1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * workqueue.h --- work queue handling for Linux.
4  */
5 
6 #ifndef _LINUX_WORKQUEUE_H
7 #define _LINUX_WORKQUEUE_H
8 
9 #include <linux/timer.h>
10 #include <linux/linkage.h>
11 #include <linux/bitops.h>
12 #include <linux/lockdep.h>
13 #include <linux/threads.h>
14 #include <linux/atomic.h>
15 #include <linux/cpumask.h>
16 #include <linux/rcupdate.h>
17 
18 struct workqueue_struct;
19 
20 struct work_struct;
21 typedef void (*work_func_t)(struct work_struct *work);
22 void delayed_work_timer_fn(struct timer_list *t);
23 
24 /*
25  * The first word is the work queue pointer and the flags rolled into
26  * one
27  */
28 #define work_data_bits(work) ((unsigned long *)(&(work)->data))
29 
30 enum {
31 	WORK_STRUCT_PENDING_BIT	= 0,	/* work item is pending execution */
32 	WORK_STRUCT_INACTIVE_BIT= 1,	/* work item is inactive */
33 	WORK_STRUCT_PWQ_BIT	= 2,	/* data points to pwq */
34 	WORK_STRUCT_LINKED_BIT	= 3,	/* next work is linked to this one */
35 #ifdef CONFIG_DEBUG_OBJECTS_WORK
36 	WORK_STRUCT_STATIC_BIT	= 4,	/* static initializer (debugobjects) */
37 	WORK_STRUCT_COLOR_SHIFT	= 5,	/* color for workqueue flushing */
38 #else
39 	WORK_STRUCT_COLOR_SHIFT	= 4,	/* color for workqueue flushing */
40 #endif
41 
42 	WORK_STRUCT_COLOR_BITS	= 4,
43 
44 	WORK_STRUCT_PENDING	= 1 << WORK_STRUCT_PENDING_BIT,
45 	WORK_STRUCT_INACTIVE	= 1 << WORK_STRUCT_INACTIVE_BIT,
46 	WORK_STRUCT_PWQ		= 1 << WORK_STRUCT_PWQ_BIT,
47 	WORK_STRUCT_LINKED	= 1 << WORK_STRUCT_LINKED_BIT,
48 #ifdef CONFIG_DEBUG_OBJECTS_WORK
49 	WORK_STRUCT_STATIC	= 1 << WORK_STRUCT_STATIC_BIT,
50 #else
51 	WORK_STRUCT_STATIC	= 0,
52 #endif
53 
54 	WORK_NR_COLORS		= (1 << WORK_STRUCT_COLOR_BITS),
55 
56 	/* not bound to any CPU, prefer the local CPU */
57 	WORK_CPU_UNBOUND	= NR_CPUS,
58 
59 	/*
60 	 * Reserve 8 bits off of pwq pointer w/ debugobjects turned off.
61 	 * This makes pwqs aligned to 256 bytes and allows 16 workqueue
62 	 * flush colors.
63 	 */
64 	WORK_STRUCT_FLAG_BITS	= WORK_STRUCT_COLOR_SHIFT +
65 				  WORK_STRUCT_COLOR_BITS,
66 
67 	/* data contains off-queue information when !WORK_STRUCT_PWQ */
68 	WORK_OFFQ_FLAG_BASE	= WORK_STRUCT_COLOR_SHIFT,
69 
70 	__WORK_OFFQ_CANCELING	= WORK_OFFQ_FLAG_BASE,
71 
72 	/*
73 	 * When a work item is off queue, its high bits point to the last
74 	 * pool it was on.  Cap at 31 bits and use the highest number to
75 	 * indicate that no pool is associated.
76 	 */
77 	WORK_OFFQ_FLAG_BITS	= 1,
78 	WORK_OFFQ_POOL_SHIFT	= WORK_OFFQ_FLAG_BASE + WORK_OFFQ_FLAG_BITS,
79 	WORK_OFFQ_LEFT		= BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT,
80 	WORK_OFFQ_POOL_BITS	= WORK_OFFQ_LEFT <= 31 ? WORK_OFFQ_LEFT : 31,
81 
82 	/* bit mask for work_busy() return values */
83 	WORK_BUSY_PENDING	= 1 << 0,
84 	WORK_BUSY_RUNNING	= 1 << 1,
85 
86 	/* maximum string length for set_worker_desc() */
87 	WORKER_DESC_LEN		= 24,
88 };
89 
90 /* Convenience constants - of type 'unsigned long', not 'enum'! */
91 #define WORK_OFFQ_CANCELING	(1ul << __WORK_OFFQ_CANCELING)
92 #define WORK_OFFQ_POOL_NONE	((1ul << WORK_OFFQ_POOL_BITS) - 1)
93 #define WORK_STRUCT_NO_POOL	(WORK_OFFQ_POOL_NONE << WORK_OFFQ_POOL_SHIFT)
94 
95 #define WORK_STRUCT_FLAG_MASK    ((1ul << WORK_STRUCT_FLAG_BITS) - 1)
96 #define WORK_STRUCT_WQ_DATA_MASK (~WORK_STRUCT_FLAG_MASK)
97 
98 struct work_struct {
99 	atomic_long_t data;
100 	struct list_head entry;
101 	work_func_t func;
102 #ifdef CONFIG_LOCKDEP
103 	struct lockdep_map lockdep_map;
104 #endif
105 };
106 
107 #define WORK_DATA_INIT()	ATOMIC_LONG_INIT((unsigned long)WORK_STRUCT_NO_POOL)
108 #define WORK_DATA_STATIC_INIT()	\
109 	ATOMIC_LONG_INIT((unsigned long)(WORK_STRUCT_NO_POOL | WORK_STRUCT_STATIC))
110 
111 struct delayed_work {
112 	struct work_struct work;
113 	struct timer_list timer;
114 
115 	/* target workqueue and CPU ->timer uses to queue ->work */
116 	struct workqueue_struct *wq;
117 	int cpu;
118 };
119 
120 struct rcu_work {
121 	struct work_struct work;
122 	struct rcu_head rcu;
123 
124 	/* target workqueue ->rcu uses to queue ->work */
125 	struct workqueue_struct *wq;
126 };
127 
128 enum wq_affn_scope {
129 	WQ_AFFN_DFL,			/* use system default */
130 	WQ_AFFN_CPU,			/* one pod per CPU */
131 	WQ_AFFN_SMT,			/* one pod poer SMT */
132 	WQ_AFFN_CACHE,			/* one pod per LLC */
133 	WQ_AFFN_NUMA,			/* one pod per NUMA node */
134 	WQ_AFFN_SYSTEM,			/* one pod across the whole system */
135 
136 	WQ_AFFN_NR_TYPES,
137 };
138 
139 /**
140  * struct workqueue_attrs - A struct for workqueue attributes.
141  *
142  * This can be used to change attributes of an unbound workqueue.
143  */
144 struct workqueue_attrs {
145 	/**
146 	 * @nice: nice level
147 	 */
148 	int nice;
149 
150 	/**
151 	 * @cpumask: allowed CPUs
152 	 *
153 	 * Work items in this workqueue are affine to these CPUs and not allowed
154 	 * to execute on other CPUs. A pool serving a workqueue must have the
155 	 * same @cpumask.
156 	 */
157 	cpumask_var_t cpumask;
158 
159 	/**
160 	 * @__pod_cpumask: internal attribute used to create per-pod pools
161 	 *
162 	 * Internal use only.
163 	 *
164 	 * Per-pod unbound worker pools are used to improve locality. Always a
165 	 * subset of ->cpumask. A workqueue can be associated with multiple
166 	 * worker pools with disjoint @__pod_cpumask's. Whether the enforcement
167 	 * of a pool's @__pod_cpumask is strict depends on @affn_strict.
168 	 */
169 	cpumask_var_t __pod_cpumask;
170 
171 	/**
172 	 * @affn_strict: affinity scope is strict
173 	 *
174 	 * If clear, workqueue will make a best-effort attempt at starting the
175 	 * worker inside @__pod_cpumask but the scheduler is free to migrate it
176 	 * outside.
177 	 *
178 	 * If set, workers are only allowed to run inside @__pod_cpumask.
179 	 */
180 	bool affn_strict;
181 
182 	/*
183 	 * Below fields aren't properties of a worker_pool. They only modify how
184 	 * :c:func:`apply_workqueue_attrs` select pools and thus don't
185 	 * participate in pool hash calculations or equality comparisons.
186 	 */
187 
188 	/**
189 	 * @affn_scope: unbound CPU affinity scope
190 	 *
191 	 * CPU pods are used to improve execution locality of unbound work
192 	 * items. There are multiple pod types, one for each wq_affn_scope, and
193 	 * every CPU in the system belongs to one pod in every pod type. CPUs
194 	 * that belong to the same pod share the worker pool. For example,
195 	 * selecting %WQ_AFFN_NUMA makes the workqueue use a separate worker
196 	 * pool for each NUMA node.
197 	 */
198 	enum wq_affn_scope affn_scope;
199 
200 	/**
201 	 * @ordered: work items must be executed one by one in queueing order
202 	 */
203 	bool ordered;
204 };
205 
to_delayed_work(struct work_struct * work)206 static inline struct delayed_work *to_delayed_work(struct work_struct *work)
207 {
208 	return container_of(work, struct delayed_work, work);
209 }
210 
to_rcu_work(struct work_struct * work)211 static inline struct rcu_work *to_rcu_work(struct work_struct *work)
212 {
213 	return container_of(work, struct rcu_work, work);
214 }
215 
216 struct execute_work {
217 	struct work_struct work;
218 };
219 
220 #ifdef CONFIG_LOCKDEP
221 /*
222  * NB: because we have to copy the lockdep_map, setting _key
223  * here is required, otherwise it could get initialised to the
224  * copy of the lockdep_map!
225  */
226 #define __WORK_INIT_LOCKDEP_MAP(n, k) \
227 	.lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k),
228 #else
229 #define __WORK_INIT_LOCKDEP_MAP(n, k)
230 #endif
231 
232 #define __WORK_INITIALIZER(n, f) {					\
233 	.data = WORK_DATA_STATIC_INIT(),				\
234 	.entry	= { &(n).entry, &(n).entry },				\
235 	.func = (f),							\
236 	__WORK_INIT_LOCKDEP_MAP(#n, &(n))				\
237 	}
238 
239 #define __DELAYED_WORK_INITIALIZER(n, f, tflags) {			\
240 	.work = __WORK_INITIALIZER((n).work, (f)),			\
241 	.timer = __TIMER_INITIALIZER(delayed_work_timer_fn,\
242 				     (tflags) | TIMER_IRQSAFE),		\
243 	}
244 
245 #define DECLARE_WORK(n, f)						\
246 	struct work_struct n = __WORK_INITIALIZER(n, f)
247 
248 #define DECLARE_DELAYED_WORK(n, f)					\
249 	struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0)
250 
251 #define DECLARE_DEFERRABLE_WORK(n, f)					\
252 	struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE)
253 
254 #ifdef CONFIG_DEBUG_OBJECTS_WORK
255 extern void __init_work(struct work_struct *work, int onstack);
256 extern void destroy_work_on_stack(struct work_struct *work);
257 extern void destroy_delayed_work_on_stack(struct delayed_work *work);
work_static(struct work_struct * work)258 static inline unsigned int work_static(struct work_struct *work)
259 {
260 	return *work_data_bits(work) & WORK_STRUCT_STATIC;
261 }
262 #else
__init_work(struct work_struct * work,int onstack)263 static inline void __init_work(struct work_struct *work, int onstack) { }
destroy_work_on_stack(struct work_struct * work)264 static inline void destroy_work_on_stack(struct work_struct *work) { }
destroy_delayed_work_on_stack(struct delayed_work * work)265 static inline void destroy_delayed_work_on_stack(struct delayed_work *work) { }
work_static(struct work_struct * work)266 static inline unsigned int work_static(struct work_struct *work) { return 0; }
267 #endif
268 
269 /*
270  * initialize all of a work item in one go
271  *
272  * NOTE! No point in using "atomic_long_set()": using a direct
273  * assignment of the work data initializer allows the compiler
274  * to generate better code.
275  */
276 #ifdef CONFIG_LOCKDEP
277 #define __INIT_WORK(_work, _func, _onstack)				\
278 	do {								\
279 		static struct lock_class_key __key;			\
280 									\
281 		__init_work((_work), _onstack);				\
282 		(_work)->data = (atomic_long_t) WORK_DATA_INIT();	\
283 		lockdep_init_map(&(_work)->lockdep_map, "(work_completion)"#_work, &__key, 0); \
284 		INIT_LIST_HEAD(&(_work)->entry);			\
285 		(_work)->func = (_func);				\
286 	} while (0)
287 #else
288 #define __INIT_WORK(_work, _func, _onstack)				\
289 	do {								\
290 		__init_work((_work), _onstack);				\
291 		(_work)->data = (atomic_long_t) WORK_DATA_INIT();	\
292 		INIT_LIST_HEAD(&(_work)->entry);			\
293 		(_work)->func = (_func);				\
294 	} while (0)
295 #endif
296 
297 #define INIT_WORK(_work, _func)						\
298 	__INIT_WORK((_work), (_func), 0)
299 
300 #define INIT_WORK_ONSTACK(_work, _func)					\
301 	__INIT_WORK((_work), (_func), 1)
302 
303 #define __INIT_DELAYED_WORK(_work, _func, _tflags)			\
304 	do {								\
305 		INIT_WORK(&(_work)->work, (_func));			\
306 		__init_timer(&(_work)->timer,				\
307 			     delayed_work_timer_fn,			\
308 			     (_tflags) | TIMER_IRQSAFE);		\
309 	} while (0)
310 
311 #define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags)		\
312 	do {								\
313 		INIT_WORK_ONSTACK(&(_work)->work, (_func));		\
314 		__init_timer_on_stack(&(_work)->timer,			\
315 				      delayed_work_timer_fn,		\
316 				      (_tflags) | TIMER_IRQSAFE);	\
317 	} while (0)
318 
319 #define INIT_DELAYED_WORK(_work, _func)					\
320 	__INIT_DELAYED_WORK(_work, _func, 0)
321 
322 #define INIT_DELAYED_WORK_ONSTACK(_work, _func)				\
323 	__INIT_DELAYED_WORK_ONSTACK(_work, _func, 0)
324 
325 #define INIT_DEFERRABLE_WORK(_work, _func)				\
326 	__INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE)
327 
328 #define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func)			\
329 	__INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE)
330 
331 #define INIT_RCU_WORK(_work, _func)					\
332 	INIT_WORK(&(_work)->work, (_func))
333 
334 #define INIT_RCU_WORK_ONSTACK(_work, _func)				\
335 	INIT_WORK_ONSTACK(&(_work)->work, (_func))
336 
337 /**
338  * work_pending - Find out whether a work item is currently pending
339  * @work: The work item in question
340  */
341 #define work_pending(work) \
342 	test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))
343 
344 /**
345  * delayed_work_pending - Find out whether a delayable work item is currently
346  * pending
347  * @w: The work item in question
348  */
349 #define delayed_work_pending(w) \
350 	work_pending(&(w)->work)
351 
352 /*
353  * Workqueue flags and constants.  For details, please refer to
354  * Documentation/core-api/workqueue.rst.
355  */
356 enum {
357 	WQ_UNBOUND		= 1 << 1, /* not bound to any cpu */
358 	WQ_FREEZABLE		= 1 << 2, /* freeze during suspend */
359 	WQ_MEM_RECLAIM		= 1 << 3, /* may be used for memory reclaim */
360 	WQ_HIGHPRI		= 1 << 4, /* high priority */
361 	WQ_CPU_INTENSIVE	= 1 << 5, /* cpu intensive workqueue */
362 	WQ_SYSFS		= 1 << 6, /* visible in sysfs, see workqueue_sysfs_register() */
363 
364 	/*
365 	 * Per-cpu workqueues are generally preferred because they tend to
366 	 * show better performance thanks to cache locality.  Per-cpu
367 	 * workqueues exclude the scheduler from choosing the CPU to
368 	 * execute the worker threads, which has an unfortunate side effect
369 	 * of increasing power consumption.
370 	 *
371 	 * The scheduler considers a CPU idle if it doesn't have any task
372 	 * to execute and tries to keep idle cores idle to conserve power;
373 	 * however, for example, a per-cpu work item scheduled from an
374 	 * interrupt handler on an idle CPU will force the scheduler to
375 	 * execute the work item on that CPU breaking the idleness, which in
376 	 * turn may lead to more scheduling choices which are sub-optimal
377 	 * in terms of power consumption.
378 	 *
379 	 * Workqueues marked with WQ_POWER_EFFICIENT are per-cpu by default
380 	 * but become unbound if workqueue.power_efficient kernel param is
381 	 * specified.  Per-cpu workqueues which are identified to
382 	 * contribute significantly to power-consumption are identified and
383 	 * marked with this flag and enabling the power_efficient mode
384 	 * leads to noticeable power saving at the cost of small
385 	 * performance disadvantage.
386 	 *
387 	 * http://thread.gmane.org/gmane.linux.kernel/1480396
388 	 */
389 	WQ_POWER_EFFICIENT	= 1 << 7,
390 
391 	__WQ_DESTROYING		= 1 << 15, /* internal: workqueue is destroying */
392 	__WQ_DRAINING		= 1 << 16, /* internal: workqueue is draining */
393 	__WQ_ORDERED		= 1 << 17, /* internal: workqueue is ordered */
394 	__WQ_LEGACY		= 1 << 18, /* internal: create*_workqueue() */
395 	__WQ_ORDERED_EXPLICIT	= 1 << 19, /* internal: alloc_ordered_workqueue() */
396 
397 	WQ_MAX_ACTIVE		= 512,	  /* I like 512, better ideas? */
398 	WQ_UNBOUND_MAX_ACTIVE	= WQ_MAX_ACTIVE,
399 	WQ_DFL_ACTIVE		= WQ_MAX_ACTIVE / 2,
400 };
401 
402 /*
403  * System-wide workqueues which are always present.
404  *
405  * system_wq is the one used by schedule[_delayed]_work[_on]().
406  * Multi-CPU multi-threaded.  There are users which expect relatively
407  * short queue flush time.  Don't queue works which can run for too
408  * long.
409  *
410  * system_highpri_wq is similar to system_wq but for work items which
411  * require WQ_HIGHPRI.
412  *
413  * system_long_wq is similar to system_wq but may host long running
414  * works.  Queue flushing might take relatively long.
415  *
416  * system_unbound_wq is unbound workqueue.  Workers are not bound to
417  * any specific CPU, not concurrency managed, and all queued works are
418  * executed immediately as long as max_active limit is not reached and
419  * resources are available.
420  *
421  * system_freezable_wq is equivalent to system_wq except that it's
422  * freezable.
423  *
424  * *_power_efficient_wq are inclined towards saving power and converted
425  * into WQ_UNBOUND variants if 'wq_power_efficient' is enabled; otherwise,
426  * they are same as their non-power-efficient counterparts - e.g.
427  * system_power_efficient_wq is identical to system_wq if
428  * 'wq_power_efficient' is disabled.  See WQ_POWER_EFFICIENT for more info.
429  */
430 extern struct workqueue_struct *system_wq;
431 extern struct workqueue_struct *system_highpri_wq;
432 extern struct workqueue_struct *system_long_wq;
433 extern struct workqueue_struct *system_unbound_wq;
434 extern struct workqueue_struct *system_freezable_wq;
435 extern struct workqueue_struct *system_power_efficient_wq;
436 extern struct workqueue_struct *system_freezable_power_efficient_wq;
437 
438 /**
439  * alloc_workqueue - allocate a workqueue
440  * @fmt: printf format for the name of the workqueue
441  * @flags: WQ_* flags
442  * @max_active: max in-flight work items per CPU, 0 for default
443  * remaining args: args for @fmt
444  *
445  * Allocate a workqueue with the specified parameters.  For detailed
446  * information on WQ_* flags, please refer to
447  * Documentation/core-api/workqueue.rst.
448  *
449  * RETURNS:
450  * Pointer to the allocated workqueue on success, %NULL on failure.
451  */
452 __printf(1, 4) struct workqueue_struct *
453 alloc_workqueue(const char *fmt, unsigned int flags, int max_active, ...);
454 
455 /**
456  * alloc_ordered_workqueue - allocate an ordered workqueue
457  * @fmt: printf format for the name of the workqueue
458  * @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful)
459  * @args: args for @fmt
460  *
461  * Allocate an ordered workqueue.  An ordered workqueue executes at
462  * most one work item at any given time in the queued order.  They are
463  * implemented as unbound workqueues with @max_active of one.
464  *
465  * RETURNS:
466  * Pointer to the allocated workqueue on success, %NULL on failure.
467  */
468 #define alloc_ordered_workqueue(fmt, flags, args...)			\
469 	alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED |		\
470 			__WQ_ORDERED_EXPLICIT | (flags), 1, ##args)
471 
472 #define create_workqueue(name)						\
473 	alloc_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, 1, (name))
474 #define create_freezable_workqueue(name)				\
475 	alloc_workqueue("%s", __WQ_LEGACY | WQ_FREEZABLE | WQ_UNBOUND |	\
476 			WQ_MEM_RECLAIM, 1, (name))
477 #define create_singlethread_workqueue(name)				\
478 	alloc_ordered_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, name)
479 
480 extern void destroy_workqueue(struct workqueue_struct *wq);
481 
482 struct workqueue_attrs *alloc_workqueue_attrs(void);
483 void free_workqueue_attrs(struct workqueue_attrs *attrs);
484 int apply_workqueue_attrs(struct workqueue_struct *wq,
485 			  const struct workqueue_attrs *attrs);
486 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask);
487 
488 extern bool queue_work_on(int cpu, struct workqueue_struct *wq,
489 			struct work_struct *work);
490 extern bool queue_work_node(int node, struct workqueue_struct *wq,
491 			    struct work_struct *work);
492 extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
493 			struct delayed_work *work, unsigned long delay);
494 extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
495 			struct delayed_work *dwork, unsigned long delay);
496 extern bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork);
497 
498 extern void __flush_workqueue(struct workqueue_struct *wq);
499 extern void drain_workqueue(struct workqueue_struct *wq);
500 
501 extern int schedule_on_each_cpu(work_func_t func);
502 
503 int execute_in_process_context(work_func_t fn, struct execute_work *);
504 
505 extern bool flush_work(struct work_struct *work);
506 extern bool cancel_work(struct work_struct *work);
507 extern bool cancel_work_sync(struct work_struct *work);
508 
509 extern bool flush_delayed_work(struct delayed_work *dwork);
510 extern bool cancel_delayed_work(struct delayed_work *dwork);
511 extern bool cancel_delayed_work_sync(struct delayed_work *dwork);
512 
513 extern bool flush_rcu_work(struct rcu_work *rwork);
514 
515 extern void workqueue_set_max_active(struct workqueue_struct *wq,
516 				     int max_active);
517 extern struct work_struct *current_work(void);
518 extern bool current_is_workqueue_rescuer(void);
519 extern bool workqueue_congested(int cpu, struct workqueue_struct *wq);
520 extern unsigned int work_busy(struct work_struct *work);
521 extern __printf(1, 2) void set_worker_desc(const char *fmt, ...);
522 extern void print_worker_info(const char *log_lvl, struct task_struct *task);
523 extern void show_all_workqueues(void);
524 extern void show_freezable_workqueues(void);
525 extern void show_one_workqueue(struct workqueue_struct *wq);
526 extern void wq_worker_comm(char *buf, size_t size, struct task_struct *task);
527 
528 /**
529  * queue_work - queue work on a workqueue
530  * @wq: workqueue to use
531  * @work: work to queue
532  *
533  * Returns %false if @work was already on a queue, %true otherwise.
534  *
535  * We queue the work to the CPU on which it was submitted, but if the CPU dies
536  * it can be processed by another CPU.
537  *
538  * Memory-ordering properties:  If it returns %true, guarantees that all stores
539  * preceding the call to queue_work() in the program order will be visible from
540  * the CPU which will execute @work by the time such work executes, e.g.,
541  *
542  * { x is initially 0 }
543  *
544  *   CPU0				CPU1
545  *
546  *   WRITE_ONCE(x, 1);			[ @work is being executed ]
547  *   r0 = queue_work(wq, work);		  r1 = READ_ONCE(x);
548  *
549  * Forbids: r0 == true && r1 == 0
550  */
queue_work(struct workqueue_struct * wq,struct work_struct * work)551 static inline bool queue_work(struct workqueue_struct *wq,
552 			      struct work_struct *work)
553 {
554 	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
555 }
556 
557 /**
558  * queue_delayed_work - queue work on a workqueue after delay
559  * @wq: workqueue to use
560  * @dwork: delayable work to queue
561  * @delay: number of jiffies to wait before queueing
562  *
563  * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
564  */
queue_delayed_work(struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)565 static inline bool queue_delayed_work(struct workqueue_struct *wq,
566 				      struct delayed_work *dwork,
567 				      unsigned long delay)
568 {
569 	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
570 }
571 
572 /**
573  * mod_delayed_work - modify delay of or queue a delayed work
574  * @wq: workqueue to use
575  * @dwork: work to queue
576  * @delay: number of jiffies to wait before queueing
577  *
578  * mod_delayed_work_on() on local CPU.
579  */
mod_delayed_work(struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)580 static inline bool mod_delayed_work(struct workqueue_struct *wq,
581 				    struct delayed_work *dwork,
582 				    unsigned long delay)
583 {
584 	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
585 }
586 
587 /**
588  * schedule_work_on - put work task on a specific cpu
589  * @cpu: cpu to put the work task on
590  * @work: job to be done
591  *
592  * This puts a job on a specific cpu
593  */
schedule_work_on(int cpu,struct work_struct * work)594 static inline bool schedule_work_on(int cpu, struct work_struct *work)
595 {
596 	return queue_work_on(cpu, system_wq, work);
597 }
598 
599 /**
600  * schedule_work - put work task in global workqueue
601  * @work: job to be done
602  *
603  * Returns %false if @work was already on the kernel-global workqueue and
604  * %true otherwise.
605  *
606  * This puts a job in the kernel-global workqueue if it was not already
607  * queued and leaves it in the same position on the kernel-global
608  * workqueue otherwise.
609  *
610  * Shares the same memory-ordering properties of queue_work(), cf. the
611  * DocBook header of queue_work().
612  */
schedule_work(struct work_struct * work)613 static inline bool schedule_work(struct work_struct *work)
614 {
615 	return queue_work(system_wq, work);
616 }
617 
618 /*
619  * Detect attempt to flush system-wide workqueues at compile time when possible.
620  * Warn attempt to flush system-wide workqueues at runtime.
621  *
622  * See https://lkml.kernel.org/r/49925af7-78a8-a3dd-bce6-cfc02e1a9236@I-love.SAKURA.ne.jp
623  * for reasons and steps for converting system-wide workqueues into local workqueues.
624  */
625 extern void __warn_flushing_systemwide_wq(void)
626 	__compiletime_warning("Please avoid flushing system-wide workqueues.");
627 
628 /* Please stop using this function, for this function will be removed in near future. */
629 #define flush_scheduled_work()						\
630 ({									\
631 	__warn_flushing_systemwide_wq();				\
632 	__flush_workqueue(system_wq);					\
633 })
634 
635 #define flush_workqueue(wq)						\
636 ({									\
637 	struct workqueue_struct *_wq = (wq);				\
638 									\
639 	if ((__builtin_constant_p(_wq == system_wq) &&			\
640 	     _wq == system_wq) ||					\
641 	    (__builtin_constant_p(_wq == system_highpri_wq) &&		\
642 	     _wq == system_highpri_wq) ||				\
643 	    (__builtin_constant_p(_wq == system_long_wq) &&		\
644 	     _wq == system_long_wq) ||					\
645 	    (__builtin_constant_p(_wq == system_unbound_wq) &&		\
646 	     _wq == system_unbound_wq) ||				\
647 	    (__builtin_constant_p(_wq == system_freezable_wq) &&	\
648 	     _wq == system_freezable_wq) ||				\
649 	    (__builtin_constant_p(_wq == system_power_efficient_wq) &&	\
650 	     _wq == system_power_efficient_wq) ||			\
651 	    (__builtin_constant_p(_wq == system_freezable_power_efficient_wq) && \
652 	     _wq == system_freezable_power_efficient_wq))		\
653 		__warn_flushing_systemwide_wq();			\
654 	__flush_workqueue(_wq);						\
655 })
656 
657 /**
658  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
659  * @cpu: cpu to use
660  * @dwork: job to be done
661  * @delay: number of jiffies to wait
662  *
663  * After waiting for a given time this puts a job in the kernel-global
664  * workqueue on the specified CPU.
665  */
schedule_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)666 static inline bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
667 					    unsigned long delay)
668 {
669 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
670 }
671 
672 /**
673  * schedule_delayed_work - put work task in global workqueue after delay
674  * @dwork: job to be done
675  * @delay: number of jiffies to wait or 0 for immediate execution
676  *
677  * After waiting for a given time this puts a job in the kernel-global
678  * workqueue.
679  */
schedule_delayed_work(struct delayed_work * dwork,unsigned long delay)680 static inline bool schedule_delayed_work(struct delayed_work *dwork,
681 					 unsigned long delay)
682 {
683 	return queue_delayed_work(system_wq, dwork, delay);
684 }
685 
686 #ifndef CONFIG_SMP
work_on_cpu(int cpu,long (* fn)(void *),void * arg)687 static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
688 {
689 	return fn(arg);
690 }
work_on_cpu_safe(int cpu,long (* fn)(void *),void * arg)691 static inline long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
692 {
693 	return fn(arg);
694 }
695 #else
696 long work_on_cpu(int cpu, long (*fn)(void *), void *arg);
697 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg);
698 #endif /* CONFIG_SMP */
699 
700 #ifdef CONFIG_FREEZER
701 extern void freeze_workqueues_begin(void);
702 extern bool freeze_workqueues_busy(void);
703 extern void thaw_workqueues(void);
704 #endif /* CONFIG_FREEZER */
705 
706 #ifdef CONFIG_SYSFS
707 int workqueue_sysfs_register(struct workqueue_struct *wq);
708 #else	/* CONFIG_SYSFS */
workqueue_sysfs_register(struct workqueue_struct * wq)709 static inline int workqueue_sysfs_register(struct workqueue_struct *wq)
710 { return 0; }
711 #endif	/* CONFIG_SYSFS */
712 
713 #ifdef CONFIG_WQ_WATCHDOG
714 void wq_watchdog_touch(int cpu);
715 #else	/* CONFIG_WQ_WATCHDOG */
wq_watchdog_touch(int cpu)716 static inline void wq_watchdog_touch(int cpu) { }
717 #endif	/* CONFIG_WQ_WATCHDOG */
718 
719 #ifdef CONFIG_SMP
720 int workqueue_prepare_cpu(unsigned int cpu);
721 int workqueue_online_cpu(unsigned int cpu);
722 int workqueue_offline_cpu(unsigned int cpu);
723 #endif
724 
725 void __init workqueue_init_early(void);
726 void __init workqueue_init(void);
727 void __init workqueue_init_topology(void);
728 
729 #endif
730