1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(c) 2014 Intel Mobile Communications GmbH
4 * Copyright(c) 2015 Intel Deutschland GmbH
5 *
6 * Author: Johannes Berg <johannes@sipsolutions.net>
7 */
8 #include <linux/module.h>
9 #include <linux/device.h>
10 #include <linux/devcoredump.h>
11 #include <linux/list.h>
12 #include <linux/slab.h>
13 #include <linux/fs.h>
14 #include <linux/workqueue.h>
15
16 static struct class devcd_class;
17
18 /* global disable flag, for security purposes */
19 static bool devcd_disabled;
20
21 /* if data isn't read by userspace after 5 minutes then delete it */
22 #define DEVCD_TIMEOUT (HZ * 60 * 5)
23
24 struct devcd_entry {
25 struct device devcd_dev;
26 void *data;
27 size_t datalen;
28 /*
29 * Here, mutex is required to serialize the calls to del_wk work between
30 * user/kernel space which happens when devcd is added with device_add()
31 * and that sends uevent to user space. User space reads the uevents,
32 * and calls to devcd_data_write() which try to modify the work which is
33 * not even initialized/queued from devcoredump.
34 *
35 *
36 *
37 * cpu0(X) cpu1(Y)
38 *
39 * dev_coredump() uevent sent to user space
40 * device_add() ======================> user space process Y reads the
41 * uevents writes to devcd fd
42 * which results into writes to
43 *
44 * devcd_data_write()
45 * mod_delayed_work()
46 * try_to_grab_pending()
47 * del_timer()
48 * debug_assert_init()
49 * INIT_DELAYED_WORK()
50 * schedule_delayed_work()
51 *
52 *
53 * Also, mutex alone would not be enough to avoid scheduling of
54 * del_wk work after it get flush from a call to devcd_free()
55 * mentioned as below.
56 *
57 * disabled_store()
58 * devcd_free()
59 * mutex_lock() devcd_data_write()
60 * flush_delayed_work()
61 * mutex_unlock()
62 * mutex_lock()
63 * mod_delayed_work()
64 * mutex_unlock()
65 * So, delete_work flag is required.
66 */
67 struct mutex mutex;
68 bool delete_work;
69 struct module *owner;
70 ssize_t (*read)(char *buffer, loff_t offset, size_t count,
71 void *data, size_t datalen);
72 void (*free)(void *data);
73 struct delayed_work del_wk;
74 struct device *failing_dev;
75 };
76
dev_to_devcd(struct device * dev)77 static struct devcd_entry *dev_to_devcd(struct device *dev)
78 {
79 return container_of(dev, struct devcd_entry, devcd_dev);
80 }
81
devcd_dev_release(struct device * dev)82 static void devcd_dev_release(struct device *dev)
83 {
84 struct devcd_entry *devcd = dev_to_devcd(dev);
85
86 devcd->free(devcd->data);
87 module_put(devcd->owner);
88
89 /*
90 * this seems racy, but I don't see a notifier or such on
91 * a struct device to know when it goes away?
92 */
93 if (devcd->failing_dev->kobj.sd)
94 sysfs_delete_link(&devcd->failing_dev->kobj, &dev->kobj,
95 "devcoredump");
96
97 put_device(devcd->failing_dev);
98 kfree(devcd);
99 }
100
devcd_del(struct work_struct * wk)101 static void devcd_del(struct work_struct *wk)
102 {
103 struct devcd_entry *devcd;
104
105 devcd = container_of(wk, struct devcd_entry, del_wk.work);
106
107 device_del(&devcd->devcd_dev);
108 put_device(&devcd->devcd_dev);
109 }
110
devcd_data_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buffer,loff_t offset,size_t count)111 static ssize_t devcd_data_read(struct file *filp, struct kobject *kobj,
112 struct bin_attribute *bin_attr,
113 char *buffer, loff_t offset, size_t count)
114 {
115 struct device *dev = kobj_to_dev(kobj);
116 struct devcd_entry *devcd = dev_to_devcd(dev);
117
118 return devcd->read(buffer, offset, count, devcd->data, devcd->datalen);
119 }
120
devcd_data_write(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buffer,loff_t offset,size_t count)121 static ssize_t devcd_data_write(struct file *filp, struct kobject *kobj,
122 struct bin_attribute *bin_attr,
123 char *buffer, loff_t offset, size_t count)
124 {
125 struct device *dev = kobj_to_dev(kobj);
126 struct devcd_entry *devcd = dev_to_devcd(dev);
127
128 mutex_lock(&devcd->mutex);
129 if (!devcd->delete_work) {
130 devcd->delete_work = true;
131 mod_delayed_work(system_wq, &devcd->del_wk, 0);
132 }
133 mutex_unlock(&devcd->mutex);
134
135 return count;
136 }
137
138 static struct bin_attribute devcd_attr_data = {
139 .attr = { .name = "data", .mode = S_IRUSR | S_IWUSR, },
140 .size = 0,
141 .read = devcd_data_read,
142 .write = devcd_data_write,
143 };
144
145 static struct bin_attribute *devcd_dev_bin_attrs[] = {
146 &devcd_attr_data, NULL,
147 };
148
149 static const struct attribute_group devcd_dev_group = {
150 .bin_attrs = devcd_dev_bin_attrs,
151 };
152
153 static const struct attribute_group *devcd_dev_groups[] = {
154 &devcd_dev_group, NULL,
155 };
156
devcd_free(struct device * dev,void * data)157 static int devcd_free(struct device *dev, void *data)
158 {
159 struct devcd_entry *devcd = dev_to_devcd(dev);
160
161 mutex_lock(&devcd->mutex);
162 if (!devcd->delete_work)
163 devcd->delete_work = true;
164
165 flush_delayed_work(&devcd->del_wk);
166 mutex_unlock(&devcd->mutex);
167 return 0;
168 }
169
disabled_show(const struct class * class,const struct class_attribute * attr,char * buf)170 static ssize_t disabled_show(const struct class *class, const struct class_attribute *attr,
171 char *buf)
172 {
173 return sysfs_emit(buf, "%d\n", devcd_disabled);
174 }
175
176 /*
177 *
178 * disabled_store() worker()
179 * class_for_each_device(&devcd_class,
180 * NULL, NULL, devcd_free)
181 * ...
182 * ...
183 * while ((dev = class_dev_iter_next(&iter))
184 * devcd_del()
185 * device_del()
186 * put_device() <- last reference
187 * error = fn(dev, data) devcd_dev_release()
188 * devcd_free(dev, data) kfree(devcd)
189 * mutex_lock(&devcd->mutex);
190 *
191 *
192 * In the above diagram, It looks like disabled_store() would be racing with parallely
193 * running devcd_del() and result in memory abort while acquiring devcd->mutex which
194 * is called after kfree of devcd memory after dropping its last reference with
195 * put_device(). However, this will not happens as fn(dev, data) runs
196 * with its own reference to device via klist_node so it is not its last reference.
197 * so, above situation would not occur.
198 */
199
disabled_store(const struct class * class,const struct class_attribute * attr,const char * buf,size_t count)200 static ssize_t disabled_store(const struct class *class, const struct class_attribute *attr,
201 const char *buf, size_t count)
202 {
203 long tmp = simple_strtol(buf, NULL, 10);
204
205 /*
206 * This essentially makes the attribute write-once, since you can't
207 * go back to not having it disabled. This is intentional, it serves
208 * as a system lockdown feature.
209 */
210 if (tmp != 1)
211 return -EINVAL;
212
213 devcd_disabled = true;
214
215 class_for_each_device(&devcd_class, NULL, NULL, devcd_free);
216
217 return count;
218 }
219 static CLASS_ATTR_RW(disabled);
220
221 static struct attribute *devcd_class_attrs[] = {
222 &class_attr_disabled.attr,
223 NULL,
224 };
225 ATTRIBUTE_GROUPS(devcd_class);
226
227 static struct class devcd_class = {
228 .name = "devcoredump",
229 .dev_release = devcd_dev_release,
230 .dev_groups = devcd_dev_groups,
231 .class_groups = devcd_class_groups,
232 };
233
devcd_readv(char * buffer,loff_t offset,size_t count,void * data,size_t datalen)234 static ssize_t devcd_readv(char *buffer, loff_t offset, size_t count,
235 void *data, size_t datalen)
236 {
237 return memory_read_from_buffer(buffer, count, &offset, data, datalen);
238 }
239
devcd_freev(void * data)240 static void devcd_freev(void *data)
241 {
242 vfree(data);
243 }
244
245 /**
246 * dev_coredumpv - create device coredump with vmalloc data
247 * @dev: the struct device for the crashed device
248 * @data: vmalloc data containing the device coredump
249 * @datalen: length of the data
250 * @gfp: allocation flags
251 *
252 * This function takes ownership of the vmalloc'ed data and will free
253 * it when it is no longer used. See dev_coredumpm() for more information.
254 */
dev_coredumpv(struct device * dev,void * data,size_t datalen,gfp_t gfp)255 void dev_coredumpv(struct device *dev, void *data, size_t datalen,
256 gfp_t gfp)
257 {
258 dev_coredumpm(dev, NULL, data, datalen, gfp, devcd_readv, devcd_freev);
259 }
260 EXPORT_SYMBOL_GPL(dev_coredumpv);
261
devcd_match_failing(struct device * dev,const void * failing)262 static int devcd_match_failing(struct device *dev, const void *failing)
263 {
264 struct devcd_entry *devcd = dev_to_devcd(dev);
265
266 return devcd->failing_dev == failing;
267 }
268
269 /**
270 * devcd_free_sgtable - free all the memory of the given scatterlist table
271 * (i.e. both pages and scatterlist instances)
272 * NOTE: if two tables allocated with devcd_alloc_sgtable and then chained
273 * using the sg_chain function then that function should be called only once
274 * on the chained table
275 * @data: pointer to sg_table to free
276 */
devcd_free_sgtable(void * data)277 static void devcd_free_sgtable(void *data)
278 {
279 _devcd_free_sgtable(data);
280 }
281
282 /**
283 * devcd_read_from_sgtable - copy data from sg_table to a given buffer
284 * and return the number of bytes read
285 * @buffer: the buffer to copy the data to it
286 * @buf_len: the length of the buffer
287 * @data: the scatterlist table to copy from
288 * @offset: start copy from @offset@ bytes from the head of the data
289 * in the given scatterlist
290 * @data_len: the length of the data in the sg_table
291 */
devcd_read_from_sgtable(char * buffer,loff_t offset,size_t buf_len,void * data,size_t data_len)292 static ssize_t devcd_read_from_sgtable(char *buffer, loff_t offset,
293 size_t buf_len, void *data,
294 size_t data_len)
295 {
296 struct scatterlist *table = data;
297
298 if (offset > data_len)
299 return -EINVAL;
300
301 if (offset + buf_len > data_len)
302 buf_len = data_len - offset;
303 return sg_pcopy_to_buffer(table, sg_nents(table), buffer, buf_len,
304 offset);
305 }
306
307 /**
308 * dev_coredumpm - create device coredump with read/free methods
309 * @dev: the struct device for the crashed device
310 * @owner: the module that contains the read/free functions, use %THIS_MODULE
311 * @data: data cookie for the @read/@free functions
312 * @datalen: length of the data
313 * @gfp: allocation flags
314 * @read: function to read from the given buffer
315 * @free: function to free the given buffer
316 *
317 * Creates a new device coredump for the given device. If a previous one hasn't
318 * been read yet, the new coredump is discarded. The data lifetime is determined
319 * by the device coredump framework and when it is no longer needed the @free
320 * function will be called to free the data.
321 */
dev_coredumpm(struct device * dev,struct module * owner,void * data,size_t datalen,gfp_t gfp,ssize_t (* read)(char * buffer,loff_t offset,size_t count,void * data,size_t datalen),void (* free)(void * data))322 void dev_coredumpm(struct device *dev, struct module *owner,
323 void *data, size_t datalen, gfp_t gfp,
324 ssize_t (*read)(char *buffer, loff_t offset, size_t count,
325 void *data, size_t datalen),
326 void (*free)(void *data))
327 {
328 static atomic_t devcd_count = ATOMIC_INIT(0);
329 struct devcd_entry *devcd;
330 struct device *existing;
331
332 if (devcd_disabled)
333 goto free;
334
335 existing = class_find_device(&devcd_class, NULL, dev,
336 devcd_match_failing);
337 if (existing) {
338 put_device(existing);
339 goto free;
340 }
341
342 if (!try_module_get(owner))
343 goto free;
344
345 devcd = kzalloc(sizeof(*devcd), gfp);
346 if (!devcd)
347 goto put_module;
348
349 devcd->owner = owner;
350 devcd->data = data;
351 devcd->datalen = datalen;
352 devcd->read = read;
353 devcd->free = free;
354 devcd->failing_dev = get_device(dev);
355 devcd->delete_work = false;
356
357 mutex_init(&devcd->mutex);
358 device_initialize(&devcd->devcd_dev);
359
360 dev_set_name(&devcd->devcd_dev, "devcd%d",
361 atomic_inc_return(&devcd_count));
362 devcd->devcd_dev.class = &devcd_class;
363
364 mutex_lock(&devcd->mutex);
365 if (device_add(&devcd->devcd_dev))
366 goto put_device;
367
368 /*
369 * These should normally not fail, but there is no problem
370 * continuing without the links, so just warn instead of
371 * failing.
372 */
373 if (sysfs_create_link(&devcd->devcd_dev.kobj, &dev->kobj,
374 "failing_device") ||
375 sysfs_create_link(&dev->kobj, &devcd->devcd_dev.kobj,
376 "devcoredump"))
377 dev_warn(dev, "devcoredump create_link failed\n");
378
379 INIT_DELAYED_WORK(&devcd->del_wk, devcd_del);
380 schedule_delayed_work(&devcd->del_wk, DEVCD_TIMEOUT);
381 mutex_unlock(&devcd->mutex);
382 return;
383 put_device:
384 put_device(&devcd->devcd_dev);
385 mutex_unlock(&devcd->mutex);
386 put_module:
387 module_put(owner);
388 free:
389 free(data);
390 }
391 EXPORT_SYMBOL_GPL(dev_coredumpm);
392
393 /**
394 * dev_coredumpsg - create device coredump that uses scatterlist as data
395 * parameter
396 * @dev: the struct device for the crashed device
397 * @table: the dump data
398 * @datalen: length of the data
399 * @gfp: allocation flags
400 *
401 * Creates a new device coredump for the given device. If a previous one hasn't
402 * been read yet, the new coredump is discarded. The data lifetime is determined
403 * by the device coredump framework and when it is no longer needed
404 * it will free the data.
405 */
dev_coredumpsg(struct device * dev,struct scatterlist * table,size_t datalen,gfp_t gfp)406 void dev_coredumpsg(struct device *dev, struct scatterlist *table,
407 size_t datalen, gfp_t gfp)
408 {
409 dev_coredumpm(dev, NULL, table, datalen, gfp, devcd_read_from_sgtable,
410 devcd_free_sgtable);
411 }
412 EXPORT_SYMBOL_GPL(dev_coredumpsg);
413
devcoredump_init(void)414 static int __init devcoredump_init(void)
415 {
416 return class_register(&devcd_class);
417 }
418 __initcall(devcoredump_init);
419
devcoredump_exit(void)420 static void __exit devcoredump_exit(void)
421 {
422 class_for_each_device(&devcd_class, NULL, NULL, devcd_free);
423 class_unregister(&devcd_class);
424 }
425 __exitcall(devcoredump_exit);
426