1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 * on-disk ntfs structs
7 */
8
9 // clang-format off
10 #ifndef _LINUX_NTFS3_NTFS_H
11 #define _LINUX_NTFS3_NTFS_H
12
13 #include <linux/blkdev.h>
14 #include <linux/build_bug.h>
15 #include <linux/kernel.h>
16 #include <linux/stddef.h>
17 #include <linux/string.h>
18 #include <linux/types.h>
19
20 #include "debug.h"
21
22 /* TODO: Check 4K MFT record and 512 bytes cluster. */
23
24 /* Check each run for marked clusters. */
25 #define NTFS3_CHECK_FREE_CLST
26
27 #define NTFS_NAME_LEN 255
28
29 /*
30 * ntfs.sys used 500 maximum links on-disk struct allows up to 0xffff.
31 * xfstest generic/041 creates 3003 hardlinks.
32 */
33 #define NTFS_LINK_MAX 4000
34
35 /*
36 * Activate to use 64 bit clusters instead of 32 bits in ntfs.sys.
37 * Logical and virtual cluster number if needed, may be
38 * redefined to use 64 bit value.
39 */
40 //#define CONFIG_NTFS3_64BIT_CLUSTER
41
42 #define NTFS_LZNT_MAX_CLUSTER 4096
43 #define NTFS_LZNT_CUNIT 4
44 #define NTFS_LZNT_CLUSTERS (1u<<NTFS_LZNT_CUNIT)
45
46 struct GUID {
47 __le32 Data1;
48 __le16 Data2;
49 __le16 Data3;
50 u8 Data4[8];
51 };
52
53 /*
54 * This struct repeats layout of ATTR_FILE_NAME
55 * at offset 0x40.
56 * It used to store global constants NAME_MFT/NAME_MIRROR...
57 * most constant names are shorter than 10.
58 */
59 struct cpu_str {
60 u8 len;
61 u8 unused;
62 u16 name[10];
63 };
64
65 struct le_str {
66 u8 len;
67 u8 unused;
68 __le16 name[];
69 };
70
71 static_assert(SECTOR_SHIFT == 9);
72
73 #ifdef CONFIG_NTFS3_64BIT_CLUSTER
74 typedef u64 CLST;
75 static_assert(sizeof(size_t) == 8);
76 #else
77 typedef u32 CLST;
78 #endif
79
80 #define SPARSE_LCN64 ((u64)-1)
81 #define SPARSE_LCN ((CLST)-1)
82 #define RESIDENT_LCN ((CLST)-2)
83 #define COMPRESSED_LCN ((CLST)-3)
84
85 #define COMPRESSION_UNIT 4
86 #define COMPRESS_MAX_CLUSTER 0x1000
87
88 enum RECORD_NUM {
89 MFT_REC_MFT = 0,
90 MFT_REC_MIRR = 1,
91 MFT_REC_LOG = 2,
92 MFT_REC_VOL = 3,
93 MFT_REC_ATTR = 4,
94 MFT_REC_ROOT = 5,
95 MFT_REC_BITMAP = 6,
96 MFT_REC_BOOT = 7,
97 MFT_REC_BADCLUST = 8,
98 MFT_REC_SECURE = 9,
99 MFT_REC_UPCASE = 10,
100 MFT_REC_EXTEND = 11,
101 MFT_REC_RESERVED = 12,
102 MFT_REC_FREE = 16,
103 MFT_REC_USER = 24,
104 };
105
106 enum ATTR_TYPE {
107 ATTR_ZERO = cpu_to_le32(0x00),
108 ATTR_STD = cpu_to_le32(0x10),
109 ATTR_LIST = cpu_to_le32(0x20),
110 ATTR_NAME = cpu_to_le32(0x30),
111 ATTR_ID = cpu_to_le32(0x40),
112 ATTR_SECURE = cpu_to_le32(0x50),
113 ATTR_LABEL = cpu_to_le32(0x60),
114 ATTR_VOL_INFO = cpu_to_le32(0x70),
115 ATTR_DATA = cpu_to_le32(0x80),
116 ATTR_ROOT = cpu_to_le32(0x90),
117 ATTR_ALLOC = cpu_to_le32(0xA0),
118 ATTR_BITMAP = cpu_to_le32(0xB0),
119 ATTR_REPARSE = cpu_to_le32(0xC0),
120 ATTR_EA_INFO = cpu_to_le32(0xD0),
121 ATTR_EA = cpu_to_le32(0xE0),
122 ATTR_PROPERTYSET = cpu_to_le32(0xF0),
123 ATTR_LOGGED_UTILITY_STREAM = cpu_to_le32(0x100),
124 ATTR_END = cpu_to_le32(0xFFFFFFFF)
125 };
126
127 static_assert(sizeof(enum ATTR_TYPE) == 4);
128
129 enum FILE_ATTRIBUTE {
130 FILE_ATTRIBUTE_READONLY = cpu_to_le32(0x00000001),
131 FILE_ATTRIBUTE_HIDDEN = cpu_to_le32(0x00000002),
132 FILE_ATTRIBUTE_SYSTEM = cpu_to_le32(0x00000004),
133 FILE_ATTRIBUTE_ARCHIVE = cpu_to_le32(0x00000020),
134 FILE_ATTRIBUTE_DEVICE = cpu_to_le32(0x00000040),
135 FILE_ATTRIBUTE_TEMPORARY = cpu_to_le32(0x00000100),
136 FILE_ATTRIBUTE_SPARSE_FILE = cpu_to_le32(0x00000200),
137 FILE_ATTRIBUTE_REPARSE_POINT = cpu_to_le32(0x00000400),
138 FILE_ATTRIBUTE_COMPRESSED = cpu_to_le32(0x00000800),
139 FILE_ATTRIBUTE_OFFLINE = cpu_to_le32(0x00001000),
140 FILE_ATTRIBUTE_NOT_CONTENT_INDEXED = cpu_to_le32(0x00002000),
141 FILE_ATTRIBUTE_ENCRYPTED = cpu_to_le32(0x00004000),
142 FILE_ATTRIBUTE_VALID_FLAGS = cpu_to_le32(0x00007fb7),
143 FILE_ATTRIBUTE_DIRECTORY = cpu_to_le32(0x10000000),
144 FILE_ATTRIBUTE_INDEX = cpu_to_le32(0x20000000)
145 };
146
147 static_assert(sizeof(enum FILE_ATTRIBUTE) == 4);
148
149 extern const struct cpu_str NAME_MFT;
150 extern const struct cpu_str NAME_MIRROR;
151 extern const struct cpu_str NAME_LOGFILE;
152 extern const struct cpu_str NAME_VOLUME;
153 extern const struct cpu_str NAME_ATTRDEF;
154 extern const struct cpu_str NAME_ROOT;
155 extern const struct cpu_str NAME_BITMAP;
156 extern const struct cpu_str NAME_BOOT;
157 extern const struct cpu_str NAME_BADCLUS;
158 extern const struct cpu_str NAME_QUOTA;
159 extern const struct cpu_str NAME_SECURE;
160 extern const struct cpu_str NAME_UPCASE;
161 extern const struct cpu_str NAME_EXTEND;
162 extern const struct cpu_str NAME_OBJID;
163 extern const struct cpu_str NAME_REPARSE;
164 extern const struct cpu_str NAME_USNJRNL;
165
166 extern const __le16 I30_NAME[4];
167 extern const __le16 SII_NAME[4];
168 extern const __le16 SDH_NAME[4];
169 extern const __le16 SO_NAME[2];
170 extern const __le16 SQ_NAME[2];
171 extern const __le16 SR_NAME[2];
172
173 extern const __le16 BAD_NAME[4];
174 extern const __le16 SDS_NAME[4];
175 extern const __le16 WOF_NAME[17]; /* WofCompressedData */
176
177 /* MFT record number structure. */
178 struct MFT_REF {
179 __le32 low; // The low part of the number.
180 __le16 high; // The high part of the number.
181 __le16 seq; // The sequence number of MFT record.
182 };
183
184 static_assert(sizeof(__le64) == sizeof(struct MFT_REF));
185
ino_get(const struct MFT_REF * ref)186 static inline CLST ino_get(const struct MFT_REF *ref)
187 {
188 #ifdef CONFIG_NTFS3_64BIT_CLUSTER
189 return le32_to_cpu(ref->low) | ((u64)le16_to_cpu(ref->high) << 32);
190 #else
191 return le32_to_cpu(ref->low);
192 #endif
193 }
194
195 struct NTFS_BOOT {
196 u8 jump_code[3]; // 0x00: Jump to boot code.
197 u8 system_id[8]; // 0x03: System ID, equals "NTFS "
198
199 // NOTE: This member is not aligned(!)
200 // bytes_per_sector[0] must be 0.
201 // bytes_per_sector[1] must be multiplied by 256.
202 u8 bytes_per_sector[2]; // 0x0B: Bytes per sector.
203
204 u8 sectors_per_clusters;// 0x0D: Sectors per cluster.
205 u8 unused1[7];
206 u8 media_type; // 0x15: Media type (0xF8 - harddisk)
207 u8 unused2[2];
208 __le16 sct_per_track; // 0x18: number of sectors per track.
209 __le16 heads; // 0x1A: number of heads per cylinder.
210 __le32 hidden_sectors; // 0x1C: number of 'hidden' sectors.
211 u8 unused3[4];
212 u8 bios_drive_num; // 0x24: BIOS drive number =0x80.
213 u8 unused4;
214 u8 signature_ex; // 0x26: Extended BOOT signature =0x80.
215 u8 unused5;
216 __le64 sectors_per_volume;// 0x28: Size of volume in sectors.
217 __le64 mft_clst; // 0x30: First cluster of $MFT
218 __le64 mft2_clst; // 0x38: First cluster of $MFTMirr
219 s8 record_size; // 0x40: Size of MFT record in clusters(sectors).
220 u8 unused6[3];
221 s8 index_size; // 0x44: Size of INDX record in clusters(sectors).
222 u8 unused7[3];
223 __le64 serial_num; // 0x48: Volume serial number
224 __le32 check_sum; // 0x50: Simple additive checksum of all
225 // of the u32's which precede the 'check_sum'.
226
227 u8 boot_code[0x200 - 0x50 - 2 - 4]; // 0x54:
228 u8 boot_magic[2]; // 0x1FE: Boot signature =0x55 + 0xAA
229 };
230
231 static_assert(sizeof(struct NTFS_BOOT) == 0x200);
232
233 enum NTFS_SIGNATURE {
234 NTFS_FILE_SIGNATURE = cpu_to_le32(0x454C4946), // 'FILE'
235 NTFS_INDX_SIGNATURE = cpu_to_le32(0x58444E49), // 'INDX'
236 NTFS_CHKD_SIGNATURE = cpu_to_le32(0x444B4843), // 'CHKD'
237 NTFS_RSTR_SIGNATURE = cpu_to_le32(0x52545352), // 'RSTR'
238 NTFS_RCRD_SIGNATURE = cpu_to_le32(0x44524352), // 'RCRD'
239 NTFS_BAAD_SIGNATURE = cpu_to_le32(0x44414142), // 'BAAD'
240 NTFS_HOLE_SIGNATURE = cpu_to_le32(0x454C4F48), // 'HOLE'
241 NTFS_FFFF_SIGNATURE = cpu_to_le32(0xffffffff),
242 };
243
244 static_assert(sizeof(enum NTFS_SIGNATURE) == 4);
245
246 /* MFT Record header structure. */
247 struct NTFS_RECORD_HEADER {
248 /* Record magic number, equals 'FILE'/'INDX'/'RSTR'/'RCRD'. */
249 enum NTFS_SIGNATURE sign; // 0x00:
250 __le16 fix_off; // 0x04:
251 __le16 fix_num; // 0x06:
252 __le64 lsn; // 0x08: Log file sequence number,
253 };
254
255 static_assert(sizeof(struct NTFS_RECORD_HEADER) == 0x10);
256
is_baad(const struct NTFS_RECORD_HEADER * hdr)257 static inline int is_baad(const struct NTFS_RECORD_HEADER *hdr)
258 {
259 return hdr->sign == NTFS_BAAD_SIGNATURE;
260 }
261
262 /* Possible bits in struct MFT_REC.flags. */
263 enum RECORD_FLAG {
264 RECORD_FLAG_IN_USE = cpu_to_le16(0x0001),
265 RECORD_FLAG_DIR = cpu_to_le16(0x0002),
266 RECORD_FLAG_SYSTEM = cpu_to_le16(0x0004),
267 RECORD_FLAG_INDEX = cpu_to_le16(0x0008),
268 };
269
270 /* MFT Record structure. */
271 struct MFT_REC {
272 struct NTFS_RECORD_HEADER rhdr; // 'FILE'
273
274 __le16 seq; // 0x10: Sequence number for this record.
275 __le16 hard_links; // 0x12: The number of hard links to record.
276 __le16 attr_off; // 0x14: Offset to attributes.
277 __le16 flags; // 0x16: See RECORD_FLAG.
278 __le32 used; // 0x18: The size of used part.
279 __le32 total; // 0x1C: Total record size.
280
281 struct MFT_REF parent_ref; // 0x20: Parent MFT record.
282 __le16 next_attr_id; // 0x28: The next attribute Id.
283
284 __le16 res; // 0x2A: High part of MFT record?
285 __le32 mft_record; // 0x2C: Current MFT record number.
286 __le16 fixups[]; // 0x30:
287 };
288
289 #define MFTRECORD_FIXUP_OFFSET_1 offsetof(struct MFT_REC, res)
290 #define MFTRECORD_FIXUP_OFFSET_3 offsetof(struct MFT_REC, fixups)
291 /*
292 * define MFTRECORD_FIXUP_OFFSET as MFTRECORD_FIXUP_OFFSET_3 (0x30)
293 * to format new mft records with bigger header (as current ntfs.sys does)
294 *
295 * define MFTRECORD_FIXUP_OFFSET as MFTRECORD_FIXUP_OFFSET_1 (0x2A)
296 * to format new mft records with smaller header (as old ntfs.sys did)
297 * Both variants are valid.
298 */
299 #define MFTRECORD_FIXUP_OFFSET MFTRECORD_FIXUP_OFFSET_1
300
301 static_assert(MFTRECORD_FIXUP_OFFSET_1 == 0x2A);
302 static_assert(MFTRECORD_FIXUP_OFFSET_3 == 0x30);
303
is_rec_base(const struct MFT_REC * rec)304 static inline bool is_rec_base(const struct MFT_REC *rec)
305 {
306 const struct MFT_REF *r = &rec->parent_ref;
307
308 return !r->low && !r->high && !r->seq;
309 }
310
is_mft_rec5(const struct MFT_REC * rec)311 static inline bool is_mft_rec5(const struct MFT_REC *rec)
312 {
313 return le16_to_cpu(rec->rhdr.fix_off) >=
314 offsetof(struct MFT_REC, fixups);
315 }
316
is_rec_inuse(const struct MFT_REC * rec)317 static inline bool is_rec_inuse(const struct MFT_REC *rec)
318 {
319 return rec->flags & RECORD_FLAG_IN_USE;
320 }
321
clear_rec_inuse(struct MFT_REC * rec)322 static inline bool clear_rec_inuse(struct MFT_REC *rec)
323 {
324 return rec->flags &= ~RECORD_FLAG_IN_USE;
325 }
326
327 /* Possible values of ATTR_RESIDENT.flags */
328 #define RESIDENT_FLAG_INDEXED 0x01
329
330 struct ATTR_RESIDENT {
331 __le32 data_size; // 0x10: The size of data.
332 __le16 data_off; // 0x14: Offset to data.
333 u8 flags; // 0x16: Resident flags ( 1 - indexed ).
334 u8 res; // 0x17:
335 }; // sizeof() = 0x18
336
337 struct ATTR_NONRESIDENT {
338 __le64 svcn; // 0x10: Starting VCN of this segment.
339 __le64 evcn; // 0x18: End VCN of this segment.
340 __le16 run_off; // 0x20: Offset to packed runs.
341 // Unit of Compression size for this stream, expressed
342 // as a log of the cluster size.
343 //
344 // 0 means file is not compressed
345 // 1, 2, 3, and 4 are potentially legal values if the
346 // stream is compressed, however the implementation
347 // may only choose to use 4, or possibly 3.
348 // Note that 4 means cluster size time 16.
349 // If convenient the implementation may wish to accept a
350 // reasonable range of legal values here (1-5?),
351 // even if the implementation only generates
352 // a smaller set of values itself.
353 u8 c_unit; // 0x22:
354 u8 res1[5]; // 0x23:
355 __le64 alloc_size; // 0x28: The allocated size of attribute in bytes.
356 // (multiple of cluster size)
357 __le64 data_size; // 0x30: The size of attribute in bytes <= alloc_size.
358 __le64 valid_size; // 0x38: The size of valid part in bytes <= data_size.
359 __le64 total_size; // 0x40: The sum of the allocated clusters for a file.
360 // (present only for the first segment (0 == vcn)
361 // of compressed attribute)
362
363 }; // sizeof()=0x40 or 0x48 (if compressed)
364
365 /* Possible values of ATTRIB.flags: */
366 #define ATTR_FLAG_COMPRESSED cpu_to_le16(0x0001)
367 #define ATTR_FLAG_COMPRESSED_MASK cpu_to_le16(0x00FF)
368 #define ATTR_FLAG_ENCRYPTED cpu_to_le16(0x4000)
369 #define ATTR_FLAG_SPARSED cpu_to_le16(0x8000)
370
371 struct ATTRIB {
372 enum ATTR_TYPE type; // 0x00: The type of this attribute.
373 __le32 size; // 0x04: The size of this attribute.
374 u8 non_res; // 0x08: Is this attribute non-resident?
375 u8 name_len; // 0x09: This attribute name length.
376 __le16 name_off; // 0x0A: Offset to the attribute name.
377 __le16 flags; // 0x0C: See ATTR_FLAG_XXX.
378 __le16 id; // 0x0E: Unique id (per record).
379
380 union {
381 struct ATTR_RESIDENT res; // 0x10
382 struct ATTR_NONRESIDENT nres; // 0x10
383 };
384 };
385
386 /* Define attribute sizes. */
387 #define SIZEOF_RESIDENT 0x18
388 #define SIZEOF_NONRESIDENT_EX 0x48
389 #define SIZEOF_NONRESIDENT 0x40
390
391 #define SIZEOF_RESIDENT_LE cpu_to_le16(0x18)
392 #define SIZEOF_NONRESIDENT_EX_LE cpu_to_le16(0x48)
393 #define SIZEOF_NONRESIDENT_LE cpu_to_le16(0x40)
394
attr_ondisk_size(const struct ATTRIB * attr)395 static inline u64 attr_ondisk_size(const struct ATTRIB *attr)
396 {
397 return attr->non_res ? ((attr->flags &
398 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
399 le64_to_cpu(attr->nres.total_size) :
400 le64_to_cpu(attr->nres.alloc_size))
401 : ALIGN(le32_to_cpu(attr->res.data_size), 8);
402 }
403
attr_size(const struct ATTRIB * attr)404 static inline u64 attr_size(const struct ATTRIB *attr)
405 {
406 return attr->non_res ? le64_to_cpu(attr->nres.data_size) :
407 le32_to_cpu(attr->res.data_size);
408 }
409
is_attr_encrypted(const struct ATTRIB * attr)410 static inline bool is_attr_encrypted(const struct ATTRIB *attr)
411 {
412 return attr->flags & ATTR_FLAG_ENCRYPTED;
413 }
414
is_attr_sparsed(const struct ATTRIB * attr)415 static inline bool is_attr_sparsed(const struct ATTRIB *attr)
416 {
417 return attr->flags & ATTR_FLAG_SPARSED;
418 }
419
is_attr_compressed(const struct ATTRIB * attr)420 static inline bool is_attr_compressed(const struct ATTRIB *attr)
421 {
422 return attr->flags & ATTR_FLAG_COMPRESSED;
423 }
424
is_attr_ext(const struct ATTRIB * attr)425 static inline bool is_attr_ext(const struct ATTRIB *attr)
426 {
427 return attr->flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED);
428 }
429
is_attr_indexed(const struct ATTRIB * attr)430 static inline bool is_attr_indexed(const struct ATTRIB *attr)
431 {
432 return !attr->non_res && (attr->res.flags & RESIDENT_FLAG_INDEXED);
433 }
434
attr_name(const struct ATTRIB * attr)435 static inline __le16 const *attr_name(const struct ATTRIB *attr)
436 {
437 return Add2Ptr(attr, le16_to_cpu(attr->name_off));
438 }
439
attr_svcn(const struct ATTRIB * attr)440 static inline u64 attr_svcn(const struct ATTRIB *attr)
441 {
442 return attr->non_res ? le64_to_cpu(attr->nres.svcn) : 0;
443 }
444
445 static_assert(sizeof(struct ATTRIB) == 0x48);
446 static_assert(sizeof(((struct ATTRIB *)NULL)->res) == 0x08);
447 static_assert(sizeof(((struct ATTRIB *)NULL)->nres) == 0x38);
448
resident_data_ex(const struct ATTRIB * attr,u32 datasize)449 static inline void *resident_data_ex(const struct ATTRIB *attr, u32 datasize)
450 {
451 u32 asize, rsize;
452 u16 off;
453
454 if (attr->non_res)
455 return NULL;
456
457 asize = le32_to_cpu(attr->size);
458 off = le16_to_cpu(attr->res.data_off);
459
460 if (asize < datasize + off)
461 return NULL;
462
463 rsize = le32_to_cpu(attr->res.data_size);
464 if (rsize < datasize)
465 return NULL;
466
467 return Add2Ptr(attr, off);
468 }
469
resident_data(const struct ATTRIB * attr)470 static inline void *resident_data(const struct ATTRIB *attr)
471 {
472 return Add2Ptr(attr, le16_to_cpu(attr->res.data_off));
473 }
474
attr_run(const struct ATTRIB * attr)475 static inline void *attr_run(const struct ATTRIB *attr)
476 {
477 return Add2Ptr(attr, le16_to_cpu(attr->nres.run_off));
478 }
479
480 /* Standard information attribute (0x10). */
481 struct ATTR_STD_INFO {
482 __le64 cr_time; // 0x00: File creation file.
483 __le64 m_time; // 0x08: File modification time.
484 __le64 c_time; // 0x10: Last time any attribute was modified.
485 __le64 a_time; // 0x18: File last access time.
486 enum FILE_ATTRIBUTE fa; // 0x20: Standard DOS attributes & more.
487 __le32 max_ver_num; // 0x24: Maximum Number of Versions.
488 __le32 ver_num; // 0x28: Version Number.
489 __le32 class_id; // 0x2C: Class Id from bidirectional Class Id index.
490 };
491
492 static_assert(sizeof(struct ATTR_STD_INFO) == 0x30);
493
494 #define SECURITY_ID_INVALID 0x00000000
495 #define SECURITY_ID_FIRST 0x00000100
496
497 struct ATTR_STD_INFO5 {
498 __le64 cr_time; // 0x00: File creation file.
499 __le64 m_time; // 0x08: File modification time.
500 __le64 c_time; // 0x10: Last time any attribute was modified.
501 __le64 a_time; // 0x18: File last access time.
502 enum FILE_ATTRIBUTE fa; // 0x20: Standard DOS attributes & more.
503 __le32 max_ver_num; // 0x24: Maximum Number of Versions.
504 __le32 ver_num; // 0x28: Version Number.
505 __le32 class_id; // 0x2C: Class Id from bidirectional Class Id index.
506
507 __le32 owner_id; // 0x30: Owner Id of the user owning the file.
508 __le32 security_id; // 0x34: The Security Id is a key in the $SII Index and $SDS.
509 __le64 quota_charge; // 0x38:
510 __le64 usn; // 0x40: Last Update Sequence Number of the file. This is a direct
511 // index into the file $UsnJrnl. If zero, the USN Journal is
512 // disabled.
513 };
514
515 static_assert(sizeof(struct ATTR_STD_INFO5) == 0x48);
516
517 /* Attribute list entry structure (0x20) */
518 struct ATTR_LIST_ENTRY {
519 enum ATTR_TYPE type; // 0x00: The type of attribute.
520 __le16 size; // 0x04: The size of this record.
521 u8 name_len; // 0x06: The length of attribute name.
522 u8 name_off; // 0x07: The offset to attribute name.
523 __le64 vcn; // 0x08: Starting VCN of this attribute.
524 struct MFT_REF ref; // 0x10: MFT record number with attribute.
525 __le16 id; // 0x18: struct ATTRIB ID.
526 __le16 name[3]; // 0x1A: Just to align. To get real name can use bNameOffset.
527
528 }; // sizeof(0x20)
529
530 static_assert(sizeof(struct ATTR_LIST_ENTRY) == 0x20);
531
le_size(u8 name_len)532 static inline u32 le_size(u8 name_len)
533 {
534 return ALIGN(offsetof(struct ATTR_LIST_ENTRY, name) +
535 name_len * sizeof(short), 8);
536 }
537
538 /* Returns 0 if 'attr' has the same type and name. */
le_cmp(const struct ATTR_LIST_ENTRY * le,const struct ATTRIB * attr)539 static inline int le_cmp(const struct ATTR_LIST_ENTRY *le,
540 const struct ATTRIB *attr)
541 {
542 return le->type != attr->type || le->name_len != attr->name_len ||
543 (!le->name_len &&
544 memcmp(Add2Ptr(le, le->name_off),
545 Add2Ptr(attr, le16_to_cpu(attr->name_off)),
546 le->name_len * sizeof(short)));
547 }
548
le_name(const struct ATTR_LIST_ENTRY * le)549 static inline __le16 const *le_name(const struct ATTR_LIST_ENTRY *le)
550 {
551 return Add2Ptr(le, le->name_off);
552 }
553
554 /* File name types (the field type in struct ATTR_FILE_NAME). */
555 #define FILE_NAME_POSIX 0
556 #define FILE_NAME_UNICODE 1
557 #define FILE_NAME_DOS 2
558 #define FILE_NAME_UNICODE_AND_DOS (FILE_NAME_DOS | FILE_NAME_UNICODE)
559
560 /* Filename attribute structure (0x30). */
561 struct NTFS_DUP_INFO {
562 __le64 cr_time; // 0x00: File creation file.
563 __le64 m_time; // 0x08: File modification time.
564 __le64 c_time; // 0x10: Last time any attribute was modified.
565 __le64 a_time; // 0x18: File last access time.
566 __le64 alloc_size; // 0x20: Data attribute allocated size, multiple of cluster size.
567 __le64 data_size; // 0x28: Data attribute size <= Dataalloc_size.
568 enum FILE_ATTRIBUTE fa; // 0x30: Standard DOS attributes & more.
569 __le16 ea_size; // 0x34: Packed EAs.
570 __le16 reparse; // 0x36: Used by Reparse.
571
572 }; // 0x38
573
574 struct ATTR_FILE_NAME {
575 struct MFT_REF home; // 0x00: MFT record for directory.
576 struct NTFS_DUP_INFO dup;// 0x08:
577 u8 name_len; // 0x40: File name length in words.
578 u8 type; // 0x41: File name type.
579 __le16 name[]; // 0x42: File name.
580 };
581
582 static_assert(sizeof(((struct ATTR_FILE_NAME *)NULL)->dup) == 0x38);
583 static_assert(offsetof(struct ATTR_FILE_NAME, name) == 0x42);
584 #define SIZEOF_ATTRIBUTE_FILENAME 0x44
585 #define SIZEOF_ATTRIBUTE_FILENAME_MAX (0x42 + 255 * 2)
586
attr_from_name(struct ATTR_FILE_NAME * fname)587 static inline struct ATTRIB *attr_from_name(struct ATTR_FILE_NAME *fname)
588 {
589 return (struct ATTRIB *)((char *)fname - SIZEOF_RESIDENT);
590 }
591
fname_full_size(const struct ATTR_FILE_NAME * fname)592 static inline u16 fname_full_size(const struct ATTR_FILE_NAME *fname)
593 {
594 /* Don't return struct_size(fname, name, fname->name_len); */
595 return offsetof(struct ATTR_FILE_NAME, name) +
596 fname->name_len * sizeof(short);
597 }
598
paired_name(u8 type)599 static inline u8 paired_name(u8 type)
600 {
601 if (type == FILE_NAME_UNICODE)
602 return FILE_NAME_DOS;
603 if (type == FILE_NAME_DOS)
604 return FILE_NAME_UNICODE;
605 return FILE_NAME_POSIX;
606 }
607
608 /* Index entry defines ( the field flags in NtfsDirEntry ). */
609 #define NTFS_IE_HAS_SUBNODES cpu_to_le16(1)
610 #define NTFS_IE_LAST cpu_to_le16(2)
611
612 /* Directory entry structure. */
613 struct NTFS_DE {
614 union {
615 struct MFT_REF ref; // 0x00: MFT record number with this file.
616 struct {
617 __le16 data_off; // 0x00:
618 __le16 data_size; // 0x02:
619 __le32 res; // 0x04: Must be 0.
620 } view;
621 };
622 __le16 size; // 0x08: The size of this entry.
623 __le16 key_size; // 0x0A: The size of File name length in bytes + 0x42.
624 __le16 flags; // 0x0C: Entry flags: NTFS_IE_XXX.
625 __le16 res; // 0x0E:
626
627 // Here any indexed attribute can be placed.
628 // One of them is:
629 // struct ATTR_FILE_NAME AttrFileName;
630 //
631
632 // The last 8 bytes of this structure contains
633 // the VBN of subnode.
634 // !!! Note !!!
635 // This field is presented only if (flags & NTFS_IE_HAS_SUBNODES)
636 // __le64 vbn;
637 };
638
639 static_assert(sizeof(struct NTFS_DE) == 0x10);
640
de_set_vbn_le(struct NTFS_DE * e,__le64 vcn)641 static inline void de_set_vbn_le(struct NTFS_DE *e, __le64 vcn)
642 {
643 __le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
644
645 *v = vcn;
646 }
647
de_set_vbn(struct NTFS_DE * e,CLST vcn)648 static inline void de_set_vbn(struct NTFS_DE *e, CLST vcn)
649 {
650 __le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
651
652 *v = cpu_to_le64(vcn);
653 }
654
de_get_vbn_le(const struct NTFS_DE * e)655 static inline __le64 de_get_vbn_le(const struct NTFS_DE *e)
656 {
657 return *(__le64 *)Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
658 }
659
de_get_vbn(const struct NTFS_DE * e)660 static inline CLST de_get_vbn(const struct NTFS_DE *e)
661 {
662 __le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
663
664 return le64_to_cpu(*v);
665 }
666
de_get_next(const struct NTFS_DE * e)667 static inline struct NTFS_DE *de_get_next(const struct NTFS_DE *e)
668 {
669 return Add2Ptr(e, le16_to_cpu(e->size));
670 }
671
de_get_fname(const struct NTFS_DE * e)672 static inline struct ATTR_FILE_NAME *de_get_fname(const struct NTFS_DE *e)
673 {
674 return le16_to_cpu(e->key_size) >= SIZEOF_ATTRIBUTE_FILENAME ?
675 Add2Ptr(e, sizeof(struct NTFS_DE)) :
676 NULL;
677 }
678
de_is_last(const struct NTFS_DE * e)679 static inline bool de_is_last(const struct NTFS_DE *e)
680 {
681 return e->flags & NTFS_IE_LAST;
682 }
683
de_has_vcn(const struct NTFS_DE * e)684 static inline bool de_has_vcn(const struct NTFS_DE *e)
685 {
686 return e->flags & NTFS_IE_HAS_SUBNODES;
687 }
688
de_has_vcn_ex(const struct NTFS_DE * e)689 static inline bool de_has_vcn_ex(const struct NTFS_DE *e)
690 {
691 return (e->flags & NTFS_IE_HAS_SUBNODES) &&
692 (u64)(-1) != *((u64 *)Add2Ptr(e, le16_to_cpu(e->size) -
693 sizeof(__le64)));
694 }
695
696 #define MAX_BYTES_PER_NAME_ENTRY \
697 ALIGN(sizeof(struct NTFS_DE) + \
698 offsetof(struct ATTR_FILE_NAME, name) + \
699 NTFS_NAME_LEN * sizeof(short), 8)
700
701 struct INDEX_HDR {
702 __le32 de_off; // 0x00: The offset from the start of this structure
703 // to the first NTFS_DE.
704 __le32 used; // 0x04: The size of this structure plus all
705 // entries (quad-word aligned).
706 __le32 total; // 0x08: The allocated size of for this structure plus all entries.
707 u8 flags; // 0x0C: 0x00 = Small directory, 0x01 = Large directory.
708 u8 res[3];
709
710 //
711 // de_off + used <= total
712 //
713 };
714
715 static_assert(sizeof(struct INDEX_HDR) == 0x10);
716
hdr_first_de(const struct INDEX_HDR * hdr)717 static inline struct NTFS_DE *hdr_first_de(const struct INDEX_HDR *hdr)
718 {
719 u32 de_off = le32_to_cpu(hdr->de_off);
720 u32 used = le32_to_cpu(hdr->used);
721 struct NTFS_DE *e;
722 u16 esize;
723
724 if (de_off >= used || de_off + sizeof(struct NTFS_DE) > used )
725 return NULL;
726
727 e = Add2Ptr(hdr, de_off);
728 esize = le16_to_cpu(e->size);
729 if (esize < sizeof(struct NTFS_DE) || de_off + esize > used)
730 return NULL;
731
732 return e;
733 }
734
hdr_next_de(const struct INDEX_HDR * hdr,const struct NTFS_DE * e)735 static inline struct NTFS_DE *hdr_next_de(const struct INDEX_HDR *hdr,
736 const struct NTFS_DE *e)
737 {
738 size_t off = PtrOffset(hdr, e);
739 u32 used = le32_to_cpu(hdr->used);
740 u16 esize;
741
742 if (off >= used)
743 return NULL;
744
745 esize = le16_to_cpu(e->size);
746
747 if (esize < sizeof(struct NTFS_DE) ||
748 off + esize + sizeof(struct NTFS_DE) > used)
749 return NULL;
750
751 return Add2Ptr(e, esize);
752 }
753
hdr_has_subnode(const struct INDEX_HDR * hdr)754 static inline bool hdr_has_subnode(const struct INDEX_HDR *hdr)
755 {
756 return hdr->flags & 1;
757 }
758
759 struct INDEX_BUFFER {
760 struct NTFS_RECORD_HEADER rhdr; // 'INDX'
761 __le64 vbn; // 0x10: vcn if index >= cluster or vsn id index < cluster
762 struct INDEX_HDR ihdr; // 0x18:
763 };
764
765 static_assert(sizeof(struct INDEX_BUFFER) == 0x28);
766
ib_is_empty(const struct INDEX_BUFFER * ib)767 static inline bool ib_is_empty(const struct INDEX_BUFFER *ib)
768 {
769 const struct NTFS_DE *first = hdr_first_de(&ib->ihdr);
770
771 return !first || de_is_last(first);
772 }
773
ib_is_leaf(const struct INDEX_BUFFER * ib)774 static inline bool ib_is_leaf(const struct INDEX_BUFFER *ib)
775 {
776 return !(ib->ihdr.flags & 1);
777 }
778
779 /* Index root structure ( 0x90 ). */
780 enum COLLATION_RULE {
781 NTFS_COLLATION_TYPE_BINARY = cpu_to_le32(0),
782 // $I30
783 NTFS_COLLATION_TYPE_FILENAME = cpu_to_le32(0x01),
784 // $SII of $Secure and $Q of Quota
785 NTFS_COLLATION_TYPE_UINT = cpu_to_le32(0x10),
786 // $O of Quota
787 NTFS_COLLATION_TYPE_SID = cpu_to_le32(0x11),
788 // $SDH of $Secure
789 NTFS_COLLATION_TYPE_SECURITY_HASH = cpu_to_le32(0x12),
790 // $O of ObjId and "$R" for Reparse
791 NTFS_COLLATION_TYPE_UINTS = cpu_to_le32(0x13)
792 };
793
794 static_assert(sizeof(enum COLLATION_RULE) == 4);
795
796 //
797 struct INDEX_ROOT {
798 enum ATTR_TYPE type; // 0x00: The type of attribute to index on.
799 enum COLLATION_RULE rule; // 0x04: The rule.
800 __le32 index_block_size;// 0x08: The size of index record.
801 u8 index_block_clst; // 0x0C: The number of clusters or sectors per index.
802 u8 res[3];
803 struct INDEX_HDR ihdr; // 0x10:
804 };
805
806 static_assert(sizeof(struct INDEX_ROOT) == 0x20);
807 static_assert(offsetof(struct INDEX_ROOT, ihdr) == 0x10);
808
809 #define VOLUME_FLAG_DIRTY cpu_to_le16(0x0001)
810 #define VOLUME_FLAG_RESIZE_LOG_FILE cpu_to_le16(0x0002)
811
812 struct VOLUME_INFO {
813 __le64 res1; // 0x00
814 u8 major_ver; // 0x08: NTFS major version number (before .)
815 u8 minor_ver; // 0x09: NTFS minor version number (after .)
816 __le16 flags; // 0x0A: Volume flags, see VOLUME_FLAG_XXX
817
818 }; // sizeof=0xC
819
820 #define SIZEOF_ATTRIBUTE_VOLUME_INFO 0xc
821
822 #define NTFS_LABEL_MAX_LENGTH (0x100 / sizeof(short))
823 #define NTFS_ATTR_INDEXABLE cpu_to_le32(0x00000002)
824 #define NTFS_ATTR_DUPALLOWED cpu_to_le32(0x00000004)
825 #define NTFS_ATTR_MUST_BE_INDEXED cpu_to_le32(0x00000010)
826 #define NTFS_ATTR_MUST_BE_NAMED cpu_to_le32(0x00000020)
827 #define NTFS_ATTR_MUST_BE_RESIDENT cpu_to_le32(0x00000040)
828 #define NTFS_ATTR_LOG_ALWAYS cpu_to_le32(0x00000080)
829
830 /* $AttrDef file entry. */
831 struct ATTR_DEF_ENTRY {
832 __le16 name[0x40]; // 0x00: Attr name.
833 enum ATTR_TYPE type; // 0x80: struct ATTRIB type.
834 __le32 res; // 0x84:
835 enum COLLATION_RULE rule; // 0x88:
836 __le32 flags; // 0x8C: NTFS_ATTR_XXX (see above).
837 __le64 min_sz; // 0x90: Minimum attribute data size.
838 __le64 max_sz; // 0x98: Maximum attribute data size.
839 };
840
841 static_assert(sizeof(struct ATTR_DEF_ENTRY) == 0xa0);
842
843 /* Object ID (0x40) */
844 struct OBJECT_ID {
845 struct GUID ObjId; // 0x00: Unique Id assigned to file.
846
847 // Birth Volume Id is the Object Id of the Volume on.
848 // which the Object Id was allocated. It never changes.
849 struct GUID BirthVolumeId; //0x10:
850
851 // Birth Object Id is the first Object Id that was
852 // ever assigned to this MFT Record. I.e. If the Object Id
853 // is changed for some reason, this field will reflect the
854 // original value of the Object Id.
855 struct GUID BirthObjectId; // 0x20:
856
857 // Domain Id is currently unused but it is intended to be
858 // used in a network environment where the local machine is
859 // part of a Windows 2000 Domain. This may be used in a Windows
860 // 2000 Advanced Server managed domain.
861 struct GUID DomainId; // 0x30:
862 };
863
864 static_assert(sizeof(struct OBJECT_ID) == 0x40);
865
866 /* O Directory entry structure ( rule = 0x13 ) */
867 struct NTFS_DE_O {
868 struct NTFS_DE de;
869 struct GUID ObjId; // 0x10: Unique Id assigned to file.
870 struct MFT_REF ref; // 0x20: MFT record number with this file.
871
872 // Birth Volume Id is the Object Id of the Volume on
873 // which the Object Id was allocated. It never changes.
874 struct GUID BirthVolumeId; // 0x28:
875
876 // Birth Object Id is the first Object Id that was
877 // ever assigned to this MFT Record. I.e. If the Object Id
878 // is changed for some reason, this field will reflect the
879 // original value of the Object Id.
880 // This field is valid if data_size == 0x48.
881 struct GUID BirthObjectId; // 0x38:
882
883 // Domain Id is currently unused but it is intended
884 // to be used in a network environment where the local
885 // machine is part of a Windows 2000 Domain. This may be
886 // used in a Windows 2000 Advanced Server managed domain.
887 struct GUID BirthDomainId; // 0x48:
888 };
889
890 static_assert(sizeof(struct NTFS_DE_O) == 0x58);
891
892 /* Q Directory entry structure ( rule = 0x11 ) */
893 struct NTFS_DE_Q {
894 struct NTFS_DE de;
895 __le32 owner_id; // 0x10: Unique Id assigned to file
896
897 /* here is 0x30 bytes of user quota. NOTE: 4 byte aligned! */
898 __le32 Version; // 0x14: 0x02
899 __le32 Flags; // 0x18: Quota flags, see above
900 __le64 BytesUsed; // 0x1C:
901 __le64 ChangeTime; // 0x24:
902 __le64 WarningLimit; // 0x28:
903 __le64 HardLimit; // 0x34:
904 __le64 ExceededTime; // 0x3C:
905
906 // SID is placed here
907 }__packed; // sizeof() = 0x44
908
909 static_assert(sizeof(struct NTFS_DE_Q) == 0x44);
910
911 #define SecurityDescriptorsBlockSize 0x40000 // 256K
912 #define SecurityDescriptorMaxSize 0x20000 // 128K
913 #define Log2OfSecurityDescriptorsBlockSize 18
914
915 struct SECURITY_KEY {
916 __le32 hash; // Hash value for descriptor
917 __le32 sec_id; // Security Id (guaranteed unique)
918 };
919
920 /* Security descriptors (the content of $Secure::SDS data stream) */
921 struct SECURITY_HDR {
922 struct SECURITY_KEY key; // 0x00: Security Key.
923 __le64 off; // 0x08: Offset of this entry in the file.
924 __le32 size; // 0x10: Size of this entry, 8 byte aligned.
925 /*
926 * Security descriptor itself is placed here.
927 * Total size is 16 byte aligned.
928 */
929 } __packed;
930
931 static_assert(sizeof(struct SECURITY_HDR) == 0x14);
932
933 /* SII Directory entry structure */
934 struct NTFS_DE_SII {
935 struct NTFS_DE de;
936 __le32 sec_id; // 0x10: Key: sizeof(security_id) = wKeySize
937 struct SECURITY_HDR sec_hdr; // 0x14:
938 } __packed;
939
940 static_assert(offsetof(struct NTFS_DE_SII, sec_hdr) == 0x14);
941 static_assert(sizeof(struct NTFS_DE_SII) == 0x28);
942
943 /* SDH Directory entry structure */
944 struct NTFS_DE_SDH {
945 struct NTFS_DE de;
946 struct SECURITY_KEY key; // 0x10: Key
947 struct SECURITY_HDR sec_hdr; // 0x18: Data
948 __le16 magic[2]; // 0x2C: 0x00490049 "I I"
949 };
950
951 #define SIZEOF_SDH_DIRENTRY 0x30
952
953 struct REPARSE_KEY {
954 __le32 ReparseTag; // 0x00: Reparse Tag
955 struct MFT_REF ref; // 0x04: MFT record number with this file
956 }; // sizeof() = 0x0C
957
958 static_assert(offsetof(struct REPARSE_KEY, ref) == 0x04);
959 #define SIZEOF_REPARSE_KEY 0x0C
960
961 /* Reparse Directory entry structure */
962 struct NTFS_DE_R {
963 struct NTFS_DE de;
964 struct REPARSE_KEY key; // 0x10: Reparse Key.
965 u32 zero; // 0x1c:
966 }; // sizeof() = 0x20
967
968 static_assert(sizeof(struct NTFS_DE_R) == 0x20);
969
970 /* CompressReparseBuffer.WofVersion */
971 #define WOF_CURRENT_VERSION cpu_to_le32(1)
972 /* CompressReparseBuffer.WofProvider */
973 #define WOF_PROVIDER_WIM cpu_to_le32(1)
974 /* CompressReparseBuffer.WofProvider */
975 #define WOF_PROVIDER_SYSTEM cpu_to_le32(2)
976 /* CompressReparseBuffer.ProviderVer */
977 #define WOF_PROVIDER_CURRENT_VERSION cpu_to_le32(1)
978
979 #define WOF_COMPRESSION_XPRESS4K cpu_to_le32(0) // 4k
980 #define WOF_COMPRESSION_LZX32K cpu_to_le32(1) // 32k
981 #define WOF_COMPRESSION_XPRESS8K cpu_to_le32(2) // 8k
982 #define WOF_COMPRESSION_XPRESS16K cpu_to_le32(3) // 16k
983
984 /*
985 * ATTR_REPARSE (0xC0)
986 *
987 * The reparse struct GUID structure is used by all 3rd party layered drivers to
988 * store data in a reparse point. For non-Microsoft tags, The struct GUID field
989 * cannot be GUID_NULL.
990 * The constraints on reparse tags are defined below.
991 * Microsoft tags can also be used with this format of the reparse point buffer.
992 */
993 struct REPARSE_POINT {
994 __le32 ReparseTag; // 0x00:
995 __le16 ReparseDataLength;// 0x04:
996 __le16 Reserved;
997
998 struct GUID Guid; // 0x08:
999
1000 //
1001 // Here GenericReparseBuffer is placed
1002 //
1003 };
1004
1005 static_assert(sizeof(struct REPARSE_POINT) == 0x18);
1006
1007 /* Maximum allowed size of the reparse data. */
1008 #define MAXIMUM_REPARSE_DATA_BUFFER_SIZE (16 * 1024)
1009
1010 /*
1011 * The value of the following constant needs to satisfy the following
1012 * conditions:
1013 * (1) Be at least as large as the largest of the reserved tags.
1014 * (2) Be strictly smaller than all the tags in use.
1015 */
1016 #define IO_REPARSE_TAG_RESERVED_RANGE 1
1017
1018 /*
1019 * The reparse tags are a ULONG. The 32 bits are laid out as follows:
1020 *
1021 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1022 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1023 * +-+-+-+-+-----------------------+-------------------------------+
1024 * |M|R|N|R| Reserved bits | Reparse Tag Value |
1025 * +-+-+-+-+-----------------------+-------------------------------+
1026 *
1027 * M is the Microsoft bit. When set to 1, it denotes a tag owned by Microsoft.
1028 * All ISVs must use a tag with a 0 in this position.
1029 * Note: If a Microsoft tag is used by non-Microsoft software, the
1030 * behavior is not defined.
1031 *
1032 * R is reserved. Must be zero for non-Microsoft tags.
1033 *
1034 * N is name surrogate. When set to 1, the file represents another named
1035 * entity in the system.
1036 *
1037 * The M and N bits are OR-able.
1038 * The following macros check for the M and N bit values:
1039 */
1040
1041 /*
1042 * Macro to determine whether a reparse point tag corresponds to a tag
1043 * owned by Microsoft.
1044 */
1045 #define IsReparseTagMicrosoft(_tag) (((_tag)&IO_REPARSE_TAG_MICROSOFT))
1046
1047 /* Macro to determine whether a reparse point tag is a name surrogate. */
1048 #define IsReparseTagNameSurrogate(_tag) (((_tag)&IO_REPARSE_TAG_NAME_SURROGATE))
1049
1050 /*
1051 * The following constant represents the bits that are valid to use in
1052 * reparse tags.
1053 */
1054 #define IO_REPARSE_TAG_VALID_VALUES 0xF000FFFF
1055
1056 /*
1057 * Macro to determine whether a reparse tag is a valid tag.
1058 */
1059 #define IsReparseTagValid(_tag) \
1060 (!((_tag) & ~IO_REPARSE_TAG_VALID_VALUES) && \
1061 ((_tag) > IO_REPARSE_TAG_RESERVED_RANGE))
1062
1063 /* Microsoft tags for reparse points. */
1064
1065 enum IO_REPARSE_TAG {
1066 IO_REPARSE_TAG_SYMBOLIC_LINK = cpu_to_le32(0),
1067 IO_REPARSE_TAG_NAME_SURROGATE = cpu_to_le32(0x20000000),
1068 IO_REPARSE_TAG_MICROSOFT = cpu_to_le32(0x80000000),
1069 IO_REPARSE_TAG_MOUNT_POINT = cpu_to_le32(0xA0000003),
1070 IO_REPARSE_TAG_SYMLINK = cpu_to_le32(0xA000000C),
1071 IO_REPARSE_TAG_HSM = cpu_to_le32(0xC0000004),
1072 IO_REPARSE_TAG_SIS = cpu_to_le32(0x80000007),
1073 IO_REPARSE_TAG_DEDUP = cpu_to_le32(0x80000013),
1074 IO_REPARSE_TAG_COMPRESS = cpu_to_le32(0x80000017),
1075
1076 /*
1077 * The reparse tag 0x80000008 is reserved for Microsoft internal use.
1078 * May be published in the future.
1079 */
1080
1081 /* Microsoft reparse tag reserved for DFS */
1082 IO_REPARSE_TAG_DFS = cpu_to_le32(0x8000000A),
1083
1084 /* Microsoft reparse tag reserved for the file system filter manager. */
1085 IO_REPARSE_TAG_FILTER_MANAGER = cpu_to_le32(0x8000000B),
1086
1087 /* Non-Microsoft tags for reparse points */
1088
1089 /* Tag allocated to CONGRUENT, May 2000. Used by IFSTEST. */
1090 IO_REPARSE_TAG_IFSTEST_CONGRUENT = cpu_to_le32(0x00000009),
1091
1092 /* Tag allocated to ARKIVIO. */
1093 IO_REPARSE_TAG_ARKIVIO = cpu_to_le32(0x0000000C),
1094
1095 /* Tag allocated to SOLUTIONSOFT. */
1096 IO_REPARSE_TAG_SOLUTIONSOFT = cpu_to_le32(0x2000000D),
1097
1098 /* Tag allocated to COMMVAULT. */
1099 IO_REPARSE_TAG_COMMVAULT = cpu_to_le32(0x0000000E),
1100
1101 /* OneDrive?? */
1102 IO_REPARSE_TAG_CLOUD = cpu_to_le32(0x9000001A),
1103 IO_REPARSE_TAG_CLOUD_1 = cpu_to_le32(0x9000101A),
1104 IO_REPARSE_TAG_CLOUD_2 = cpu_to_le32(0x9000201A),
1105 IO_REPARSE_TAG_CLOUD_3 = cpu_to_le32(0x9000301A),
1106 IO_REPARSE_TAG_CLOUD_4 = cpu_to_le32(0x9000401A),
1107 IO_REPARSE_TAG_CLOUD_5 = cpu_to_le32(0x9000501A),
1108 IO_REPARSE_TAG_CLOUD_6 = cpu_to_le32(0x9000601A),
1109 IO_REPARSE_TAG_CLOUD_7 = cpu_to_le32(0x9000701A),
1110 IO_REPARSE_TAG_CLOUD_8 = cpu_to_le32(0x9000801A),
1111 IO_REPARSE_TAG_CLOUD_9 = cpu_to_le32(0x9000901A),
1112 IO_REPARSE_TAG_CLOUD_A = cpu_to_le32(0x9000A01A),
1113 IO_REPARSE_TAG_CLOUD_B = cpu_to_le32(0x9000B01A),
1114 IO_REPARSE_TAG_CLOUD_C = cpu_to_le32(0x9000C01A),
1115 IO_REPARSE_TAG_CLOUD_D = cpu_to_le32(0x9000D01A),
1116 IO_REPARSE_TAG_CLOUD_E = cpu_to_le32(0x9000E01A),
1117 IO_REPARSE_TAG_CLOUD_F = cpu_to_le32(0x9000F01A),
1118
1119 };
1120
1121 #define SYMLINK_FLAG_RELATIVE 1
1122
1123 /* Microsoft reparse buffer. (see DDK for details) */
1124 struct REPARSE_DATA_BUFFER {
1125 __le32 ReparseTag; // 0x00:
1126 __le16 ReparseDataLength; // 0x04:
1127 __le16 Reserved;
1128
1129 union {
1130 /* If ReparseTag == 0xA0000003 (IO_REPARSE_TAG_MOUNT_POINT) */
1131 struct {
1132 __le16 SubstituteNameOffset; // 0x08
1133 __le16 SubstituteNameLength; // 0x0A
1134 __le16 PrintNameOffset; // 0x0C
1135 __le16 PrintNameLength; // 0x0E
1136 __le16 PathBuffer[]; // 0x10
1137 } MountPointReparseBuffer;
1138
1139 /*
1140 * If ReparseTag == 0xA000000C (IO_REPARSE_TAG_SYMLINK)
1141 * https://msdn.microsoft.com/en-us/library/cc232006.aspx
1142 */
1143 struct {
1144 __le16 SubstituteNameOffset; // 0x08
1145 __le16 SubstituteNameLength; // 0x0A
1146 __le16 PrintNameOffset; // 0x0C
1147 __le16 PrintNameLength; // 0x0E
1148 // 0-absolute path 1- relative path, SYMLINK_FLAG_RELATIVE
1149 __le32 Flags; // 0x10
1150 __le16 PathBuffer[]; // 0x14
1151 } SymbolicLinkReparseBuffer;
1152
1153 /* If ReparseTag == 0x80000017U */
1154 struct {
1155 __le32 WofVersion; // 0x08 == 1
1156 /*
1157 * 1 - WIM backing provider ("WIMBoot"),
1158 * 2 - System compressed file provider
1159 */
1160 __le32 WofProvider; // 0x0C:
1161 __le32 ProviderVer; // 0x10: == 1 WOF_FILE_PROVIDER_CURRENT_VERSION == 1
1162 __le32 CompressionFormat; // 0x14: 0, 1, 2, 3. See WOF_COMPRESSION_XXX
1163 } CompressReparseBuffer;
1164
1165 struct {
1166 u8 DataBuffer[1]; // 0x08:
1167 } GenericReparseBuffer;
1168 };
1169 };
1170
1171 /* ATTR_EA_INFO (0xD0) */
1172
1173 #define FILE_NEED_EA 0x80 // See ntifs.h
1174 /*
1175 * FILE_NEED_EA, indicates that the file to which the EA belongs cannot be
1176 * interpreted without understanding the associated extended attributes.
1177 */
1178 struct EA_INFO {
1179 __le16 size_pack; // 0x00: Size of buffer to hold in packed form.
1180 __le16 count; // 0x02: Count of EA's with FILE_NEED_EA bit set.
1181 __le32 size; // 0x04: Size of buffer to hold in unpacked form.
1182 };
1183
1184 static_assert(sizeof(struct EA_INFO) == 8);
1185
1186 /* ATTR_EA (0xE0) */
1187 struct EA_FULL {
1188 __le32 size; // 0x00: (not in packed)
1189 u8 flags; // 0x04:
1190 u8 name_len; // 0x05:
1191 __le16 elength; // 0x06:
1192 u8 name[]; // 0x08:
1193 };
1194
1195 static_assert(offsetof(struct EA_FULL, name) == 8);
1196
1197 #define ACL_REVISION 2
1198 #define ACL_REVISION_DS 4
1199
1200 #define SE_SELF_RELATIVE cpu_to_le16(0x8000)
1201
1202 struct SECURITY_DESCRIPTOR_RELATIVE {
1203 u8 Revision;
1204 u8 Sbz1;
1205 __le16 Control;
1206 __le32 Owner;
1207 __le32 Group;
1208 __le32 Sacl;
1209 __le32 Dacl;
1210 };
1211 static_assert(sizeof(struct SECURITY_DESCRIPTOR_RELATIVE) == 0x14);
1212
1213 struct ACE_HEADER {
1214 u8 AceType;
1215 u8 AceFlags;
1216 __le16 AceSize;
1217 };
1218 static_assert(sizeof(struct ACE_HEADER) == 4);
1219
1220 struct ACL {
1221 u8 AclRevision;
1222 u8 Sbz1;
1223 __le16 AclSize;
1224 __le16 AceCount;
1225 __le16 Sbz2;
1226 };
1227 static_assert(sizeof(struct ACL) == 8);
1228
1229 struct SID {
1230 u8 Revision;
1231 u8 SubAuthorityCount;
1232 u8 IdentifierAuthority[6];
1233 __le32 SubAuthority[];
1234 };
1235 static_assert(offsetof(struct SID, SubAuthority) == 8);
1236
1237 #endif /* _LINUX_NTFS3_NTFS_H */
1238 // clang-format on
1239