1  /*
2   * This file is subject to the terms and conditions of the GNU General Public
3   * License.  See the file "COPYING" in the main directory of this archive
4   * for more details.
5   *
6   * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7   * Copyright (C) 1995, 1996 Paul M. Antoine
8   * Copyright (C) 1998 Ulf Carlsson
9   * Copyright (C) 1999 Silicon Graphics, Inc.
10   * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11   * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12   * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13   * Copyright (C) 2014, Imagination Technologies Ltd.
14   */
15  #include <linux/bitops.h>
16  #include <linux/bug.h>
17  #include <linux/compiler.h>
18  #include <linux/context_tracking.h>
19  #include <linux/cpu_pm.h>
20  #include <linux/kexec.h>
21  #include <linux/init.h>
22  #include <linux/kernel.h>
23  #include <linux/module.h>
24  #include <linux/extable.h>
25  #include <linux/mm.h>
26  #include <linux/sched/mm.h>
27  #include <linux/sched/debug.h>
28  #include <linux/smp.h>
29  #include <linux/spinlock.h>
30  #include <linux/kallsyms.h>
31  #include <linux/memblock.h>
32  #include <linux/interrupt.h>
33  #include <linux/ptrace.h>
34  #include <linux/kgdb.h>
35  #include <linux/kdebug.h>
36  #include <linux/kprobes.h>
37  #include <linux/notifier.h>
38  #include <linux/kdb.h>
39  #include <linux/irq.h>
40  #include <linux/perf_event.h>
41  
42  #include <asm/addrspace.h>
43  #include <asm/bootinfo.h>
44  #include <asm/branch.h>
45  #include <asm/break.h>
46  #include <asm/cop2.h>
47  #include <asm/cpu.h>
48  #include <asm/cpu-type.h>
49  #include <asm/dsp.h>
50  #include <asm/fpu.h>
51  #include <asm/fpu_emulator.h>
52  #include <asm/idle.h>
53  #include <asm/isa-rev.h>
54  #include <asm/mips-cps.h>
55  #include <asm/mips-r2-to-r6-emul.h>
56  #include <asm/mipsregs.h>
57  #include <asm/mipsmtregs.h>
58  #include <asm/module.h>
59  #include <asm/msa.h>
60  #include <asm/ptrace.h>
61  #include <asm/sections.h>
62  #include <asm/siginfo.h>
63  #include <asm/tlbdebug.h>
64  #include <asm/traps.h>
65  #include <linux/uaccess.h>
66  #include <asm/watch.h>
67  #include <asm/mmu_context.h>
68  #include <asm/types.h>
69  #include <asm/stacktrace.h>
70  #include <asm/tlbex.h>
71  #include <asm/uasm.h>
72  
73  #include <asm/mach-loongson64/cpucfg-emul.h>
74  
75  #include "access-helper.h"
76  
77  extern void check_wait(void);
78  extern asmlinkage void rollback_handle_int(void);
79  extern asmlinkage void handle_int(void);
80  extern asmlinkage void handle_adel(void);
81  extern asmlinkage void handle_ades(void);
82  extern asmlinkage void handle_ibe(void);
83  extern asmlinkage void handle_dbe(void);
84  extern asmlinkage void handle_sys(void);
85  extern asmlinkage void handle_bp(void);
86  extern asmlinkage void handle_ri(void);
87  extern asmlinkage void handle_ri_rdhwr_tlbp(void);
88  extern asmlinkage void handle_ri_rdhwr(void);
89  extern asmlinkage void handle_cpu(void);
90  extern asmlinkage void handle_ov(void);
91  extern asmlinkage void handle_tr(void);
92  extern asmlinkage void handle_msa_fpe(void);
93  extern asmlinkage void handle_fpe(void);
94  extern asmlinkage void handle_ftlb(void);
95  extern asmlinkage void handle_gsexc(void);
96  extern asmlinkage void handle_msa(void);
97  extern asmlinkage void handle_mdmx(void);
98  extern asmlinkage void handle_watch(void);
99  extern asmlinkage void handle_mt(void);
100  extern asmlinkage void handle_dsp(void);
101  extern asmlinkage void handle_mcheck(void);
102  extern asmlinkage void handle_reserved(void);
103  extern void tlb_do_page_fault_0(void);
104  
105  void (*board_be_init)(void);
106  static int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
107  void (*board_nmi_handler_setup)(void);
108  void (*board_ejtag_handler_setup)(void);
109  void (*board_bind_eic_interrupt)(int irq, int regset);
110  void (*board_ebase_setup)(void);
111  void(*board_cache_error_setup)(void);
112  
mips_set_be_handler(int (* handler)(struct pt_regs * regs,int is_fixup))113  void mips_set_be_handler(int (*handler)(struct pt_regs *regs, int is_fixup))
114  {
115  	board_be_handler = handler;
116  }
117  EXPORT_SYMBOL_GPL(mips_set_be_handler);
118  
show_raw_backtrace(unsigned long reg29,const char * loglvl,bool user)119  static void show_raw_backtrace(unsigned long reg29, const char *loglvl,
120  			       bool user)
121  {
122  	unsigned long *sp = (unsigned long *)(reg29 & ~3);
123  	unsigned long addr;
124  
125  	printk("%sCall Trace:", loglvl);
126  #ifdef CONFIG_KALLSYMS
127  	printk("%s\n", loglvl);
128  #endif
129  	while (!kstack_end(sp)) {
130  		if (__get_addr(&addr, sp++, user)) {
131  			printk("%s (Bad stack address)", loglvl);
132  			break;
133  		}
134  		if (__kernel_text_address(addr))
135  			print_ip_sym(loglvl, addr);
136  	}
137  	printk("%s\n", loglvl);
138  }
139  
140  #ifdef CONFIG_KALLSYMS
141  int raw_show_trace;
set_raw_show_trace(char * str)142  static int __init set_raw_show_trace(char *str)
143  {
144  	raw_show_trace = 1;
145  	return 1;
146  }
147  __setup("raw_show_trace", set_raw_show_trace);
148  #endif
149  
show_backtrace(struct task_struct * task,const struct pt_regs * regs,const char * loglvl,bool user)150  static void show_backtrace(struct task_struct *task, const struct pt_regs *regs,
151  			   const char *loglvl, bool user)
152  {
153  	unsigned long sp = regs->regs[29];
154  	unsigned long ra = regs->regs[31];
155  	unsigned long pc = regs->cp0_epc;
156  
157  	if (!task)
158  		task = current;
159  
160  	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
161  		show_raw_backtrace(sp, loglvl, user);
162  		return;
163  	}
164  	printk("%sCall Trace:\n", loglvl);
165  	do {
166  		print_ip_sym(loglvl, pc);
167  		pc = unwind_stack(task, &sp, pc, &ra);
168  	} while (pc);
169  	pr_cont("\n");
170  }
171  
172  /*
173   * This routine abuses get_user()/put_user() to reference pointers
174   * with at least a bit of error checking ...
175   */
show_stacktrace(struct task_struct * task,const struct pt_regs * regs,const char * loglvl,bool user)176  static void show_stacktrace(struct task_struct *task,
177  	const struct pt_regs *regs, const char *loglvl, bool user)
178  {
179  	const int field = 2 * sizeof(unsigned long);
180  	unsigned long stackdata;
181  	int i;
182  	unsigned long *sp = (unsigned long *)regs->regs[29];
183  
184  	printk("%sStack :", loglvl);
185  	i = 0;
186  	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
187  		if (i && ((i % (64 / field)) == 0)) {
188  			pr_cont("\n");
189  			printk("%s       ", loglvl);
190  		}
191  		if (i > 39) {
192  			pr_cont(" ...");
193  			break;
194  		}
195  
196  		if (__get_addr(&stackdata, sp++, user)) {
197  			pr_cont(" (Bad stack address)");
198  			break;
199  		}
200  
201  		pr_cont(" %0*lx", field, stackdata);
202  		i++;
203  	}
204  	pr_cont("\n");
205  	show_backtrace(task, regs, loglvl, user);
206  }
207  
show_stack(struct task_struct * task,unsigned long * sp,const char * loglvl)208  void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
209  {
210  	struct pt_regs regs;
211  
212  	regs.cp0_status = KSU_KERNEL;
213  	if (sp) {
214  		regs.regs[29] = (unsigned long)sp;
215  		regs.regs[31] = 0;
216  		regs.cp0_epc = 0;
217  	} else {
218  		if (task && task != current) {
219  			regs.regs[29] = task->thread.reg29;
220  			regs.regs[31] = 0;
221  			regs.cp0_epc = task->thread.reg31;
222  		} else {
223  			prepare_frametrace(&regs);
224  		}
225  	}
226  	show_stacktrace(task, &regs, loglvl, false);
227  }
228  
show_code(void * pc,bool user)229  static void show_code(void *pc, bool user)
230  {
231  	long i;
232  	unsigned short *pc16 = NULL;
233  
234  	printk("Code:");
235  
236  	if ((unsigned long)pc & 1)
237  		pc16 = (u16 *)((unsigned long)pc & ~1);
238  
239  	for(i = -3 ; i < 6 ; i++) {
240  		if (pc16) {
241  			u16 insn16;
242  
243  			if (__get_inst16(&insn16, pc16 + i, user))
244  				goto bad_address;
245  
246  			pr_cont("%c%04x%c", (i?' ':'<'), insn16, (i?' ':'>'));
247  		} else {
248  			u32 insn32;
249  
250  			if (__get_inst32(&insn32, (u32 *)pc + i, user))
251  				goto bad_address;
252  
253  			pr_cont("%c%08x%c", (i?' ':'<'), insn32, (i?' ':'>'));
254  		}
255  	}
256  	pr_cont("\n");
257  	return;
258  
259  bad_address:
260  	pr_cont(" (Bad address in epc)\n\n");
261  }
262  
__show_regs(const struct pt_regs * regs)263  static void __show_regs(const struct pt_regs *regs)
264  {
265  	const int field = 2 * sizeof(unsigned long);
266  	unsigned int cause = regs->cp0_cause;
267  	unsigned int exccode;
268  	int i;
269  
270  	show_regs_print_info(KERN_DEFAULT);
271  
272  	/*
273  	 * Saved main processor registers
274  	 */
275  	for (i = 0; i < 32; ) {
276  		if ((i % 4) == 0)
277  			printk("$%2d   :", i);
278  		if (i == 0)
279  			pr_cont(" %0*lx", field, 0UL);
280  		else if (i == 26 || i == 27)
281  			pr_cont(" %*s", field, "");
282  		else
283  			pr_cont(" %0*lx", field, regs->regs[i]);
284  
285  		i++;
286  		if ((i % 4) == 0)
287  			pr_cont("\n");
288  	}
289  
290  #ifdef CONFIG_CPU_HAS_SMARTMIPS
291  	printk("Acx    : %0*lx\n", field, regs->acx);
292  #endif
293  	if (MIPS_ISA_REV < 6) {
294  		printk("Hi    : %0*lx\n", field, regs->hi);
295  		printk("Lo    : %0*lx\n", field, regs->lo);
296  	}
297  
298  	/*
299  	 * Saved cp0 registers
300  	 */
301  	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
302  	       (void *) regs->cp0_epc);
303  	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
304  	       (void *) regs->regs[31]);
305  
306  	printk("Status: %08x	", (uint32_t) regs->cp0_status);
307  
308  	if (cpu_has_3kex) {
309  		if (regs->cp0_status & ST0_KUO)
310  			pr_cont("KUo ");
311  		if (regs->cp0_status & ST0_IEO)
312  			pr_cont("IEo ");
313  		if (regs->cp0_status & ST0_KUP)
314  			pr_cont("KUp ");
315  		if (regs->cp0_status & ST0_IEP)
316  			pr_cont("IEp ");
317  		if (regs->cp0_status & ST0_KUC)
318  			pr_cont("KUc ");
319  		if (regs->cp0_status & ST0_IEC)
320  			pr_cont("IEc ");
321  	} else if (cpu_has_4kex) {
322  		if (regs->cp0_status & ST0_KX)
323  			pr_cont("KX ");
324  		if (regs->cp0_status & ST0_SX)
325  			pr_cont("SX ");
326  		if (regs->cp0_status & ST0_UX)
327  			pr_cont("UX ");
328  		switch (regs->cp0_status & ST0_KSU) {
329  		case KSU_USER:
330  			pr_cont("USER ");
331  			break;
332  		case KSU_SUPERVISOR:
333  			pr_cont("SUPERVISOR ");
334  			break;
335  		case KSU_KERNEL:
336  			pr_cont("KERNEL ");
337  			break;
338  		default:
339  			pr_cont("BAD_MODE ");
340  			break;
341  		}
342  		if (regs->cp0_status & ST0_ERL)
343  			pr_cont("ERL ");
344  		if (regs->cp0_status & ST0_EXL)
345  			pr_cont("EXL ");
346  		if (regs->cp0_status & ST0_IE)
347  			pr_cont("IE ");
348  	}
349  	pr_cont("\n");
350  
351  	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
352  	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
353  
354  	if (1 <= exccode && exccode <= 5)
355  		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
356  
357  	printk("PrId  : %08x (%s)\n", read_c0_prid(),
358  	       cpu_name_string());
359  }
360  
361  /*
362   * FIXME: really the generic show_regs should take a const pointer argument.
363   */
show_regs(struct pt_regs * regs)364  void show_regs(struct pt_regs *regs)
365  {
366  	__show_regs(regs);
367  	dump_stack();
368  }
369  
show_registers(struct pt_regs * regs)370  void show_registers(struct pt_regs *regs)
371  {
372  	const int field = 2 * sizeof(unsigned long);
373  
374  	__show_regs(regs);
375  	print_modules();
376  	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
377  	       current->comm, current->pid, current_thread_info(), current,
378  	      field, current_thread_info()->tp_value);
379  	if (cpu_has_userlocal) {
380  		unsigned long tls;
381  
382  		tls = read_c0_userlocal();
383  		if (tls != current_thread_info()->tp_value)
384  			printk("*HwTLS: %0*lx\n", field, tls);
385  	}
386  
387  	show_stacktrace(current, regs, KERN_DEFAULT, user_mode(regs));
388  	show_code((void *)regs->cp0_epc, user_mode(regs));
389  	printk("\n");
390  }
391  
392  static DEFINE_RAW_SPINLOCK(die_lock);
393  
die(const char * str,struct pt_regs * regs)394  void __noreturn die(const char *str, struct pt_regs *regs)
395  {
396  	static int die_counter;
397  	int sig = SIGSEGV;
398  
399  	oops_enter();
400  
401  	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
402  		       SIGSEGV) == NOTIFY_STOP)
403  		sig = 0;
404  
405  	console_verbose();
406  	raw_spin_lock_irq(&die_lock);
407  	bust_spinlocks(1);
408  
409  	printk("%s[#%d]:\n", str, ++die_counter);
410  	show_registers(regs);
411  	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
412  	raw_spin_unlock_irq(&die_lock);
413  
414  	oops_exit();
415  
416  	if (in_interrupt())
417  		panic("Fatal exception in interrupt");
418  
419  	if (panic_on_oops)
420  		panic("Fatal exception");
421  
422  	if (regs && kexec_should_crash(current))
423  		crash_kexec(regs);
424  
425  	make_task_dead(sig);
426  }
427  
428  extern struct exception_table_entry __start___dbe_table[];
429  extern struct exception_table_entry __stop___dbe_table[];
430  
431  __asm__(
432  "	.section	__dbe_table, \"a\"\n"
433  "	.previous			\n");
434  
435  /* Given an address, look for it in the exception tables. */
search_dbe_tables(unsigned long addr)436  static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
437  {
438  	const struct exception_table_entry *e;
439  
440  	e = search_extable(__start___dbe_table,
441  			   __stop___dbe_table - __start___dbe_table, addr);
442  	if (!e)
443  		e = search_module_dbetables(addr);
444  	return e;
445  }
446  
do_be(struct pt_regs * regs)447  asmlinkage void do_be(struct pt_regs *regs)
448  {
449  	const int field = 2 * sizeof(unsigned long);
450  	const struct exception_table_entry *fixup = NULL;
451  	int data = regs->cp0_cause & 4;
452  	int action = MIPS_BE_FATAL;
453  	enum ctx_state prev_state;
454  
455  	prev_state = exception_enter();
456  	/* XXX For now.	 Fixme, this searches the wrong table ...  */
457  	if (data && !user_mode(regs))
458  		fixup = search_dbe_tables(exception_epc(regs));
459  
460  	if (fixup)
461  		action = MIPS_BE_FIXUP;
462  
463  	if (board_be_handler)
464  		action = board_be_handler(regs, fixup != NULL);
465  	else
466  		mips_cm_error_report();
467  
468  	switch (action) {
469  	case MIPS_BE_DISCARD:
470  		goto out;
471  	case MIPS_BE_FIXUP:
472  		if (fixup) {
473  			regs->cp0_epc = fixup->nextinsn;
474  			goto out;
475  		}
476  		break;
477  	default:
478  		break;
479  	}
480  
481  	/*
482  	 * Assume it would be too dangerous to continue ...
483  	 */
484  	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
485  	       data ? "Data" : "Instruction",
486  	       field, regs->cp0_epc, field, regs->regs[31]);
487  	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
488  		       SIGBUS) == NOTIFY_STOP)
489  		goto out;
490  
491  	die_if_kernel("Oops", regs);
492  	force_sig(SIGBUS);
493  
494  out:
495  	exception_exit(prev_state);
496  }
497  
498  /*
499   * ll/sc, rdhwr, sync emulation
500   */
501  
502  #define OPCODE 0xfc000000
503  #define BASE   0x03e00000
504  #define RT     0x001f0000
505  #define OFFSET 0x0000ffff
506  #define LL     0xc0000000
507  #define SC     0xe0000000
508  #define SPEC0  0x00000000
509  #define SPEC3  0x7c000000
510  #define RD     0x0000f800
511  #define FUNC   0x0000003f
512  #define SYNC   0x0000000f
513  #define RDHWR  0x0000003b
514  
515  /*  microMIPS definitions   */
516  #define MM_POOL32A_FUNC 0xfc00ffff
517  #define MM_RDHWR        0x00006b3c
518  #define MM_RS           0x001f0000
519  #define MM_RT           0x03e00000
520  
521  /*
522   * The ll_bit is cleared by r*_switch.S
523   */
524  
525  unsigned int ll_bit;
526  struct task_struct *ll_task;
527  
simulate_ll(struct pt_regs * regs,unsigned int opcode)528  static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
529  {
530  	unsigned long value, __user *vaddr;
531  	long offset;
532  
533  	/*
534  	 * analyse the ll instruction that just caused a ri exception
535  	 * and put the referenced address to addr.
536  	 */
537  
538  	/* sign extend offset */
539  	offset = opcode & OFFSET;
540  	offset <<= 16;
541  	offset >>= 16;
542  
543  	vaddr = (unsigned long __user *)
544  		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
545  
546  	if ((unsigned long)vaddr & 3)
547  		return SIGBUS;
548  	if (get_user(value, vaddr))
549  		return SIGSEGV;
550  
551  	preempt_disable();
552  
553  	if (ll_task == NULL || ll_task == current) {
554  		ll_bit = 1;
555  	} else {
556  		ll_bit = 0;
557  	}
558  	ll_task = current;
559  
560  	preempt_enable();
561  
562  	regs->regs[(opcode & RT) >> 16] = value;
563  
564  	return 0;
565  }
566  
simulate_sc(struct pt_regs * regs,unsigned int opcode)567  static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
568  {
569  	unsigned long __user *vaddr;
570  	unsigned long reg;
571  	long offset;
572  
573  	/*
574  	 * analyse the sc instruction that just caused a ri exception
575  	 * and put the referenced address to addr.
576  	 */
577  
578  	/* sign extend offset */
579  	offset = opcode & OFFSET;
580  	offset <<= 16;
581  	offset >>= 16;
582  
583  	vaddr = (unsigned long __user *)
584  		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
585  	reg = (opcode & RT) >> 16;
586  
587  	if ((unsigned long)vaddr & 3)
588  		return SIGBUS;
589  
590  	preempt_disable();
591  
592  	if (ll_bit == 0 || ll_task != current) {
593  		regs->regs[reg] = 0;
594  		preempt_enable();
595  		return 0;
596  	}
597  
598  	preempt_enable();
599  
600  	if (put_user(regs->regs[reg], vaddr))
601  		return SIGSEGV;
602  
603  	regs->regs[reg] = 1;
604  
605  	return 0;
606  }
607  
608  /*
609   * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
610   * opcodes are supposed to result in coprocessor unusable exceptions if
611   * executed on ll/sc-less processors.  That's the theory.  In practice a
612   * few processors such as NEC's VR4100 throw reserved instruction exceptions
613   * instead, so we're doing the emulation thing in both exception handlers.
614   */
simulate_llsc(struct pt_regs * regs,unsigned int opcode)615  static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
616  {
617  	if ((opcode & OPCODE) == LL) {
618  		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
619  				1, regs, 0);
620  		return simulate_ll(regs, opcode);
621  	}
622  	if ((opcode & OPCODE) == SC) {
623  		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
624  				1, regs, 0);
625  		return simulate_sc(regs, opcode);
626  	}
627  
628  	return -1;			/* Must be something else ... */
629  }
630  
631  /*
632   * Simulate trapping 'rdhwr' instructions to provide user accessible
633   * registers not implemented in hardware.
634   */
simulate_rdhwr(struct pt_regs * regs,int rd,int rt)635  static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
636  {
637  	struct thread_info *ti = task_thread_info(current);
638  
639  	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
640  			1, regs, 0);
641  	switch (rd) {
642  	case MIPS_HWR_CPUNUM:		/* CPU number */
643  		regs->regs[rt] = smp_processor_id();
644  		return 0;
645  	case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
646  		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
647  				     current_cpu_data.icache.linesz);
648  		return 0;
649  	case MIPS_HWR_CC:		/* Read count register */
650  		regs->regs[rt] = read_c0_count();
651  		return 0;
652  	case MIPS_HWR_CCRES:		/* Count register resolution */
653  		switch (current_cpu_type()) {
654  		case CPU_20KC:
655  		case CPU_25KF:
656  			regs->regs[rt] = 1;
657  			break;
658  		default:
659  			regs->regs[rt] = 2;
660  		}
661  		return 0;
662  	case MIPS_HWR_ULR:		/* Read UserLocal register */
663  		regs->regs[rt] = ti->tp_value;
664  		return 0;
665  	default:
666  		return -1;
667  	}
668  }
669  
simulate_rdhwr_normal(struct pt_regs * regs,unsigned int opcode)670  static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
671  {
672  	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
673  		int rd = (opcode & RD) >> 11;
674  		int rt = (opcode & RT) >> 16;
675  
676  		simulate_rdhwr(regs, rd, rt);
677  		return 0;
678  	}
679  
680  	/* Not ours.  */
681  	return -1;
682  }
683  
simulate_rdhwr_mm(struct pt_regs * regs,unsigned int opcode)684  static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
685  {
686  	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
687  		int rd = (opcode & MM_RS) >> 16;
688  		int rt = (opcode & MM_RT) >> 21;
689  		simulate_rdhwr(regs, rd, rt);
690  		return 0;
691  	}
692  
693  	/* Not ours.  */
694  	return -1;
695  }
696  
simulate_sync(struct pt_regs * regs,unsigned int opcode)697  static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
698  {
699  	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
700  		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
701  				1, regs, 0);
702  		return 0;
703  	}
704  
705  	return -1;			/* Must be something else ... */
706  }
707  
708  /*
709   * Loongson-3 CSR instructions emulation
710   */
711  
712  #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
713  
714  #define LWC2             0xc8000000
715  #define RS               BASE
716  #define CSR_OPCODE2      0x00000118
717  #define CSR_OPCODE2_MASK 0x000007ff
718  #define CSR_FUNC_MASK    RT
719  #define CSR_FUNC_CPUCFG  0x8
720  
simulate_loongson3_cpucfg(struct pt_regs * regs,unsigned int opcode)721  static int simulate_loongson3_cpucfg(struct pt_regs *regs,
722  				     unsigned int opcode)
723  {
724  	int op = opcode & OPCODE;
725  	int op2 = opcode & CSR_OPCODE2_MASK;
726  	int csr_func = (opcode & CSR_FUNC_MASK) >> 16;
727  
728  	if (op == LWC2 && op2 == CSR_OPCODE2 && csr_func == CSR_FUNC_CPUCFG) {
729  		int rd = (opcode & RD) >> 11;
730  		int rs = (opcode & RS) >> 21;
731  		__u64 sel = regs->regs[rs];
732  
733  		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
734  
735  		/* Do not emulate on unsupported core models. */
736  		preempt_disable();
737  		if (!loongson3_cpucfg_emulation_enabled(&current_cpu_data)) {
738  			preempt_enable();
739  			return -1;
740  		}
741  		regs->regs[rd] = loongson3_cpucfg_read_synthesized(
742  			&current_cpu_data, sel);
743  		preempt_enable();
744  		return 0;
745  	}
746  
747  	/* Not ours.  */
748  	return -1;
749  }
750  #endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */
751  
do_ov(struct pt_regs * regs)752  asmlinkage void do_ov(struct pt_regs *regs)
753  {
754  	enum ctx_state prev_state;
755  
756  	prev_state = exception_enter();
757  	die_if_kernel("Integer overflow", regs);
758  
759  	force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
760  	exception_exit(prev_state);
761  }
762  
763  #ifdef CONFIG_MIPS_FP_SUPPORT
764  
765  /*
766   * Send SIGFPE according to FCSR Cause bits, which must have already
767   * been masked against Enable bits.  This is impotant as Inexact can
768   * happen together with Overflow or Underflow, and `ptrace' can set
769   * any bits.
770   */
force_fcr31_sig(unsigned long fcr31,void __user * fault_addr,struct task_struct * tsk)771  void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
772  		     struct task_struct *tsk)
773  {
774  	int si_code = FPE_FLTUNK;
775  
776  	if (fcr31 & FPU_CSR_INV_X)
777  		si_code = FPE_FLTINV;
778  	else if (fcr31 & FPU_CSR_DIV_X)
779  		si_code = FPE_FLTDIV;
780  	else if (fcr31 & FPU_CSR_OVF_X)
781  		si_code = FPE_FLTOVF;
782  	else if (fcr31 & FPU_CSR_UDF_X)
783  		si_code = FPE_FLTUND;
784  	else if (fcr31 & FPU_CSR_INE_X)
785  		si_code = FPE_FLTRES;
786  
787  	force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
788  }
789  
process_fpemu_return(int sig,void __user * fault_addr,unsigned long fcr31)790  int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
791  {
792  	int si_code;
793  
794  	switch (sig) {
795  	case 0:
796  		return 0;
797  
798  	case SIGFPE:
799  		force_fcr31_sig(fcr31, fault_addr, current);
800  		return 1;
801  
802  	case SIGBUS:
803  		force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
804  		return 1;
805  
806  	case SIGSEGV:
807  		mmap_read_lock(current->mm);
808  		if (vma_lookup(current->mm, (unsigned long)fault_addr))
809  			si_code = SEGV_ACCERR;
810  		else
811  			si_code = SEGV_MAPERR;
812  		mmap_read_unlock(current->mm);
813  		force_sig_fault(SIGSEGV, si_code, fault_addr);
814  		return 1;
815  
816  	default:
817  		force_sig(sig);
818  		return 1;
819  	}
820  }
821  
simulate_fp(struct pt_regs * regs,unsigned int opcode,unsigned long old_epc,unsigned long old_ra)822  static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
823  		       unsigned long old_epc, unsigned long old_ra)
824  {
825  	union mips_instruction inst = { .word = opcode };
826  	void __user *fault_addr;
827  	unsigned long fcr31;
828  	int sig;
829  
830  	/* If it's obviously not an FP instruction, skip it */
831  	switch (inst.i_format.opcode) {
832  	case cop1_op:
833  	case cop1x_op:
834  	case lwc1_op:
835  	case ldc1_op:
836  	case swc1_op:
837  	case sdc1_op:
838  		break;
839  
840  	default:
841  		return -1;
842  	}
843  
844  	/*
845  	 * do_ri skipped over the instruction via compute_return_epc, undo
846  	 * that for the FPU emulator.
847  	 */
848  	regs->cp0_epc = old_epc;
849  	regs->regs[31] = old_ra;
850  
851  	/* Run the emulator */
852  	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
853  				       &fault_addr);
854  
855  	/*
856  	 * We can't allow the emulated instruction to leave any
857  	 * enabled Cause bits set in $fcr31.
858  	 */
859  	fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
860  	current->thread.fpu.fcr31 &= ~fcr31;
861  
862  	/* Restore the hardware register state */
863  	own_fpu(1);
864  
865  	/* Send a signal if required.  */
866  	process_fpemu_return(sig, fault_addr, fcr31);
867  
868  	return 0;
869  }
870  
871  /*
872   * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
873   */
do_fpe(struct pt_regs * regs,unsigned long fcr31)874  asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
875  {
876  	enum ctx_state prev_state;
877  	void __user *fault_addr;
878  	int sig;
879  
880  	prev_state = exception_enter();
881  	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
882  		       SIGFPE) == NOTIFY_STOP)
883  		goto out;
884  
885  	/* Clear FCSR.Cause before enabling interrupts */
886  	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
887  	local_irq_enable();
888  
889  	die_if_kernel("FP exception in kernel code", regs);
890  
891  	if (fcr31 & FPU_CSR_UNI_X) {
892  		/*
893  		 * Unimplemented operation exception.  If we've got the full
894  		 * software emulator on-board, let's use it...
895  		 *
896  		 * Force FPU to dump state into task/thread context.  We're
897  		 * moving a lot of data here for what is probably a single
898  		 * instruction, but the alternative is to pre-decode the FP
899  		 * register operands before invoking the emulator, which seems
900  		 * a bit extreme for what should be an infrequent event.
901  		 */
902  
903  		/* Run the emulator */
904  		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
905  					       &fault_addr);
906  
907  		/*
908  		 * We can't allow the emulated instruction to leave any
909  		 * enabled Cause bits set in $fcr31.
910  		 */
911  		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
912  		current->thread.fpu.fcr31 &= ~fcr31;
913  
914  		/* Restore the hardware register state */
915  		own_fpu(1);	/* Using the FPU again.	 */
916  	} else {
917  		sig = SIGFPE;
918  		fault_addr = (void __user *) regs->cp0_epc;
919  	}
920  
921  	/* Send a signal if required.  */
922  	process_fpemu_return(sig, fault_addr, fcr31);
923  
924  out:
925  	exception_exit(prev_state);
926  }
927  
928  /*
929   * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
930   * emulated more than some threshold number of instructions, force migration to
931   * a "CPU" that has FP support.
932   */
mt_ase_fp_affinity(void)933  static void mt_ase_fp_affinity(void)
934  {
935  #ifdef CONFIG_MIPS_MT_FPAFF
936  	if (mt_fpemul_threshold > 0 &&
937  	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
938  		/*
939  		 * If there's no FPU present, or if the application has already
940  		 * restricted the allowed set to exclude any CPUs with FPUs,
941  		 * we'll skip the procedure.
942  		 */
943  		if (cpumask_intersects(&current->cpus_mask, &mt_fpu_cpumask)) {
944  			cpumask_t tmask;
945  
946  			current->thread.user_cpus_allowed
947  				= current->cpus_mask;
948  			cpumask_and(&tmask, &current->cpus_mask,
949  				    &mt_fpu_cpumask);
950  			set_cpus_allowed_ptr(current, &tmask);
951  			set_thread_flag(TIF_FPUBOUND);
952  		}
953  	}
954  #endif /* CONFIG_MIPS_MT_FPAFF */
955  }
956  
957  #else /* !CONFIG_MIPS_FP_SUPPORT */
958  
simulate_fp(struct pt_regs * regs,unsigned int opcode,unsigned long old_epc,unsigned long old_ra)959  static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
960  		       unsigned long old_epc, unsigned long old_ra)
961  {
962  	return -1;
963  }
964  
965  #endif /* !CONFIG_MIPS_FP_SUPPORT */
966  
do_trap_or_bp(struct pt_regs * regs,unsigned int code,int si_code,const char * str)967  void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
968  	const char *str)
969  {
970  	char b[40];
971  
972  #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
973  	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
974  			 SIGTRAP) == NOTIFY_STOP)
975  		return;
976  #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
977  
978  	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
979  		       SIGTRAP) == NOTIFY_STOP)
980  		return;
981  
982  	/*
983  	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
984  	 * insns, even for trap and break codes that indicate arithmetic
985  	 * failures.  Weird ...
986  	 * But should we continue the brokenness???  --macro
987  	 */
988  	switch (code) {
989  	case BRK_OVERFLOW:
990  	case BRK_DIVZERO:
991  		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
992  		die_if_kernel(b, regs);
993  		force_sig_fault(SIGFPE,
994  				code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
995  				(void __user *) regs->cp0_epc);
996  		break;
997  	case BRK_BUG:
998  		die_if_kernel("Kernel bug detected", regs);
999  		force_sig(SIGTRAP);
1000  		break;
1001  	case BRK_MEMU:
1002  		/*
1003  		 * This breakpoint code is used by the FPU emulator to retake
1004  		 * control of the CPU after executing the instruction from the
1005  		 * delay slot of an emulated branch.
1006  		 *
1007  		 * Terminate if exception was recognized as a delay slot return
1008  		 * otherwise handle as normal.
1009  		 */
1010  		if (do_dsemulret(regs))
1011  			return;
1012  
1013  		die_if_kernel("Math emu break/trap", regs);
1014  		force_sig(SIGTRAP);
1015  		break;
1016  	default:
1017  		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
1018  		die_if_kernel(b, regs);
1019  		if (si_code) {
1020  			force_sig_fault(SIGTRAP, si_code, NULL);
1021  		} else {
1022  			force_sig(SIGTRAP);
1023  		}
1024  	}
1025  }
1026  
do_bp(struct pt_regs * regs)1027  asmlinkage void do_bp(struct pt_regs *regs)
1028  {
1029  	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1030  	unsigned int opcode, bcode;
1031  	enum ctx_state prev_state;
1032  	bool user = user_mode(regs);
1033  
1034  	prev_state = exception_enter();
1035  	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1036  	if (get_isa16_mode(regs->cp0_epc)) {
1037  		u16 instr[2];
1038  
1039  		if (__get_inst16(&instr[0], (u16 *)epc, user))
1040  			goto out_sigsegv;
1041  
1042  		if (!cpu_has_mmips) {
1043  			/* MIPS16e mode */
1044  			bcode = (instr[0] >> 5) & 0x3f;
1045  		} else if (mm_insn_16bit(instr[0])) {
1046  			/* 16-bit microMIPS BREAK */
1047  			bcode = instr[0] & 0xf;
1048  		} else {
1049  			/* 32-bit microMIPS BREAK */
1050  			if (__get_inst16(&instr[1], (u16 *)(epc + 2), user))
1051  				goto out_sigsegv;
1052  			opcode = (instr[0] << 16) | instr[1];
1053  			bcode = (opcode >> 6) & ((1 << 20) - 1);
1054  		}
1055  	} else {
1056  		if (__get_inst32(&opcode, (u32 *)epc, user))
1057  			goto out_sigsegv;
1058  		bcode = (opcode >> 6) & ((1 << 20) - 1);
1059  	}
1060  
1061  	/*
1062  	 * There is the ancient bug in the MIPS assemblers that the break
1063  	 * code starts left to bit 16 instead to bit 6 in the opcode.
1064  	 * Gas is bug-compatible, but not always, grrr...
1065  	 * We handle both cases with a simple heuristics.  --macro
1066  	 */
1067  	if (bcode >= (1 << 10))
1068  		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1069  
1070  	/*
1071  	 * notify the kprobe handlers, if instruction is likely to
1072  	 * pertain to them.
1073  	 */
1074  	switch (bcode) {
1075  	case BRK_UPROBE:
1076  		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1077  			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1078  			goto out;
1079  		else
1080  			break;
1081  	case BRK_UPROBE_XOL:
1082  		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1083  			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1084  			goto out;
1085  		else
1086  			break;
1087  	case BRK_KPROBE_BP:
1088  		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1089  			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1090  			goto out;
1091  		else
1092  			break;
1093  	case BRK_KPROBE_SSTEPBP:
1094  		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1095  			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1096  			goto out;
1097  		else
1098  			break;
1099  	default:
1100  		break;
1101  	}
1102  
1103  	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1104  
1105  out:
1106  	exception_exit(prev_state);
1107  	return;
1108  
1109  out_sigsegv:
1110  	force_sig(SIGSEGV);
1111  	goto out;
1112  }
1113  
do_tr(struct pt_regs * regs)1114  asmlinkage void do_tr(struct pt_regs *regs)
1115  {
1116  	u32 opcode, tcode = 0;
1117  	enum ctx_state prev_state;
1118  	u16 instr[2];
1119  	bool user = user_mode(regs);
1120  	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1121  
1122  	prev_state = exception_enter();
1123  	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1124  	if (get_isa16_mode(regs->cp0_epc)) {
1125  		if (__get_inst16(&instr[0], (u16 *)(epc + 0), user) ||
1126  		    __get_inst16(&instr[1], (u16 *)(epc + 2), user))
1127  			goto out_sigsegv;
1128  		opcode = (instr[0] << 16) | instr[1];
1129  		/* Immediate versions don't provide a code.  */
1130  		if (!(opcode & OPCODE))
1131  			tcode = (opcode >> 12) & ((1 << 4) - 1);
1132  	} else {
1133  		if (__get_inst32(&opcode, (u32 *)epc, user))
1134  			goto out_sigsegv;
1135  		/* Immediate versions don't provide a code.  */
1136  		if (!(opcode & OPCODE))
1137  			tcode = (opcode >> 6) & ((1 << 10) - 1);
1138  	}
1139  
1140  	do_trap_or_bp(regs, tcode, 0, "Trap");
1141  
1142  out:
1143  	exception_exit(prev_state);
1144  	return;
1145  
1146  out_sigsegv:
1147  	force_sig(SIGSEGV);
1148  	goto out;
1149  }
1150  
do_ri(struct pt_regs * regs)1151  asmlinkage void do_ri(struct pt_regs *regs)
1152  {
1153  	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1154  	unsigned long old_epc = regs->cp0_epc;
1155  	unsigned long old31 = regs->regs[31];
1156  	enum ctx_state prev_state;
1157  	unsigned int opcode = 0;
1158  	int status = -1;
1159  
1160  	/*
1161  	 * Avoid any kernel code. Just emulate the R2 instruction
1162  	 * as quickly as possible.
1163  	 */
1164  	if (mipsr2_emulation && cpu_has_mips_r6 &&
1165  	    likely(user_mode(regs)) &&
1166  	    likely(get_user(opcode, epc) >= 0)) {
1167  		unsigned long fcr31 = 0;
1168  
1169  		status = mipsr2_decoder(regs, opcode, &fcr31);
1170  		switch (status) {
1171  		case 0:
1172  		case SIGEMT:
1173  			return;
1174  		case SIGILL:
1175  			goto no_r2_instr;
1176  		default:
1177  			process_fpemu_return(status,
1178  					     &current->thread.cp0_baduaddr,
1179  					     fcr31);
1180  			return;
1181  		}
1182  	}
1183  
1184  no_r2_instr:
1185  
1186  	prev_state = exception_enter();
1187  	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1188  
1189  	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1190  		       SIGILL) == NOTIFY_STOP)
1191  		goto out;
1192  
1193  	die_if_kernel("Reserved instruction in kernel code", regs);
1194  
1195  	if (unlikely(compute_return_epc(regs) < 0))
1196  		goto out;
1197  
1198  	if (!get_isa16_mode(regs->cp0_epc)) {
1199  		if (unlikely(get_user(opcode, epc) < 0))
1200  			status = SIGSEGV;
1201  
1202  		if (!cpu_has_llsc && status < 0)
1203  			status = simulate_llsc(regs, opcode);
1204  
1205  		if (status < 0)
1206  			status = simulate_rdhwr_normal(regs, opcode);
1207  
1208  		if (status < 0)
1209  			status = simulate_sync(regs, opcode);
1210  
1211  		if (status < 0)
1212  			status = simulate_fp(regs, opcode, old_epc, old31);
1213  
1214  #ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
1215  		if (status < 0)
1216  			status = simulate_loongson3_cpucfg(regs, opcode);
1217  #endif
1218  	} else if (cpu_has_mmips) {
1219  		unsigned short mmop[2] = { 0 };
1220  
1221  		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1222  			status = SIGSEGV;
1223  		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1224  			status = SIGSEGV;
1225  		opcode = mmop[0];
1226  		opcode = (opcode << 16) | mmop[1];
1227  
1228  		if (status < 0)
1229  			status = simulate_rdhwr_mm(regs, opcode);
1230  	}
1231  
1232  	if (status < 0)
1233  		status = SIGILL;
1234  
1235  	if (unlikely(status > 0)) {
1236  		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1237  		regs->regs[31] = old31;
1238  		force_sig(status);
1239  	}
1240  
1241  out:
1242  	exception_exit(prev_state);
1243  }
1244  
1245  /*
1246   * No lock; only written during early bootup by CPU 0.
1247   */
1248  static RAW_NOTIFIER_HEAD(cu2_chain);
1249  
register_cu2_notifier(struct notifier_block * nb)1250  int __ref register_cu2_notifier(struct notifier_block *nb)
1251  {
1252  	return raw_notifier_chain_register(&cu2_chain, nb);
1253  }
1254  
cu2_notifier_call_chain(unsigned long val,void * v)1255  int cu2_notifier_call_chain(unsigned long val, void *v)
1256  {
1257  	return raw_notifier_call_chain(&cu2_chain, val, v);
1258  }
1259  
default_cu2_call(struct notifier_block * nfb,unsigned long action,void * data)1260  static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1261  	void *data)
1262  {
1263  	struct pt_regs *regs = data;
1264  
1265  	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1266  			      "instruction", regs);
1267  	force_sig(SIGILL);
1268  
1269  	return NOTIFY_OK;
1270  }
1271  
1272  #ifdef CONFIG_MIPS_FP_SUPPORT
1273  
enable_restore_fp_context(int msa)1274  static int enable_restore_fp_context(int msa)
1275  {
1276  	int err, was_fpu_owner, prior_msa;
1277  	bool first_fp;
1278  
1279  	/* Initialize context if it hasn't been used already */
1280  	first_fp = init_fp_ctx(current);
1281  
1282  	if (first_fp) {
1283  		preempt_disable();
1284  		err = own_fpu_inatomic(1);
1285  		if (msa && !err) {
1286  			enable_msa();
1287  			/*
1288  			 * with MSA enabled, userspace can see MSACSR
1289  			 * and MSA regs, but the values in them are from
1290  			 * other task before current task, restore them
1291  			 * from saved fp/msa context
1292  			 */
1293  			write_msa_csr(current->thread.fpu.msacsr);
1294  			/*
1295  			 * own_fpu_inatomic(1) just restore low 64bit,
1296  			 * fix the high 64bit
1297  			 */
1298  			init_msa_upper();
1299  			set_thread_flag(TIF_USEDMSA);
1300  			set_thread_flag(TIF_MSA_CTX_LIVE);
1301  		}
1302  		preempt_enable();
1303  		return err;
1304  	}
1305  
1306  	/*
1307  	 * This task has formerly used the FP context.
1308  	 *
1309  	 * If this thread has no live MSA vector context then we can simply
1310  	 * restore the scalar FP context. If it has live MSA vector context
1311  	 * (that is, it has or may have used MSA since last performing a
1312  	 * function call) then we'll need to restore the vector context. This
1313  	 * applies even if we're currently only executing a scalar FP
1314  	 * instruction. This is because if we were to later execute an MSA
1315  	 * instruction then we'd either have to:
1316  	 *
1317  	 *  - Restore the vector context & clobber any registers modified by
1318  	 *    scalar FP instructions between now & then.
1319  	 *
1320  	 * or
1321  	 *
1322  	 *  - Not restore the vector context & lose the most significant bits
1323  	 *    of all vector registers.
1324  	 *
1325  	 * Neither of those options is acceptable. We cannot restore the least
1326  	 * significant bits of the registers now & only restore the most
1327  	 * significant bits later because the most significant bits of any
1328  	 * vector registers whose aliased FP register is modified now will have
1329  	 * been zeroed. We'd have no way to know that when restoring the vector
1330  	 * context & thus may load an outdated value for the most significant
1331  	 * bits of a vector register.
1332  	 */
1333  	if (!msa && !thread_msa_context_live())
1334  		return own_fpu(1);
1335  
1336  	/*
1337  	 * This task is using or has previously used MSA. Thus we require
1338  	 * that Status.FR == 1.
1339  	 */
1340  	preempt_disable();
1341  	was_fpu_owner = is_fpu_owner();
1342  	err = own_fpu_inatomic(0);
1343  	if (err)
1344  		goto out;
1345  
1346  	enable_msa();
1347  	write_msa_csr(current->thread.fpu.msacsr);
1348  	set_thread_flag(TIF_USEDMSA);
1349  
1350  	/*
1351  	 * If this is the first time that the task is using MSA and it has
1352  	 * previously used scalar FP in this time slice then we already nave
1353  	 * FP context which we shouldn't clobber. We do however need to clear
1354  	 * the upper 64b of each vector register so that this task has no
1355  	 * opportunity to see data left behind by another.
1356  	 */
1357  	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1358  	if (!prior_msa && was_fpu_owner) {
1359  		init_msa_upper();
1360  
1361  		goto out;
1362  	}
1363  
1364  	if (!prior_msa) {
1365  		/*
1366  		 * Restore the least significant 64b of each vector register
1367  		 * from the existing scalar FP context.
1368  		 */
1369  		_restore_fp(current);
1370  
1371  		/*
1372  		 * The task has not formerly used MSA, so clear the upper 64b
1373  		 * of each vector register such that it cannot see data left
1374  		 * behind by another task.
1375  		 */
1376  		init_msa_upper();
1377  	} else {
1378  		/* We need to restore the vector context. */
1379  		restore_msa(current);
1380  
1381  		/* Restore the scalar FP control & status register */
1382  		if (!was_fpu_owner)
1383  			write_32bit_cp1_register(CP1_STATUS,
1384  						 current->thread.fpu.fcr31);
1385  	}
1386  
1387  out:
1388  	preempt_enable();
1389  
1390  	return 0;
1391  }
1392  
1393  #else /* !CONFIG_MIPS_FP_SUPPORT */
1394  
enable_restore_fp_context(int msa)1395  static int enable_restore_fp_context(int msa)
1396  {
1397  	return SIGILL;
1398  }
1399  
1400  #endif /* CONFIG_MIPS_FP_SUPPORT */
1401  
do_cpu(struct pt_regs * regs)1402  asmlinkage void do_cpu(struct pt_regs *regs)
1403  {
1404  	enum ctx_state prev_state;
1405  	unsigned int __user *epc;
1406  	unsigned long old_epc, old31;
1407  	unsigned int opcode;
1408  	unsigned int cpid;
1409  	int status;
1410  
1411  	prev_state = exception_enter();
1412  	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1413  
1414  	if (cpid != 2)
1415  		die_if_kernel("do_cpu invoked from kernel context!", regs);
1416  
1417  	switch (cpid) {
1418  	case 0:
1419  		epc = (unsigned int __user *)exception_epc(regs);
1420  		old_epc = regs->cp0_epc;
1421  		old31 = regs->regs[31];
1422  		opcode = 0;
1423  		status = -1;
1424  
1425  		if (unlikely(compute_return_epc(regs) < 0))
1426  			break;
1427  
1428  		if (!get_isa16_mode(regs->cp0_epc)) {
1429  			if (unlikely(get_user(opcode, epc) < 0))
1430  				status = SIGSEGV;
1431  
1432  			if (!cpu_has_llsc && status < 0)
1433  				status = simulate_llsc(regs, opcode);
1434  		}
1435  
1436  		if (status < 0)
1437  			status = SIGILL;
1438  
1439  		if (unlikely(status > 0)) {
1440  			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1441  			regs->regs[31] = old31;
1442  			force_sig(status);
1443  		}
1444  
1445  		break;
1446  
1447  #ifdef CONFIG_MIPS_FP_SUPPORT
1448  	case 3:
1449  		/*
1450  		 * The COP3 opcode space and consequently the CP0.Status.CU3
1451  		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1452  		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1453  		 * up the space has been reused for COP1X instructions, that
1454  		 * are enabled by the CP0.Status.CU1 bit and consequently
1455  		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1456  		 * exceptions.  Some FPU-less processors that implement one
1457  		 * of these ISAs however use this code erroneously for COP1X
1458  		 * instructions.  Therefore we redirect this trap to the FP
1459  		 * emulator too.
1460  		 */
1461  		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1462  			force_sig(SIGILL);
1463  			break;
1464  		}
1465  		fallthrough;
1466  	case 1: {
1467  		void __user *fault_addr;
1468  		unsigned long fcr31;
1469  		int err, sig;
1470  
1471  		err = enable_restore_fp_context(0);
1472  
1473  		if (raw_cpu_has_fpu && !err)
1474  			break;
1475  
1476  		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1477  					       &fault_addr);
1478  
1479  		/*
1480  		 * We can't allow the emulated instruction to leave
1481  		 * any enabled Cause bits set in $fcr31.
1482  		 */
1483  		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1484  		current->thread.fpu.fcr31 &= ~fcr31;
1485  
1486  		/* Send a signal if required.  */
1487  		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1488  			mt_ase_fp_affinity();
1489  
1490  		break;
1491  	}
1492  #else /* CONFIG_MIPS_FP_SUPPORT */
1493  	case 1:
1494  	case 3:
1495  		force_sig(SIGILL);
1496  		break;
1497  #endif /* CONFIG_MIPS_FP_SUPPORT */
1498  
1499  	case 2:
1500  		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1501  		break;
1502  	}
1503  
1504  	exception_exit(prev_state);
1505  }
1506  
do_msa_fpe(struct pt_regs * regs,unsigned int msacsr)1507  asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1508  {
1509  	enum ctx_state prev_state;
1510  
1511  	prev_state = exception_enter();
1512  	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1513  	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1514  		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1515  		goto out;
1516  
1517  	/* Clear MSACSR.Cause before enabling interrupts */
1518  	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1519  	local_irq_enable();
1520  
1521  	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1522  	force_sig(SIGFPE);
1523  out:
1524  	exception_exit(prev_state);
1525  }
1526  
do_msa(struct pt_regs * regs)1527  asmlinkage void do_msa(struct pt_regs *regs)
1528  {
1529  	enum ctx_state prev_state;
1530  	int err;
1531  
1532  	prev_state = exception_enter();
1533  
1534  	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1535  		force_sig(SIGILL);
1536  		goto out;
1537  	}
1538  
1539  	die_if_kernel("do_msa invoked from kernel context!", regs);
1540  
1541  	err = enable_restore_fp_context(1);
1542  	if (err)
1543  		force_sig(SIGILL);
1544  out:
1545  	exception_exit(prev_state);
1546  }
1547  
do_mdmx(struct pt_regs * regs)1548  asmlinkage void do_mdmx(struct pt_regs *regs)
1549  {
1550  	enum ctx_state prev_state;
1551  
1552  	prev_state = exception_enter();
1553  	force_sig(SIGILL);
1554  	exception_exit(prev_state);
1555  }
1556  
1557  /*
1558   * Called with interrupts disabled.
1559   */
do_watch(struct pt_regs * regs)1560  asmlinkage void do_watch(struct pt_regs *regs)
1561  {
1562  	enum ctx_state prev_state;
1563  
1564  	prev_state = exception_enter();
1565  	/*
1566  	 * Clear WP (bit 22) bit of cause register so we don't loop
1567  	 * forever.
1568  	 */
1569  	clear_c0_cause(CAUSEF_WP);
1570  
1571  	/*
1572  	 * If the current thread has the watch registers loaded, save
1573  	 * their values and send SIGTRAP.  Otherwise another thread
1574  	 * left the registers set, clear them and continue.
1575  	 */
1576  	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1577  		mips_read_watch_registers();
1578  		local_irq_enable();
1579  		force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1580  	} else {
1581  		mips_clear_watch_registers();
1582  		local_irq_enable();
1583  	}
1584  	exception_exit(prev_state);
1585  }
1586  
do_mcheck(struct pt_regs * regs)1587  asmlinkage void do_mcheck(struct pt_regs *regs)
1588  {
1589  	int multi_match = regs->cp0_status & ST0_TS;
1590  	enum ctx_state prev_state;
1591  
1592  	prev_state = exception_enter();
1593  	show_regs(regs);
1594  
1595  	if (multi_match) {
1596  		dump_tlb_regs();
1597  		pr_info("\n");
1598  		dump_tlb_all();
1599  	}
1600  
1601  	show_code((void *)regs->cp0_epc, user_mode(regs));
1602  
1603  	/*
1604  	 * Some chips may have other causes of machine check (e.g. SB1
1605  	 * graduation timer)
1606  	 */
1607  	panic("Caught Machine Check exception - %scaused by multiple "
1608  	      "matching entries in the TLB.",
1609  	      (multi_match) ? "" : "not ");
1610  }
1611  
do_mt(struct pt_regs * regs)1612  asmlinkage void do_mt(struct pt_regs *regs)
1613  {
1614  	int subcode;
1615  
1616  	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1617  			>> VPECONTROL_EXCPT_SHIFT;
1618  	switch (subcode) {
1619  	case 0:
1620  		printk(KERN_DEBUG "Thread Underflow\n");
1621  		break;
1622  	case 1:
1623  		printk(KERN_DEBUG "Thread Overflow\n");
1624  		break;
1625  	case 2:
1626  		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1627  		break;
1628  	case 3:
1629  		printk(KERN_DEBUG "Gating Storage Exception\n");
1630  		break;
1631  	case 4:
1632  		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1633  		break;
1634  	case 5:
1635  		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1636  		break;
1637  	default:
1638  		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1639  			subcode);
1640  		break;
1641  	}
1642  	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1643  
1644  	force_sig(SIGILL);
1645  }
1646  
1647  
do_dsp(struct pt_regs * regs)1648  asmlinkage void do_dsp(struct pt_regs *regs)
1649  {
1650  	if (cpu_has_dsp)
1651  		panic("Unexpected DSP exception");
1652  
1653  	force_sig(SIGILL);
1654  }
1655  
do_reserved(struct pt_regs * regs)1656  asmlinkage void do_reserved(struct pt_regs *regs)
1657  {
1658  	/*
1659  	 * Game over - no way to handle this if it ever occurs.	 Most probably
1660  	 * caused by a new unknown cpu type or after another deadly
1661  	 * hard/software error.
1662  	 */
1663  	show_regs(regs);
1664  	panic("Caught reserved exception %ld - should not happen.",
1665  	      (regs->cp0_cause & 0x7f) >> 2);
1666  }
1667  
1668  static int __initdata l1parity = 1;
nol1parity(char * s)1669  static int __init nol1parity(char *s)
1670  {
1671  	l1parity = 0;
1672  	return 1;
1673  }
1674  __setup("nol1par", nol1parity);
1675  static int __initdata l2parity = 1;
nol2parity(char * s)1676  static int __init nol2parity(char *s)
1677  {
1678  	l2parity = 0;
1679  	return 1;
1680  }
1681  __setup("nol2par", nol2parity);
1682  
1683  /*
1684   * Some MIPS CPUs can enable/disable for cache parity detection, but do
1685   * it different ways.
1686   */
parity_protection_init(void)1687  static inline __init void parity_protection_init(void)
1688  {
1689  #define ERRCTL_PE	0x80000000
1690  #define ERRCTL_L2P	0x00800000
1691  
1692  	if (mips_cm_revision() >= CM_REV_CM3) {
1693  		ulong gcr_ectl, cp0_ectl;
1694  
1695  		/*
1696  		 * With CM3 systems we need to ensure that the L1 & L2
1697  		 * parity enables are set to the same value, since this
1698  		 * is presumed by the hardware engineers.
1699  		 *
1700  		 * If the user disabled either of L1 or L2 ECC checking,
1701  		 * disable both.
1702  		 */
1703  		l1parity &= l2parity;
1704  		l2parity &= l1parity;
1705  
1706  		/* Probe L1 ECC support */
1707  		cp0_ectl = read_c0_ecc();
1708  		write_c0_ecc(cp0_ectl | ERRCTL_PE);
1709  		back_to_back_c0_hazard();
1710  		cp0_ectl = read_c0_ecc();
1711  
1712  		/* Probe L2 ECC support */
1713  		gcr_ectl = read_gcr_err_control();
1714  
1715  		if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1716  		    !(cp0_ectl & ERRCTL_PE)) {
1717  			/*
1718  			 * One of L1 or L2 ECC checking isn't supported,
1719  			 * so we cannot enable either.
1720  			 */
1721  			l1parity = l2parity = 0;
1722  		}
1723  
1724  		/* Configure L1 ECC checking */
1725  		if (l1parity)
1726  			cp0_ectl |= ERRCTL_PE;
1727  		else
1728  			cp0_ectl &= ~ERRCTL_PE;
1729  		write_c0_ecc(cp0_ectl);
1730  		back_to_back_c0_hazard();
1731  		WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1732  
1733  		/* Configure L2 ECC checking */
1734  		if (l2parity)
1735  			gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1736  		else
1737  			gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1738  		write_gcr_err_control(gcr_ectl);
1739  		gcr_ectl = read_gcr_err_control();
1740  		gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1741  		WARN_ON(!!gcr_ectl != l2parity);
1742  
1743  		pr_info("Cache parity protection %sabled\n",
1744  			l1parity ? "en" : "dis");
1745  		return;
1746  	}
1747  
1748  	switch (current_cpu_type()) {
1749  	case CPU_24K:
1750  	case CPU_34K:
1751  	case CPU_74K:
1752  	case CPU_1004K:
1753  	case CPU_1074K:
1754  	case CPU_INTERAPTIV:
1755  	case CPU_PROAPTIV:
1756  	case CPU_P5600:
1757  	case CPU_QEMU_GENERIC:
1758  	case CPU_P6600:
1759  		{
1760  			unsigned long errctl;
1761  			unsigned int l1parity_present, l2parity_present;
1762  
1763  			errctl = read_c0_ecc();
1764  			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1765  
1766  			/* probe L1 parity support */
1767  			write_c0_ecc(errctl | ERRCTL_PE);
1768  			back_to_back_c0_hazard();
1769  			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1770  
1771  			/* probe L2 parity support */
1772  			write_c0_ecc(errctl|ERRCTL_L2P);
1773  			back_to_back_c0_hazard();
1774  			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1775  
1776  			if (l1parity_present && l2parity_present) {
1777  				if (l1parity)
1778  					errctl |= ERRCTL_PE;
1779  				if (l1parity ^ l2parity)
1780  					errctl |= ERRCTL_L2P;
1781  			} else if (l1parity_present) {
1782  				if (l1parity)
1783  					errctl |= ERRCTL_PE;
1784  			} else if (l2parity_present) {
1785  				if (l2parity)
1786  					errctl |= ERRCTL_L2P;
1787  			} else {
1788  				/* No parity available */
1789  			}
1790  
1791  			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1792  
1793  			write_c0_ecc(errctl);
1794  			back_to_back_c0_hazard();
1795  			errctl = read_c0_ecc();
1796  			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1797  
1798  			if (l1parity_present)
1799  				printk(KERN_INFO "Cache parity protection %sabled\n",
1800  				       (errctl & ERRCTL_PE) ? "en" : "dis");
1801  
1802  			if (l2parity_present) {
1803  				if (l1parity_present && l1parity)
1804  					errctl ^= ERRCTL_L2P;
1805  				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1806  				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1807  			}
1808  		}
1809  		break;
1810  
1811  	case CPU_5KC:
1812  	case CPU_5KE:
1813  	case CPU_LOONGSON32:
1814  		write_c0_ecc(0x80000000);
1815  		back_to_back_c0_hazard();
1816  		/* Set the PE bit (bit 31) in the c0_errctl register. */
1817  		printk(KERN_INFO "Cache parity protection %sabled\n",
1818  		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1819  		break;
1820  	case CPU_20KC:
1821  	case CPU_25KF:
1822  		/* Clear the DE bit (bit 16) in the c0_status register. */
1823  		printk(KERN_INFO "Enable cache parity protection for "
1824  		       "MIPS 20KC/25KF CPUs.\n");
1825  		clear_c0_status(ST0_DE);
1826  		break;
1827  	default:
1828  		break;
1829  	}
1830  }
1831  
cache_parity_error(void)1832  asmlinkage void cache_parity_error(void)
1833  {
1834  	const int field = 2 * sizeof(unsigned long);
1835  	unsigned int reg_val;
1836  
1837  	/* For the moment, report the problem and hang. */
1838  	printk("Cache error exception:\n");
1839  	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1840  	reg_val = read_c0_cacheerr();
1841  	printk("c0_cacheerr == %08x\n", reg_val);
1842  
1843  	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1844  	       reg_val & (1<<30) ? "secondary" : "primary",
1845  	       reg_val & (1<<31) ? "data" : "insn");
1846  	if ((cpu_has_mips_r2_r6) &&
1847  	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1848  		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1849  			reg_val & (1<<29) ? "ED " : "",
1850  			reg_val & (1<<28) ? "ET " : "",
1851  			reg_val & (1<<27) ? "ES " : "",
1852  			reg_val & (1<<26) ? "EE " : "",
1853  			reg_val & (1<<25) ? "EB " : "",
1854  			reg_val & (1<<24) ? "EI " : "",
1855  			reg_val & (1<<23) ? "E1 " : "",
1856  			reg_val & (1<<22) ? "E0 " : "");
1857  	} else {
1858  		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1859  			reg_val & (1<<29) ? "ED " : "",
1860  			reg_val & (1<<28) ? "ET " : "",
1861  			reg_val & (1<<26) ? "EE " : "",
1862  			reg_val & (1<<25) ? "EB " : "",
1863  			reg_val & (1<<24) ? "EI " : "",
1864  			reg_val & (1<<23) ? "E1 " : "",
1865  			reg_val & (1<<22) ? "E0 " : "");
1866  	}
1867  	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1868  
1869  #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1870  	if (reg_val & (1<<22))
1871  		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1872  
1873  	if (reg_val & (1<<23))
1874  		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1875  #endif
1876  
1877  	panic("Can't handle the cache error!");
1878  }
1879  
do_ftlb(void)1880  asmlinkage void do_ftlb(void)
1881  {
1882  	const int field = 2 * sizeof(unsigned long);
1883  	unsigned int reg_val;
1884  
1885  	/* For the moment, report the problem and hang. */
1886  	if ((cpu_has_mips_r2_r6) &&
1887  	    (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1888  	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1889  		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1890  		       read_c0_ecc());
1891  		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1892  		reg_val = read_c0_cacheerr();
1893  		pr_err("c0_cacheerr == %08x\n", reg_val);
1894  
1895  		if ((reg_val & 0xc0000000) == 0xc0000000) {
1896  			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1897  		} else {
1898  			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1899  			       reg_val & (1<<30) ? "secondary" : "primary",
1900  			       reg_val & (1<<31) ? "data" : "insn");
1901  		}
1902  	} else {
1903  		pr_err("FTLB error exception\n");
1904  	}
1905  	/* Just print the cacheerr bits for now */
1906  	cache_parity_error();
1907  }
1908  
do_gsexc(struct pt_regs * regs,u32 diag1)1909  asmlinkage void do_gsexc(struct pt_regs *regs, u32 diag1)
1910  {
1911  	u32 exccode = (diag1 & LOONGSON_DIAG1_EXCCODE) >>
1912  			LOONGSON_DIAG1_EXCCODE_SHIFT;
1913  	enum ctx_state prev_state;
1914  
1915  	prev_state = exception_enter();
1916  
1917  	switch (exccode) {
1918  	case 0x08:
1919  		/* Undocumented exception, will trigger on certain
1920  		 * also-undocumented instructions accessible from userspace.
1921  		 * Processor state is not otherwise corrupted, but currently
1922  		 * we don't know how to proceed. Maybe there is some
1923  		 * undocumented control flag to enable the instructions?
1924  		 */
1925  		force_sig(SIGILL);
1926  		break;
1927  
1928  	default:
1929  		/* None of the other exceptions, documented or not, have
1930  		 * further details given; none are encountered in the wild
1931  		 * either. Panic in case some of them turn out to be fatal.
1932  		 */
1933  		show_regs(regs);
1934  		panic("Unhandled Loongson exception - GSCause = %08x", diag1);
1935  	}
1936  
1937  	exception_exit(prev_state);
1938  }
1939  
1940  /*
1941   * SDBBP EJTAG debug exception handler.
1942   * We skip the instruction and return to the next instruction.
1943   */
ejtag_exception_handler(struct pt_regs * regs)1944  void ejtag_exception_handler(struct pt_regs *regs)
1945  {
1946  	const int field = 2 * sizeof(unsigned long);
1947  	unsigned long depc, old_epc, old_ra;
1948  	unsigned int debug;
1949  
1950  	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1951  	depc = read_c0_depc();
1952  	debug = read_c0_debug();
1953  	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1954  	if (debug & 0x80000000) {
1955  		/*
1956  		 * In branch delay slot.
1957  		 * We cheat a little bit here and use EPC to calculate the
1958  		 * debug return address (DEPC). EPC is restored after the
1959  		 * calculation.
1960  		 */
1961  		old_epc = regs->cp0_epc;
1962  		old_ra = regs->regs[31];
1963  		regs->cp0_epc = depc;
1964  		compute_return_epc(regs);
1965  		depc = regs->cp0_epc;
1966  		regs->cp0_epc = old_epc;
1967  		regs->regs[31] = old_ra;
1968  	} else
1969  		depc += 4;
1970  	write_c0_depc(depc);
1971  
1972  #if 0
1973  	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1974  	write_c0_debug(debug | 0x100);
1975  #endif
1976  }
1977  
1978  /*
1979   * NMI exception handler.
1980   * No lock; only written during early bootup by CPU 0.
1981   */
1982  static RAW_NOTIFIER_HEAD(nmi_chain);
1983  
register_nmi_notifier(struct notifier_block * nb)1984  int register_nmi_notifier(struct notifier_block *nb)
1985  {
1986  	return raw_notifier_chain_register(&nmi_chain, nb);
1987  }
1988  
nmi_exception_handler(struct pt_regs * regs)1989  void __noreturn nmi_exception_handler(struct pt_regs *regs)
1990  {
1991  	char str[100];
1992  
1993  	nmi_enter();
1994  	raw_notifier_call_chain(&nmi_chain, 0, regs);
1995  	bust_spinlocks(1);
1996  	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1997  		 smp_processor_id(), regs->cp0_epc);
1998  	regs->cp0_epc = read_c0_errorepc();
1999  	die(str, regs);
2000  	nmi_exit();
2001  }
2002  
2003  unsigned long ebase;
2004  EXPORT_SYMBOL_GPL(ebase);
2005  unsigned long exception_handlers[32];
2006  unsigned long vi_handlers[64];
2007  
reserve_exception_space(phys_addr_t addr,unsigned long size)2008  void reserve_exception_space(phys_addr_t addr, unsigned long size)
2009  {
2010  	memblock_reserve(addr, size);
2011  }
2012  
set_except_vector(int n,void * addr)2013  void __init *set_except_vector(int n, void *addr)
2014  {
2015  	unsigned long handler = (unsigned long) addr;
2016  	unsigned long old_handler;
2017  
2018  #ifdef CONFIG_CPU_MICROMIPS
2019  	/*
2020  	 * Only the TLB handlers are cache aligned with an even
2021  	 * address. All other handlers are on an odd address and
2022  	 * require no modification. Otherwise, MIPS32 mode will
2023  	 * be entered when handling any TLB exceptions. That
2024  	 * would be bad...since we must stay in microMIPS mode.
2025  	 */
2026  	if (!(handler & 0x1))
2027  		handler |= 1;
2028  #endif
2029  	old_handler = xchg(&exception_handlers[n], handler);
2030  
2031  	if (n == 0 && cpu_has_divec) {
2032  #ifdef CONFIG_CPU_MICROMIPS
2033  		unsigned long jump_mask = ~((1 << 27) - 1);
2034  #else
2035  		unsigned long jump_mask = ~((1 << 28) - 1);
2036  #endif
2037  		u32 *buf = (u32 *)(ebase + 0x200);
2038  		unsigned int k0 = 26;
2039  		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
2040  			uasm_i_j(&buf, handler & ~jump_mask);
2041  			uasm_i_nop(&buf);
2042  		} else {
2043  			UASM_i_LA(&buf, k0, handler);
2044  			uasm_i_jr(&buf, k0);
2045  			uasm_i_nop(&buf);
2046  		}
2047  		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
2048  	}
2049  	return (void *)old_handler;
2050  }
2051  
do_default_vi(void)2052  static void do_default_vi(void)
2053  {
2054  	show_regs(get_irq_regs());
2055  	panic("Caught unexpected vectored interrupt.");
2056  }
2057  
set_vi_srs_handler(int n,vi_handler_t addr,int srs)2058  static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
2059  {
2060  	unsigned long handler;
2061  	unsigned long old_handler = vi_handlers[n];
2062  	int srssets = current_cpu_data.srsets;
2063  	u16 *h;
2064  	unsigned char *b;
2065  
2066  	BUG_ON(!cpu_has_veic && !cpu_has_vint);
2067  
2068  	if (addr == NULL) {
2069  		handler = (unsigned long) do_default_vi;
2070  		srs = 0;
2071  	} else
2072  		handler = (unsigned long) addr;
2073  	vi_handlers[n] = handler;
2074  
2075  	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2076  
2077  	if (srs >= srssets)
2078  		panic("Shadow register set %d not supported", srs);
2079  
2080  	if (cpu_has_veic) {
2081  		if (board_bind_eic_interrupt)
2082  			board_bind_eic_interrupt(n, srs);
2083  	} else if (cpu_has_vint) {
2084  		/* SRSMap is only defined if shadow sets are implemented */
2085  		if (srssets > 1)
2086  			change_c0_srsmap(0xf << n*4, srs << n*4);
2087  	}
2088  
2089  	if (srs == 0) {
2090  		/*
2091  		 * If no shadow set is selected then use the default handler
2092  		 * that does normal register saving and standard interrupt exit
2093  		 */
2094  		extern const u8 except_vec_vi[], except_vec_vi_lui[];
2095  		extern const u8 except_vec_vi_ori[], except_vec_vi_end[];
2096  		extern const u8 rollback_except_vec_vi[];
2097  		const u8 *vec_start = using_rollback_handler() ?
2098  				      rollback_except_vec_vi : except_vec_vi;
2099  #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2100  		const int lui_offset = except_vec_vi_lui - vec_start + 2;
2101  		const int ori_offset = except_vec_vi_ori - vec_start + 2;
2102  #else
2103  		const int lui_offset = except_vec_vi_lui - vec_start;
2104  		const int ori_offset = except_vec_vi_ori - vec_start;
2105  #endif
2106  		const int handler_len = except_vec_vi_end - vec_start;
2107  
2108  		if (handler_len > VECTORSPACING) {
2109  			/*
2110  			 * Sigh... panicing won't help as the console
2111  			 * is probably not configured :(
2112  			 */
2113  			panic("VECTORSPACING too small");
2114  		}
2115  
2116  		set_handler(((unsigned long)b - ebase), vec_start,
2117  #ifdef CONFIG_CPU_MICROMIPS
2118  				(handler_len - 1));
2119  #else
2120  				handler_len);
2121  #endif
2122  		h = (u16 *)(b + lui_offset);
2123  		*h = (handler >> 16) & 0xffff;
2124  		h = (u16 *)(b + ori_offset);
2125  		*h = (handler & 0xffff);
2126  		local_flush_icache_range((unsigned long)b,
2127  					 (unsigned long)(b+handler_len));
2128  	}
2129  	else {
2130  		/*
2131  		 * In other cases jump directly to the interrupt handler. It
2132  		 * is the handler's responsibility to save registers if required
2133  		 * (eg hi/lo) and return from the exception using "eret".
2134  		 */
2135  		u32 insn;
2136  
2137  		h = (u16 *)b;
2138  		/* j handler */
2139  #ifdef CONFIG_CPU_MICROMIPS
2140  		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2141  #else
2142  		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2143  #endif
2144  		h[0] = (insn >> 16) & 0xffff;
2145  		h[1] = insn & 0xffff;
2146  		h[2] = 0;
2147  		h[3] = 0;
2148  		local_flush_icache_range((unsigned long)b,
2149  					 (unsigned long)(b+8));
2150  	}
2151  
2152  	return (void *)old_handler;
2153  }
2154  
set_vi_handler(int n,vi_handler_t addr)2155  void *set_vi_handler(int n, vi_handler_t addr)
2156  {
2157  	return set_vi_srs_handler(n, addr, 0);
2158  }
2159  
2160  extern void tlb_init(void);
2161  
2162  /*
2163   * Timer interrupt
2164   */
2165  int cp0_compare_irq;
2166  EXPORT_SYMBOL_GPL(cp0_compare_irq);
2167  int cp0_compare_irq_shift;
2168  
2169  /*
2170   * Performance counter IRQ or -1 if shared with timer
2171   */
2172  int cp0_perfcount_irq;
2173  EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2174  
2175  /*
2176   * Fast debug channel IRQ or -1 if not present
2177   */
2178  int cp0_fdc_irq;
2179  EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2180  
2181  static int noulri;
2182  
ulri_disable(char * s)2183  static int __init ulri_disable(char *s)
2184  {
2185  	pr_info("Disabling ulri\n");
2186  	noulri = 1;
2187  
2188  	return 1;
2189  }
2190  __setup("noulri", ulri_disable);
2191  
2192  /* configure STATUS register */
configure_status(void)2193  static void configure_status(void)
2194  {
2195  	/*
2196  	 * Disable coprocessors and select 32-bit or 64-bit addressing
2197  	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2198  	 * flag that some firmware may have left set and the TS bit (for
2199  	 * IP27).  Set XX for ISA IV code to work.
2200  	 */
2201  	unsigned int status_set = ST0_KERNEL_CUMASK;
2202  #ifdef CONFIG_64BIT
2203  	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2204  #endif
2205  	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2206  		status_set |= ST0_XX;
2207  	if (cpu_has_dsp)
2208  		status_set |= ST0_MX;
2209  
2210  	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2211  			 status_set);
2212  	back_to_back_c0_hazard();
2213  }
2214  
2215  unsigned int hwrena;
2216  EXPORT_SYMBOL_GPL(hwrena);
2217  
2218  /* configure HWRENA register */
configure_hwrena(void)2219  static void configure_hwrena(void)
2220  {
2221  	hwrena = cpu_hwrena_impl_bits;
2222  
2223  	if (cpu_has_mips_r2_r6)
2224  		hwrena |= MIPS_HWRENA_CPUNUM |
2225  			  MIPS_HWRENA_SYNCISTEP |
2226  			  MIPS_HWRENA_CC |
2227  			  MIPS_HWRENA_CCRES;
2228  
2229  	if (!noulri && cpu_has_userlocal)
2230  		hwrena |= MIPS_HWRENA_ULR;
2231  
2232  	if (hwrena)
2233  		write_c0_hwrena(hwrena);
2234  }
2235  
configure_exception_vector(void)2236  static void configure_exception_vector(void)
2237  {
2238  	if (cpu_has_mips_r2_r6) {
2239  		unsigned long sr = set_c0_status(ST0_BEV);
2240  		/* If available, use WG to set top bits of EBASE */
2241  		if (cpu_has_ebase_wg) {
2242  #ifdef CONFIG_64BIT
2243  			write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2244  #else
2245  			write_c0_ebase(ebase | MIPS_EBASE_WG);
2246  #endif
2247  		}
2248  		write_c0_ebase(ebase);
2249  		write_c0_status(sr);
2250  	}
2251  	if (cpu_has_veic || cpu_has_vint) {
2252  		/* Setting vector spacing enables EI/VI mode  */
2253  		change_c0_intctl(0x3e0, VECTORSPACING);
2254  	}
2255  	if (cpu_has_divec) {
2256  		if (cpu_has_mipsmt) {
2257  			unsigned int vpflags = dvpe();
2258  			set_c0_cause(CAUSEF_IV);
2259  			evpe(vpflags);
2260  		} else
2261  			set_c0_cause(CAUSEF_IV);
2262  	}
2263  }
2264  
per_cpu_trap_init(bool is_boot_cpu)2265  void per_cpu_trap_init(bool is_boot_cpu)
2266  {
2267  	unsigned int cpu = smp_processor_id();
2268  
2269  	configure_status();
2270  	configure_hwrena();
2271  
2272  	configure_exception_vector();
2273  
2274  	/*
2275  	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2276  	 *
2277  	 *  o read IntCtl.IPTI to determine the timer interrupt
2278  	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2279  	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2280  	 */
2281  	if (cpu_has_mips_r2_r6) {
2282  		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2283  		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2284  		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2285  		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2286  		if (!cp0_fdc_irq)
2287  			cp0_fdc_irq = -1;
2288  
2289  	} else {
2290  		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2291  		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2292  		cp0_perfcount_irq = -1;
2293  		cp0_fdc_irq = -1;
2294  	}
2295  
2296  	if (cpu_has_mmid)
2297  		cpu_data[cpu].asid_cache = 0;
2298  	else if (!cpu_data[cpu].asid_cache)
2299  		cpu_data[cpu].asid_cache = asid_first_version(cpu);
2300  
2301  	mmgrab(&init_mm);
2302  	current->active_mm = &init_mm;
2303  	BUG_ON(current->mm);
2304  	enter_lazy_tlb(&init_mm, current);
2305  
2306  	/* Boot CPU's cache setup in setup_arch(). */
2307  	if (!is_boot_cpu)
2308  		cpu_cache_init();
2309  	tlb_init();
2310  	TLBMISS_HANDLER_SETUP();
2311  }
2312  
2313  /* Install CPU exception handler */
set_handler(unsigned long offset,const void * addr,unsigned long size)2314  void set_handler(unsigned long offset, const void *addr, unsigned long size)
2315  {
2316  #ifdef CONFIG_CPU_MICROMIPS
2317  	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2318  #else
2319  	memcpy((void *)(ebase + offset), addr, size);
2320  #endif
2321  	local_flush_icache_range(ebase + offset, ebase + offset + size);
2322  }
2323  
2324  static const char panic_null_cerr[] =
2325  	"Trying to set NULL cache error exception handler\n";
2326  
2327  /*
2328   * Install uncached CPU exception handler.
2329   * This is suitable only for the cache error exception which is the only
2330   * exception handler that is being run uncached.
2331   */
set_uncached_handler(unsigned long offset,void * addr,unsigned long size)2332  void set_uncached_handler(unsigned long offset, void *addr,
2333  	unsigned long size)
2334  {
2335  	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2336  
2337  	if (!addr)
2338  		panic(panic_null_cerr);
2339  
2340  	memcpy((void *)(uncached_ebase + offset), addr, size);
2341  }
2342  
2343  static int __initdata rdhwr_noopt;
set_rdhwr_noopt(char * str)2344  static int __init set_rdhwr_noopt(char *str)
2345  {
2346  	rdhwr_noopt = 1;
2347  	return 1;
2348  }
2349  
2350  __setup("rdhwr_noopt", set_rdhwr_noopt);
2351  
trap_init(void)2352  void __init trap_init(void)
2353  {
2354  	extern char except_vec3_generic;
2355  	extern char except_vec4;
2356  	extern char except_vec3_r4000;
2357  	unsigned long i, vec_size;
2358  	phys_addr_t ebase_pa;
2359  
2360  	check_wait();
2361  
2362  	if (!cpu_has_mips_r2_r6) {
2363  		ebase = CAC_BASE;
2364  		vec_size = 0x400;
2365  	} else {
2366  		if (cpu_has_veic || cpu_has_vint)
2367  			vec_size = 0x200 + VECTORSPACING*64;
2368  		else
2369  			vec_size = PAGE_SIZE;
2370  
2371  		ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2372  		if (!ebase_pa)
2373  			panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2374  			      __func__, vec_size, 1 << fls(vec_size));
2375  
2376  		/*
2377  		 * Try to ensure ebase resides in KSeg0 if possible.
2378  		 *
2379  		 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2380  		 * hitting a poorly defined exception base for Cache Errors.
2381  		 * The allocation is likely to be in the low 512MB of physical,
2382  		 * in which case we should be able to convert to KSeg0.
2383  		 *
2384  		 * EVA is special though as it allows segments to be rearranged
2385  		 * and to become uncached during cache error handling.
2386  		 */
2387  		if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2388  			ebase = CKSEG0ADDR(ebase_pa);
2389  		else
2390  			ebase = (unsigned long)phys_to_virt(ebase_pa);
2391  	}
2392  
2393  	if (cpu_has_mmips) {
2394  		unsigned int config3 = read_c0_config3();
2395  
2396  		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2397  			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2398  		else
2399  			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2400  	}
2401  
2402  	if (board_ebase_setup)
2403  		board_ebase_setup();
2404  	per_cpu_trap_init(true);
2405  	memblock_set_bottom_up(false);
2406  
2407  	/*
2408  	 * Copy the generic exception handlers to their final destination.
2409  	 * This will be overridden later as suitable for a particular
2410  	 * configuration.
2411  	 */
2412  	set_handler(0x180, &except_vec3_generic, 0x80);
2413  
2414  	/*
2415  	 * Setup default vectors
2416  	 */
2417  	for (i = 0; i <= 31; i++)
2418  		set_except_vector(i, handle_reserved);
2419  
2420  	/*
2421  	 * Copy the EJTAG debug exception vector handler code to it's final
2422  	 * destination.
2423  	 */
2424  	if (cpu_has_ejtag && board_ejtag_handler_setup)
2425  		board_ejtag_handler_setup();
2426  
2427  	/*
2428  	 * Only some CPUs have the watch exceptions.
2429  	 */
2430  	if (cpu_has_watch)
2431  		set_except_vector(EXCCODE_WATCH, handle_watch);
2432  
2433  	/*
2434  	 * Initialise interrupt handlers
2435  	 */
2436  	if (cpu_has_veic || cpu_has_vint) {
2437  		int nvec = cpu_has_veic ? 64 : 8;
2438  		for (i = 0; i < nvec; i++)
2439  			set_vi_handler(i, NULL);
2440  	}
2441  	else if (cpu_has_divec)
2442  		set_handler(0x200, &except_vec4, 0x8);
2443  
2444  	/*
2445  	 * Some CPUs can enable/disable for cache parity detection, but does
2446  	 * it different ways.
2447  	 */
2448  	parity_protection_init();
2449  
2450  	/*
2451  	 * The Data Bus Errors / Instruction Bus Errors are signaled
2452  	 * by external hardware.  Therefore these two exceptions
2453  	 * may have board specific handlers.
2454  	 */
2455  	if (board_be_init)
2456  		board_be_init();
2457  
2458  	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2459  					rollback_handle_int : handle_int);
2460  	set_except_vector(EXCCODE_MOD, handle_tlbm);
2461  	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2462  	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2463  
2464  	set_except_vector(EXCCODE_ADEL, handle_adel);
2465  	set_except_vector(EXCCODE_ADES, handle_ades);
2466  
2467  	set_except_vector(EXCCODE_IBE, handle_ibe);
2468  	set_except_vector(EXCCODE_DBE, handle_dbe);
2469  
2470  	set_except_vector(EXCCODE_SYS, handle_sys);
2471  	set_except_vector(EXCCODE_BP, handle_bp);
2472  
2473  	if (rdhwr_noopt)
2474  		set_except_vector(EXCCODE_RI, handle_ri);
2475  	else {
2476  		if (cpu_has_vtag_icache)
2477  			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2478  		else if (current_cpu_type() == CPU_LOONGSON64)
2479  			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2480  		else
2481  			set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2482  	}
2483  
2484  	set_except_vector(EXCCODE_CPU, handle_cpu);
2485  	set_except_vector(EXCCODE_OV, handle_ov);
2486  	set_except_vector(EXCCODE_TR, handle_tr);
2487  	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2488  
2489  	if (board_nmi_handler_setup)
2490  		board_nmi_handler_setup();
2491  
2492  	if (cpu_has_fpu && !cpu_has_nofpuex)
2493  		set_except_vector(EXCCODE_FPE, handle_fpe);
2494  
2495  	if (cpu_has_ftlbparex)
2496  		set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2497  
2498  	if (cpu_has_gsexcex)
2499  		set_except_vector(LOONGSON_EXCCODE_GSEXC, handle_gsexc);
2500  
2501  	if (cpu_has_rixiex) {
2502  		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2503  		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2504  	}
2505  
2506  	set_except_vector(EXCCODE_MSADIS, handle_msa);
2507  	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2508  
2509  	if (cpu_has_mcheck)
2510  		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2511  
2512  	if (cpu_has_mipsmt)
2513  		set_except_vector(EXCCODE_THREAD, handle_mt);
2514  
2515  	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2516  
2517  	if (board_cache_error_setup)
2518  		board_cache_error_setup();
2519  
2520  	if (cpu_has_vce)
2521  		/* Special exception: R4[04]00 uses also the divec space. */
2522  		set_handler(0x180, &except_vec3_r4000, 0x100);
2523  	else if (cpu_has_4kex)
2524  		set_handler(0x180, &except_vec3_generic, 0x80);
2525  	else
2526  		set_handler(0x080, &except_vec3_generic, 0x80);
2527  
2528  	local_flush_icache_range(ebase, ebase + vec_size);
2529  
2530  	sort_extable(__start___dbe_table, __stop___dbe_table);
2531  
2532  	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2533  }
2534  
trap_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)2535  static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2536  			    void *v)
2537  {
2538  	switch (cmd) {
2539  	case CPU_PM_ENTER_FAILED:
2540  	case CPU_PM_EXIT:
2541  		configure_status();
2542  		configure_hwrena();
2543  		configure_exception_vector();
2544  
2545  		/* Restore register with CPU number for TLB handlers */
2546  		TLBMISS_HANDLER_RESTORE();
2547  
2548  		break;
2549  	}
2550  
2551  	return NOTIFY_OK;
2552  }
2553  
2554  static struct notifier_block trap_pm_notifier_block = {
2555  	.notifier_call = trap_pm_notifier,
2556  };
2557  
trap_pm_init(void)2558  static int __init trap_pm_init(void)
2559  {
2560  	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2561  }
2562  arch_initcall(trap_pm_init);
2563