1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Driver for Broadcom MPI3 Storage Controllers
4 *
5 * Copyright (C) 2017-2023 Broadcom Inc.
6 * (mailto: mpi3mr-linuxdrv.pdl@broadcom.com)
7 *
8 */
9
10 #include "mpi3mr.h"
11 #include <linux/bsg-lib.h>
12 #include <uapi/scsi/scsi_bsg_mpi3mr.h>
13
14 /**
15 * mpi3mr_bsg_pel_abort - sends PEL abort request
16 * @mrioc: Adapter instance reference
17 *
18 * This function sends PEL abort request to the firmware through
19 * admin request queue.
20 *
21 * Return: 0 on success, -1 on failure
22 */
mpi3mr_bsg_pel_abort(struct mpi3mr_ioc * mrioc)23 static int mpi3mr_bsg_pel_abort(struct mpi3mr_ioc *mrioc)
24 {
25 struct mpi3_pel_req_action_abort pel_abort_req;
26 struct mpi3_pel_reply *pel_reply;
27 int retval = 0;
28 u16 pe_log_status;
29
30 if (mrioc->reset_in_progress) {
31 dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
32 return -1;
33 }
34 if (mrioc->stop_bsgs) {
35 dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
36 return -1;
37 }
38
39 memset(&pel_abort_req, 0, sizeof(pel_abort_req));
40 mutex_lock(&mrioc->pel_abort_cmd.mutex);
41 if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_PENDING) {
42 dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
43 mutex_unlock(&mrioc->pel_abort_cmd.mutex);
44 return -1;
45 }
46 mrioc->pel_abort_cmd.state = MPI3MR_CMD_PENDING;
47 mrioc->pel_abort_cmd.is_waiting = 1;
48 mrioc->pel_abort_cmd.callback = NULL;
49 pel_abort_req.host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_ABORT);
50 pel_abort_req.function = MPI3_FUNCTION_PERSISTENT_EVENT_LOG;
51 pel_abort_req.action = MPI3_PEL_ACTION_ABORT;
52 pel_abort_req.abort_host_tag = cpu_to_le16(MPI3MR_HOSTTAG_PEL_WAIT);
53
54 mrioc->pel_abort_requested = 1;
55 init_completion(&mrioc->pel_abort_cmd.done);
56 retval = mpi3mr_admin_request_post(mrioc, &pel_abort_req,
57 sizeof(pel_abort_req), 0);
58 if (retval) {
59 retval = -1;
60 dprint_bsg_err(mrioc, "%s: admin request post failed\n",
61 __func__);
62 mrioc->pel_abort_requested = 0;
63 goto out_unlock;
64 }
65
66 wait_for_completion_timeout(&mrioc->pel_abort_cmd.done,
67 (MPI3MR_INTADMCMD_TIMEOUT * HZ));
68 if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_COMPLETE)) {
69 mrioc->pel_abort_cmd.is_waiting = 0;
70 dprint_bsg_err(mrioc, "%s: command timedout\n", __func__);
71 if (!(mrioc->pel_abort_cmd.state & MPI3MR_CMD_RESET))
72 mpi3mr_soft_reset_handler(mrioc,
73 MPI3MR_RESET_FROM_PELABORT_TIMEOUT, 1);
74 retval = -1;
75 goto out_unlock;
76 }
77 if ((mrioc->pel_abort_cmd.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
78 != MPI3_IOCSTATUS_SUCCESS) {
79 dprint_bsg_err(mrioc,
80 "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n",
81 __func__, (mrioc->pel_abort_cmd.ioc_status &
82 MPI3_IOCSTATUS_STATUS_MASK),
83 mrioc->pel_abort_cmd.ioc_loginfo);
84 retval = -1;
85 goto out_unlock;
86 }
87 if (mrioc->pel_abort_cmd.state & MPI3MR_CMD_REPLY_VALID) {
88 pel_reply = (struct mpi3_pel_reply *)mrioc->pel_abort_cmd.reply;
89 pe_log_status = le16_to_cpu(pel_reply->pe_log_status);
90 if (pe_log_status != MPI3_PEL_STATUS_SUCCESS) {
91 dprint_bsg_err(mrioc,
92 "%s: command failed, pel_status(0x%04x)\n",
93 __func__, pe_log_status);
94 retval = -1;
95 }
96 }
97
98 out_unlock:
99 mrioc->pel_abort_cmd.state = MPI3MR_CMD_NOTUSED;
100 mutex_unlock(&mrioc->pel_abort_cmd.mutex);
101 return retval;
102 }
103 /**
104 * mpi3mr_bsg_verify_adapter - verify adapter number is valid
105 * @ioc_number: Adapter number
106 *
107 * This function returns the adapter instance pointer of given
108 * adapter number. If adapter number does not match with the
109 * driver's adapter list, driver returns NULL.
110 *
111 * Return: adapter instance reference
112 */
mpi3mr_bsg_verify_adapter(int ioc_number)113 static struct mpi3mr_ioc *mpi3mr_bsg_verify_adapter(int ioc_number)
114 {
115 struct mpi3mr_ioc *mrioc = NULL;
116
117 spin_lock(&mrioc_list_lock);
118 list_for_each_entry(mrioc, &mrioc_list, list) {
119 if (mrioc->id == ioc_number) {
120 spin_unlock(&mrioc_list_lock);
121 return mrioc;
122 }
123 }
124 spin_unlock(&mrioc_list_lock);
125 return NULL;
126 }
127
128 /**
129 * mpi3mr_enable_logdata - Handler for log data enable
130 * @mrioc: Adapter instance reference
131 * @job: BSG job reference
132 *
133 * This function enables log data caching in the driver if not
134 * already enabled and return the maximum number of log data
135 * entries that can be cached in the driver.
136 *
137 * Return: 0 on success and proper error codes on failure
138 */
mpi3mr_enable_logdata(struct mpi3mr_ioc * mrioc,struct bsg_job * job)139 static long mpi3mr_enable_logdata(struct mpi3mr_ioc *mrioc,
140 struct bsg_job *job)
141 {
142 struct mpi3mr_logdata_enable logdata_enable;
143
144 if (!mrioc->logdata_buf) {
145 mrioc->logdata_entry_sz =
146 (mrioc->reply_sz - (sizeof(struct mpi3_event_notification_reply) - 4))
147 + MPI3MR_BSG_LOGDATA_ENTRY_HEADER_SZ;
148 mrioc->logdata_buf_idx = 0;
149 mrioc->logdata_buf = kcalloc(MPI3MR_BSG_LOGDATA_MAX_ENTRIES,
150 mrioc->logdata_entry_sz, GFP_KERNEL);
151
152 if (!mrioc->logdata_buf)
153 return -ENOMEM;
154 }
155
156 memset(&logdata_enable, 0, sizeof(logdata_enable));
157 logdata_enable.max_entries =
158 MPI3MR_BSG_LOGDATA_MAX_ENTRIES;
159 if (job->request_payload.payload_len >= sizeof(logdata_enable)) {
160 sg_copy_from_buffer(job->request_payload.sg_list,
161 job->request_payload.sg_cnt,
162 &logdata_enable, sizeof(logdata_enable));
163 return 0;
164 }
165
166 return -EINVAL;
167 }
168 /**
169 * mpi3mr_get_logdata - Handler for get log data
170 * @mrioc: Adapter instance reference
171 * @job: BSG job pointer
172 * This function copies the log data entries to the user buffer
173 * when log caching is enabled in the driver.
174 *
175 * Return: 0 on success and proper error codes on failure
176 */
mpi3mr_get_logdata(struct mpi3mr_ioc * mrioc,struct bsg_job * job)177 static long mpi3mr_get_logdata(struct mpi3mr_ioc *mrioc,
178 struct bsg_job *job)
179 {
180 u16 num_entries, sz, entry_sz = mrioc->logdata_entry_sz;
181
182 if ((!mrioc->logdata_buf) || (job->request_payload.payload_len < entry_sz))
183 return -EINVAL;
184
185 num_entries = job->request_payload.payload_len / entry_sz;
186 if (num_entries > MPI3MR_BSG_LOGDATA_MAX_ENTRIES)
187 num_entries = MPI3MR_BSG_LOGDATA_MAX_ENTRIES;
188 sz = num_entries * entry_sz;
189
190 if (job->request_payload.payload_len >= sz) {
191 sg_copy_from_buffer(job->request_payload.sg_list,
192 job->request_payload.sg_cnt,
193 mrioc->logdata_buf, sz);
194 return 0;
195 }
196 return -EINVAL;
197 }
198
199 /**
200 * mpi3mr_bsg_pel_enable - Handler for PEL enable driver
201 * @mrioc: Adapter instance reference
202 * @job: BSG job pointer
203 *
204 * This function is the handler for PEL enable driver.
205 * Validates the application given class and locale and if
206 * requires aborts the existing PEL wait request and/or issues
207 * new PEL wait request to the firmware and returns.
208 *
209 * Return: 0 on success and proper error codes on failure.
210 */
mpi3mr_bsg_pel_enable(struct mpi3mr_ioc * mrioc,struct bsg_job * job)211 static long mpi3mr_bsg_pel_enable(struct mpi3mr_ioc *mrioc,
212 struct bsg_job *job)
213 {
214 long rval = -EINVAL;
215 struct mpi3mr_bsg_out_pel_enable pel_enable;
216 u8 issue_pel_wait;
217 u8 tmp_class;
218 u16 tmp_locale;
219
220 if (job->request_payload.payload_len != sizeof(pel_enable)) {
221 dprint_bsg_err(mrioc, "%s: invalid size argument\n",
222 __func__);
223 return rval;
224 }
225
226 sg_copy_to_buffer(job->request_payload.sg_list,
227 job->request_payload.sg_cnt,
228 &pel_enable, sizeof(pel_enable));
229
230 if (pel_enable.pel_class > MPI3_PEL_CLASS_FAULT) {
231 dprint_bsg_err(mrioc, "%s: out of range class %d sent\n",
232 __func__, pel_enable.pel_class);
233 rval = 0;
234 goto out;
235 }
236 if (!mrioc->pel_enabled)
237 issue_pel_wait = 1;
238 else {
239 if ((mrioc->pel_class <= pel_enable.pel_class) &&
240 !((mrioc->pel_locale & pel_enable.pel_locale) ^
241 pel_enable.pel_locale)) {
242 issue_pel_wait = 0;
243 rval = 0;
244 } else {
245 pel_enable.pel_locale |= mrioc->pel_locale;
246
247 if (mrioc->pel_class < pel_enable.pel_class)
248 pel_enable.pel_class = mrioc->pel_class;
249
250 rval = mpi3mr_bsg_pel_abort(mrioc);
251 if (rval) {
252 dprint_bsg_err(mrioc,
253 "%s: pel_abort failed, status(%ld)\n",
254 __func__, rval);
255 goto out;
256 }
257 issue_pel_wait = 1;
258 }
259 }
260 if (issue_pel_wait) {
261 tmp_class = mrioc->pel_class;
262 tmp_locale = mrioc->pel_locale;
263 mrioc->pel_class = pel_enable.pel_class;
264 mrioc->pel_locale = pel_enable.pel_locale;
265 mrioc->pel_enabled = 1;
266 rval = mpi3mr_pel_get_seqnum_post(mrioc, NULL);
267 if (rval) {
268 mrioc->pel_class = tmp_class;
269 mrioc->pel_locale = tmp_locale;
270 mrioc->pel_enabled = 0;
271 dprint_bsg_err(mrioc,
272 "%s: pel get sequence number failed, status(%ld)\n",
273 __func__, rval);
274 }
275 }
276
277 out:
278 return rval;
279 }
280 /**
281 * mpi3mr_get_all_tgt_info - Get all target information
282 * @mrioc: Adapter instance reference
283 * @job: BSG job reference
284 *
285 * This function copies the driver managed target devices device
286 * handle, persistent ID, bus ID and taret ID to the user
287 * provided buffer for the specific controller. This function
288 * also provides the number of devices managed by the driver for
289 * the specific controller.
290 *
291 * Return: 0 on success and proper error codes on failure
292 */
mpi3mr_get_all_tgt_info(struct mpi3mr_ioc * mrioc,struct bsg_job * job)293 static long mpi3mr_get_all_tgt_info(struct mpi3mr_ioc *mrioc,
294 struct bsg_job *job)
295 {
296 u16 num_devices = 0, i = 0, size;
297 unsigned long flags;
298 struct mpi3mr_tgt_dev *tgtdev;
299 struct mpi3mr_device_map_info *devmap_info = NULL;
300 struct mpi3mr_all_tgt_info *alltgt_info = NULL;
301 uint32_t min_entrylen = 0, kern_entrylen = 0, usr_entrylen = 0;
302
303 if (job->request_payload.payload_len < sizeof(u32)) {
304 dprint_bsg_err(mrioc, "%s: invalid size argument\n",
305 __func__);
306 return -EINVAL;
307 }
308
309 spin_lock_irqsave(&mrioc->tgtdev_lock, flags);
310 list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list)
311 num_devices++;
312 spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags);
313
314 if ((job->request_payload.payload_len <= sizeof(u64)) ||
315 list_empty(&mrioc->tgtdev_list)) {
316 sg_copy_from_buffer(job->request_payload.sg_list,
317 job->request_payload.sg_cnt,
318 &num_devices, sizeof(num_devices));
319 return 0;
320 }
321
322 kern_entrylen = num_devices * sizeof(*devmap_info);
323 size = sizeof(u64) + kern_entrylen;
324 alltgt_info = kzalloc(size, GFP_KERNEL);
325 if (!alltgt_info)
326 return -ENOMEM;
327
328 devmap_info = alltgt_info->dmi;
329 memset((u8 *)devmap_info, 0xFF, kern_entrylen);
330 spin_lock_irqsave(&mrioc->tgtdev_lock, flags);
331 list_for_each_entry(tgtdev, &mrioc->tgtdev_list, list) {
332 if (i < num_devices) {
333 devmap_info[i].handle = tgtdev->dev_handle;
334 devmap_info[i].perst_id = tgtdev->perst_id;
335 if (tgtdev->host_exposed && tgtdev->starget) {
336 devmap_info[i].target_id = tgtdev->starget->id;
337 devmap_info[i].bus_id =
338 tgtdev->starget->channel;
339 }
340 i++;
341 }
342 }
343 num_devices = i;
344 spin_unlock_irqrestore(&mrioc->tgtdev_lock, flags);
345
346 alltgt_info->num_devices = num_devices;
347
348 usr_entrylen = (job->request_payload.payload_len - sizeof(u64)) /
349 sizeof(*devmap_info);
350 usr_entrylen *= sizeof(*devmap_info);
351 min_entrylen = min(usr_entrylen, kern_entrylen);
352
353 sg_copy_from_buffer(job->request_payload.sg_list,
354 job->request_payload.sg_cnt,
355 alltgt_info, (min_entrylen + sizeof(u64)));
356 kfree(alltgt_info);
357 return 0;
358 }
359 /**
360 * mpi3mr_get_change_count - Get topology change count
361 * @mrioc: Adapter instance reference
362 * @job: BSG job reference
363 *
364 * This function copies the toplogy change count provided by the
365 * driver in events and cached in the driver to the user
366 * provided buffer for the specific controller.
367 *
368 * Return: 0 on success and proper error codes on failure
369 */
mpi3mr_get_change_count(struct mpi3mr_ioc * mrioc,struct bsg_job * job)370 static long mpi3mr_get_change_count(struct mpi3mr_ioc *mrioc,
371 struct bsg_job *job)
372 {
373 struct mpi3mr_change_count chgcnt;
374
375 memset(&chgcnt, 0, sizeof(chgcnt));
376 chgcnt.change_count = mrioc->change_count;
377 if (job->request_payload.payload_len >= sizeof(chgcnt)) {
378 sg_copy_from_buffer(job->request_payload.sg_list,
379 job->request_payload.sg_cnt,
380 &chgcnt, sizeof(chgcnt));
381 return 0;
382 }
383 return -EINVAL;
384 }
385
386 /**
387 * mpi3mr_bsg_adp_reset - Issue controller reset
388 * @mrioc: Adapter instance reference
389 * @job: BSG job reference
390 *
391 * This function identifies the user provided reset type and
392 * issues approporiate reset to the controller and wait for that
393 * to complete and reinitialize the controller and then returns
394 *
395 * Return: 0 on success and proper error codes on failure
396 */
mpi3mr_bsg_adp_reset(struct mpi3mr_ioc * mrioc,struct bsg_job * job)397 static long mpi3mr_bsg_adp_reset(struct mpi3mr_ioc *mrioc,
398 struct bsg_job *job)
399 {
400 long rval = -EINVAL;
401 u8 save_snapdump;
402 struct mpi3mr_bsg_adp_reset adpreset;
403
404 if (job->request_payload.payload_len !=
405 sizeof(adpreset)) {
406 dprint_bsg_err(mrioc, "%s: invalid size argument\n",
407 __func__);
408 goto out;
409 }
410
411 sg_copy_to_buffer(job->request_payload.sg_list,
412 job->request_payload.sg_cnt,
413 &adpreset, sizeof(adpreset));
414
415 switch (adpreset.reset_type) {
416 case MPI3MR_BSG_ADPRESET_SOFT:
417 save_snapdump = 0;
418 break;
419 case MPI3MR_BSG_ADPRESET_DIAG_FAULT:
420 save_snapdump = 1;
421 break;
422 default:
423 dprint_bsg_err(mrioc, "%s: unknown reset_type(%d)\n",
424 __func__, adpreset.reset_type);
425 goto out;
426 }
427
428 rval = mpi3mr_soft_reset_handler(mrioc, MPI3MR_RESET_FROM_APP,
429 save_snapdump);
430
431 if (rval)
432 dprint_bsg_err(mrioc,
433 "%s: reset handler returned error(%ld) for reset type %d\n",
434 __func__, rval, adpreset.reset_type);
435 out:
436 return rval;
437 }
438
439 /**
440 * mpi3mr_bsg_populate_adpinfo - Get adapter info command handler
441 * @mrioc: Adapter instance reference
442 * @job: BSG job reference
443 *
444 * This function provides adapter information for the given
445 * controller
446 *
447 * Return: 0 on success and proper error codes on failure
448 */
mpi3mr_bsg_populate_adpinfo(struct mpi3mr_ioc * mrioc,struct bsg_job * job)449 static long mpi3mr_bsg_populate_adpinfo(struct mpi3mr_ioc *mrioc,
450 struct bsg_job *job)
451 {
452 enum mpi3mr_iocstate ioc_state;
453 struct mpi3mr_bsg_in_adpinfo adpinfo;
454
455 memset(&adpinfo, 0, sizeof(adpinfo));
456 adpinfo.adp_type = MPI3MR_BSG_ADPTYPE_AVGFAMILY;
457 adpinfo.pci_dev_id = mrioc->pdev->device;
458 adpinfo.pci_dev_hw_rev = mrioc->pdev->revision;
459 adpinfo.pci_subsys_dev_id = mrioc->pdev->subsystem_device;
460 adpinfo.pci_subsys_ven_id = mrioc->pdev->subsystem_vendor;
461 adpinfo.pci_bus = mrioc->pdev->bus->number;
462 adpinfo.pci_dev = PCI_SLOT(mrioc->pdev->devfn);
463 adpinfo.pci_func = PCI_FUNC(mrioc->pdev->devfn);
464 adpinfo.pci_seg_id = pci_domain_nr(mrioc->pdev->bus);
465 adpinfo.app_intfc_ver = MPI3MR_IOCTL_VERSION;
466
467 ioc_state = mpi3mr_get_iocstate(mrioc);
468 if (ioc_state == MRIOC_STATE_UNRECOVERABLE)
469 adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE;
470 else if ((mrioc->reset_in_progress) || (mrioc->stop_bsgs))
471 adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET;
472 else if (ioc_state == MRIOC_STATE_FAULT)
473 adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_FAULT;
474 else
475 adpinfo.adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL;
476
477 memcpy((u8 *)&adpinfo.driver_info, (u8 *)&mrioc->driver_info,
478 sizeof(adpinfo.driver_info));
479
480 if (job->request_payload.payload_len >= sizeof(adpinfo)) {
481 sg_copy_from_buffer(job->request_payload.sg_list,
482 job->request_payload.sg_cnt,
483 &adpinfo, sizeof(adpinfo));
484 return 0;
485 }
486 return -EINVAL;
487 }
488
489 /**
490 * mpi3mr_bsg_process_drv_cmds - Driver Command handler
491 * @job: BSG job reference
492 *
493 * This function is the top level handler for driver commands,
494 * this does basic validation of the buffer and identifies the
495 * opcode and switches to correct sub handler.
496 *
497 * Return: 0 on success and proper error codes on failure
498 */
mpi3mr_bsg_process_drv_cmds(struct bsg_job * job)499 static long mpi3mr_bsg_process_drv_cmds(struct bsg_job *job)
500 {
501 long rval = -EINVAL;
502 struct mpi3mr_ioc *mrioc = NULL;
503 struct mpi3mr_bsg_packet *bsg_req = NULL;
504 struct mpi3mr_bsg_drv_cmd *drvrcmd = NULL;
505
506 bsg_req = job->request;
507 drvrcmd = &bsg_req->cmd.drvrcmd;
508
509 mrioc = mpi3mr_bsg_verify_adapter(drvrcmd->mrioc_id);
510 if (!mrioc)
511 return -ENODEV;
512
513 if (drvrcmd->opcode == MPI3MR_DRVBSG_OPCODE_ADPINFO) {
514 rval = mpi3mr_bsg_populate_adpinfo(mrioc, job);
515 return rval;
516 }
517
518 if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex))
519 return -ERESTARTSYS;
520
521 switch (drvrcmd->opcode) {
522 case MPI3MR_DRVBSG_OPCODE_ADPRESET:
523 rval = mpi3mr_bsg_adp_reset(mrioc, job);
524 break;
525 case MPI3MR_DRVBSG_OPCODE_ALLTGTDEVINFO:
526 rval = mpi3mr_get_all_tgt_info(mrioc, job);
527 break;
528 case MPI3MR_DRVBSG_OPCODE_GETCHGCNT:
529 rval = mpi3mr_get_change_count(mrioc, job);
530 break;
531 case MPI3MR_DRVBSG_OPCODE_LOGDATAENABLE:
532 rval = mpi3mr_enable_logdata(mrioc, job);
533 break;
534 case MPI3MR_DRVBSG_OPCODE_GETLOGDATA:
535 rval = mpi3mr_get_logdata(mrioc, job);
536 break;
537 case MPI3MR_DRVBSG_OPCODE_PELENABLE:
538 rval = mpi3mr_bsg_pel_enable(mrioc, job);
539 break;
540 case MPI3MR_DRVBSG_OPCODE_UNKNOWN:
541 default:
542 pr_err("%s: unsupported driver command opcode %d\n",
543 MPI3MR_DRIVER_NAME, drvrcmd->opcode);
544 break;
545 }
546 mutex_unlock(&mrioc->bsg_cmds.mutex);
547 return rval;
548 }
549
550 /**
551 * mpi3mr_bsg_build_sgl - SGL construction for MPI commands
552 * @mpi_req: MPI request
553 * @sgl_offset: offset to start sgl in the MPI request
554 * @drv_bufs: DMA address of the buffers to be placed in sgl
555 * @bufcnt: Number of DMA buffers
556 * @is_rmc: Does the buffer list has management command buffer
557 * @is_rmr: Does the buffer list has management response buffer
558 * @num_datasges: Number of data buffers in the list
559 *
560 * This function places the DMA address of the given buffers in
561 * proper format as SGEs in the given MPI request.
562 *
563 * Return: Nothing
564 */
mpi3mr_bsg_build_sgl(u8 * mpi_req,uint32_t sgl_offset,struct mpi3mr_buf_map * drv_bufs,u8 bufcnt,u8 is_rmc,u8 is_rmr,u8 num_datasges)565 static void mpi3mr_bsg_build_sgl(u8 *mpi_req, uint32_t sgl_offset,
566 struct mpi3mr_buf_map *drv_bufs, u8 bufcnt, u8 is_rmc,
567 u8 is_rmr, u8 num_datasges)
568 {
569 u8 *sgl = (mpi_req + sgl_offset), count = 0;
570 struct mpi3_mgmt_passthrough_request *rmgmt_req =
571 (struct mpi3_mgmt_passthrough_request *)mpi_req;
572 struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
573 u8 sgl_flags, sgl_flags_last;
574
575 sgl_flags = MPI3_SGE_FLAGS_ELEMENT_TYPE_SIMPLE |
576 MPI3_SGE_FLAGS_DLAS_SYSTEM | MPI3_SGE_FLAGS_END_OF_BUFFER;
577 sgl_flags_last = sgl_flags | MPI3_SGE_FLAGS_END_OF_LIST;
578
579 if (is_rmc) {
580 mpi3mr_add_sg_single(&rmgmt_req->command_sgl,
581 sgl_flags_last, drv_buf_iter->kern_buf_len,
582 drv_buf_iter->kern_buf_dma);
583 sgl = (u8 *)drv_buf_iter->kern_buf + drv_buf_iter->bsg_buf_len;
584 drv_buf_iter++;
585 count++;
586 if (is_rmr) {
587 mpi3mr_add_sg_single(&rmgmt_req->response_sgl,
588 sgl_flags_last, drv_buf_iter->kern_buf_len,
589 drv_buf_iter->kern_buf_dma);
590 drv_buf_iter++;
591 count++;
592 } else
593 mpi3mr_build_zero_len_sge(
594 &rmgmt_req->response_sgl);
595 }
596 if (!num_datasges) {
597 mpi3mr_build_zero_len_sge(sgl);
598 return;
599 }
600 for (; count < bufcnt; count++, drv_buf_iter++) {
601 if (drv_buf_iter->data_dir == DMA_NONE)
602 continue;
603 if (num_datasges == 1 || !is_rmc)
604 mpi3mr_add_sg_single(sgl, sgl_flags_last,
605 drv_buf_iter->kern_buf_len, drv_buf_iter->kern_buf_dma);
606 else
607 mpi3mr_add_sg_single(sgl, sgl_flags,
608 drv_buf_iter->kern_buf_len, drv_buf_iter->kern_buf_dma);
609 sgl += sizeof(struct mpi3_sge_common);
610 num_datasges--;
611 }
612 }
613
614 /**
615 * mpi3mr_get_nvme_data_fmt - returns the NVMe data format
616 * @nvme_encap_request: NVMe encapsulated MPI request
617 *
618 * This function returns the type of the data format specified
619 * in user provided NVMe command in NVMe encapsulated request.
620 *
621 * Return: Data format of the NVMe command (PRP/SGL etc)
622 */
mpi3mr_get_nvme_data_fmt(struct mpi3_nvme_encapsulated_request * nvme_encap_request)623 static unsigned int mpi3mr_get_nvme_data_fmt(
624 struct mpi3_nvme_encapsulated_request *nvme_encap_request)
625 {
626 u8 format = 0;
627
628 format = ((nvme_encap_request->command[0] & 0xc000) >> 14);
629 return format;
630
631 }
632
633 /**
634 * mpi3mr_build_nvme_sgl - SGL constructor for NVME
635 * encapsulated request
636 * @mrioc: Adapter instance reference
637 * @nvme_encap_request: NVMe encapsulated MPI request
638 * @drv_bufs: DMA address of the buffers to be placed in sgl
639 * @bufcnt: Number of DMA buffers
640 *
641 * This function places the DMA address of the given buffers in
642 * proper format as SGEs in the given NVMe encapsulated request.
643 *
644 * Return: 0 on success, -1 on failure
645 */
mpi3mr_build_nvme_sgl(struct mpi3mr_ioc * mrioc,struct mpi3_nvme_encapsulated_request * nvme_encap_request,struct mpi3mr_buf_map * drv_bufs,u8 bufcnt)646 static int mpi3mr_build_nvme_sgl(struct mpi3mr_ioc *mrioc,
647 struct mpi3_nvme_encapsulated_request *nvme_encap_request,
648 struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
649 {
650 struct mpi3mr_nvme_pt_sge *nvme_sgl;
651 u64 sgl_ptr;
652 u8 count;
653 size_t length = 0;
654 struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
655 u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
656 mrioc->facts.sge_mod_shift) << 32);
657 u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
658 mrioc->facts.sge_mod_shift) << 32;
659
660 /*
661 * Not all commands require a data transfer. If no data, just return
662 * without constructing any sgl.
663 */
664 for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
665 if (drv_buf_iter->data_dir == DMA_NONE)
666 continue;
667 sgl_ptr = (u64)drv_buf_iter->kern_buf_dma;
668 length = drv_buf_iter->kern_buf_len;
669 break;
670 }
671 if (!length)
672 return 0;
673
674 if (sgl_ptr & sgemod_mask) {
675 dprint_bsg_err(mrioc,
676 "%s: SGL address collides with SGE modifier\n",
677 __func__);
678 return -1;
679 }
680
681 sgl_ptr &= ~sgemod_mask;
682 sgl_ptr |= sgemod_val;
683 nvme_sgl = (struct mpi3mr_nvme_pt_sge *)
684 ((u8 *)(nvme_encap_request->command) + MPI3MR_NVME_CMD_SGL_OFFSET);
685 memset(nvme_sgl, 0, sizeof(struct mpi3mr_nvme_pt_sge));
686 nvme_sgl->base_addr = sgl_ptr;
687 nvme_sgl->length = length;
688 return 0;
689 }
690
691 /**
692 * mpi3mr_build_nvme_prp - PRP constructor for NVME
693 * encapsulated request
694 * @mrioc: Adapter instance reference
695 * @nvme_encap_request: NVMe encapsulated MPI request
696 * @drv_bufs: DMA address of the buffers to be placed in SGL
697 * @bufcnt: Number of DMA buffers
698 *
699 * This function places the DMA address of the given buffers in
700 * proper format as PRP entries in the given NVMe encapsulated
701 * request.
702 *
703 * Return: 0 on success, -1 on failure
704 */
mpi3mr_build_nvme_prp(struct mpi3mr_ioc * mrioc,struct mpi3_nvme_encapsulated_request * nvme_encap_request,struct mpi3mr_buf_map * drv_bufs,u8 bufcnt)705 static int mpi3mr_build_nvme_prp(struct mpi3mr_ioc *mrioc,
706 struct mpi3_nvme_encapsulated_request *nvme_encap_request,
707 struct mpi3mr_buf_map *drv_bufs, u8 bufcnt)
708 {
709 int prp_size = MPI3MR_NVME_PRP_SIZE;
710 __le64 *prp_entry, *prp1_entry, *prp2_entry;
711 __le64 *prp_page;
712 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
713 u32 offset, entry_len, dev_pgsz;
714 u32 page_mask_result, page_mask;
715 size_t length = 0;
716 u8 count;
717 struct mpi3mr_buf_map *drv_buf_iter = drv_bufs;
718 u64 sgemod_mask = ((u64)((mrioc->facts.sge_mod_mask) <<
719 mrioc->facts.sge_mod_shift) << 32);
720 u64 sgemod_val = ((u64)(mrioc->facts.sge_mod_value) <<
721 mrioc->facts.sge_mod_shift) << 32;
722 u16 dev_handle = nvme_encap_request->dev_handle;
723 struct mpi3mr_tgt_dev *tgtdev;
724
725 tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle);
726 if (!tgtdev) {
727 dprint_bsg_err(mrioc, "%s: invalid device handle 0x%04x\n",
728 __func__, dev_handle);
729 return -1;
730 }
731
732 if (tgtdev->dev_spec.pcie_inf.pgsz == 0) {
733 dprint_bsg_err(mrioc,
734 "%s: NVMe device page size is zero for handle 0x%04x\n",
735 __func__, dev_handle);
736 mpi3mr_tgtdev_put(tgtdev);
737 return -1;
738 }
739
740 dev_pgsz = 1 << (tgtdev->dev_spec.pcie_inf.pgsz);
741 mpi3mr_tgtdev_put(tgtdev);
742
743 /*
744 * Not all commands require a data transfer. If no data, just return
745 * without constructing any PRP.
746 */
747 for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
748 if (drv_buf_iter->data_dir == DMA_NONE)
749 continue;
750 dma_addr = drv_buf_iter->kern_buf_dma;
751 length = drv_buf_iter->kern_buf_len;
752 break;
753 }
754
755 if (!length)
756 return 0;
757
758 mrioc->prp_sz = 0;
759 mrioc->prp_list_virt = dma_alloc_coherent(&mrioc->pdev->dev,
760 dev_pgsz, &mrioc->prp_list_dma, GFP_KERNEL);
761
762 if (!mrioc->prp_list_virt)
763 return -1;
764 mrioc->prp_sz = dev_pgsz;
765
766 /*
767 * Set pointers to PRP1 and PRP2, which are in the NVMe command.
768 * PRP1 is located at a 24 byte offset from the start of the NVMe
769 * command. Then set the current PRP entry pointer to PRP1.
770 */
771 prp1_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
772 MPI3MR_NVME_CMD_PRP1_OFFSET);
773 prp2_entry = (__le64 *)((u8 *)(nvme_encap_request->command) +
774 MPI3MR_NVME_CMD_PRP2_OFFSET);
775 prp_entry = prp1_entry;
776 /*
777 * For the PRP entries, use the specially allocated buffer of
778 * contiguous memory.
779 */
780 prp_page = (__le64 *)mrioc->prp_list_virt;
781 prp_page_dma = mrioc->prp_list_dma;
782
783 /*
784 * Check if we are within 1 entry of a page boundary we don't
785 * want our first entry to be a PRP List entry.
786 */
787 page_mask = dev_pgsz - 1;
788 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
789 if (!page_mask_result) {
790 dprint_bsg_err(mrioc, "%s: PRP page is not page aligned\n",
791 __func__);
792 goto err_out;
793 }
794
795 /*
796 * Set PRP physical pointer, which initially points to the current PRP
797 * DMA memory page.
798 */
799 prp_entry_dma = prp_page_dma;
800
801
802 /* Loop while the length is not zero. */
803 while (length) {
804 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
805 if (!page_mask_result && (length > dev_pgsz)) {
806 dprint_bsg_err(mrioc,
807 "%s: single PRP page is not sufficient\n",
808 __func__);
809 goto err_out;
810 }
811
812 /* Need to handle if entry will be part of a page. */
813 offset = dma_addr & page_mask;
814 entry_len = dev_pgsz - offset;
815
816 if (prp_entry == prp1_entry) {
817 /*
818 * Must fill in the first PRP pointer (PRP1) before
819 * moving on.
820 */
821 *prp1_entry = cpu_to_le64(dma_addr);
822 if (*prp1_entry & sgemod_mask) {
823 dprint_bsg_err(mrioc,
824 "%s: PRP1 address collides with SGE modifier\n",
825 __func__);
826 goto err_out;
827 }
828 *prp1_entry &= ~sgemod_mask;
829 *prp1_entry |= sgemod_val;
830
831 /*
832 * Now point to the second PRP entry within the
833 * command (PRP2).
834 */
835 prp_entry = prp2_entry;
836 } else if (prp_entry == prp2_entry) {
837 /*
838 * Should the PRP2 entry be a PRP List pointer or just
839 * a regular PRP pointer? If there is more than one
840 * more page of data, must use a PRP List pointer.
841 */
842 if (length > dev_pgsz) {
843 /*
844 * PRP2 will contain a PRP List pointer because
845 * more PRP's are needed with this command. The
846 * list will start at the beginning of the
847 * contiguous buffer.
848 */
849 *prp2_entry = cpu_to_le64(prp_entry_dma);
850 if (*prp2_entry & sgemod_mask) {
851 dprint_bsg_err(mrioc,
852 "%s: PRP list address collides with SGE modifier\n",
853 __func__);
854 goto err_out;
855 }
856 *prp2_entry &= ~sgemod_mask;
857 *prp2_entry |= sgemod_val;
858
859 /*
860 * The next PRP Entry will be the start of the
861 * first PRP List.
862 */
863 prp_entry = prp_page;
864 continue;
865 } else {
866 /*
867 * After this, the PRP Entries are complete.
868 * This command uses 2 PRP's and no PRP list.
869 */
870 *prp2_entry = cpu_to_le64(dma_addr);
871 if (*prp2_entry & sgemod_mask) {
872 dprint_bsg_err(mrioc,
873 "%s: PRP2 collides with SGE modifier\n",
874 __func__);
875 goto err_out;
876 }
877 *prp2_entry &= ~sgemod_mask;
878 *prp2_entry |= sgemod_val;
879 }
880 } else {
881 /*
882 * Put entry in list and bump the addresses.
883 *
884 * After PRP1 and PRP2 are filled in, this will fill in
885 * all remaining PRP entries in a PRP List, one per
886 * each time through the loop.
887 */
888 *prp_entry = cpu_to_le64(dma_addr);
889 if (*prp_entry & sgemod_mask) {
890 dprint_bsg_err(mrioc,
891 "%s: PRP address collides with SGE modifier\n",
892 __func__);
893 goto err_out;
894 }
895 *prp_entry &= ~sgemod_mask;
896 *prp_entry |= sgemod_val;
897 prp_entry++;
898 prp_entry_dma += prp_size;
899 }
900
901 /*
902 * Bump the phys address of the command's data buffer by the
903 * entry_len.
904 */
905 dma_addr += entry_len;
906
907 /* decrement length accounting for last partial page. */
908 if (entry_len > length)
909 length = 0;
910 else
911 length -= entry_len;
912 }
913 return 0;
914 err_out:
915 if (mrioc->prp_list_virt) {
916 dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
917 mrioc->prp_list_virt, mrioc->prp_list_dma);
918 mrioc->prp_list_virt = NULL;
919 }
920 return -1;
921 }
922 /**
923 * mpi3mr_bsg_process_mpt_cmds - MPI Pass through BSG handler
924 * @job: BSG job reference
925 * @reply_payload_rcv_len: length of payload recvd
926 *
927 * This function is the top level handler for MPI Pass through
928 * command, this does basic validation of the input data buffers,
929 * identifies the given buffer types and MPI command, allocates
930 * DMAable memory for user given buffers, construstcs SGL
931 * properly and passes the command to the firmware.
932 *
933 * Once the MPI command is completed the driver copies the data
934 * if any and reply, sense information to user provided buffers.
935 * If the command is timed out then issues controller reset
936 * prior to returning.
937 *
938 * Return: 0 on success and proper error codes on failure
939 */
940
mpi3mr_bsg_process_mpt_cmds(struct bsg_job * job,unsigned int * reply_payload_rcv_len)941 static long mpi3mr_bsg_process_mpt_cmds(struct bsg_job *job, unsigned int *reply_payload_rcv_len)
942 {
943 long rval = -EINVAL;
944
945 struct mpi3mr_ioc *mrioc = NULL;
946 u8 *mpi_req = NULL, *sense_buff_k = NULL;
947 u8 mpi_msg_size = 0;
948 struct mpi3mr_bsg_packet *bsg_req = NULL;
949 struct mpi3mr_bsg_mptcmd *karg;
950 struct mpi3mr_buf_entry *buf_entries = NULL;
951 struct mpi3mr_buf_map *drv_bufs = NULL, *drv_buf_iter = NULL;
952 u8 count, bufcnt = 0, is_rmcb = 0, is_rmrb = 0, din_cnt = 0, dout_cnt = 0;
953 u8 invalid_be = 0, erb_offset = 0xFF, mpirep_offset = 0xFF, sg_entries = 0;
954 u8 block_io = 0, resp_code = 0, nvme_fmt = 0;
955 struct mpi3_request_header *mpi_header = NULL;
956 struct mpi3_status_reply_descriptor *status_desc;
957 struct mpi3_scsi_task_mgmt_request *tm_req;
958 u32 erbsz = MPI3MR_SENSE_BUF_SZ, tmplen;
959 u16 dev_handle;
960 struct mpi3mr_tgt_dev *tgtdev;
961 struct mpi3mr_stgt_priv_data *stgt_priv = NULL;
962 struct mpi3mr_bsg_in_reply_buf *bsg_reply_buf = NULL;
963 u32 din_size = 0, dout_size = 0;
964 u8 *din_buf = NULL, *dout_buf = NULL;
965 u8 *sgl_iter = NULL, *sgl_din_iter = NULL, *sgl_dout_iter = NULL;
966
967 bsg_req = job->request;
968 karg = (struct mpi3mr_bsg_mptcmd *)&bsg_req->cmd.mptcmd;
969
970 mrioc = mpi3mr_bsg_verify_adapter(karg->mrioc_id);
971 if (!mrioc)
972 return -ENODEV;
973
974 if (karg->timeout < MPI3MR_APP_DEFAULT_TIMEOUT)
975 karg->timeout = MPI3MR_APP_DEFAULT_TIMEOUT;
976
977 mpi_req = kzalloc(MPI3MR_ADMIN_REQ_FRAME_SZ, GFP_KERNEL);
978 if (!mpi_req)
979 return -ENOMEM;
980 mpi_header = (struct mpi3_request_header *)mpi_req;
981
982 bufcnt = karg->buf_entry_list.num_of_entries;
983 drv_bufs = kzalloc((sizeof(*drv_bufs) * bufcnt), GFP_KERNEL);
984 if (!drv_bufs) {
985 rval = -ENOMEM;
986 goto out;
987 }
988
989 dout_buf = kzalloc(job->request_payload.payload_len,
990 GFP_KERNEL);
991 if (!dout_buf) {
992 rval = -ENOMEM;
993 goto out;
994 }
995
996 din_buf = kzalloc(job->reply_payload.payload_len,
997 GFP_KERNEL);
998 if (!din_buf) {
999 rval = -ENOMEM;
1000 goto out;
1001 }
1002
1003 sg_copy_to_buffer(job->request_payload.sg_list,
1004 job->request_payload.sg_cnt,
1005 dout_buf, job->request_payload.payload_len);
1006
1007 buf_entries = karg->buf_entry_list.buf_entry;
1008 sgl_din_iter = din_buf;
1009 sgl_dout_iter = dout_buf;
1010 drv_buf_iter = drv_bufs;
1011
1012 for (count = 0; count < bufcnt; count++, buf_entries++, drv_buf_iter++) {
1013
1014 if (sgl_dout_iter > (dout_buf + job->request_payload.payload_len)) {
1015 dprint_bsg_err(mrioc, "%s: data_out buffer length mismatch\n",
1016 __func__);
1017 rval = -EINVAL;
1018 goto out;
1019 }
1020 if (sgl_din_iter > (din_buf + job->reply_payload.payload_len)) {
1021 dprint_bsg_err(mrioc, "%s: data_in buffer length mismatch\n",
1022 __func__);
1023 rval = -EINVAL;
1024 goto out;
1025 }
1026
1027 switch (buf_entries->buf_type) {
1028 case MPI3MR_BSG_BUFTYPE_RAIDMGMT_CMD:
1029 sgl_iter = sgl_dout_iter;
1030 sgl_dout_iter += buf_entries->buf_len;
1031 drv_buf_iter->data_dir = DMA_TO_DEVICE;
1032 is_rmcb = 1;
1033 if (count != 0)
1034 invalid_be = 1;
1035 break;
1036 case MPI3MR_BSG_BUFTYPE_RAIDMGMT_RESP:
1037 sgl_iter = sgl_din_iter;
1038 sgl_din_iter += buf_entries->buf_len;
1039 drv_buf_iter->data_dir = DMA_FROM_DEVICE;
1040 is_rmrb = 1;
1041 if (count != 1 || !is_rmcb)
1042 invalid_be = 1;
1043 break;
1044 case MPI3MR_BSG_BUFTYPE_DATA_IN:
1045 sgl_iter = sgl_din_iter;
1046 sgl_din_iter += buf_entries->buf_len;
1047 drv_buf_iter->data_dir = DMA_FROM_DEVICE;
1048 din_cnt++;
1049 din_size += drv_buf_iter->bsg_buf_len;
1050 if ((din_cnt > 1) && !is_rmcb)
1051 invalid_be = 1;
1052 break;
1053 case MPI3MR_BSG_BUFTYPE_DATA_OUT:
1054 sgl_iter = sgl_dout_iter;
1055 sgl_dout_iter += buf_entries->buf_len;
1056 drv_buf_iter->data_dir = DMA_TO_DEVICE;
1057 dout_cnt++;
1058 dout_size += drv_buf_iter->bsg_buf_len;
1059 if ((dout_cnt > 1) && !is_rmcb)
1060 invalid_be = 1;
1061 break;
1062 case MPI3MR_BSG_BUFTYPE_MPI_REPLY:
1063 sgl_iter = sgl_din_iter;
1064 sgl_din_iter += buf_entries->buf_len;
1065 drv_buf_iter->data_dir = DMA_NONE;
1066 mpirep_offset = count;
1067 break;
1068 case MPI3MR_BSG_BUFTYPE_ERR_RESPONSE:
1069 sgl_iter = sgl_din_iter;
1070 sgl_din_iter += buf_entries->buf_len;
1071 drv_buf_iter->data_dir = DMA_NONE;
1072 erb_offset = count;
1073 break;
1074 case MPI3MR_BSG_BUFTYPE_MPI_REQUEST:
1075 sgl_iter = sgl_dout_iter;
1076 sgl_dout_iter += buf_entries->buf_len;
1077 drv_buf_iter->data_dir = DMA_NONE;
1078 mpi_msg_size = buf_entries->buf_len;
1079 if ((!mpi_msg_size || (mpi_msg_size % 4)) ||
1080 (mpi_msg_size > MPI3MR_ADMIN_REQ_FRAME_SZ)) {
1081 dprint_bsg_err(mrioc, "%s: invalid MPI message size\n",
1082 __func__);
1083 rval = -EINVAL;
1084 goto out;
1085 }
1086 memcpy(mpi_req, sgl_iter, buf_entries->buf_len);
1087 break;
1088 default:
1089 invalid_be = 1;
1090 break;
1091 }
1092 if (invalid_be) {
1093 dprint_bsg_err(mrioc, "%s: invalid buffer entries passed\n",
1094 __func__);
1095 rval = -EINVAL;
1096 goto out;
1097 }
1098
1099 drv_buf_iter->bsg_buf = sgl_iter;
1100 drv_buf_iter->bsg_buf_len = buf_entries->buf_len;
1101
1102 }
1103 if (!is_rmcb && (dout_cnt || din_cnt)) {
1104 sg_entries = dout_cnt + din_cnt;
1105 if (((mpi_msg_size) + (sg_entries *
1106 sizeof(struct mpi3_sge_common))) > MPI3MR_ADMIN_REQ_FRAME_SZ) {
1107 dprint_bsg_err(mrioc,
1108 "%s:%d: invalid message size passed\n",
1109 __func__, __LINE__);
1110 rval = -EINVAL;
1111 goto out;
1112 }
1113 }
1114 if (din_size > MPI3MR_MAX_APP_XFER_SIZE) {
1115 dprint_bsg_err(mrioc,
1116 "%s:%d: invalid data transfer size passed for function 0x%x din_size=%d\n",
1117 __func__, __LINE__, mpi_header->function, din_size);
1118 rval = -EINVAL;
1119 goto out;
1120 }
1121 if (dout_size > MPI3MR_MAX_APP_XFER_SIZE) {
1122 dprint_bsg_err(mrioc,
1123 "%s:%d: invalid data transfer size passed for function 0x%x dout_size = %d\n",
1124 __func__, __LINE__, mpi_header->function, dout_size);
1125 rval = -EINVAL;
1126 goto out;
1127 }
1128
1129 drv_buf_iter = drv_bufs;
1130 for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
1131 if (drv_buf_iter->data_dir == DMA_NONE)
1132 continue;
1133
1134 drv_buf_iter->kern_buf_len = drv_buf_iter->bsg_buf_len;
1135 if (is_rmcb && !count)
1136 drv_buf_iter->kern_buf_len += ((dout_cnt + din_cnt) *
1137 sizeof(struct mpi3_sge_common));
1138
1139 if (!drv_buf_iter->kern_buf_len)
1140 continue;
1141
1142 drv_buf_iter->kern_buf = dma_alloc_coherent(&mrioc->pdev->dev,
1143 drv_buf_iter->kern_buf_len, &drv_buf_iter->kern_buf_dma,
1144 GFP_KERNEL);
1145 if (!drv_buf_iter->kern_buf) {
1146 rval = -ENOMEM;
1147 goto out;
1148 }
1149 if (drv_buf_iter->data_dir == DMA_TO_DEVICE) {
1150 tmplen = min(drv_buf_iter->kern_buf_len,
1151 drv_buf_iter->bsg_buf_len);
1152 memcpy(drv_buf_iter->kern_buf, drv_buf_iter->bsg_buf, tmplen);
1153 }
1154 }
1155
1156 if (erb_offset != 0xFF) {
1157 sense_buff_k = kzalloc(erbsz, GFP_KERNEL);
1158 if (!sense_buff_k) {
1159 rval = -ENOMEM;
1160 goto out;
1161 }
1162 }
1163
1164 if (mutex_lock_interruptible(&mrioc->bsg_cmds.mutex)) {
1165 rval = -ERESTARTSYS;
1166 goto out;
1167 }
1168 if (mrioc->bsg_cmds.state & MPI3MR_CMD_PENDING) {
1169 rval = -EAGAIN;
1170 dprint_bsg_err(mrioc, "%s: command is in use\n", __func__);
1171 mutex_unlock(&mrioc->bsg_cmds.mutex);
1172 goto out;
1173 }
1174 if (mrioc->unrecoverable) {
1175 dprint_bsg_err(mrioc, "%s: unrecoverable controller\n",
1176 __func__);
1177 rval = -EFAULT;
1178 mutex_unlock(&mrioc->bsg_cmds.mutex);
1179 goto out;
1180 }
1181 if (mrioc->reset_in_progress) {
1182 dprint_bsg_err(mrioc, "%s: reset in progress\n", __func__);
1183 rval = -EAGAIN;
1184 mutex_unlock(&mrioc->bsg_cmds.mutex);
1185 goto out;
1186 }
1187 if (mrioc->stop_bsgs) {
1188 dprint_bsg_err(mrioc, "%s: bsgs are blocked\n", __func__);
1189 rval = -EAGAIN;
1190 mutex_unlock(&mrioc->bsg_cmds.mutex);
1191 goto out;
1192 }
1193
1194 if (mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) {
1195 nvme_fmt = mpi3mr_get_nvme_data_fmt(
1196 (struct mpi3_nvme_encapsulated_request *)mpi_req);
1197 if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_PRP) {
1198 if (mpi3mr_build_nvme_prp(mrioc,
1199 (struct mpi3_nvme_encapsulated_request *)mpi_req,
1200 drv_bufs, bufcnt)) {
1201 rval = -ENOMEM;
1202 mutex_unlock(&mrioc->bsg_cmds.mutex);
1203 goto out;
1204 }
1205 } else if (nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL1 ||
1206 nvme_fmt == MPI3MR_NVME_DATA_FORMAT_SGL2) {
1207 if (mpi3mr_build_nvme_sgl(mrioc,
1208 (struct mpi3_nvme_encapsulated_request *)mpi_req,
1209 drv_bufs, bufcnt)) {
1210 rval = -EINVAL;
1211 mutex_unlock(&mrioc->bsg_cmds.mutex);
1212 goto out;
1213 }
1214 } else {
1215 dprint_bsg_err(mrioc,
1216 "%s:invalid NVMe command format\n", __func__);
1217 rval = -EINVAL;
1218 mutex_unlock(&mrioc->bsg_cmds.mutex);
1219 goto out;
1220 }
1221 } else {
1222 mpi3mr_bsg_build_sgl(mpi_req, (mpi_msg_size),
1223 drv_bufs, bufcnt, is_rmcb, is_rmrb,
1224 (dout_cnt + din_cnt));
1225 }
1226
1227 if (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_TASK_MGMT) {
1228 tm_req = (struct mpi3_scsi_task_mgmt_request *)mpi_req;
1229 if (tm_req->task_type !=
1230 MPI3_SCSITASKMGMT_TASKTYPE_ABORT_TASK) {
1231 dev_handle = tm_req->dev_handle;
1232 block_io = 1;
1233 }
1234 }
1235 if (block_io) {
1236 tgtdev = mpi3mr_get_tgtdev_by_handle(mrioc, dev_handle);
1237 if (tgtdev && tgtdev->starget && tgtdev->starget->hostdata) {
1238 stgt_priv = (struct mpi3mr_stgt_priv_data *)
1239 tgtdev->starget->hostdata;
1240 atomic_inc(&stgt_priv->block_io);
1241 mpi3mr_tgtdev_put(tgtdev);
1242 }
1243 }
1244
1245 mrioc->bsg_cmds.state = MPI3MR_CMD_PENDING;
1246 mrioc->bsg_cmds.is_waiting = 1;
1247 mrioc->bsg_cmds.callback = NULL;
1248 mrioc->bsg_cmds.is_sense = 0;
1249 mrioc->bsg_cmds.sensebuf = sense_buff_k;
1250 memset(mrioc->bsg_cmds.reply, 0, mrioc->reply_sz);
1251 mpi_header->host_tag = cpu_to_le16(MPI3MR_HOSTTAG_BSG_CMDS);
1252 if (mrioc->logging_level & MPI3_DEBUG_BSG_INFO) {
1253 dprint_bsg_info(mrioc,
1254 "%s: posting bsg request to the controller\n", __func__);
1255 dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ,
1256 "bsg_mpi3_req");
1257 if (mpi_header->function == MPI3_BSG_FUNCTION_MGMT_PASSTHROUGH) {
1258 drv_buf_iter = &drv_bufs[0];
1259 dprint_dump(drv_buf_iter->kern_buf,
1260 drv_buf_iter->kern_buf_len, "mpi3_mgmt_req");
1261 }
1262 }
1263
1264 init_completion(&mrioc->bsg_cmds.done);
1265 rval = mpi3mr_admin_request_post(mrioc, mpi_req,
1266 MPI3MR_ADMIN_REQ_FRAME_SZ, 0);
1267
1268
1269 if (rval) {
1270 mrioc->bsg_cmds.is_waiting = 0;
1271 dprint_bsg_err(mrioc,
1272 "%s: posting bsg request is failed\n", __func__);
1273 rval = -EAGAIN;
1274 goto out_unlock;
1275 }
1276 wait_for_completion_timeout(&mrioc->bsg_cmds.done,
1277 (karg->timeout * HZ));
1278 if (block_io && stgt_priv)
1279 atomic_dec(&stgt_priv->block_io);
1280 if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE)) {
1281 mrioc->bsg_cmds.is_waiting = 0;
1282 rval = -EAGAIN;
1283 if (mrioc->bsg_cmds.state & MPI3MR_CMD_RESET)
1284 goto out_unlock;
1285 dprint_bsg_err(mrioc,
1286 "%s: bsg request timedout after %d seconds\n", __func__,
1287 karg->timeout);
1288 if (mrioc->logging_level & MPI3_DEBUG_BSG_ERROR) {
1289 dprint_dump(mpi_req, MPI3MR_ADMIN_REQ_FRAME_SZ,
1290 "bsg_mpi3_req");
1291 if (mpi_header->function ==
1292 MPI3_BSG_FUNCTION_MGMT_PASSTHROUGH) {
1293 drv_buf_iter = &drv_bufs[0];
1294 dprint_dump(drv_buf_iter->kern_buf,
1295 drv_buf_iter->kern_buf_len, "mpi3_mgmt_req");
1296 }
1297 }
1298
1299 if ((mpi_header->function == MPI3_BSG_FUNCTION_NVME_ENCAPSULATED) ||
1300 (mpi_header->function == MPI3_BSG_FUNCTION_SCSI_IO))
1301 mpi3mr_issue_tm(mrioc,
1302 MPI3_SCSITASKMGMT_TASKTYPE_TARGET_RESET,
1303 mpi_header->function_dependent, 0,
1304 MPI3MR_HOSTTAG_BLK_TMS, MPI3MR_RESETTM_TIMEOUT,
1305 &mrioc->host_tm_cmds, &resp_code, NULL);
1306 if (!(mrioc->bsg_cmds.state & MPI3MR_CMD_COMPLETE) &&
1307 !(mrioc->bsg_cmds.state & MPI3MR_CMD_RESET))
1308 mpi3mr_soft_reset_handler(mrioc,
1309 MPI3MR_RESET_FROM_APP_TIMEOUT, 1);
1310 goto out_unlock;
1311 }
1312 dprint_bsg_info(mrioc, "%s: bsg request is completed\n", __func__);
1313
1314 if (mrioc->prp_list_virt) {
1315 dma_free_coherent(&mrioc->pdev->dev, mrioc->prp_sz,
1316 mrioc->prp_list_virt, mrioc->prp_list_dma);
1317 mrioc->prp_list_virt = NULL;
1318 }
1319
1320 if ((mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK)
1321 != MPI3_IOCSTATUS_SUCCESS) {
1322 dprint_bsg_info(mrioc,
1323 "%s: command failed, ioc_status(0x%04x) log_info(0x%08x)\n",
1324 __func__,
1325 (mrioc->bsg_cmds.ioc_status & MPI3_IOCSTATUS_STATUS_MASK),
1326 mrioc->bsg_cmds.ioc_loginfo);
1327 }
1328
1329 if ((mpirep_offset != 0xFF) &&
1330 drv_bufs[mpirep_offset].bsg_buf_len) {
1331 drv_buf_iter = &drv_bufs[mpirep_offset];
1332 drv_buf_iter->kern_buf_len = (sizeof(*bsg_reply_buf) - 1 +
1333 mrioc->reply_sz);
1334 bsg_reply_buf = kzalloc(drv_buf_iter->kern_buf_len, GFP_KERNEL);
1335
1336 if (!bsg_reply_buf) {
1337 rval = -ENOMEM;
1338 goto out_unlock;
1339 }
1340 if (mrioc->bsg_cmds.state & MPI3MR_CMD_REPLY_VALID) {
1341 bsg_reply_buf->mpi_reply_type =
1342 MPI3MR_BSG_MPI_REPLY_BUFTYPE_ADDRESS;
1343 memcpy(bsg_reply_buf->reply_buf,
1344 mrioc->bsg_cmds.reply, mrioc->reply_sz);
1345 } else {
1346 bsg_reply_buf->mpi_reply_type =
1347 MPI3MR_BSG_MPI_REPLY_BUFTYPE_STATUS;
1348 status_desc = (struct mpi3_status_reply_descriptor *)
1349 bsg_reply_buf->reply_buf;
1350 status_desc->ioc_status = mrioc->bsg_cmds.ioc_status;
1351 status_desc->ioc_log_info = mrioc->bsg_cmds.ioc_loginfo;
1352 }
1353 tmplen = min(drv_buf_iter->kern_buf_len,
1354 drv_buf_iter->bsg_buf_len);
1355 memcpy(drv_buf_iter->bsg_buf, bsg_reply_buf, tmplen);
1356 }
1357
1358 if (erb_offset != 0xFF && mrioc->bsg_cmds.sensebuf &&
1359 mrioc->bsg_cmds.is_sense) {
1360 drv_buf_iter = &drv_bufs[erb_offset];
1361 tmplen = min(erbsz, drv_buf_iter->bsg_buf_len);
1362 memcpy(drv_buf_iter->bsg_buf, sense_buff_k, tmplen);
1363 }
1364
1365 drv_buf_iter = drv_bufs;
1366 for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
1367 if (drv_buf_iter->data_dir == DMA_NONE)
1368 continue;
1369 if (drv_buf_iter->data_dir == DMA_FROM_DEVICE) {
1370 tmplen = min(drv_buf_iter->kern_buf_len,
1371 drv_buf_iter->bsg_buf_len);
1372 memcpy(drv_buf_iter->bsg_buf,
1373 drv_buf_iter->kern_buf, tmplen);
1374 }
1375 }
1376
1377 out_unlock:
1378 if (din_buf) {
1379 *reply_payload_rcv_len =
1380 sg_copy_from_buffer(job->reply_payload.sg_list,
1381 job->reply_payload.sg_cnt,
1382 din_buf, job->reply_payload.payload_len);
1383 }
1384 mrioc->bsg_cmds.is_sense = 0;
1385 mrioc->bsg_cmds.sensebuf = NULL;
1386 mrioc->bsg_cmds.state = MPI3MR_CMD_NOTUSED;
1387 mutex_unlock(&mrioc->bsg_cmds.mutex);
1388 out:
1389 kfree(sense_buff_k);
1390 kfree(dout_buf);
1391 kfree(din_buf);
1392 kfree(mpi_req);
1393 if (drv_bufs) {
1394 drv_buf_iter = drv_bufs;
1395 for (count = 0; count < bufcnt; count++, drv_buf_iter++) {
1396 if (drv_buf_iter->kern_buf && drv_buf_iter->kern_buf_dma)
1397 dma_free_coherent(&mrioc->pdev->dev,
1398 drv_buf_iter->kern_buf_len,
1399 drv_buf_iter->kern_buf,
1400 drv_buf_iter->kern_buf_dma);
1401 }
1402 kfree(drv_bufs);
1403 }
1404 kfree(bsg_reply_buf);
1405 return rval;
1406 }
1407
1408 /**
1409 * mpi3mr_app_save_logdata - Save Log Data events
1410 * @mrioc: Adapter instance reference
1411 * @event_data: event data associated with log data event
1412 * @event_data_size: event data size to copy
1413 *
1414 * If log data event caching is enabled by the applicatiobns,
1415 * then this function saves the log data in the circular queue
1416 * and Sends async signal SIGIO to indicate there is an async
1417 * event from the firmware to the event monitoring applications.
1418 *
1419 * Return:Nothing
1420 */
mpi3mr_app_save_logdata(struct mpi3mr_ioc * mrioc,char * event_data,u16 event_data_size)1421 void mpi3mr_app_save_logdata(struct mpi3mr_ioc *mrioc, char *event_data,
1422 u16 event_data_size)
1423 {
1424 u32 index = mrioc->logdata_buf_idx, sz;
1425 struct mpi3mr_logdata_entry *entry;
1426
1427 if (!(mrioc->logdata_buf))
1428 return;
1429
1430 entry = (struct mpi3mr_logdata_entry *)
1431 (mrioc->logdata_buf + (index * mrioc->logdata_entry_sz));
1432 entry->valid_entry = 1;
1433 sz = min(mrioc->logdata_entry_sz, event_data_size);
1434 memcpy(entry->data, event_data, sz);
1435 mrioc->logdata_buf_idx =
1436 ((++index) % MPI3MR_BSG_LOGDATA_MAX_ENTRIES);
1437 atomic64_inc(&event_counter);
1438 }
1439
1440 /**
1441 * mpi3mr_bsg_request - bsg request entry point
1442 * @job: BSG job reference
1443 *
1444 * This is driver's entry point for bsg requests
1445 *
1446 * Return: 0 on success and proper error codes on failure
1447 */
mpi3mr_bsg_request(struct bsg_job * job)1448 static int mpi3mr_bsg_request(struct bsg_job *job)
1449 {
1450 long rval = -EINVAL;
1451 unsigned int reply_payload_rcv_len = 0;
1452
1453 struct mpi3mr_bsg_packet *bsg_req = job->request;
1454
1455 switch (bsg_req->cmd_type) {
1456 case MPI3MR_DRV_CMD:
1457 rval = mpi3mr_bsg_process_drv_cmds(job);
1458 break;
1459 case MPI3MR_MPT_CMD:
1460 rval = mpi3mr_bsg_process_mpt_cmds(job, &reply_payload_rcv_len);
1461 break;
1462 default:
1463 pr_err("%s: unsupported BSG command(0x%08x)\n",
1464 MPI3MR_DRIVER_NAME, bsg_req->cmd_type);
1465 break;
1466 }
1467
1468 bsg_job_done(job, rval, reply_payload_rcv_len);
1469
1470 return 0;
1471 }
1472
1473 /**
1474 * mpi3mr_bsg_exit - de-registration from bsg layer
1475 * @mrioc: Adapter instance reference
1476 *
1477 * This will be called during driver unload and all
1478 * bsg resources allocated during load will be freed.
1479 *
1480 * Return:Nothing
1481 */
mpi3mr_bsg_exit(struct mpi3mr_ioc * mrioc)1482 void mpi3mr_bsg_exit(struct mpi3mr_ioc *mrioc)
1483 {
1484 struct device *bsg_dev = &mrioc->bsg_dev;
1485 if (!mrioc->bsg_queue)
1486 return;
1487
1488 bsg_remove_queue(mrioc->bsg_queue);
1489 mrioc->bsg_queue = NULL;
1490
1491 device_del(bsg_dev);
1492 put_device(bsg_dev);
1493 }
1494
1495 /**
1496 * mpi3mr_bsg_node_release -release bsg device node
1497 * @dev: bsg device node
1498 *
1499 * decrements bsg dev parent reference count
1500 *
1501 * Return:Nothing
1502 */
mpi3mr_bsg_node_release(struct device * dev)1503 static void mpi3mr_bsg_node_release(struct device *dev)
1504 {
1505 put_device(dev->parent);
1506 }
1507
1508 /**
1509 * mpi3mr_bsg_init - registration with bsg layer
1510 * @mrioc: Adapter instance reference
1511 *
1512 * This will be called during driver load and it will
1513 * register driver with bsg layer
1514 *
1515 * Return:Nothing
1516 */
mpi3mr_bsg_init(struct mpi3mr_ioc * mrioc)1517 void mpi3mr_bsg_init(struct mpi3mr_ioc *mrioc)
1518 {
1519 struct device *bsg_dev = &mrioc->bsg_dev;
1520 struct device *parent = &mrioc->shost->shost_gendev;
1521
1522 device_initialize(bsg_dev);
1523
1524 bsg_dev->parent = get_device(parent);
1525 bsg_dev->release = mpi3mr_bsg_node_release;
1526
1527 dev_set_name(bsg_dev, "mpi3mrctl%u", mrioc->id);
1528
1529 if (device_add(bsg_dev)) {
1530 ioc_err(mrioc, "%s: bsg device add failed\n",
1531 dev_name(bsg_dev));
1532 put_device(bsg_dev);
1533 return;
1534 }
1535
1536 mrioc->bsg_queue = bsg_setup_queue(bsg_dev, dev_name(bsg_dev),
1537 mpi3mr_bsg_request, NULL, 0);
1538 if (IS_ERR(mrioc->bsg_queue)) {
1539 ioc_err(mrioc, "%s: bsg registration failed\n",
1540 dev_name(bsg_dev));
1541 device_del(bsg_dev);
1542 put_device(bsg_dev);
1543 return;
1544 }
1545
1546 blk_queue_max_segments(mrioc->bsg_queue, MPI3MR_MAX_APP_XFER_SEGMENTS);
1547 blk_queue_max_hw_sectors(mrioc->bsg_queue, MPI3MR_MAX_APP_XFER_SECTORS);
1548
1549 return;
1550 }
1551
1552 /**
1553 * version_fw_show - SysFS callback for firmware version read
1554 * @dev: class device
1555 * @attr: Device attributes
1556 * @buf: Buffer to copy
1557 *
1558 * Return: sysfs_emit() return after copying firmware version
1559 */
1560 static ssize_t
version_fw_show(struct device * dev,struct device_attribute * attr,char * buf)1561 version_fw_show(struct device *dev, struct device_attribute *attr,
1562 char *buf)
1563 {
1564 struct Scsi_Host *shost = class_to_shost(dev);
1565 struct mpi3mr_ioc *mrioc = shost_priv(shost);
1566 struct mpi3mr_compimg_ver *fwver = &mrioc->facts.fw_ver;
1567
1568 return sysfs_emit(buf, "%d.%d.%d.%d.%05d-%05d\n",
1569 fwver->gen_major, fwver->gen_minor, fwver->ph_major,
1570 fwver->ph_minor, fwver->cust_id, fwver->build_num);
1571 }
1572 static DEVICE_ATTR_RO(version_fw);
1573
1574 /**
1575 * fw_queue_depth_show - SysFS callback for firmware max cmds
1576 * @dev: class device
1577 * @attr: Device attributes
1578 * @buf: Buffer to copy
1579 *
1580 * Return: sysfs_emit() return after copying firmware max commands
1581 */
1582 static ssize_t
fw_queue_depth_show(struct device * dev,struct device_attribute * attr,char * buf)1583 fw_queue_depth_show(struct device *dev, struct device_attribute *attr,
1584 char *buf)
1585 {
1586 struct Scsi_Host *shost = class_to_shost(dev);
1587 struct mpi3mr_ioc *mrioc = shost_priv(shost);
1588
1589 return sysfs_emit(buf, "%d\n", mrioc->facts.max_reqs);
1590 }
1591 static DEVICE_ATTR_RO(fw_queue_depth);
1592
1593 /**
1594 * op_req_q_count_show - SysFS callback for request queue count
1595 * @dev: class device
1596 * @attr: Device attributes
1597 * @buf: Buffer to copy
1598 *
1599 * Return: sysfs_emit() return after copying request queue count
1600 */
1601 static ssize_t
op_req_q_count_show(struct device * dev,struct device_attribute * attr,char * buf)1602 op_req_q_count_show(struct device *dev, struct device_attribute *attr,
1603 char *buf)
1604 {
1605 struct Scsi_Host *shost = class_to_shost(dev);
1606 struct mpi3mr_ioc *mrioc = shost_priv(shost);
1607
1608 return sysfs_emit(buf, "%d\n", mrioc->num_op_req_q);
1609 }
1610 static DEVICE_ATTR_RO(op_req_q_count);
1611
1612 /**
1613 * reply_queue_count_show - SysFS callback for reply queue count
1614 * @dev: class device
1615 * @attr: Device attributes
1616 * @buf: Buffer to copy
1617 *
1618 * Return: sysfs_emit() return after copying reply queue count
1619 */
1620 static ssize_t
reply_queue_count_show(struct device * dev,struct device_attribute * attr,char * buf)1621 reply_queue_count_show(struct device *dev, struct device_attribute *attr,
1622 char *buf)
1623 {
1624 struct Scsi_Host *shost = class_to_shost(dev);
1625 struct mpi3mr_ioc *mrioc = shost_priv(shost);
1626
1627 return sysfs_emit(buf, "%d\n", mrioc->num_op_reply_q);
1628 }
1629
1630 static DEVICE_ATTR_RO(reply_queue_count);
1631
1632 /**
1633 * logging_level_show - Show controller debug level
1634 * @dev: class device
1635 * @attr: Device attributes
1636 * @buf: Buffer to copy
1637 *
1638 * A sysfs 'read/write' shost attribute, to show the current
1639 * debug log level used by the driver for the specific
1640 * controller.
1641 *
1642 * Return: sysfs_emit() return
1643 */
1644 static ssize_t
logging_level_show(struct device * dev,struct device_attribute * attr,char * buf)1645 logging_level_show(struct device *dev,
1646 struct device_attribute *attr, char *buf)
1647
1648 {
1649 struct Scsi_Host *shost = class_to_shost(dev);
1650 struct mpi3mr_ioc *mrioc = shost_priv(shost);
1651
1652 return sysfs_emit(buf, "%08xh\n", mrioc->logging_level);
1653 }
1654
1655 /**
1656 * logging_level_store- Change controller debug level
1657 * @dev: class device
1658 * @attr: Device attributes
1659 * @buf: Buffer to copy
1660 * @count: size of the buffer
1661 *
1662 * A sysfs 'read/write' shost attribute, to change the current
1663 * debug log level used by the driver for the specific
1664 * controller.
1665 *
1666 * Return: strlen() return
1667 */
1668 static ssize_t
logging_level_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1669 logging_level_store(struct device *dev,
1670 struct device_attribute *attr,
1671 const char *buf, size_t count)
1672 {
1673 struct Scsi_Host *shost = class_to_shost(dev);
1674 struct mpi3mr_ioc *mrioc = shost_priv(shost);
1675 int val = 0;
1676
1677 if (kstrtoint(buf, 0, &val) != 0)
1678 return -EINVAL;
1679
1680 mrioc->logging_level = val;
1681 ioc_info(mrioc, "logging_level=%08xh\n", mrioc->logging_level);
1682 return strlen(buf);
1683 }
1684 static DEVICE_ATTR_RW(logging_level);
1685
1686 /**
1687 * adp_state_show() - SysFS callback for adapter state show
1688 * @dev: class device
1689 * @attr: Device attributes
1690 * @buf: Buffer to copy
1691 *
1692 * Return: sysfs_emit() return after copying adapter state
1693 */
1694 static ssize_t
adp_state_show(struct device * dev,struct device_attribute * attr,char * buf)1695 adp_state_show(struct device *dev, struct device_attribute *attr,
1696 char *buf)
1697 {
1698 struct Scsi_Host *shost = class_to_shost(dev);
1699 struct mpi3mr_ioc *mrioc = shost_priv(shost);
1700 enum mpi3mr_iocstate ioc_state;
1701 uint8_t adp_state;
1702
1703 ioc_state = mpi3mr_get_iocstate(mrioc);
1704 if (ioc_state == MRIOC_STATE_UNRECOVERABLE)
1705 adp_state = MPI3MR_BSG_ADPSTATE_UNRECOVERABLE;
1706 else if ((mrioc->reset_in_progress) || (mrioc->stop_bsgs))
1707 adp_state = MPI3MR_BSG_ADPSTATE_IN_RESET;
1708 else if (ioc_state == MRIOC_STATE_FAULT)
1709 adp_state = MPI3MR_BSG_ADPSTATE_FAULT;
1710 else
1711 adp_state = MPI3MR_BSG_ADPSTATE_OPERATIONAL;
1712
1713 return sysfs_emit(buf, "%u\n", adp_state);
1714 }
1715
1716 static DEVICE_ATTR_RO(adp_state);
1717
1718 static struct attribute *mpi3mr_host_attrs[] = {
1719 &dev_attr_version_fw.attr,
1720 &dev_attr_fw_queue_depth.attr,
1721 &dev_attr_op_req_q_count.attr,
1722 &dev_attr_reply_queue_count.attr,
1723 &dev_attr_logging_level.attr,
1724 &dev_attr_adp_state.attr,
1725 NULL,
1726 };
1727
1728 static const struct attribute_group mpi3mr_host_attr_group = {
1729 .attrs = mpi3mr_host_attrs
1730 };
1731
1732 const struct attribute_group *mpi3mr_host_groups[] = {
1733 &mpi3mr_host_attr_group,
1734 NULL,
1735 };
1736
1737
1738 /*
1739 * SCSI Device attributes under sysfs
1740 */
1741
1742 /**
1743 * sas_address_show - SysFS callback for dev SASaddress display
1744 * @dev: class device
1745 * @attr: Device attributes
1746 * @buf: Buffer to copy
1747 *
1748 * Return: sysfs_emit() return after copying SAS address of the
1749 * specific SAS/SATA end device.
1750 */
1751 static ssize_t
sas_address_show(struct device * dev,struct device_attribute * attr,char * buf)1752 sas_address_show(struct device *dev, struct device_attribute *attr,
1753 char *buf)
1754 {
1755 struct scsi_device *sdev = to_scsi_device(dev);
1756 struct mpi3mr_sdev_priv_data *sdev_priv_data;
1757 struct mpi3mr_stgt_priv_data *tgt_priv_data;
1758 struct mpi3mr_tgt_dev *tgtdev;
1759
1760 sdev_priv_data = sdev->hostdata;
1761 if (!sdev_priv_data)
1762 return 0;
1763
1764 tgt_priv_data = sdev_priv_data->tgt_priv_data;
1765 if (!tgt_priv_data)
1766 return 0;
1767 tgtdev = tgt_priv_data->tgt_dev;
1768 if (!tgtdev || tgtdev->dev_type != MPI3_DEVICE_DEVFORM_SAS_SATA)
1769 return 0;
1770 return sysfs_emit(buf, "0x%016llx\n",
1771 (unsigned long long)tgtdev->dev_spec.sas_sata_inf.sas_address);
1772 }
1773
1774 static DEVICE_ATTR_RO(sas_address);
1775
1776 /**
1777 * device_handle_show - SysFS callback for device handle display
1778 * @dev: class device
1779 * @attr: Device attributes
1780 * @buf: Buffer to copy
1781 *
1782 * Return: sysfs_emit() return after copying firmware internal
1783 * device handle of the specific device.
1784 */
1785 static ssize_t
device_handle_show(struct device * dev,struct device_attribute * attr,char * buf)1786 device_handle_show(struct device *dev, struct device_attribute *attr,
1787 char *buf)
1788 {
1789 struct scsi_device *sdev = to_scsi_device(dev);
1790 struct mpi3mr_sdev_priv_data *sdev_priv_data;
1791 struct mpi3mr_stgt_priv_data *tgt_priv_data;
1792 struct mpi3mr_tgt_dev *tgtdev;
1793
1794 sdev_priv_data = sdev->hostdata;
1795 if (!sdev_priv_data)
1796 return 0;
1797
1798 tgt_priv_data = sdev_priv_data->tgt_priv_data;
1799 if (!tgt_priv_data)
1800 return 0;
1801 tgtdev = tgt_priv_data->tgt_dev;
1802 if (!tgtdev)
1803 return 0;
1804 return sysfs_emit(buf, "0x%04x\n", tgtdev->dev_handle);
1805 }
1806
1807 static DEVICE_ATTR_RO(device_handle);
1808
1809 /**
1810 * persistent_id_show - SysFS callback for persisten ID display
1811 * @dev: class device
1812 * @attr: Device attributes
1813 * @buf: Buffer to copy
1814 *
1815 * Return: sysfs_emit() return after copying persistent ID of the
1816 * of the specific device.
1817 */
1818 static ssize_t
persistent_id_show(struct device * dev,struct device_attribute * attr,char * buf)1819 persistent_id_show(struct device *dev, struct device_attribute *attr,
1820 char *buf)
1821 {
1822 struct scsi_device *sdev = to_scsi_device(dev);
1823 struct mpi3mr_sdev_priv_data *sdev_priv_data;
1824 struct mpi3mr_stgt_priv_data *tgt_priv_data;
1825 struct mpi3mr_tgt_dev *tgtdev;
1826
1827 sdev_priv_data = sdev->hostdata;
1828 if (!sdev_priv_data)
1829 return 0;
1830
1831 tgt_priv_data = sdev_priv_data->tgt_priv_data;
1832 if (!tgt_priv_data)
1833 return 0;
1834 tgtdev = tgt_priv_data->tgt_dev;
1835 if (!tgtdev)
1836 return 0;
1837 return sysfs_emit(buf, "%d\n", tgtdev->perst_id);
1838 }
1839 static DEVICE_ATTR_RO(persistent_id);
1840
1841 static struct attribute *mpi3mr_dev_attrs[] = {
1842 &dev_attr_sas_address.attr,
1843 &dev_attr_device_handle.attr,
1844 &dev_attr_persistent_id.attr,
1845 NULL,
1846 };
1847
1848 static const struct attribute_group mpi3mr_dev_attr_group = {
1849 .attrs = mpi3mr_dev_attrs
1850 };
1851
1852 const struct attribute_group *mpi3mr_dev_groups[] = {
1853 &mpi3mr_dev_attr_group,
1854 NULL,
1855 };
1856