1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Synopsys DDR ECC Driver
4 * This driver is based on ppc4xx_edac.c drivers
5 *
6 * Copyright (C) 2012 - 2014 Xilinx, Inc.
7 */
8
9 #include <linux/edac.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/interrupt.h>
13 #include <linux/of.h>
14
15 #include "edac_module.h"
16
17 /* Number of cs_rows needed per memory controller */
18 #define SYNPS_EDAC_NR_CSROWS 1
19
20 /* Number of channels per memory controller */
21 #define SYNPS_EDAC_NR_CHANS 1
22
23 /* Granularity of reported error in bytes */
24 #define SYNPS_EDAC_ERR_GRAIN 1
25
26 #define SYNPS_EDAC_MSG_SIZE 256
27
28 #define SYNPS_EDAC_MOD_STRING "synps_edac"
29 #define SYNPS_EDAC_MOD_VER "1"
30
31 /* Synopsys DDR memory controller registers that are relevant to ECC */
32 #define CTRL_OFST 0x0
33 #define T_ZQ_OFST 0xA4
34
35 /* ECC control register */
36 #define ECC_CTRL_OFST 0xC4
37 /* ECC log register */
38 #define CE_LOG_OFST 0xC8
39 /* ECC address register */
40 #define CE_ADDR_OFST 0xCC
41 /* ECC data[31:0] register */
42 #define CE_DATA_31_0_OFST 0xD0
43
44 /* Uncorrectable error info registers */
45 #define UE_LOG_OFST 0xDC
46 #define UE_ADDR_OFST 0xE0
47 #define UE_DATA_31_0_OFST 0xE4
48
49 #define STAT_OFST 0xF0
50 #define SCRUB_OFST 0xF4
51
52 /* Control register bit field definitions */
53 #define CTRL_BW_MASK 0xC
54 #define CTRL_BW_SHIFT 2
55
56 #define DDRCTL_WDTH_16 1
57 #define DDRCTL_WDTH_32 0
58
59 /* ZQ register bit field definitions */
60 #define T_ZQ_DDRMODE_MASK 0x2
61
62 /* ECC control register bit field definitions */
63 #define ECC_CTRL_CLR_CE_ERR 0x2
64 #define ECC_CTRL_CLR_UE_ERR 0x1
65
66 /* ECC correctable/uncorrectable error log register definitions */
67 #define LOG_VALID 0x1
68 #define CE_LOG_BITPOS_MASK 0xFE
69 #define CE_LOG_BITPOS_SHIFT 1
70
71 /* ECC correctable/uncorrectable error address register definitions */
72 #define ADDR_COL_MASK 0xFFF
73 #define ADDR_ROW_MASK 0xFFFF000
74 #define ADDR_ROW_SHIFT 12
75 #define ADDR_BANK_MASK 0x70000000
76 #define ADDR_BANK_SHIFT 28
77
78 /* ECC statistic register definitions */
79 #define STAT_UECNT_MASK 0xFF
80 #define STAT_CECNT_MASK 0xFF00
81 #define STAT_CECNT_SHIFT 8
82
83 /* ECC scrub register definitions */
84 #define SCRUB_MODE_MASK 0x7
85 #define SCRUB_MODE_SECDED 0x4
86
87 /* DDR ECC Quirks */
88 #define DDR_ECC_INTR_SUPPORT BIT(0)
89 #define DDR_ECC_DATA_POISON_SUPPORT BIT(1)
90 #define DDR_ECC_INTR_SELF_CLEAR BIT(2)
91
92 /* ZynqMP Enhanced DDR memory controller registers that are relevant to ECC */
93 /* ECC Configuration Registers */
94 #define ECC_CFG0_OFST 0x70
95 #define ECC_CFG1_OFST 0x74
96
97 /* ECC Status Register */
98 #define ECC_STAT_OFST 0x78
99
100 /* ECC Clear Register */
101 #define ECC_CLR_OFST 0x7C
102
103 /* ECC Error count Register */
104 #define ECC_ERRCNT_OFST 0x80
105
106 /* ECC Corrected Error Address Register */
107 #define ECC_CEADDR0_OFST 0x84
108 #define ECC_CEADDR1_OFST 0x88
109
110 /* ECC Syndrome Registers */
111 #define ECC_CSYND0_OFST 0x8C
112 #define ECC_CSYND1_OFST 0x90
113 #define ECC_CSYND2_OFST 0x94
114
115 /* ECC Bit Mask0 Address Register */
116 #define ECC_BITMASK0_OFST 0x98
117 #define ECC_BITMASK1_OFST 0x9C
118 #define ECC_BITMASK2_OFST 0xA0
119
120 /* ECC UnCorrected Error Address Register */
121 #define ECC_UEADDR0_OFST 0xA4
122 #define ECC_UEADDR1_OFST 0xA8
123
124 /* ECC Syndrome Registers */
125 #define ECC_UESYND0_OFST 0xAC
126 #define ECC_UESYND1_OFST 0xB0
127 #define ECC_UESYND2_OFST 0xB4
128
129 /* ECC Poison Address Reg */
130 #define ECC_POISON0_OFST 0xB8
131 #define ECC_POISON1_OFST 0xBC
132
133 #define ECC_ADDRMAP0_OFFSET 0x200
134
135 /* Control register bitfield definitions */
136 #define ECC_CTRL_BUSWIDTH_MASK 0x3000
137 #define ECC_CTRL_BUSWIDTH_SHIFT 12
138 #define ECC_CTRL_CLR_CE_ERRCNT BIT(2)
139 #define ECC_CTRL_CLR_UE_ERRCNT BIT(3)
140
141 /* DDR Control Register width definitions */
142 #define DDRCTL_EWDTH_16 2
143 #define DDRCTL_EWDTH_32 1
144 #define DDRCTL_EWDTH_64 0
145
146 /* ECC status register definitions */
147 #define ECC_STAT_UECNT_MASK 0xF0000
148 #define ECC_STAT_UECNT_SHIFT 16
149 #define ECC_STAT_CECNT_MASK 0xF00
150 #define ECC_STAT_CECNT_SHIFT 8
151 #define ECC_STAT_BITNUM_MASK 0x7F
152
153 /* ECC error count register definitions */
154 #define ECC_ERRCNT_UECNT_MASK 0xFFFF0000
155 #define ECC_ERRCNT_UECNT_SHIFT 16
156 #define ECC_ERRCNT_CECNT_MASK 0xFFFF
157
158 /* DDR QOS Interrupt register definitions */
159 #define DDR_QOS_IRQ_STAT_OFST 0x20200
160 #define DDR_QOSUE_MASK 0x4
161 #define DDR_QOSCE_MASK 0x2
162 #define ECC_CE_UE_INTR_MASK 0x6
163 #define DDR_QOS_IRQ_EN_OFST 0x20208
164 #define DDR_QOS_IRQ_DB_OFST 0x2020C
165
166 /* DDR QOS Interrupt register definitions */
167 #define DDR_UE_MASK BIT(9)
168 #define DDR_CE_MASK BIT(8)
169
170 /* ECC Corrected Error Register Mask and Shifts*/
171 #define ECC_CEADDR0_RW_MASK 0x3FFFF
172 #define ECC_CEADDR0_RNK_MASK BIT(24)
173 #define ECC_CEADDR1_BNKGRP_MASK 0x3000000
174 #define ECC_CEADDR1_BNKNR_MASK 0x70000
175 #define ECC_CEADDR1_BLKNR_MASK 0xFFF
176 #define ECC_CEADDR1_BNKGRP_SHIFT 24
177 #define ECC_CEADDR1_BNKNR_SHIFT 16
178
179 /* ECC Poison register shifts */
180 #define ECC_POISON0_RANK_SHIFT 24
181 #define ECC_POISON0_RANK_MASK BIT(24)
182 #define ECC_POISON0_COLUMN_SHIFT 0
183 #define ECC_POISON0_COLUMN_MASK 0xFFF
184 #define ECC_POISON1_BG_SHIFT 28
185 #define ECC_POISON1_BG_MASK 0x30000000
186 #define ECC_POISON1_BANKNR_SHIFT 24
187 #define ECC_POISON1_BANKNR_MASK 0x7000000
188 #define ECC_POISON1_ROW_SHIFT 0
189 #define ECC_POISON1_ROW_MASK 0x3FFFF
190
191 /* DDR Memory type defines */
192 #define MEM_TYPE_DDR3 0x1
193 #define MEM_TYPE_LPDDR3 0x8
194 #define MEM_TYPE_DDR2 0x4
195 #define MEM_TYPE_DDR4 0x10
196 #define MEM_TYPE_LPDDR4 0x20
197
198 /* DDRC Software control register */
199 #define DDRC_SWCTL 0x320
200
201 /* DDRC ECC CE & UE poison mask */
202 #define ECC_CEPOISON_MASK 0x3
203 #define ECC_UEPOISON_MASK 0x1
204
205 /* DDRC Device config masks */
206 #define DDRC_MSTR_CFG_MASK 0xC0000000
207 #define DDRC_MSTR_CFG_SHIFT 30
208 #define DDRC_MSTR_CFG_X4_MASK 0x0
209 #define DDRC_MSTR_CFG_X8_MASK 0x1
210 #define DDRC_MSTR_CFG_X16_MASK 0x2
211 #define DDRC_MSTR_CFG_X32_MASK 0x3
212
213 #define DDR_MAX_ROW_SHIFT 18
214 #define DDR_MAX_COL_SHIFT 14
215 #define DDR_MAX_BANK_SHIFT 3
216 #define DDR_MAX_BANKGRP_SHIFT 2
217
218 #define ROW_MAX_VAL_MASK 0xF
219 #define COL_MAX_VAL_MASK 0xF
220 #define BANK_MAX_VAL_MASK 0x1F
221 #define BANKGRP_MAX_VAL_MASK 0x1F
222 #define RANK_MAX_VAL_MASK 0x1F
223
224 #define ROW_B0_BASE 6
225 #define ROW_B1_BASE 7
226 #define ROW_B2_BASE 8
227 #define ROW_B3_BASE 9
228 #define ROW_B4_BASE 10
229 #define ROW_B5_BASE 11
230 #define ROW_B6_BASE 12
231 #define ROW_B7_BASE 13
232 #define ROW_B8_BASE 14
233 #define ROW_B9_BASE 15
234 #define ROW_B10_BASE 16
235 #define ROW_B11_BASE 17
236 #define ROW_B12_BASE 18
237 #define ROW_B13_BASE 19
238 #define ROW_B14_BASE 20
239 #define ROW_B15_BASE 21
240 #define ROW_B16_BASE 22
241 #define ROW_B17_BASE 23
242
243 #define COL_B2_BASE 2
244 #define COL_B3_BASE 3
245 #define COL_B4_BASE 4
246 #define COL_B5_BASE 5
247 #define COL_B6_BASE 6
248 #define COL_B7_BASE 7
249 #define COL_B8_BASE 8
250 #define COL_B9_BASE 9
251 #define COL_B10_BASE 10
252 #define COL_B11_BASE 11
253 #define COL_B12_BASE 12
254 #define COL_B13_BASE 13
255
256 #define BANK_B0_BASE 2
257 #define BANK_B1_BASE 3
258 #define BANK_B2_BASE 4
259
260 #define BANKGRP_B0_BASE 2
261 #define BANKGRP_B1_BASE 3
262
263 #define RANK_B0_BASE 6
264
265 /**
266 * struct ecc_error_info - ECC error log information.
267 * @row: Row number.
268 * @col: Column number.
269 * @bank: Bank number.
270 * @bitpos: Bit position.
271 * @data: Data causing the error.
272 * @bankgrpnr: Bank group number.
273 * @blknr: Block number.
274 */
275 struct ecc_error_info {
276 u32 row;
277 u32 col;
278 u32 bank;
279 u32 bitpos;
280 u32 data;
281 u32 bankgrpnr;
282 u32 blknr;
283 };
284
285 /**
286 * struct synps_ecc_status - ECC status information to report.
287 * @ce_cnt: Correctable error count.
288 * @ue_cnt: Uncorrectable error count.
289 * @ceinfo: Correctable error log information.
290 * @ueinfo: Uncorrectable error log information.
291 */
292 struct synps_ecc_status {
293 u32 ce_cnt;
294 u32 ue_cnt;
295 struct ecc_error_info ceinfo;
296 struct ecc_error_info ueinfo;
297 };
298
299 /**
300 * struct synps_edac_priv - DDR memory controller private instance data.
301 * @baseaddr: Base address of the DDR controller.
302 * @message: Buffer for framing the event specific info.
303 * @stat: ECC status information.
304 * @p_data: Platform data.
305 * @ce_cnt: Correctable Error count.
306 * @ue_cnt: Uncorrectable Error count.
307 * @poison_addr: Data poison address.
308 * @row_shift: Bit shifts for row bit.
309 * @col_shift: Bit shifts for column bit.
310 * @bank_shift: Bit shifts for bank bit.
311 * @bankgrp_shift: Bit shifts for bank group bit.
312 * @rank_shift: Bit shifts for rank bit.
313 */
314 struct synps_edac_priv {
315 void __iomem *baseaddr;
316 char message[SYNPS_EDAC_MSG_SIZE];
317 struct synps_ecc_status stat;
318 const struct synps_platform_data *p_data;
319 u32 ce_cnt;
320 u32 ue_cnt;
321 #ifdef CONFIG_EDAC_DEBUG
322 ulong poison_addr;
323 u32 row_shift[18];
324 u32 col_shift[14];
325 u32 bank_shift[3];
326 u32 bankgrp_shift[2];
327 u32 rank_shift[1];
328 #endif
329 };
330
331 /**
332 * struct synps_platform_data - synps platform data structure.
333 * @get_error_info: Get EDAC error info.
334 * @get_mtype: Get mtype.
335 * @get_dtype: Get dtype.
336 * @get_ecc_state: Get ECC state.
337 * @quirks: To differentiate IPs.
338 */
339 struct synps_platform_data {
340 int (*get_error_info)(struct synps_edac_priv *priv);
341 enum mem_type (*get_mtype)(const void __iomem *base);
342 enum dev_type (*get_dtype)(const void __iomem *base);
343 bool (*get_ecc_state)(void __iomem *base);
344 int quirks;
345 };
346
347 /**
348 * zynq_get_error_info - Get the current ECC error info.
349 * @priv: DDR memory controller private instance data.
350 *
351 * Return: one if there is no error, otherwise zero.
352 */
zynq_get_error_info(struct synps_edac_priv * priv)353 static int zynq_get_error_info(struct synps_edac_priv *priv)
354 {
355 struct synps_ecc_status *p;
356 u32 regval, clearval = 0;
357 void __iomem *base;
358
359 base = priv->baseaddr;
360 p = &priv->stat;
361
362 regval = readl(base + STAT_OFST);
363 if (!regval)
364 return 1;
365
366 p->ce_cnt = (regval & STAT_CECNT_MASK) >> STAT_CECNT_SHIFT;
367 p->ue_cnt = regval & STAT_UECNT_MASK;
368
369 regval = readl(base + CE_LOG_OFST);
370 if (!(p->ce_cnt && (regval & LOG_VALID)))
371 goto ue_err;
372
373 p->ceinfo.bitpos = (regval & CE_LOG_BITPOS_MASK) >> CE_LOG_BITPOS_SHIFT;
374 regval = readl(base + CE_ADDR_OFST);
375 p->ceinfo.row = (regval & ADDR_ROW_MASK) >> ADDR_ROW_SHIFT;
376 p->ceinfo.col = regval & ADDR_COL_MASK;
377 p->ceinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT;
378 p->ceinfo.data = readl(base + CE_DATA_31_0_OFST);
379 edac_dbg(3, "CE bit position: %d data: %d\n", p->ceinfo.bitpos,
380 p->ceinfo.data);
381 clearval = ECC_CTRL_CLR_CE_ERR;
382
383 ue_err:
384 regval = readl(base + UE_LOG_OFST);
385 if (!(p->ue_cnt && (regval & LOG_VALID)))
386 goto out;
387
388 regval = readl(base + UE_ADDR_OFST);
389 p->ueinfo.row = (regval & ADDR_ROW_MASK) >> ADDR_ROW_SHIFT;
390 p->ueinfo.col = regval & ADDR_COL_MASK;
391 p->ueinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT;
392 p->ueinfo.data = readl(base + UE_DATA_31_0_OFST);
393 clearval |= ECC_CTRL_CLR_UE_ERR;
394
395 out:
396 writel(clearval, base + ECC_CTRL_OFST);
397 writel(0x0, base + ECC_CTRL_OFST);
398
399 return 0;
400 }
401
402 /**
403 * zynqmp_get_error_info - Get the current ECC error info.
404 * @priv: DDR memory controller private instance data.
405 *
406 * Return: one if there is no error otherwise returns zero.
407 */
zynqmp_get_error_info(struct synps_edac_priv * priv)408 static int zynqmp_get_error_info(struct synps_edac_priv *priv)
409 {
410 struct synps_ecc_status *p;
411 u32 regval, clearval = 0;
412 void __iomem *base;
413
414 base = priv->baseaddr;
415 p = &priv->stat;
416
417 regval = readl(base + ECC_ERRCNT_OFST);
418 p->ce_cnt = regval & ECC_ERRCNT_CECNT_MASK;
419 p->ue_cnt = (regval & ECC_ERRCNT_UECNT_MASK) >> ECC_ERRCNT_UECNT_SHIFT;
420 if (!p->ce_cnt)
421 goto ue_err;
422
423 regval = readl(base + ECC_STAT_OFST);
424 if (!regval)
425 return 1;
426
427 p->ceinfo.bitpos = (regval & ECC_STAT_BITNUM_MASK);
428
429 regval = readl(base + ECC_CEADDR0_OFST);
430 p->ceinfo.row = (regval & ECC_CEADDR0_RW_MASK);
431 regval = readl(base + ECC_CEADDR1_OFST);
432 p->ceinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >>
433 ECC_CEADDR1_BNKNR_SHIFT;
434 p->ceinfo.bankgrpnr = (regval & ECC_CEADDR1_BNKGRP_MASK) >>
435 ECC_CEADDR1_BNKGRP_SHIFT;
436 p->ceinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK);
437 p->ceinfo.data = readl(base + ECC_CSYND0_OFST);
438 edac_dbg(2, "ECCCSYN0: 0x%08X ECCCSYN1: 0x%08X ECCCSYN2: 0x%08X\n",
439 readl(base + ECC_CSYND0_OFST), readl(base + ECC_CSYND1_OFST),
440 readl(base + ECC_CSYND2_OFST));
441 ue_err:
442 if (!p->ue_cnt)
443 goto out;
444
445 regval = readl(base + ECC_UEADDR0_OFST);
446 p->ueinfo.row = (regval & ECC_CEADDR0_RW_MASK);
447 regval = readl(base + ECC_UEADDR1_OFST);
448 p->ueinfo.bankgrpnr = (regval & ECC_CEADDR1_BNKGRP_MASK) >>
449 ECC_CEADDR1_BNKGRP_SHIFT;
450 p->ueinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >>
451 ECC_CEADDR1_BNKNR_SHIFT;
452 p->ueinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK);
453 p->ueinfo.data = readl(base + ECC_UESYND0_OFST);
454 out:
455 clearval = ECC_CTRL_CLR_CE_ERR | ECC_CTRL_CLR_CE_ERRCNT;
456 clearval |= ECC_CTRL_CLR_UE_ERR | ECC_CTRL_CLR_UE_ERRCNT;
457 writel(clearval, base + ECC_CLR_OFST);
458 writel(0x0, base + ECC_CLR_OFST);
459
460 return 0;
461 }
462
463 /**
464 * handle_error - Handle Correctable and Uncorrectable errors.
465 * @mci: EDAC memory controller instance.
466 * @p: Synopsys ECC status structure.
467 *
468 * Handles ECC correctable and uncorrectable errors.
469 */
handle_error(struct mem_ctl_info * mci,struct synps_ecc_status * p)470 static void handle_error(struct mem_ctl_info *mci, struct synps_ecc_status *p)
471 {
472 struct synps_edac_priv *priv = mci->pvt_info;
473 struct ecc_error_info *pinf;
474
475 if (p->ce_cnt) {
476 pinf = &p->ceinfo;
477 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
478 snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
479 "DDR ECC error type:%s Row %d Bank %d BankGroup Number %d Block Number %d Bit Position: %d Data: 0x%08x",
480 "CE", pinf->row, pinf->bank,
481 pinf->bankgrpnr, pinf->blknr,
482 pinf->bitpos, pinf->data);
483 } else {
484 snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
485 "DDR ECC error type:%s Row %d Bank %d Col %d Bit Position: %d Data: 0x%08x",
486 "CE", pinf->row, pinf->bank, pinf->col,
487 pinf->bitpos, pinf->data);
488 }
489
490 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
491 p->ce_cnt, 0, 0, 0, 0, 0, -1,
492 priv->message, "");
493 }
494
495 if (p->ue_cnt) {
496 pinf = &p->ueinfo;
497 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
498 snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
499 "DDR ECC error type :%s Row %d Bank %d BankGroup Number %d Block Number %d",
500 "UE", pinf->row, pinf->bank,
501 pinf->bankgrpnr, pinf->blknr);
502 } else {
503 snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
504 "DDR ECC error type :%s Row %d Bank %d Col %d ",
505 "UE", pinf->row, pinf->bank, pinf->col);
506 }
507
508 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
509 p->ue_cnt, 0, 0, 0, 0, 0, -1,
510 priv->message, "");
511 }
512
513 memset(p, 0, sizeof(*p));
514 }
515
enable_intr(struct synps_edac_priv * priv)516 static void enable_intr(struct synps_edac_priv *priv)
517 {
518 /* Enable UE/CE Interrupts */
519 if (priv->p_data->quirks & DDR_ECC_INTR_SELF_CLEAR)
520 writel(DDR_UE_MASK | DDR_CE_MASK,
521 priv->baseaddr + ECC_CLR_OFST);
522 else
523 writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK,
524 priv->baseaddr + DDR_QOS_IRQ_EN_OFST);
525
526 }
527
disable_intr(struct synps_edac_priv * priv)528 static void disable_intr(struct synps_edac_priv *priv)
529 {
530 /* Disable UE/CE Interrupts */
531 if (priv->p_data->quirks & DDR_ECC_INTR_SELF_CLEAR)
532 writel(0x0, priv->baseaddr + ECC_CLR_OFST);
533 else
534 writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK,
535 priv->baseaddr + DDR_QOS_IRQ_DB_OFST);
536 }
537
538 /**
539 * intr_handler - Interrupt Handler for ECC interrupts.
540 * @irq: IRQ number.
541 * @dev_id: Device ID.
542 *
543 * Return: IRQ_NONE, if interrupt not set or IRQ_HANDLED otherwise.
544 */
intr_handler(int irq,void * dev_id)545 static irqreturn_t intr_handler(int irq, void *dev_id)
546 {
547 const struct synps_platform_data *p_data;
548 struct mem_ctl_info *mci = dev_id;
549 struct synps_edac_priv *priv;
550 int status, regval;
551
552 priv = mci->pvt_info;
553 p_data = priv->p_data;
554
555 /*
556 * v3.0 of the controller has the ce/ue bits cleared automatically,
557 * so this condition does not apply.
558 */
559 if (!(priv->p_data->quirks & DDR_ECC_INTR_SELF_CLEAR)) {
560 regval = readl(priv->baseaddr + DDR_QOS_IRQ_STAT_OFST);
561 regval &= (DDR_QOSCE_MASK | DDR_QOSUE_MASK);
562 if (!(regval & ECC_CE_UE_INTR_MASK))
563 return IRQ_NONE;
564 }
565
566 status = p_data->get_error_info(priv);
567 if (status)
568 return IRQ_NONE;
569
570 priv->ce_cnt += priv->stat.ce_cnt;
571 priv->ue_cnt += priv->stat.ue_cnt;
572 handle_error(mci, &priv->stat);
573
574 edac_dbg(3, "Total error count CE %d UE %d\n",
575 priv->ce_cnt, priv->ue_cnt);
576 /* v3.0 of the controller does not have this register */
577 if (!(priv->p_data->quirks & DDR_ECC_INTR_SELF_CLEAR))
578 writel(regval, priv->baseaddr + DDR_QOS_IRQ_STAT_OFST);
579 else
580 enable_intr(priv);
581
582 return IRQ_HANDLED;
583 }
584
585 /**
586 * check_errors - Check controller for ECC errors.
587 * @mci: EDAC memory controller instance.
588 *
589 * Check and post ECC errors. Called by the polling thread.
590 */
check_errors(struct mem_ctl_info * mci)591 static void check_errors(struct mem_ctl_info *mci)
592 {
593 const struct synps_platform_data *p_data;
594 struct synps_edac_priv *priv;
595 int status;
596
597 priv = mci->pvt_info;
598 p_data = priv->p_data;
599
600 status = p_data->get_error_info(priv);
601 if (status)
602 return;
603
604 priv->ce_cnt += priv->stat.ce_cnt;
605 priv->ue_cnt += priv->stat.ue_cnt;
606 handle_error(mci, &priv->stat);
607
608 edac_dbg(3, "Total error count CE %d UE %d\n",
609 priv->ce_cnt, priv->ue_cnt);
610 }
611
612 /**
613 * zynq_get_dtype - Return the controller memory width.
614 * @base: DDR memory controller base address.
615 *
616 * Get the EDAC device type width appropriate for the current controller
617 * configuration.
618 *
619 * Return: a device type width enumeration.
620 */
zynq_get_dtype(const void __iomem * base)621 static enum dev_type zynq_get_dtype(const void __iomem *base)
622 {
623 enum dev_type dt;
624 u32 width;
625
626 width = readl(base + CTRL_OFST);
627 width = (width & CTRL_BW_MASK) >> CTRL_BW_SHIFT;
628
629 switch (width) {
630 case DDRCTL_WDTH_16:
631 dt = DEV_X2;
632 break;
633 case DDRCTL_WDTH_32:
634 dt = DEV_X4;
635 break;
636 default:
637 dt = DEV_UNKNOWN;
638 }
639
640 return dt;
641 }
642
643 /**
644 * zynqmp_get_dtype - Return the controller memory width.
645 * @base: DDR memory controller base address.
646 *
647 * Get the EDAC device type width appropriate for the current controller
648 * configuration.
649 *
650 * Return: a device type width enumeration.
651 */
zynqmp_get_dtype(const void __iomem * base)652 static enum dev_type zynqmp_get_dtype(const void __iomem *base)
653 {
654 enum dev_type dt;
655 u32 width;
656
657 width = readl(base + CTRL_OFST);
658 width = (width & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT;
659 switch (width) {
660 case DDRCTL_EWDTH_16:
661 dt = DEV_X2;
662 break;
663 case DDRCTL_EWDTH_32:
664 dt = DEV_X4;
665 break;
666 case DDRCTL_EWDTH_64:
667 dt = DEV_X8;
668 break;
669 default:
670 dt = DEV_UNKNOWN;
671 }
672
673 return dt;
674 }
675
676 /**
677 * zynq_get_ecc_state - Return the controller ECC enable/disable status.
678 * @base: DDR memory controller base address.
679 *
680 * Get the ECC enable/disable status of the controller.
681 *
682 * Return: true if enabled, otherwise false.
683 */
zynq_get_ecc_state(void __iomem * base)684 static bool zynq_get_ecc_state(void __iomem *base)
685 {
686 enum dev_type dt;
687 u32 ecctype;
688
689 dt = zynq_get_dtype(base);
690 if (dt == DEV_UNKNOWN)
691 return false;
692
693 ecctype = readl(base + SCRUB_OFST) & SCRUB_MODE_MASK;
694 if ((ecctype == SCRUB_MODE_SECDED) && (dt == DEV_X2))
695 return true;
696
697 return false;
698 }
699
700 /**
701 * zynqmp_get_ecc_state - Return the controller ECC enable/disable status.
702 * @base: DDR memory controller base address.
703 *
704 * Get the ECC enable/disable status for the controller.
705 *
706 * Return: a ECC status boolean i.e true/false - enabled/disabled.
707 */
zynqmp_get_ecc_state(void __iomem * base)708 static bool zynqmp_get_ecc_state(void __iomem *base)
709 {
710 enum dev_type dt;
711 u32 ecctype;
712
713 dt = zynqmp_get_dtype(base);
714 if (dt == DEV_UNKNOWN)
715 return false;
716
717 ecctype = readl(base + ECC_CFG0_OFST) & SCRUB_MODE_MASK;
718 if ((ecctype == SCRUB_MODE_SECDED) &&
719 ((dt == DEV_X2) || (dt == DEV_X4) || (dt == DEV_X8)))
720 return true;
721
722 return false;
723 }
724
725 /**
726 * get_memsize - Read the size of the attached memory device.
727 *
728 * Return: the memory size in bytes.
729 */
get_memsize(void)730 static u32 get_memsize(void)
731 {
732 struct sysinfo inf;
733
734 si_meminfo(&inf);
735
736 return inf.totalram * inf.mem_unit;
737 }
738
739 /**
740 * zynq_get_mtype - Return the controller memory type.
741 * @base: Synopsys ECC status structure.
742 *
743 * Get the EDAC memory type appropriate for the current controller
744 * configuration.
745 *
746 * Return: a memory type enumeration.
747 */
zynq_get_mtype(const void __iomem * base)748 static enum mem_type zynq_get_mtype(const void __iomem *base)
749 {
750 enum mem_type mt;
751 u32 memtype;
752
753 memtype = readl(base + T_ZQ_OFST);
754
755 if (memtype & T_ZQ_DDRMODE_MASK)
756 mt = MEM_DDR3;
757 else
758 mt = MEM_DDR2;
759
760 return mt;
761 }
762
763 /**
764 * zynqmp_get_mtype - Returns controller memory type.
765 * @base: Synopsys ECC status structure.
766 *
767 * Get the EDAC memory type appropriate for the current controller
768 * configuration.
769 *
770 * Return: a memory type enumeration.
771 */
zynqmp_get_mtype(const void __iomem * base)772 static enum mem_type zynqmp_get_mtype(const void __iomem *base)
773 {
774 enum mem_type mt;
775 u32 memtype;
776
777 memtype = readl(base + CTRL_OFST);
778
779 if ((memtype & MEM_TYPE_DDR3) || (memtype & MEM_TYPE_LPDDR3))
780 mt = MEM_DDR3;
781 else if (memtype & MEM_TYPE_DDR2)
782 mt = MEM_RDDR2;
783 else if ((memtype & MEM_TYPE_LPDDR4) || (memtype & MEM_TYPE_DDR4))
784 mt = MEM_DDR4;
785 else
786 mt = MEM_EMPTY;
787
788 return mt;
789 }
790
791 /**
792 * init_csrows - Initialize the csrow data.
793 * @mci: EDAC memory controller instance.
794 *
795 * Initialize the chip select rows associated with the EDAC memory
796 * controller instance.
797 */
init_csrows(struct mem_ctl_info * mci)798 static void init_csrows(struct mem_ctl_info *mci)
799 {
800 struct synps_edac_priv *priv = mci->pvt_info;
801 const struct synps_platform_data *p_data;
802 struct csrow_info *csi;
803 struct dimm_info *dimm;
804 u32 size, row;
805 int j;
806
807 p_data = priv->p_data;
808
809 for (row = 0; row < mci->nr_csrows; row++) {
810 csi = mci->csrows[row];
811 size = get_memsize();
812
813 for (j = 0; j < csi->nr_channels; j++) {
814 dimm = csi->channels[j]->dimm;
815 dimm->edac_mode = EDAC_SECDED;
816 dimm->mtype = p_data->get_mtype(priv->baseaddr);
817 dimm->nr_pages = (size >> PAGE_SHIFT) / csi->nr_channels;
818 dimm->grain = SYNPS_EDAC_ERR_GRAIN;
819 dimm->dtype = p_data->get_dtype(priv->baseaddr);
820 }
821 }
822 }
823
824 /**
825 * mc_init - Initialize one driver instance.
826 * @mci: EDAC memory controller instance.
827 * @pdev: platform device.
828 *
829 * Perform initialization of the EDAC memory controller instance and
830 * related driver-private data associated with the memory controller the
831 * instance is bound to.
832 */
mc_init(struct mem_ctl_info * mci,struct platform_device * pdev)833 static void mc_init(struct mem_ctl_info *mci, struct platform_device *pdev)
834 {
835 struct synps_edac_priv *priv;
836
837 mci->pdev = &pdev->dev;
838 priv = mci->pvt_info;
839 platform_set_drvdata(pdev, mci);
840
841 /* Initialize controller capabilities and configuration */
842 mci->mtype_cap = MEM_FLAG_DDR3 | MEM_FLAG_DDR2;
843 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
844 mci->scrub_cap = SCRUB_HW_SRC;
845 mci->scrub_mode = SCRUB_NONE;
846
847 mci->edac_cap = EDAC_FLAG_SECDED;
848 mci->ctl_name = "synps_ddr_controller";
849 mci->dev_name = SYNPS_EDAC_MOD_STRING;
850 mci->mod_name = SYNPS_EDAC_MOD_VER;
851
852 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
853 edac_op_state = EDAC_OPSTATE_INT;
854 } else {
855 edac_op_state = EDAC_OPSTATE_POLL;
856 mci->edac_check = check_errors;
857 }
858
859 mci->ctl_page_to_phys = NULL;
860
861 init_csrows(mci);
862 }
863
setup_irq(struct mem_ctl_info * mci,struct platform_device * pdev)864 static int setup_irq(struct mem_ctl_info *mci,
865 struct platform_device *pdev)
866 {
867 struct synps_edac_priv *priv = mci->pvt_info;
868 int ret, irq;
869
870 irq = platform_get_irq(pdev, 0);
871 if (irq < 0) {
872 edac_printk(KERN_ERR, EDAC_MC,
873 "No IRQ %d in DT\n", irq);
874 return irq;
875 }
876
877 ret = devm_request_irq(&pdev->dev, irq, intr_handler,
878 0, dev_name(&pdev->dev), mci);
879 if (ret < 0) {
880 edac_printk(KERN_ERR, EDAC_MC, "Failed to request IRQ\n");
881 return ret;
882 }
883
884 enable_intr(priv);
885
886 return 0;
887 }
888
889 static const struct synps_platform_data zynq_edac_def = {
890 .get_error_info = zynq_get_error_info,
891 .get_mtype = zynq_get_mtype,
892 .get_dtype = zynq_get_dtype,
893 .get_ecc_state = zynq_get_ecc_state,
894 .quirks = 0,
895 };
896
897 static const struct synps_platform_data zynqmp_edac_def = {
898 .get_error_info = zynqmp_get_error_info,
899 .get_mtype = zynqmp_get_mtype,
900 .get_dtype = zynqmp_get_dtype,
901 .get_ecc_state = zynqmp_get_ecc_state,
902 .quirks = (DDR_ECC_INTR_SUPPORT
903 #ifdef CONFIG_EDAC_DEBUG
904 | DDR_ECC_DATA_POISON_SUPPORT
905 #endif
906 ),
907 };
908
909 static const struct synps_platform_data synopsys_edac_def = {
910 .get_error_info = zynqmp_get_error_info,
911 .get_mtype = zynqmp_get_mtype,
912 .get_dtype = zynqmp_get_dtype,
913 .get_ecc_state = zynqmp_get_ecc_state,
914 .quirks = (DDR_ECC_INTR_SUPPORT | DDR_ECC_INTR_SELF_CLEAR
915 #ifdef CONFIG_EDAC_DEBUG
916 | DDR_ECC_DATA_POISON_SUPPORT
917 #endif
918 ),
919 };
920
921
922 static const struct of_device_id synps_edac_match[] = {
923 {
924 .compatible = "xlnx,zynq-ddrc-a05",
925 .data = (void *)&zynq_edac_def
926 },
927 {
928 .compatible = "xlnx,zynqmp-ddrc-2.40a",
929 .data = (void *)&zynqmp_edac_def
930 },
931 {
932 .compatible = "snps,ddrc-3.80a",
933 .data = (void *)&synopsys_edac_def
934 },
935 {
936 /* end of table */
937 }
938 };
939
940 MODULE_DEVICE_TABLE(of, synps_edac_match);
941
942 #ifdef CONFIG_EDAC_DEBUG
943 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
944
945 /**
946 * ddr_poison_setup - Update poison registers.
947 * @priv: DDR memory controller private instance data.
948 *
949 * Update poison registers as per DDR mapping.
950 * Return: none.
951 */
ddr_poison_setup(struct synps_edac_priv * priv)952 static void ddr_poison_setup(struct synps_edac_priv *priv)
953 {
954 int col = 0, row = 0, bank = 0, bankgrp = 0, rank = 0, regval;
955 int index;
956 ulong hif_addr = 0;
957
958 hif_addr = priv->poison_addr >> 3;
959
960 for (index = 0; index < DDR_MAX_ROW_SHIFT; index++) {
961 if (priv->row_shift[index])
962 row |= (((hif_addr >> priv->row_shift[index]) &
963 BIT(0)) << index);
964 else
965 break;
966 }
967
968 for (index = 0; index < DDR_MAX_COL_SHIFT; index++) {
969 if (priv->col_shift[index] || index < 3)
970 col |= (((hif_addr >> priv->col_shift[index]) &
971 BIT(0)) << index);
972 else
973 break;
974 }
975
976 for (index = 0; index < DDR_MAX_BANK_SHIFT; index++) {
977 if (priv->bank_shift[index])
978 bank |= (((hif_addr >> priv->bank_shift[index]) &
979 BIT(0)) << index);
980 else
981 break;
982 }
983
984 for (index = 0; index < DDR_MAX_BANKGRP_SHIFT; index++) {
985 if (priv->bankgrp_shift[index])
986 bankgrp |= (((hif_addr >> priv->bankgrp_shift[index])
987 & BIT(0)) << index);
988 else
989 break;
990 }
991
992 if (priv->rank_shift[0])
993 rank = (hif_addr >> priv->rank_shift[0]) & BIT(0);
994
995 regval = (rank << ECC_POISON0_RANK_SHIFT) & ECC_POISON0_RANK_MASK;
996 regval |= (col << ECC_POISON0_COLUMN_SHIFT) & ECC_POISON0_COLUMN_MASK;
997 writel(regval, priv->baseaddr + ECC_POISON0_OFST);
998
999 regval = (bankgrp << ECC_POISON1_BG_SHIFT) & ECC_POISON1_BG_MASK;
1000 regval |= (bank << ECC_POISON1_BANKNR_SHIFT) & ECC_POISON1_BANKNR_MASK;
1001 regval |= (row << ECC_POISON1_ROW_SHIFT) & ECC_POISON1_ROW_MASK;
1002 writel(regval, priv->baseaddr + ECC_POISON1_OFST);
1003 }
1004
inject_data_error_show(struct device * dev,struct device_attribute * mattr,char * data)1005 static ssize_t inject_data_error_show(struct device *dev,
1006 struct device_attribute *mattr,
1007 char *data)
1008 {
1009 struct mem_ctl_info *mci = to_mci(dev);
1010 struct synps_edac_priv *priv = mci->pvt_info;
1011
1012 return sprintf(data, "Poison0 Addr: 0x%08x\n\rPoison1 Addr: 0x%08x\n\r"
1013 "Error injection Address: 0x%lx\n\r",
1014 readl(priv->baseaddr + ECC_POISON0_OFST),
1015 readl(priv->baseaddr + ECC_POISON1_OFST),
1016 priv->poison_addr);
1017 }
1018
inject_data_error_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)1019 static ssize_t inject_data_error_store(struct device *dev,
1020 struct device_attribute *mattr,
1021 const char *data, size_t count)
1022 {
1023 struct mem_ctl_info *mci = to_mci(dev);
1024 struct synps_edac_priv *priv = mci->pvt_info;
1025
1026 if (kstrtoul(data, 0, &priv->poison_addr))
1027 return -EINVAL;
1028
1029 ddr_poison_setup(priv);
1030
1031 return count;
1032 }
1033
inject_data_poison_show(struct device * dev,struct device_attribute * mattr,char * data)1034 static ssize_t inject_data_poison_show(struct device *dev,
1035 struct device_attribute *mattr,
1036 char *data)
1037 {
1038 struct mem_ctl_info *mci = to_mci(dev);
1039 struct synps_edac_priv *priv = mci->pvt_info;
1040
1041 return sprintf(data, "Data Poisoning: %s\n\r",
1042 (((readl(priv->baseaddr + ECC_CFG1_OFST)) & 0x3) == 0x3)
1043 ? ("Correctable Error") : ("UnCorrectable Error"));
1044 }
1045
inject_data_poison_store(struct device * dev,struct device_attribute * mattr,const char * data,size_t count)1046 static ssize_t inject_data_poison_store(struct device *dev,
1047 struct device_attribute *mattr,
1048 const char *data, size_t count)
1049 {
1050 struct mem_ctl_info *mci = to_mci(dev);
1051 struct synps_edac_priv *priv = mci->pvt_info;
1052
1053 writel(0, priv->baseaddr + DDRC_SWCTL);
1054 if (strncmp(data, "CE", 2) == 0)
1055 writel(ECC_CEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST);
1056 else
1057 writel(ECC_UEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST);
1058 writel(1, priv->baseaddr + DDRC_SWCTL);
1059
1060 return count;
1061 }
1062
1063 static DEVICE_ATTR_RW(inject_data_error);
1064 static DEVICE_ATTR_RW(inject_data_poison);
1065
edac_create_sysfs_attributes(struct mem_ctl_info * mci)1066 static int edac_create_sysfs_attributes(struct mem_ctl_info *mci)
1067 {
1068 int rc;
1069
1070 rc = device_create_file(&mci->dev, &dev_attr_inject_data_error);
1071 if (rc < 0)
1072 return rc;
1073 rc = device_create_file(&mci->dev, &dev_attr_inject_data_poison);
1074 if (rc < 0)
1075 return rc;
1076 return 0;
1077 }
1078
edac_remove_sysfs_attributes(struct mem_ctl_info * mci)1079 static void edac_remove_sysfs_attributes(struct mem_ctl_info *mci)
1080 {
1081 device_remove_file(&mci->dev, &dev_attr_inject_data_error);
1082 device_remove_file(&mci->dev, &dev_attr_inject_data_poison);
1083 }
1084
setup_row_address_map(struct synps_edac_priv * priv,u32 * addrmap)1085 static void setup_row_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1086 {
1087 u32 addrmap_row_b2_10;
1088 int index;
1089
1090 priv->row_shift[0] = (addrmap[5] & ROW_MAX_VAL_MASK) + ROW_B0_BASE;
1091 priv->row_shift[1] = ((addrmap[5] >> 8) &
1092 ROW_MAX_VAL_MASK) + ROW_B1_BASE;
1093
1094 addrmap_row_b2_10 = (addrmap[5] >> 16) & ROW_MAX_VAL_MASK;
1095 if (addrmap_row_b2_10 != ROW_MAX_VAL_MASK) {
1096 for (index = 2; index < 11; index++)
1097 priv->row_shift[index] = addrmap_row_b2_10 +
1098 index + ROW_B0_BASE;
1099
1100 } else {
1101 priv->row_shift[2] = (addrmap[9] &
1102 ROW_MAX_VAL_MASK) + ROW_B2_BASE;
1103 priv->row_shift[3] = ((addrmap[9] >> 8) &
1104 ROW_MAX_VAL_MASK) + ROW_B3_BASE;
1105 priv->row_shift[4] = ((addrmap[9] >> 16) &
1106 ROW_MAX_VAL_MASK) + ROW_B4_BASE;
1107 priv->row_shift[5] = ((addrmap[9] >> 24) &
1108 ROW_MAX_VAL_MASK) + ROW_B5_BASE;
1109 priv->row_shift[6] = (addrmap[10] &
1110 ROW_MAX_VAL_MASK) + ROW_B6_BASE;
1111 priv->row_shift[7] = ((addrmap[10] >> 8) &
1112 ROW_MAX_VAL_MASK) + ROW_B7_BASE;
1113 priv->row_shift[8] = ((addrmap[10] >> 16) &
1114 ROW_MAX_VAL_MASK) + ROW_B8_BASE;
1115 priv->row_shift[9] = ((addrmap[10] >> 24) &
1116 ROW_MAX_VAL_MASK) + ROW_B9_BASE;
1117 priv->row_shift[10] = (addrmap[11] &
1118 ROW_MAX_VAL_MASK) + ROW_B10_BASE;
1119 }
1120
1121 priv->row_shift[11] = (((addrmap[5] >> 24) & ROW_MAX_VAL_MASK) ==
1122 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[5] >> 24) &
1123 ROW_MAX_VAL_MASK) + ROW_B11_BASE);
1124 priv->row_shift[12] = ((addrmap[6] & ROW_MAX_VAL_MASK) ==
1125 ROW_MAX_VAL_MASK) ? 0 : ((addrmap[6] &
1126 ROW_MAX_VAL_MASK) + ROW_B12_BASE);
1127 priv->row_shift[13] = (((addrmap[6] >> 8) & ROW_MAX_VAL_MASK) ==
1128 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 8) &
1129 ROW_MAX_VAL_MASK) + ROW_B13_BASE);
1130 priv->row_shift[14] = (((addrmap[6] >> 16) & ROW_MAX_VAL_MASK) ==
1131 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 16) &
1132 ROW_MAX_VAL_MASK) + ROW_B14_BASE);
1133 priv->row_shift[15] = (((addrmap[6] >> 24) & ROW_MAX_VAL_MASK) ==
1134 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 24) &
1135 ROW_MAX_VAL_MASK) + ROW_B15_BASE);
1136 priv->row_shift[16] = ((addrmap[7] & ROW_MAX_VAL_MASK) ==
1137 ROW_MAX_VAL_MASK) ? 0 : ((addrmap[7] &
1138 ROW_MAX_VAL_MASK) + ROW_B16_BASE);
1139 priv->row_shift[17] = (((addrmap[7] >> 8) & ROW_MAX_VAL_MASK) ==
1140 ROW_MAX_VAL_MASK) ? 0 : (((addrmap[7] >> 8) &
1141 ROW_MAX_VAL_MASK) + ROW_B17_BASE);
1142 }
1143
setup_column_address_map(struct synps_edac_priv * priv,u32 * addrmap)1144 static void setup_column_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1145 {
1146 u32 width, memtype;
1147 int index;
1148
1149 memtype = readl(priv->baseaddr + CTRL_OFST);
1150 width = (memtype & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT;
1151
1152 priv->col_shift[0] = 0;
1153 priv->col_shift[1] = 1;
1154 priv->col_shift[2] = (addrmap[2] & COL_MAX_VAL_MASK) + COL_B2_BASE;
1155 priv->col_shift[3] = ((addrmap[2] >> 8) &
1156 COL_MAX_VAL_MASK) + COL_B3_BASE;
1157 priv->col_shift[4] = (((addrmap[2] >> 16) & COL_MAX_VAL_MASK) ==
1158 COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 16) &
1159 COL_MAX_VAL_MASK) + COL_B4_BASE);
1160 priv->col_shift[5] = (((addrmap[2] >> 24) & COL_MAX_VAL_MASK) ==
1161 COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 24) &
1162 COL_MAX_VAL_MASK) + COL_B5_BASE);
1163 priv->col_shift[6] = ((addrmap[3] & COL_MAX_VAL_MASK) ==
1164 COL_MAX_VAL_MASK) ? 0 : ((addrmap[3] &
1165 COL_MAX_VAL_MASK) + COL_B6_BASE);
1166 priv->col_shift[7] = (((addrmap[3] >> 8) & COL_MAX_VAL_MASK) ==
1167 COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 8) &
1168 COL_MAX_VAL_MASK) + COL_B7_BASE);
1169 priv->col_shift[8] = (((addrmap[3] >> 16) & COL_MAX_VAL_MASK) ==
1170 COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 16) &
1171 COL_MAX_VAL_MASK) + COL_B8_BASE);
1172 priv->col_shift[9] = (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) ==
1173 COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 24) &
1174 COL_MAX_VAL_MASK) + COL_B9_BASE);
1175 if (width == DDRCTL_EWDTH_64) {
1176 if (memtype & MEM_TYPE_LPDDR3) {
1177 priv->col_shift[10] = ((addrmap[4] &
1178 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1179 ((addrmap[4] & COL_MAX_VAL_MASK) +
1180 COL_B10_BASE);
1181 priv->col_shift[11] = (((addrmap[4] >> 8) &
1182 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1183 (((addrmap[4] >> 8) & COL_MAX_VAL_MASK) +
1184 COL_B11_BASE);
1185 } else {
1186 priv->col_shift[11] = ((addrmap[4] &
1187 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1188 ((addrmap[4] & COL_MAX_VAL_MASK) +
1189 COL_B10_BASE);
1190 priv->col_shift[13] = (((addrmap[4] >> 8) &
1191 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1192 (((addrmap[4] >> 8) & COL_MAX_VAL_MASK) +
1193 COL_B11_BASE);
1194 }
1195 } else if (width == DDRCTL_EWDTH_32) {
1196 if (memtype & MEM_TYPE_LPDDR3) {
1197 priv->col_shift[10] = (((addrmap[3] >> 24) &
1198 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1199 (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1200 COL_B9_BASE);
1201 priv->col_shift[11] = ((addrmap[4] &
1202 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1203 ((addrmap[4] & COL_MAX_VAL_MASK) +
1204 COL_B10_BASE);
1205 } else {
1206 priv->col_shift[11] = (((addrmap[3] >> 24) &
1207 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1208 (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1209 COL_B9_BASE);
1210 priv->col_shift[13] = ((addrmap[4] &
1211 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1212 ((addrmap[4] & COL_MAX_VAL_MASK) +
1213 COL_B10_BASE);
1214 }
1215 } else {
1216 if (memtype & MEM_TYPE_LPDDR3) {
1217 priv->col_shift[10] = (((addrmap[3] >> 16) &
1218 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1219 (((addrmap[3] >> 16) & COL_MAX_VAL_MASK) +
1220 COL_B8_BASE);
1221 priv->col_shift[11] = (((addrmap[3] >> 24) &
1222 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1223 (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1224 COL_B9_BASE);
1225 priv->col_shift[13] = ((addrmap[4] &
1226 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1227 ((addrmap[4] & COL_MAX_VAL_MASK) +
1228 COL_B10_BASE);
1229 } else {
1230 priv->col_shift[11] = (((addrmap[3] >> 16) &
1231 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1232 (((addrmap[3] >> 16) & COL_MAX_VAL_MASK) +
1233 COL_B8_BASE);
1234 priv->col_shift[13] = (((addrmap[3] >> 24) &
1235 COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
1236 (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
1237 COL_B9_BASE);
1238 }
1239 }
1240
1241 if (width) {
1242 for (index = 9; index > width; index--) {
1243 priv->col_shift[index] = priv->col_shift[index - width];
1244 priv->col_shift[index - width] = 0;
1245 }
1246 }
1247
1248 }
1249
setup_bank_address_map(struct synps_edac_priv * priv,u32 * addrmap)1250 static void setup_bank_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1251 {
1252 priv->bank_shift[0] = (addrmap[1] & BANK_MAX_VAL_MASK) + BANK_B0_BASE;
1253 priv->bank_shift[1] = ((addrmap[1] >> 8) &
1254 BANK_MAX_VAL_MASK) + BANK_B1_BASE;
1255 priv->bank_shift[2] = (((addrmap[1] >> 16) &
1256 BANK_MAX_VAL_MASK) == BANK_MAX_VAL_MASK) ? 0 :
1257 (((addrmap[1] >> 16) & BANK_MAX_VAL_MASK) +
1258 BANK_B2_BASE);
1259
1260 }
1261
setup_bg_address_map(struct synps_edac_priv * priv,u32 * addrmap)1262 static void setup_bg_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1263 {
1264 priv->bankgrp_shift[0] = (addrmap[8] &
1265 BANKGRP_MAX_VAL_MASK) + BANKGRP_B0_BASE;
1266 priv->bankgrp_shift[1] = (((addrmap[8] >> 8) & BANKGRP_MAX_VAL_MASK) ==
1267 BANKGRP_MAX_VAL_MASK) ? 0 : (((addrmap[8] >> 8)
1268 & BANKGRP_MAX_VAL_MASK) + BANKGRP_B1_BASE);
1269
1270 }
1271
setup_rank_address_map(struct synps_edac_priv * priv,u32 * addrmap)1272 static void setup_rank_address_map(struct synps_edac_priv *priv, u32 *addrmap)
1273 {
1274 priv->rank_shift[0] = ((addrmap[0] & RANK_MAX_VAL_MASK) ==
1275 RANK_MAX_VAL_MASK) ? 0 : ((addrmap[0] &
1276 RANK_MAX_VAL_MASK) + RANK_B0_BASE);
1277 }
1278
1279 /**
1280 * setup_address_map - Set Address Map by querying ADDRMAP registers.
1281 * @priv: DDR memory controller private instance data.
1282 *
1283 * Set Address Map by querying ADDRMAP registers.
1284 *
1285 * Return: none.
1286 */
setup_address_map(struct synps_edac_priv * priv)1287 static void setup_address_map(struct synps_edac_priv *priv)
1288 {
1289 u32 addrmap[12];
1290 int index;
1291
1292 for (index = 0; index < 12; index++) {
1293 u32 addrmap_offset;
1294
1295 addrmap_offset = ECC_ADDRMAP0_OFFSET + (index * 4);
1296 addrmap[index] = readl(priv->baseaddr + addrmap_offset);
1297 }
1298
1299 setup_row_address_map(priv, addrmap);
1300
1301 setup_column_address_map(priv, addrmap);
1302
1303 setup_bank_address_map(priv, addrmap);
1304
1305 setup_bg_address_map(priv, addrmap);
1306
1307 setup_rank_address_map(priv, addrmap);
1308 }
1309 #endif /* CONFIG_EDAC_DEBUG */
1310
1311 /**
1312 * mc_probe - Check controller and bind driver.
1313 * @pdev: platform device.
1314 *
1315 * Probe a specific controller instance for binding with the driver.
1316 *
1317 * Return: 0 if the controller instance was successfully bound to the
1318 * driver; otherwise, < 0 on error.
1319 */
mc_probe(struct platform_device * pdev)1320 static int mc_probe(struct platform_device *pdev)
1321 {
1322 const struct synps_platform_data *p_data;
1323 struct edac_mc_layer layers[2];
1324 struct synps_edac_priv *priv;
1325 struct mem_ctl_info *mci;
1326 void __iomem *baseaddr;
1327 struct resource *res;
1328 int rc;
1329
1330 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1331 baseaddr = devm_ioremap_resource(&pdev->dev, res);
1332 if (IS_ERR(baseaddr))
1333 return PTR_ERR(baseaddr);
1334
1335 p_data = of_device_get_match_data(&pdev->dev);
1336 if (!p_data)
1337 return -ENODEV;
1338
1339 if (!p_data->get_ecc_state(baseaddr)) {
1340 edac_printk(KERN_INFO, EDAC_MC, "ECC not enabled\n");
1341 return -ENXIO;
1342 }
1343
1344 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
1345 layers[0].size = SYNPS_EDAC_NR_CSROWS;
1346 layers[0].is_virt_csrow = true;
1347 layers[1].type = EDAC_MC_LAYER_CHANNEL;
1348 layers[1].size = SYNPS_EDAC_NR_CHANS;
1349 layers[1].is_virt_csrow = false;
1350
1351 mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
1352 sizeof(struct synps_edac_priv));
1353 if (!mci) {
1354 edac_printk(KERN_ERR, EDAC_MC,
1355 "Failed memory allocation for mc instance\n");
1356 return -ENOMEM;
1357 }
1358
1359 priv = mci->pvt_info;
1360 priv->baseaddr = baseaddr;
1361 priv->p_data = p_data;
1362
1363 mc_init(mci, pdev);
1364
1365 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
1366 rc = setup_irq(mci, pdev);
1367 if (rc)
1368 goto free_edac_mc;
1369 }
1370
1371 rc = edac_mc_add_mc(mci);
1372 if (rc) {
1373 edac_printk(KERN_ERR, EDAC_MC,
1374 "Failed to register with EDAC core\n");
1375 goto free_edac_mc;
1376 }
1377
1378 #ifdef CONFIG_EDAC_DEBUG
1379 if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT) {
1380 rc = edac_create_sysfs_attributes(mci);
1381 if (rc) {
1382 edac_printk(KERN_ERR, EDAC_MC,
1383 "Failed to create sysfs entries\n");
1384 goto free_edac_mc;
1385 }
1386 }
1387
1388 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT)
1389 setup_address_map(priv);
1390 #endif
1391
1392 /*
1393 * Start capturing the correctable and uncorrectable errors. A write of
1394 * 0 starts the counters.
1395 */
1396 if (!(priv->p_data->quirks & DDR_ECC_INTR_SUPPORT))
1397 writel(0x0, baseaddr + ECC_CTRL_OFST);
1398
1399 return rc;
1400
1401 free_edac_mc:
1402 edac_mc_free(mci);
1403
1404 return rc;
1405 }
1406
1407 /**
1408 * mc_remove - Unbind driver from controller.
1409 * @pdev: Platform device.
1410 *
1411 * Return: Unconditionally 0
1412 */
mc_remove(struct platform_device * pdev)1413 static int mc_remove(struct platform_device *pdev)
1414 {
1415 struct mem_ctl_info *mci = platform_get_drvdata(pdev);
1416 struct synps_edac_priv *priv = mci->pvt_info;
1417
1418 if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT)
1419 disable_intr(priv);
1420
1421 #ifdef CONFIG_EDAC_DEBUG
1422 if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT)
1423 edac_remove_sysfs_attributes(mci);
1424 #endif
1425
1426 edac_mc_del_mc(&pdev->dev);
1427 edac_mc_free(mci);
1428
1429 return 0;
1430 }
1431
1432 static struct platform_driver synps_edac_mc_driver = {
1433 .driver = {
1434 .name = "synopsys-edac",
1435 .of_match_table = synps_edac_match,
1436 },
1437 .probe = mc_probe,
1438 .remove = mc_remove,
1439 };
1440
1441 module_platform_driver(synps_edac_mc_driver);
1442
1443 MODULE_AUTHOR("Xilinx Inc");
1444 MODULE_DESCRIPTION("Synopsys DDR ECC driver");
1445 MODULE_LICENSE("GPL v2");
1446