1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2020 Facebook */
3 
4 #include <linux/bits.h>
5 #include <linux/err.h>
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/debugfs.h>
9 #include <linux/init.h>
10 #include <linux/pci.h>
11 #include <linux/serial_8250.h>
12 #include <linux/clkdev.h>
13 #include <linux/clk-provider.h>
14 #include <linux/platform_device.h>
15 #include <linux/platform_data/i2c-xiic.h>
16 #include <linux/platform_data/i2c-ocores.h>
17 #include <linux/ptp_clock_kernel.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/xilinx_spi.h>
20 #include <linux/spi/altera.h>
21 #include <net/devlink.h>
22 #include <linux/i2c.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/nvmem-consumer.h>
25 #include <linux/crc16.h>
26 
27 #define PCI_VENDOR_ID_FACEBOOK			0x1d9b
28 #define PCI_DEVICE_ID_FACEBOOK_TIMECARD		0x0400
29 
30 #define PCI_VENDOR_ID_CELESTICA			0x18d4
31 #define PCI_DEVICE_ID_CELESTICA_TIMECARD	0x1008
32 
33 #define PCI_VENDOR_ID_OROLIA			0x1ad7
34 #define PCI_DEVICE_ID_OROLIA_ARTCARD		0xa000
35 
36 static struct class timecard_class = {
37 	.name		= "timecard",
38 };
39 
40 struct ocp_reg {
41 	u32	ctrl;
42 	u32	status;
43 	u32	select;
44 	u32	version;
45 	u32	time_ns;
46 	u32	time_sec;
47 	u32	__pad0[2];
48 	u32	adjust_ns;
49 	u32	adjust_sec;
50 	u32	__pad1[2];
51 	u32	offset_ns;
52 	u32	offset_window_ns;
53 	u32	__pad2[2];
54 	u32	drift_ns;
55 	u32	drift_window_ns;
56 	u32	__pad3[6];
57 	u32	servo_offset_p;
58 	u32	servo_offset_i;
59 	u32	servo_drift_p;
60 	u32	servo_drift_i;
61 	u32	status_offset;
62 	u32	status_drift;
63 };
64 
65 #define OCP_CTRL_ENABLE		BIT(0)
66 #define OCP_CTRL_ADJUST_TIME	BIT(1)
67 #define OCP_CTRL_ADJUST_OFFSET	BIT(2)
68 #define OCP_CTRL_ADJUST_DRIFT	BIT(3)
69 #define OCP_CTRL_ADJUST_SERVO	BIT(8)
70 #define OCP_CTRL_READ_TIME_REQ	BIT(30)
71 #define OCP_CTRL_READ_TIME_DONE	BIT(31)
72 
73 #define OCP_STATUS_IN_SYNC	BIT(0)
74 #define OCP_STATUS_IN_HOLDOVER	BIT(1)
75 
76 #define OCP_SELECT_CLK_NONE	0
77 #define OCP_SELECT_CLK_REG	0xfe
78 
79 struct tod_reg {
80 	u32	ctrl;
81 	u32	status;
82 	u32	uart_polarity;
83 	u32	version;
84 	u32	adj_sec;
85 	u32	__pad0[3];
86 	u32	uart_baud;
87 	u32	__pad1[3];
88 	u32	utc_status;
89 	u32	leap;
90 };
91 
92 #define TOD_CTRL_PROTOCOL	BIT(28)
93 #define TOD_CTRL_DISABLE_FMT_A	BIT(17)
94 #define TOD_CTRL_DISABLE_FMT_B	BIT(16)
95 #define TOD_CTRL_ENABLE		BIT(0)
96 #define TOD_CTRL_GNSS_MASK	GENMASK(3, 0)
97 #define TOD_CTRL_GNSS_SHIFT	24
98 
99 #define TOD_STATUS_UTC_MASK		GENMASK(7, 0)
100 #define TOD_STATUS_UTC_VALID		BIT(8)
101 #define TOD_STATUS_LEAP_ANNOUNCE	BIT(12)
102 #define TOD_STATUS_LEAP_VALID		BIT(16)
103 
104 struct ts_reg {
105 	u32	enable;
106 	u32	error;
107 	u32	polarity;
108 	u32	version;
109 	u32	__pad0[4];
110 	u32	cable_delay;
111 	u32	__pad1[3];
112 	u32	intr;
113 	u32	intr_mask;
114 	u32	event_count;
115 	u32	__pad2[1];
116 	u32	ts_count;
117 	u32	time_ns;
118 	u32	time_sec;
119 	u32	data_width;
120 	u32	data;
121 };
122 
123 struct pps_reg {
124 	u32	ctrl;
125 	u32	status;
126 	u32	__pad0[6];
127 	u32	cable_delay;
128 };
129 
130 #define PPS_STATUS_FILTER_ERR	BIT(0)
131 #define PPS_STATUS_SUPERV_ERR	BIT(1)
132 
133 struct img_reg {
134 	u32	version;
135 };
136 
137 struct gpio_reg {
138 	u32	gpio1;
139 	u32	__pad0;
140 	u32	gpio2;
141 	u32	__pad1;
142 };
143 
144 struct irig_master_reg {
145 	u32	ctrl;
146 	u32	status;
147 	u32	__pad0;
148 	u32	version;
149 	u32	adj_sec;
150 	u32	mode_ctrl;
151 };
152 
153 #define IRIG_M_CTRL_ENABLE	BIT(0)
154 
155 struct irig_slave_reg {
156 	u32	ctrl;
157 	u32	status;
158 	u32	__pad0;
159 	u32	version;
160 	u32	adj_sec;
161 	u32	mode_ctrl;
162 };
163 
164 #define IRIG_S_CTRL_ENABLE	BIT(0)
165 
166 struct dcf_master_reg {
167 	u32	ctrl;
168 	u32	status;
169 	u32	__pad0;
170 	u32	version;
171 	u32	adj_sec;
172 };
173 
174 #define DCF_M_CTRL_ENABLE	BIT(0)
175 
176 struct dcf_slave_reg {
177 	u32	ctrl;
178 	u32	status;
179 	u32	__pad0;
180 	u32	version;
181 	u32	adj_sec;
182 };
183 
184 #define DCF_S_CTRL_ENABLE	BIT(0)
185 
186 struct signal_reg {
187 	u32	enable;
188 	u32	status;
189 	u32	polarity;
190 	u32	version;
191 	u32	__pad0[4];
192 	u32	cable_delay;
193 	u32	__pad1[3];
194 	u32	intr;
195 	u32	intr_mask;
196 	u32	__pad2[2];
197 	u32	start_ns;
198 	u32	start_sec;
199 	u32	pulse_ns;
200 	u32	pulse_sec;
201 	u32	period_ns;
202 	u32	period_sec;
203 	u32	repeat_count;
204 };
205 
206 struct frequency_reg {
207 	u32	ctrl;
208 	u32	status;
209 };
210 
211 struct board_config_reg {
212 	u32 mro50_serial_activate;
213 };
214 
215 #define FREQ_STATUS_VALID	BIT(31)
216 #define FREQ_STATUS_ERROR	BIT(30)
217 #define FREQ_STATUS_OVERRUN	BIT(29)
218 #define FREQ_STATUS_MASK	GENMASK(23, 0)
219 
220 struct ptp_ocp_flash_info {
221 	const char *name;
222 	int pci_offset;
223 	int data_size;
224 	void *data;
225 };
226 
227 struct ptp_ocp_firmware_header {
228 	char magic[4];
229 	__be16 pci_vendor_id;
230 	__be16 pci_device_id;
231 	__be32 image_size;
232 	__be16 hw_revision;
233 	__be16 crc;
234 };
235 
236 #define OCP_FIRMWARE_MAGIC_HEADER "OCPC"
237 
238 struct ptp_ocp_i2c_info {
239 	const char *name;
240 	unsigned long fixed_rate;
241 	size_t data_size;
242 	void *data;
243 };
244 
245 struct ptp_ocp_ext_info {
246 	int index;
247 	irqreturn_t (*irq_fcn)(int irq, void *priv);
248 	int (*enable)(void *priv, u32 req, bool enable);
249 };
250 
251 struct ptp_ocp_ext_src {
252 	void __iomem		*mem;
253 	struct ptp_ocp		*bp;
254 	struct ptp_ocp_ext_info	*info;
255 	int			irq_vec;
256 };
257 
258 enum ptp_ocp_sma_mode {
259 	SMA_MODE_IN,
260 	SMA_MODE_OUT,
261 };
262 
263 struct ptp_ocp_sma_connector {
264 	enum	ptp_ocp_sma_mode mode;
265 	bool	fixed_fcn;
266 	bool	fixed_dir;
267 	bool	disabled;
268 	u8	default_fcn;
269 };
270 
271 struct ocp_attr_group {
272 	u64 cap;
273 	const struct attribute_group *group;
274 };
275 
276 #define OCP_CAP_BASIC	BIT(0)
277 #define OCP_CAP_SIGNAL	BIT(1)
278 #define OCP_CAP_FREQ	BIT(2)
279 
280 struct ptp_ocp_signal {
281 	ktime_t		period;
282 	ktime_t		pulse;
283 	ktime_t		phase;
284 	ktime_t		start;
285 	int		duty;
286 	bool		polarity;
287 	bool		running;
288 };
289 
290 struct ptp_ocp_serial_port {
291 	int line;
292 	int baud;
293 };
294 
295 #define OCP_BOARD_ID_LEN		13
296 #define OCP_SERIAL_LEN			6
297 
298 struct ptp_ocp {
299 	struct pci_dev		*pdev;
300 	struct device		dev;
301 	spinlock_t		lock;
302 	struct ocp_reg __iomem	*reg;
303 	struct tod_reg __iomem	*tod;
304 	struct pps_reg __iomem	*pps_to_ext;
305 	struct pps_reg __iomem	*pps_to_clk;
306 	struct board_config_reg __iomem	*board_config;
307 	struct gpio_reg __iomem	*pps_select;
308 	struct gpio_reg __iomem	*sma_map1;
309 	struct gpio_reg __iomem	*sma_map2;
310 	struct irig_master_reg	__iomem *irig_out;
311 	struct irig_slave_reg	__iomem *irig_in;
312 	struct dcf_master_reg	__iomem *dcf_out;
313 	struct dcf_slave_reg	__iomem *dcf_in;
314 	struct tod_reg		__iomem *nmea_out;
315 	struct frequency_reg	__iomem *freq_in[4];
316 	struct ptp_ocp_ext_src	*signal_out[4];
317 	struct ptp_ocp_ext_src	*pps;
318 	struct ptp_ocp_ext_src	*ts0;
319 	struct ptp_ocp_ext_src	*ts1;
320 	struct ptp_ocp_ext_src	*ts2;
321 	struct ptp_ocp_ext_src	*ts3;
322 	struct ptp_ocp_ext_src	*ts4;
323 	struct ocp_art_gpio_reg __iomem *art_sma;
324 	struct img_reg __iomem	*image;
325 	struct ptp_clock	*ptp;
326 	struct ptp_clock_info	ptp_info;
327 	struct platform_device	*i2c_ctrl;
328 	struct platform_device	*spi_flash;
329 	struct clk_hw		*i2c_clk;
330 	struct timer_list	watchdog;
331 	const struct attribute_group **attr_group;
332 	const struct ptp_ocp_eeprom_map *eeprom_map;
333 	struct dentry		*debug_root;
334 	time64_t		gnss_lost;
335 	int			id;
336 	int			n_irqs;
337 	struct ptp_ocp_serial_port	gnss_port;
338 	struct ptp_ocp_serial_port	gnss2_port;
339 	struct ptp_ocp_serial_port	mac_port;   /* miniature atomic clock */
340 	struct ptp_ocp_serial_port	nmea_port;
341 	bool			fw_loader;
342 	u8			fw_tag;
343 	u16			fw_version;
344 	u8			board_id[OCP_BOARD_ID_LEN];
345 	u8			serial[OCP_SERIAL_LEN];
346 	bool			has_eeprom_data;
347 	u32			pps_req_map;
348 	int			flash_start;
349 	u32			utc_tai_offset;
350 	u32			ts_window_adjust;
351 	u64			fw_cap;
352 	struct ptp_ocp_signal	signal[4];
353 	struct ptp_ocp_sma_connector sma[4];
354 	const struct ocp_sma_op *sma_op;
355 };
356 
357 #define OCP_REQ_TIMESTAMP	BIT(0)
358 #define OCP_REQ_PPS		BIT(1)
359 
360 struct ocp_resource {
361 	unsigned long offset;
362 	int size;
363 	int irq_vec;
364 	int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r);
365 	void *extra;
366 	unsigned long bp_offset;
367 	const char * const name;
368 };
369 
370 static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r);
371 static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r);
372 static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r);
373 static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r);
374 static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r);
375 static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
376 static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv);
377 static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv);
378 static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable);
379 static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
380 				      struct ptp_perout_request *req);
381 static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable);
382 static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr);
383 
384 static int ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
385 
386 static const struct ocp_attr_group fb_timecard_groups[];
387 
388 static const struct ocp_attr_group art_timecard_groups[];
389 
390 struct ptp_ocp_eeprom_map {
391 	u16	off;
392 	u16	len;
393 	u32	bp_offset;
394 	const void * const tag;
395 };
396 
397 #define EEPROM_ENTRY(addr, member)				\
398 	.off = addr,						\
399 	.len = sizeof_field(struct ptp_ocp, member),		\
400 	.bp_offset = offsetof(struct ptp_ocp, member)
401 
402 #define BP_MAP_ENTRY_ADDR(bp, map) ({				\
403 	(void *)((uintptr_t)(bp) + (map)->bp_offset);		\
404 })
405 
406 static struct ptp_ocp_eeprom_map fb_eeprom_map[] = {
407 	{ EEPROM_ENTRY(0x43, board_id) },
408 	{ EEPROM_ENTRY(0x00, serial), .tag = "mac" },
409 	{ }
410 };
411 
412 static struct ptp_ocp_eeprom_map art_eeprom_map[] = {
413 	{ EEPROM_ENTRY(0x200 + 0x43, board_id) },
414 	{ EEPROM_ENTRY(0x200 + 0x63, serial) },
415 	{ }
416 };
417 
418 #define bp_assign_entry(bp, res, val) ({				\
419 	uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset;		\
420 	*(typeof(val) *)addr = val;					\
421 })
422 
423 #define OCP_RES_LOCATION(member) \
424 	.name = #member, .bp_offset = offsetof(struct ptp_ocp, member)
425 
426 #define OCP_MEM_RESOURCE(member) \
427 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem
428 
429 #define OCP_SERIAL_RESOURCE(member) \
430 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial
431 
432 #define OCP_I2C_RESOURCE(member) \
433 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c
434 
435 #define OCP_SPI_RESOURCE(member) \
436 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi
437 
438 #define OCP_EXT_RESOURCE(member) \
439 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext
440 
441 /* This is the MSI vector mapping used.
442  * 0: PPS (TS5)
443  * 1: TS0
444  * 2: TS1
445  * 3: GNSS1
446  * 4: GNSS2
447  * 5: MAC
448  * 6: TS2
449  * 7: I2C controller
450  * 8: HWICAP (notused)
451  * 9: SPI Flash
452  * 10: NMEA
453  * 11: Signal Generator 1
454  * 12: Signal Generator 2
455  * 13: Signal Generator 3
456  * 14: Signal Generator 4
457  * 15: TS3
458  * 16: TS4
459  --
460  * 8: Orolia TS1
461  * 10: Orolia TS2
462  * 11: Orolia TS0 (GNSS)
463  * 12: Orolia PPS
464  * 14: Orolia TS3
465  * 15: Orolia TS4
466  */
467 
468 static struct ocp_resource ocp_fb_resource[] = {
469 	{
470 		OCP_MEM_RESOURCE(reg),
471 		.offset = 0x01000000, .size = 0x10000,
472 	},
473 	{
474 		OCP_EXT_RESOURCE(ts0),
475 		.offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
476 		.extra = &(struct ptp_ocp_ext_info) {
477 			.index = 0,
478 			.irq_fcn = ptp_ocp_ts_irq,
479 			.enable = ptp_ocp_ts_enable,
480 		},
481 	},
482 	{
483 		OCP_EXT_RESOURCE(ts1),
484 		.offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
485 		.extra = &(struct ptp_ocp_ext_info) {
486 			.index = 1,
487 			.irq_fcn = ptp_ocp_ts_irq,
488 			.enable = ptp_ocp_ts_enable,
489 		},
490 	},
491 	{
492 		OCP_EXT_RESOURCE(ts2),
493 		.offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
494 		.extra = &(struct ptp_ocp_ext_info) {
495 			.index = 2,
496 			.irq_fcn = ptp_ocp_ts_irq,
497 			.enable = ptp_ocp_ts_enable,
498 		},
499 	},
500 	{
501 		OCP_EXT_RESOURCE(ts3),
502 		.offset = 0x01110000, .size = 0x10000, .irq_vec = 15,
503 		.extra = &(struct ptp_ocp_ext_info) {
504 			.index = 3,
505 			.irq_fcn = ptp_ocp_ts_irq,
506 			.enable = ptp_ocp_ts_enable,
507 		},
508 	},
509 	{
510 		OCP_EXT_RESOURCE(ts4),
511 		.offset = 0x01120000, .size = 0x10000, .irq_vec = 16,
512 		.extra = &(struct ptp_ocp_ext_info) {
513 			.index = 4,
514 			.irq_fcn = ptp_ocp_ts_irq,
515 			.enable = ptp_ocp_ts_enable,
516 		},
517 	},
518 	/* Timestamp for PHC and/or PPS generator */
519 	{
520 		OCP_EXT_RESOURCE(pps),
521 		.offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
522 		.extra = &(struct ptp_ocp_ext_info) {
523 			.index = 5,
524 			.irq_fcn = ptp_ocp_ts_irq,
525 			.enable = ptp_ocp_ts_enable,
526 		},
527 	},
528 	{
529 		OCP_EXT_RESOURCE(signal_out[0]),
530 		.offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
531 		.extra = &(struct ptp_ocp_ext_info) {
532 			.index = 1,
533 			.irq_fcn = ptp_ocp_signal_irq,
534 			.enable = ptp_ocp_signal_enable,
535 		},
536 	},
537 	{
538 		OCP_EXT_RESOURCE(signal_out[1]),
539 		.offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
540 		.extra = &(struct ptp_ocp_ext_info) {
541 			.index = 2,
542 			.irq_fcn = ptp_ocp_signal_irq,
543 			.enable = ptp_ocp_signal_enable,
544 		},
545 	},
546 	{
547 		OCP_EXT_RESOURCE(signal_out[2]),
548 		.offset = 0x010F0000, .size = 0x10000, .irq_vec = 13,
549 		.extra = &(struct ptp_ocp_ext_info) {
550 			.index = 3,
551 			.irq_fcn = ptp_ocp_signal_irq,
552 			.enable = ptp_ocp_signal_enable,
553 		},
554 	},
555 	{
556 		OCP_EXT_RESOURCE(signal_out[3]),
557 		.offset = 0x01100000, .size = 0x10000, .irq_vec = 14,
558 		.extra = &(struct ptp_ocp_ext_info) {
559 			.index = 4,
560 			.irq_fcn = ptp_ocp_signal_irq,
561 			.enable = ptp_ocp_signal_enable,
562 		},
563 	},
564 	{
565 		OCP_MEM_RESOURCE(pps_to_ext),
566 		.offset = 0x01030000, .size = 0x10000,
567 	},
568 	{
569 		OCP_MEM_RESOURCE(pps_to_clk),
570 		.offset = 0x01040000, .size = 0x10000,
571 	},
572 	{
573 		OCP_MEM_RESOURCE(tod),
574 		.offset = 0x01050000, .size = 0x10000,
575 	},
576 	{
577 		OCP_MEM_RESOURCE(irig_in),
578 		.offset = 0x01070000, .size = 0x10000,
579 	},
580 	{
581 		OCP_MEM_RESOURCE(irig_out),
582 		.offset = 0x01080000, .size = 0x10000,
583 	},
584 	{
585 		OCP_MEM_RESOURCE(dcf_in),
586 		.offset = 0x01090000, .size = 0x10000,
587 	},
588 	{
589 		OCP_MEM_RESOURCE(dcf_out),
590 		.offset = 0x010A0000, .size = 0x10000,
591 	},
592 	{
593 		OCP_MEM_RESOURCE(nmea_out),
594 		.offset = 0x010B0000, .size = 0x10000,
595 	},
596 	{
597 		OCP_MEM_RESOURCE(image),
598 		.offset = 0x00020000, .size = 0x1000,
599 	},
600 	{
601 		OCP_MEM_RESOURCE(pps_select),
602 		.offset = 0x00130000, .size = 0x1000,
603 	},
604 	{
605 		OCP_MEM_RESOURCE(sma_map1),
606 		.offset = 0x00140000, .size = 0x1000,
607 	},
608 	{
609 		OCP_MEM_RESOURCE(sma_map2),
610 		.offset = 0x00220000, .size = 0x1000,
611 	},
612 	{
613 		OCP_I2C_RESOURCE(i2c_ctrl),
614 		.offset = 0x00150000, .size = 0x10000, .irq_vec = 7,
615 		.extra = &(struct ptp_ocp_i2c_info) {
616 			.name = "xiic-i2c",
617 			.fixed_rate = 50000000,
618 			.data_size = sizeof(struct xiic_i2c_platform_data),
619 			.data = &(struct xiic_i2c_platform_data) {
620 				.num_devices = 2,
621 				.devices = (struct i2c_board_info[]) {
622 					{ I2C_BOARD_INFO("24c02", 0x50) },
623 					{ I2C_BOARD_INFO("24mac402", 0x58),
624 					  .platform_data = "mac" },
625 				},
626 			},
627 		},
628 	},
629 	{
630 		OCP_SERIAL_RESOURCE(gnss_port),
631 		.offset = 0x00160000 + 0x1000, .irq_vec = 3,
632 		.extra = &(struct ptp_ocp_serial_port) {
633 			.baud = 115200,
634 		},
635 	},
636 	{
637 		OCP_SERIAL_RESOURCE(gnss2_port),
638 		.offset = 0x00170000 + 0x1000, .irq_vec = 4,
639 		.extra = &(struct ptp_ocp_serial_port) {
640 			.baud = 115200,
641 		},
642 	},
643 	{
644 		OCP_SERIAL_RESOURCE(mac_port),
645 		.offset = 0x00180000 + 0x1000, .irq_vec = 5,
646 		.extra = &(struct ptp_ocp_serial_port) {
647 			.baud = 57600,
648 		},
649 	},
650 	{
651 		OCP_SERIAL_RESOURCE(nmea_port),
652 		.offset = 0x00190000 + 0x1000, .irq_vec = 10,
653 	},
654 	{
655 		OCP_SPI_RESOURCE(spi_flash),
656 		.offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
657 		.extra = &(struct ptp_ocp_flash_info) {
658 			.name = "xilinx_spi", .pci_offset = 0,
659 			.data_size = sizeof(struct xspi_platform_data),
660 			.data = &(struct xspi_platform_data) {
661 				.num_chipselect = 1,
662 				.bits_per_word = 8,
663 				.num_devices = 1,
664 				.force_irq = true,
665 				.devices = &(struct spi_board_info) {
666 					.modalias = "spi-nor",
667 				},
668 			},
669 		},
670 	},
671 	{
672 		OCP_MEM_RESOURCE(freq_in[0]),
673 		.offset = 0x01200000, .size = 0x10000,
674 	},
675 	{
676 		OCP_MEM_RESOURCE(freq_in[1]),
677 		.offset = 0x01210000, .size = 0x10000,
678 	},
679 	{
680 		OCP_MEM_RESOURCE(freq_in[2]),
681 		.offset = 0x01220000, .size = 0x10000,
682 	},
683 	{
684 		OCP_MEM_RESOURCE(freq_in[3]),
685 		.offset = 0x01230000, .size = 0x10000,
686 	},
687 	{
688 		.setup = ptp_ocp_fb_board_init,
689 	},
690 	{ }
691 };
692 
693 #define OCP_ART_CONFIG_SIZE		144
694 #define OCP_ART_TEMP_TABLE_SIZE		368
695 
696 struct ocp_art_gpio_reg {
697 	struct {
698 		u32	gpio;
699 		u32	__pad[3];
700 	} map[4];
701 };
702 
703 static struct ocp_resource ocp_art_resource[] = {
704 	{
705 		OCP_MEM_RESOURCE(reg),
706 		.offset = 0x01000000, .size = 0x10000,
707 	},
708 	{
709 		OCP_SERIAL_RESOURCE(gnss_port),
710 		.offset = 0x00160000 + 0x1000, .irq_vec = 3,
711 		.extra = &(struct ptp_ocp_serial_port) {
712 			.baud = 115200,
713 		},
714 	},
715 	{
716 		OCP_MEM_RESOURCE(art_sma),
717 		.offset = 0x003C0000, .size = 0x1000,
718 	},
719 	/* Timestamp associated with GNSS1 receiver PPS */
720 	{
721 		OCP_EXT_RESOURCE(ts0),
722 		.offset = 0x360000, .size = 0x20, .irq_vec = 12,
723 		.extra = &(struct ptp_ocp_ext_info) {
724 			.index = 0,
725 			.irq_fcn = ptp_ocp_ts_irq,
726 			.enable = ptp_ocp_ts_enable,
727 		},
728 	},
729 	{
730 		OCP_EXT_RESOURCE(ts1),
731 		.offset = 0x380000, .size = 0x20, .irq_vec = 8,
732 		.extra = &(struct ptp_ocp_ext_info) {
733 			.index = 1,
734 			.irq_fcn = ptp_ocp_ts_irq,
735 			.enable = ptp_ocp_ts_enable,
736 		},
737 	},
738 	{
739 		OCP_EXT_RESOURCE(ts2),
740 		.offset = 0x390000, .size = 0x20, .irq_vec = 10,
741 		.extra = &(struct ptp_ocp_ext_info) {
742 			.index = 2,
743 			.irq_fcn = ptp_ocp_ts_irq,
744 			.enable = ptp_ocp_ts_enable,
745 		},
746 	},
747 	{
748 		OCP_EXT_RESOURCE(ts3),
749 		.offset = 0x3A0000, .size = 0x20, .irq_vec = 14,
750 		.extra = &(struct ptp_ocp_ext_info) {
751 			.index = 3,
752 			.irq_fcn = ptp_ocp_ts_irq,
753 			.enable = ptp_ocp_ts_enable,
754 		},
755 	},
756 	{
757 		OCP_EXT_RESOURCE(ts4),
758 		.offset = 0x3B0000, .size = 0x20, .irq_vec = 15,
759 		.extra = &(struct ptp_ocp_ext_info) {
760 			.index = 4,
761 			.irq_fcn = ptp_ocp_ts_irq,
762 			.enable = ptp_ocp_ts_enable,
763 		},
764 	},
765 	/* Timestamp associated with Internal PPS of the card */
766 	{
767 		OCP_EXT_RESOURCE(pps),
768 		.offset = 0x00330000, .size = 0x20, .irq_vec = 11,
769 		.extra = &(struct ptp_ocp_ext_info) {
770 			.index = 5,
771 			.irq_fcn = ptp_ocp_ts_irq,
772 			.enable = ptp_ocp_ts_enable,
773 		},
774 	},
775 	{
776 		OCP_SPI_RESOURCE(spi_flash),
777 		.offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
778 		.extra = &(struct ptp_ocp_flash_info) {
779 			.name = "spi_altera", .pci_offset = 0,
780 			.data_size = sizeof(struct altera_spi_platform_data),
781 			.data = &(struct altera_spi_platform_data) {
782 				.num_chipselect = 1,
783 				.num_devices = 1,
784 				.devices = &(struct spi_board_info) {
785 					.modalias = "spi-nor",
786 				},
787 			},
788 		},
789 	},
790 	{
791 		OCP_I2C_RESOURCE(i2c_ctrl),
792 		.offset = 0x350000, .size = 0x100, .irq_vec = 4,
793 		.extra = &(struct ptp_ocp_i2c_info) {
794 			.name = "ocores-i2c",
795 			.fixed_rate = 400000,
796 			.data_size = sizeof(struct ocores_i2c_platform_data),
797 			.data = &(struct ocores_i2c_platform_data) {
798 				.clock_khz = 125000,
799 				.bus_khz = 400,
800 				.num_devices = 1,
801 				.devices = &(struct i2c_board_info) {
802 					I2C_BOARD_INFO("24c08", 0x50),
803 				},
804 			},
805 		},
806 	},
807 	{
808 		OCP_SERIAL_RESOURCE(mac_port),
809 		.offset = 0x00190000, .irq_vec = 7,
810 		.extra = &(struct ptp_ocp_serial_port) {
811 			.baud = 9600,
812 		},
813 	},
814 	{
815 		OCP_MEM_RESOURCE(board_config),
816 		.offset = 0x210000, .size = 0x1000,
817 	},
818 	{
819 		.setup = ptp_ocp_art_board_init,
820 	},
821 	{ }
822 };
823 
824 static const struct pci_device_id ptp_ocp_pcidev_id[] = {
825 	{ PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) },
826 	{ PCI_DEVICE_DATA(CELESTICA, TIMECARD, &ocp_fb_resource) },
827 	{ PCI_DEVICE_DATA(OROLIA, ARTCARD, &ocp_art_resource) },
828 	{ }
829 };
830 MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id);
831 
832 static DEFINE_MUTEX(ptp_ocp_lock);
833 static DEFINE_IDR(ptp_ocp_idr);
834 
835 struct ocp_selector {
836 	const char *name;
837 	int value;
838 };
839 
840 static const struct ocp_selector ptp_ocp_clock[] = {
841 	{ .name = "NONE",	.value = 0 },
842 	{ .name = "TOD",	.value = 1 },
843 	{ .name = "IRIG",	.value = 2 },
844 	{ .name = "PPS",	.value = 3 },
845 	{ .name = "PTP",	.value = 4 },
846 	{ .name = "RTC",	.value = 5 },
847 	{ .name = "DCF",	.value = 6 },
848 	{ .name = "REGS",	.value = 0xfe },
849 	{ .name = "EXT",	.value = 0xff },
850 	{ }
851 };
852 
853 #define SMA_DISABLE		BIT(16)
854 #define SMA_ENABLE		BIT(15)
855 #define SMA_SELECT_MASK		GENMASK(14, 0)
856 
857 static const struct ocp_selector ptp_ocp_sma_in[] = {
858 	{ .name = "10Mhz",	.value = 0x0000 },
859 	{ .name = "PPS1",	.value = 0x0001 },
860 	{ .name = "PPS2",	.value = 0x0002 },
861 	{ .name = "TS1",	.value = 0x0004 },
862 	{ .name = "TS2",	.value = 0x0008 },
863 	{ .name = "IRIG",	.value = 0x0010 },
864 	{ .name = "DCF",	.value = 0x0020 },
865 	{ .name = "TS3",	.value = 0x0040 },
866 	{ .name = "TS4",	.value = 0x0080 },
867 	{ .name = "FREQ1",	.value = 0x0100 },
868 	{ .name = "FREQ2",	.value = 0x0200 },
869 	{ .name = "FREQ3",	.value = 0x0400 },
870 	{ .name = "FREQ4",	.value = 0x0800 },
871 	{ .name = "None",	.value = SMA_DISABLE },
872 	{ }
873 };
874 
875 static const struct ocp_selector ptp_ocp_sma_out[] = {
876 	{ .name = "10Mhz",	.value = 0x0000 },
877 	{ .name = "PHC",	.value = 0x0001 },
878 	{ .name = "MAC",	.value = 0x0002 },
879 	{ .name = "GNSS1",	.value = 0x0004 },
880 	{ .name = "GNSS2",	.value = 0x0008 },
881 	{ .name = "IRIG",	.value = 0x0010 },
882 	{ .name = "DCF",	.value = 0x0020 },
883 	{ .name = "GEN1",	.value = 0x0040 },
884 	{ .name = "GEN2",	.value = 0x0080 },
885 	{ .name = "GEN3",	.value = 0x0100 },
886 	{ .name = "GEN4",	.value = 0x0200 },
887 	{ .name = "GND",	.value = 0x2000 },
888 	{ .name = "VCC",	.value = 0x4000 },
889 	{ }
890 };
891 
892 static const struct ocp_selector ptp_ocp_art_sma_in[] = {
893 	{ .name = "PPS1",	.value = 0x0001 },
894 	{ .name = "10Mhz",	.value = 0x0008 },
895 	{ }
896 };
897 
898 static const struct ocp_selector ptp_ocp_art_sma_out[] = {
899 	{ .name = "PHC",	.value = 0x0002 },
900 	{ .name = "GNSS",	.value = 0x0004 },
901 	{ .name = "10Mhz",	.value = 0x0010 },
902 	{ }
903 };
904 
905 struct ocp_sma_op {
906 	const struct ocp_selector *tbl[2];
907 	void (*init)(struct ptp_ocp *bp);
908 	u32 (*get)(struct ptp_ocp *bp, int sma_nr);
909 	int (*set_inputs)(struct ptp_ocp *bp, int sma_nr, u32 val);
910 	int (*set_output)(struct ptp_ocp *bp, int sma_nr, u32 val);
911 };
912 
913 static void
ptp_ocp_sma_init(struct ptp_ocp * bp)914 ptp_ocp_sma_init(struct ptp_ocp *bp)
915 {
916 	return bp->sma_op->init(bp);
917 }
918 
919 static u32
ptp_ocp_sma_get(struct ptp_ocp * bp,int sma_nr)920 ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr)
921 {
922 	return bp->sma_op->get(bp, sma_nr);
923 }
924 
925 static int
ptp_ocp_sma_set_inputs(struct ptp_ocp * bp,int sma_nr,u32 val)926 ptp_ocp_sma_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
927 {
928 	return bp->sma_op->set_inputs(bp, sma_nr, val);
929 }
930 
931 static int
ptp_ocp_sma_set_output(struct ptp_ocp * bp,int sma_nr,u32 val)932 ptp_ocp_sma_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
933 {
934 	return bp->sma_op->set_output(bp, sma_nr, val);
935 }
936 
937 static const char *
ptp_ocp_select_name_from_val(const struct ocp_selector * tbl,int val)938 ptp_ocp_select_name_from_val(const struct ocp_selector *tbl, int val)
939 {
940 	int i;
941 
942 	for (i = 0; tbl[i].name; i++)
943 		if (tbl[i].value == val)
944 			return tbl[i].name;
945 	return NULL;
946 }
947 
948 static int
ptp_ocp_select_val_from_name(const struct ocp_selector * tbl,const char * name)949 ptp_ocp_select_val_from_name(const struct ocp_selector *tbl, const char *name)
950 {
951 	const char *select;
952 	int i;
953 
954 	for (i = 0; tbl[i].name; i++) {
955 		select = tbl[i].name;
956 		if (!strncasecmp(name, select, strlen(select)))
957 			return tbl[i].value;
958 	}
959 	return -EINVAL;
960 }
961 
962 static ssize_t
ptp_ocp_select_table_show(const struct ocp_selector * tbl,char * buf)963 ptp_ocp_select_table_show(const struct ocp_selector *tbl, char *buf)
964 {
965 	ssize_t count;
966 	int i;
967 
968 	count = 0;
969 	for (i = 0; tbl[i].name; i++)
970 		count += sysfs_emit_at(buf, count, "%s ", tbl[i].name);
971 	if (count)
972 		count--;
973 	count += sysfs_emit_at(buf, count, "\n");
974 	return count;
975 }
976 
977 static int
__ptp_ocp_gettime_locked(struct ptp_ocp * bp,struct timespec64 * ts,struct ptp_system_timestamp * sts)978 __ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts,
979 			 struct ptp_system_timestamp *sts)
980 {
981 	u32 ctrl, time_sec, time_ns;
982 	int i;
983 
984 	ptp_read_system_prets(sts);
985 
986 	ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
987 	iowrite32(ctrl, &bp->reg->ctrl);
988 
989 	for (i = 0; i < 100; i++) {
990 		ctrl = ioread32(&bp->reg->ctrl);
991 		if (ctrl & OCP_CTRL_READ_TIME_DONE)
992 			break;
993 	}
994 	ptp_read_system_postts(sts);
995 
996 	if (sts && bp->ts_window_adjust) {
997 		s64 ns = timespec64_to_ns(&sts->post_ts);
998 
999 		sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust);
1000 	}
1001 
1002 	time_ns = ioread32(&bp->reg->time_ns);
1003 	time_sec = ioread32(&bp->reg->time_sec);
1004 
1005 	ts->tv_sec = time_sec;
1006 	ts->tv_nsec = time_ns;
1007 
1008 	return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT;
1009 }
1010 
1011 static int
ptp_ocp_gettimex(struct ptp_clock_info * ptp_info,struct timespec64 * ts,struct ptp_system_timestamp * sts)1012 ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts,
1013 		 struct ptp_system_timestamp *sts)
1014 {
1015 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1016 	unsigned long flags;
1017 	int err;
1018 
1019 	spin_lock_irqsave(&bp->lock, flags);
1020 	err = __ptp_ocp_gettime_locked(bp, ts, sts);
1021 	spin_unlock_irqrestore(&bp->lock, flags);
1022 
1023 	return err;
1024 }
1025 
1026 static void
__ptp_ocp_settime_locked(struct ptp_ocp * bp,const struct timespec64 * ts)1027 __ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts)
1028 {
1029 	u32 ctrl, time_sec, time_ns;
1030 	u32 select;
1031 
1032 	time_ns = ts->tv_nsec;
1033 	time_sec = ts->tv_sec;
1034 
1035 	select = ioread32(&bp->reg->select);
1036 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1037 
1038 	iowrite32(time_ns, &bp->reg->adjust_ns);
1039 	iowrite32(time_sec, &bp->reg->adjust_sec);
1040 
1041 	ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE;
1042 	iowrite32(ctrl, &bp->reg->ctrl);
1043 
1044 	/* restore clock selection */
1045 	iowrite32(select >> 16, &bp->reg->select);
1046 }
1047 
1048 static int
ptp_ocp_settime(struct ptp_clock_info * ptp_info,const struct timespec64 * ts)1049 ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts)
1050 {
1051 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1052 	unsigned long flags;
1053 
1054 	spin_lock_irqsave(&bp->lock, flags);
1055 	__ptp_ocp_settime_locked(bp, ts);
1056 	spin_unlock_irqrestore(&bp->lock, flags);
1057 
1058 	return 0;
1059 }
1060 
1061 static void
__ptp_ocp_adjtime_locked(struct ptp_ocp * bp,u32 adj_val)1062 __ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val)
1063 {
1064 	u32 select, ctrl;
1065 
1066 	select = ioread32(&bp->reg->select);
1067 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1068 
1069 	iowrite32(adj_val, &bp->reg->offset_ns);
1070 	iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns);
1071 
1072 	ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE;
1073 	iowrite32(ctrl, &bp->reg->ctrl);
1074 
1075 	/* restore clock selection */
1076 	iowrite32(select >> 16, &bp->reg->select);
1077 }
1078 
1079 static void
ptp_ocp_adjtime_coarse(struct ptp_ocp * bp,s64 delta_ns)1080 ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns)
1081 {
1082 	struct timespec64 ts;
1083 	unsigned long flags;
1084 	int err;
1085 
1086 	spin_lock_irqsave(&bp->lock, flags);
1087 	err = __ptp_ocp_gettime_locked(bp, &ts, NULL);
1088 	if (likely(!err)) {
1089 		set_normalized_timespec64(&ts, ts.tv_sec,
1090 					  ts.tv_nsec + delta_ns);
1091 		__ptp_ocp_settime_locked(bp, &ts);
1092 	}
1093 	spin_unlock_irqrestore(&bp->lock, flags);
1094 }
1095 
1096 static int
ptp_ocp_adjtime(struct ptp_clock_info * ptp_info,s64 delta_ns)1097 ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns)
1098 {
1099 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1100 	unsigned long flags;
1101 	u32 adj_ns, sign;
1102 
1103 	if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) {
1104 		ptp_ocp_adjtime_coarse(bp, delta_ns);
1105 		return 0;
1106 	}
1107 
1108 	sign = delta_ns < 0 ? BIT(31) : 0;
1109 	adj_ns = sign ? -delta_ns : delta_ns;
1110 
1111 	spin_lock_irqsave(&bp->lock, flags);
1112 	__ptp_ocp_adjtime_locked(bp, sign | adj_ns);
1113 	spin_unlock_irqrestore(&bp->lock, flags);
1114 
1115 	return 0;
1116 }
1117 
1118 static int
ptp_ocp_null_adjfine(struct ptp_clock_info * ptp_info,long scaled_ppm)1119 ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm)
1120 {
1121 	if (scaled_ppm == 0)
1122 		return 0;
1123 
1124 	return -EOPNOTSUPP;
1125 }
1126 
1127 static s32
ptp_ocp_null_getmaxphase(struct ptp_clock_info * ptp_info)1128 ptp_ocp_null_getmaxphase(struct ptp_clock_info *ptp_info)
1129 {
1130 	return 0;
1131 }
1132 
1133 static int
ptp_ocp_null_adjphase(struct ptp_clock_info * ptp_info,s32 phase_ns)1134 ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns)
1135 {
1136 	return -EOPNOTSUPP;
1137 }
1138 
1139 static int
ptp_ocp_enable(struct ptp_clock_info * ptp_info,struct ptp_clock_request * rq,int on)1140 ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq,
1141 	       int on)
1142 {
1143 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1144 	struct ptp_ocp_ext_src *ext = NULL;
1145 	u32 req;
1146 	int err;
1147 
1148 	switch (rq->type) {
1149 	case PTP_CLK_REQ_EXTTS:
1150 		req = OCP_REQ_TIMESTAMP;
1151 		switch (rq->extts.index) {
1152 		case 0:
1153 			ext = bp->ts0;
1154 			break;
1155 		case 1:
1156 			ext = bp->ts1;
1157 			break;
1158 		case 2:
1159 			ext = bp->ts2;
1160 			break;
1161 		case 3:
1162 			ext = bp->ts3;
1163 			break;
1164 		case 4:
1165 			ext = bp->ts4;
1166 			break;
1167 		case 5:
1168 			ext = bp->pps;
1169 			break;
1170 		}
1171 		break;
1172 	case PTP_CLK_REQ_PPS:
1173 		req = OCP_REQ_PPS;
1174 		ext = bp->pps;
1175 		break;
1176 	case PTP_CLK_REQ_PEROUT:
1177 		switch (rq->perout.index) {
1178 		case 0:
1179 			/* This is a request for 1PPS on an output SMA.
1180 			 * Allow, but assume manual configuration.
1181 			 */
1182 			if (on && (rq->perout.period.sec != 1 ||
1183 				   rq->perout.period.nsec != 0))
1184 				return -EINVAL;
1185 			return 0;
1186 		case 1:
1187 		case 2:
1188 		case 3:
1189 		case 4:
1190 			req = rq->perout.index - 1;
1191 			ext = bp->signal_out[req];
1192 			err = ptp_ocp_signal_from_perout(bp, req, &rq->perout);
1193 			if (err)
1194 				return err;
1195 			break;
1196 		}
1197 		break;
1198 	default:
1199 		return -EOPNOTSUPP;
1200 	}
1201 
1202 	err = -ENXIO;
1203 	if (ext)
1204 		err = ext->info->enable(ext, req, on);
1205 
1206 	return err;
1207 }
1208 
1209 static int
ptp_ocp_verify(struct ptp_clock_info * ptp_info,unsigned pin,enum ptp_pin_function func,unsigned chan)1210 ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin,
1211 	       enum ptp_pin_function func, unsigned chan)
1212 {
1213 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1214 	char buf[16];
1215 
1216 	switch (func) {
1217 	case PTP_PF_NONE:
1218 		snprintf(buf, sizeof(buf), "IN: None");
1219 		break;
1220 	case PTP_PF_EXTTS:
1221 		/* Allow timestamps, but require sysfs configuration. */
1222 		return 0;
1223 	case PTP_PF_PEROUT:
1224 		/* channel 0 is 1PPS from PHC.
1225 		 * channels 1..4 are the frequency generators.
1226 		 */
1227 		if (chan)
1228 			snprintf(buf, sizeof(buf), "OUT: GEN%d", chan);
1229 		else
1230 			snprintf(buf, sizeof(buf), "OUT: PHC");
1231 		break;
1232 	default:
1233 		return -EOPNOTSUPP;
1234 	}
1235 
1236 	return ptp_ocp_sma_store(bp, buf, pin + 1);
1237 }
1238 
1239 static const struct ptp_clock_info ptp_ocp_clock_info = {
1240 	.owner		= THIS_MODULE,
1241 	.name		= KBUILD_MODNAME,
1242 	.max_adj	= 100000000,
1243 	.gettimex64	= ptp_ocp_gettimex,
1244 	.settime64	= ptp_ocp_settime,
1245 	.adjtime	= ptp_ocp_adjtime,
1246 	.adjfine	= ptp_ocp_null_adjfine,
1247 	.adjphase	= ptp_ocp_null_adjphase,
1248 	.getmaxphase	= ptp_ocp_null_getmaxphase,
1249 	.enable		= ptp_ocp_enable,
1250 	.verify		= ptp_ocp_verify,
1251 	.pps		= true,
1252 	.n_ext_ts	= 6,
1253 	.n_per_out	= 5,
1254 };
1255 
1256 static void
__ptp_ocp_clear_drift_locked(struct ptp_ocp * bp)1257 __ptp_ocp_clear_drift_locked(struct ptp_ocp *bp)
1258 {
1259 	u32 ctrl, select;
1260 
1261 	select = ioread32(&bp->reg->select);
1262 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1263 
1264 	iowrite32(0, &bp->reg->drift_ns);
1265 
1266 	ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE;
1267 	iowrite32(ctrl, &bp->reg->ctrl);
1268 
1269 	/* restore clock selection */
1270 	iowrite32(select >> 16, &bp->reg->select);
1271 }
1272 
1273 static void
ptp_ocp_utc_distribute(struct ptp_ocp * bp,u32 val)1274 ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val)
1275 {
1276 	unsigned long flags;
1277 
1278 	spin_lock_irqsave(&bp->lock, flags);
1279 
1280 	bp->utc_tai_offset = val;
1281 
1282 	if (bp->irig_out)
1283 		iowrite32(val, &bp->irig_out->adj_sec);
1284 	if (bp->dcf_out)
1285 		iowrite32(val, &bp->dcf_out->adj_sec);
1286 	if (bp->nmea_out)
1287 		iowrite32(val, &bp->nmea_out->adj_sec);
1288 
1289 	spin_unlock_irqrestore(&bp->lock, flags);
1290 }
1291 
1292 static void
ptp_ocp_watchdog(struct timer_list * t)1293 ptp_ocp_watchdog(struct timer_list *t)
1294 {
1295 	struct ptp_ocp *bp = from_timer(bp, t, watchdog);
1296 	unsigned long flags;
1297 	u32 status, utc_offset;
1298 
1299 	status = ioread32(&bp->pps_to_clk->status);
1300 
1301 	if (status & PPS_STATUS_SUPERV_ERR) {
1302 		iowrite32(status, &bp->pps_to_clk->status);
1303 		if (!bp->gnss_lost) {
1304 			spin_lock_irqsave(&bp->lock, flags);
1305 			__ptp_ocp_clear_drift_locked(bp);
1306 			spin_unlock_irqrestore(&bp->lock, flags);
1307 			bp->gnss_lost = ktime_get_real_seconds();
1308 		}
1309 
1310 	} else if (bp->gnss_lost) {
1311 		bp->gnss_lost = 0;
1312 	}
1313 
1314 	/* if GNSS provides correct data we can rely on
1315 	 * it to get leap second information
1316 	 */
1317 	if (bp->tod) {
1318 		status = ioread32(&bp->tod->utc_status);
1319 		utc_offset = status & TOD_STATUS_UTC_MASK;
1320 		if (status & TOD_STATUS_UTC_VALID &&
1321 		    utc_offset != bp->utc_tai_offset)
1322 			ptp_ocp_utc_distribute(bp, utc_offset);
1323 	}
1324 
1325 	mod_timer(&bp->watchdog, jiffies + HZ);
1326 }
1327 
1328 static void
ptp_ocp_estimate_pci_timing(struct ptp_ocp * bp)1329 ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp)
1330 {
1331 	ktime_t start, end;
1332 	ktime_t delay;
1333 	u32 ctrl;
1334 
1335 	ctrl = ioread32(&bp->reg->ctrl);
1336 	ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1337 
1338 	iowrite32(ctrl, &bp->reg->ctrl);
1339 
1340 	start = ktime_get_ns();
1341 
1342 	ctrl = ioread32(&bp->reg->ctrl);
1343 
1344 	end = ktime_get_ns();
1345 
1346 	delay = end - start;
1347 	bp->ts_window_adjust = (delay >> 5) * 3;
1348 }
1349 
1350 static int
ptp_ocp_init_clock(struct ptp_ocp * bp)1351 ptp_ocp_init_clock(struct ptp_ocp *bp)
1352 {
1353 	struct timespec64 ts;
1354 	bool sync;
1355 	u32 ctrl;
1356 
1357 	ctrl = OCP_CTRL_ENABLE;
1358 	iowrite32(ctrl, &bp->reg->ctrl);
1359 
1360 	/* NO DRIFT Correction */
1361 	/* offset_p:i 1/8, offset_i: 1/16, drift_p: 0, drift_i: 0 */
1362 	iowrite32(0x2000, &bp->reg->servo_offset_p);
1363 	iowrite32(0x1000, &bp->reg->servo_offset_i);
1364 	iowrite32(0,	  &bp->reg->servo_drift_p);
1365 	iowrite32(0,	  &bp->reg->servo_drift_i);
1366 
1367 	/* latch servo values */
1368 	ctrl |= OCP_CTRL_ADJUST_SERVO;
1369 	iowrite32(ctrl, &bp->reg->ctrl);
1370 
1371 	if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) {
1372 		dev_err(&bp->pdev->dev, "clock not enabled\n");
1373 		return -ENODEV;
1374 	}
1375 
1376 	ptp_ocp_estimate_pci_timing(bp);
1377 
1378 	sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
1379 	if (!sync) {
1380 		ktime_get_clocktai_ts64(&ts);
1381 		ptp_ocp_settime(&bp->ptp_info, &ts);
1382 	}
1383 
1384 	/* If there is a clock supervisor, then enable the watchdog */
1385 	if (bp->pps_to_clk) {
1386 		timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0);
1387 		mod_timer(&bp->watchdog, jiffies + HZ);
1388 	}
1389 
1390 	return 0;
1391 }
1392 
1393 static void
ptp_ocp_tod_init(struct ptp_ocp * bp)1394 ptp_ocp_tod_init(struct ptp_ocp *bp)
1395 {
1396 	u32 ctrl, reg;
1397 
1398 	ctrl = ioread32(&bp->tod->ctrl);
1399 	ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE;
1400 	ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B);
1401 	iowrite32(ctrl, &bp->tod->ctrl);
1402 
1403 	reg = ioread32(&bp->tod->utc_status);
1404 	if (reg & TOD_STATUS_UTC_VALID)
1405 		ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK);
1406 }
1407 
1408 static const char *
ptp_ocp_tod_proto_name(const int idx)1409 ptp_ocp_tod_proto_name(const int idx)
1410 {
1411 	static const char * const proto_name[] = {
1412 		"NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none",
1413 		"UBX", "UBX_UTC", "UBX_LS", "UBX_none"
1414 	};
1415 	return proto_name[idx];
1416 }
1417 
1418 static const char *
ptp_ocp_tod_gnss_name(int idx)1419 ptp_ocp_tod_gnss_name(int idx)
1420 {
1421 	static const char * const gnss_name[] = {
1422 		"ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU",
1423 		"Unknown"
1424 	};
1425 	if (idx >= ARRAY_SIZE(gnss_name))
1426 		idx = ARRAY_SIZE(gnss_name) - 1;
1427 	return gnss_name[idx];
1428 }
1429 
1430 struct ptp_ocp_nvmem_match_info {
1431 	struct ptp_ocp *bp;
1432 	const void * const tag;
1433 };
1434 
1435 static int
ptp_ocp_nvmem_match(struct device * dev,const void * data)1436 ptp_ocp_nvmem_match(struct device *dev, const void *data)
1437 {
1438 	const struct ptp_ocp_nvmem_match_info *info = data;
1439 
1440 	dev = dev->parent;
1441 	if (!i2c_verify_client(dev) || info->tag != dev->platform_data)
1442 		return 0;
1443 
1444 	while ((dev = dev->parent))
1445 		if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
1446 			return info->bp == dev_get_drvdata(dev);
1447 	return 0;
1448 }
1449 
1450 static inline struct nvmem_device *
ptp_ocp_nvmem_device_get(struct ptp_ocp * bp,const void * const tag)1451 ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag)
1452 {
1453 	struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag };
1454 
1455 	return nvmem_device_find(&info, ptp_ocp_nvmem_match);
1456 }
1457 
1458 static inline void
ptp_ocp_nvmem_device_put(struct nvmem_device ** nvmemp)1459 ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp)
1460 {
1461 	if (!IS_ERR_OR_NULL(*nvmemp))
1462 		nvmem_device_put(*nvmemp);
1463 	*nvmemp = NULL;
1464 }
1465 
1466 static void
ptp_ocp_read_eeprom(struct ptp_ocp * bp)1467 ptp_ocp_read_eeprom(struct ptp_ocp *bp)
1468 {
1469 	const struct ptp_ocp_eeprom_map *map;
1470 	struct nvmem_device *nvmem;
1471 	const void *tag;
1472 	int ret;
1473 
1474 	if (!bp->i2c_ctrl)
1475 		return;
1476 
1477 	tag = NULL;
1478 	nvmem = NULL;
1479 
1480 	for (map = bp->eeprom_map; map->len; map++) {
1481 		if (map->tag != tag) {
1482 			tag = map->tag;
1483 			ptp_ocp_nvmem_device_put(&nvmem);
1484 		}
1485 		if (!nvmem) {
1486 			nvmem = ptp_ocp_nvmem_device_get(bp, tag);
1487 			if (IS_ERR(nvmem)) {
1488 				ret = PTR_ERR(nvmem);
1489 				goto fail;
1490 			}
1491 		}
1492 		ret = nvmem_device_read(nvmem, map->off, map->len,
1493 					BP_MAP_ENTRY_ADDR(bp, map));
1494 		if (ret != map->len)
1495 			goto fail;
1496 	}
1497 
1498 	bp->has_eeprom_data = true;
1499 
1500 out:
1501 	ptp_ocp_nvmem_device_put(&nvmem);
1502 	return;
1503 
1504 fail:
1505 	dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret);
1506 	goto out;
1507 }
1508 
1509 static struct device *
ptp_ocp_find_flash(struct ptp_ocp * bp)1510 ptp_ocp_find_flash(struct ptp_ocp *bp)
1511 {
1512 	struct device *dev, *last;
1513 
1514 	last = NULL;
1515 	dev = &bp->spi_flash->dev;
1516 
1517 	while ((dev = device_find_any_child(dev))) {
1518 		if (!strcmp("mtd", dev_bus_name(dev)))
1519 			break;
1520 		put_device(last);
1521 		last = dev;
1522 	}
1523 	put_device(last);
1524 
1525 	return dev;
1526 }
1527 
1528 static int
ptp_ocp_devlink_fw_image(struct devlink * devlink,const struct firmware * fw,const u8 ** data,size_t * size)1529 ptp_ocp_devlink_fw_image(struct devlink *devlink, const struct firmware *fw,
1530 			 const u8 **data, size_t *size)
1531 {
1532 	struct ptp_ocp *bp = devlink_priv(devlink);
1533 	const struct ptp_ocp_firmware_header *hdr;
1534 	size_t offset, length;
1535 	u16 crc;
1536 
1537 	hdr = (const struct ptp_ocp_firmware_header *)fw->data;
1538 	if (memcmp(hdr->magic, OCP_FIRMWARE_MAGIC_HEADER, 4)) {
1539 		devlink_flash_update_status_notify(devlink,
1540 			"No firmware header found, cancel firmware upgrade",
1541 			NULL, 0, 0);
1542 		return -EINVAL;
1543 	}
1544 
1545 	if (be16_to_cpu(hdr->pci_vendor_id) != bp->pdev->vendor ||
1546 	    be16_to_cpu(hdr->pci_device_id) != bp->pdev->device) {
1547 		devlink_flash_update_status_notify(devlink,
1548 			"Firmware image compatibility check failed",
1549 			NULL, 0, 0);
1550 		return -EINVAL;
1551 	}
1552 
1553 	offset = sizeof(*hdr);
1554 	length = be32_to_cpu(hdr->image_size);
1555 	if (length != (fw->size - offset)) {
1556 		devlink_flash_update_status_notify(devlink,
1557 			"Firmware image size check failed",
1558 			NULL, 0, 0);
1559 		return -EINVAL;
1560 	}
1561 
1562 	crc = crc16(0xffff, &fw->data[offset], length);
1563 	if (be16_to_cpu(hdr->crc) != crc) {
1564 		devlink_flash_update_status_notify(devlink,
1565 			"Firmware image CRC check failed",
1566 			NULL, 0, 0);
1567 		return -EINVAL;
1568 	}
1569 
1570 	*data = &fw->data[offset];
1571 	*size = length;
1572 
1573 	return 0;
1574 }
1575 
1576 static int
ptp_ocp_devlink_flash(struct devlink * devlink,struct device * dev,const struct firmware * fw)1577 ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev,
1578 		      const struct firmware *fw)
1579 {
1580 	struct mtd_info *mtd = dev_get_drvdata(dev);
1581 	struct ptp_ocp *bp = devlink_priv(devlink);
1582 	size_t off, len, size, resid, wrote;
1583 	struct erase_info erase;
1584 	size_t base, blksz;
1585 	const u8 *data;
1586 	int err;
1587 
1588 	err = ptp_ocp_devlink_fw_image(devlink, fw, &data, &size);
1589 	if (err)
1590 		goto out;
1591 
1592 	off = 0;
1593 	base = bp->flash_start;
1594 	blksz = 4096;
1595 	resid = size;
1596 
1597 	while (resid) {
1598 		devlink_flash_update_status_notify(devlink, "Flashing",
1599 						   NULL, off, size);
1600 
1601 		len = min_t(size_t, resid, blksz);
1602 		erase.addr = base + off;
1603 		erase.len = blksz;
1604 
1605 		err = mtd_erase(mtd, &erase);
1606 		if (err)
1607 			goto out;
1608 
1609 		err = mtd_write(mtd, base + off, len, &wrote, data + off);
1610 		if (err)
1611 			goto out;
1612 
1613 		off += blksz;
1614 		resid -= len;
1615 	}
1616 out:
1617 	return err;
1618 }
1619 
1620 static int
ptp_ocp_devlink_flash_update(struct devlink * devlink,struct devlink_flash_update_params * params,struct netlink_ext_ack * extack)1621 ptp_ocp_devlink_flash_update(struct devlink *devlink,
1622 			     struct devlink_flash_update_params *params,
1623 			     struct netlink_ext_ack *extack)
1624 {
1625 	struct ptp_ocp *bp = devlink_priv(devlink);
1626 	struct device *dev;
1627 	const char *msg;
1628 	int err;
1629 
1630 	dev = ptp_ocp_find_flash(bp);
1631 	if (!dev) {
1632 		dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n");
1633 		return -ENODEV;
1634 	}
1635 
1636 	devlink_flash_update_status_notify(devlink, "Preparing to flash",
1637 					   NULL, 0, 0);
1638 
1639 	err = ptp_ocp_devlink_flash(devlink, dev, params->fw);
1640 
1641 	msg = err ? "Flash error" : "Flash complete";
1642 	devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0);
1643 
1644 	put_device(dev);
1645 	return err;
1646 }
1647 
1648 static int
ptp_ocp_devlink_info_get(struct devlink * devlink,struct devlink_info_req * req,struct netlink_ext_ack * extack)1649 ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req,
1650 			 struct netlink_ext_ack *extack)
1651 {
1652 	struct ptp_ocp *bp = devlink_priv(devlink);
1653 	const char *fw_image;
1654 	char buf[32];
1655 	int err;
1656 
1657 	fw_image = bp->fw_loader ? "loader" : "fw";
1658 	sprintf(buf, "%d.%d", bp->fw_tag, bp->fw_version);
1659 	err = devlink_info_version_running_put(req, fw_image, buf);
1660 	if (err)
1661 		return err;
1662 
1663 	if (!bp->has_eeprom_data) {
1664 		ptp_ocp_read_eeprom(bp);
1665 		if (!bp->has_eeprom_data)
1666 			return 0;
1667 	}
1668 
1669 	sprintf(buf, "%pM", bp->serial);
1670 	err = devlink_info_serial_number_put(req, buf);
1671 	if (err)
1672 		return err;
1673 
1674 	err = devlink_info_version_fixed_put(req,
1675 			DEVLINK_INFO_VERSION_GENERIC_BOARD_ID,
1676 			bp->board_id);
1677 	if (err)
1678 		return err;
1679 
1680 	return 0;
1681 }
1682 
1683 static const struct devlink_ops ptp_ocp_devlink_ops = {
1684 	.flash_update = ptp_ocp_devlink_flash_update,
1685 	.info_get = ptp_ocp_devlink_info_get,
1686 };
1687 
1688 static void __iomem *
__ptp_ocp_get_mem(struct ptp_ocp * bp,resource_size_t start,int size)1689 __ptp_ocp_get_mem(struct ptp_ocp *bp, resource_size_t start, int size)
1690 {
1691 	struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp");
1692 
1693 	return devm_ioremap_resource(&bp->pdev->dev, &res);
1694 }
1695 
1696 static void __iomem *
ptp_ocp_get_mem(struct ptp_ocp * bp,struct ocp_resource * r)1697 ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r)
1698 {
1699 	resource_size_t start;
1700 
1701 	start = pci_resource_start(bp->pdev, 0) + r->offset;
1702 	return __ptp_ocp_get_mem(bp, start, r->size);
1703 }
1704 
1705 static void
ptp_ocp_set_irq_resource(struct resource * res,int irq)1706 ptp_ocp_set_irq_resource(struct resource *res, int irq)
1707 {
1708 	struct resource r = DEFINE_RES_IRQ(irq);
1709 	*res = r;
1710 }
1711 
1712 static void
ptp_ocp_set_mem_resource(struct resource * res,resource_size_t start,int size)1713 ptp_ocp_set_mem_resource(struct resource *res, resource_size_t start, int size)
1714 {
1715 	struct resource r = DEFINE_RES_MEM(start, size);
1716 	*res = r;
1717 }
1718 
1719 static int
ptp_ocp_register_spi(struct ptp_ocp * bp,struct ocp_resource * r)1720 ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r)
1721 {
1722 	struct ptp_ocp_flash_info *info;
1723 	struct pci_dev *pdev = bp->pdev;
1724 	struct platform_device *p;
1725 	struct resource res[2];
1726 	resource_size_t start;
1727 	int id;
1728 
1729 	start = pci_resource_start(pdev, 0) + r->offset;
1730 	ptp_ocp_set_mem_resource(&res[0], start, r->size);
1731 	ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec));
1732 
1733 	info = r->extra;
1734 	id = pci_dev_id(pdev) << 1;
1735 	id += info->pci_offset;
1736 
1737 	p = platform_device_register_resndata(&pdev->dev, info->name, id,
1738 					      res, 2, info->data,
1739 					      info->data_size);
1740 	if (IS_ERR(p))
1741 		return PTR_ERR(p);
1742 
1743 	bp_assign_entry(bp, r, p);
1744 
1745 	return 0;
1746 }
1747 
1748 static struct platform_device *
ptp_ocp_i2c_bus(struct pci_dev * pdev,struct ocp_resource * r,int id)1749 ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id)
1750 {
1751 	struct ptp_ocp_i2c_info *info;
1752 	struct resource res[2];
1753 	resource_size_t start;
1754 
1755 	info = r->extra;
1756 	start = pci_resource_start(pdev, 0) + r->offset;
1757 	ptp_ocp_set_mem_resource(&res[0], start, r->size);
1758 	ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec));
1759 
1760 	return platform_device_register_resndata(&pdev->dev, info->name,
1761 						 id, res, 2,
1762 						 info->data, info->data_size);
1763 }
1764 
1765 static int
ptp_ocp_register_i2c(struct ptp_ocp * bp,struct ocp_resource * r)1766 ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r)
1767 {
1768 	struct pci_dev *pdev = bp->pdev;
1769 	struct ptp_ocp_i2c_info *info;
1770 	struct platform_device *p;
1771 	struct clk_hw *clk;
1772 	char buf[32];
1773 	int id;
1774 
1775 	info = r->extra;
1776 	id = pci_dev_id(bp->pdev);
1777 
1778 	sprintf(buf, "AXI.%d", id);
1779 	clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0,
1780 					 info->fixed_rate);
1781 	if (IS_ERR(clk))
1782 		return PTR_ERR(clk);
1783 	bp->i2c_clk = clk;
1784 
1785 	sprintf(buf, "%s.%d", info->name, id);
1786 	devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf);
1787 	p = ptp_ocp_i2c_bus(bp->pdev, r, id);
1788 	if (IS_ERR(p))
1789 		return PTR_ERR(p);
1790 
1791 	bp_assign_entry(bp, r, p);
1792 
1793 	return 0;
1794 }
1795 
1796 /* The expectation is that this is triggered only on error. */
1797 static irqreturn_t
ptp_ocp_signal_irq(int irq,void * priv)1798 ptp_ocp_signal_irq(int irq, void *priv)
1799 {
1800 	struct ptp_ocp_ext_src *ext = priv;
1801 	struct signal_reg __iomem *reg = ext->mem;
1802 	struct ptp_ocp *bp = ext->bp;
1803 	u32 enable, status;
1804 	int gen;
1805 
1806 	gen = ext->info->index - 1;
1807 
1808 	enable = ioread32(&reg->enable);
1809 	status = ioread32(&reg->status);
1810 
1811 	/* disable generator on error */
1812 	if (status || !enable) {
1813 		iowrite32(0, &reg->intr_mask);
1814 		iowrite32(0, &reg->enable);
1815 		bp->signal[gen].running = false;
1816 	}
1817 
1818 	iowrite32(0, &reg->intr);	/* ack interrupt */
1819 
1820 	return IRQ_HANDLED;
1821 }
1822 
1823 static int
ptp_ocp_signal_set(struct ptp_ocp * bp,int gen,struct ptp_ocp_signal * s)1824 ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s)
1825 {
1826 	struct ptp_system_timestamp sts;
1827 	struct timespec64 ts;
1828 	ktime_t start_ns;
1829 	int err;
1830 
1831 	if (!s->period)
1832 		return 0;
1833 
1834 	if (!s->pulse)
1835 		s->pulse = ktime_divns(s->period * s->duty, 100);
1836 
1837 	err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts);
1838 	if (err)
1839 		return err;
1840 
1841 	start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC;
1842 	if (!s->start) {
1843 		/* roundup() does not work on 32-bit systems */
1844 		s->start = DIV64_U64_ROUND_UP(start_ns, s->period);
1845 		s->start = ktime_add(s->start, s->phase);
1846 	}
1847 
1848 	if (s->duty < 1 || s->duty > 99)
1849 		return -EINVAL;
1850 
1851 	if (s->pulse < 1 || s->pulse > s->period)
1852 		return -EINVAL;
1853 
1854 	if (s->start < start_ns)
1855 		return -EINVAL;
1856 
1857 	bp->signal[gen] = *s;
1858 
1859 	return 0;
1860 }
1861 
1862 static int
ptp_ocp_signal_from_perout(struct ptp_ocp * bp,int gen,struct ptp_perout_request * req)1863 ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
1864 			   struct ptp_perout_request *req)
1865 {
1866 	struct ptp_ocp_signal s = { };
1867 
1868 	s.polarity = bp->signal[gen].polarity;
1869 	s.period = ktime_set(req->period.sec, req->period.nsec);
1870 	if (!s.period)
1871 		return 0;
1872 
1873 	if (req->flags & PTP_PEROUT_DUTY_CYCLE) {
1874 		s.pulse = ktime_set(req->on.sec, req->on.nsec);
1875 		s.duty = ktime_divns(s.pulse * 100, s.period);
1876 	}
1877 
1878 	if (req->flags & PTP_PEROUT_PHASE)
1879 		s.phase = ktime_set(req->phase.sec, req->phase.nsec);
1880 	else
1881 		s.start = ktime_set(req->start.sec, req->start.nsec);
1882 
1883 	return ptp_ocp_signal_set(bp, gen, &s);
1884 }
1885 
1886 static int
ptp_ocp_signal_enable(void * priv,u32 req,bool enable)1887 ptp_ocp_signal_enable(void *priv, u32 req, bool enable)
1888 {
1889 	struct ptp_ocp_ext_src *ext = priv;
1890 	struct signal_reg __iomem *reg = ext->mem;
1891 	struct ptp_ocp *bp = ext->bp;
1892 	struct timespec64 ts;
1893 	int gen;
1894 
1895 	gen = ext->info->index - 1;
1896 
1897 	iowrite32(0, &reg->intr_mask);
1898 	iowrite32(0, &reg->enable);
1899 	bp->signal[gen].running = false;
1900 	if (!enable)
1901 		return 0;
1902 
1903 	ts = ktime_to_timespec64(bp->signal[gen].start);
1904 	iowrite32(ts.tv_sec, &reg->start_sec);
1905 	iowrite32(ts.tv_nsec, &reg->start_ns);
1906 
1907 	ts = ktime_to_timespec64(bp->signal[gen].period);
1908 	iowrite32(ts.tv_sec, &reg->period_sec);
1909 	iowrite32(ts.tv_nsec, &reg->period_ns);
1910 
1911 	ts = ktime_to_timespec64(bp->signal[gen].pulse);
1912 	iowrite32(ts.tv_sec, &reg->pulse_sec);
1913 	iowrite32(ts.tv_nsec, &reg->pulse_ns);
1914 
1915 	iowrite32(bp->signal[gen].polarity, &reg->polarity);
1916 	iowrite32(0, &reg->repeat_count);
1917 
1918 	iowrite32(0, &reg->intr);		/* clear interrupt state */
1919 	iowrite32(1, &reg->intr_mask);		/* enable interrupt */
1920 	iowrite32(3, &reg->enable);		/* valid & enable */
1921 
1922 	bp->signal[gen].running = true;
1923 
1924 	return 0;
1925 }
1926 
1927 static irqreturn_t
ptp_ocp_ts_irq(int irq,void * priv)1928 ptp_ocp_ts_irq(int irq, void *priv)
1929 {
1930 	struct ptp_ocp_ext_src *ext = priv;
1931 	struct ts_reg __iomem *reg = ext->mem;
1932 	struct ptp_clock_event ev;
1933 	u32 sec, nsec;
1934 
1935 	if (ext == ext->bp->pps) {
1936 		if (ext->bp->pps_req_map & OCP_REQ_PPS) {
1937 			ev.type = PTP_CLOCK_PPS;
1938 			ptp_clock_event(ext->bp->ptp, &ev);
1939 		}
1940 
1941 		if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0)
1942 			goto out;
1943 	}
1944 
1945 	/* XXX should fix API - this converts s/ns -> ts -> s/ns */
1946 	sec = ioread32(&reg->time_sec);
1947 	nsec = ioread32(&reg->time_ns);
1948 
1949 	ev.type = PTP_CLOCK_EXTTS;
1950 	ev.index = ext->info->index;
1951 	ev.timestamp = sec * NSEC_PER_SEC + nsec;
1952 
1953 	ptp_clock_event(ext->bp->ptp, &ev);
1954 
1955 out:
1956 	iowrite32(1, &reg->intr);	/* write 1 to ack */
1957 
1958 	return IRQ_HANDLED;
1959 }
1960 
1961 static int
ptp_ocp_ts_enable(void * priv,u32 req,bool enable)1962 ptp_ocp_ts_enable(void *priv, u32 req, bool enable)
1963 {
1964 	struct ptp_ocp_ext_src *ext = priv;
1965 	struct ts_reg __iomem *reg = ext->mem;
1966 	struct ptp_ocp *bp = ext->bp;
1967 
1968 	if (ext == bp->pps) {
1969 		u32 old_map = bp->pps_req_map;
1970 
1971 		if (enable)
1972 			bp->pps_req_map |= req;
1973 		else
1974 			bp->pps_req_map &= ~req;
1975 
1976 		/* if no state change, just return */
1977 		if ((!!old_map ^ !!bp->pps_req_map) == 0)
1978 			return 0;
1979 	}
1980 
1981 	if (enable) {
1982 		iowrite32(1, &reg->enable);
1983 		iowrite32(1, &reg->intr_mask);
1984 		iowrite32(1, &reg->intr);
1985 	} else {
1986 		iowrite32(0, &reg->intr_mask);
1987 		iowrite32(0, &reg->enable);
1988 	}
1989 
1990 	return 0;
1991 }
1992 
1993 static void
ptp_ocp_unregister_ext(struct ptp_ocp_ext_src * ext)1994 ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext)
1995 {
1996 	ext->info->enable(ext, ~0, false);
1997 	pci_free_irq(ext->bp->pdev, ext->irq_vec, ext);
1998 	kfree(ext);
1999 }
2000 
2001 static int
ptp_ocp_register_ext(struct ptp_ocp * bp,struct ocp_resource * r)2002 ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r)
2003 {
2004 	struct pci_dev *pdev = bp->pdev;
2005 	struct ptp_ocp_ext_src *ext;
2006 	int err;
2007 
2008 	ext = kzalloc(sizeof(*ext), GFP_KERNEL);
2009 	if (!ext)
2010 		return -ENOMEM;
2011 
2012 	ext->mem = ptp_ocp_get_mem(bp, r);
2013 	if (IS_ERR(ext->mem)) {
2014 		err = PTR_ERR(ext->mem);
2015 		goto out;
2016 	}
2017 
2018 	ext->bp = bp;
2019 	ext->info = r->extra;
2020 	ext->irq_vec = r->irq_vec;
2021 
2022 	err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL,
2023 			      ext, "ocp%d.%s", bp->id, r->name);
2024 	if (err) {
2025 		dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec);
2026 		goto out;
2027 	}
2028 
2029 	bp_assign_entry(bp, r, ext);
2030 
2031 	return 0;
2032 
2033 out:
2034 	kfree(ext);
2035 	return err;
2036 }
2037 
2038 static int
ptp_ocp_serial_line(struct ptp_ocp * bp,struct ocp_resource * r)2039 ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r)
2040 {
2041 	struct pci_dev *pdev = bp->pdev;
2042 	struct uart_8250_port uart;
2043 
2044 	/* Setting UPF_IOREMAP and leaving port.membase unspecified lets
2045 	 * the serial port device claim and release the pci resource.
2046 	 */
2047 	memset(&uart, 0, sizeof(uart));
2048 	uart.port.dev = &pdev->dev;
2049 	uart.port.iotype = UPIO_MEM;
2050 	uart.port.regshift = 2;
2051 	uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset;
2052 	uart.port.irq = pci_irq_vector(pdev, r->irq_vec);
2053 	uart.port.uartclk = 50000000;
2054 	uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST;
2055 	uart.port.type = PORT_16550A;
2056 
2057 	return serial8250_register_8250_port(&uart);
2058 }
2059 
2060 static int
ptp_ocp_register_serial(struct ptp_ocp * bp,struct ocp_resource * r)2061 ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r)
2062 {
2063 	struct ptp_ocp_serial_port *p = (struct ptp_ocp_serial_port *)r->extra;
2064 	struct ptp_ocp_serial_port port = {};
2065 
2066 	port.line = ptp_ocp_serial_line(bp, r);
2067 	if (port.line < 0)
2068 		return port.line;
2069 
2070 	if (p)
2071 		port.baud = p->baud;
2072 
2073 	bp_assign_entry(bp, r, port);
2074 
2075 	return 0;
2076 }
2077 
2078 static int
ptp_ocp_register_mem(struct ptp_ocp * bp,struct ocp_resource * r)2079 ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r)
2080 {
2081 	void __iomem *mem;
2082 
2083 	mem = ptp_ocp_get_mem(bp, r);
2084 	if (IS_ERR(mem))
2085 		return PTR_ERR(mem);
2086 
2087 	bp_assign_entry(bp, r, mem);
2088 
2089 	return 0;
2090 }
2091 
2092 static void
ptp_ocp_nmea_out_init(struct ptp_ocp * bp)2093 ptp_ocp_nmea_out_init(struct ptp_ocp *bp)
2094 {
2095 	if (!bp->nmea_out)
2096 		return;
2097 
2098 	iowrite32(0, &bp->nmea_out->ctrl);		/* disable */
2099 	iowrite32(7, &bp->nmea_out->uart_baud);		/* 115200 */
2100 	iowrite32(1, &bp->nmea_out->ctrl);		/* enable */
2101 }
2102 
2103 static void
_ptp_ocp_signal_init(struct ptp_ocp_signal * s,struct signal_reg __iomem * reg)2104 _ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg)
2105 {
2106 	u32 val;
2107 
2108 	iowrite32(0, &reg->enable);		/* disable */
2109 
2110 	val = ioread32(&reg->polarity);
2111 	s->polarity = val ? true : false;
2112 	s->duty = 50;
2113 }
2114 
2115 static void
ptp_ocp_signal_init(struct ptp_ocp * bp)2116 ptp_ocp_signal_init(struct ptp_ocp *bp)
2117 {
2118 	int i;
2119 
2120 	for (i = 0; i < 4; i++)
2121 		if (bp->signal_out[i])
2122 			_ptp_ocp_signal_init(&bp->signal[i],
2123 					     bp->signal_out[i]->mem);
2124 }
2125 
2126 static void
ptp_ocp_attr_group_del(struct ptp_ocp * bp)2127 ptp_ocp_attr_group_del(struct ptp_ocp *bp)
2128 {
2129 	sysfs_remove_groups(&bp->dev.kobj, bp->attr_group);
2130 	kfree(bp->attr_group);
2131 }
2132 
2133 static int
ptp_ocp_attr_group_add(struct ptp_ocp * bp,const struct ocp_attr_group * attr_tbl)2134 ptp_ocp_attr_group_add(struct ptp_ocp *bp,
2135 		       const struct ocp_attr_group *attr_tbl)
2136 {
2137 	int count, i;
2138 	int err;
2139 
2140 	count = 0;
2141 	for (i = 0; attr_tbl[i].cap; i++)
2142 		if (attr_tbl[i].cap & bp->fw_cap)
2143 			count++;
2144 
2145 	bp->attr_group = kcalloc(count + 1, sizeof(struct attribute_group *),
2146 				 GFP_KERNEL);
2147 	if (!bp->attr_group)
2148 		return -ENOMEM;
2149 
2150 	count = 0;
2151 	for (i = 0; attr_tbl[i].cap; i++)
2152 		if (attr_tbl[i].cap & bp->fw_cap)
2153 			bp->attr_group[count++] = attr_tbl[i].group;
2154 
2155 	err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group);
2156 	if (err)
2157 		bp->attr_group[0] = NULL;
2158 
2159 	return err;
2160 }
2161 
2162 static void
ptp_ocp_enable_fpga(u32 __iomem * reg,u32 bit,bool enable)2163 ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable)
2164 {
2165 	u32 ctrl;
2166 	bool on;
2167 
2168 	ctrl = ioread32(reg);
2169 	on = ctrl & bit;
2170 	if (on ^ enable) {
2171 		ctrl &= ~bit;
2172 		ctrl |= enable ? bit : 0;
2173 		iowrite32(ctrl, reg);
2174 	}
2175 }
2176 
2177 static void
ptp_ocp_irig_out(struct ptp_ocp * bp,bool enable)2178 ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable)
2179 {
2180 	return ptp_ocp_enable_fpga(&bp->irig_out->ctrl,
2181 				   IRIG_M_CTRL_ENABLE, enable);
2182 }
2183 
2184 static void
ptp_ocp_irig_in(struct ptp_ocp * bp,bool enable)2185 ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable)
2186 {
2187 	return ptp_ocp_enable_fpga(&bp->irig_in->ctrl,
2188 				   IRIG_S_CTRL_ENABLE, enable);
2189 }
2190 
2191 static void
ptp_ocp_dcf_out(struct ptp_ocp * bp,bool enable)2192 ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable)
2193 {
2194 	return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl,
2195 				   DCF_M_CTRL_ENABLE, enable);
2196 }
2197 
2198 static void
ptp_ocp_dcf_in(struct ptp_ocp * bp,bool enable)2199 ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable)
2200 {
2201 	return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl,
2202 				   DCF_S_CTRL_ENABLE, enable);
2203 }
2204 
2205 static void
__handle_signal_outputs(struct ptp_ocp * bp,u32 val)2206 __handle_signal_outputs(struct ptp_ocp *bp, u32 val)
2207 {
2208 	ptp_ocp_irig_out(bp, val & 0x00100010);
2209 	ptp_ocp_dcf_out(bp, val & 0x00200020);
2210 }
2211 
2212 static void
__handle_signal_inputs(struct ptp_ocp * bp,u32 val)2213 __handle_signal_inputs(struct ptp_ocp *bp, u32 val)
2214 {
2215 	ptp_ocp_irig_in(bp, val & 0x00100010);
2216 	ptp_ocp_dcf_in(bp, val & 0x00200020);
2217 }
2218 
2219 static u32
ptp_ocp_sma_fb_get(struct ptp_ocp * bp,int sma_nr)2220 ptp_ocp_sma_fb_get(struct ptp_ocp *bp, int sma_nr)
2221 {
2222 	u32 __iomem *gpio;
2223 	u32 shift;
2224 
2225 	if (bp->sma[sma_nr - 1].fixed_fcn)
2226 		return (sma_nr - 1) & 1;
2227 
2228 	if (bp->sma[sma_nr - 1].mode == SMA_MODE_IN)
2229 		gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2230 	else
2231 		gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2232 	shift = sma_nr & 1 ? 0 : 16;
2233 
2234 	return (ioread32(gpio) >> shift) & 0xffff;
2235 }
2236 
2237 static int
ptp_ocp_sma_fb_set_output(struct ptp_ocp * bp,int sma_nr,u32 val)2238 ptp_ocp_sma_fb_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
2239 {
2240 	u32 reg, mask, shift;
2241 	unsigned long flags;
2242 	u32 __iomem *gpio;
2243 
2244 	gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2245 	shift = sma_nr & 1 ? 0 : 16;
2246 
2247 	mask = 0xffff << (16 - shift);
2248 
2249 	spin_lock_irqsave(&bp->lock, flags);
2250 
2251 	reg = ioread32(gpio);
2252 	reg = (reg & mask) | (val << shift);
2253 
2254 	__handle_signal_outputs(bp, reg);
2255 
2256 	iowrite32(reg, gpio);
2257 
2258 	spin_unlock_irqrestore(&bp->lock, flags);
2259 
2260 	return 0;
2261 }
2262 
2263 static int
ptp_ocp_sma_fb_set_inputs(struct ptp_ocp * bp,int sma_nr,u32 val)2264 ptp_ocp_sma_fb_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
2265 {
2266 	u32 reg, mask, shift;
2267 	unsigned long flags;
2268 	u32 __iomem *gpio;
2269 
2270 	gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2271 	shift = sma_nr & 1 ? 0 : 16;
2272 
2273 	mask = 0xffff << (16 - shift);
2274 
2275 	spin_lock_irqsave(&bp->lock, flags);
2276 
2277 	reg = ioread32(gpio);
2278 	reg = (reg & mask) | (val << shift);
2279 
2280 	__handle_signal_inputs(bp, reg);
2281 
2282 	iowrite32(reg, gpio);
2283 
2284 	spin_unlock_irqrestore(&bp->lock, flags);
2285 
2286 	return 0;
2287 }
2288 
2289 static void
ptp_ocp_sma_fb_init(struct ptp_ocp * bp)2290 ptp_ocp_sma_fb_init(struct ptp_ocp *bp)
2291 {
2292 	u32 reg;
2293 	int i;
2294 
2295 	/* defaults */
2296 	bp->sma[0].mode = SMA_MODE_IN;
2297 	bp->sma[1].mode = SMA_MODE_IN;
2298 	bp->sma[2].mode = SMA_MODE_OUT;
2299 	bp->sma[3].mode = SMA_MODE_OUT;
2300 	for (i = 0; i < 4; i++)
2301 		bp->sma[i].default_fcn = i & 1;
2302 
2303 	/* If no SMA1 map, the pin functions and directions are fixed. */
2304 	if (!bp->sma_map1) {
2305 		for (i = 0; i < 4; i++) {
2306 			bp->sma[i].fixed_fcn = true;
2307 			bp->sma[i].fixed_dir = true;
2308 		}
2309 		return;
2310 	}
2311 
2312 	/* If SMA2 GPIO output map is all 1, it is not present.
2313 	 * This indicates the firmware has fixed direction SMA pins.
2314 	 */
2315 	reg = ioread32(&bp->sma_map2->gpio2);
2316 	if (reg == 0xffffffff) {
2317 		for (i = 0; i < 4; i++)
2318 			bp->sma[i].fixed_dir = true;
2319 	} else {
2320 		reg = ioread32(&bp->sma_map1->gpio1);
2321 		bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT;
2322 		bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT;
2323 
2324 		reg = ioread32(&bp->sma_map1->gpio2);
2325 		bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN;
2326 		bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN;
2327 	}
2328 }
2329 
2330 static const struct ocp_sma_op ocp_fb_sma_op = {
2331 	.tbl		= { ptp_ocp_sma_in, ptp_ocp_sma_out },
2332 	.init		= ptp_ocp_sma_fb_init,
2333 	.get		= ptp_ocp_sma_fb_get,
2334 	.set_inputs	= ptp_ocp_sma_fb_set_inputs,
2335 	.set_output	= ptp_ocp_sma_fb_set_output,
2336 };
2337 
2338 static int
ptp_ocp_fb_set_pins(struct ptp_ocp * bp)2339 ptp_ocp_fb_set_pins(struct ptp_ocp *bp)
2340 {
2341 	struct ptp_pin_desc *config;
2342 	int i;
2343 
2344 	config = kcalloc(4, sizeof(*config), GFP_KERNEL);
2345 	if (!config)
2346 		return -ENOMEM;
2347 
2348 	for (i = 0; i < 4; i++) {
2349 		sprintf(config[i].name, "sma%d", i + 1);
2350 		config[i].index = i;
2351 	}
2352 
2353 	bp->ptp_info.n_pins = 4;
2354 	bp->ptp_info.pin_config = config;
2355 
2356 	return 0;
2357 }
2358 
2359 static void
ptp_ocp_fb_set_version(struct ptp_ocp * bp)2360 ptp_ocp_fb_set_version(struct ptp_ocp *bp)
2361 {
2362 	u64 cap = OCP_CAP_BASIC;
2363 	u32 version;
2364 
2365 	version = ioread32(&bp->image->version);
2366 
2367 	/* if lower 16 bits are empty, this is the fw loader. */
2368 	if ((version & 0xffff) == 0) {
2369 		version = version >> 16;
2370 		bp->fw_loader = true;
2371 	}
2372 
2373 	bp->fw_tag = version >> 15;
2374 	bp->fw_version = version & 0x7fff;
2375 
2376 	if (bp->fw_tag) {
2377 		/* FPGA firmware */
2378 		if (version >= 5)
2379 			cap |= OCP_CAP_SIGNAL | OCP_CAP_FREQ;
2380 	} else {
2381 		/* SOM firmware */
2382 		if (version >= 19)
2383 			cap |= OCP_CAP_SIGNAL;
2384 		if (version >= 20)
2385 			cap |= OCP_CAP_FREQ;
2386 	}
2387 
2388 	bp->fw_cap = cap;
2389 }
2390 
2391 /* FB specific board initializers; last "resource" registered. */
2392 static int
ptp_ocp_fb_board_init(struct ptp_ocp * bp,struct ocp_resource * r)2393 ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2394 {
2395 	int err;
2396 
2397 	bp->flash_start = 1024 * 4096;
2398 	bp->eeprom_map = fb_eeprom_map;
2399 	bp->fw_version = ioread32(&bp->image->version);
2400 	bp->sma_op = &ocp_fb_sma_op;
2401 
2402 	ptp_ocp_fb_set_version(bp);
2403 
2404 	ptp_ocp_tod_init(bp);
2405 	ptp_ocp_nmea_out_init(bp);
2406 	ptp_ocp_sma_init(bp);
2407 	ptp_ocp_signal_init(bp);
2408 
2409 	err = ptp_ocp_attr_group_add(bp, fb_timecard_groups);
2410 	if (err)
2411 		return err;
2412 
2413 	err = ptp_ocp_fb_set_pins(bp);
2414 	if (err)
2415 		return err;
2416 
2417 	return ptp_ocp_init_clock(bp);
2418 }
2419 
2420 static bool
ptp_ocp_allow_irq(struct ptp_ocp * bp,struct ocp_resource * r)2421 ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r)
2422 {
2423 	bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs;
2424 
2425 	if (!allow)
2426 		dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n",
2427 			r->irq_vec, r->name);
2428 	return allow;
2429 }
2430 
2431 static int
ptp_ocp_register_resources(struct ptp_ocp * bp,kernel_ulong_t driver_data)2432 ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data)
2433 {
2434 	struct ocp_resource *r, *table;
2435 	int err = 0;
2436 
2437 	table = (struct ocp_resource *)driver_data;
2438 	for (r = table; r->setup; r++) {
2439 		if (!ptp_ocp_allow_irq(bp, r))
2440 			continue;
2441 		err = r->setup(bp, r);
2442 		if (err) {
2443 			dev_err(&bp->pdev->dev,
2444 				"Could not register %s: err %d\n",
2445 				r->name, err);
2446 			break;
2447 		}
2448 	}
2449 	return err;
2450 }
2451 
2452 static void
ptp_ocp_art_sma_init(struct ptp_ocp * bp)2453 ptp_ocp_art_sma_init(struct ptp_ocp *bp)
2454 {
2455 	u32 reg;
2456 	int i;
2457 
2458 	/* defaults */
2459 	bp->sma[0].mode = SMA_MODE_IN;
2460 	bp->sma[1].mode = SMA_MODE_IN;
2461 	bp->sma[2].mode = SMA_MODE_OUT;
2462 	bp->sma[3].mode = SMA_MODE_OUT;
2463 
2464 	bp->sma[0].default_fcn = 0x08;	/* IN: 10Mhz */
2465 	bp->sma[1].default_fcn = 0x01;	/* IN: PPS1 */
2466 	bp->sma[2].default_fcn = 0x10;	/* OUT: 10Mhz */
2467 	bp->sma[3].default_fcn = 0x02;	/* OUT: PHC */
2468 
2469 	/* If no SMA map, the pin functions and directions are fixed. */
2470 	if (!bp->art_sma) {
2471 		for (i = 0; i < 4; i++) {
2472 			bp->sma[i].fixed_fcn = true;
2473 			bp->sma[i].fixed_dir = true;
2474 		}
2475 		return;
2476 	}
2477 
2478 	for (i = 0; i < 4; i++) {
2479 		reg = ioread32(&bp->art_sma->map[i].gpio);
2480 
2481 		switch (reg & 0xff) {
2482 		case 0:
2483 			bp->sma[i].fixed_fcn = true;
2484 			bp->sma[i].fixed_dir = true;
2485 			break;
2486 		case 1:
2487 		case 8:
2488 			bp->sma[i].mode = SMA_MODE_IN;
2489 			break;
2490 		default:
2491 			bp->sma[i].mode = SMA_MODE_OUT;
2492 			break;
2493 		}
2494 	}
2495 }
2496 
2497 static u32
ptp_ocp_art_sma_get(struct ptp_ocp * bp,int sma_nr)2498 ptp_ocp_art_sma_get(struct ptp_ocp *bp, int sma_nr)
2499 {
2500 	if (bp->sma[sma_nr - 1].fixed_fcn)
2501 		return bp->sma[sma_nr - 1].default_fcn;
2502 
2503 	return ioread32(&bp->art_sma->map[sma_nr - 1].gpio) & 0xff;
2504 }
2505 
2506 /* note: store 0 is considered invalid. */
2507 static int
ptp_ocp_art_sma_set(struct ptp_ocp * bp,int sma_nr,u32 val)2508 ptp_ocp_art_sma_set(struct ptp_ocp *bp, int sma_nr, u32 val)
2509 {
2510 	unsigned long flags;
2511 	u32 __iomem *gpio;
2512 	int err = 0;
2513 	u32 reg;
2514 
2515 	val &= SMA_SELECT_MASK;
2516 	if (hweight32(val) > 1)
2517 		return -EINVAL;
2518 
2519 	gpio = &bp->art_sma->map[sma_nr - 1].gpio;
2520 
2521 	spin_lock_irqsave(&bp->lock, flags);
2522 	reg = ioread32(gpio);
2523 	if (((reg >> 16) & val) == 0) {
2524 		err = -EOPNOTSUPP;
2525 	} else {
2526 		reg = (reg & 0xff00) | (val & 0xff);
2527 		iowrite32(reg, gpio);
2528 	}
2529 	spin_unlock_irqrestore(&bp->lock, flags);
2530 
2531 	return err;
2532 }
2533 
2534 static const struct ocp_sma_op ocp_art_sma_op = {
2535 	.tbl		= { ptp_ocp_art_sma_in, ptp_ocp_art_sma_out },
2536 	.init		= ptp_ocp_art_sma_init,
2537 	.get		= ptp_ocp_art_sma_get,
2538 	.set_inputs	= ptp_ocp_art_sma_set,
2539 	.set_output	= ptp_ocp_art_sma_set,
2540 };
2541 
2542 /* ART specific board initializers; last "resource" registered. */
2543 static int
ptp_ocp_art_board_init(struct ptp_ocp * bp,struct ocp_resource * r)2544 ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2545 {
2546 	int err;
2547 
2548 	bp->flash_start = 0x1000000;
2549 	bp->eeprom_map = art_eeprom_map;
2550 	bp->fw_cap = OCP_CAP_BASIC;
2551 	bp->fw_version = ioread32(&bp->reg->version);
2552 	bp->fw_tag = 2;
2553 	bp->sma_op = &ocp_art_sma_op;
2554 
2555 	/* Enable MAC serial port during initialisation */
2556 	iowrite32(1, &bp->board_config->mro50_serial_activate);
2557 
2558 	ptp_ocp_sma_init(bp);
2559 
2560 	err = ptp_ocp_attr_group_add(bp, art_timecard_groups);
2561 	if (err)
2562 		return err;
2563 
2564 	return ptp_ocp_init_clock(bp);
2565 }
2566 
2567 static ssize_t
ptp_ocp_show_output(const struct ocp_selector * tbl,u32 val,char * buf,int def_val)2568 ptp_ocp_show_output(const struct ocp_selector *tbl, u32 val, char *buf,
2569 		    int def_val)
2570 {
2571 	const char *name;
2572 	ssize_t count;
2573 
2574 	count = sysfs_emit(buf, "OUT: ");
2575 	name = ptp_ocp_select_name_from_val(tbl, val);
2576 	if (!name)
2577 		name = ptp_ocp_select_name_from_val(tbl, def_val);
2578 	count += sysfs_emit_at(buf, count, "%s\n", name);
2579 	return count;
2580 }
2581 
2582 static ssize_t
ptp_ocp_show_inputs(const struct ocp_selector * tbl,u32 val,char * buf,int def_val)2583 ptp_ocp_show_inputs(const struct ocp_selector *tbl, u32 val, char *buf,
2584 		    int def_val)
2585 {
2586 	const char *name;
2587 	ssize_t count;
2588 	int i;
2589 
2590 	count = sysfs_emit(buf, "IN: ");
2591 	for (i = 0; tbl[i].name; i++) {
2592 		if (val & tbl[i].value) {
2593 			name = tbl[i].name;
2594 			count += sysfs_emit_at(buf, count, "%s ", name);
2595 		}
2596 	}
2597 	if (!val && def_val >= 0) {
2598 		name = ptp_ocp_select_name_from_val(tbl, def_val);
2599 		count += sysfs_emit_at(buf, count, "%s ", name);
2600 	}
2601 	if (count)
2602 		count--;
2603 	count += sysfs_emit_at(buf, count, "\n");
2604 	return count;
2605 }
2606 
2607 static int
sma_parse_inputs(const struct ocp_selector * const tbl[],const char * buf,enum ptp_ocp_sma_mode * mode)2608 sma_parse_inputs(const struct ocp_selector * const tbl[], const char *buf,
2609 		 enum ptp_ocp_sma_mode *mode)
2610 {
2611 	int idx, count, dir;
2612 	char **argv;
2613 	int ret;
2614 
2615 	argv = argv_split(GFP_KERNEL, buf, &count);
2616 	if (!argv)
2617 		return -ENOMEM;
2618 
2619 	ret = -EINVAL;
2620 	if (!count)
2621 		goto out;
2622 
2623 	idx = 0;
2624 	dir = *mode == SMA_MODE_IN ? 0 : 1;
2625 	if (!strcasecmp("IN:", argv[0])) {
2626 		dir = 0;
2627 		idx++;
2628 	}
2629 	if (!strcasecmp("OUT:", argv[0])) {
2630 		dir = 1;
2631 		idx++;
2632 	}
2633 	*mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT;
2634 
2635 	ret = 0;
2636 	for (; idx < count; idx++)
2637 		ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]);
2638 	if (ret < 0)
2639 		ret = -EINVAL;
2640 
2641 out:
2642 	argv_free(argv);
2643 	return ret;
2644 }
2645 
2646 static ssize_t
ptp_ocp_sma_show(struct ptp_ocp * bp,int sma_nr,char * buf,int default_in_val,int default_out_val)2647 ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf,
2648 		 int default_in_val, int default_out_val)
2649 {
2650 	struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2651 	const struct ocp_selector * const *tbl;
2652 	u32 val;
2653 
2654 	tbl = bp->sma_op->tbl;
2655 	val = ptp_ocp_sma_get(bp, sma_nr) & SMA_SELECT_MASK;
2656 
2657 	if (sma->mode == SMA_MODE_IN) {
2658 		if (sma->disabled)
2659 			val = SMA_DISABLE;
2660 		return ptp_ocp_show_inputs(tbl[0], val, buf, default_in_val);
2661 	}
2662 
2663 	return ptp_ocp_show_output(tbl[1], val, buf, default_out_val);
2664 }
2665 
2666 static ssize_t
sma1_show(struct device * dev,struct device_attribute * attr,char * buf)2667 sma1_show(struct device *dev, struct device_attribute *attr, char *buf)
2668 {
2669 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2670 
2671 	return ptp_ocp_sma_show(bp, 1, buf, 0, 1);
2672 }
2673 
2674 static ssize_t
sma2_show(struct device * dev,struct device_attribute * attr,char * buf)2675 sma2_show(struct device *dev, struct device_attribute *attr, char *buf)
2676 {
2677 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2678 
2679 	return ptp_ocp_sma_show(bp, 2, buf, -1, 1);
2680 }
2681 
2682 static ssize_t
sma3_show(struct device * dev,struct device_attribute * attr,char * buf)2683 sma3_show(struct device *dev, struct device_attribute *attr, char *buf)
2684 {
2685 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2686 
2687 	return ptp_ocp_sma_show(bp, 3, buf, -1, 0);
2688 }
2689 
2690 static ssize_t
sma4_show(struct device * dev,struct device_attribute * attr,char * buf)2691 sma4_show(struct device *dev, struct device_attribute *attr, char *buf)
2692 {
2693 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2694 
2695 	return ptp_ocp_sma_show(bp, 4, buf, -1, 1);
2696 }
2697 
2698 static int
ptp_ocp_sma_store(struct ptp_ocp * bp,const char * buf,int sma_nr)2699 ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr)
2700 {
2701 	struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2702 	enum ptp_ocp_sma_mode mode;
2703 	int val;
2704 
2705 	mode = sma->mode;
2706 	val = sma_parse_inputs(bp->sma_op->tbl, buf, &mode);
2707 	if (val < 0)
2708 		return val;
2709 
2710 	if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE))
2711 		return -EOPNOTSUPP;
2712 
2713 	if (sma->fixed_fcn) {
2714 		if (val != sma->default_fcn)
2715 			return -EOPNOTSUPP;
2716 		return 0;
2717 	}
2718 
2719 	sma->disabled = !!(val & SMA_DISABLE);
2720 
2721 	if (mode != sma->mode) {
2722 		if (mode == SMA_MODE_IN)
2723 			ptp_ocp_sma_set_output(bp, sma_nr, 0);
2724 		else
2725 			ptp_ocp_sma_set_inputs(bp, sma_nr, 0);
2726 		sma->mode = mode;
2727 	}
2728 
2729 	if (!sma->fixed_dir)
2730 		val |= SMA_ENABLE;		/* add enable bit */
2731 
2732 	if (sma->disabled)
2733 		val = 0;
2734 
2735 	if (mode == SMA_MODE_IN)
2736 		val = ptp_ocp_sma_set_inputs(bp, sma_nr, val);
2737 	else
2738 		val = ptp_ocp_sma_set_output(bp, sma_nr, val);
2739 
2740 	return val;
2741 }
2742 
2743 static ssize_t
sma1_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2744 sma1_store(struct device *dev, struct device_attribute *attr,
2745 	   const char *buf, size_t count)
2746 {
2747 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2748 	int err;
2749 
2750 	err = ptp_ocp_sma_store(bp, buf, 1);
2751 	return err ? err : count;
2752 }
2753 
2754 static ssize_t
sma2_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2755 sma2_store(struct device *dev, struct device_attribute *attr,
2756 	   const char *buf, size_t count)
2757 {
2758 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2759 	int err;
2760 
2761 	err = ptp_ocp_sma_store(bp, buf, 2);
2762 	return err ? err : count;
2763 }
2764 
2765 static ssize_t
sma3_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2766 sma3_store(struct device *dev, struct device_attribute *attr,
2767 	   const char *buf, size_t count)
2768 {
2769 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2770 	int err;
2771 
2772 	err = ptp_ocp_sma_store(bp, buf, 3);
2773 	return err ? err : count;
2774 }
2775 
2776 static ssize_t
sma4_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2777 sma4_store(struct device *dev, struct device_attribute *attr,
2778 	   const char *buf, size_t count)
2779 {
2780 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2781 	int err;
2782 
2783 	err = ptp_ocp_sma_store(bp, buf, 4);
2784 	return err ? err : count;
2785 }
2786 static DEVICE_ATTR_RW(sma1);
2787 static DEVICE_ATTR_RW(sma2);
2788 static DEVICE_ATTR_RW(sma3);
2789 static DEVICE_ATTR_RW(sma4);
2790 
2791 static ssize_t
available_sma_inputs_show(struct device * dev,struct device_attribute * attr,char * buf)2792 available_sma_inputs_show(struct device *dev,
2793 			  struct device_attribute *attr, char *buf)
2794 {
2795 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2796 
2797 	return ptp_ocp_select_table_show(bp->sma_op->tbl[0], buf);
2798 }
2799 static DEVICE_ATTR_RO(available_sma_inputs);
2800 
2801 static ssize_t
available_sma_outputs_show(struct device * dev,struct device_attribute * attr,char * buf)2802 available_sma_outputs_show(struct device *dev,
2803 			   struct device_attribute *attr, char *buf)
2804 {
2805 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2806 
2807 	return ptp_ocp_select_table_show(bp->sma_op->tbl[1], buf);
2808 }
2809 static DEVICE_ATTR_RO(available_sma_outputs);
2810 
2811 #define EXT_ATTR_RO(_group, _name, _val)				\
2812 	struct dev_ext_attribute dev_attr_##_group##_val##_##_name =	\
2813 		{ __ATTR_RO(_name), (void *)_val }
2814 #define EXT_ATTR_RW(_group, _name, _val)				\
2815 	struct dev_ext_attribute dev_attr_##_group##_val##_##_name =	\
2816 		{ __ATTR_RW(_name), (void *)_val }
2817 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2818 
2819 /* period [duty [phase [polarity]]] */
2820 static ssize_t
signal_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2821 signal_store(struct device *dev, struct device_attribute *attr,
2822 	     const char *buf, size_t count)
2823 {
2824 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2825 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2826 	struct ptp_ocp_signal s = { };
2827 	int gen = (uintptr_t)ea->var;
2828 	int argc, err;
2829 	char **argv;
2830 
2831 	argv = argv_split(GFP_KERNEL, buf, &argc);
2832 	if (!argv)
2833 		return -ENOMEM;
2834 
2835 	err = -EINVAL;
2836 	s.duty = bp->signal[gen].duty;
2837 	s.phase = bp->signal[gen].phase;
2838 	s.period = bp->signal[gen].period;
2839 	s.polarity = bp->signal[gen].polarity;
2840 
2841 	switch (argc) {
2842 	case 4:
2843 		argc--;
2844 		err = kstrtobool(argv[argc], &s.polarity);
2845 		if (err)
2846 			goto out;
2847 		fallthrough;
2848 	case 3:
2849 		argc--;
2850 		err = kstrtou64(argv[argc], 0, &s.phase);
2851 		if (err)
2852 			goto out;
2853 		fallthrough;
2854 	case 2:
2855 		argc--;
2856 		err = kstrtoint(argv[argc], 0, &s.duty);
2857 		if (err)
2858 			goto out;
2859 		fallthrough;
2860 	case 1:
2861 		argc--;
2862 		err = kstrtou64(argv[argc], 0, &s.period);
2863 		if (err)
2864 			goto out;
2865 		break;
2866 	default:
2867 		goto out;
2868 	}
2869 
2870 	err = ptp_ocp_signal_set(bp, gen, &s);
2871 	if (err)
2872 		goto out;
2873 
2874 	err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0);
2875 
2876 out:
2877 	argv_free(argv);
2878 	return err ? err : count;
2879 }
2880 
2881 static ssize_t
signal_show(struct device * dev,struct device_attribute * attr,char * buf)2882 signal_show(struct device *dev, struct device_attribute *attr, char *buf)
2883 {
2884 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2885 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2886 	struct ptp_ocp_signal *signal;
2887 	struct timespec64 ts;
2888 	ssize_t count;
2889 	int i;
2890 
2891 	i = (uintptr_t)ea->var;
2892 	signal = &bp->signal[i];
2893 
2894 	count = sysfs_emit(buf, "%llu %d %llu %d", signal->period,
2895 			   signal->duty, signal->phase, signal->polarity);
2896 
2897 	ts = ktime_to_timespec64(signal->start);
2898 	count += sysfs_emit_at(buf, count, " %ptT TAI\n", &ts);
2899 
2900 	return count;
2901 }
2902 static EXT_ATTR_RW(signal, signal, 0);
2903 static EXT_ATTR_RW(signal, signal, 1);
2904 static EXT_ATTR_RW(signal, signal, 2);
2905 static EXT_ATTR_RW(signal, signal, 3);
2906 
2907 static ssize_t
duty_show(struct device * dev,struct device_attribute * attr,char * buf)2908 duty_show(struct device *dev, struct device_attribute *attr, char *buf)
2909 {
2910 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2911 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2912 	int i = (uintptr_t)ea->var;
2913 
2914 	return sysfs_emit(buf, "%d\n", bp->signal[i].duty);
2915 }
2916 static EXT_ATTR_RO(signal, duty, 0);
2917 static EXT_ATTR_RO(signal, duty, 1);
2918 static EXT_ATTR_RO(signal, duty, 2);
2919 static EXT_ATTR_RO(signal, duty, 3);
2920 
2921 static ssize_t
period_show(struct device * dev,struct device_attribute * attr,char * buf)2922 period_show(struct device *dev, struct device_attribute *attr, char *buf)
2923 {
2924 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2925 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2926 	int i = (uintptr_t)ea->var;
2927 
2928 	return sysfs_emit(buf, "%llu\n", bp->signal[i].period);
2929 }
2930 static EXT_ATTR_RO(signal, period, 0);
2931 static EXT_ATTR_RO(signal, period, 1);
2932 static EXT_ATTR_RO(signal, period, 2);
2933 static EXT_ATTR_RO(signal, period, 3);
2934 
2935 static ssize_t
phase_show(struct device * dev,struct device_attribute * attr,char * buf)2936 phase_show(struct device *dev, struct device_attribute *attr, char *buf)
2937 {
2938 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2939 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2940 	int i = (uintptr_t)ea->var;
2941 
2942 	return sysfs_emit(buf, "%llu\n", bp->signal[i].phase);
2943 }
2944 static EXT_ATTR_RO(signal, phase, 0);
2945 static EXT_ATTR_RO(signal, phase, 1);
2946 static EXT_ATTR_RO(signal, phase, 2);
2947 static EXT_ATTR_RO(signal, phase, 3);
2948 
2949 static ssize_t
polarity_show(struct device * dev,struct device_attribute * attr,char * buf)2950 polarity_show(struct device *dev, struct device_attribute *attr,
2951 	      char *buf)
2952 {
2953 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2954 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2955 	int i = (uintptr_t)ea->var;
2956 
2957 	return sysfs_emit(buf, "%d\n", bp->signal[i].polarity);
2958 }
2959 static EXT_ATTR_RO(signal, polarity, 0);
2960 static EXT_ATTR_RO(signal, polarity, 1);
2961 static EXT_ATTR_RO(signal, polarity, 2);
2962 static EXT_ATTR_RO(signal, polarity, 3);
2963 
2964 static ssize_t
running_show(struct device * dev,struct device_attribute * attr,char * buf)2965 running_show(struct device *dev, struct device_attribute *attr, char *buf)
2966 {
2967 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2968 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2969 	int i = (uintptr_t)ea->var;
2970 
2971 	return sysfs_emit(buf, "%d\n", bp->signal[i].running);
2972 }
2973 static EXT_ATTR_RO(signal, running, 0);
2974 static EXT_ATTR_RO(signal, running, 1);
2975 static EXT_ATTR_RO(signal, running, 2);
2976 static EXT_ATTR_RO(signal, running, 3);
2977 
2978 static ssize_t
start_show(struct device * dev,struct device_attribute * attr,char * buf)2979 start_show(struct device *dev, struct device_attribute *attr, char *buf)
2980 {
2981 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2982 	struct ptp_ocp *bp = dev_get_drvdata(dev);
2983 	int i = (uintptr_t)ea->var;
2984 	struct timespec64 ts;
2985 
2986 	ts = ktime_to_timespec64(bp->signal[i].start);
2987 	return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec);
2988 }
2989 static EXT_ATTR_RO(signal, start, 0);
2990 static EXT_ATTR_RO(signal, start, 1);
2991 static EXT_ATTR_RO(signal, start, 2);
2992 static EXT_ATTR_RO(signal, start, 3);
2993 
2994 static ssize_t
seconds_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2995 seconds_store(struct device *dev, struct device_attribute *attr,
2996 	      const char *buf, size_t count)
2997 {
2998 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2999 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3000 	int idx = (uintptr_t)ea->var;
3001 	u32 val;
3002 	int err;
3003 
3004 	err = kstrtou32(buf, 0, &val);
3005 	if (err)
3006 		return err;
3007 	if (val > 0xff)
3008 		return -EINVAL;
3009 
3010 	if (val)
3011 		val = (val << 8) | 0x1;
3012 
3013 	iowrite32(val, &bp->freq_in[idx]->ctrl);
3014 
3015 	return count;
3016 }
3017 
3018 static ssize_t
seconds_show(struct device * dev,struct device_attribute * attr,char * buf)3019 seconds_show(struct device *dev, struct device_attribute *attr, char *buf)
3020 {
3021 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3022 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3023 	int idx = (uintptr_t)ea->var;
3024 	u32 val;
3025 
3026 	val = ioread32(&bp->freq_in[idx]->ctrl);
3027 	if (val & 1)
3028 		val = (val >> 8) & 0xff;
3029 	else
3030 		val = 0;
3031 
3032 	return sysfs_emit(buf, "%u\n", val);
3033 }
3034 static EXT_ATTR_RW(freq, seconds, 0);
3035 static EXT_ATTR_RW(freq, seconds, 1);
3036 static EXT_ATTR_RW(freq, seconds, 2);
3037 static EXT_ATTR_RW(freq, seconds, 3);
3038 
3039 static ssize_t
frequency_show(struct device * dev,struct device_attribute * attr,char * buf)3040 frequency_show(struct device *dev, struct device_attribute *attr, char *buf)
3041 {
3042 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3043 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3044 	int idx = (uintptr_t)ea->var;
3045 	u32 val;
3046 
3047 	val = ioread32(&bp->freq_in[idx]->status);
3048 	if (val & FREQ_STATUS_ERROR)
3049 		return sysfs_emit(buf, "error\n");
3050 	if (val & FREQ_STATUS_OVERRUN)
3051 		return sysfs_emit(buf, "overrun\n");
3052 	if (val & FREQ_STATUS_VALID)
3053 		return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK);
3054 	return 0;
3055 }
3056 static EXT_ATTR_RO(freq, frequency, 0);
3057 static EXT_ATTR_RO(freq, frequency, 1);
3058 static EXT_ATTR_RO(freq, frequency, 2);
3059 static EXT_ATTR_RO(freq, frequency, 3);
3060 
3061 static ssize_t
serialnum_show(struct device * dev,struct device_attribute * attr,char * buf)3062 serialnum_show(struct device *dev, struct device_attribute *attr, char *buf)
3063 {
3064 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3065 
3066 	if (!bp->has_eeprom_data)
3067 		ptp_ocp_read_eeprom(bp);
3068 
3069 	return sysfs_emit(buf, "%pM\n", bp->serial);
3070 }
3071 static DEVICE_ATTR_RO(serialnum);
3072 
3073 static ssize_t
gnss_sync_show(struct device * dev,struct device_attribute * attr,char * buf)3074 gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf)
3075 {
3076 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3077 	ssize_t ret;
3078 
3079 	if (bp->gnss_lost)
3080 		ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost);
3081 	else
3082 		ret = sysfs_emit(buf, "SYNC\n");
3083 
3084 	return ret;
3085 }
3086 static DEVICE_ATTR_RO(gnss_sync);
3087 
3088 static ssize_t
utc_tai_offset_show(struct device * dev,struct device_attribute * attr,char * buf)3089 utc_tai_offset_show(struct device *dev,
3090 		    struct device_attribute *attr, char *buf)
3091 {
3092 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3093 
3094 	return sysfs_emit(buf, "%d\n", bp->utc_tai_offset);
3095 }
3096 
3097 static ssize_t
utc_tai_offset_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3098 utc_tai_offset_store(struct device *dev,
3099 		     struct device_attribute *attr,
3100 		     const char *buf, size_t count)
3101 {
3102 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3103 	int err;
3104 	u32 val;
3105 
3106 	err = kstrtou32(buf, 0, &val);
3107 	if (err)
3108 		return err;
3109 
3110 	ptp_ocp_utc_distribute(bp, val);
3111 
3112 	return count;
3113 }
3114 static DEVICE_ATTR_RW(utc_tai_offset);
3115 
3116 static ssize_t
ts_window_adjust_show(struct device * dev,struct device_attribute * attr,char * buf)3117 ts_window_adjust_show(struct device *dev,
3118 		      struct device_attribute *attr, char *buf)
3119 {
3120 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3121 
3122 	return sysfs_emit(buf, "%d\n", bp->ts_window_adjust);
3123 }
3124 
3125 static ssize_t
ts_window_adjust_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3126 ts_window_adjust_store(struct device *dev,
3127 		       struct device_attribute *attr,
3128 		       const char *buf, size_t count)
3129 {
3130 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3131 	int err;
3132 	u32 val;
3133 
3134 	err = kstrtou32(buf, 0, &val);
3135 	if (err)
3136 		return err;
3137 
3138 	bp->ts_window_adjust = val;
3139 
3140 	return count;
3141 }
3142 static DEVICE_ATTR_RW(ts_window_adjust);
3143 
3144 static ssize_t
irig_b_mode_show(struct device * dev,struct device_attribute * attr,char * buf)3145 irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf)
3146 {
3147 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3148 	u32 val;
3149 
3150 	val = ioread32(&bp->irig_out->ctrl);
3151 	val = (val >> 16) & 0x07;
3152 	return sysfs_emit(buf, "%d\n", val);
3153 }
3154 
3155 static ssize_t
irig_b_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3156 irig_b_mode_store(struct device *dev,
3157 		  struct device_attribute *attr,
3158 		  const char *buf, size_t count)
3159 {
3160 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3161 	unsigned long flags;
3162 	int err;
3163 	u32 reg;
3164 	u8 val;
3165 
3166 	err = kstrtou8(buf, 0, &val);
3167 	if (err)
3168 		return err;
3169 	if (val > 7)
3170 		return -EINVAL;
3171 
3172 	reg = ((val & 0x7) << 16);
3173 
3174 	spin_lock_irqsave(&bp->lock, flags);
3175 	iowrite32(0, &bp->irig_out->ctrl);		/* disable */
3176 	iowrite32(reg, &bp->irig_out->ctrl);		/* change mode */
3177 	iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl);
3178 	spin_unlock_irqrestore(&bp->lock, flags);
3179 
3180 	return count;
3181 }
3182 static DEVICE_ATTR_RW(irig_b_mode);
3183 
3184 static ssize_t
clock_source_show(struct device * dev,struct device_attribute * attr,char * buf)3185 clock_source_show(struct device *dev, struct device_attribute *attr, char *buf)
3186 {
3187 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3188 	const char *p;
3189 	u32 select;
3190 
3191 	select = ioread32(&bp->reg->select);
3192 	p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16);
3193 
3194 	return sysfs_emit(buf, "%s\n", p);
3195 }
3196 
3197 static ssize_t
clock_source_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3198 clock_source_store(struct device *dev, struct device_attribute *attr,
3199 		   const char *buf, size_t count)
3200 {
3201 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3202 	unsigned long flags;
3203 	int val;
3204 
3205 	val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf);
3206 	if (val < 0)
3207 		return val;
3208 
3209 	spin_lock_irqsave(&bp->lock, flags);
3210 	iowrite32(val, &bp->reg->select);
3211 	spin_unlock_irqrestore(&bp->lock, flags);
3212 
3213 	return count;
3214 }
3215 static DEVICE_ATTR_RW(clock_source);
3216 
3217 static ssize_t
available_clock_sources_show(struct device * dev,struct device_attribute * attr,char * buf)3218 available_clock_sources_show(struct device *dev,
3219 			     struct device_attribute *attr, char *buf)
3220 {
3221 	return ptp_ocp_select_table_show(ptp_ocp_clock, buf);
3222 }
3223 static DEVICE_ATTR_RO(available_clock_sources);
3224 
3225 static ssize_t
clock_status_drift_show(struct device * dev,struct device_attribute * attr,char * buf)3226 clock_status_drift_show(struct device *dev,
3227 			struct device_attribute *attr, char *buf)
3228 {
3229 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3230 	u32 val;
3231 	int res;
3232 
3233 	val = ioread32(&bp->reg->status_drift);
3234 	res = (val & ~INT_MAX) ? -1 : 1;
3235 	res *= (val & INT_MAX);
3236 	return sysfs_emit(buf, "%d\n", res);
3237 }
3238 static DEVICE_ATTR_RO(clock_status_drift);
3239 
3240 static ssize_t
clock_status_offset_show(struct device * dev,struct device_attribute * attr,char * buf)3241 clock_status_offset_show(struct device *dev,
3242 			 struct device_attribute *attr, char *buf)
3243 {
3244 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3245 	u32 val;
3246 	int res;
3247 
3248 	val = ioread32(&bp->reg->status_offset);
3249 	res = (val & ~INT_MAX) ? -1 : 1;
3250 	res *= (val & INT_MAX);
3251 	return sysfs_emit(buf, "%d\n", res);
3252 }
3253 static DEVICE_ATTR_RO(clock_status_offset);
3254 
3255 static ssize_t
tod_correction_show(struct device * dev,struct device_attribute * attr,char * buf)3256 tod_correction_show(struct device *dev,
3257 		    struct device_attribute *attr, char *buf)
3258 {
3259 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3260 	u32 val;
3261 	int res;
3262 
3263 	val = ioread32(&bp->tod->adj_sec);
3264 	res = (val & ~INT_MAX) ? -1 : 1;
3265 	res *= (val & INT_MAX);
3266 	return sysfs_emit(buf, "%d\n", res);
3267 }
3268 
3269 static ssize_t
tod_correction_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3270 tod_correction_store(struct device *dev, struct device_attribute *attr,
3271 		     const char *buf, size_t count)
3272 {
3273 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3274 	unsigned long flags;
3275 	int err, res;
3276 	u32 val = 0;
3277 
3278 	err = kstrtos32(buf, 0, &res);
3279 	if (err)
3280 		return err;
3281 	if (res < 0) {
3282 		res *= -1;
3283 		val |= BIT(31);
3284 	}
3285 	val |= res;
3286 
3287 	spin_lock_irqsave(&bp->lock, flags);
3288 	iowrite32(val, &bp->tod->adj_sec);
3289 	spin_unlock_irqrestore(&bp->lock, flags);
3290 
3291 	return count;
3292 }
3293 static DEVICE_ATTR_RW(tod_correction);
3294 
3295 #define _DEVICE_SIGNAL_GROUP_ATTRS(_nr)					\
3296 	static struct attribute *fb_timecard_signal##_nr##_attrs[] = {	\
3297 		&dev_attr_signal##_nr##_signal.attr.attr,		\
3298 		&dev_attr_signal##_nr##_duty.attr.attr,			\
3299 		&dev_attr_signal##_nr##_phase.attr.attr,		\
3300 		&dev_attr_signal##_nr##_period.attr.attr,		\
3301 		&dev_attr_signal##_nr##_polarity.attr.attr,		\
3302 		&dev_attr_signal##_nr##_running.attr.attr,		\
3303 		&dev_attr_signal##_nr##_start.attr.attr,		\
3304 		NULL,							\
3305 	}
3306 
3307 #define DEVICE_SIGNAL_GROUP(_name, _nr)					\
3308 	_DEVICE_SIGNAL_GROUP_ATTRS(_nr);				\
3309 	static const struct attribute_group				\
3310 			fb_timecard_signal##_nr##_group = {		\
3311 		.name = #_name,						\
3312 		.attrs = fb_timecard_signal##_nr##_attrs,		\
3313 }
3314 
3315 DEVICE_SIGNAL_GROUP(gen1, 0);
3316 DEVICE_SIGNAL_GROUP(gen2, 1);
3317 DEVICE_SIGNAL_GROUP(gen3, 2);
3318 DEVICE_SIGNAL_GROUP(gen4, 3);
3319 
3320 #define _DEVICE_FREQ_GROUP_ATTRS(_nr)					\
3321 	static struct attribute *fb_timecard_freq##_nr##_attrs[] = {	\
3322 		&dev_attr_freq##_nr##_seconds.attr.attr,		\
3323 		&dev_attr_freq##_nr##_frequency.attr.attr,		\
3324 		NULL,							\
3325 	}
3326 
3327 #define DEVICE_FREQ_GROUP(_name, _nr)					\
3328 	_DEVICE_FREQ_GROUP_ATTRS(_nr);					\
3329 	static const struct attribute_group				\
3330 			fb_timecard_freq##_nr##_group = {		\
3331 		.name = #_name,						\
3332 		.attrs = fb_timecard_freq##_nr##_attrs,			\
3333 }
3334 
3335 DEVICE_FREQ_GROUP(freq1, 0);
3336 DEVICE_FREQ_GROUP(freq2, 1);
3337 DEVICE_FREQ_GROUP(freq3, 2);
3338 DEVICE_FREQ_GROUP(freq4, 3);
3339 
3340 static ssize_t
disciplining_config_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)3341 disciplining_config_read(struct file *filp, struct kobject *kobj,
3342 			 struct bin_attribute *bin_attr, char *buf,
3343 			 loff_t off, size_t count)
3344 {
3345 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3346 	size_t size = OCP_ART_CONFIG_SIZE;
3347 	struct nvmem_device *nvmem;
3348 	ssize_t err;
3349 
3350 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3351 	if (IS_ERR(nvmem))
3352 		return PTR_ERR(nvmem);
3353 
3354 	if (off > size) {
3355 		err = 0;
3356 		goto out;
3357 	}
3358 
3359 	if (off + count > size)
3360 		count = size - off;
3361 
3362 	// the configuration is in the very beginning of the EEPROM
3363 	err = nvmem_device_read(nvmem, off, count, buf);
3364 	if (err != count) {
3365 		err = -EFAULT;
3366 		goto out;
3367 	}
3368 
3369 out:
3370 	ptp_ocp_nvmem_device_put(&nvmem);
3371 
3372 	return err;
3373 }
3374 
3375 static ssize_t
disciplining_config_write(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)3376 disciplining_config_write(struct file *filp, struct kobject *kobj,
3377 			  struct bin_attribute *bin_attr, char *buf,
3378 			  loff_t off, size_t count)
3379 {
3380 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3381 	struct nvmem_device *nvmem;
3382 	ssize_t err;
3383 
3384 	/* Allow write of the whole area only */
3385 	if (off || count != OCP_ART_CONFIG_SIZE)
3386 		return -EFAULT;
3387 
3388 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3389 	if (IS_ERR(nvmem))
3390 		return PTR_ERR(nvmem);
3391 
3392 	err = nvmem_device_write(nvmem, 0x00, count, buf);
3393 	if (err != count)
3394 		err = -EFAULT;
3395 
3396 	ptp_ocp_nvmem_device_put(&nvmem);
3397 
3398 	return err;
3399 }
3400 static BIN_ATTR_RW(disciplining_config, OCP_ART_CONFIG_SIZE);
3401 
3402 static ssize_t
temperature_table_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)3403 temperature_table_read(struct file *filp, struct kobject *kobj,
3404 		       struct bin_attribute *bin_attr, char *buf,
3405 		       loff_t off, size_t count)
3406 {
3407 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3408 	size_t size = OCP_ART_TEMP_TABLE_SIZE;
3409 	struct nvmem_device *nvmem;
3410 	ssize_t err;
3411 
3412 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3413 	if (IS_ERR(nvmem))
3414 		return PTR_ERR(nvmem);
3415 
3416 	if (off > size) {
3417 		err = 0;
3418 		goto out;
3419 	}
3420 
3421 	if (off + count > size)
3422 		count = size - off;
3423 
3424 	// the configuration is in the very beginning of the EEPROM
3425 	err = nvmem_device_read(nvmem, 0x90 + off, count, buf);
3426 	if (err != count) {
3427 		err = -EFAULT;
3428 		goto out;
3429 	}
3430 
3431 out:
3432 	ptp_ocp_nvmem_device_put(&nvmem);
3433 
3434 	return err;
3435 }
3436 
3437 static ssize_t
temperature_table_write(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)3438 temperature_table_write(struct file *filp, struct kobject *kobj,
3439 			struct bin_attribute *bin_attr, char *buf,
3440 			loff_t off, size_t count)
3441 {
3442 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3443 	struct nvmem_device *nvmem;
3444 	ssize_t err;
3445 
3446 	/* Allow write of the whole area only */
3447 	if (off || count != OCP_ART_TEMP_TABLE_SIZE)
3448 		return -EFAULT;
3449 
3450 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3451 	if (IS_ERR(nvmem))
3452 		return PTR_ERR(nvmem);
3453 
3454 	err = nvmem_device_write(nvmem, 0x90, count, buf);
3455 	if (err != count)
3456 		err = -EFAULT;
3457 
3458 	ptp_ocp_nvmem_device_put(&nvmem);
3459 
3460 	return err;
3461 }
3462 static BIN_ATTR_RW(temperature_table, OCP_ART_TEMP_TABLE_SIZE);
3463 
3464 static struct attribute *fb_timecard_attrs[] = {
3465 	&dev_attr_serialnum.attr,
3466 	&dev_attr_gnss_sync.attr,
3467 	&dev_attr_clock_source.attr,
3468 	&dev_attr_available_clock_sources.attr,
3469 	&dev_attr_sma1.attr,
3470 	&dev_attr_sma2.attr,
3471 	&dev_attr_sma3.attr,
3472 	&dev_attr_sma4.attr,
3473 	&dev_attr_available_sma_inputs.attr,
3474 	&dev_attr_available_sma_outputs.attr,
3475 	&dev_attr_clock_status_drift.attr,
3476 	&dev_attr_clock_status_offset.attr,
3477 	&dev_attr_irig_b_mode.attr,
3478 	&dev_attr_utc_tai_offset.attr,
3479 	&dev_attr_ts_window_adjust.attr,
3480 	&dev_attr_tod_correction.attr,
3481 	NULL,
3482 };
3483 
3484 static const struct attribute_group fb_timecard_group = {
3485 	.attrs = fb_timecard_attrs,
3486 };
3487 
3488 static const struct ocp_attr_group fb_timecard_groups[] = {
3489 	{ .cap = OCP_CAP_BASIC,	    .group = &fb_timecard_group },
3490 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal0_group },
3491 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal1_group },
3492 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal2_group },
3493 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal3_group },
3494 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq0_group },
3495 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq1_group },
3496 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq2_group },
3497 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq3_group },
3498 	{ },
3499 };
3500 
3501 static struct attribute *art_timecard_attrs[] = {
3502 	&dev_attr_serialnum.attr,
3503 	&dev_attr_clock_source.attr,
3504 	&dev_attr_available_clock_sources.attr,
3505 	&dev_attr_utc_tai_offset.attr,
3506 	&dev_attr_ts_window_adjust.attr,
3507 	&dev_attr_sma1.attr,
3508 	&dev_attr_sma2.attr,
3509 	&dev_attr_sma3.attr,
3510 	&dev_attr_sma4.attr,
3511 	&dev_attr_available_sma_inputs.attr,
3512 	&dev_attr_available_sma_outputs.attr,
3513 	NULL,
3514 };
3515 
3516 static struct bin_attribute *bin_art_timecard_attrs[] = {
3517 	&bin_attr_disciplining_config,
3518 	&bin_attr_temperature_table,
3519 	NULL,
3520 };
3521 
3522 static const struct attribute_group art_timecard_group = {
3523 	.attrs = art_timecard_attrs,
3524 	.bin_attrs = bin_art_timecard_attrs,
3525 };
3526 
3527 static const struct ocp_attr_group art_timecard_groups[] = {
3528 	{ .cap = OCP_CAP_BASIC,	    .group = &art_timecard_group },
3529 	{ },
3530 };
3531 
3532 static void
gpio_input_map(char * buf,struct ptp_ocp * bp,u16 map[][2],u16 bit,const char * def)3533 gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit,
3534 	       const char *def)
3535 {
3536 	int i;
3537 
3538 	for (i = 0; i < 4; i++) {
3539 		if (bp->sma[i].mode != SMA_MODE_IN)
3540 			continue;
3541 		if (map[i][0] & (1 << bit)) {
3542 			sprintf(buf, "sma%d", i + 1);
3543 			return;
3544 		}
3545 	}
3546 	if (!def)
3547 		def = "----";
3548 	strcpy(buf, def);
3549 }
3550 
3551 static void
gpio_output_map(char * buf,struct ptp_ocp * bp,u16 map[][2],u16 bit)3552 gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit)
3553 {
3554 	char *ans = buf;
3555 	int i;
3556 
3557 	strcpy(ans, "----");
3558 	for (i = 0; i < 4; i++) {
3559 		if (bp->sma[i].mode != SMA_MODE_OUT)
3560 			continue;
3561 		if (map[i][1] & (1 << bit))
3562 			ans += sprintf(ans, "sma%d ", i + 1);
3563 	}
3564 }
3565 
3566 static void
_signal_summary_show(struct seq_file * s,struct ptp_ocp * bp,int nr)3567 _signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr)
3568 {
3569 	struct signal_reg __iomem *reg = bp->signal_out[nr]->mem;
3570 	struct ptp_ocp_signal *signal = &bp->signal[nr];
3571 	char label[8];
3572 	bool on;
3573 	u32 val;
3574 
3575 	if (!signal)
3576 		return;
3577 
3578 	on = signal->running;
3579 	sprintf(label, "GEN%d", nr + 1);
3580 	seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d",
3581 		   label, on ? " ON" : "OFF",
3582 		   signal->period, signal->duty, signal->phase,
3583 		   signal->polarity);
3584 
3585 	val = ioread32(&reg->enable);
3586 	seq_printf(s, " [%x", val);
3587 	val = ioread32(&reg->status);
3588 	seq_printf(s, " %x]", val);
3589 
3590 	seq_printf(s, " start:%llu\n", signal->start);
3591 }
3592 
3593 static void
_frequency_summary_show(struct seq_file * s,int nr,struct frequency_reg __iomem * reg)3594 _frequency_summary_show(struct seq_file *s, int nr,
3595 			struct frequency_reg __iomem *reg)
3596 {
3597 	char label[8];
3598 	bool on;
3599 	u32 val;
3600 
3601 	if (!reg)
3602 		return;
3603 
3604 	sprintf(label, "FREQ%d", nr + 1);
3605 	val = ioread32(&reg->ctrl);
3606 	on = val & 1;
3607 	val = (val >> 8) & 0xff;
3608 	seq_printf(s, "%7s: %s, sec:%u",
3609 		   label,
3610 		   on ? " ON" : "OFF",
3611 		   val);
3612 
3613 	val = ioread32(&reg->status);
3614 	if (val & FREQ_STATUS_ERROR)
3615 		seq_printf(s, ", error");
3616 	if (val & FREQ_STATUS_OVERRUN)
3617 		seq_printf(s, ", overrun");
3618 	if (val & FREQ_STATUS_VALID)
3619 		seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK);
3620 	seq_printf(s, "  reg:%x\n", val);
3621 }
3622 
3623 static int
ptp_ocp_summary_show(struct seq_file * s,void * data)3624 ptp_ocp_summary_show(struct seq_file *s, void *data)
3625 {
3626 	struct device *dev = s->private;
3627 	struct ptp_system_timestamp sts;
3628 	struct ts_reg __iomem *ts_reg;
3629 	char *buf, *src, *mac_src;
3630 	struct timespec64 ts;
3631 	struct ptp_ocp *bp;
3632 	u16 sma_val[4][2];
3633 	u32 ctrl, val;
3634 	bool on, map;
3635 	int i;
3636 
3637 	buf = (char *)__get_free_page(GFP_KERNEL);
3638 	if (!buf)
3639 		return -ENOMEM;
3640 
3641 	bp = dev_get_drvdata(dev);
3642 
3643 	seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp));
3644 	if (bp->gnss_port.line != -1)
3645 		seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS1",
3646 			   bp->gnss_port.line);
3647 	if (bp->gnss2_port.line != -1)
3648 		seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS2",
3649 			   bp->gnss2_port.line);
3650 	if (bp->mac_port.line != -1)
3651 		seq_printf(s, "%7s: /dev/ttyS%d\n", "MAC", bp->mac_port.line);
3652 	if (bp->nmea_port.line != -1)
3653 		seq_printf(s, "%7s: /dev/ttyS%d\n", "NMEA", bp->nmea_port.line);
3654 
3655 	memset(sma_val, 0xff, sizeof(sma_val));
3656 	if (bp->sma_map1) {
3657 		u32 reg;
3658 
3659 		reg = ioread32(&bp->sma_map1->gpio1);
3660 		sma_val[0][0] = reg & 0xffff;
3661 		sma_val[1][0] = reg >> 16;
3662 
3663 		reg = ioread32(&bp->sma_map1->gpio2);
3664 		sma_val[2][1] = reg & 0xffff;
3665 		sma_val[3][1] = reg >> 16;
3666 
3667 		reg = ioread32(&bp->sma_map2->gpio1);
3668 		sma_val[2][0] = reg & 0xffff;
3669 		sma_val[3][0] = reg >> 16;
3670 
3671 		reg = ioread32(&bp->sma_map2->gpio2);
3672 		sma_val[0][1] = reg & 0xffff;
3673 		sma_val[1][1] = reg >> 16;
3674 	}
3675 
3676 	sma1_show(dev, NULL, buf);
3677 	seq_printf(s, "   sma1: %04x,%04x %s",
3678 		   sma_val[0][0], sma_val[0][1], buf);
3679 
3680 	sma2_show(dev, NULL, buf);
3681 	seq_printf(s, "   sma2: %04x,%04x %s",
3682 		   sma_val[1][0], sma_val[1][1], buf);
3683 
3684 	sma3_show(dev, NULL, buf);
3685 	seq_printf(s, "   sma3: %04x,%04x %s",
3686 		   sma_val[2][0], sma_val[2][1], buf);
3687 
3688 	sma4_show(dev, NULL, buf);
3689 	seq_printf(s, "   sma4: %04x,%04x %s",
3690 		   sma_val[3][0], sma_val[3][1], buf);
3691 
3692 	if (bp->ts0) {
3693 		ts_reg = bp->ts0->mem;
3694 		on = ioread32(&ts_reg->enable);
3695 		src = "GNSS1";
3696 		seq_printf(s, "%7s: %s, src: %s\n", "TS0",
3697 			   on ? " ON" : "OFF", src);
3698 	}
3699 
3700 	if (bp->ts1) {
3701 		ts_reg = bp->ts1->mem;
3702 		on = ioread32(&ts_reg->enable);
3703 		gpio_input_map(buf, bp, sma_val, 2, NULL);
3704 		seq_printf(s, "%7s: %s, src: %s\n", "TS1",
3705 			   on ? " ON" : "OFF", buf);
3706 	}
3707 
3708 	if (bp->ts2) {
3709 		ts_reg = bp->ts2->mem;
3710 		on = ioread32(&ts_reg->enable);
3711 		gpio_input_map(buf, bp, sma_val, 3, NULL);
3712 		seq_printf(s, "%7s: %s, src: %s\n", "TS2",
3713 			   on ? " ON" : "OFF", buf);
3714 	}
3715 
3716 	if (bp->ts3) {
3717 		ts_reg = bp->ts3->mem;
3718 		on = ioread32(&ts_reg->enable);
3719 		gpio_input_map(buf, bp, sma_val, 6, NULL);
3720 		seq_printf(s, "%7s: %s, src: %s\n", "TS3",
3721 			   on ? " ON" : "OFF", buf);
3722 	}
3723 
3724 	if (bp->ts4) {
3725 		ts_reg = bp->ts4->mem;
3726 		on = ioread32(&ts_reg->enable);
3727 		gpio_input_map(buf, bp, sma_val, 7, NULL);
3728 		seq_printf(s, "%7s: %s, src: %s\n", "TS4",
3729 			   on ? " ON" : "OFF", buf);
3730 	}
3731 
3732 	if (bp->pps) {
3733 		ts_reg = bp->pps->mem;
3734 		src = "PHC";
3735 		on = ioread32(&ts_reg->enable);
3736 		map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP);
3737 		seq_printf(s, "%7s: %s, src: %s\n", "TS5",
3738 			   on && map ? " ON" : "OFF", src);
3739 
3740 		map = !!(bp->pps_req_map & OCP_REQ_PPS);
3741 		seq_printf(s, "%7s: %s, src: %s\n", "PPS",
3742 			   on && map ? " ON" : "OFF", src);
3743 	}
3744 
3745 	if (bp->fw_cap & OCP_CAP_SIGNAL)
3746 		for (i = 0; i < 4; i++)
3747 			_signal_summary_show(s, bp, i);
3748 
3749 	if (bp->fw_cap & OCP_CAP_FREQ)
3750 		for (i = 0; i < 4; i++)
3751 			_frequency_summary_show(s, i, bp->freq_in[i]);
3752 
3753 	if (bp->irig_out) {
3754 		ctrl = ioread32(&bp->irig_out->ctrl);
3755 		on = ctrl & IRIG_M_CTRL_ENABLE;
3756 		val = ioread32(&bp->irig_out->status);
3757 		gpio_output_map(buf, bp, sma_val, 4);
3758 		seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG",
3759 			   on ? " ON" : "OFF", val, (ctrl >> 16), buf);
3760 	}
3761 
3762 	if (bp->irig_in) {
3763 		on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE;
3764 		val = ioread32(&bp->irig_in->status);
3765 		gpio_input_map(buf, bp, sma_val, 4, NULL);
3766 		seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in",
3767 			   on ? " ON" : "OFF", val, buf);
3768 	}
3769 
3770 	if (bp->dcf_out) {
3771 		on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE;
3772 		val = ioread32(&bp->dcf_out->status);
3773 		gpio_output_map(buf, bp, sma_val, 5);
3774 		seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF",
3775 			   on ? " ON" : "OFF", val, buf);
3776 	}
3777 
3778 	if (bp->dcf_in) {
3779 		on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE;
3780 		val = ioread32(&bp->dcf_in->status);
3781 		gpio_input_map(buf, bp, sma_val, 5, NULL);
3782 		seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in",
3783 			   on ? " ON" : "OFF", val, buf);
3784 	}
3785 
3786 	if (bp->nmea_out) {
3787 		on = ioread32(&bp->nmea_out->ctrl) & 1;
3788 		val = ioread32(&bp->nmea_out->status);
3789 		seq_printf(s, "%7s: %s, error: %d\n", "NMEA",
3790 			   on ? " ON" : "OFF", val);
3791 	}
3792 
3793 	/* compute src for PPS1, used below. */
3794 	if (bp->pps_select) {
3795 		val = ioread32(&bp->pps_select->gpio1);
3796 		src = &buf[80];
3797 		mac_src = "GNSS1";
3798 		if (val & 0x01) {
3799 			gpio_input_map(src, bp, sma_val, 0, NULL);
3800 			mac_src = src;
3801 		} else if (val & 0x02) {
3802 			src = "MAC";
3803 		} else if (val & 0x04) {
3804 			src = "GNSS1";
3805 		} else {
3806 			src = "----";
3807 			mac_src = src;
3808 		}
3809 	} else {
3810 		src = "?";
3811 		mac_src = src;
3812 	}
3813 	seq_printf(s, "MAC PPS1 src: %s\n", mac_src);
3814 
3815 	gpio_input_map(buf, bp, sma_val, 1, "GNSS2");
3816 	seq_printf(s, "MAC PPS2 src: %s\n", buf);
3817 
3818 	/* assumes automatic switchover/selection */
3819 	val = ioread32(&bp->reg->select);
3820 	switch (val >> 16) {
3821 	case 0:
3822 		sprintf(buf, "----");
3823 		break;
3824 	case 2:
3825 		sprintf(buf, "IRIG");
3826 		break;
3827 	case 3:
3828 		sprintf(buf, "%s via PPS1", src);
3829 		break;
3830 	case 6:
3831 		sprintf(buf, "DCF");
3832 		break;
3833 	default:
3834 		strcpy(buf, "unknown");
3835 		break;
3836 	}
3837 	val = ioread32(&bp->reg->status);
3838 	seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf,
3839 		   val & OCP_STATUS_IN_SYNC ? "sync" : "unsynced");
3840 
3841 	if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) {
3842 		struct timespec64 sys_ts;
3843 		s64 pre_ns, post_ns, ns;
3844 
3845 		pre_ns = timespec64_to_ns(&sts.pre_ts);
3846 		post_ns = timespec64_to_ns(&sts.post_ts);
3847 		ns = (pre_ns + post_ns) / 2;
3848 		ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC;
3849 		sys_ts = ns_to_timespec64(ns);
3850 
3851 		seq_printf(s, "%7s: %lld.%ld == %ptT TAI\n", "PHC",
3852 			   ts.tv_sec, ts.tv_nsec, &ts);
3853 		seq_printf(s, "%7s: %lld.%ld == %ptT UTC offset %d\n", "SYS",
3854 			   sys_ts.tv_sec, sys_ts.tv_nsec, &sys_ts,
3855 			   bp->utc_tai_offset);
3856 		seq_printf(s, "%7s: PHC:SYS offset: %lld  window: %lld\n", "",
3857 			   timespec64_to_ns(&ts) - ns,
3858 			   post_ns - pre_ns);
3859 	}
3860 
3861 	free_page((unsigned long)buf);
3862 	return 0;
3863 }
3864 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary);
3865 
3866 static int
ptp_ocp_tod_status_show(struct seq_file * s,void * data)3867 ptp_ocp_tod_status_show(struct seq_file *s, void *data)
3868 {
3869 	struct device *dev = s->private;
3870 	struct ptp_ocp *bp;
3871 	u32 val;
3872 	int idx;
3873 
3874 	bp = dev_get_drvdata(dev);
3875 
3876 	val = ioread32(&bp->tod->ctrl);
3877 	if (!(val & TOD_CTRL_ENABLE)) {
3878 		seq_printf(s, "TOD Slave disabled\n");
3879 		return 0;
3880 	}
3881 	seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val);
3882 
3883 	idx = val & TOD_CTRL_PROTOCOL ? 4 : 0;
3884 	idx += (val >> 16) & 3;
3885 	seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx));
3886 
3887 	idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK;
3888 	seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx));
3889 
3890 	val = ioread32(&bp->tod->version);
3891 	seq_printf(s, "TOD Version %d.%d.%d\n",
3892 		val >> 24, (val >> 16) & 0xff, val & 0xffff);
3893 
3894 	val = ioread32(&bp->tod->status);
3895 	seq_printf(s, "Status register: 0x%08X\n", val);
3896 
3897 	val = ioread32(&bp->tod->adj_sec);
3898 	idx = (val & ~INT_MAX) ? -1 : 1;
3899 	idx *= (val & INT_MAX);
3900 	seq_printf(s, "Correction seconds: %d\n", idx);
3901 
3902 	val = ioread32(&bp->tod->utc_status);
3903 	seq_printf(s, "UTC status register: 0x%08X\n", val);
3904 	seq_printf(s, "UTC offset: %ld  valid:%d\n",
3905 		val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0);
3906 	seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n",
3907 		val & TOD_STATUS_LEAP_VALID ? 1 : 0,
3908 		val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0);
3909 
3910 	val = ioread32(&bp->tod->leap);
3911 	seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val);
3912 
3913 	return 0;
3914 }
3915 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status);
3916 
3917 static struct dentry *ptp_ocp_debugfs_root;
3918 
3919 static void
ptp_ocp_debugfs_add_device(struct ptp_ocp * bp)3920 ptp_ocp_debugfs_add_device(struct ptp_ocp *bp)
3921 {
3922 	struct dentry *d;
3923 
3924 	d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root);
3925 	bp->debug_root = d;
3926 	debugfs_create_file("summary", 0444, bp->debug_root,
3927 			    &bp->dev, &ptp_ocp_summary_fops);
3928 	if (bp->tod)
3929 		debugfs_create_file("tod_status", 0444, bp->debug_root,
3930 				    &bp->dev, &ptp_ocp_tod_status_fops);
3931 }
3932 
3933 static void
ptp_ocp_debugfs_remove_device(struct ptp_ocp * bp)3934 ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp)
3935 {
3936 	debugfs_remove_recursive(bp->debug_root);
3937 }
3938 
3939 static void
ptp_ocp_debugfs_init(void)3940 ptp_ocp_debugfs_init(void)
3941 {
3942 	ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL);
3943 }
3944 
3945 static void
ptp_ocp_debugfs_fini(void)3946 ptp_ocp_debugfs_fini(void)
3947 {
3948 	debugfs_remove_recursive(ptp_ocp_debugfs_root);
3949 }
3950 
3951 static void
ptp_ocp_dev_release(struct device * dev)3952 ptp_ocp_dev_release(struct device *dev)
3953 {
3954 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3955 
3956 	mutex_lock(&ptp_ocp_lock);
3957 	idr_remove(&ptp_ocp_idr, bp->id);
3958 	mutex_unlock(&ptp_ocp_lock);
3959 }
3960 
3961 static int
ptp_ocp_device_init(struct ptp_ocp * bp,struct pci_dev * pdev)3962 ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev)
3963 {
3964 	int err;
3965 
3966 	mutex_lock(&ptp_ocp_lock);
3967 	err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL);
3968 	mutex_unlock(&ptp_ocp_lock);
3969 	if (err < 0) {
3970 		dev_err(&pdev->dev, "idr_alloc failed: %d\n", err);
3971 		return err;
3972 	}
3973 	bp->id = err;
3974 
3975 	bp->ptp_info = ptp_ocp_clock_info;
3976 	spin_lock_init(&bp->lock);
3977 	bp->gnss_port.line = -1;
3978 	bp->gnss2_port.line = -1;
3979 	bp->mac_port.line = -1;
3980 	bp->nmea_port.line = -1;
3981 	bp->pdev = pdev;
3982 
3983 	device_initialize(&bp->dev);
3984 	dev_set_name(&bp->dev, "ocp%d", bp->id);
3985 	bp->dev.class = &timecard_class;
3986 	bp->dev.parent = &pdev->dev;
3987 	bp->dev.release = ptp_ocp_dev_release;
3988 	dev_set_drvdata(&bp->dev, bp);
3989 
3990 	err = device_add(&bp->dev);
3991 	if (err) {
3992 		dev_err(&bp->dev, "device add failed: %d\n", err);
3993 		goto out;
3994 	}
3995 
3996 	pci_set_drvdata(pdev, bp);
3997 
3998 	return 0;
3999 
4000 out:
4001 	put_device(&bp->dev);
4002 	return err;
4003 }
4004 
4005 static void
ptp_ocp_symlink(struct ptp_ocp * bp,struct device * child,const char * link)4006 ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link)
4007 {
4008 	struct device *dev = &bp->dev;
4009 
4010 	if (sysfs_create_link(&dev->kobj, &child->kobj, link))
4011 		dev_err(dev, "%s symlink failed\n", link);
4012 }
4013 
4014 static void
ptp_ocp_link_child(struct ptp_ocp * bp,const char * name,const char * link)4015 ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link)
4016 {
4017 	struct device *dev, *child;
4018 
4019 	dev = &bp->pdev->dev;
4020 
4021 	child = device_find_child_by_name(dev, name);
4022 	if (!child) {
4023 		dev_err(dev, "Could not find device %s\n", name);
4024 		return;
4025 	}
4026 
4027 	ptp_ocp_symlink(bp, child, link);
4028 	put_device(child);
4029 }
4030 
4031 static int
ptp_ocp_complete(struct ptp_ocp * bp)4032 ptp_ocp_complete(struct ptp_ocp *bp)
4033 {
4034 	struct pps_device *pps;
4035 	char buf[32];
4036 
4037 	if (bp->gnss_port.line != -1) {
4038 		sprintf(buf, "ttyS%d", bp->gnss_port.line);
4039 		ptp_ocp_link_child(bp, buf, "ttyGNSS");
4040 	}
4041 	if (bp->gnss2_port.line != -1) {
4042 		sprintf(buf, "ttyS%d", bp->gnss2_port.line);
4043 		ptp_ocp_link_child(bp, buf, "ttyGNSS2");
4044 	}
4045 	if (bp->mac_port.line != -1) {
4046 		sprintf(buf, "ttyS%d", bp->mac_port.line);
4047 		ptp_ocp_link_child(bp, buf, "ttyMAC");
4048 	}
4049 	if (bp->nmea_port.line != -1) {
4050 		sprintf(buf, "ttyS%d", bp->nmea_port.line);
4051 		ptp_ocp_link_child(bp, buf, "ttyNMEA");
4052 	}
4053 	sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp));
4054 	ptp_ocp_link_child(bp, buf, "ptp");
4055 
4056 	pps = pps_lookup_dev(bp->ptp);
4057 	if (pps)
4058 		ptp_ocp_symlink(bp, pps->dev, "pps");
4059 
4060 	ptp_ocp_debugfs_add_device(bp);
4061 
4062 	return 0;
4063 }
4064 
4065 static void
ptp_ocp_phc_info(struct ptp_ocp * bp)4066 ptp_ocp_phc_info(struct ptp_ocp *bp)
4067 {
4068 	struct timespec64 ts;
4069 	u32 version, select;
4070 	bool sync;
4071 
4072 	version = ioread32(&bp->reg->version);
4073 	select = ioread32(&bp->reg->select);
4074 	dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n",
4075 		 version >> 24, (version >> 16) & 0xff, version & 0xffff,
4076 		 ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16),
4077 		 ptp_clock_index(bp->ptp));
4078 
4079 	sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
4080 	if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL))
4081 		dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n",
4082 			 ts.tv_sec, ts.tv_nsec,
4083 			 sync ? "in-sync" : "UNSYNCED");
4084 }
4085 
4086 static void
ptp_ocp_serial_info(struct device * dev,const char * name,int port,int baud)4087 ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud)
4088 {
4089 	if (port != -1)
4090 		dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud);
4091 }
4092 
4093 static void
ptp_ocp_info(struct ptp_ocp * bp)4094 ptp_ocp_info(struct ptp_ocp *bp)
4095 {
4096 	static int nmea_baud[] = {
4097 		1200, 2400, 4800, 9600, 19200, 38400,
4098 		57600, 115200, 230400, 460800, 921600,
4099 		1000000, 2000000
4100 	};
4101 	struct device *dev = &bp->pdev->dev;
4102 	u32 reg;
4103 
4104 	ptp_ocp_phc_info(bp);
4105 
4106 	ptp_ocp_serial_info(dev, "GNSS", bp->gnss_port.line,
4107 			    bp->gnss_port.baud);
4108 	ptp_ocp_serial_info(dev, "GNSS2", bp->gnss2_port.line,
4109 			    bp->gnss2_port.baud);
4110 	ptp_ocp_serial_info(dev, "MAC", bp->mac_port.line, bp->mac_port.baud);
4111 	if (bp->nmea_out && bp->nmea_port.line != -1) {
4112 		bp->nmea_port.baud = -1;
4113 
4114 		reg = ioread32(&bp->nmea_out->uart_baud);
4115 		if (reg < ARRAY_SIZE(nmea_baud))
4116 			bp->nmea_port.baud = nmea_baud[reg];
4117 
4118 		ptp_ocp_serial_info(dev, "NMEA", bp->nmea_port.line,
4119 				    bp->nmea_port.baud);
4120 	}
4121 }
4122 
4123 static void
ptp_ocp_detach_sysfs(struct ptp_ocp * bp)4124 ptp_ocp_detach_sysfs(struct ptp_ocp *bp)
4125 {
4126 	struct device *dev = &bp->dev;
4127 
4128 	sysfs_remove_link(&dev->kobj, "ttyGNSS");
4129 	sysfs_remove_link(&dev->kobj, "ttyGNSS2");
4130 	sysfs_remove_link(&dev->kobj, "ttyMAC");
4131 	sysfs_remove_link(&dev->kobj, "ptp");
4132 	sysfs_remove_link(&dev->kobj, "pps");
4133 }
4134 
4135 static void
ptp_ocp_detach(struct ptp_ocp * bp)4136 ptp_ocp_detach(struct ptp_ocp *bp)
4137 {
4138 	int i;
4139 
4140 	ptp_ocp_debugfs_remove_device(bp);
4141 	ptp_ocp_detach_sysfs(bp);
4142 	ptp_ocp_attr_group_del(bp);
4143 	if (timer_pending(&bp->watchdog))
4144 		del_timer_sync(&bp->watchdog);
4145 	if (bp->ts0)
4146 		ptp_ocp_unregister_ext(bp->ts0);
4147 	if (bp->ts1)
4148 		ptp_ocp_unregister_ext(bp->ts1);
4149 	if (bp->ts2)
4150 		ptp_ocp_unregister_ext(bp->ts2);
4151 	if (bp->ts3)
4152 		ptp_ocp_unregister_ext(bp->ts3);
4153 	if (bp->ts4)
4154 		ptp_ocp_unregister_ext(bp->ts4);
4155 	if (bp->pps)
4156 		ptp_ocp_unregister_ext(bp->pps);
4157 	for (i = 0; i < 4; i++)
4158 		if (bp->signal_out[i])
4159 			ptp_ocp_unregister_ext(bp->signal_out[i]);
4160 	if (bp->gnss_port.line != -1)
4161 		serial8250_unregister_port(bp->gnss_port.line);
4162 	if (bp->gnss2_port.line != -1)
4163 		serial8250_unregister_port(bp->gnss2_port.line);
4164 	if (bp->mac_port.line != -1)
4165 		serial8250_unregister_port(bp->mac_port.line);
4166 	if (bp->nmea_port.line != -1)
4167 		serial8250_unregister_port(bp->nmea_port.line);
4168 	platform_device_unregister(bp->spi_flash);
4169 	platform_device_unregister(bp->i2c_ctrl);
4170 	if (bp->i2c_clk)
4171 		clk_hw_unregister_fixed_rate(bp->i2c_clk);
4172 	if (bp->n_irqs)
4173 		pci_free_irq_vectors(bp->pdev);
4174 	if (bp->ptp)
4175 		ptp_clock_unregister(bp->ptp);
4176 	kfree(bp->ptp_info.pin_config);
4177 	device_unregister(&bp->dev);
4178 }
4179 
4180 static int
ptp_ocp_probe(struct pci_dev * pdev,const struct pci_device_id * id)4181 ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id)
4182 {
4183 	struct devlink *devlink;
4184 	struct ptp_ocp *bp;
4185 	int err;
4186 
4187 	devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev);
4188 	if (!devlink) {
4189 		dev_err(&pdev->dev, "devlink_alloc failed\n");
4190 		return -ENOMEM;
4191 	}
4192 
4193 	err = pci_enable_device(pdev);
4194 	if (err) {
4195 		dev_err(&pdev->dev, "pci_enable_device\n");
4196 		goto out_free;
4197 	}
4198 
4199 	bp = devlink_priv(devlink);
4200 	err = ptp_ocp_device_init(bp, pdev);
4201 	if (err)
4202 		goto out_disable;
4203 
4204 	/* compat mode.
4205 	 * Older FPGA firmware only returns 2 irq's.
4206 	 * allow this - if not all of the IRQ's are returned, skip the
4207 	 * extra devices and just register the clock.
4208 	 */
4209 	err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX);
4210 	if (err < 0) {
4211 		dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err);
4212 		goto out;
4213 	}
4214 	bp->n_irqs = err;
4215 	pci_set_master(pdev);
4216 
4217 	err = ptp_ocp_register_resources(bp, id->driver_data);
4218 	if (err)
4219 		goto out;
4220 
4221 	bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev);
4222 	if (IS_ERR(bp->ptp)) {
4223 		err = PTR_ERR(bp->ptp);
4224 		dev_err(&pdev->dev, "ptp_clock_register: %d\n", err);
4225 		bp->ptp = NULL;
4226 		goto out;
4227 	}
4228 
4229 	err = ptp_ocp_complete(bp);
4230 	if (err)
4231 		goto out;
4232 
4233 	ptp_ocp_info(bp);
4234 	devlink_register(devlink);
4235 	return 0;
4236 
4237 out:
4238 	ptp_ocp_detach(bp);
4239 out_disable:
4240 	pci_disable_device(pdev);
4241 out_free:
4242 	devlink_free(devlink);
4243 	return err;
4244 }
4245 
4246 static void
ptp_ocp_remove(struct pci_dev * pdev)4247 ptp_ocp_remove(struct pci_dev *pdev)
4248 {
4249 	struct ptp_ocp *bp = pci_get_drvdata(pdev);
4250 	struct devlink *devlink = priv_to_devlink(bp);
4251 
4252 	devlink_unregister(devlink);
4253 	ptp_ocp_detach(bp);
4254 	pci_disable_device(pdev);
4255 
4256 	devlink_free(devlink);
4257 }
4258 
4259 static struct pci_driver ptp_ocp_driver = {
4260 	.name		= KBUILD_MODNAME,
4261 	.id_table	= ptp_ocp_pcidev_id,
4262 	.probe		= ptp_ocp_probe,
4263 	.remove		= ptp_ocp_remove,
4264 };
4265 
4266 static int
ptp_ocp_i2c_notifier_call(struct notifier_block * nb,unsigned long action,void * data)4267 ptp_ocp_i2c_notifier_call(struct notifier_block *nb,
4268 			  unsigned long action, void *data)
4269 {
4270 	struct device *dev, *child = data;
4271 	struct ptp_ocp *bp;
4272 	bool add;
4273 
4274 	switch (action) {
4275 	case BUS_NOTIFY_ADD_DEVICE:
4276 	case BUS_NOTIFY_DEL_DEVICE:
4277 		add = action == BUS_NOTIFY_ADD_DEVICE;
4278 		break;
4279 	default:
4280 		return 0;
4281 	}
4282 
4283 	if (!i2c_verify_adapter(child))
4284 		return 0;
4285 
4286 	dev = child;
4287 	while ((dev = dev->parent))
4288 		if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
4289 			goto found;
4290 	return 0;
4291 
4292 found:
4293 	bp = dev_get_drvdata(dev);
4294 	if (add)
4295 		ptp_ocp_symlink(bp, child, "i2c");
4296 	else
4297 		sysfs_remove_link(&bp->dev.kobj, "i2c");
4298 
4299 	return 0;
4300 }
4301 
4302 static struct notifier_block ptp_ocp_i2c_notifier = {
4303 	.notifier_call = ptp_ocp_i2c_notifier_call,
4304 };
4305 
4306 static int __init
ptp_ocp_init(void)4307 ptp_ocp_init(void)
4308 {
4309 	const char *what;
4310 	int err;
4311 
4312 	ptp_ocp_debugfs_init();
4313 
4314 	what = "timecard class";
4315 	err = class_register(&timecard_class);
4316 	if (err)
4317 		goto out;
4318 
4319 	what = "i2c notifier";
4320 	err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4321 	if (err)
4322 		goto out_notifier;
4323 
4324 	what = "ptp_ocp driver";
4325 	err = pci_register_driver(&ptp_ocp_driver);
4326 	if (err)
4327 		goto out_register;
4328 
4329 	return 0;
4330 
4331 out_register:
4332 	bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4333 out_notifier:
4334 	class_unregister(&timecard_class);
4335 out:
4336 	ptp_ocp_debugfs_fini();
4337 	pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err);
4338 	return err;
4339 }
4340 
4341 static void __exit
ptp_ocp_fini(void)4342 ptp_ocp_fini(void)
4343 {
4344 	bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4345 	pci_unregister_driver(&ptp_ocp_driver);
4346 	class_unregister(&timecard_class);
4347 	ptp_ocp_debugfs_fini();
4348 }
4349 
4350 module_init(ptp_ocp_init);
4351 module_exit(ptp_ocp_fini);
4352 
4353 MODULE_DESCRIPTION("OpenCompute TimeCard driver");
4354 MODULE_LICENSE("GPL v2");
4355