pstate.current_pstate)
2275 return;
2276
2277 cpu->pstate.current_pstate = pstate;
2278 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2279 }
2280
intel_pstate_adjust_pstate(struct cpudata * cpu)2281 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2282 {
2283 int from = cpu->pstate.current_pstate;
2284 struct sample *sample;
2285 int target_pstate;
2286
2287 update_turbo_state();
2288
2289 target_pstate = get_target_pstate(cpu);
2290 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2291 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2292 intel_pstate_update_pstate(cpu, target_pstate);
2293
2294 sample = &cpu->sample;
2295 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2296 fp_toint(sample->busy_scaled),
2297 from,
2298 cpu->pstate.current_pstate,
2299 sample->mperf,
2300 sample->aperf,
2301 sample->tsc,
2302 get_avg_frequency(cpu),
2303 fp_toint(cpu->iowait_boost * 100));
2304 }
2305
intel_pstate_update_util(struct update_util_data * data,u64 time,unsigned int flags)2306 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2307 unsigned int flags)
2308 {
2309 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2310 u64 delta_ns;
2311
2312 /* Don't allow remote callbacks */
2313 if (smp_processor_id() != cpu->cpu)
2314 return;
2315
2316 delta_ns = time - cpu->last_update;
2317 if (flags & SCHED_CPUFREQ_IOWAIT) {
2318 /* Start over if the CPU may have been idle. */
2319 if (delta_ns > TICK_NSEC) {
2320 cpu->iowait_boost = ONE_EIGHTH_FP;
2321 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2322 cpu->iowait_boost <<= 1;
2323 if (cpu->iowait_boost > int_tofp(1))
2324 cpu->iowait_boost = int_tofp(1);
2325 } else {
2326 cpu->iowait_boost = ONE_EIGHTH_FP;
2327 }
2328 } else if (cpu->iowait_boost) {
2329 /* Clear iowait_boost if the CPU may have been idle. */
2330 if (delta_ns > TICK_NSEC)
2331 cpu->iowait_boost = 0;
2332 else
2333 cpu->iowait_boost >>= 1;
2334 }
2335 cpu->last_update = time;
2336 delta_ns = time - cpu->sample.time;
2337 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2338 return;
2339
2340 if (intel_pstate_sample(cpu, time))
2341 intel_pstate_adjust_pstate(cpu);
2342 }
2343
2344 static struct pstate_funcs core_funcs = {
2345 .get_max = core_get_max_pstate,
2346 .get_max_physical = core_get_max_pstate_physical,
2347 .get_min = core_get_min_pstate,
2348 .get_turbo = core_get_turbo_pstate,
2349 .get_scaling = core_get_scaling,
2350 .get_val = core_get_val,
2351 };
2352
2353 static const struct pstate_funcs silvermont_funcs = {
2354 .get_max = atom_get_max_pstate,
2355 .get_max_physical = atom_get_max_pstate,
2356 .get_min = atom_get_min_pstate,
2357 .get_turbo = atom_get_turbo_pstate,
2358 .get_val = atom_get_val,
2359 .get_scaling = silvermont_get_scaling,
2360 .get_vid = atom_get_vid,
2361 };
2362
2363 static const struct pstate_funcs airmont_funcs = {
2364 .get_max = atom_get_max_pstate,
2365 .get_max_physical = atom_get_max_pstate,
2366 .get_min = atom_get_min_pstate,
2367 .get_turbo = atom_get_turbo_pstate,
2368 .get_val = atom_get_val,
2369 .get_scaling = airmont_get_scaling,
2370 .get_vid = atom_get_vid,
2371 };
2372
2373 static const struct pstate_funcs knl_funcs = {
2374 .get_max = core_get_max_pstate,
2375 .get_max_physical = core_get_max_pstate_physical,
2376 .get_min = core_get_min_pstate,
2377 .get_turbo = knl_get_turbo_pstate,
2378 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2379 .get_scaling = core_get_scaling,
2380 .get_val = core_get_val,
2381 };
2382
2383 #define X86_MATCH(model, policy) \
2384 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2385 X86_FEATURE_APERFMPERF, &policy)
2386
2387 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2388 X86_MATCH(SANDYBRIDGE, core_funcs),
2389 X86_MATCH(SANDYBRIDGE_X, core_funcs),
2390 X86_MATCH(ATOM_SILVERMONT, silvermont_funcs),
2391 X86_MATCH(IVYBRIDGE, core_funcs),
2392 X86_MATCH(HASWELL, core_funcs),
2393 X86_MATCH(BROADWELL, core_funcs),
2394 X86_MATCH(IVYBRIDGE_X, core_funcs),
2395 X86_MATCH(HASWELL_X, core_funcs),
2396 X86_MATCH(HASWELL_L, core_funcs),
2397 X86_MATCH(HASWELL_G, core_funcs),
2398 X86_MATCH(BROADWELL_G, core_funcs),
2399 X86_MATCH(ATOM_AIRMONT, airmont_funcs),
2400 X86_MATCH(SKYLAKE_L, core_funcs),
2401 X86_MATCH(BROADWELL_X, core_funcs),
2402 X86_MATCH(SKYLAKE, core_funcs),
2403 X86_MATCH(BROADWELL_D, core_funcs),
2404 X86_MATCH(XEON_PHI_KNL, knl_funcs),
2405 X86_MATCH(XEON_PHI_KNM, knl_funcs),
2406 X86_MATCH(ATOM_GOLDMONT, core_funcs),
2407 X86_MATCH(ATOM_GOLDMONT_PLUS, core_funcs),
2408 X86_MATCH(SKYLAKE_X, core_funcs),
2409 X86_MATCH(COMETLAKE, core_funcs),
2410 X86_MATCH(ICELAKE_X, core_funcs),
2411 X86_MATCH(TIGERLAKE, core_funcs),
2412 X86_MATCH(SAPPHIRERAPIDS_X, core_funcs),
2413 {}
2414 };
2415 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2416
2417 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2418 X86_MATCH(BROADWELL_D, core_funcs),
2419 X86_MATCH(BROADWELL_X, core_funcs),
2420 X86_MATCH(SKYLAKE_X, core_funcs),
2421 X86_MATCH(ICELAKE_X, core_funcs),
2422 X86_MATCH(SAPPHIRERAPIDS_X, core_funcs),
2423 {}
2424 };
2425
2426 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2427 X86_MATCH(KABYLAKE, core_funcs),
2428 {}
2429 };
2430
intel_pstate_init_cpu(unsigned int cpunum)2431 static int intel_pstate_init_cpu(unsigned int cpunum)
2432 {
2433 struct cpudata *cpu;
2434
2435 cpu = all_cpu_data[cpunum];
2436
2437 if (!cpu) {
2438 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2439 if (!cpu)
2440 return -ENOMEM;
2441
2442 WRITE_ONCE(all_cpu_data[cpunum], cpu);
2443
2444 cpu->cpu = cpunum;
2445
2446 cpu->epp_default = -EINVAL;
2447
2448 if (hwp_active) {
2449 intel_pstate_hwp_enable(cpu);
2450
2451 if (intel_pstate_acpi_pm_profile_server())
2452 hwp_boost = true;
2453 }
2454 } else if (hwp_active) {
2455 /*
2456 * Re-enable HWP in case this happens after a resume from ACPI
2457 * S3 if the CPU was offline during the whole system/resume
2458 * cycle.
2459 */
2460 intel_pstate_hwp_reenable(cpu);
2461 }
2462
2463 cpu->epp_powersave = -EINVAL;
2464 cpu->epp_policy = 0;
2465
2466 intel_pstate_get_cpu_pstates(cpu);
2467
2468 pr_debug("controlling: cpu %d\n", cpunum);
2469
2470 return 0;
2471 }
2472
intel_pstate_set_update_util_hook(unsigned int cpu_num)2473 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2474 {
2475 struct cpudata *cpu = all_cpu_data[cpu_num];
2476
2477 if (hwp_active && !hwp_boost)
2478 return;
2479
2480 if (cpu->update_util_set)
2481 return;
2482
2483 /* Prevent intel_pstate_update_util() from using stale data. */
2484 cpu->sample.time = 0;
2485 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2486 (hwp_active ?
2487 intel_pstate_update_util_hwp :
2488 intel_pstate_update_util));
2489 cpu->update_util_set = true;
2490 }
2491
intel_pstate_clear_update_util_hook(unsigned int cpu)2492 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2493 {
2494 struct cpudata *cpu_data = all_cpu_data[cpu];
2495
2496 if (!cpu_data->update_util_set)
2497 return;
2498
2499 cpufreq_remove_update_util_hook(cpu);
2500 cpu_data->update_util_set = false;
2501 synchronize_rcu();
2502 }
2503
intel_pstate_get_max_freq(struct cpudata * cpu)2504 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2505 {
2506 return global.turbo_disabled || global.no_turbo ?
2507 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2508 }
2509
intel_pstate_update_perf_limits(struct cpudata * cpu,unsigned int policy_min,unsigned int policy_max)2510 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2511 unsigned int policy_min,
2512 unsigned int policy_max)
2513 {
2514 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2515 int32_t max_policy_perf, min_policy_perf;
2516
2517 max_policy_perf = policy_max / perf_ctl_scaling;
2518 if (policy_max == policy_min) {
2519 min_policy_perf = max_policy_perf;
2520 } else {
2521 min_policy_perf = policy_min / perf_ctl_scaling;
2522 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2523 0, max_policy_perf);
2524 }
2525
2526 /*
2527 * HWP needs some special consideration, because HWP_REQUEST uses
2528 * abstract values to represent performance rather than pure ratios.
2529 */
2530 if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2531 int scaling = cpu->pstate.scaling;
2532 int freq;
2533
2534 freq = max_policy_perf * perf_ctl_scaling;
2535 max_policy_perf = DIV_ROUND_UP(freq, scaling);
2536 freq = min_policy_perf * perf_ctl_scaling;
2537 min_policy_perf = DIV_ROUND_UP(freq, scaling);
2538 }
2539
2540 pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2541 cpu->cpu, min_policy_perf, max_policy_perf);
2542
2543 /* Normalize user input to [min_perf, max_perf] */
2544 if (per_cpu_limits) {
2545 cpu->min_perf_ratio = min_policy_perf;
2546 cpu->max_perf_ratio = max_policy_perf;
2547 } else {
2548 int turbo_max = cpu->pstate.turbo_pstate;
2549 int32_t global_min, global_max;
2550
2551 /* Global limits are in percent of the maximum turbo P-state. */
2552 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2553 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2554 global_min = clamp_t(int32_t, global_min, 0, global_max);
2555
2556 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2557 global_min, global_max);
2558
2559 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2560 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2561 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2562 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2563
2564 /* Make sure min_perf <= max_perf */
2565 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2566 cpu->max_perf_ratio);
2567
2568 }
2569 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2570 cpu->max_perf_ratio,
2571 cpu->min_perf_ratio);
2572 }
2573
intel_pstate_set_policy(struct cpufreq_policy * policy)2574 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2575 {
2576 struct cpudata *cpu;
2577
2578 if (!policy->cpuinfo.max_freq)
2579 return -ENODEV;
2580
2581 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2582 policy->cpuinfo.max_freq, policy->max);
2583
2584 cpu = all_cpu_data[policy->cpu];
2585 cpu->policy = policy->policy;
2586
2587 mutex_lock(&intel_pstate_limits_lock);
2588
2589 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2590
2591 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2592 /*
2593 * NOHZ_FULL CPUs need this as the governor callback may not
2594 * be invoked on them.
2595 */
2596 intel_pstate_clear_update_util_hook(policy->cpu);
2597 intel_pstate_max_within_limits(cpu);
2598 } else {
2599 intel_pstate_set_update_util_hook(policy->cpu);
2600 }
2601
2602 if (hwp_active) {
2603 /*
2604 * When hwp_boost was active before and dynamically it
2605 * was turned off, in that case we need to clear the
2606 * update util hook.
2607 */
2608 if (!hwp_boost)
2609 intel_pstate_clear_update_util_hook(policy->cpu);
2610 intel_pstate_hwp_set(policy->cpu);
2611 }
2612 /*
2613 * policy->cur is never updated with the intel_pstate driver, but it
2614 * is used as a stale frequency value. So, keep it within limits.
2615 */
2616 policy->cur = policy->min;
2617
2618 mutex_unlock(&intel_pstate_limits_lock);
2619
2620 return 0;
2621 }
2622
intel_pstate_adjust_policy_max(struct cpudata * cpu,struct cpufreq_policy_data * policy)2623 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2624 struct cpufreq_policy_data *policy)
2625 {
2626 if (!hwp_active &&
2627 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2628 policy->max < policy->cpuinfo.max_freq &&
2629 policy->max > cpu->pstate.max_freq) {
2630 pr_debug("policy->max > max non turbo frequency\n");
2631 policy->max = policy->cpuinfo.max_freq;
2632 }
2633 }
2634
intel_pstate_verify_cpu_policy(struct cpudata * cpu,struct cpufreq_policy_data * policy)2635 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2636 struct cpufreq_policy_data *policy)
2637 {
2638 int max_freq;
2639
2640 update_turbo_state();
2641 if (hwp_active) {
2642 intel_pstate_get_hwp_cap(cpu);
2643 max_freq = global.no_turbo || global.turbo_disabled ?
2644 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2645 } else {
2646 max_freq = intel_pstate_get_max_freq(cpu);
2647 }
2648 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2649
2650 intel_pstate_adjust_policy_max(cpu, policy);
2651 }
2652
intel_pstate_verify_policy(struct cpufreq_policy_data * policy)2653 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2654 {
2655 intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2656
2657 return 0;
2658 }
2659
intel_cpufreq_cpu_offline(struct cpufreq_policy * policy)2660 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2661 {
2662 struct cpudata *cpu = all_cpu_data[policy->cpu];
2663
2664 pr_debug("CPU %d going offline\n", cpu->cpu);
2665
2666 if (cpu->suspended)
2667 return 0;
2668
2669 /*
2670 * If the CPU is an SMT thread and it goes offline with the performance
2671 * settings different from the minimum, it will prevent its sibling
2672 * from getting to lower performance levels, so force the minimum
2673 * performance on CPU offline to prevent that from happening.
2674 */
2675 if (hwp_active)
2676 intel_pstate_hwp_offline(cpu);
2677 else
2678 intel_pstate_set_min_pstate(cpu);
2679
2680 intel_pstate_exit_perf_limits(policy);
2681
2682 return 0;
2683 }
2684
intel_pstate_cpu_online(struct cpufreq_policy * policy)2685 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2686 {
2687 struct cpudata *cpu = all_cpu_data[policy->cpu];
2688
2689 pr_debug("CPU %d going online\n", cpu->cpu);
2690
2691 intel_pstate_init_acpi_perf_limits(policy);
2692
2693 if (hwp_active) {
2694 /*
2695 * Re-enable HWP and clear the "suspended" flag to let "resume"
2696 * know that it need not do that.
2697 */
2698 intel_pstate_hwp_reenable(cpu);
2699 cpu->suspended = false;
2700 }
2701
2702 return 0;
2703 }
2704
intel_pstate_cpu_offline(struct cpufreq_policy * policy)2705 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2706 {
2707 intel_pstate_clear_update_util_hook(policy->cpu);
2708
2709 return intel_cpufreq_cpu_offline(policy);
2710 }
2711
intel_pstate_cpu_exit(struct cpufreq_policy * policy)2712 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2713 {
2714 pr_debug("CPU %d exiting\n", policy->cpu);
2715
2716 policy->fast_switch_possible = false;
2717
2718 return 0;
2719 }
2720
__intel_pstate_cpu_init(struct cpufreq_policy * policy)2721 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2722 {
2723 struct cpudata *cpu;
2724 int rc;
2725
2726 rc = intel_pstate_init_cpu(policy->cpu);
2727 if (rc)
2728 return rc;
2729
2730 cpu = all_cpu_data[policy->cpu];
2731
2732 cpu->max_perf_ratio = 0xFF;
2733 cpu->min_perf_ratio = 0;
2734
2735 /* cpuinfo and default policy values */
2736 policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2737 update_turbo_state();
2738 global.turbo_disabled_mf = global.turbo_disabled;
2739 policy->cpuinfo.max_freq = global.turbo_disabled ?
2740 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2741
2742 policy->min = policy->cpuinfo.min_freq;
2743 policy->max = policy->cpuinfo.max_freq;
2744
2745 intel_pstate_init_acpi_perf_limits(policy);
2746
2747 policy->fast_switch_possible = true;
2748
2749 return 0;
2750 }
2751
intel_pstate_cpu_init(struct cpufreq_policy * policy)2752 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2753 {
2754 int ret = __intel_pstate_cpu_init(policy);
2755
2756 if (ret)
2757 return ret;
2758
2759 /*
2760 * Set the policy to powersave to provide a valid fallback value in case
2761 * the default cpufreq governor is neither powersave nor performance.
2762 */
2763 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2764
2765 if (hwp_active) {
2766 struct cpudata *cpu = all_cpu_data[policy->cpu];
2767
2768 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2769 }
2770
2771 return 0;
2772 }
2773
2774 static struct cpufreq_driver intel_pstate = {
2775 .flags = CPUFREQ_CONST_LOOPS,
2776 .verify = intel_pstate_verify_policy,
2777 .setpolicy = intel_pstate_set_policy,
2778 .suspend = intel_pstate_suspend,
2779 .resume = intel_pstate_resume,
2780 .init = intel_pstate_cpu_init,
2781 .exit = intel_pstate_cpu_exit,
2782 .offline = intel_pstate_cpu_offline,
2783 .online = intel_pstate_cpu_online,
2784 .update_limits = intel_pstate_update_limits,
2785 .name = "intel_pstate",
2786 };
2787
intel_cpufreq_verify_policy(struct cpufreq_policy_data * policy)2788 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2789 {
2790 struct cpudata *cpu = all_cpu_data[policy->cpu];
2791
2792 intel_pstate_verify_cpu_policy(cpu, policy);
2793 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2794
2795 return 0;
2796 }
2797
2798 /* Use of trace in passive mode:
2799 *
2800 * In passive mode the trace core_busy field (also known as the
2801 * performance field, and lablelled as such on the graphs; also known as
2802 * core_avg_perf) is not needed and so is re-assigned to indicate if the
2803 * driver call was via the normal or fast switch path. Various graphs
2804 * output from the intel_pstate_tracer.py utility that include core_busy
2805 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2806 * so we use 10 to indicate the normal path through the driver, and
2807 * 90 to indicate the fast switch path through the driver.
2808 * The scaled_busy field is not used, and is set to 0.
2809 */
2810
2811 #define INTEL_PSTATE_TRACE_TARGET 10
2812 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2813
intel_cpufreq_trace(struct cpudata * cpu,unsigned int trace_type,int old_pstate)2814 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2815 {
2816 struct sample *sample;
2817
2818 if (!trace_pstate_sample_enabled())
2819 return;
2820
2821 if (!intel_pstate_sample(cpu, ktime_get()))
2822 return;
2823
2824 sample = &cpu->sample;
2825 trace_pstate_sample(trace_type,
2826 0,
2827 old_pstate,
2828 cpu->pstate.current_pstate,
2829 sample->mperf,
2830 sample->aperf,
2831 sample->tsc,
2832 get_avg_frequency(cpu),
2833 fp_toint(cpu->iowait_boost * 100));
2834 }
2835
intel_cpufreq_hwp_update(struct cpudata * cpu,u32 min,u32 max,u32 desired,bool fast_switch)2836 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2837 u32 desired, bool fast_switch)
2838 {
2839 u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2840
2841 value &= ~HWP_MIN_PERF(~0L);
2842 value |= HWP_MIN_PERF(min);
2843
2844 value &= ~HWP_MAX_PERF(~0L);
2845 value |= HWP_MAX_PERF(max);
2846
2847 value &= ~HWP_DESIRED_PERF(~0L);
2848 value |= HWP_DESIRED_PERF(desired);
2849
2850 if (value == prev)
2851 return;
2852
2853 WRITE_ONCE(cpu->hwp_req_cached, value);
2854 if (fast_switch)
2855 wrmsrl(MSR_HWP_REQUEST, value);
2856 else
2857 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2858 }
2859
intel_cpufreq_perf_ctl_update(struct cpudata * cpu,u32 target_pstate,bool fast_switch)2860 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2861 u32 target_pstate, bool fast_switch)
2862 {
2863 if (fast_switch)
2864 wrmsrl(MSR_IA32_PERF_CTL,
2865 pstate_funcs.get_val(cpu, target_pstate));
2866 else
2867 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2868 pstate_funcs.get_val(cpu, target_pstate));
2869 }
2870
intel_cpufreq_update_pstate(struct cpufreq_policy * policy,int target_pstate,bool fast_switch)2871 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2872 int target_pstate, bool fast_switch)
2873 {
2874 struct cpudata *cpu = all_cpu_data[policy->cpu];
2875 int old_pstate = cpu->pstate.current_pstate;
2876
2877 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2878 if (hwp_active) {
2879 int max_pstate = policy->strict_target ?
2880 target_pstate : cpu->max_perf_ratio;
2881
2882 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2883 fast_switch);
2884 } else if (target_pstate != old_pstate) {
2885 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2886 }
2887
2888 cpu->pstate.current_pstate = target_pstate;
2889
2890 intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2891 INTEL_PSTATE_TRACE_TARGET, old_pstate);
2892
2893 return target_pstate;
2894 }
2895
intel_cpufreq_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2896 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2897 unsigned int target_freq,
2898 unsigned int relation)
2899 {
2900 struct cpudata *cpu = all_cpu_data[policy->cpu];
2901 struct cpufreq_freqs freqs;
2902 int target_pstate;
2903
2904 update_turbo_state();
2905
2906 freqs.old = policy->cur;
2907 freqs.new = target_freq;
2908
2909 cpufreq_freq_transition_begin(policy, &freqs);
2910
2911 switch (relation) {
2912 case CPUFREQ_RELATION_L:
2913 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2914 break;
2915 case CPUFREQ_RELATION_H:
2916 target_pstate = freqs.new / cpu->pstate.scaling;
2917 break;
2918 default:
2919 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2920 break;
2921 }
2922
2923 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2924
2925 freqs.new = target_pstate * cpu->pstate.scaling;
2926
2927 cpufreq_freq_transition_end(policy, &freqs, false);
2928
2929 return 0;
2930 }
2931
intel_cpufreq_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)2932 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2933 unsigned int target_freq)
2934 {
2935 struct cpudata *cpu = all_cpu_data[policy->cpu];
2936 int target_pstate;
2937
2938 update_turbo_state();
2939
2940 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2941
2942 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2943
2944 return target_pstate * cpu->pstate.scaling;
2945 }
2946
intel_cpufreq_adjust_perf(unsigned int cpunum,unsigned long min_perf,unsigned long target_perf,unsigned long capacity)2947 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2948 unsigned long min_perf,
2949 unsigned long target_perf,
2950 unsigned long capacity)
2951 {
2952 struct cpudata *cpu = all_cpu_data[cpunum];
2953 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2954 int old_pstate = cpu->pstate.current_pstate;
2955 int cap_pstate, min_pstate, max_pstate, target_pstate;
2956
2957 update_turbo_state();
2958 cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2959 HWP_HIGHEST_PERF(hwp_cap);
2960
2961 /* Optimization: Avoid unnecessary divisions. */
2962
2963 target_pstate = cap_pstate;
2964 if (target_perf < capacity)
2965 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2966
2967 min_pstate = cap_pstate;
2968 if (min_perf < capacity)
2969 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2970
2971 if (min_pstate < cpu->pstate.min_pstate)
2972 min_pstate = cpu->pstate.min_pstate;
2973
2974 if (min_pstate < cpu->min_perf_ratio)
2975 min_pstate = cpu->min_perf_ratio;
2976
2977 max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2978 if (max_pstate < min_pstate)
2979 max_pstate = min_pstate;
2980
2981 target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2982
2983 intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2984
2985 cpu->pstate.current_pstate = target_pstate;
2986 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2987 }
2988
intel_cpufreq_cpu_init(struct cpufreq_policy * policy)2989 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2990 {
2991 struct freq_qos_request *req;
2992 struct cpudata *cpu;
2993 struct device *dev;
2994 int ret, freq;
2995
2996 dev = get_cpu_device(policy->cpu);
2997 if (!dev)
2998 return -ENODEV;
2999
3000 ret = __intel_pstate_cpu_init(policy);
3001 if (ret)
3002 return ret;
3003
3004 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
3005 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
3006 policy->cur = policy->cpuinfo.min_freq;
3007
3008 req = kcalloc(2, sizeof(*req), GFP_KERNEL);
3009 if (!req) {
3010 ret = -ENOMEM;
3011 goto pstate_exit;
3012 }
3013
3014 cpu = all_cpu_data[policy->cpu];
3015
3016 if (hwp_active) {
3017 u64 value;
3018
3019 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
3020
3021 intel_pstate_get_hwp_cap(cpu);
3022
3023 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
3024 WRITE_ONCE(cpu->hwp_req_cached, value);
3025
3026 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
3027 } else {
3028 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
3029 }
3030
3031 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
3032
3033 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
3034 freq);
3035 if (ret < 0) {
3036 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
3037 goto free_req;
3038 }
3039
3040 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3041
3042 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3043 freq);
3044 if (ret < 0) {
3045 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3046 goto remove_min_req;
3047 }
3048
3049 policy->driver_data = req;
3050
3051 return 0;
3052
3053 remove_min_req:
3054 freq_qos_remove_request(req);
3055 free_req:
3056 kfree(req);
3057 pstate_exit:
3058 intel_pstate_exit_perf_limits(policy);
3059
3060 return ret;
3061 }
3062
intel_cpufreq_cpu_exit(struct cpufreq_policy * policy)3063 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3064 {
3065 struct freq_qos_request *req;
3066
3067 req = policy->driver_data;
3068
3069 freq_qos_remove_request(req + 1);
3070 freq_qos_remove_request(req);
3071 kfree(req);
3072
3073 return intel_pstate_cpu_exit(policy);
3074 }
3075
intel_cpufreq_suspend(struct cpufreq_policy * policy)3076 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3077 {
3078 intel_pstate_suspend(policy);
3079
3080 if (hwp_active) {
3081 struct cpudata *cpu = all_cpu_data[policy->cpu];
3082 u64 value = READ_ONCE(cpu->hwp_req_cached);
3083
3084 /*
3085 * Clear the desired perf field in MSR_HWP_REQUEST in case
3086 * intel_cpufreq_adjust_perf() is in use and the last value
3087 * written by it may not be suitable.
3088 */
3089 value &= ~HWP_DESIRED_PERF(~0L);
3090 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3091 WRITE_ONCE(cpu->hwp_req_cached, value);
3092 }
3093
3094 return 0;
3095 }
3096
3097 static struct cpufreq_driver intel_cpufreq = {
3098 .flags = CPUFREQ_CONST_LOOPS,
3099 .verify = intel_cpufreq_verify_policy,
3100 .target = intel_cpufreq_target,
3101 .fast_switch = intel_cpufreq_fast_switch,
3102 .init = intel_cpufreq_cpu_init,
3103 .exit = intel_cpufreq_cpu_exit,
3104 .offline = intel_cpufreq_cpu_offline,
3105 .online = intel_pstate_cpu_online,
3106 .suspend = intel_cpufreq_suspend,
3107 .resume = intel_pstate_resume,
3108 .update_limits = intel_pstate_update_limits,
3109 .name = "intel_cpufreq",
3110 };
3111
3112 static struct cpufreq_driver *default_driver;
3113
intel_pstate_driver_cleanup(void)3114 static void intel_pstate_driver_cleanup(void)
3115 {
3116 unsigned int cpu;
3117
3118 cpus_read_lock();
3119 for_each_online_cpu(cpu) {
3120 if (all_cpu_data[cpu]) {
3121 if (intel_pstate_driver == &intel_pstate)
3122 intel_pstate_clear_update_util_hook(cpu);
3123
3124 spin_lock(&hwp_notify_lock);
3125 kfree(all_cpu_data[cpu]);
3126 WRITE_ONCE(all_cpu_data[cpu], NULL);
3127 spin_unlock(&hwp_notify_lock);
3128 }
3129 }
3130 cpus_read_unlock();
3131
3132 intel_pstate_driver = NULL;
3133 }
3134
intel_pstate_register_driver(struct cpufreq_driver * driver)3135 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3136 {
3137 int ret;
3138
3139 if (driver == &intel_pstate)
3140 intel_pstate_sysfs_expose_hwp_dynamic_boost();
3141
3142 memset(&global, 0, sizeof(global));
3143 global.max_perf_pct = 100;
3144
3145 intel_pstate_driver = driver;
3146 ret = cpufreq_register_driver(intel_pstate_driver);
3147 if (ret) {
3148 intel_pstate_driver_cleanup();
3149 return ret;
3150 }
3151
3152 global.min_perf_pct = min_perf_pct_min();
3153
3154 return 0;
3155 }
3156
intel_pstate_show_status(char * buf)3157 static ssize_t intel_pstate_show_status(char *buf)
3158 {
3159 if (!intel_pstate_driver)
3160 return sprintf(buf, "off\n");
3161
3162 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3163 "active" : "passive");
3164 }
3165
intel_pstate_update_status(const char * buf,size_t size)3166 static int intel_pstate_update_status(const char *buf, size_t size)
3167 {
3168 if (size == 3 && !strncmp(buf, "off", size)) {
3169 if (!intel_pstate_driver)
3170 return -EINVAL;
3171
3172 if (hwp_active)
3173 return -EBUSY;
3174
3175 cpufreq_unregister_driver(intel_pstate_driver);
3176 intel_pstate_driver_cleanup();
3177 return 0;
3178 }
3179
3180 if (size == 6 && !strncmp(buf, "active", size)) {
3181 if (intel_pstate_driver) {
3182 if (intel_pstate_driver == &intel_pstate)
3183 return 0;
3184
3185 cpufreq_unregister_driver(intel_pstate_driver);
3186 }
3187
3188 return intel_pstate_register_driver(&intel_pstate);
3189 }
3190
3191 if (size == 7 && !strncmp(buf, "passive", size)) {
3192 if (intel_pstate_driver) {
3193 if (intel_pstate_driver == &intel_cpufreq)
3194 return 0;
3195
3196 cpufreq_unregister_driver(intel_pstate_driver);
3197 intel_pstate_sysfs_hide_hwp_dynamic_boost();
3198 }
3199
3200 return intel_pstate_register_driver(&intel_cpufreq);
3201 }
3202
3203 return -EINVAL;
3204 }
3205
3206 static int no_load __initdata;
3207 static int no_hwp __initdata;
3208 static int hwp_only __initdata;
3209 static unsigned int force_load __initdata;
3210
intel_pstate_msrs_not_valid(void)3211 static int __init intel_pstate_msrs_not_valid(void)
3212 {
3213 if (!pstate_funcs.get_max(0) ||
3214 !pstate_funcs.get_min(0) ||
3215 !pstate_funcs.get_turbo(0))
3216 return -ENODEV;
3217
3218 return 0;
3219 }
3220
copy_cpu_funcs(struct pstate_funcs * funcs)3221 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3222 {
3223 pstate_funcs.get_max = funcs->get_max;
3224 pstate_funcs.get_max_physical = funcs->get_max_physical;
3225 pstate_funcs.get_min = funcs->get_min;
3226 pstate_funcs.get_turbo = funcs->get_turbo;
3227 pstate_funcs.get_scaling = funcs->get_scaling;
3228 pstate_funcs.get_val = funcs->get_val;
3229 pstate_funcs.get_vid = funcs->get_vid;
3230 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3231 }
3232
3233 #ifdef CONFIG_ACPI
3234
intel_pstate_no_acpi_pss(void)3235 static bool __init intel_pstate_no_acpi_pss(void)
3236 {
3237 int i;
3238
3239 for_each_possible_cpu(i) {
3240 acpi_status status;
3241 union acpi_object *pss;
3242 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3243 struct acpi_processor *pr = per_cpu(processors, i);
3244
3245 if (!pr)
3246 continue;
3247
3248 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3249 if (ACPI_FAILURE(status))
3250 continue;
3251
3252 pss = buffer.pointer;
3253 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3254 kfree(pss);
3255 return false;
3256 }
3257
3258 kfree(pss);
3259 }
3260
3261 pr_debug("ACPI _PSS not found\n");
3262 return true;
3263 }
3264
intel_pstate_no_acpi_pcch(void)3265 static bool __init intel_pstate_no_acpi_pcch(void)
3266 {
3267 acpi_status status;
3268 acpi_handle handle;
3269
3270 status = acpi_get_handle(NULL, "\\_SB", &handle);
3271 if (ACPI_FAILURE(status))
3272 goto not_found;
3273
3274 if (acpi_has_method(handle, "PCCH"))
3275 return false;
3276
3277 not_found:
3278 pr_debug("ACPI PCCH not found\n");
3279 return true;
3280 }
3281
intel_pstate_has_acpi_ppc(void)3282 static bool __init intel_pstate_has_acpi_ppc(void)
3283 {
3284 int i;
3285
3286 for_each_possible_cpu(i) {
3287 struct acpi_processor *pr = per_cpu(processors, i);
3288
3289 if (!pr)
3290 continue;
3291 if (acpi_has_method(pr->handle, "_PPC"))
3292 return true;
3293 }
3294 pr_debug("ACPI _PPC not found\n");
3295 return false;
3296 }
3297
3298 enum {
3299 PSS,
3300 PPC,
3301 };
3302
3303 /* Hardware vendor-specific info that has its own power management modes */
3304 static struct acpi_platform_list plat_info[] __initdata = {
3305 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3306 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3307 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3308 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3309 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3310 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3311 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3312 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3313 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3314 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3315 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3316 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3317 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3318 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3319 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3320 { } /* End */
3321 };
3322
3323 #define BITMASK_OOB (BIT(8) | BIT(18))
3324
intel_pstate_platform_pwr_mgmt_exists(void)3325 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3326 {
3327 const struct x86_cpu_id *id;
3328 u64 misc_pwr;
3329 int idx;
3330
3331 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3332 if (id) {
3333 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3334 if (misc_pwr & BITMASK_OOB) {
3335 pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3336 pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3337 return true;
3338 }
3339 }
3340
3341 idx = acpi_match_platform_list(plat_info);
3342 if (idx < 0)
3343 return false;
3344
3345 switch (plat_info[idx].data) {
3346 case PSS:
3347 if (!intel_pstate_no_acpi_pss())
3348 return false;
3349
3350 return intel_pstate_no_acpi_pcch();
3351 case PPC:
3352 return intel_pstate_has_acpi_ppc() && !force_load;
3353 }
3354
3355 return false;
3356 }
3357
intel_pstate_request_control_from_smm(void)3358 static void intel_pstate_request_control_from_smm(void)
3359 {
3360 /*
3361 * It may be unsafe to request P-states control from SMM if _PPC support
3362 * has not been enabled.
3363 */
3364 if (acpi_ppc)
3365 acpi_processor_pstate_control();
3366 }
3367 #else /* CONFIG_ACPI not enabled */
intel_pstate_platform_pwr_mgmt_exists(void)3368 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
intel_pstate_has_acpi_ppc(void)3369 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
intel_pstate_request_control_from_smm(void)3370 static inline void intel_pstate_request_control_from_smm(void) {}
3371 #endif /* CONFIG_ACPI */
3372
3373 #define INTEL_PSTATE_HWP_BROADWELL 0x01
3374
3375 #define X86_MATCH_HWP(model, hwp_mode) \
3376 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3377 X86_FEATURE_HWP, hwp_mode)
3378
3379 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3380 X86_MATCH_HWP(BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
3381 X86_MATCH_HWP(BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL),
3382 X86_MATCH_HWP(ANY, 0),
3383 {}
3384 };
3385
intel_pstate_hwp_is_enabled(void)3386 static bool intel_pstate_hwp_is_enabled(void)
3387 {
3388 u64 value;
3389
3390 rdmsrl(MSR_PM_ENABLE, value);
3391 return !!(value & 0x1);
3392 }
3393
3394 static const struct x86_cpu_id intel_epp_balance_perf[] = {
3395 /*
3396 * Set EPP value as 102, this is the max suggested EPP
3397 * which can result in one core turbo frequency for
3398 * AlderLake Mobile CPUs.
3399 */
3400 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 102),
3401 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, 32),
3402 {}
3403 };
3404
intel_pstate_init(void)3405 static int __init intel_pstate_init(void)
3406 {
3407 static struct cpudata **_all_cpu_data;
3408 const struct x86_cpu_id *id;
3409 int rc;
3410
3411 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3412 return -ENODEV;
3413
3414 id = x86_match_cpu(hwp_support_ids);
3415 if (id) {
3416 hwp_forced = intel_pstate_hwp_is_enabled();
3417
3418 if (hwp_forced)
3419 pr_info("HWP enabled by BIOS\n");
3420 else if (no_load)
3421 return -ENODEV;
3422
3423 copy_cpu_funcs(&core_funcs);
3424 /*
3425 * Avoid enabling HWP for processors without EPP support,
3426 * because that means incomplete HWP implementation which is a
3427 * corner case and supporting it is generally problematic.
3428 *
3429 * If HWP is enabled already, though, there is no choice but to
3430 * deal with it.
3431 */
3432 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3433 WRITE_ONCE(hwp_active, 1);
3434 hwp_mode_bdw = id->driver_data;
3435 intel_pstate.attr = hwp_cpufreq_attrs;
3436 intel_cpufreq.attr = hwp_cpufreq_attrs;
3437 intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3438 intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3439 if (!default_driver)
3440 default_driver = &intel_pstate;
3441
3442 pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling;
3443
3444 goto hwp_cpu_matched;
3445 }
3446 pr_info("HWP not enabled\n");
3447 } else {
3448 if (no_load)
3449 return -ENODEV;
3450
3451 id = x86_match_cpu(intel_pstate_cpu_ids);
3452 if (!id) {
3453 pr_info("CPU model not supported\n");
3454 return -ENODEV;
3455 }
3456
3457 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3458 }
3459
3460 if (intel_pstate_msrs_not_valid()) {
3461 pr_info("Invalid MSRs\n");
3462 return -ENODEV;
3463 }
3464 /* Without HWP start in the passive mode. */
3465 if (!default_driver)
3466 default_driver = &intel_cpufreq;
3467
3468 hwp_cpu_matched:
3469 /*
3470 * The Intel pstate driver will be ignored if the platform
3471 * firmware has its own power management modes.
3472 */
3473 if (intel_pstate_platform_pwr_mgmt_exists()) {
3474 pr_info("P-states controlled by the platform\n");
3475 return -ENODEV;
3476 }
3477
3478 if (!hwp_active && hwp_only)
3479 return -ENOTSUPP;
3480
3481 pr_info("Intel P-state driver initializing\n");
3482
3483 _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3484 if (!_all_cpu_data)
3485 return -ENOMEM;
3486
3487 WRITE_ONCE(all_cpu_data, _all_cpu_data);
3488
3489 intel_pstate_request_control_from_smm();
3490
3491 intel_pstate_sysfs_expose_params();
3492
3493 if (hwp_active) {
3494 const struct x86_cpu_id *id = x86_match_cpu(intel_epp_balance_perf);
3495
3496 if (id)
3497 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = id->driver_data;
3498 }
3499
3500 mutex_lock(&intel_pstate_driver_lock);
3501 rc = intel_pstate_register_driver(default_driver);
3502 mutex_unlock(&intel_pstate_driver_lock);
3503 if (rc) {
3504 intel_pstate_sysfs_remove();
3505 return rc;
3506 }
3507
3508 if (hwp_active) {
3509 const struct x86_cpu_id *id;
3510
3511 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3512 if (id) {
3513 set_power_ctl_ee_state(false);
3514 pr_info("Disabling energy efficiency optimization\n");
3515 }
3516
3517 pr_info("HWP enabled\n");
3518 } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3519 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3520 }
3521
3522 return 0;
3523 }
3524 device_initcall(intel_pstate_init);
3525
intel_pstate_setup(char * str)3526 static int __init intel_pstate_setup(char *str)
3527 {
3528 if (!str)
3529 return -EINVAL;
3530
3531 if (!strcmp(str, "disable"))
3532 no_load = 1;
3533 else if (!strcmp(str, "active"))
3534 default_driver = &intel_pstate;
3535 else if (!strcmp(str, "passive"))
3536 default_driver = &intel_cpufreq;
3537
3538 if (!strcmp(str, "no_hwp"))
3539 no_hwp = 1;
3540
3541 if (!strcmp(str, "force"))
3542 force_load = 1;
3543 if (!strcmp(str, "hwp_only"))
3544 hwp_only = 1;
3545 if (!strcmp(str, "per_cpu_perf_limits"))
3546 per_cpu_limits = true;
3547
3548 #ifdef CONFIG_ACPI
3549 if (!strcmp(str, "support_acpi_ppc"))
3550 acpi_ppc = true;
3551 #endif
3552
3553 return 0;
3554 }
3555 early_param("intel_pstate", intel_pstate_setup);
3556
3557 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3558 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3559