1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(c) 2014 Intel Mobile Communications GmbH
4  * Copyright(c) 2015 Intel Deutschland GmbH
5  *
6  * Author: Johannes Berg <johannes@sipsolutions.net>
7  */
8 #include <linux/module.h>
9 #include <linux/device.h>
10 #include <linux/devcoredump.h>
11 #include <linux/list.h>
12 #include <linux/slab.h>
13 #include <linux/fs.h>
14 #include <linux/workqueue.h>
15 
16 static struct class devcd_class;
17 
18 /* global disable flag, for security purposes */
19 static bool devcd_disabled;
20 
21 /* if data isn't read by userspace after 5 minutes then delete it */
22 #define DEVCD_TIMEOUT	(HZ * 60 * 5)
23 
24 struct devcd_entry {
25 	struct device devcd_dev;
26 	void *data;
27 	size_t datalen;
28 	/*
29 	 * Here, mutex is required to serialize the calls to del_wk work between
30 	 * user/kernel space which happens when devcd is added with device_add()
31 	 * and that sends uevent to user space. User space reads the uevents,
32 	 * and calls to devcd_data_write() which try to modify the work which is
33 	 * not even initialized/queued from devcoredump.
34 	 *
35 	 *
36 	 *
37 	 *        cpu0(X)                                 cpu1(Y)
38 	 *
39 	 *        dev_coredump() uevent sent to user space
40 	 *        device_add()  ======================> user space process Y reads the
41 	 *                                              uevents writes to devcd fd
42 	 *                                              which results into writes to
43 	 *
44 	 *                                             devcd_data_write()
45 	 *                                               mod_delayed_work()
46 	 *                                                 try_to_grab_pending()
47 	 *                                                   del_timer()
48 	 *                                                     debug_assert_init()
49 	 *       INIT_DELAYED_WORK()
50 	 *       schedule_delayed_work()
51 	 *
52 	 *
53 	 * Also, mutex alone would not be enough to avoid scheduling of
54 	 * del_wk work after it get flush from a call to devcd_free()
55 	 * mentioned as below.
56 	 *
57 	 *	disabled_store()
58 	 *        devcd_free()
59 	 *          mutex_lock()             devcd_data_write()
60 	 *          flush_delayed_work()
61 	 *          mutex_unlock()
62 	 *                                   mutex_lock()
63 	 *                                   mod_delayed_work()
64 	 *                                   mutex_unlock()
65 	 * So, delete_work flag is required.
66 	 */
67 	struct mutex mutex;
68 	bool delete_work;
69 	struct module *owner;
70 	ssize_t (*read)(char *buffer, loff_t offset, size_t count,
71 			void *data, size_t datalen);
72 	void (*free)(void *data);
73 	struct delayed_work del_wk;
74 	struct device *failing_dev;
75 };
76 
dev_to_devcd(struct device * dev)77 static struct devcd_entry *dev_to_devcd(struct device *dev)
78 {
79 	return container_of(dev, struct devcd_entry, devcd_dev);
80 }
81 
devcd_dev_release(struct device * dev)82 static void devcd_dev_release(struct device *dev)
83 {
84 	struct devcd_entry *devcd = dev_to_devcd(dev);
85 
86 	devcd->free(devcd->data);
87 	module_put(devcd->owner);
88 
89 	/*
90 	 * this seems racy, but I don't see a notifier or such on
91 	 * a struct device to know when it goes away?
92 	 */
93 	if (devcd->failing_dev->kobj.sd)
94 		sysfs_delete_link(&devcd->failing_dev->kobj, &dev->kobj,
95 				  "devcoredump");
96 
97 	put_device(devcd->failing_dev);
98 	kfree(devcd);
99 }
100 
devcd_del(struct work_struct * wk)101 static void devcd_del(struct work_struct *wk)
102 {
103 	struct devcd_entry *devcd;
104 
105 	devcd = container_of(wk, struct devcd_entry, del_wk.work);
106 
107 	device_del(&devcd->devcd_dev);
108 	put_device(&devcd->devcd_dev);
109 }
110 
devcd_data_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buffer,loff_t offset,size_t count)111 static ssize_t devcd_data_read(struct file *filp, struct kobject *kobj,
112 			       struct bin_attribute *bin_attr,
113 			       char *buffer, loff_t offset, size_t count)
114 {
115 	struct device *dev = kobj_to_dev(kobj);
116 	struct devcd_entry *devcd = dev_to_devcd(dev);
117 
118 	return devcd->read(buffer, offset, count, devcd->data, devcd->datalen);
119 }
120 
devcd_data_write(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buffer,loff_t offset,size_t count)121 static ssize_t devcd_data_write(struct file *filp, struct kobject *kobj,
122 				struct bin_attribute *bin_attr,
123 				char *buffer, loff_t offset, size_t count)
124 {
125 	struct device *dev = kobj_to_dev(kobj);
126 	struct devcd_entry *devcd = dev_to_devcd(dev);
127 
128 	mutex_lock(&devcd->mutex);
129 	if (!devcd->delete_work) {
130 		devcd->delete_work = true;
131 		mod_delayed_work(system_wq, &devcd->del_wk, 0);
132 	}
133 	mutex_unlock(&devcd->mutex);
134 
135 	return count;
136 }
137 
138 static struct bin_attribute devcd_attr_data = {
139 	.attr = { .name = "data", .mode = S_IRUSR | S_IWUSR, },
140 	.size = 0,
141 	.read = devcd_data_read,
142 	.write = devcd_data_write,
143 };
144 
145 static struct bin_attribute *devcd_dev_bin_attrs[] = {
146 	&devcd_attr_data, NULL,
147 };
148 
149 static const struct attribute_group devcd_dev_group = {
150 	.bin_attrs = devcd_dev_bin_attrs,
151 };
152 
153 static const struct attribute_group *devcd_dev_groups[] = {
154 	&devcd_dev_group, NULL,
155 };
156 
devcd_free(struct device * dev,void * data)157 static int devcd_free(struct device *dev, void *data)
158 {
159 	struct devcd_entry *devcd = dev_to_devcd(dev);
160 
161 	mutex_lock(&devcd->mutex);
162 	if (!devcd->delete_work)
163 		devcd->delete_work = true;
164 
165 	flush_delayed_work(&devcd->del_wk);
166 	mutex_unlock(&devcd->mutex);
167 	return 0;
168 }
169 
disabled_show(const struct class * class,const struct class_attribute * attr,char * buf)170 static ssize_t disabled_show(const struct class *class, const struct class_attribute *attr,
171 			     char *buf)
172 {
173 	return sysfs_emit(buf, "%d\n", devcd_disabled);
174 }
175 
176 /*
177  *
178  *	disabled_store()                                	worker()
179  *	 class_for_each_device(&devcd_class,
180  *		NULL, NULL, devcd_free)
181  *         ...
182  *         ...
183  *	   while ((dev = class_dev_iter_next(&iter))
184  *                                                             devcd_del()
185  *                                                               device_del()
186  *                                                                 put_device() <- last reference
187  *             error = fn(dev, data)                           devcd_dev_release()
188  *             devcd_free(dev, data)                           kfree(devcd)
189  *             mutex_lock(&devcd->mutex);
190  *
191  *
192  * In the above diagram, It looks like disabled_store() would be racing with parallely
193  * running devcd_del() and result in memory abort while acquiring devcd->mutex which
194  * is called after kfree of devcd memory  after dropping its last reference with
195  * put_device(). However, this will not happens as fn(dev, data) runs
196  * with its own reference to device via klist_node so it is not its last reference.
197  * so, above situation would not occur.
198  */
199 
disabled_store(const struct class * class,const struct class_attribute * attr,const char * buf,size_t count)200 static ssize_t disabled_store(const struct class *class, const struct class_attribute *attr,
201 			      const char *buf, size_t count)
202 {
203 	long tmp = simple_strtol(buf, NULL, 10);
204 
205 	/*
206 	 * This essentially makes the attribute write-once, since you can't
207 	 * go back to not having it disabled. This is intentional, it serves
208 	 * as a system lockdown feature.
209 	 */
210 	if (tmp != 1)
211 		return -EINVAL;
212 
213 	devcd_disabled = true;
214 
215 	class_for_each_device(&devcd_class, NULL, NULL, devcd_free);
216 
217 	return count;
218 }
219 static CLASS_ATTR_RW(disabled);
220 
221 static struct attribute *devcd_class_attrs[] = {
222 	&class_attr_disabled.attr,
223 	NULL,
224 };
225 ATTRIBUTE_GROUPS(devcd_class);
226 
227 static struct class devcd_class = {
228 	.name		= "devcoredump",
229 	.dev_release	= devcd_dev_release,
230 	.dev_groups	= devcd_dev_groups,
231 	.class_groups	= devcd_class_groups,
232 };
233 
devcd_readv(char * buffer,loff_t offset,size_t count,void * data,size_t datalen)234 static ssize_t devcd_readv(char *buffer, loff_t offset, size_t count,
235 			   void *data, size_t datalen)
236 {
237 	return memory_read_from_buffer(buffer, count, &offset, data, datalen);
238 }
239 
devcd_freev(void * data)240 static void devcd_freev(void *data)
241 {
242 	vfree(data);
243 }
244 
245 /**
246  * dev_coredumpv - create device coredump with vmalloc data
247  * @dev: the struct device for the crashed device
248  * @data: vmalloc data containing the device coredump
249  * @datalen: length of the data
250  * @gfp: allocation flags
251  *
252  * This function takes ownership of the vmalloc'ed data and will free
253  * it when it is no longer used. See dev_coredumpm() for more information.
254  */
dev_coredumpv(struct device * dev,void * data,size_t datalen,gfp_t gfp)255 void dev_coredumpv(struct device *dev, void *data, size_t datalen,
256 		   gfp_t gfp)
257 {
258 	dev_coredumpm(dev, NULL, data, datalen, gfp, devcd_readv, devcd_freev);
259 }
260 EXPORT_SYMBOL_GPL(dev_coredumpv);
261 
devcd_match_failing(struct device * dev,const void * failing)262 static int devcd_match_failing(struct device *dev, const void *failing)
263 {
264 	struct devcd_entry *devcd = dev_to_devcd(dev);
265 
266 	return devcd->failing_dev == failing;
267 }
268 
269 /**
270  * devcd_free_sgtable - free all the memory of the given scatterlist table
271  * (i.e. both pages and scatterlist instances)
272  * NOTE: if two tables allocated with devcd_alloc_sgtable and then chained
273  * using the sg_chain function then that function should be called only once
274  * on the chained table
275  * @data: pointer to sg_table to free
276  */
devcd_free_sgtable(void * data)277 static void devcd_free_sgtable(void *data)
278 {
279 	_devcd_free_sgtable(data);
280 }
281 
282 /**
283  * devcd_read_from_sgtable - copy data from sg_table to a given buffer
284  * and return the number of bytes read
285  * @buffer: the buffer to copy the data to it
286  * @buf_len: the length of the buffer
287  * @data: the scatterlist table to copy from
288  * @offset: start copy from @offset@ bytes from the head of the data
289  *	in the given scatterlist
290  * @data_len: the length of the data in the sg_table
291  */
devcd_read_from_sgtable(char * buffer,loff_t offset,size_t buf_len,void * data,size_t data_len)292 static ssize_t devcd_read_from_sgtable(char *buffer, loff_t offset,
293 				       size_t buf_len, void *data,
294 				       size_t data_len)
295 {
296 	struct scatterlist *table = data;
297 
298 	if (offset > data_len)
299 		return -EINVAL;
300 
301 	if (offset + buf_len > data_len)
302 		buf_len = data_len - offset;
303 	return sg_pcopy_to_buffer(table, sg_nents(table), buffer, buf_len,
304 				  offset);
305 }
306 
307 /**
308  * dev_coredumpm - create device coredump with read/free methods
309  * @dev: the struct device for the crashed device
310  * @owner: the module that contains the read/free functions, use %THIS_MODULE
311  * @data: data cookie for the @read/@free functions
312  * @datalen: length of the data
313  * @gfp: allocation flags
314  * @read: function to read from the given buffer
315  * @free: function to free the given buffer
316  *
317  * Creates a new device coredump for the given device. If a previous one hasn't
318  * been read yet, the new coredump is discarded. The data lifetime is determined
319  * by the device coredump framework and when it is no longer needed the @free
320  * function will be called to free the data.
321  */
dev_coredumpm(struct device * dev,struct module * owner,void * data,size_t datalen,gfp_t gfp,ssize_t (* read)(char * buffer,loff_t offset,size_t count,void * data,size_t datalen),void (* free)(void * data))322 void dev_coredumpm(struct device *dev, struct module *owner,
323 		   void *data, size_t datalen, gfp_t gfp,
324 		   ssize_t (*read)(char *buffer, loff_t offset, size_t count,
325 				   void *data, size_t datalen),
326 		   void (*free)(void *data))
327 {
328 	static atomic_t devcd_count = ATOMIC_INIT(0);
329 	struct devcd_entry *devcd;
330 	struct device *existing;
331 
332 	if (devcd_disabled)
333 		goto free;
334 
335 	existing = class_find_device(&devcd_class, NULL, dev,
336 				     devcd_match_failing);
337 	if (existing) {
338 		put_device(existing);
339 		goto free;
340 	}
341 
342 	if (!try_module_get(owner))
343 		goto free;
344 
345 	devcd = kzalloc(sizeof(*devcd), gfp);
346 	if (!devcd)
347 		goto put_module;
348 
349 	devcd->owner = owner;
350 	devcd->data = data;
351 	devcd->datalen = datalen;
352 	devcd->read = read;
353 	devcd->free = free;
354 	devcd->failing_dev = get_device(dev);
355 	devcd->delete_work = false;
356 
357 	mutex_init(&devcd->mutex);
358 	device_initialize(&devcd->devcd_dev);
359 
360 	dev_set_name(&devcd->devcd_dev, "devcd%d",
361 		     atomic_inc_return(&devcd_count));
362 	devcd->devcd_dev.class = &devcd_class;
363 
364 	mutex_lock(&devcd->mutex);
365 	if (device_add(&devcd->devcd_dev))
366 		goto put_device;
367 
368 	/*
369 	 * These should normally not fail, but there is no problem
370 	 * continuing without the links, so just warn instead of
371 	 * failing.
372 	 */
373 	if (sysfs_create_link(&devcd->devcd_dev.kobj, &dev->kobj,
374 			      "failing_device") ||
375 	    sysfs_create_link(&dev->kobj, &devcd->devcd_dev.kobj,
376 		              "devcoredump"))
377 		dev_warn(dev, "devcoredump create_link failed\n");
378 
379 	INIT_DELAYED_WORK(&devcd->del_wk, devcd_del);
380 	schedule_delayed_work(&devcd->del_wk, DEVCD_TIMEOUT);
381 	mutex_unlock(&devcd->mutex);
382 	return;
383  put_device:
384 	put_device(&devcd->devcd_dev);
385 	mutex_unlock(&devcd->mutex);
386  put_module:
387 	module_put(owner);
388  free:
389 	free(data);
390 }
391 EXPORT_SYMBOL_GPL(dev_coredumpm);
392 
393 /**
394  * dev_coredumpsg - create device coredump that uses scatterlist as data
395  * parameter
396  * @dev: the struct device for the crashed device
397  * @table: the dump data
398  * @datalen: length of the data
399  * @gfp: allocation flags
400  *
401  * Creates a new device coredump for the given device. If a previous one hasn't
402  * been read yet, the new coredump is discarded. The data lifetime is determined
403  * by the device coredump framework and when it is no longer needed
404  * it will free the data.
405  */
dev_coredumpsg(struct device * dev,struct scatterlist * table,size_t datalen,gfp_t gfp)406 void dev_coredumpsg(struct device *dev, struct scatterlist *table,
407 		    size_t datalen, gfp_t gfp)
408 {
409 	dev_coredumpm(dev, NULL, table, datalen, gfp, devcd_read_from_sgtable,
410 		      devcd_free_sgtable);
411 }
412 EXPORT_SYMBOL_GPL(dev_coredumpsg);
413 
devcoredump_init(void)414 static int __init devcoredump_init(void)
415 {
416 	return class_register(&devcd_class);
417 }
418 __initcall(devcoredump_init);
419 
devcoredump_exit(void)420 static void __exit devcoredump_exit(void)
421 {
422 	class_for_each_device(&devcd_class, NULL, NULL, devcd_free);
423 	class_unregister(&devcd_class);
424 }
425 __exitcall(devcoredump_exit);
426