1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * hfcmulti.c low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
4 *
5 * Author Andreas Eversberg (jolly@eversberg.eu)
6 * ported to mqueue mechanism:
7 * Peter Sprenger (sprengermoving-bytes.de)
8 *
9 * inspired by existing hfc-pci driver:
10 * Copyright 1999 by Werner Cornelius (werner@isdn-development.de)
11 * Copyright 2008 by Karsten Keil (kkeil@suse.de)
12 * Copyright 2008 by Andreas Eversberg (jolly@eversberg.eu)
13 *
14 * Thanks to Cologne Chip AG for this great controller!
15 */
16
17 /*
18 * module parameters:
19 * type:
20 * By default (0), the card is automatically detected.
21 * Or use the following combinations:
22 * Bit 0-7 = 0x00001 = HFC-E1 (1 port)
23 * or Bit 0-7 = 0x00004 = HFC-4S (4 ports)
24 * or Bit 0-7 = 0x00008 = HFC-8S (8 ports)
25 * Bit 8 = 0x00100 = uLaw (instead of aLaw)
26 * Bit 9 = 0x00200 = Disable DTMF detect on all B-channels via hardware
27 * Bit 10 = spare
28 * Bit 11 = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
29 * or Bit 12 = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
30 * Bit 13 = spare
31 * Bit 14 = 0x04000 = Use external ram (128K)
32 * Bit 15 = 0x08000 = Use external ram (512K)
33 * Bit 16 = 0x10000 = Use 64 timeslots instead of 32
34 * or Bit 17 = 0x20000 = Use 128 timeslots instead of anything else
35 * Bit 18 = spare
36 * Bit 19 = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
37 * (all other bits are reserved and shall be 0)
38 * example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
39 * bus (PCM master)
40 *
41 * port: (optional or required for all ports on all installed cards)
42 * HFC-4S/HFC-8S only bits:
43 * Bit 0 = 0x001 = Use master clock for this S/T interface
44 * (ony once per chip).
45 * Bit 1 = 0x002 = transmitter line setup (non capacitive mode)
46 * Don't use this unless you know what you are doing!
47 * Bit 2 = 0x004 = Disable E-channel. (No E-channel processing)
48 * example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
49 * received from port 1
50 *
51 * HFC-E1 only bits:
52 * Bit 0 = 0x0001 = interface: 0=copper, 1=optical
53 * Bit 1 = 0x0002 = reserved (later for 32 B-channels transparent mode)
54 * Bit 2 = 0x0004 = Report LOS
55 * Bit 3 = 0x0008 = Report AIS
56 * Bit 4 = 0x0010 = Report SLIP
57 * Bit 5 = 0x0020 = Report RDI
58 * Bit 8 = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
59 * mode instead.
60 * Bit 9 = 0x0200 = Force get clock from interface, even in NT mode.
61 * or Bit 10 = 0x0400 = Force put clock to interface, even in TE mode.
62 * Bit 11 = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
63 * (E1 only)
64 * Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
65 * for default.
66 * (all other bits are reserved and shall be 0)
67 *
68 * debug:
69 * NOTE: only one debug value must be given for all cards
70 * enable debugging (see hfc_multi.h for debug options)
71 *
72 * poll:
73 * NOTE: only one poll value must be given for all cards
74 * Give the number of samples for each fifo process.
75 * By default 128 is used. Decrease to reduce delay, increase to
76 * reduce cpu load. If unsure, don't mess with it!
77 * Valid is 8, 16, 32, 64, 128, 256.
78 *
79 * pcm:
80 * NOTE: only one pcm value must be given for every card.
81 * The PCM bus id tells the mISDNdsp module about the connected PCM bus.
82 * By default (0), the PCM bus id is 100 for the card that is PCM master.
83 * If multiple cards are PCM master (because they are not interconnected),
84 * each card with PCM master will have increasing PCM id.
85 * All PCM busses with the same ID are expected to be connected and have
86 * common time slots slots.
87 * Only one chip of the PCM bus must be master, the others slave.
88 * -1 means no support of PCM bus not even.
89 * Omit this value, if all cards are interconnected or none is connected.
90 * If unsure, don't give this parameter.
91 *
92 * dmask and bmask:
93 * NOTE: One dmask value must be given for every HFC-E1 card.
94 * If omitted, the E1 card has D-channel on time slot 16, which is default.
95 * dmask is a 32 bit mask. The bit must be set for an alternate time slot.
96 * If multiple bits are set, multiple virtual card fragments are created.
97 * For each bit set, a bmask value must be given. Each bit on the bmask
98 * value stands for a B-channel. The bmask may not overlap with dmask or
99 * with other bmask values for that card.
100 * Example: dmask=0x00020002 bmask=0x0000fffc,0xfffc0000
101 * This will create one fragment with D-channel on slot 1 with
102 * B-channels on slots 2..15, and a second fragment with D-channel
103 * on slot 17 with B-channels on slot 18..31. Slot 16 is unused.
104 * If bit 0 is set (dmask=0x00000001) the D-channel is on slot 0 and will
105 * not function.
106 * Example: dmask=0x00000001 bmask=0xfffffffe
107 * This will create a port with all 31 usable timeslots as
108 * B-channels.
109 * If no bits are set on bmask, no B-channel is created for that fragment.
110 * Example: dmask=0xfffffffe bmask=0,0,0,0.... (31 0-values for bmask)
111 * This will create 31 ports with one D-channel only.
112 * If you don't know how to use it, you don't need it!
113 *
114 * iomode:
115 * NOTE: only one mode value must be given for every card.
116 * -> See hfc_multi.h for HFC_IO_MODE_* values
117 * By default, the IO mode is pci memory IO (MEMIO).
118 * Some cards require specific IO mode, so it cannot be changed.
119 * It may be useful to set IO mode to register io (REGIO) to solve
120 * PCI bridge problems.
121 * If unsure, don't give this parameter.
122 *
123 * clockdelay_nt:
124 * NOTE: only one clockdelay_nt value must be given once for all cards.
125 * Give the value of the clock control register (A_ST_CLK_DLY)
126 * of the S/T interfaces in NT mode.
127 * This register is needed for the TBR3 certification, so don't change it.
128 *
129 * clockdelay_te:
130 * NOTE: only one clockdelay_te value must be given once
131 * Give the value of the clock control register (A_ST_CLK_DLY)
132 * of the S/T interfaces in TE mode.
133 * This register is needed for the TBR3 certification, so don't change it.
134 *
135 * clock:
136 * NOTE: only one clock value must be given once
137 * Selects interface with clock source for mISDN and applications.
138 * Set to card number starting with 1. Set to -1 to disable.
139 * By default, the first card is used as clock source.
140 *
141 * hwid:
142 * NOTE: only one hwid value must be given once
143 * Enable special embedded devices with XHFC controllers.
144 */
145
146 /*
147 * debug register access (never use this, it will flood your system log)
148 * #define HFC_REGISTER_DEBUG
149 */
150
151 #define HFC_MULTI_VERSION "2.03"
152
153 #include <linux/interrupt.h>
154 #include <linux/module.h>
155 #include <linux/slab.h>
156 #include <linux/pci.h>
157 #include <linux/delay.h>
158 #include <linux/mISDNhw.h>
159 #include <linux/mISDNdsp.h>
160
161 /*
162 #define IRQCOUNT_DEBUG
163 #define IRQ_DEBUG
164 */
165
166 #include "hfc_multi.h"
167 #ifdef ECHOPREP
168 #include "gaintab.h"
169 #endif
170
171 #define MAX_CARDS 8
172 #define MAX_PORTS (8 * MAX_CARDS)
173 #define MAX_FRAGS (32 * MAX_CARDS)
174
175 static LIST_HEAD(HFClist);
176 static DEFINE_SPINLOCK(HFClock); /* global hfc list lock */
177
178 static void ph_state_change(struct dchannel *);
179
180 static struct hfc_multi *syncmaster;
181 static int plxsd_master; /* if we have a master card (yet) */
182 static DEFINE_SPINLOCK(plx_lock); /* may not acquire other lock inside */
183
184 #define TYP_E1 1
185 #define TYP_4S 4
186 #define TYP_8S 8
187
188 static int poll_timer = 6; /* default = 128 samples = 16ms */
189 /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
190 static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30 };
191 #define CLKDEL_TE 0x0f /* CLKDEL in TE mode */
192 #define CLKDEL_NT 0x6c /* CLKDEL in NT mode
193 (0x60 MUST be included!) */
194
195 #define DIP_4S 0x1 /* DIP Switches for Beronet 1S/2S/4S cards */
196 #define DIP_8S 0x2 /* DIP Switches for Beronet 8S+ cards */
197 #define DIP_E1 0x3 /* DIP Switches for Beronet E1 cards */
198
199 /*
200 * module stuff
201 */
202
203 static uint type[MAX_CARDS];
204 static int pcm[MAX_CARDS];
205 static uint dmask[MAX_CARDS];
206 static uint bmask[MAX_FRAGS];
207 static uint iomode[MAX_CARDS];
208 static uint port[MAX_PORTS];
209 static uint debug;
210 static uint poll;
211 static int clock;
212 static uint timer;
213 static uint clockdelay_te = CLKDEL_TE;
214 static uint clockdelay_nt = CLKDEL_NT;
215 #define HWID_NONE 0
216 #define HWID_MINIP4 1
217 #define HWID_MINIP8 2
218 #define HWID_MINIP16 3
219 static uint hwid = HWID_NONE;
220
221 static int HFC_cnt, E1_cnt, bmask_cnt, Port_cnt, PCM_cnt = 99;
222
223 MODULE_AUTHOR("Andreas Eversberg");
224 MODULE_LICENSE("GPL");
225 MODULE_VERSION(HFC_MULTI_VERSION);
226 module_param(debug, uint, S_IRUGO | S_IWUSR);
227 module_param(poll, uint, S_IRUGO | S_IWUSR);
228 module_param(clock, int, S_IRUGO | S_IWUSR);
229 module_param(timer, uint, S_IRUGO | S_IWUSR);
230 module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR);
231 module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR);
232 module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR);
233 module_param_array(pcm, int, NULL, S_IRUGO | S_IWUSR);
234 module_param_array(dmask, uint, NULL, S_IRUGO | S_IWUSR);
235 module_param_array(bmask, uint, NULL, S_IRUGO | S_IWUSR);
236 module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR);
237 module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR);
238 module_param(hwid, uint, S_IRUGO | S_IWUSR); /* The hardware ID */
239
240 #ifdef HFC_REGISTER_DEBUG
241 #define HFC_outb(hc, reg, val) \
242 (hc->HFC_outb(hc, reg, val, __func__, __LINE__))
243 #define HFC_outb_nodebug(hc, reg, val) \
244 (hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
245 #define HFC_inb(hc, reg) \
246 (hc->HFC_inb(hc, reg, __func__, __LINE__))
247 #define HFC_inb_nodebug(hc, reg) \
248 (hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
249 #define HFC_inw(hc, reg) \
250 (hc->HFC_inw(hc, reg, __func__, __LINE__))
251 #define HFC_inw_nodebug(hc, reg) \
252 (hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
253 #define HFC_wait(hc) \
254 (hc->HFC_wait(hc, __func__, __LINE__))
255 #define HFC_wait_nodebug(hc) \
256 (hc->HFC_wait_nodebug(hc, __func__, __LINE__))
257 #else
258 #define HFC_outb(hc, reg, val) (hc->HFC_outb(hc, reg, val))
259 #define HFC_outb_nodebug(hc, reg, val) (hc->HFC_outb_nodebug(hc, reg, val))
260 #define HFC_inb(hc, reg) (hc->HFC_inb(hc, reg))
261 #define HFC_inb_nodebug(hc, reg) (hc->HFC_inb_nodebug(hc, reg))
262 #define HFC_inw(hc, reg) (hc->HFC_inw(hc, reg))
263 #define HFC_inw_nodebug(hc, reg) (hc->HFC_inw_nodebug(hc, reg))
264 #define HFC_wait(hc) (hc->HFC_wait(hc))
265 #define HFC_wait_nodebug(hc) (hc->HFC_wait_nodebug(hc))
266 #endif
267
268 #ifdef CONFIG_MISDN_HFCMULTI_8xx
269 #include "hfc_multi_8xx.h"
270 #endif
271
272 /* HFC_IO_MODE_PCIMEM */
273 static void
274 #ifdef HFC_REGISTER_DEBUG
HFC_outb_pcimem(struct hfc_multi * hc,u_char reg,u_char val,const char * function,int line)275 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val,
276 const char *function, int line)
277 #else
278 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val)
279 #endif
280 {
281 writeb(val, hc->pci_membase + reg);
282 }
283 static u_char
284 #ifdef HFC_REGISTER_DEBUG
HFC_inb_pcimem(struct hfc_multi * hc,u_char reg,const char * function,int line)285 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
286 #else
287 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg)
288 #endif
289 {
290 return readb(hc->pci_membase + reg);
291 }
292 static u_short
293 #ifdef HFC_REGISTER_DEBUG
HFC_inw_pcimem(struct hfc_multi * hc,u_char reg,const char * function,int line)294 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
295 #else
296 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg)
297 #endif
298 {
299 return readw(hc->pci_membase + reg);
300 }
301 static void
302 #ifdef HFC_REGISTER_DEBUG
HFC_wait_pcimem(struct hfc_multi * hc,const char * function,int line)303 HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line)
304 #else
305 HFC_wait_pcimem(struct hfc_multi *hc)
306 #endif
307 {
308 while (readb(hc->pci_membase + R_STATUS) & V_BUSY)
309 cpu_relax();
310 }
311
312 /* HFC_IO_MODE_REGIO */
313 static void
314 #ifdef HFC_REGISTER_DEBUG
HFC_outb_regio(struct hfc_multi * hc,u_char reg,u_char val,const char * function,int line)315 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val,
316 const char *function, int line)
317 #else
318 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val)
319 #endif
320 {
321 outb(reg, hc->pci_iobase + 4);
322 outb(val, hc->pci_iobase);
323 }
324 static u_char
325 #ifdef HFC_REGISTER_DEBUG
HFC_inb_regio(struct hfc_multi * hc,u_char reg,const char * function,int line)326 HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
327 #else
328 HFC_inb_regio(struct hfc_multi *hc, u_char reg)
329 #endif
330 {
331 outb(reg, hc->pci_iobase + 4);
332 return inb(hc->pci_iobase);
333 }
334 static u_short
335 #ifdef HFC_REGISTER_DEBUG
HFC_inw_regio(struct hfc_multi * hc,u_char reg,const char * function,int line)336 HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
337 #else
338 HFC_inw_regio(struct hfc_multi *hc, u_char reg)
339 #endif
340 {
341 outb(reg, hc->pci_iobase + 4);
342 return inw(hc->pci_iobase);
343 }
344 static void
345 #ifdef HFC_REGISTER_DEBUG
HFC_wait_regio(struct hfc_multi * hc,const char * function,int line)346 HFC_wait_regio(struct hfc_multi *hc, const char *function, int line)
347 #else
348 HFC_wait_regio(struct hfc_multi *hc)
349 #endif
350 {
351 outb(R_STATUS, hc->pci_iobase + 4);
352 while (inb(hc->pci_iobase) & V_BUSY)
353 cpu_relax();
354 }
355
356 #ifdef HFC_REGISTER_DEBUG
357 static void
HFC_outb_debug(struct hfc_multi * hc,u_char reg,u_char val,const char * function,int line)358 HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val,
359 const char *function, int line)
360 {
361 char regname[256] = "", bits[9] = "xxxxxxxx";
362 int i;
363
364 i = -1;
365 while (hfc_register_names[++i].name) {
366 if (hfc_register_names[i].reg == reg)
367 strcat(regname, hfc_register_names[i].name);
368 }
369 if (regname[0] == '\0')
370 strcpy(regname, "register");
371
372 bits[7] = '0' + (!!(val & 1));
373 bits[6] = '0' + (!!(val & 2));
374 bits[5] = '0' + (!!(val & 4));
375 bits[4] = '0' + (!!(val & 8));
376 bits[3] = '0' + (!!(val & 16));
377 bits[2] = '0' + (!!(val & 32));
378 bits[1] = '0' + (!!(val & 64));
379 bits[0] = '0' + (!!(val & 128));
380 printk(KERN_DEBUG
381 "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
382 hc->id, reg, regname, val, bits, function, line);
383 HFC_outb_nodebug(hc, reg, val);
384 }
385 static u_char
HFC_inb_debug(struct hfc_multi * hc,u_char reg,const char * function,int line)386 HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
387 {
388 char regname[256] = "", bits[9] = "xxxxxxxx";
389 u_char val = HFC_inb_nodebug(hc, reg);
390 int i;
391
392 i = 0;
393 while (hfc_register_names[i++].name)
394 ;
395 while (hfc_register_names[++i].name) {
396 if (hfc_register_names[i].reg == reg)
397 strcat(regname, hfc_register_names[i].name);
398 }
399 if (regname[0] == '\0')
400 strcpy(regname, "register");
401
402 bits[7] = '0' + (!!(val & 1));
403 bits[6] = '0' + (!!(val & 2));
404 bits[5] = '0' + (!!(val & 4));
405 bits[4] = '0' + (!!(val & 8));
406 bits[3] = '0' + (!!(val & 16));
407 bits[2] = '0' + (!!(val & 32));
408 bits[1] = '0' + (!!(val & 64));
409 bits[0] = '0' + (!!(val & 128));
410 printk(KERN_DEBUG
411 "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
412 hc->id, reg, regname, val, bits, function, line);
413 return val;
414 }
415 static u_short
HFC_inw_debug(struct hfc_multi * hc,u_char reg,const char * function,int line)416 HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
417 {
418 char regname[256] = "";
419 u_short val = HFC_inw_nodebug(hc, reg);
420 int i;
421
422 i = 0;
423 while (hfc_register_names[i++].name)
424 ;
425 while (hfc_register_names[++i].name) {
426 if (hfc_register_names[i].reg == reg)
427 strcat(regname, hfc_register_names[i].name);
428 }
429 if (regname[0] == '\0')
430 strcpy(regname, "register");
431
432 printk(KERN_DEBUG
433 "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
434 hc->id, reg, regname, val, function, line);
435 return val;
436 }
437 static void
HFC_wait_debug(struct hfc_multi * hc,const char * function,int line)438 HFC_wait_debug(struct hfc_multi *hc, const char *function, int line)
439 {
440 printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n",
441 hc->id, function, line);
442 HFC_wait_nodebug(hc);
443 }
444 #endif
445
446 /* write fifo data (REGIO) */
447 static void
write_fifo_regio(struct hfc_multi * hc,u_char * data,int len)448 write_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
449 {
450 outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
451 while (len >> 2) {
452 outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase);
453 data += 4;
454 len -= 4;
455 }
456 while (len >> 1) {
457 outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase);
458 data += 2;
459 len -= 2;
460 }
461 while (len) {
462 outb(*data, hc->pci_iobase);
463 data++;
464 len--;
465 }
466 }
467 /* write fifo data (PCIMEM) */
468 static void
write_fifo_pcimem(struct hfc_multi * hc,u_char * data,int len)469 write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
470 {
471 while (len >> 2) {
472 writel(cpu_to_le32(*(u32 *)data),
473 hc->pci_membase + A_FIFO_DATA0);
474 data += 4;
475 len -= 4;
476 }
477 while (len >> 1) {
478 writew(cpu_to_le16(*(u16 *)data),
479 hc->pci_membase + A_FIFO_DATA0);
480 data += 2;
481 len -= 2;
482 }
483 while (len) {
484 writeb(*data, hc->pci_membase + A_FIFO_DATA0);
485 data++;
486 len--;
487 }
488 }
489
490 /* read fifo data (REGIO) */
491 static void
read_fifo_regio(struct hfc_multi * hc,u_char * data,int len)492 read_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
493 {
494 outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
495 while (len >> 2) {
496 *(u32 *)data = le32_to_cpu(inl(hc->pci_iobase));
497 data += 4;
498 len -= 4;
499 }
500 while (len >> 1) {
501 *(u16 *)data = le16_to_cpu(inw(hc->pci_iobase));
502 data += 2;
503 len -= 2;
504 }
505 while (len) {
506 *data = inb(hc->pci_iobase);
507 data++;
508 len--;
509 }
510 }
511
512 /* read fifo data (PCIMEM) */
513 static void
read_fifo_pcimem(struct hfc_multi * hc,u_char * data,int len)514 read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
515 {
516 while (len >> 2) {
517 *(u32 *)data =
518 le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0));
519 data += 4;
520 len -= 4;
521 }
522 while (len >> 1) {
523 *(u16 *)data =
524 le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0));
525 data += 2;
526 len -= 2;
527 }
528 while (len) {
529 *data = readb(hc->pci_membase + A_FIFO_DATA0);
530 data++;
531 len--;
532 }
533 }
534
535 static void
enable_hwirq(struct hfc_multi * hc)536 enable_hwirq(struct hfc_multi *hc)
537 {
538 hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN;
539 HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
540 }
541
542 static void
disable_hwirq(struct hfc_multi * hc)543 disable_hwirq(struct hfc_multi *hc)
544 {
545 hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN);
546 HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
547 }
548
549 #define NUM_EC 2
550 #define MAX_TDM_CHAN 32
551
552
553 static inline void
enablepcibridge(struct hfc_multi * c)554 enablepcibridge(struct hfc_multi *c)
555 {
556 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */
557 }
558
559 static inline void
disablepcibridge(struct hfc_multi * c)560 disablepcibridge(struct hfc_multi *c)
561 {
562 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */
563 }
564
565 static inline unsigned char
readpcibridge(struct hfc_multi * hc,unsigned char address)566 readpcibridge(struct hfc_multi *hc, unsigned char address)
567 {
568 unsigned short cipv;
569 unsigned char data;
570
571 if (!hc->pci_iobase)
572 return 0;
573
574 /* slow down a PCI read access by 1 PCI clock cycle */
575 HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/
576
577 if (address == 0)
578 cipv = 0x4000;
579 else
580 cipv = 0x5800;
581
582 /* select local bridge port address by writing to CIP port */
583 /* data = HFC_inb(c, cipv); * was _io before */
584 outw(cipv, hc->pci_iobase + 4);
585 data = inb(hc->pci_iobase);
586
587 /* restore R_CTRL for normal PCI read cycle speed */
588 HFC_outb(hc, R_CTRL, 0x0); /* was _io before */
589
590 return data;
591 }
592
593 static inline void
writepcibridge(struct hfc_multi * hc,unsigned char address,unsigned char data)594 writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data)
595 {
596 unsigned short cipv;
597 unsigned int datav;
598
599 if (!hc->pci_iobase)
600 return;
601
602 if (address == 0)
603 cipv = 0x4000;
604 else
605 cipv = 0x5800;
606
607 /* select local bridge port address by writing to CIP port */
608 outw(cipv, hc->pci_iobase + 4);
609 /* define a 32 bit dword with 4 identical bytes for write sequence */
610 datav = data | ((__u32) data << 8) | ((__u32) data << 16) |
611 ((__u32) data << 24);
612
613 /*
614 * write this 32 bit dword to the bridge data port
615 * this will initiate a write sequence of up to 4 writes to the same
616 * address on the local bus interface the number of write accesses
617 * is undefined but >=1 and depends on the next PCI transaction
618 * during write sequence on the local bus
619 */
620 outl(datav, hc->pci_iobase);
621 }
622
623 static inline void
cpld_set_reg(struct hfc_multi * hc,unsigned char reg)624 cpld_set_reg(struct hfc_multi *hc, unsigned char reg)
625 {
626 /* Do data pin read low byte */
627 HFC_outb(hc, R_GPIO_OUT1, reg);
628 }
629
630 static inline void
cpld_write_reg(struct hfc_multi * hc,unsigned char reg,unsigned char val)631 cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val)
632 {
633 cpld_set_reg(hc, reg);
634
635 enablepcibridge(hc);
636 writepcibridge(hc, 1, val);
637 disablepcibridge(hc);
638
639 return;
640 }
641
642 static inline void
vpm_write_address(struct hfc_multi * hc,unsigned short addr)643 vpm_write_address(struct hfc_multi *hc, unsigned short addr)
644 {
645 cpld_write_reg(hc, 0, 0xff & addr);
646 cpld_write_reg(hc, 1, 0x01 & (addr >> 8));
647 }
648
649 static inline unsigned char
vpm_in(struct hfc_multi * c,int which,unsigned short addr)650 vpm_in(struct hfc_multi *c, int which, unsigned short addr)
651 {
652 unsigned char res;
653
654 vpm_write_address(c, addr);
655
656 if (!which)
657 cpld_set_reg(c, 2);
658 else
659 cpld_set_reg(c, 3);
660
661 enablepcibridge(c);
662 res = readpcibridge(c, 1);
663 disablepcibridge(c);
664
665 cpld_set_reg(c, 0);
666
667 return res;
668 }
669
670 static inline void
vpm_out(struct hfc_multi * c,int which,unsigned short addr,unsigned char data)671 vpm_out(struct hfc_multi *c, int which, unsigned short addr,
672 unsigned char data)
673 {
674 vpm_write_address(c, addr);
675
676 enablepcibridge(c);
677
678 if (!which)
679 cpld_set_reg(c, 2);
680 else
681 cpld_set_reg(c, 3);
682
683 writepcibridge(c, 1, data);
684
685 cpld_set_reg(c, 0);
686
687 disablepcibridge(c);
688
689 {
690 unsigned char regin;
691 regin = vpm_in(c, which, addr);
692 if (regin != data)
693 printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back "
694 "0x%x\n", data, addr, regin);
695 }
696
697 }
698
699
700 static void
vpm_init(struct hfc_multi * wc)701 vpm_init(struct hfc_multi *wc)
702 {
703 unsigned char reg;
704 unsigned int mask;
705 unsigned int i, x, y;
706 unsigned int ver;
707
708 for (x = 0; x < NUM_EC; x++) {
709 /* Setup GPIO's */
710 if (!x) {
711 ver = vpm_in(wc, x, 0x1a0);
712 printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver);
713 }
714
715 for (y = 0; y < 4; y++) {
716 vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */
717 vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */
718 vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */
719 }
720
721 /* Setup TDM path - sets fsync and tdm_clk as inputs */
722 reg = vpm_in(wc, x, 0x1a3); /* misc_con */
723 vpm_out(wc, x, 0x1a3, reg & ~2);
724
725 /* Setup Echo length (256 taps) */
726 vpm_out(wc, x, 0x022, 1);
727 vpm_out(wc, x, 0x023, 0xff);
728
729 /* Setup timeslots */
730 vpm_out(wc, x, 0x02f, 0x00);
731 mask = 0x02020202 << (x * 4);
732
733 /* Setup the tdm channel masks for all chips */
734 for (i = 0; i < 4; i++)
735 vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff);
736
737 /* Setup convergence rate */
738 printk(KERN_DEBUG "VPM: A-law mode\n");
739 reg = 0x00 | 0x10 | 0x01;
740 vpm_out(wc, x, 0x20, reg);
741 printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg);
742 /*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
743
744 vpm_out(wc, x, 0x24, 0x02);
745 reg = vpm_in(wc, x, 0x24);
746 printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg);
747
748 /* Initialize echo cans */
749 for (i = 0; i < MAX_TDM_CHAN; i++) {
750 if (mask & (0x00000001 << i))
751 vpm_out(wc, x, i, 0x00);
752 }
753
754 /*
755 * ARM arch at least disallows a udelay of
756 * more than 2ms... it gives a fake "__bad_udelay"
757 * reference at link-time.
758 * long delays in kernel code are pretty sucky anyway
759 * for now work around it using 5 x 2ms instead of 1 x 10ms
760 */
761
762 udelay(2000);
763 udelay(2000);
764 udelay(2000);
765 udelay(2000);
766 udelay(2000);
767
768 /* Put in bypass mode */
769 for (i = 0; i < MAX_TDM_CHAN; i++) {
770 if (mask & (0x00000001 << i))
771 vpm_out(wc, x, i, 0x01);
772 }
773
774 /* Enable bypass */
775 for (i = 0; i < MAX_TDM_CHAN; i++) {
776 if (mask & (0x00000001 << i))
777 vpm_out(wc, x, 0x78 + i, 0x01);
778 }
779
780 }
781 }
782
783 #ifdef UNUSED
784 static void
vpm_check(struct hfc_multi * hctmp)785 vpm_check(struct hfc_multi *hctmp)
786 {
787 unsigned char gpi2;
788
789 gpi2 = HFC_inb(hctmp, R_GPI_IN2);
790
791 if ((gpi2 & 0x3) != 0x3)
792 printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2);
793 }
794 #endif /* UNUSED */
795
796
797 /*
798 * Interface to enable/disable the HW Echocan
799 *
800 * these functions are called within a spin_lock_irqsave on
801 * the channel instance lock, so we are not disturbed by irqs
802 *
803 * we can later easily change the interface to make other
804 * things configurable, for now we configure the taps
805 *
806 */
807
808 static void
vpm_echocan_on(struct hfc_multi * hc,int ch,int taps)809 vpm_echocan_on(struct hfc_multi *hc, int ch, int taps)
810 {
811 unsigned int timeslot;
812 unsigned int unit;
813 struct bchannel *bch = hc->chan[ch].bch;
814 #ifdef TXADJ
815 int txadj = -4;
816 struct sk_buff *skb;
817 #endif
818 if (hc->chan[ch].protocol != ISDN_P_B_RAW)
819 return;
820
821 if (!bch)
822 return;
823
824 #ifdef TXADJ
825 skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
826 sizeof(int), &txadj, GFP_ATOMIC);
827 if (skb)
828 recv_Bchannel_skb(bch, skb);
829 #endif
830
831 timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
832 unit = ch % 4;
833
834 printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n",
835 taps, timeslot);
836
837 vpm_out(hc, unit, timeslot, 0x7e);
838 }
839
840 static void
vpm_echocan_off(struct hfc_multi * hc,int ch)841 vpm_echocan_off(struct hfc_multi *hc, int ch)
842 {
843 unsigned int timeslot;
844 unsigned int unit;
845 struct bchannel *bch = hc->chan[ch].bch;
846 #ifdef TXADJ
847 int txadj = 0;
848 struct sk_buff *skb;
849 #endif
850
851 if (hc->chan[ch].protocol != ISDN_P_B_RAW)
852 return;
853
854 if (!bch)
855 return;
856
857 #ifdef TXADJ
858 skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
859 sizeof(int), &txadj, GFP_ATOMIC);
860 if (skb)
861 recv_Bchannel_skb(bch, skb);
862 #endif
863
864 timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
865 unit = ch % 4;
866
867 printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n",
868 timeslot);
869 /* FILLME */
870 vpm_out(hc, unit, timeslot, 0x01);
871 }
872
873
874 /*
875 * Speech Design resync feature
876 * NOTE: This is called sometimes outside interrupt handler.
877 * We must lock irqsave, so no other interrupt (other card) will occur!
878 * Also multiple interrupts may nest, so must lock each access (lists, card)!
879 */
880 static inline void
hfcmulti_resync(struct hfc_multi * locked,struct hfc_multi * newmaster,int rm)881 hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm)
882 {
883 struct hfc_multi *hc, *next, *pcmmaster = NULL;
884 void __iomem *plx_acc_32;
885 u_int pv;
886 u_long flags;
887
888 spin_lock_irqsave(&HFClock, flags);
889 spin_lock(&plx_lock); /* must be locked inside other locks */
890
891 if (debug & DEBUG_HFCMULTI_PLXSD)
892 printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n",
893 __func__, syncmaster);
894
895 /* select new master */
896 if (newmaster) {
897 if (debug & DEBUG_HFCMULTI_PLXSD)
898 printk(KERN_DEBUG "using provided controller\n");
899 } else {
900 list_for_each_entry_safe(hc, next, &HFClist, list) {
901 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
902 if (hc->syncronized) {
903 newmaster = hc;
904 break;
905 }
906 }
907 }
908 }
909
910 /* Disable sync of all cards */
911 list_for_each_entry_safe(hc, next, &HFClist, list) {
912 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
913 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
914 pv = readl(plx_acc_32);
915 pv &= ~PLX_SYNC_O_EN;
916 writel(pv, plx_acc_32);
917 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
918 pcmmaster = hc;
919 if (hc->ctype == HFC_TYPE_E1) {
920 if (debug & DEBUG_HFCMULTI_PLXSD)
921 printk(KERN_DEBUG
922 "Schedule SYNC_I\n");
923 hc->e1_resync |= 1; /* get SYNC_I */
924 }
925 }
926 }
927 }
928
929 if (newmaster) {
930 hc = newmaster;
931 if (debug & DEBUG_HFCMULTI_PLXSD)
932 printk(KERN_DEBUG "id=%d (0x%p) = syncronized with "
933 "interface.\n", hc->id, hc);
934 /* Enable new sync master */
935 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
936 pv = readl(plx_acc_32);
937 pv |= PLX_SYNC_O_EN;
938 writel(pv, plx_acc_32);
939 /* switch to jatt PLL, if not disabled by RX_SYNC */
940 if (hc->ctype == HFC_TYPE_E1
941 && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) {
942 if (debug & DEBUG_HFCMULTI_PLXSD)
943 printk(KERN_DEBUG "Schedule jatt PLL\n");
944 hc->e1_resync |= 2; /* switch to jatt */
945 }
946 } else {
947 if (pcmmaster) {
948 hc = pcmmaster;
949 if (debug & DEBUG_HFCMULTI_PLXSD)
950 printk(KERN_DEBUG
951 "id=%d (0x%p) = PCM master syncronized "
952 "with QUARTZ\n", hc->id, hc);
953 if (hc->ctype == HFC_TYPE_E1) {
954 /* Use the crystal clock for the PCM
955 master card */
956 if (debug & DEBUG_HFCMULTI_PLXSD)
957 printk(KERN_DEBUG
958 "Schedule QUARTZ for HFC-E1\n");
959 hc->e1_resync |= 4; /* switch quartz */
960 } else {
961 if (debug & DEBUG_HFCMULTI_PLXSD)
962 printk(KERN_DEBUG
963 "QUARTZ is automatically "
964 "enabled by HFC-%dS\n", hc->ctype);
965 }
966 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
967 pv = readl(plx_acc_32);
968 pv |= PLX_SYNC_O_EN;
969 writel(pv, plx_acc_32);
970 } else
971 if (!rm)
972 printk(KERN_ERR "%s no pcm master, this MUST "
973 "not happen!\n", __func__);
974 }
975 syncmaster = newmaster;
976
977 spin_unlock(&plx_lock);
978 spin_unlock_irqrestore(&HFClock, flags);
979 }
980
981 /* This must be called AND hc must be locked irqsave!!! */
982 static inline void
plxsd_checksync(struct hfc_multi * hc,int rm)983 plxsd_checksync(struct hfc_multi *hc, int rm)
984 {
985 if (hc->syncronized) {
986 if (syncmaster == NULL) {
987 if (debug & DEBUG_HFCMULTI_PLXSD)
988 printk(KERN_DEBUG "%s: GOT sync on card %d"
989 " (id=%d)\n", __func__, hc->id + 1,
990 hc->id);
991 hfcmulti_resync(hc, hc, rm);
992 }
993 } else {
994 if (syncmaster == hc) {
995 if (debug & DEBUG_HFCMULTI_PLXSD)
996 printk(KERN_DEBUG "%s: LOST sync on card %d"
997 " (id=%d)\n", __func__, hc->id + 1,
998 hc->id);
999 hfcmulti_resync(hc, NULL, rm);
1000 }
1001 }
1002 }
1003
1004
1005 /*
1006 * free hardware resources used by driver
1007 */
1008 static void
release_io_hfcmulti(struct hfc_multi * hc)1009 release_io_hfcmulti(struct hfc_multi *hc)
1010 {
1011 void __iomem *plx_acc_32;
1012 u_int pv;
1013 u_long plx_flags;
1014
1015 if (debug & DEBUG_HFCMULTI_INIT)
1016 printk(KERN_DEBUG "%s: entered\n", __func__);
1017
1018 /* soft reset also masks all interrupts */
1019 hc->hw.r_cirm |= V_SRES;
1020 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1021 udelay(1000);
1022 hc->hw.r_cirm &= ~V_SRES;
1023 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1024 udelay(1000); /* instead of 'wait' that may cause locking */
1025
1026 /* release Speech Design card, if PLX was initialized */
1027 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) {
1028 if (debug & DEBUG_HFCMULTI_PLXSD)
1029 printk(KERN_DEBUG "%s: release PLXSD card %d\n",
1030 __func__, hc->id + 1);
1031 spin_lock_irqsave(&plx_lock, plx_flags);
1032 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1033 writel(PLX_GPIOC_INIT, plx_acc_32);
1034 pv = readl(plx_acc_32);
1035 /* Termination off */
1036 pv &= ~PLX_TERM_ON;
1037 /* Disconnect the PCM */
1038 pv |= PLX_SLAVE_EN_N;
1039 pv &= ~PLX_MASTER_EN;
1040 pv &= ~PLX_SYNC_O_EN;
1041 /* Put the DSP in Reset */
1042 pv &= ~PLX_DSP_RES_N;
1043 writel(pv, plx_acc_32);
1044 if (debug & DEBUG_HFCMULTI_INIT)
1045 printk(KERN_DEBUG "%s: PCM off: PLX_GPIO=%x\n",
1046 __func__, pv);
1047 spin_unlock_irqrestore(&plx_lock, plx_flags);
1048 }
1049
1050 /* disable memory mapped ports / io ports */
1051 test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */
1052 if (hc->pci_dev)
1053 pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0);
1054 if (hc->pci_membase)
1055 iounmap(hc->pci_membase);
1056 if (hc->plx_membase)
1057 iounmap(hc->plx_membase);
1058 if (hc->pci_iobase)
1059 release_region(hc->pci_iobase, 8);
1060 if (hc->xhfc_membase)
1061 iounmap((void *)hc->xhfc_membase);
1062
1063 if (hc->pci_dev) {
1064 pci_disable_device(hc->pci_dev);
1065 pci_set_drvdata(hc->pci_dev, NULL);
1066 }
1067 if (debug & DEBUG_HFCMULTI_INIT)
1068 printk(KERN_DEBUG "%s: done\n", __func__);
1069 }
1070
1071 /*
1072 * function called to reset the HFC chip. A complete software reset of chip
1073 * and fifos is done. All configuration of the chip is done.
1074 */
1075
1076 static int
init_chip(struct hfc_multi * hc)1077 init_chip(struct hfc_multi *hc)
1078 {
1079 u_long flags, val, val2 = 0, rev;
1080 int i, err = 0;
1081 u_char r_conf_en, rval;
1082 void __iomem *plx_acc_32;
1083 u_int pv;
1084 u_long plx_flags, hfc_flags;
1085 int plx_count;
1086 struct hfc_multi *pos, *next, *plx_last_hc;
1087
1088 spin_lock_irqsave(&hc->lock, flags);
1089 /* reset all registers */
1090 memset(&hc->hw, 0, sizeof(struct hfcm_hw));
1091
1092 /* revision check */
1093 if (debug & DEBUG_HFCMULTI_INIT)
1094 printk(KERN_DEBUG "%s: entered\n", __func__);
1095 val = HFC_inb(hc, R_CHIP_ID);
1096 if ((val >> 4) != 0x8 && (val >> 4) != 0xc && (val >> 4) != 0xe &&
1097 (val >> 1) != 0x31) {
1098 printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val);
1099 err = -EIO;
1100 goto out;
1101 }
1102 rev = HFC_inb(hc, R_CHIP_RV);
1103 printk(KERN_INFO
1104 "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1105 val, rev, (rev == 0 && (hc->ctype != HFC_TYPE_XHFC)) ?
1106 " (old FIFO handling)" : "");
1107 if (hc->ctype != HFC_TYPE_XHFC && rev == 0) {
1108 test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip);
1109 printk(KERN_WARNING
1110 "HFC_multi: NOTE: Your chip is revision 0, "
1111 "ask Cologne Chip for update. Newer chips "
1112 "have a better FIFO handling. Old chips "
1113 "still work but may have slightly lower "
1114 "HDLC transmit performance.\n");
1115 }
1116 if (rev > 1) {
1117 printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't "
1118 "consider chip revision = %ld. The chip / "
1119 "bridge may not work.\n", rev);
1120 }
1121
1122 /* set s-ram size */
1123 hc->Flen = 0x10;
1124 hc->Zmin = 0x80;
1125 hc->Zlen = 384;
1126 hc->DTMFbase = 0x1000;
1127 if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) {
1128 if (debug & DEBUG_HFCMULTI_INIT)
1129 printk(KERN_DEBUG "%s: changing to 128K external RAM\n",
1130 __func__);
1131 hc->hw.r_ctrl |= V_EXT_RAM;
1132 hc->hw.r_ram_sz = 1;
1133 hc->Flen = 0x20;
1134 hc->Zmin = 0xc0;
1135 hc->Zlen = 1856;
1136 hc->DTMFbase = 0x2000;
1137 }
1138 if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) {
1139 if (debug & DEBUG_HFCMULTI_INIT)
1140 printk(KERN_DEBUG "%s: changing to 512K external RAM\n",
1141 __func__);
1142 hc->hw.r_ctrl |= V_EXT_RAM;
1143 hc->hw.r_ram_sz = 2;
1144 hc->Flen = 0x20;
1145 hc->Zmin = 0xc0;
1146 hc->Zlen = 8000;
1147 hc->DTMFbase = 0x2000;
1148 }
1149 if (hc->ctype == HFC_TYPE_XHFC) {
1150 hc->Flen = 0x8;
1151 hc->Zmin = 0x0;
1152 hc->Zlen = 64;
1153 hc->DTMFbase = 0x0;
1154 }
1155 hc->max_trans = poll << 1;
1156 if (hc->max_trans > hc->Zlen)
1157 hc->max_trans = hc->Zlen;
1158
1159 /* Speech Design PLX bridge */
1160 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1161 if (debug & DEBUG_HFCMULTI_PLXSD)
1162 printk(KERN_DEBUG "%s: initializing PLXSD card %d\n",
1163 __func__, hc->id + 1);
1164 spin_lock_irqsave(&plx_lock, plx_flags);
1165 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1166 writel(PLX_GPIOC_INIT, plx_acc_32);
1167 pv = readl(plx_acc_32);
1168 /* The first and the last cards are terminating the PCM bus */
1169 pv |= PLX_TERM_ON; /* hc is currently the last */
1170 /* Disconnect the PCM */
1171 pv |= PLX_SLAVE_EN_N;
1172 pv &= ~PLX_MASTER_EN;
1173 pv &= ~PLX_SYNC_O_EN;
1174 /* Put the DSP in Reset */
1175 pv &= ~PLX_DSP_RES_N;
1176 writel(pv, plx_acc_32);
1177 spin_unlock_irqrestore(&plx_lock, plx_flags);
1178 if (debug & DEBUG_HFCMULTI_INIT)
1179 printk(KERN_DEBUG "%s: slave/term: PLX_GPIO=%x\n",
1180 __func__, pv);
1181 /*
1182 * If we are the 3rd PLXSD card or higher, we must turn
1183 * termination of last PLXSD card off.
1184 */
1185 spin_lock_irqsave(&HFClock, hfc_flags);
1186 plx_count = 0;
1187 plx_last_hc = NULL;
1188 list_for_each_entry_safe(pos, next, &HFClist, list) {
1189 if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) {
1190 plx_count++;
1191 if (pos != hc)
1192 plx_last_hc = pos;
1193 }
1194 }
1195 if (plx_count >= 3) {
1196 if (debug & DEBUG_HFCMULTI_PLXSD)
1197 printk(KERN_DEBUG "%s: card %d is between, so "
1198 "we disable termination\n",
1199 __func__, plx_last_hc->id + 1);
1200 spin_lock_irqsave(&plx_lock, plx_flags);
1201 plx_acc_32 = plx_last_hc->plx_membase + PLX_GPIOC;
1202 pv = readl(plx_acc_32);
1203 pv &= ~PLX_TERM_ON;
1204 writel(pv, plx_acc_32);
1205 spin_unlock_irqrestore(&plx_lock, plx_flags);
1206 if (debug & DEBUG_HFCMULTI_INIT)
1207 printk(KERN_DEBUG
1208 "%s: term off: PLX_GPIO=%x\n",
1209 __func__, pv);
1210 }
1211 spin_unlock_irqrestore(&HFClock, hfc_flags);
1212 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1213 }
1214
1215 if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1216 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1217
1218 /* we only want the real Z2 read-pointer for revision > 0 */
1219 if (!test_bit(HFC_CHIP_REVISION0, &hc->chip))
1220 hc->hw.r_ram_sz |= V_FZ_MD;
1221
1222 /* select pcm mode */
1223 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1224 if (debug & DEBUG_HFCMULTI_INIT)
1225 printk(KERN_DEBUG "%s: setting PCM into slave mode\n",
1226 __func__);
1227 } else
1228 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) {
1229 if (debug & DEBUG_HFCMULTI_INIT)
1230 printk(KERN_DEBUG "%s: setting PCM into master mode\n",
1231 __func__);
1232 hc->hw.r_pcm_md0 |= V_PCM_MD;
1233 } else {
1234 if (debug & DEBUG_HFCMULTI_INIT)
1235 printk(KERN_DEBUG "%s: performing PCM auto detect\n",
1236 __func__);
1237 }
1238
1239 /* soft reset */
1240 HFC_outb(hc, R_CTRL, hc->hw.r_ctrl);
1241 if (hc->ctype == HFC_TYPE_XHFC)
1242 HFC_outb(hc, 0x0C /* R_FIFO_THRES */,
1243 0x11 /* 16 Bytes TX/RX */);
1244 else
1245 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1246 HFC_outb(hc, R_FIFO_MD, 0);
1247 if (hc->ctype == HFC_TYPE_XHFC)
1248 hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES;
1249 else
1250 hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES
1251 | V_RLD_EPR;
1252 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1253 udelay(100);
1254 hc->hw.r_cirm = 0;
1255 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1256 udelay(100);
1257 if (hc->ctype != HFC_TYPE_XHFC)
1258 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1259
1260 /* Speech Design PLX bridge pcm and sync mode */
1261 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1262 spin_lock_irqsave(&plx_lock, plx_flags);
1263 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1264 pv = readl(plx_acc_32);
1265 /* Connect PCM */
1266 if (hc->hw.r_pcm_md0 & V_PCM_MD) {
1267 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1268 pv |= PLX_SYNC_O_EN;
1269 if (debug & DEBUG_HFCMULTI_INIT)
1270 printk(KERN_DEBUG "%s: master: PLX_GPIO=%x\n",
1271 __func__, pv);
1272 } else {
1273 pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N);
1274 pv &= ~PLX_SYNC_O_EN;
1275 if (debug & DEBUG_HFCMULTI_INIT)
1276 printk(KERN_DEBUG "%s: slave: PLX_GPIO=%x\n",
1277 __func__, pv);
1278 }
1279 writel(pv, plx_acc_32);
1280 spin_unlock_irqrestore(&plx_lock, plx_flags);
1281 }
1282
1283 /* PCM setup */
1284 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90);
1285 if (hc->slots == 32)
1286 HFC_outb(hc, R_PCM_MD1, 0x00);
1287 if (hc->slots == 64)
1288 HFC_outb(hc, R_PCM_MD1, 0x10);
1289 if (hc->slots == 128)
1290 HFC_outb(hc, R_PCM_MD1, 0x20);
1291 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0);
1292 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
1293 HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */
1294 else if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1295 HFC_outb(hc, R_PCM_MD2, 0x10); /* V_C2O_EN */
1296 else
1297 HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */
1298 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1299 for (i = 0; i < 256; i++) {
1300 HFC_outb_nodebug(hc, R_SLOT, i);
1301 HFC_outb_nodebug(hc, A_SL_CFG, 0);
1302 if (hc->ctype != HFC_TYPE_XHFC)
1303 HFC_outb_nodebug(hc, A_CONF, 0);
1304 hc->slot_owner[i] = -1;
1305 }
1306
1307 /* set clock speed */
1308 if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) {
1309 if (debug & DEBUG_HFCMULTI_INIT)
1310 printk(KERN_DEBUG
1311 "%s: setting double clock\n", __func__);
1312 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1313 }
1314
1315 if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1316 HFC_outb(hc, 0x02 /* R_CLK_CFG */, 0x40 /* V_CLKO_OFF */);
1317
1318 /* B410P GPIO */
1319 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1320 printk(KERN_NOTICE "Setting GPIOs\n");
1321 HFC_outb(hc, R_GPIO_SEL, 0x30);
1322 HFC_outb(hc, R_GPIO_EN1, 0x3);
1323 udelay(1000);
1324 printk(KERN_NOTICE "calling vpm_init\n");
1325 vpm_init(hc);
1326 }
1327
1328 /* check if R_F0_CNT counts (8 kHz frame count) */
1329 val = HFC_inb(hc, R_F0_CNTL);
1330 val += HFC_inb(hc, R_F0_CNTH) << 8;
1331 if (debug & DEBUG_HFCMULTI_INIT)
1332 printk(KERN_DEBUG
1333 "HFC_multi F0_CNT %ld after reset\n", val);
1334 spin_unlock_irqrestore(&hc->lock, flags);
1335 set_current_state(TASK_UNINTERRUPTIBLE);
1336 schedule_timeout((HZ / 100) ? : 1); /* Timeout minimum 10ms */
1337 spin_lock_irqsave(&hc->lock, flags);
1338 val2 = HFC_inb(hc, R_F0_CNTL);
1339 val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1340 if (debug & DEBUG_HFCMULTI_INIT)
1341 printk(KERN_DEBUG
1342 "HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1343 val2);
1344 if (val2 >= val + 8) { /* 1 ms */
1345 /* it counts, so we keep the pcm mode */
1346 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1347 printk(KERN_INFO "controller is PCM bus MASTER\n");
1348 else
1349 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip))
1350 printk(KERN_INFO "controller is PCM bus SLAVE\n");
1351 else {
1352 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
1353 printk(KERN_INFO "controller is PCM bus SLAVE "
1354 "(auto detected)\n");
1355 }
1356 } else {
1357 /* does not count */
1358 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
1359 controller_fail:
1360 printk(KERN_ERR "HFC_multi ERROR, getting no 125us "
1361 "pulse. Seems that controller fails.\n");
1362 err = -EIO;
1363 goto out;
1364 }
1365 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1366 printk(KERN_INFO "controller is PCM bus SLAVE "
1367 "(ignoring missing PCM clock)\n");
1368 } else {
1369 /* only one pcm master */
1370 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
1371 && plxsd_master) {
1372 printk(KERN_ERR "HFC_multi ERROR, no clock "
1373 "on another Speech Design card found. "
1374 "Please be sure to connect PCM cable.\n");
1375 err = -EIO;
1376 goto out;
1377 }
1378 /* retry with master clock */
1379 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1380 spin_lock_irqsave(&plx_lock, plx_flags);
1381 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1382 pv = readl(plx_acc_32);
1383 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1384 pv |= PLX_SYNC_O_EN;
1385 writel(pv, plx_acc_32);
1386 spin_unlock_irqrestore(&plx_lock, plx_flags);
1387 if (debug & DEBUG_HFCMULTI_INIT)
1388 printk(KERN_DEBUG "%s: master: "
1389 "PLX_GPIO=%x\n", __func__, pv);
1390 }
1391 hc->hw.r_pcm_md0 |= V_PCM_MD;
1392 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1393 spin_unlock_irqrestore(&hc->lock, flags);
1394 set_current_state(TASK_UNINTERRUPTIBLE);
1395 schedule_timeout((HZ / 100) ?: 1); /* Timeout min. 10ms */
1396 spin_lock_irqsave(&hc->lock, flags);
1397 val2 = HFC_inb(hc, R_F0_CNTL);
1398 val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1399 if (debug & DEBUG_HFCMULTI_INIT)
1400 printk(KERN_DEBUG "HFC_multi F0_CNT %ld after "
1401 "10 ms (2nd try)\n", val2);
1402 if (val2 >= val + 8) { /* 1 ms */
1403 test_and_set_bit(HFC_CHIP_PCM_MASTER,
1404 &hc->chip);
1405 printk(KERN_INFO "controller is PCM bus MASTER "
1406 "(auto detected)\n");
1407 } else
1408 goto controller_fail;
1409 }
1410 }
1411
1412 /* Release the DSP Reset */
1413 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1414 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1415 plxsd_master = 1;
1416 spin_lock_irqsave(&plx_lock, plx_flags);
1417 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1418 pv = readl(plx_acc_32);
1419 pv |= PLX_DSP_RES_N;
1420 writel(pv, plx_acc_32);
1421 spin_unlock_irqrestore(&plx_lock, plx_flags);
1422 if (debug & DEBUG_HFCMULTI_INIT)
1423 printk(KERN_DEBUG "%s: reset off: PLX_GPIO=%x\n",
1424 __func__, pv);
1425 }
1426
1427 /* pcm id */
1428 if (hc->pcm)
1429 printk(KERN_INFO "controller has given PCM BUS ID %d\n",
1430 hc->pcm);
1431 else {
1432 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)
1433 || test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1434 PCM_cnt++; /* SD has proprietary bridging */
1435 }
1436 hc->pcm = PCM_cnt;
1437 printk(KERN_INFO "controller has PCM BUS ID %d "
1438 "(auto selected)\n", hc->pcm);
1439 }
1440
1441 /* set up timer */
1442 HFC_outb(hc, R_TI_WD, poll_timer);
1443 hc->hw.r_irqmsk_misc |= V_TI_IRQMSK;
1444
1445 /* set E1 state machine IRQ */
1446 if (hc->ctype == HFC_TYPE_E1)
1447 hc->hw.r_irqmsk_misc |= V_STA_IRQMSK;
1448
1449 /* set DTMF detection */
1450 if (test_bit(HFC_CHIP_DTMF, &hc->chip)) {
1451 if (debug & DEBUG_HFCMULTI_INIT)
1452 printk(KERN_DEBUG "%s: enabling DTMF detection "
1453 "for all B-channel\n", __func__);
1454 hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP;
1455 if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1456 hc->hw.r_dtmf |= V_ULAW_SEL;
1457 HFC_outb(hc, R_DTMF_N, 102 - 1);
1458 hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK;
1459 }
1460
1461 /* conference engine */
1462 if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1463 r_conf_en = V_CONF_EN | V_ULAW;
1464 else
1465 r_conf_en = V_CONF_EN;
1466 if (hc->ctype != HFC_TYPE_XHFC)
1467 HFC_outb(hc, R_CONF_EN, r_conf_en);
1468
1469 /* setting leds */
1470 switch (hc->leds) {
1471 case 1: /* HFC-E1 OEM */
1472 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
1473 HFC_outb(hc, R_GPIO_SEL, 0x32);
1474 else
1475 HFC_outb(hc, R_GPIO_SEL, 0x30);
1476
1477 HFC_outb(hc, R_GPIO_EN1, 0x0f);
1478 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1479
1480 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1481 break;
1482
1483 case 2: /* HFC-4S OEM */
1484 case 3:
1485 HFC_outb(hc, R_GPIO_SEL, 0xf0);
1486 HFC_outb(hc, R_GPIO_EN1, 0xff);
1487 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1488 break;
1489 }
1490
1491 if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) {
1492 hc->hw.r_st_sync = 0x10; /* V_AUTO_SYNCI */
1493 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1494 }
1495
1496 /* set master clock */
1497 if (hc->masterclk >= 0) {
1498 if (debug & DEBUG_HFCMULTI_INIT)
1499 printk(KERN_DEBUG "%s: setting ST master clock "
1500 "to port %d (0..%d)\n",
1501 __func__, hc->masterclk, hc->ports - 1);
1502 hc->hw.r_st_sync |= (hc->masterclk | V_AUTO_SYNC);
1503 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1504 }
1505
1506
1507
1508 /* setting misc irq */
1509 HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc);
1510 if (debug & DEBUG_HFCMULTI_INIT)
1511 printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n",
1512 hc->hw.r_irqmsk_misc);
1513
1514 /* RAM access test */
1515 HFC_outb(hc, R_RAM_ADDR0, 0);
1516 HFC_outb(hc, R_RAM_ADDR1, 0);
1517 HFC_outb(hc, R_RAM_ADDR2, 0);
1518 for (i = 0; i < 256; i++) {
1519 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1520 HFC_outb_nodebug(hc, R_RAM_DATA, ((i * 3) & 0xff));
1521 }
1522 for (i = 0; i < 256; i++) {
1523 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1524 HFC_inb_nodebug(hc, R_RAM_DATA);
1525 rval = HFC_inb_nodebug(hc, R_INT_DATA);
1526 if (rval != ((i * 3) & 0xff)) {
1527 printk(KERN_DEBUG
1528 "addr:%x val:%x should:%x\n", i, rval,
1529 (i * 3) & 0xff);
1530 err++;
1531 }
1532 }
1533 if (err) {
1534 printk(KERN_DEBUG "aborting - %d RAM access errors\n", err);
1535 err = -EIO;
1536 goto out;
1537 }
1538
1539 if (debug & DEBUG_HFCMULTI_INIT)
1540 printk(KERN_DEBUG "%s: done\n", __func__);
1541 out:
1542 spin_unlock_irqrestore(&hc->lock, flags);
1543 return err;
1544 }
1545
1546
1547 /*
1548 * control the watchdog
1549 */
1550 static void
hfcmulti_watchdog(struct hfc_multi * hc)1551 hfcmulti_watchdog(struct hfc_multi *hc)
1552 {
1553 hc->wdcount++;
1554
1555 if (hc->wdcount > 10) {
1556 hc->wdcount = 0;
1557 hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ?
1558 V_GPIO_OUT3 : V_GPIO_OUT2;
1559
1560 /* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1561 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1562 HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte);
1563 }
1564 }
1565
1566
1567
1568 /*
1569 * output leds
1570 */
1571 static void
hfcmulti_leds(struct hfc_multi * hc)1572 hfcmulti_leds(struct hfc_multi *hc)
1573 {
1574 unsigned long lled;
1575 unsigned long leddw;
1576 int i, state, active, leds;
1577 struct dchannel *dch;
1578 int led[4];
1579
1580 switch (hc->leds) {
1581 case 1: /* HFC-E1 OEM */
1582 /* 2 red steady: LOS
1583 * 1 red steady: L1 not active
1584 * 2 green steady: L1 active
1585 * 1st green flashing: activity on TX
1586 * 2nd green flashing: activity on RX
1587 */
1588 led[0] = 0;
1589 led[1] = 0;
1590 led[2] = 0;
1591 led[3] = 0;
1592 dch = hc->chan[hc->dnum[0]].dch;
1593 if (dch) {
1594 if (hc->chan[hc->dnum[0]].los)
1595 led[1] = 1;
1596 if (hc->e1_state != 1) {
1597 led[0] = 1;
1598 hc->flash[2] = 0;
1599 hc->flash[3] = 0;
1600 } else {
1601 led[2] = 1;
1602 led[3] = 1;
1603 if (!hc->flash[2] && hc->activity_tx)
1604 hc->flash[2] = poll;
1605 if (!hc->flash[3] && hc->activity_rx)
1606 hc->flash[3] = poll;
1607 if (hc->flash[2] && hc->flash[2] < 1024)
1608 led[2] = 0;
1609 if (hc->flash[3] && hc->flash[3] < 1024)
1610 led[3] = 0;
1611 if (hc->flash[2] >= 2048)
1612 hc->flash[2] = 0;
1613 if (hc->flash[3] >= 2048)
1614 hc->flash[3] = 0;
1615 if (hc->flash[2])
1616 hc->flash[2] += poll;
1617 if (hc->flash[3])
1618 hc->flash[3] += poll;
1619 }
1620 }
1621 leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF;
1622 /* leds are inverted */
1623 if (leds != (int)hc->ledstate) {
1624 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds);
1625 hc->ledstate = leds;
1626 }
1627 break;
1628
1629 case 2: /* HFC-4S OEM */
1630 /* red steady: PH_DEACTIVATE
1631 * green steady: PH_ACTIVATE
1632 * green flashing: activity on TX
1633 */
1634 for (i = 0; i < 4; i++) {
1635 state = 0;
1636 active = -1;
1637 dch = hc->chan[(i << 2) | 2].dch;
1638 if (dch) {
1639 state = dch->state;
1640 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1641 active = 3;
1642 else
1643 active = 7;
1644 }
1645 if (state) {
1646 if (state == active) {
1647 led[i] = 1; /* led green */
1648 hc->activity_tx |= hc->activity_rx;
1649 if (!hc->flash[i] &&
1650 (hc->activity_tx & (1 << i)))
1651 hc->flash[i] = poll;
1652 if (hc->flash[i] && hc->flash[i] < 1024)
1653 led[i] = 0; /* led off */
1654 if (hc->flash[i] >= 2048)
1655 hc->flash[i] = 0;
1656 if (hc->flash[i])
1657 hc->flash[i] += poll;
1658 } else {
1659 led[i] = 2; /* led red */
1660 hc->flash[i] = 0;
1661 }
1662 } else
1663 led[i] = 0; /* led off */
1664 }
1665 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1666 leds = 0;
1667 for (i = 0; i < 4; i++) {
1668 if (led[i] == 1) {
1669 /*green*/
1670 leds |= (0x2 << (i * 2));
1671 } else if (led[i] == 2) {
1672 /*red*/
1673 leds |= (0x1 << (i * 2));
1674 }
1675 }
1676 if (leds != (int)hc->ledstate) {
1677 vpm_out(hc, 0, 0x1a8 + 3, leds);
1678 hc->ledstate = leds;
1679 }
1680 } else {
1681 leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) |
1682 ((led[0] > 0) << 2) | ((led[2] > 0) << 3) |
1683 ((led[3] & 1) << 4) | ((led[1] & 1) << 5) |
1684 ((led[0] & 1) << 6) | ((led[2] & 1) << 7);
1685 if (leds != (int)hc->ledstate) {
1686 HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F);
1687 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4);
1688 hc->ledstate = leds;
1689 }
1690 }
1691 break;
1692
1693 case 3: /* HFC 1S/2S Beronet */
1694 /* red steady: PH_DEACTIVATE
1695 * green steady: PH_ACTIVATE
1696 * green flashing: activity on TX
1697 */
1698 for (i = 0; i < 2; i++) {
1699 state = 0;
1700 active = -1;
1701 dch = hc->chan[(i << 2) | 2].dch;
1702 if (dch) {
1703 state = dch->state;
1704 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1705 active = 3;
1706 else
1707 active = 7;
1708 }
1709 if (state) {
1710 if (state == active) {
1711 led[i] = 1; /* led green */
1712 hc->activity_tx |= hc->activity_rx;
1713 if (!hc->flash[i] &&
1714 (hc->activity_tx & (1 << i)))
1715 hc->flash[i] = poll;
1716 if (hc->flash[i] < 1024)
1717 led[i] = 0; /* led off */
1718 if (hc->flash[i] >= 2048)
1719 hc->flash[i] = 0;
1720 if (hc->flash[i])
1721 hc->flash[i] += poll;
1722 } else {
1723 led[i] = 2; /* led red */
1724 hc->flash[i] = 0;
1725 }
1726 } else
1727 led[i] = 0; /* led off */
1728 }
1729 leds = (led[0] > 0) | ((led[1] > 0) << 1) | ((led[0]&1) << 2)
1730 | ((led[1]&1) << 3);
1731 if (leds != (int)hc->ledstate) {
1732 HFC_outb_nodebug(hc, R_GPIO_EN1,
1733 ((led[0] > 0) << 2) | ((led[1] > 0) << 3));
1734 HFC_outb_nodebug(hc, R_GPIO_OUT1,
1735 ((led[0] & 1) << 2) | ((led[1] & 1) << 3));
1736 hc->ledstate = leds;
1737 }
1738 break;
1739 case 8: /* HFC 8S+ Beronet */
1740 /* off: PH_DEACTIVATE
1741 * steady: PH_ACTIVATE
1742 * flashing: activity on TX
1743 */
1744 lled = 0xff; /* leds off */
1745 for (i = 0; i < 8; i++) {
1746 state = 0;
1747 active = -1;
1748 dch = hc->chan[(i << 2) | 2].dch;
1749 if (dch) {
1750 state = dch->state;
1751 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1752 active = 3;
1753 else
1754 active = 7;
1755 }
1756 if (state) {
1757 if (state == active) {
1758 lled &= ~(1 << i); /* led on */
1759 hc->activity_tx |= hc->activity_rx;
1760 if (!hc->flash[i] &&
1761 (hc->activity_tx & (1 << i)))
1762 hc->flash[i] = poll;
1763 if (hc->flash[i] < 1024)
1764 lled |= 1 << i; /* led off */
1765 if (hc->flash[i] >= 2048)
1766 hc->flash[i] = 0;
1767 if (hc->flash[i])
1768 hc->flash[i] += poll;
1769 } else
1770 hc->flash[i] = 0;
1771 }
1772 }
1773 leddw = lled << 24 | lled << 16 | lled << 8 | lled;
1774 if (leddw != hc->ledstate) {
1775 /* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1776 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1777 /* was _io before */
1778 HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
1779 outw(0x4000, hc->pci_iobase + 4);
1780 outl(leddw, hc->pci_iobase);
1781 HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1782 hc->ledstate = leddw;
1783 }
1784 break;
1785 }
1786 hc->activity_tx = 0;
1787 hc->activity_rx = 0;
1788 }
1789 /*
1790 * read dtmf coefficients
1791 */
1792
1793 static void
hfcmulti_dtmf(struct hfc_multi * hc)1794 hfcmulti_dtmf(struct hfc_multi *hc)
1795 {
1796 s32 *coeff;
1797 u_int mantissa;
1798 int co, ch;
1799 struct bchannel *bch = NULL;
1800 u8 exponent;
1801 int dtmf = 0;
1802 int addr;
1803 u16 w_float;
1804 struct sk_buff *skb;
1805 struct mISDNhead *hh;
1806
1807 if (debug & DEBUG_HFCMULTI_DTMF)
1808 printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__);
1809 for (ch = 0; ch <= 31; ch++) {
1810 /* only process enabled B-channels */
1811 bch = hc->chan[ch].bch;
1812 if (!bch)
1813 continue;
1814 if (!hc->created[hc->chan[ch].port])
1815 continue;
1816 if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1817 continue;
1818 if (debug & DEBUG_HFCMULTI_DTMF)
1819 printk(KERN_DEBUG "%s: dtmf channel %d:",
1820 __func__, ch);
1821 coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]);
1822 dtmf = 1;
1823 for (co = 0; co < 8; co++) {
1824 /* read W(n-1) coefficient */
1825 addr = hc->DTMFbase + ((co << 7) | (ch << 2));
1826 HFC_outb_nodebug(hc, R_RAM_ADDR0, addr);
1827 HFC_outb_nodebug(hc, R_RAM_ADDR1, addr >> 8);
1828 HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr >> 16)
1829 | V_ADDR_INC);
1830 w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1831 w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1832 if (debug & DEBUG_HFCMULTI_DTMF)
1833 printk(" %04x", w_float);
1834
1835 /* decode float (see chip doc) */
1836 mantissa = w_float & 0x0fff;
1837 if (w_float & 0x8000)
1838 mantissa |= 0xfffff000;
1839 exponent = (w_float >> 12) & 0x7;
1840 if (exponent) {
1841 mantissa ^= 0x1000;
1842 mantissa <<= (exponent - 1);
1843 }
1844
1845 /* store coefficient */
1846 coeff[co << 1] = mantissa;
1847
1848 /* read W(n) coefficient */
1849 w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1850 w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1851 if (debug & DEBUG_HFCMULTI_DTMF)
1852 printk(" %04x", w_float);
1853
1854 /* decode float (see chip doc) */
1855 mantissa = w_float & 0x0fff;
1856 if (w_float & 0x8000)
1857 mantissa |= 0xfffff000;
1858 exponent = (w_float >> 12) & 0x7;
1859 if (exponent) {
1860 mantissa ^= 0x1000;
1861 mantissa <<= (exponent - 1);
1862 }
1863
1864 /* store coefficient */
1865 coeff[(co << 1) | 1] = mantissa;
1866 }
1867 if (debug & DEBUG_HFCMULTI_DTMF)
1868 printk(" DTMF ready %08x %08x %08x %08x "
1869 "%08x %08x %08x %08x\n",
1870 coeff[0], coeff[1], coeff[2], coeff[3],
1871 coeff[4], coeff[5], coeff[6], coeff[7]);
1872 hc->chan[ch].coeff_count++;
1873 if (hc->chan[ch].coeff_count == 8) {
1874 hc->chan[ch].coeff_count = 0;
1875 skb = mI_alloc_skb(512, GFP_ATOMIC);
1876 if (!skb) {
1877 printk(KERN_DEBUG "%s: No memory for skb\n",
1878 __func__);
1879 continue;
1880 }
1881 hh = mISDN_HEAD_P(skb);
1882 hh->prim = PH_CONTROL_IND;
1883 hh->id = DTMF_HFC_COEF;
1884 skb_put_data(skb, hc->chan[ch].coeff, 512);
1885 recv_Bchannel_skb(bch, skb);
1886 }
1887 }
1888
1889 /* restart DTMF processing */
1890 hc->dtmf = dtmf;
1891 if (dtmf)
1892 HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF);
1893 }
1894
1895
1896 /*
1897 * fill fifo as much as possible
1898 */
1899
1900 static void
hfcmulti_tx(struct hfc_multi * hc,int ch)1901 hfcmulti_tx(struct hfc_multi *hc, int ch)
1902 {
1903 int i, ii, temp, len = 0;
1904 int Zspace, z1, z2; /* must be int for calculation */
1905 int Fspace, f1, f2;
1906 u_char *d;
1907 int *txpending, slot_tx;
1908 struct bchannel *bch;
1909 struct dchannel *dch;
1910 struct sk_buff **sp = NULL;
1911 int *idxp;
1912
1913 bch = hc->chan[ch].bch;
1914 dch = hc->chan[ch].dch;
1915 if ((!dch) && (!bch))
1916 return;
1917
1918 txpending = &hc->chan[ch].txpending;
1919 slot_tx = hc->chan[ch].slot_tx;
1920 if (dch) {
1921 if (!test_bit(FLG_ACTIVE, &dch->Flags))
1922 return;
1923 sp = &dch->tx_skb;
1924 idxp = &dch->tx_idx;
1925 } else {
1926 if (!test_bit(FLG_ACTIVE, &bch->Flags))
1927 return;
1928 sp = &bch->tx_skb;
1929 idxp = &bch->tx_idx;
1930 }
1931 if (*sp)
1932 len = (*sp)->len;
1933
1934 if ((!len) && *txpending != 1)
1935 return; /* no data */
1936
1937 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
1938 (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
1939 (hc->chan[ch].slot_rx < 0) &&
1940 (hc->chan[ch].slot_tx < 0))
1941 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1));
1942 else
1943 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
1944 HFC_wait_nodebug(hc);
1945
1946 if (*txpending == 2) {
1947 /* reset fifo */
1948 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
1949 HFC_wait_nodebug(hc);
1950 HFC_outb(hc, A_SUBCH_CFG, 0);
1951 *txpending = 1;
1952 }
1953 next_frame:
1954 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
1955 f1 = HFC_inb_nodebug(hc, A_F1);
1956 f2 = HFC_inb_nodebug(hc, A_F2);
1957 while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) {
1958 if (debug & DEBUG_HFCMULTI_FIFO)
1959 printk(KERN_DEBUG
1960 "%s(card %d): reread f2 because %d!=%d\n",
1961 __func__, hc->id + 1, temp, f2);
1962 f2 = temp; /* repeat until F2 is equal */
1963 }
1964 Fspace = f2 - f1 - 1;
1965 if (Fspace < 0)
1966 Fspace += hc->Flen;
1967 /*
1968 * Old FIFO handling doesn't give us the current Z2 read
1969 * pointer, so we cannot send the next frame before the fifo
1970 * is empty. It makes no difference except for a slightly
1971 * lower performance.
1972 */
1973 if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) {
1974 if (f1 != f2)
1975 Fspace = 0;
1976 else
1977 Fspace = 1;
1978 }
1979 /* one frame only for ST D-channels, to allow resending */
1980 if (hc->ctype != HFC_TYPE_E1 && dch) {
1981 if (f1 != f2)
1982 Fspace = 0;
1983 }
1984 /* F-counter full condition */
1985 if (Fspace == 0)
1986 return;
1987 }
1988 z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
1989 z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
1990 while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) {
1991 if (debug & DEBUG_HFCMULTI_FIFO)
1992 printk(KERN_DEBUG "%s(card %d): reread z2 because "
1993 "%d!=%d\n", __func__, hc->id + 1, temp, z2);
1994 z2 = temp; /* repeat unti Z2 is equal */
1995 }
1996 hc->chan[ch].Zfill = z1 - z2;
1997 if (hc->chan[ch].Zfill < 0)
1998 hc->chan[ch].Zfill += hc->Zlen;
1999 Zspace = z2 - z1;
2000 if (Zspace <= 0)
2001 Zspace += hc->Zlen;
2002 Zspace -= 4; /* keep not too full, so pointers will not overrun */
2003 /* fill transparent data only to maxinum transparent load (minus 4) */
2004 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2005 Zspace = Zspace - hc->Zlen + hc->max_trans;
2006 if (Zspace <= 0) /* no space of 4 bytes */
2007 return;
2008
2009 /* if no data */
2010 if (!len) {
2011 if (z1 == z2) { /* empty */
2012 /* if done with FIFO audio data during PCM connection */
2013 if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) &&
2014 *txpending && slot_tx >= 0) {
2015 if (debug & DEBUG_HFCMULTI_MODE)
2016 printk(KERN_DEBUG
2017 "%s: reconnecting PCM due to no "
2018 "more FIFO data: channel %d "
2019 "slot_tx %d\n",
2020 __func__, ch, slot_tx);
2021 /* connect slot */
2022 if (hc->ctype == HFC_TYPE_XHFC)
2023 HFC_outb(hc, A_CON_HDLC, 0xc0
2024 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2025 /* Enable FIFO, no interrupt */
2026 else
2027 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2028 V_HDLC_TRP | V_IFF);
2029 HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
2030 HFC_wait_nodebug(hc);
2031 if (hc->ctype == HFC_TYPE_XHFC)
2032 HFC_outb(hc, A_CON_HDLC, 0xc0
2033 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2034 /* Enable FIFO, no interrupt */
2035 else
2036 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2037 V_HDLC_TRP | V_IFF);
2038 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
2039 HFC_wait_nodebug(hc);
2040 }
2041 *txpending = 0;
2042 }
2043 return; /* no data */
2044 }
2045
2046 /* "fill fifo if empty" feature */
2047 if (bch && test_bit(FLG_FILLEMPTY, &bch->Flags)
2048 && !test_bit(FLG_HDLC, &bch->Flags) && z2 == z1) {
2049 if (debug & DEBUG_HFCMULTI_FILL)
2050 printk(KERN_DEBUG "%s: buffer empty, so we have "
2051 "underrun\n", __func__);
2052 /* fill buffer, to prevent future underrun */
2053 hc->write_fifo(hc, hc->silence_data, poll >> 1);
2054 Zspace -= (poll >> 1);
2055 }
2056
2057 /* if audio data and connected slot */
2058 if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending)
2059 && slot_tx >= 0) {
2060 if (debug & DEBUG_HFCMULTI_MODE)
2061 printk(KERN_DEBUG "%s: disconnecting PCM due to "
2062 "FIFO data: channel %d slot_tx %d\n",
2063 __func__, ch, slot_tx);
2064 /* disconnect slot */
2065 if (hc->ctype == HFC_TYPE_XHFC)
2066 HFC_outb(hc, A_CON_HDLC, 0x80
2067 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2068 /* Enable FIFO, no interrupt */
2069 else
2070 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2071 V_HDLC_TRP | V_IFF);
2072 HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
2073 HFC_wait_nodebug(hc);
2074 if (hc->ctype == HFC_TYPE_XHFC)
2075 HFC_outb(hc, A_CON_HDLC, 0x80
2076 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2077 /* Enable FIFO, no interrupt */
2078 else
2079 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2080 V_HDLC_TRP | V_IFF);
2081 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
2082 HFC_wait_nodebug(hc);
2083 }
2084 *txpending = 1;
2085
2086 /* show activity */
2087 if (dch)
2088 hc->activity_tx |= 1 << hc->chan[ch].port;
2089
2090 /* fill fifo to what we have left */
2091 ii = len;
2092 if (dch || test_bit(FLG_HDLC, &bch->Flags))
2093 temp = 1;
2094 else
2095 temp = 0;
2096 i = *idxp;
2097 d = (*sp)->data + i;
2098 if (ii - i > Zspace)
2099 ii = Zspace + i;
2100 if (debug & DEBUG_HFCMULTI_FIFO)
2101 printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space "
2102 "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2103 __func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i,
2104 temp ? "HDLC" : "TRANS");
2105
2106 /* Have to prep the audio data */
2107 hc->write_fifo(hc, d, ii - i);
2108 hc->chan[ch].Zfill += ii - i;
2109 *idxp = ii;
2110
2111 /* if not all data has been written */
2112 if (ii != len) {
2113 /* NOTE: fifo is started by the calling function */
2114 return;
2115 }
2116
2117 /* if all data has been written, terminate frame */
2118 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2119 /* increment f-counter */
2120 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2121 HFC_wait_nodebug(hc);
2122 }
2123
2124 dev_kfree_skb(*sp);
2125 /* check for next frame */
2126 if (bch && get_next_bframe(bch)) {
2127 len = (*sp)->len;
2128 goto next_frame;
2129 }
2130 if (dch && get_next_dframe(dch)) {
2131 len = (*sp)->len;
2132 goto next_frame;
2133 }
2134
2135 /*
2136 * now we have no more data, so in case of transparent,
2137 * we set the last byte in fifo to 'silence' in case we will get
2138 * no more data at all. this prevents sending an undefined value.
2139 */
2140 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2141 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
2142 }
2143
2144
2145 /* NOTE: only called if E1 card is in active state */
2146 static void
hfcmulti_rx(struct hfc_multi * hc,int ch)2147 hfcmulti_rx(struct hfc_multi *hc, int ch)
2148 {
2149 int temp;
2150 int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */
2151 int f1 = 0, f2 = 0; /* = 0, to make GCC happy */
2152 int again = 0;
2153 struct bchannel *bch;
2154 struct dchannel *dch = NULL;
2155 struct sk_buff *skb, **sp = NULL;
2156 int maxlen;
2157
2158 bch = hc->chan[ch].bch;
2159 if (bch) {
2160 if (!test_bit(FLG_ACTIVE, &bch->Flags))
2161 return;
2162 } else if (hc->chan[ch].dch) {
2163 dch = hc->chan[ch].dch;
2164 if (!test_bit(FLG_ACTIVE, &dch->Flags))
2165 return;
2166 } else {
2167 return;
2168 }
2169 next_frame:
2170 /* on first AND before getting next valid frame, R_FIFO must be written
2171 to. */
2172 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2173 (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
2174 (hc->chan[ch].slot_rx < 0) &&
2175 (hc->chan[ch].slot_tx < 0))
2176 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1) | 1);
2177 else
2178 HFC_outb_nodebug(hc, R_FIFO, (ch << 1) | 1);
2179 HFC_wait_nodebug(hc);
2180
2181 /* ignore if rx is off BUT change fifo (above) to start pending TX */
2182 if (hc->chan[ch].rx_off) {
2183 if (bch)
2184 bch->dropcnt += poll; /* not exact but fair enough */
2185 return;
2186 }
2187
2188 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2189 f1 = HFC_inb_nodebug(hc, A_F1);
2190 while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) {
2191 if (debug & DEBUG_HFCMULTI_FIFO)
2192 printk(KERN_DEBUG
2193 "%s(card %d): reread f1 because %d!=%d\n",
2194 __func__, hc->id + 1, temp, f1);
2195 f1 = temp; /* repeat until F1 is equal */
2196 }
2197 f2 = HFC_inb_nodebug(hc, A_F2);
2198 }
2199 z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2200 while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) {
2201 if (debug & DEBUG_HFCMULTI_FIFO)
2202 printk(KERN_DEBUG "%s(card %d): reread z2 because "
2203 "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2204 z1 = temp; /* repeat until Z1 is equal */
2205 }
2206 z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2207 Zsize = z1 - z2;
2208 if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2)
2209 /* complete hdlc frame */
2210 Zsize++;
2211 if (Zsize < 0)
2212 Zsize += hc->Zlen;
2213 /* if buffer is empty */
2214 if (Zsize <= 0)
2215 return;
2216
2217 if (bch) {
2218 maxlen = bchannel_get_rxbuf(bch, Zsize);
2219 if (maxlen < 0) {
2220 pr_warn("card%d.B%d: No bufferspace for %d bytes\n",
2221 hc->id + 1, bch->nr, Zsize);
2222 return;
2223 }
2224 sp = &bch->rx_skb;
2225 maxlen = bch->maxlen;
2226 } else { /* Dchannel */
2227 sp = &dch->rx_skb;
2228 maxlen = dch->maxlen + 3;
2229 if (*sp == NULL) {
2230 *sp = mI_alloc_skb(maxlen, GFP_ATOMIC);
2231 if (*sp == NULL) {
2232 pr_warn("card%d: No mem for dch rx_skb\n",
2233 hc->id + 1);
2234 return;
2235 }
2236 }
2237 }
2238 /* show activity */
2239 if (dch)
2240 hc->activity_rx |= 1 << hc->chan[ch].port;
2241
2242 /* empty fifo with what we have */
2243 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2244 if (debug & DEBUG_HFCMULTI_FIFO)
2245 printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d "
2246 "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2247 "got=%d (again %d)\n", __func__, hc->id + 1, ch,
2248 Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE",
2249 f1, f2, Zsize + (*sp)->len, again);
2250 /* HDLC */
2251 if ((Zsize + (*sp)->len) > maxlen) {
2252 if (debug & DEBUG_HFCMULTI_FIFO)
2253 printk(KERN_DEBUG
2254 "%s(card %d): hdlc-frame too large.\n",
2255 __func__, hc->id + 1);
2256 skb_trim(*sp, 0);
2257 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
2258 HFC_wait_nodebug(hc);
2259 return;
2260 }
2261
2262 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2263
2264 if (f1 != f2) {
2265 /* increment Z2,F2-counter */
2266 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2267 HFC_wait_nodebug(hc);
2268 /* check size */
2269 if ((*sp)->len < 4) {
2270 if (debug & DEBUG_HFCMULTI_FIFO)
2271 printk(KERN_DEBUG
2272 "%s(card %d): Frame below minimum "
2273 "size\n", __func__, hc->id + 1);
2274 skb_trim(*sp, 0);
2275 goto next_frame;
2276 }
2277 /* there is at least one complete frame, check crc */
2278 if ((*sp)->data[(*sp)->len - 1]) {
2279 if (debug & DEBUG_HFCMULTI_CRC)
2280 printk(KERN_DEBUG
2281 "%s: CRC-error\n", __func__);
2282 skb_trim(*sp, 0);
2283 goto next_frame;
2284 }
2285 skb_trim(*sp, (*sp)->len - 3);
2286 if ((*sp)->len < MISDN_COPY_SIZE) {
2287 skb = *sp;
2288 *sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2289 if (*sp) {
2290 skb_put_data(*sp, skb->data, skb->len);
2291 skb_trim(skb, 0);
2292 } else {
2293 printk(KERN_DEBUG "%s: No mem\n",
2294 __func__);
2295 *sp = skb;
2296 skb = NULL;
2297 }
2298 } else {
2299 skb = NULL;
2300 }
2301 if (debug & DEBUG_HFCMULTI_FIFO) {
2302 printk(KERN_DEBUG "%s(card %d):",
2303 __func__, hc->id + 1);
2304 temp = 0;
2305 while (temp < (*sp)->len)
2306 printk(" %02x", (*sp)->data[temp++]);
2307 printk("\n");
2308 }
2309 if (dch)
2310 recv_Dchannel(dch);
2311 else
2312 recv_Bchannel(bch, MISDN_ID_ANY, false);
2313 *sp = skb;
2314 again++;
2315 goto next_frame;
2316 }
2317 /* there is an incomplete frame */
2318 } else {
2319 /* transparent */
2320 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2321 if (debug & DEBUG_HFCMULTI_FIFO)
2322 printk(KERN_DEBUG
2323 "%s(card %d): fifo(%d) reading %d bytes "
2324 "(z1=%04x, z2=%04x) TRANS\n",
2325 __func__, hc->id + 1, ch, Zsize, z1, z2);
2326 /* only bch is transparent */
2327 recv_Bchannel(bch, hc->chan[ch].Zfill, false);
2328 }
2329 }
2330
2331
2332 /*
2333 * Interrupt handler
2334 */
2335 static void
signal_state_up(struct dchannel * dch,int info,char * msg)2336 signal_state_up(struct dchannel *dch, int info, char *msg)
2337 {
2338 struct sk_buff *skb;
2339 int id, data = info;
2340
2341 if (debug & DEBUG_HFCMULTI_STATE)
2342 printk(KERN_DEBUG "%s: %s\n", __func__, msg);
2343
2344 id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */
2345
2346 skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data,
2347 GFP_ATOMIC);
2348 if (!skb)
2349 return;
2350 recv_Dchannel_skb(dch, skb);
2351 }
2352
2353 static inline void
handle_timer_irq(struct hfc_multi * hc)2354 handle_timer_irq(struct hfc_multi *hc)
2355 {
2356 int ch, temp;
2357 struct dchannel *dch;
2358 u_long flags;
2359
2360 /* process queued resync jobs */
2361 if (hc->e1_resync) {
2362 /* lock, so e1_resync gets not changed */
2363 spin_lock_irqsave(&HFClock, flags);
2364 if (hc->e1_resync & 1) {
2365 if (debug & DEBUG_HFCMULTI_PLXSD)
2366 printk(KERN_DEBUG "Enable SYNC_I\n");
2367 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC);
2368 /* disable JATT, if RX_SYNC is set */
2369 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
2370 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
2371 }
2372 if (hc->e1_resync & 2) {
2373 if (debug & DEBUG_HFCMULTI_PLXSD)
2374 printk(KERN_DEBUG "Enable jatt PLL\n");
2375 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
2376 }
2377 if (hc->e1_resync & 4) {
2378 if (debug & DEBUG_HFCMULTI_PLXSD)
2379 printk(KERN_DEBUG
2380 "Enable QUARTZ for HFC-E1\n");
2381 /* set jatt to quartz */
2382 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC
2383 | V_JATT_OFF);
2384 /* switch to JATT, in case it is not already */
2385 HFC_outb(hc, R_SYNC_OUT, 0);
2386 }
2387 hc->e1_resync = 0;
2388 spin_unlock_irqrestore(&HFClock, flags);
2389 }
2390
2391 if (hc->ctype != HFC_TYPE_E1 || hc->e1_state == 1)
2392 for (ch = 0; ch <= 31; ch++) {
2393 if (hc->created[hc->chan[ch].port]) {
2394 hfcmulti_tx(hc, ch);
2395 /* fifo is started when switching to rx-fifo */
2396 hfcmulti_rx(hc, ch);
2397 if (hc->chan[ch].dch &&
2398 hc->chan[ch].nt_timer > -1) {
2399 dch = hc->chan[ch].dch;
2400 if (!(--hc->chan[ch].nt_timer)) {
2401 schedule_event(dch,
2402 FLG_PHCHANGE);
2403 if (debug &
2404 DEBUG_HFCMULTI_STATE)
2405 printk(KERN_DEBUG
2406 "%s: nt_timer at "
2407 "state %x\n",
2408 __func__,
2409 dch->state);
2410 }
2411 }
2412 }
2413 }
2414 if (hc->ctype == HFC_TYPE_E1 && hc->created[0]) {
2415 dch = hc->chan[hc->dnum[0]].dch;
2416 /* LOS */
2417 temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS;
2418 hc->chan[hc->dnum[0]].los = temp;
2419 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) {
2420 if (!temp && hc->chan[hc->dnum[0]].los)
2421 signal_state_up(dch, L1_SIGNAL_LOS_ON,
2422 "LOS detected");
2423 if (temp && !hc->chan[hc->dnum[0]].los)
2424 signal_state_up(dch, L1_SIGNAL_LOS_OFF,
2425 "LOS gone");
2426 }
2427 if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dnum[0]].cfg)) {
2428 /* AIS */
2429 temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS;
2430 if (!temp && hc->chan[hc->dnum[0]].ais)
2431 signal_state_up(dch, L1_SIGNAL_AIS_ON,
2432 "AIS detected");
2433 if (temp && !hc->chan[hc->dnum[0]].ais)
2434 signal_state_up(dch, L1_SIGNAL_AIS_OFF,
2435 "AIS gone");
2436 hc->chan[hc->dnum[0]].ais = temp;
2437 }
2438 if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dnum[0]].cfg)) {
2439 /* SLIP */
2440 temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX;
2441 if (!temp && hc->chan[hc->dnum[0]].slip_rx)
2442 signal_state_up(dch, L1_SIGNAL_SLIP_RX,
2443 " bit SLIP detected RX");
2444 hc->chan[hc->dnum[0]].slip_rx = temp;
2445 temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX;
2446 if (!temp && hc->chan[hc->dnum[0]].slip_tx)
2447 signal_state_up(dch, L1_SIGNAL_SLIP_TX,
2448 " bit SLIP detected TX");
2449 hc->chan[hc->dnum[0]].slip_tx = temp;
2450 }
2451 if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dnum[0]].cfg)) {
2452 /* RDI */
2453 temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A;
2454 if (!temp && hc->chan[hc->dnum[0]].rdi)
2455 signal_state_up(dch, L1_SIGNAL_RDI_ON,
2456 "RDI detected");
2457 if (temp && !hc->chan[hc->dnum[0]].rdi)
2458 signal_state_up(dch, L1_SIGNAL_RDI_OFF,
2459 "RDI gone");
2460 hc->chan[hc->dnum[0]].rdi = temp;
2461 }
2462 temp = HFC_inb_nodebug(hc, R_JATT_DIR);
2463 switch (hc->chan[hc->dnum[0]].sync) {
2464 case 0:
2465 if ((temp & 0x60) == 0x60) {
2466 if (debug & DEBUG_HFCMULTI_SYNC)
2467 printk(KERN_DEBUG
2468 "%s: (id=%d) E1 now "
2469 "in clock sync\n",
2470 __func__, hc->id);
2471 HFC_outb(hc, R_RX_OFF,
2472 hc->chan[hc->dnum[0]].jitter | V_RX_INIT);
2473 HFC_outb(hc, R_TX_OFF,
2474 hc->chan[hc->dnum[0]].jitter | V_RX_INIT);
2475 hc->chan[hc->dnum[0]].sync = 1;
2476 goto check_framesync;
2477 }
2478 break;
2479 case 1:
2480 if ((temp & 0x60) != 0x60) {
2481 if (debug & DEBUG_HFCMULTI_SYNC)
2482 printk(KERN_DEBUG
2483 "%s: (id=%d) E1 "
2484 "lost clock sync\n",
2485 __func__, hc->id);
2486 hc->chan[hc->dnum[0]].sync = 0;
2487 break;
2488 }
2489 check_framesync:
2490 temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2491 if (temp == 0x27) {
2492 if (debug & DEBUG_HFCMULTI_SYNC)
2493 printk(KERN_DEBUG
2494 "%s: (id=%d) E1 "
2495 "now in frame sync\n",
2496 __func__, hc->id);
2497 hc->chan[hc->dnum[0]].sync = 2;
2498 }
2499 break;
2500 case 2:
2501 if ((temp & 0x60) != 0x60) {
2502 if (debug & DEBUG_HFCMULTI_SYNC)
2503 printk(KERN_DEBUG
2504 "%s: (id=%d) E1 lost "
2505 "clock & frame sync\n",
2506 __func__, hc->id);
2507 hc->chan[hc->dnum[0]].sync = 0;
2508 break;
2509 }
2510 temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2511 if (temp != 0x27) {
2512 if (debug & DEBUG_HFCMULTI_SYNC)
2513 printk(KERN_DEBUG
2514 "%s: (id=%d) E1 "
2515 "lost frame sync\n",
2516 __func__, hc->id);
2517 hc->chan[hc->dnum[0]].sync = 1;
2518 }
2519 break;
2520 }
2521 }
2522
2523 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
2524 hfcmulti_watchdog(hc);
2525
2526 if (hc->leds)
2527 hfcmulti_leds(hc);
2528 }
2529
2530 static void
ph_state_irq(struct hfc_multi * hc,u_char r_irq_statech)2531 ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech)
2532 {
2533 struct dchannel *dch;
2534 int ch;
2535 int active;
2536 u_char st_status, temp;
2537
2538 /* state machine */
2539 for (ch = 0; ch <= 31; ch++) {
2540 if (hc->chan[ch].dch) {
2541 dch = hc->chan[ch].dch;
2542 if (r_irq_statech & 1) {
2543 HFC_outb_nodebug(hc, R_ST_SEL,
2544 hc->chan[ch].port);
2545 /* undocumented: delay after R_ST_SEL */
2546 udelay(1);
2547 /* undocumented: status changes during read */
2548 st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE);
2549 while (st_status != (temp =
2550 HFC_inb_nodebug(hc, A_ST_RD_STATE))) {
2551 if (debug & DEBUG_HFCMULTI_STATE)
2552 printk(KERN_DEBUG "%s: reread "
2553 "STATE because %d!=%d\n",
2554 __func__, temp,
2555 st_status);
2556 st_status = temp; /* repeat */
2557 }
2558
2559 /* Speech Design TE-sync indication */
2560 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) &&
2561 dch->dev.D.protocol == ISDN_P_TE_S0) {
2562 if (st_status & V_FR_SYNC_ST)
2563 hc->syncronized |=
2564 (1 << hc->chan[ch].port);
2565 else
2566 hc->syncronized &=
2567 ~(1 << hc->chan[ch].port);
2568 }
2569 dch->state = st_status & 0x0f;
2570 if (dch->dev.D.protocol == ISDN_P_NT_S0)
2571 active = 3;
2572 else
2573 active = 7;
2574 if (dch->state == active) {
2575 HFC_outb_nodebug(hc, R_FIFO,
2576 (ch << 1) | 1);
2577 HFC_wait_nodebug(hc);
2578 HFC_outb_nodebug(hc,
2579 R_INC_RES_FIFO, V_RES_F);
2580 HFC_wait_nodebug(hc);
2581 dch->tx_idx = 0;
2582 }
2583 schedule_event(dch, FLG_PHCHANGE);
2584 if (debug & DEBUG_HFCMULTI_STATE)
2585 printk(KERN_DEBUG
2586 "%s: S/T newstate %x port %d\n",
2587 __func__, dch->state,
2588 hc->chan[ch].port);
2589 }
2590 r_irq_statech >>= 1;
2591 }
2592 }
2593 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2594 plxsd_checksync(hc, 0);
2595 }
2596
2597 static void
fifo_irq(struct hfc_multi * hc,int block)2598 fifo_irq(struct hfc_multi *hc, int block)
2599 {
2600 int ch, j;
2601 struct dchannel *dch;
2602 struct bchannel *bch;
2603 u_char r_irq_fifo_bl;
2604
2605 r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block);
2606 j = 0;
2607 while (j < 8) {
2608 ch = (block << 2) + (j >> 1);
2609 dch = hc->chan[ch].dch;
2610 bch = hc->chan[ch].bch;
2611 if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) {
2612 j += 2;
2613 continue;
2614 }
2615 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2616 test_bit(FLG_ACTIVE, &dch->Flags)) {
2617 hfcmulti_tx(hc, ch);
2618 /* start fifo */
2619 HFC_outb_nodebug(hc, R_FIFO, 0);
2620 HFC_wait_nodebug(hc);
2621 }
2622 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2623 test_bit(FLG_ACTIVE, &bch->Flags)) {
2624 hfcmulti_tx(hc, ch);
2625 /* start fifo */
2626 HFC_outb_nodebug(hc, R_FIFO, 0);
2627 HFC_wait_nodebug(hc);
2628 }
2629 j++;
2630 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2631 test_bit(FLG_ACTIVE, &dch->Flags)) {
2632 hfcmulti_rx(hc, ch);
2633 }
2634 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2635 test_bit(FLG_ACTIVE, &bch->Flags)) {
2636 hfcmulti_rx(hc, ch);
2637 }
2638 j++;
2639 }
2640 }
2641
2642 #ifdef IRQ_DEBUG
2643 int irqsem;
2644 #endif
2645 static irqreturn_t
hfcmulti_interrupt(int intno,void * dev_id)2646 hfcmulti_interrupt(int intno, void *dev_id)
2647 {
2648 #ifdef IRQCOUNT_DEBUG
2649 static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0,
2650 iq5 = 0, iq6 = 0, iqcnt = 0;
2651 #endif
2652 struct hfc_multi *hc = dev_id;
2653 struct dchannel *dch;
2654 u_char r_irq_statech, status, r_irq_misc, r_irq_oview;
2655 int i;
2656 void __iomem *plx_acc;
2657 u_short wval;
2658 u_char e1_syncsta, temp, temp2;
2659 u_long flags;
2660
2661 if (!hc) {
2662 printk(KERN_ERR "HFC-multi: Spurious interrupt!\n");
2663 return IRQ_NONE;
2664 }
2665
2666 spin_lock(&hc->lock);
2667
2668 #ifdef IRQ_DEBUG
2669 if (irqsem)
2670 printk(KERN_ERR "irq for card %d during irq from "
2671 "card %d, this is no bug.\n", hc->id + 1, irqsem);
2672 irqsem = hc->id + 1;
2673 #endif
2674 #ifdef CONFIG_MISDN_HFCMULTI_8xx
2675 if (hc->immap->im_cpm.cp_pbdat & hc->pb_irqmsk)
2676 goto irq_notforus;
2677 #endif
2678 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
2679 spin_lock_irqsave(&plx_lock, flags);
2680 plx_acc = hc->plx_membase + PLX_INTCSR;
2681 wval = readw(plx_acc);
2682 spin_unlock_irqrestore(&plx_lock, flags);
2683 if (!(wval & PLX_INTCSR_LINTI1_STATUS))
2684 goto irq_notforus;
2685 }
2686
2687 status = HFC_inb_nodebug(hc, R_STATUS);
2688 r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH);
2689 #ifdef IRQCOUNT_DEBUG
2690 if (r_irq_statech)
2691 iq1++;
2692 if (status & V_DTMF_STA)
2693 iq2++;
2694 if (status & V_LOST_STA)
2695 iq3++;
2696 if (status & V_EXT_IRQSTA)
2697 iq4++;
2698 if (status & V_MISC_IRQSTA)
2699 iq5++;
2700 if (status & V_FR_IRQSTA)
2701 iq6++;
2702 if (iqcnt++ > 5000) {
2703 printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2704 iq1, iq2, iq3, iq4, iq5, iq6);
2705 iqcnt = 0;
2706 }
2707 #endif
2708
2709 if (!r_irq_statech &&
2710 !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA |
2711 V_MISC_IRQSTA | V_FR_IRQSTA))) {
2712 /* irq is not for us */
2713 goto irq_notforus;
2714 }
2715 hc->irqcnt++;
2716 if (r_irq_statech) {
2717 if (hc->ctype != HFC_TYPE_E1)
2718 ph_state_irq(hc, r_irq_statech);
2719 }
2720 if (status & V_LOST_STA) {
2721 /* LOST IRQ */
2722 HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */
2723 }
2724 if (status & V_MISC_IRQSTA) {
2725 /* misc IRQ */
2726 r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC);
2727 r_irq_misc &= hc->hw.r_irqmsk_misc; /* ignore disabled irqs */
2728 if (r_irq_misc & V_STA_IRQ) {
2729 if (hc->ctype == HFC_TYPE_E1) {
2730 /* state machine */
2731 dch = hc->chan[hc->dnum[0]].dch;
2732 e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA);
2733 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
2734 && hc->e1_getclock) {
2735 if (e1_syncsta & V_FR_SYNC_E1)
2736 hc->syncronized = 1;
2737 else
2738 hc->syncronized = 0;
2739 }
2740 /* undocumented: status changes during read */
2741 temp = HFC_inb_nodebug(hc, R_E1_RD_STA);
2742 while (temp != (temp2 =
2743 HFC_inb_nodebug(hc, R_E1_RD_STA))) {
2744 if (debug & DEBUG_HFCMULTI_STATE)
2745 printk(KERN_DEBUG "%s: reread "
2746 "STATE because %d!=%d\n",
2747 __func__, temp, temp2);
2748 temp = temp2; /* repeat */
2749 }
2750 /* broadcast state change to all fragments */
2751 if (debug & DEBUG_HFCMULTI_STATE)
2752 printk(KERN_DEBUG
2753 "%s: E1 (id=%d) newstate %x\n",
2754 __func__, hc->id, temp & 0x7);
2755 for (i = 0; i < hc->ports; i++) {
2756 dch = hc->chan[hc->dnum[i]].dch;
2757 dch->state = temp & 0x7;
2758 schedule_event(dch, FLG_PHCHANGE);
2759 }
2760
2761 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2762 plxsd_checksync(hc, 0);
2763 }
2764 }
2765 if (r_irq_misc & V_TI_IRQ) {
2766 if (hc->iclock_on)
2767 mISDN_clock_update(hc->iclock, poll, NULL);
2768 handle_timer_irq(hc);
2769 }
2770
2771 if (r_irq_misc & V_DTMF_IRQ)
2772 hfcmulti_dtmf(hc);
2773
2774 if (r_irq_misc & V_IRQ_PROC) {
2775 static int irq_proc_cnt;
2776 if (!irq_proc_cnt++)
2777 printk(KERN_DEBUG "%s: got V_IRQ_PROC -"
2778 " this should not happen\n", __func__);
2779 }
2780
2781 }
2782 if (status & V_FR_IRQSTA) {
2783 /* FIFO IRQ */
2784 r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW);
2785 for (i = 0; i < 8; i++) {
2786 if (r_irq_oview & (1 << i))
2787 fifo_irq(hc, i);
2788 }
2789 }
2790
2791 #ifdef IRQ_DEBUG
2792 irqsem = 0;
2793 #endif
2794 spin_unlock(&hc->lock);
2795 return IRQ_HANDLED;
2796
2797 irq_notforus:
2798 #ifdef IRQ_DEBUG
2799 irqsem = 0;
2800 #endif
2801 spin_unlock(&hc->lock);
2802 return IRQ_NONE;
2803 }
2804
2805
2806 /*
2807 * timer callback for D-chan busy resolution. Currently no function
2808 */
2809
2810 static void
hfcmulti_dbusy_timer(struct timer_list * t)2811 hfcmulti_dbusy_timer(struct timer_list *t)
2812 {
2813 }
2814
2815
2816 /*
2817 * activate/deactivate hardware for selected channels and mode
2818 *
2819 * configure B-channel with the given protocol
2820 * ch eqals to the HFC-channel (0-31)
2821 * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2822 * for S/T, 1-31 for E1)
2823 * the hdlc interrupts will be set/unset
2824 */
2825 static int
mode_hfcmulti(struct hfc_multi * hc,int ch,int protocol,int slot_tx,int bank_tx,int slot_rx,int bank_rx)2826 mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
2827 int bank_tx, int slot_rx, int bank_rx)
2828 {
2829 int flow_tx = 0, flow_rx = 0, routing = 0;
2830 int oslot_tx, oslot_rx;
2831 int conf;
2832
2833 if (ch < 0 || ch > 31)
2834 return -EINVAL;
2835 oslot_tx = hc->chan[ch].slot_tx;
2836 oslot_rx = hc->chan[ch].slot_rx;
2837 conf = hc->chan[ch].conf;
2838
2839 if (debug & DEBUG_HFCMULTI_MODE)
2840 printk(KERN_DEBUG
2841 "%s: card %d channel %d protocol %x slot old=%d new=%d "
2842 "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2843 __func__, hc->id, ch, protocol, oslot_tx, slot_tx,
2844 bank_tx, oslot_rx, slot_rx, bank_rx);
2845
2846 if (oslot_tx >= 0 && slot_tx != oslot_tx) {
2847 /* remove from slot */
2848 if (debug & DEBUG_HFCMULTI_MODE)
2849 printk(KERN_DEBUG "%s: remove from slot %d (TX)\n",
2850 __func__, oslot_tx);
2851 if (hc->slot_owner[oslot_tx << 1] == ch) {
2852 HFC_outb(hc, R_SLOT, oslot_tx << 1);
2853 HFC_outb(hc, A_SL_CFG, 0);
2854 if (hc->ctype != HFC_TYPE_XHFC)
2855 HFC_outb(hc, A_CONF, 0);
2856 hc->slot_owner[oslot_tx << 1] = -1;
2857 } else {
2858 if (debug & DEBUG_HFCMULTI_MODE)
2859 printk(KERN_DEBUG
2860 "%s: we are not owner of this tx slot "
2861 "anymore, channel %d is.\n",
2862 __func__, hc->slot_owner[oslot_tx << 1]);
2863 }
2864 }
2865
2866 if (oslot_rx >= 0 && slot_rx != oslot_rx) {
2867 /* remove from slot */
2868 if (debug & DEBUG_HFCMULTI_MODE)
2869 printk(KERN_DEBUG
2870 "%s: remove from slot %d (RX)\n",
2871 __func__, oslot_rx);
2872 if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) {
2873 HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR);
2874 HFC_outb(hc, A_SL_CFG, 0);
2875 hc->slot_owner[(oslot_rx << 1) | 1] = -1;
2876 } else {
2877 if (debug & DEBUG_HFCMULTI_MODE)
2878 printk(KERN_DEBUG
2879 "%s: we are not owner of this rx slot "
2880 "anymore, channel %d is.\n",
2881 __func__,
2882 hc->slot_owner[(oslot_rx << 1) | 1]);
2883 }
2884 }
2885
2886 if (slot_tx < 0) {
2887 flow_tx = 0x80; /* FIFO->ST */
2888 /* disable pcm slot */
2889 hc->chan[ch].slot_tx = -1;
2890 hc->chan[ch].bank_tx = 0;
2891 } else {
2892 /* set pcm slot */
2893 if (hc->chan[ch].txpending)
2894 flow_tx = 0x80; /* FIFO->ST */
2895 else
2896 flow_tx = 0xc0; /* PCM->ST */
2897 /* put on slot */
2898 routing = bank_tx ? 0xc0 : 0x80;
2899 if (conf >= 0 || bank_tx > 1)
2900 routing = 0x40; /* loop */
2901 if (debug & DEBUG_HFCMULTI_MODE)
2902 printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2903 " %d flow %02x routing %02x conf %d (TX)\n",
2904 __func__, ch, slot_tx, bank_tx,
2905 flow_tx, routing, conf);
2906 HFC_outb(hc, R_SLOT, slot_tx << 1);
2907 HFC_outb(hc, A_SL_CFG, (ch << 1) | routing);
2908 if (hc->ctype != HFC_TYPE_XHFC)
2909 HFC_outb(hc, A_CONF,
2910 (conf < 0) ? 0 : (conf | V_CONF_SL));
2911 hc->slot_owner[slot_tx << 1] = ch;
2912 hc->chan[ch].slot_tx = slot_tx;
2913 hc->chan[ch].bank_tx = bank_tx;
2914 }
2915 if (slot_rx < 0) {
2916 /* disable pcm slot */
2917 flow_rx = 0x80; /* ST->FIFO */
2918 hc->chan[ch].slot_rx = -1;
2919 hc->chan[ch].bank_rx = 0;
2920 } else {
2921 /* set pcm slot */
2922 if (hc->chan[ch].txpending)
2923 flow_rx = 0x80; /* ST->FIFO */
2924 else
2925 flow_rx = 0xc0; /* ST->(FIFO,PCM) */
2926 /* put on slot */
2927 routing = bank_rx ? 0x80 : 0xc0; /* reversed */
2928 if (conf >= 0 || bank_rx > 1)
2929 routing = 0x40; /* loop */
2930 if (debug & DEBUG_HFCMULTI_MODE)
2931 printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2932 " %d flow %02x routing %02x conf %d (RX)\n",
2933 __func__, ch, slot_rx, bank_rx,
2934 flow_rx, routing, conf);
2935 HFC_outb(hc, R_SLOT, (slot_rx << 1) | V_SL_DIR);
2936 HFC_outb(hc, A_SL_CFG, (ch << 1) | V_CH_DIR | routing);
2937 hc->slot_owner[(slot_rx << 1) | 1] = ch;
2938 hc->chan[ch].slot_rx = slot_rx;
2939 hc->chan[ch].bank_rx = bank_rx;
2940 }
2941
2942 switch (protocol) {
2943 case (ISDN_P_NONE):
2944 /* disable TX fifo */
2945 HFC_outb(hc, R_FIFO, ch << 1);
2946 HFC_wait(hc);
2947 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF);
2948 HFC_outb(hc, A_SUBCH_CFG, 0);
2949 HFC_outb(hc, A_IRQ_MSK, 0);
2950 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2951 HFC_wait(hc);
2952 /* disable RX fifo */
2953 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
2954 HFC_wait(hc);
2955 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00);
2956 HFC_outb(hc, A_SUBCH_CFG, 0);
2957 HFC_outb(hc, A_IRQ_MSK, 0);
2958 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2959 HFC_wait(hc);
2960 if (hc->chan[ch].bch && hc->ctype != HFC_TYPE_E1) {
2961 hc->hw.a_st_ctrl0[hc->chan[ch].port] &=
2962 ((ch & 0x3) == 0) ? ~V_B1_EN : ~V_B2_EN;
2963 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
2964 /* undocumented: delay after R_ST_SEL */
2965 udelay(1);
2966 HFC_outb(hc, A_ST_CTRL0,
2967 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
2968 }
2969 if (hc->chan[ch].bch) {
2970 test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
2971 test_and_clear_bit(FLG_TRANSPARENT,
2972 &hc->chan[ch].bch->Flags);
2973 }
2974 break;
2975 case (ISDN_P_B_RAW): /* B-channel */
2976
2977 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2978 (hc->chan[ch].slot_rx < 0) &&
2979 (hc->chan[ch].slot_tx < 0)) {
2980
2981 printk(KERN_DEBUG
2982 "Setting B-channel %d to echo cancelable "
2983 "state on PCM slot %d\n", ch,
2984 ((ch / 4) * 8) + ((ch % 4) * 4) + 1);
2985 printk(KERN_DEBUG
2986 "Enabling pass through for channel\n");
2987 vpm_out(hc, ch, ((ch / 4) * 8) +
2988 ((ch % 4) * 4) + 1, 0x01);
2989 /* rx path */
2990 /* S/T -> PCM */
2991 HFC_outb(hc, R_FIFO, (ch << 1));
2992 HFC_wait(hc);
2993 HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
2994 HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
2995 ((ch % 4) * 4) + 1) << 1);
2996 HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1));
2997
2998 /* PCM -> FIFO */
2999 HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1);
3000 HFC_wait(hc);
3001 HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3002 HFC_outb(hc, A_SUBCH_CFG, 0);
3003 HFC_outb(hc, A_IRQ_MSK, 0);
3004 if (hc->chan[ch].protocol != protocol) {
3005 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3006 HFC_wait(hc);
3007 }
3008 HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3009 ((ch % 4) * 4) + 1) << 1) | 1);
3010 HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1);
3011
3012 /* tx path */
3013 /* PCM -> S/T */
3014 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3015 HFC_wait(hc);
3016 HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3017 HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3018 ((ch % 4) * 4)) << 1) | 1);
3019 HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1);
3020
3021 /* FIFO -> PCM */
3022 HFC_outb(hc, R_FIFO, 0x20 | (ch << 1));
3023 HFC_wait(hc);
3024 HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3025 HFC_outb(hc, A_SUBCH_CFG, 0);
3026 HFC_outb(hc, A_IRQ_MSK, 0);
3027 if (hc->chan[ch].protocol != protocol) {
3028 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3029 HFC_wait(hc);
3030 }
3031 /* tx silence */
3032 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3033 HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3034 ((ch % 4) * 4)) << 1);
3035 HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1));
3036 } else {
3037 /* enable TX fifo */
3038 HFC_outb(hc, R_FIFO, ch << 1);
3039 HFC_wait(hc);
3040 if (hc->ctype == HFC_TYPE_XHFC)
3041 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x07 << 2 |
3042 V_HDLC_TRP | V_IFF);
3043 /* Enable FIFO, no interrupt */
3044 else
3045 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 |
3046 V_HDLC_TRP | V_IFF);
3047 HFC_outb(hc, A_SUBCH_CFG, 0);
3048 HFC_outb(hc, A_IRQ_MSK, 0);
3049 if (hc->chan[ch].protocol != protocol) {
3050 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3051 HFC_wait(hc);
3052 }
3053 /* tx silence */
3054 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3055 /* enable RX fifo */
3056 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3057 HFC_wait(hc);
3058 if (hc->ctype == HFC_TYPE_XHFC)
3059 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x07 << 2 |
3060 V_HDLC_TRP);
3061 /* Enable FIFO, no interrupt*/
3062 else
3063 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 |
3064 V_HDLC_TRP);
3065 HFC_outb(hc, A_SUBCH_CFG, 0);
3066 HFC_outb(hc, A_IRQ_MSK, 0);
3067 if (hc->chan[ch].protocol != protocol) {
3068 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3069 HFC_wait(hc);
3070 }
3071 }
3072 if (hc->ctype != HFC_TYPE_E1) {
3073 hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3074 ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3075 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3076 /* undocumented: delay after R_ST_SEL */
3077 udelay(1);
3078 HFC_outb(hc, A_ST_CTRL0,
3079 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3080 }
3081 if (hc->chan[ch].bch)
3082 test_and_set_bit(FLG_TRANSPARENT,
3083 &hc->chan[ch].bch->Flags);
3084 break;
3085 case (ISDN_P_B_HDLC): /* B-channel */
3086 case (ISDN_P_TE_S0): /* D-channel */
3087 case (ISDN_P_NT_S0):
3088 case (ISDN_P_TE_E1):
3089 case (ISDN_P_NT_E1):
3090 /* enable TX fifo */
3091 HFC_outb(hc, R_FIFO, ch << 1);
3092 HFC_wait(hc);
3093 if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch) {
3094 /* E1 or B-channel */
3095 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04);
3096 HFC_outb(hc, A_SUBCH_CFG, 0);
3097 } else {
3098 /* D-Channel without HDLC fill flags */
3099 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF);
3100 HFC_outb(hc, A_SUBCH_CFG, 2);
3101 }
3102 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3103 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3104 HFC_wait(hc);
3105 /* enable RX fifo */
3106 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3107 HFC_wait(hc);
3108 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04);
3109 if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch)
3110 HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */
3111 else
3112 HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */
3113 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3114 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3115 HFC_wait(hc);
3116 if (hc->chan[ch].bch) {
3117 test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3118 if (hc->ctype != HFC_TYPE_E1) {
3119 hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3120 ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3121 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3122 /* undocumented: delay after R_ST_SEL */
3123 udelay(1);
3124 HFC_outb(hc, A_ST_CTRL0,
3125 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3126 }
3127 }
3128 break;
3129 default:
3130 printk(KERN_DEBUG "%s: protocol not known %x\n",
3131 __func__, protocol);
3132 hc->chan[ch].protocol = ISDN_P_NONE;
3133 return -ENOPROTOOPT;
3134 }
3135 hc->chan[ch].protocol = protocol;
3136 return 0;
3137 }
3138
3139
3140 /*
3141 * connect/disconnect PCM
3142 */
3143
3144 static void
hfcmulti_pcm(struct hfc_multi * hc,int ch,int slot_tx,int bank_tx,int slot_rx,int bank_rx)3145 hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx,
3146 int slot_rx, int bank_rx)
3147 {
3148 if (slot_tx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) {
3149 /* disable PCM */
3150 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0);
3151 return;
3152 }
3153
3154 /* enable pcm */
3155 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx,
3156 slot_rx, bank_rx);
3157 }
3158
3159 /*
3160 * set/disable conference
3161 */
3162
3163 static void
hfcmulti_conf(struct hfc_multi * hc,int ch,int num)3164 hfcmulti_conf(struct hfc_multi *hc, int ch, int num)
3165 {
3166 if (num >= 0 && num <= 7)
3167 hc->chan[ch].conf = num;
3168 else
3169 hc->chan[ch].conf = -1;
3170 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx,
3171 hc->chan[ch].bank_tx, hc->chan[ch].slot_rx,
3172 hc->chan[ch].bank_rx);
3173 }
3174
3175
3176 /*
3177 * set/disable sample loop
3178 */
3179
3180 /* NOTE: this function is experimental and therefore disabled */
3181
3182 /*
3183 * Layer 1 callback function
3184 */
3185 static int
hfcm_l1callback(struct dchannel * dch,u_int cmd)3186 hfcm_l1callback(struct dchannel *dch, u_int cmd)
3187 {
3188 struct hfc_multi *hc = dch->hw;
3189 struct sk_buff_head free_queue;
3190 u_long flags;
3191
3192 switch (cmd) {
3193 case INFO3_P8:
3194 case INFO3_P10:
3195 break;
3196 case HW_RESET_REQ:
3197 /* start activation */
3198 spin_lock_irqsave(&hc->lock, flags);
3199 if (hc->ctype == HFC_TYPE_E1) {
3200 if (debug & DEBUG_HFCMULTI_MSG)
3201 printk(KERN_DEBUG
3202 "%s: HW_RESET_REQ no BRI\n",
3203 __func__);
3204 } else {
3205 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3206 /* undocumented: delay after R_ST_SEL */
3207 udelay(1);
3208 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */
3209 udelay(6); /* wait at least 5,21us */
3210 HFC_outb(hc, A_ST_WR_STATE, 3);
3211 HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT * 3));
3212 /* activate */
3213 }
3214 spin_unlock_irqrestore(&hc->lock, flags);
3215 l1_event(dch->l1, HW_POWERUP_IND);
3216 break;
3217 case HW_DEACT_REQ:
3218 __skb_queue_head_init(&free_queue);
3219 /* start deactivation */
3220 spin_lock_irqsave(&hc->lock, flags);
3221 if (hc->ctype == HFC_TYPE_E1) {
3222 if (debug & DEBUG_HFCMULTI_MSG)
3223 printk(KERN_DEBUG
3224 "%s: HW_DEACT_REQ no BRI\n",
3225 __func__);
3226 } else {
3227 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3228 /* undocumented: delay after R_ST_SEL */
3229 udelay(1);
3230 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3231 /* deactivate */
3232 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3233 hc->syncronized &=
3234 ~(1 << hc->chan[dch->slot].port);
3235 plxsd_checksync(hc, 0);
3236 }
3237 }
3238 skb_queue_splice_init(&dch->squeue, &free_queue);
3239 if (dch->tx_skb) {
3240 __skb_queue_tail(&free_queue, dch->tx_skb);
3241 dch->tx_skb = NULL;
3242 }
3243 dch->tx_idx = 0;
3244 if (dch->rx_skb) {
3245 __skb_queue_tail(&free_queue, dch->rx_skb);
3246 dch->rx_skb = NULL;
3247 }
3248 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3249 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3250 del_timer(&dch->timer);
3251 spin_unlock_irqrestore(&hc->lock, flags);
3252 __skb_queue_purge(&free_queue);
3253 break;
3254 case HW_POWERUP_REQ:
3255 spin_lock_irqsave(&hc->lock, flags);
3256 if (hc->ctype == HFC_TYPE_E1) {
3257 if (debug & DEBUG_HFCMULTI_MSG)
3258 printk(KERN_DEBUG
3259 "%s: HW_POWERUP_REQ no BRI\n",
3260 __func__);
3261 } else {
3262 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3263 /* undocumented: delay after R_ST_SEL */
3264 udelay(1);
3265 HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */
3266 udelay(6); /* wait at least 5,21us */
3267 HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */
3268 }
3269 spin_unlock_irqrestore(&hc->lock, flags);
3270 break;
3271 case PH_ACTIVATE_IND:
3272 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3273 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3274 GFP_ATOMIC);
3275 break;
3276 case PH_DEACTIVATE_IND:
3277 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3278 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3279 GFP_ATOMIC);
3280 break;
3281 default:
3282 if (dch->debug & DEBUG_HW)
3283 printk(KERN_DEBUG "%s: unknown command %x\n",
3284 __func__, cmd);
3285 return -1;
3286 }
3287 return 0;
3288 }
3289
3290 /*
3291 * Layer2 -> Layer 1 Transfer
3292 */
3293
3294 static int
handle_dmsg(struct mISDNchannel * ch,struct sk_buff * skb)3295 handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3296 {
3297 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
3298 struct dchannel *dch = container_of(dev, struct dchannel, dev);
3299 struct hfc_multi *hc = dch->hw;
3300 struct mISDNhead *hh = mISDN_HEAD_P(skb);
3301 int ret = -EINVAL;
3302 unsigned int id;
3303 u_long flags;
3304
3305 switch (hh->prim) {
3306 case PH_DATA_REQ:
3307 if (skb->len < 1)
3308 break;
3309 spin_lock_irqsave(&hc->lock, flags);
3310 ret = dchannel_senddata(dch, skb);
3311 if (ret > 0) { /* direct TX */
3312 id = hh->id; /* skb can be freed */
3313 hfcmulti_tx(hc, dch->slot);
3314 ret = 0;
3315 /* start fifo */
3316 HFC_outb(hc, R_FIFO, 0);
3317 HFC_wait(hc);
3318 spin_unlock_irqrestore(&hc->lock, flags);
3319 queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3320 } else
3321 spin_unlock_irqrestore(&hc->lock, flags);
3322 return ret;
3323 case PH_ACTIVATE_REQ:
3324 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3325 spin_lock_irqsave(&hc->lock, flags);
3326 ret = 0;
3327 if (debug & DEBUG_HFCMULTI_MSG)
3328 printk(KERN_DEBUG
3329 "%s: PH_ACTIVATE port %d (0..%d)\n",
3330 __func__, hc->chan[dch->slot].port,
3331 hc->ports - 1);
3332 /* start activation */
3333 if (hc->ctype == HFC_TYPE_E1) {
3334 ph_state_change(dch);
3335 if (debug & DEBUG_HFCMULTI_STATE)
3336 printk(KERN_DEBUG
3337 "%s: E1 report state %x \n",
3338 __func__, dch->state);
3339 } else {
3340 HFC_outb(hc, R_ST_SEL,
3341 hc->chan[dch->slot].port);
3342 /* undocumented: delay after R_ST_SEL */
3343 udelay(1);
3344 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1);
3345 /* G1 */
3346 udelay(6); /* wait at least 5,21us */
3347 HFC_outb(hc, A_ST_WR_STATE, 1);
3348 HFC_outb(hc, A_ST_WR_STATE, 1 |
3349 (V_ST_ACT * 3)); /* activate */
3350 dch->state = 1;
3351 }
3352 spin_unlock_irqrestore(&hc->lock, flags);
3353 } else
3354 ret = l1_event(dch->l1, hh->prim);
3355 break;
3356 case PH_DEACTIVATE_REQ:
3357 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
3358 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3359 struct sk_buff_head free_queue;
3360
3361 __skb_queue_head_init(&free_queue);
3362 spin_lock_irqsave(&hc->lock, flags);
3363 if (debug & DEBUG_HFCMULTI_MSG)
3364 printk(KERN_DEBUG
3365 "%s: PH_DEACTIVATE port %d (0..%d)\n",
3366 __func__, hc->chan[dch->slot].port,
3367 hc->ports - 1);
3368 /* start deactivation */
3369 if (hc->ctype == HFC_TYPE_E1) {
3370 if (debug & DEBUG_HFCMULTI_MSG)
3371 printk(KERN_DEBUG
3372 "%s: PH_DEACTIVATE no BRI\n",
3373 __func__);
3374 } else {
3375 HFC_outb(hc, R_ST_SEL,
3376 hc->chan[dch->slot].port);
3377 /* undocumented: delay after R_ST_SEL */
3378 udelay(1);
3379 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3380 /* deactivate */
3381 dch->state = 1;
3382 }
3383 skb_queue_splice_init(&dch->squeue, &free_queue);
3384 if (dch->tx_skb) {
3385 __skb_queue_tail(&free_queue, dch->tx_skb);
3386 dch->tx_skb = NULL;
3387 }
3388 dch->tx_idx = 0;
3389 if (dch->rx_skb) {
3390 __skb_queue_tail(&free_queue, dch->rx_skb);
3391 dch->rx_skb = NULL;
3392 }
3393 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3394 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3395 del_timer(&dch->timer);
3396 #ifdef FIXME
3397 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
3398 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
3399 #endif
3400 ret = 0;
3401 spin_unlock_irqrestore(&hc->lock, flags);
3402 __skb_queue_purge(&free_queue);
3403 } else
3404 ret = l1_event(dch->l1, hh->prim);
3405 break;
3406 }
3407 if (!ret)
3408 dev_kfree_skb(skb);
3409 return ret;
3410 }
3411
3412 static void
deactivate_bchannel(struct bchannel * bch)3413 deactivate_bchannel(struct bchannel *bch)
3414 {
3415 struct hfc_multi *hc = bch->hw;
3416 u_long flags;
3417
3418 spin_lock_irqsave(&hc->lock, flags);
3419 mISDN_clear_bchannel(bch);
3420 hc->chan[bch->slot].coeff_count = 0;
3421 hc->chan[bch->slot].rx_off = 0;
3422 hc->chan[bch->slot].conf = -1;
3423 mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0);
3424 spin_unlock_irqrestore(&hc->lock, flags);
3425 }
3426
3427 static int
handle_bmsg(struct mISDNchannel * ch,struct sk_buff * skb)3428 handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3429 {
3430 struct bchannel *bch = container_of(ch, struct bchannel, ch);
3431 struct hfc_multi *hc = bch->hw;
3432 int ret = -EINVAL;
3433 struct mISDNhead *hh = mISDN_HEAD_P(skb);
3434 unsigned long flags;
3435
3436 switch (hh->prim) {
3437 case PH_DATA_REQ:
3438 if (!skb->len)
3439 break;
3440 spin_lock_irqsave(&hc->lock, flags);
3441 ret = bchannel_senddata(bch, skb);
3442 if (ret > 0) { /* direct TX */
3443 hfcmulti_tx(hc, bch->slot);
3444 ret = 0;
3445 /* start fifo */
3446 HFC_outb_nodebug(hc, R_FIFO, 0);
3447 HFC_wait_nodebug(hc);
3448 }
3449 spin_unlock_irqrestore(&hc->lock, flags);
3450 return ret;
3451 case PH_ACTIVATE_REQ:
3452 if (debug & DEBUG_HFCMULTI_MSG)
3453 printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n",
3454 __func__, bch->slot);
3455 spin_lock_irqsave(&hc->lock, flags);
3456 /* activate B-channel if not already activated */
3457 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
3458 hc->chan[bch->slot].txpending = 0;
3459 ret = mode_hfcmulti(hc, bch->slot,
3460 ch->protocol,
3461 hc->chan[bch->slot].slot_tx,
3462 hc->chan[bch->slot].bank_tx,
3463 hc->chan[bch->slot].slot_rx,
3464 hc->chan[bch->slot].bank_rx);
3465 if (!ret) {
3466 if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf
3467 && test_bit(HFC_CHIP_DTMF, &hc->chip)) {
3468 /* start decoder */
3469 hc->dtmf = 1;
3470 if (debug & DEBUG_HFCMULTI_DTMF)
3471 printk(KERN_DEBUG
3472 "%s: start dtmf decoder\n",
3473 __func__);
3474 HFC_outb(hc, R_DTMF, hc->hw.r_dtmf |
3475 V_RST_DTMF);
3476 }
3477 }
3478 } else
3479 ret = 0;
3480 spin_unlock_irqrestore(&hc->lock, flags);
3481 if (!ret)
3482 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3483 GFP_KERNEL);
3484 break;
3485 case PH_CONTROL_REQ:
3486 spin_lock_irqsave(&hc->lock, flags);
3487 switch (hh->id) {
3488 case HFC_SPL_LOOP_ON: /* set sample loop */
3489 if (debug & DEBUG_HFCMULTI_MSG)
3490 printk(KERN_DEBUG
3491 "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3492 __func__, skb->len);
3493 ret = 0;
3494 break;
3495 case HFC_SPL_LOOP_OFF: /* set silence */
3496 if (debug & DEBUG_HFCMULTI_MSG)
3497 printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n",
3498 __func__);
3499 ret = 0;
3500 break;
3501 default:
3502 printk(KERN_ERR
3503 "%s: unknown PH_CONTROL_REQ info %x\n",
3504 __func__, hh->id);
3505 ret = -EINVAL;
3506 }
3507 spin_unlock_irqrestore(&hc->lock, flags);
3508 break;
3509 case PH_DEACTIVATE_REQ:
3510 deactivate_bchannel(bch); /* locked there */
3511 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3512 GFP_KERNEL);
3513 ret = 0;
3514 break;
3515 }
3516 if (!ret)
3517 dev_kfree_skb(skb);
3518 return ret;
3519 }
3520
3521 /*
3522 * bchannel control function
3523 */
3524 static int
channel_bctrl(struct bchannel * bch,struct mISDN_ctrl_req * cq)3525 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
3526 {
3527 int ret = 0;
3528 struct dsp_features *features =
3529 (struct dsp_features *)(*((u_long *)&cq->p1));
3530 struct hfc_multi *hc = bch->hw;
3531 int slot_tx;
3532 int bank_tx;
3533 int slot_rx;
3534 int bank_rx;
3535 int num;
3536
3537 switch (cq->op) {
3538 case MISDN_CTRL_GETOP:
3539 ret = mISDN_ctrl_bchannel(bch, cq);
3540 cq->op |= MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP;
3541 break;
3542 case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */
3543 ret = mISDN_ctrl_bchannel(bch, cq);
3544 hc->chan[bch->slot].rx_off = !!cq->p1;
3545 if (!hc->chan[bch->slot].rx_off) {
3546 /* reset fifo on rx on */
3547 HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1);
3548 HFC_wait_nodebug(hc);
3549 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
3550 HFC_wait_nodebug(hc);
3551 }
3552 if (debug & DEBUG_HFCMULTI_MSG)
3553 printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n",
3554 __func__, bch->nr, hc->chan[bch->slot].rx_off);
3555 break;
3556 case MISDN_CTRL_FILL_EMPTY:
3557 ret = mISDN_ctrl_bchannel(bch, cq);
3558 hc->silence = bch->fill[0];
3559 memset(hc->silence_data, hc->silence, sizeof(hc->silence_data));
3560 break;
3561 case MISDN_CTRL_HW_FEATURES: /* fill features structure */
3562 if (debug & DEBUG_HFCMULTI_MSG)
3563 printk(KERN_DEBUG "%s: HW_FEATURE request\n",
3564 __func__);
3565 /* create confirm */
3566 features->hfc_id = hc->id;
3567 if (test_bit(HFC_CHIP_DTMF, &hc->chip))
3568 features->hfc_dtmf = 1;
3569 if (test_bit(HFC_CHIP_CONF, &hc->chip))
3570 features->hfc_conf = 1;
3571 features->hfc_loops = 0;
3572 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
3573 features->hfc_echocanhw = 1;
3574 } else {
3575 features->pcm_id = hc->pcm;
3576 features->pcm_slots = hc->slots;
3577 features->pcm_banks = 2;
3578 }
3579 break;
3580 case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */
3581 slot_tx = cq->p1 & 0xff;
3582 bank_tx = cq->p1 >> 8;
3583 slot_rx = cq->p2 & 0xff;
3584 bank_rx = cq->p2 >> 8;
3585 if (debug & DEBUG_HFCMULTI_MSG)
3586 printk(KERN_DEBUG
3587 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3588 "slot %d bank %d (RX)\n",
3589 __func__, slot_tx, bank_tx,
3590 slot_rx, bank_rx);
3591 if (slot_tx < hc->slots && bank_tx <= 2 &&
3592 slot_rx < hc->slots && bank_rx <= 2)
3593 hfcmulti_pcm(hc, bch->slot,
3594 slot_tx, bank_tx, slot_rx, bank_rx);
3595 else {
3596 printk(KERN_WARNING
3597 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3598 "slot %d bank %d (RX) out of range\n",
3599 __func__, slot_tx, bank_tx,
3600 slot_rx, bank_rx);
3601 ret = -EINVAL;
3602 }
3603 break;
3604 case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */
3605 if (debug & DEBUG_HFCMULTI_MSG)
3606 printk(KERN_DEBUG "%s: HFC_PCM_DISC\n",
3607 __func__);
3608 hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0);
3609 break;
3610 case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */
3611 num = cq->p1 & 0xff;
3612 if (debug & DEBUG_HFCMULTI_MSG)
3613 printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n",
3614 __func__, num);
3615 if (num <= 7)
3616 hfcmulti_conf(hc, bch->slot, num);
3617 else {
3618 printk(KERN_WARNING
3619 "%s: HW_CONF_JOIN conf %d out of range\n",
3620 __func__, num);
3621 ret = -EINVAL;
3622 }
3623 break;
3624 case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */
3625 if (debug & DEBUG_HFCMULTI_MSG)
3626 printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__);
3627 hfcmulti_conf(hc, bch->slot, -1);
3628 break;
3629 case MISDN_CTRL_HFC_ECHOCAN_ON:
3630 if (debug & DEBUG_HFCMULTI_MSG)
3631 printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__);
3632 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3633 vpm_echocan_on(hc, bch->slot, cq->p1);
3634 else
3635 ret = -EINVAL;
3636 break;
3637
3638 case MISDN_CTRL_HFC_ECHOCAN_OFF:
3639 if (debug & DEBUG_HFCMULTI_MSG)
3640 printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n",
3641 __func__);
3642 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3643 vpm_echocan_off(hc, bch->slot);
3644 else
3645 ret = -EINVAL;
3646 break;
3647 default:
3648 ret = mISDN_ctrl_bchannel(bch, cq);
3649 break;
3650 }
3651 return ret;
3652 }
3653
3654 static int
hfcm_bctrl(struct mISDNchannel * ch,u_int cmd,void * arg)3655 hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
3656 {
3657 struct bchannel *bch = container_of(ch, struct bchannel, ch);
3658 struct hfc_multi *hc = bch->hw;
3659 int err = -EINVAL;
3660 u_long flags;
3661
3662 if (bch->debug & DEBUG_HW)
3663 printk(KERN_DEBUG "%s: cmd:%x %p\n",
3664 __func__, cmd, arg);
3665 switch (cmd) {
3666 case CLOSE_CHANNEL:
3667 test_and_clear_bit(FLG_OPEN, &bch->Flags);
3668 deactivate_bchannel(bch); /* locked there */
3669 ch->protocol = ISDN_P_NONE;
3670 ch->peer = NULL;
3671 module_put(THIS_MODULE);
3672 err = 0;
3673 break;
3674 case CONTROL_CHANNEL:
3675 spin_lock_irqsave(&hc->lock, flags);
3676 err = channel_bctrl(bch, arg);
3677 spin_unlock_irqrestore(&hc->lock, flags);
3678 break;
3679 default:
3680 printk(KERN_WARNING "%s: unknown prim(%x)\n",
3681 __func__, cmd);
3682 }
3683 return err;
3684 }
3685
3686 /*
3687 * handle D-channel events
3688 *
3689 * handle state change event
3690 */
3691 static void
ph_state_change(struct dchannel * dch)3692 ph_state_change(struct dchannel *dch)
3693 {
3694 struct hfc_multi *hc;
3695 int ch, i;
3696
3697 if (!dch) {
3698 printk(KERN_WARNING "%s: ERROR given dch is NULL\n", __func__);
3699 return;
3700 }
3701 hc = dch->hw;
3702 ch = dch->slot;
3703
3704 if (hc->ctype == HFC_TYPE_E1) {
3705 if (dch->dev.D.protocol == ISDN_P_TE_E1) {
3706 if (debug & DEBUG_HFCMULTI_STATE)
3707 printk(KERN_DEBUG
3708 "%s: E1 TE (id=%d) newstate %x\n",
3709 __func__, hc->id, dch->state);
3710 } else {
3711 if (debug & DEBUG_HFCMULTI_STATE)
3712 printk(KERN_DEBUG
3713 "%s: E1 NT (id=%d) newstate %x\n",
3714 __func__, hc->id, dch->state);
3715 }
3716 switch (dch->state) {
3717 case (1):
3718 if (hc->e1_state != 1) {
3719 for (i = 1; i <= 31; i++) {
3720 /* reset fifos on e1 activation */
3721 HFC_outb_nodebug(hc, R_FIFO,
3722 (i << 1) | 1);
3723 HFC_wait_nodebug(hc);
3724 HFC_outb_nodebug(hc, R_INC_RES_FIFO,
3725 V_RES_F);
3726 HFC_wait_nodebug(hc);
3727 }
3728 }
3729 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3730 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3731 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3732 break;
3733
3734 default:
3735 if (hc->e1_state != 1)
3736 return;
3737 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3738 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3739 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3740 }
3741 hc->e1_state = dch->state;
3742 } else {
3743 if (dch->dev.D.protocol == ISDN_P_TE_S0) {
3744 if (debug & DEBUG_HFCMULTI_STATE)
3745 printk(KERN_DEBUG
3746 "%s: S/T TE newstate %x\n",
3747 __func__, dch->state);
3748 switch (dch->state) {
3749 case (0):
3750 l1_event(dch->l1, HW_RESET_IND);
3751 break;
3752 case (3):
3753 l1_event(dch->l1, HW_DEACT_IND);
3754 break;
3755 case (5):
3756 case (8):
3757 l1_event(dch->l1, ANYSIGNAL);
3758 break;
3759 case (6):
3760 l1_event(dch->l1, INFO2);
3761 break;
3762 case (7):
3763 l1_event(dch->l1, INFO4_P8);
3764 break;
3765 }
3766 } else {
3767 if (debug & DEBUG_HFCMULTI_STATE)
3768 printk(KERN_DEBUG "%s: S/T NT newstate %x\n",
3769 __func__, dch->state);
3770 switch (dch->state) {
3771 case (2):
3772 if (hc->chan[ch].nt_timer == 0) {
3773 hc->chan[ch].nt_timer = -1;
3774 HFC_outb(hc, R_ST_SEL,
3775 hc->chan[ch].port);
3776 /* undocumented: delay after R_ST_SEL */
3777 udelay(1);
3778 HFC_outb(hc, A_ST_WR_STATE, 4 |
3779 V_ST_LD_STA); /* G4 */
3780 udelay(6); /* wait at least 5,21us */
3781 HFC_outb(hc, A_ST_WR_STATE, 4);
3782 dch->state = 4;
3783 } else {
3784 /* one extra count for the next event */
3785 hc->chan[ch].nt_timer =
3786 nt_t1_count[poll_timer] + 1;
3787 HFC_outb(hc, R_ST_SEL,
3788 hc->chan[ch].port);
3789 /* undocumented: delay after R_ST_SEL */
3790 udelay(1);
3791 /* allow G2 -> G3 transition */
3792 HFC_outb(hc, A_ST_WR_STATE, 2 |
3793 V_SET_G2_G3);
3794 }
3795 break;
3796 case (1):
3797 hc->chan[ch].nt_timer = -1;
3798 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3799 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3800 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3801 break;
3802 case (4):
3803 hc->chan[ch].nt_timer = -1;
3804 break;
3805 case (3):
3806 hc->chan[ch].nt_timer = -1;
3807 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3808 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3809 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3810 break;
3811 }
3812 }
3813 }
3814 }
3815
3816 /*
3817 * called for card mode init message
3818 */
3819
3820 static void
hfcmulti_initmode(struct dchannel * dch)3821 hfcmulti_initmode(struct dchannel *dch)
3822 {
3823 struct hfc_multi *hc = dch->hw;
3824 u_char a_st_wr_state, r_e1_wr_sta;
3825 int i, pt;
3826
3827 if (debug & DEBUG_HFCMULTI_INIT)
3828 printk(KERN_DEBUG "%s: entered\n", __func__);
3829
3830 i = dch->slot;
3831 pt = hc->chan[i].port;
3832 if (hc->ctype == HFC_TYPE_E1) {
3833 /* E1 */
3834 hc->chan[hc->dnum[pt]].slot_tx = -1;
3835 hc->chan[hc->dnum[pt]].slot_rx = -1;
3836 hc->chan[hc->dnum[pt]].conf = -1;
3837 if (hc->dnum[pt]) {
3838 mode_hfcmulti(hc, dch->slot, dch->dev.D.protocol,
3839 -1, 0, -1, 0);
3840 timer_setup(&dch->timer, hfcmulti_dbusy_timer, 0);
3841 }
3842 for (i = 1; i <= 31; i++) {
3843 if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */
3844 continue;
3845 hc->chan[i].slot_tx = -1;
3846 hc->chan[i].slot_rx = -1;
3847 hc->chan[i].conf = -1;
3848 mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0);
3849 }
3850 }
3851 if (hc->ctype == HFC_TYPE_E1 && pt == 0) {
3852 /* E1, port 0 */
3853 dch = hc->chan[hc->dnum[0]].dch;
3854 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dnum[0]].cfg)) {
3855 HFC_outb(hc, R_LOS0, 255); /* 2 ms */
3856 HFC_outb(hc, R_LOS1, 255); /* 512 ms */
3857 }
3858 if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dnum[0]].cfg)) {
3859 HFC_outb(hc, R_RX0, 0);
3860 hc->hw.r_tx0 = 0 | V_OUT_EN;
3861 } else {
3862 HFC_outb(hc, R_RX0, 1);
3863 hc->hw.r_tx0 = 1 | V_OUT_EN;
3864 }
3865 hc->hw.r_tx1 = V_ATX | V_NTRI;
3866 HFC_outb(hc, R_TX0, hc->hw.r_tx0);
3867 HFC_outb(hc, R_TX1, hc->hw.r_tx1);
3868 HFC_outb(hc, R_TX_FR0, 0x00);
3869 HFC_outb(hc, R_TX_FR1, 0xf8);
3870
3871 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg))
3872 HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E);
3873
3874 HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0);
3875
3876 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dnum[0]].cfg))
3877 HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC);
3878
3879 if (dch->dev.D.protocol == ISDN_P_NT_E1) {
3880 if (debug & DEBUG_HFCMULTI_INIT)
3881 printk(KERN_DEBUG "%s: E1 port is NT-mode\n",
3882 __func__);
3883 r_e1_wr_sta = 0; /* G0 */
3884 hc->e1_getclock = 0;
3885 } else {
3886 if (debug & DEBUG_HFCMULTI_INIT)
3887 printk(KERN_DEBUG "%s: E1 port is TE-mode\n",
3888 __func__);
3889 r_e1_wr_sta = 0; /* F0 */
3890 hc->e1_getclock = 1;
3891 }
3892 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
3893 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
3894 else
3895 HFC_outb(hc, R_SYNC_OUT, 0);
3896 if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip))
3897 hc->e1_getclock = 1;
3898 if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip))
3899 hc->e1_getclock = 0;
3900 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
3901 /* SLAVE (clock master) */
3902 if (debug & DEBUG_HFCMULTI_INIT)
3903 printk(KERN_DEBUG
3904 "%s: E1 port is clock master "
3905 "(clock from PCM)\n", __func__);
3906 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC);
3907 } else {
3908 if (hc->e1_getclock) {
3909 /* MASTER (clock slave) */
3910 if (debug & DEBUG_HFCMULTI_INIT)
3911 printk(KERN_DEBUG
3912 "%s: E1 port is clock slave "
3913 "(clock to PCM)\n", __func__);
3914 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
3915 } else {
3916 /* MASTER (clock master) */
3917 if (debug & DEBUG_HFCMULTI_INIT)
3918 printk(KERN_DEBUG "%s: E1 port is "
3919 "clock master "
3920 "(clock from QUARTZ)\n",
3921 __func__);
3922 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC |
3923 V_PCM_SYNC | V_JATT_OFF);
3924 HFC_outb(hc, R_SYNC_OUT, 0);
3925 }
3926 }
3927 HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */
3928 HFC_outb(hc, R_PWM_MD, V_PWM0_MD);
3929 HFC_outb(hc, R_PWM0, 0x50);
3930 HFC_outb(hc, R_PWM1, 0xff);
3931 /* state machine setup */
3932 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA);
3933 udelay(6); /* wait at least 5,21us */
3934 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta);
3935 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3936 hc->syncronized = 0;
3937 plxsd_checksync(hc, 0);
3938 }
3939 }
3940 if (hc->ctype != HFC_TYPE_E1) {
3941 /* ST */
3942 hc->chan[i].slot_tx = -1;
3943 hc->chan[i].slot_rx = -1;
3944 hc->chan[i].conf = -1;
3945 mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0);
3946 timer_setup(&dch->timer, hfcmulti_dbusy_timer, 0);
3947 hc->chan[i - 2].slot_tx = -1;
3948 hc->chan[i - 2].slot_rx = -1;
3949 hc->chan[i - 2].conf = -1;
3950 mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0);
3951 hc->chan[i - 1].slot_tx = -1;
3952 hc->chan[i - 1].slot_rx = -1;
3953 hc->chan[i - 1].conf = -1;
3954 mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0);
3955 /* select interface */
3956 HFC_outb(hc, R_ST_SEL, pt);
3957 /* undocumented: delay after R_ST_SEL */
3958 udelay(1);
3959 if (dch->dev.D.protocol == ISDN_P_NT_S0) {
3960 if (debug & DEBUG_HFCMULTI_INIT)
3961 printk(KERN_DEBUG
3962 "%s: ST port %d is NT-mode\n",
3963 __func__, pt);
3964 /* clock delay */
3965 HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt);
3966 a_st_wr_state = 1; /* G1 */
3967 hc->hw.a_st_ctrl0[pt] = V_ST_MD;
3968 } else {
3969 if (debug & DEBUG_HFCMULTI_INIT)
3970 printk(KERN_DEBUG
3971 "%s: ST port %d is TE-mode\n",
3972 __func__, pt);
3973 /* clock delay */
3974 HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te);
3975 a_st_wr_state = 2; /* F2 */
3976 hc->hw.a_st_ctrl0[pt] = 0;
3977 }
3978 if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg))
3979 hc->hw.a_st_ctrl0[pt] |= V_TX_LI;
3980 if (hc->ctype == HFC_TYPE_XHFC) {
3981 hc->hw.a_st_ctrl0[pt] |= 0x40 /* V_ST_PU_CTRL */;
3982 HFC_outb(hc, 0x35 /* A_ST_CTRL3 */,
3983 0x7c << 1 /* V_ST_PULSE */);
3984 }
3985 /* line setup */
3986 HFC_outb(hc, A_ST_CTRL0, hc->hw.a_st_ctrl0[pt]);
3987 /* disable E-channel */
3988 if ((dch->dev.D.protocol == ISDN_P_NT_S0) ||
3989 test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg))
3990 HFC_outb(hc, A_ST_CTRL1, V_E_IGNO);
3991 else
3992 HFC_outb(hc, A_ST_CTRL1, 0);
3993 /* enable B-channel receive */
3994 HFC_outb(hc, A_ST_CTRL2, V_B1_RX_EN | V_B2_RX_EN);
3995 /* state machine setup */
3996 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA);
3997 udelay(6); /* wait at least 5,21us */
3998 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state);
3999 hc->hw.r_sci_msk |= 1 << pt;
4000 /* state machine interrupts */
4001 HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk);
4002 /* unset sync on port */
4003 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4004 hc->syncronized &=
4005 ~(1 << hc->chan[dch->slot].port);
4006 plxsd_checksync(hc, 0);
4007 }
4008 }
4009 if (debug & DEBUG_HFCMULTI_INIT)
4010 printk("%s: done\n", __func__);
4011 }
4012
4013
4014 static int
open_dchannel(struct hfc_multi * hc,struct dchannel * dch,struct channel_req * rq)4015 open_dchannel(struct hfc_multi *hc, struct dchannel *dch,
4016 struct channel_req *rq)
4017 {
4018 int err = 0;
4019 u_long flags;
4020
4021 if (debug & DEBUG_HW_OPEN)
4022 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
4023 dch->dev.id, __builtin_return_address(0));
4024 if (rq->protocol == ISDN_P_NONE)
4025 return -EINVAL;
4026 if ((dch->dev.D.protocol != ISDN_P_NONE) &&
4027 (dch->dev.D.protocol != rq->protocol)) {
4028 if (debug & DEBUG_HFCMULTI_MODE)
4029 printk(KERN_DEBUG "%s: change protocol %x to %x\n",
4030 __func__, dch->dev.D.protocol, rq->protocol);
4031 }
4032 if ((dch->dev.D.protocol == ISDN_P_TE_S0) &&
4033 (rq->protocol != ISDN_P_TE_S0))
4034 l1_event(dch->l1, CLOSE_CHANNEL);
4035 if (dch->dev.D.protocol != rq->protocol) {
4036 if (rq->protocol == ISDN_P_TE_S0) {
4037 err = create_l1(dch, hfcm_l1callback);
4038 if (err)
4039 return err;
4040 }
4041 dch->dev.D.protocol = rq->protocol;
4042 spin_lock_irqsave(&hc->lock, flags);
4043 hfcmulti_initmode(dch);
4044 spin_unlock_irqrestore(&hc->lock, flags);
4045 }
4046 if (test_bit(FLG_ACTIVE, &dch->Flags))
4047 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY,
4048 0, NULL, GFP_KERNEL);
4049 rq->ch = &dch->dev.D;
4050 if (!try_module_get(THIS_MODULE))
4051 printk(KERN_WARNING "%s:cannot get module\n", __func__);
4052 return 0;
4053 }
4054
4055 static int
open_bchannel(struct hfc_multi * hc,struct dchannel * dch,struct channel_req * rq)4056 open_bchannel(struct hfc_multi *hc, struct dchannel *dch,
4057 struct channel_req *rq)
4058 {
4059 struct bchannel *bch;
4060 int ch;
4061
4062 if (!test_channelmap(rq->adr.channel, dch->dev.channelmap))
4063 return -EINVAL;
4064 if (rq->protocol == ISDN_P_NONE)
4065 return -EINVAL;
4066 if (hc->ctype == HFC_TYPE_E1)
4067 ch = rq->adr.channel;
4068 else
4069 ch = (rq->adr.channel - 1) + (dch->slot - 2);
4070 bch = hc->chan[ch].bch;
4071 if (!bch) {
4072 printk(KERN_ERR "%s:internal error ch %d has no bch\n",
4073 __func__, ch);
4074 return -EINVAL;
4075 }
4076 if (test_and_set_bit(FLG_OPEN, &bch->Flags))
4077 return -EBUSY; /* b-channel can be only open once */
4078 bch->ch.protocol = rq->protocol;
4079 hc->chan[ch].rx_off = 0;
4080 rq->ch = &bch->ch;
4081 if (!try_module_get(THIS_MODULE))
4082 printk(KERN_WARNING "%s:cannot get module\n", __func__);
4083 return 0;
4084 }
4085
4086 /*
4087 * device control function
4088 */
4089 static int
channel_dctrl(struct dchannel * dch,struct mISDN_ctrl_req * cq)4090 channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
4091 {
4092 struct hfc_multi *hc = dch->hw;
4093 int ret = 0;
4094 int wd_mode, wd_cnt;
4095
4096 switch (cq->op) {
4097 case MISDN_CTRL_GETOP:
4098 cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_L1_TIMER3;
4099 break;
4100 case MISDN_CTRL_HFC_WD_INIT: /* init the watchdog */
4101 wd_cnt = cq->p1 & 0xf;
4102 wd_mode = !!(cq->p1 >> 4);
4103 if (debug & DEBUG_HFCMULTI_MSG)
4104 printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_INIT mode %s"
4105 ", counter 0x%x\n", __func__,
4106 wd_mode ? "AUTO" : "MANUAL", wd_cnt);
4107 /* set the watchdog timer */
4108 HFC_outb(hc, R_TI_WD, poll_timer | (wd_cnt << 4));
4109 hc->hw.r_bert_wd_md = (wd_mode ? V_AUTO_WD_RES : 0);
4110 if (hc->ctype == HFC_TYPE_XHFC)
4111 hc->hw.r_bert_wd_md |= 0x40 /* V_WD_EN */;
4112 /* init the watchdog register and reset the counter */
4113 HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4114 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4115 /* enable the watchdog output for Speech-Design */
4116 HFC_outb(hc, R_GPIO_SEL, V_GPIO_SEL7);
4117 HFC_outb(hc, R_GPIO_EN1, V_GPIO_EN15);
4118 HFC_outb(hc, R_GPIO_OUT1, 0);
4119 HFC_outb(hc, R_GPIO_OUT1, V_GPIO_OUT15);
4120 }
4121 break;
4122 case MISDN_CTRL_HFC_WD_RESET: /* reset the watchdog counter */
4123 if (debug & DEBUG_HFCMULTI_MSG)
4124 printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_RESET\n",
4125 __func__);
4126 HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4127 break;
4128 case MISDN_CTRL_L1_TIMER3:
4129 ret = l1_event(dch->l1, HW_TIMER3_VALUE | (cq->p1 & 0xff));
4130 break;
4131 default:
4132 printk(KERN_WARNING "%s: unknown Op %x\n",
4133 __func__, cq->op);
4134 ret = -EINVAL;
4135 break;
4136 }
4137 return ret;
4138 }
4139
4140 static int
hfcm_dctrl(struct mISDNchannel * ch,u_int cmd,void * arg)4141 hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
4142 {
4143 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
4144 struct dchannel *dch = container_of(dev, struct dchannel, dev);
4145 struct hfc_multi *hc = dch->hw;
4146 struct channel_req *rq;
4147 int err = 0;
4148 u_long flags;
4149
4150 if (dch->debug & DEBUG_HW)
4151 printk(KERN_DEBUG "%s: cmd:%x %p\n",
4152 __func__, cmd, arg);
4153 switch (cmd) {
4154 case OPEN_CHANNEL:
4155 rq = arg;
4156 switch (rq->protocol) {
4157 case ISDN_P_TE_S0:
4158 case ISDN_P_NT_S0:
4159 if (hc->ctype == HFC_TYPE_E1) {
4160 err = -EINVAL;
4161 break;
4162 }
4163 err = open_dchannel(hc, dch, rq); /* locked there */
4164 break;
4165 case ISDN_P_TE_E1:
4166 case ISDN_P_NT_E1:
4167 if (hc->ctype != HFC_TYPE_E1) {
4168 err = -EINVAL;
4169 break;
4170 }
4171 err = open_dchannel(hc, dch, rq); /* locked there */
4172 break;
4173 default:
4174 spin_lock_irqsave(&hc->lock, flags);
4175 err = open_bchannel(hc, dch, rq);
4176 spin_unlock_irqrestore(&hc->lock, flags);
4177 }
4178 break;
4179 case CLOSE_CHANNEL:
4180 if (debug & DEBUG_HW_OPEN)
4181 printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
4182 __func__, dch->dev.id,
4183 __builtin_return_address(0));
4184 module_put(THIS_MODULE);
4185 break;
4186 case CONTROL_CHANNEL:
4187 spin_lock_irqsave(&hc->lock, flags);
4188 err = channel_dctrl(dch, arg);
4189 spin_unlock_irqrestore(&hc->lock, flags);
4190 break;
4191 default:
4192 if (dch->debug & DEBUG_HW)
4193 printk(KERN_DEBUG "%s: unknown command %x\n",
4194 __func__, cmd);
4195 err = -EINVAL;
4196 }
4197 return err;
4198 }
4199
4200 static int
clockctl(void * priv,int enable)4201 clockctl(void *priv, int enable)
4202 {
4203 struct hfc_multi *hc = priv;
4204
4205 hc->iclock_on = enable;
4206 return 0;
4207 }
4208
4209 /*
4210 * initialize the card
4211 */
4212
4213 /*
4214 * start timer irq, wait some time and check if we have interrupts.
4215 * if not, reset chip and try again.
4216 */
4217 static int
init_card(struct hfc_multi * hc)4218 init_card(struct hfc_multi *hc)
4219 {
4220 int err = -EIO;
4221 u_long flags;
4222 void __iomem *plx_acc;
4223 u_long plx_flags;
4224
4225 if (debug & DEBUG_HFCMULTI_INIT)
4226 printk(KERN_DEBUG "%s: entered\n", __func__);
4227
4228 spin_lock_irqsave(&hc->lock, flags);
4229 /* set interrupts but leave global interrupt disabled */
4230 hc->hw.r_irq_ctrl = V_FIFO_IRQ;
4231 disable_hwirq(hc);
4232 spin_unlock_irqrestore(&hc->lock, flags);
4233
4234 if (request_irq(hc->irq, hfcmulti_interrupt, IRQF_SHARED,
4235 "HFC-multi", hc)) {
4236 printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n",
4237 hc->irq);
4238 hc->irq = 0;
4239 return -EIO;
4240 }
4241
4242 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4243 spin_lock_irqsave(&plx_lock, plx_flags);
4244 plx_acc = hc->plx_membase + PLX_INTCSR;
4245 writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE),
4246 plx_acc); /* enable PCI & LINT1 irq */
4247 spin_unlock_irqrestore(&plx_lock, plx_flags);
4248 }
4249
4250 if (debug & DEBUG_HFCMULTI_INIT)
4251 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4252 __func__, hc->irq, hc->irqcnt);
4253 err = init_chip(hc);
4254 if (err)
4255 goto error;
4256 /*
4257 * Finally enable IRQ output
4258 * this is only allowed, if an IRQ routine is already
4259 * established for this HFC, so don't do that earlier
4260 */
4261 spin_lock_irqsave(&hc->lock, flags);
4262 enable_hwirq(hc);
4263 spin_unlock_irqrestore(&hc->lock, flags);
4264 /* printk(KERN_DEBUG "no master irq set!!!\n"); */
4265 set_current_state(TASK_UNINTERRUPTIBLE);
4266 schedule_timeout((100 * HZ) / 1000); /* Timeout 100ms */
4267 /* turn IRQ off until chip is completely initialized */
4268 spin_lock_irqsave(&hc->lock, flags);
4269 disable_hwirq(hc);
4270 spin_unlock_irqrestore(&hc->lock, flags);
4271 if (debug & DEBUG_HFCMULTI_INIT)
4272 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4273 __func__, hc->irq, hc->irqcnt);
4274 if (hc->irqcnt) {
4275 if (debug & DEBUG_HFCMULTI_INIT)
4276 printk(KERN_DEBUG "%s: done\n", __func__);
4277
4278 return 0;
4279 }
4280 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
4281 printk(KERN_INFO "ignoring missing interrupts\n");
4282 return 0;
4283 }
4284
4285 printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4286 hc->irq);
4287
4288 err = -EIO;
4289
4290 error:
4291 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4292 spin_lock_irqsave(&plx_lock, plx_flags);
4293 plx_acc = hc->plx_membase + PLX_INTCSR;
4294 writew(0x00, plx_acc); /*disable IRQs*/
4295 spin_unlock_irqrestore(&plx_lock, plx_flags);
4296 }
4297
4298 if (debug & DEBUG_HFCMULTI_INIT)
4299 printk(KERN_DEBUG "%s: free irq %d\n", __func__, hc->irq);
4300 if (hc->irq) {
4301 free_irq(hc->irq, hc);
4302 hc->irq = 0;
4303 }
4304
4305 if (debug & DEBUG_HFCMULTI_INIT)
4306 printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err);
4307 return err;
4308 }
4309
4310 /*
4311 * find pci device and set it up
4312 */
4313
4314 static int
setup_pci(struct hfc_multi * hc,struct pci_dev * pdev,const struct pci_device_id * ent)4315 setup_pci(struct hfc_multi *hc, struct pci_dev *pdev,
4316 const struct pci_device_id *ent)
4317 {
4318 struct hm_map *m = (struct hm_map *)ent->driver_data;
4319
4320 printk(KERN_INFO
4321 "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4322 m->vendor_name, m->card_name, m->clock2 ? "double" : "normal");
4323
4324 hc->pci_dev = pdev;
4325 if (m->clock2)
4326 test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip);
4327
4328 if (ent->vendor == PCI_VENDOR_ID_DIGIUM &&
4329 ent->device == PCI_DEVICE_ID_DIGIUM_HFC4S) {
4330 test_and_set_bit(HFC_CHIP_B410P, &hc->chip);
4331 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4332 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4333 hc->slots = 32;
4334 }
4335
4336 if (hc->pci_dev->irq <= 0) {
4337 printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n");
4338 return -EIO;
4339 }
4340 if (pci_enable_device(hc->pci_dev)) {
4341 printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n");
4342 return -EIO;
4343 }
4344 hc->leds = m->leds;
4345 hc->ledstate = 0xAFFEAFFE;
4346 hc->opticalsupport = m->opticalsupport;
4347
4348 hc->pci_iobase = 0;
4349 hc->pci_membase = NULL;
4350 hc->plx_membase = NULL;
4351
4352 /* set memory access methods */
4353 if (m->io_mode) /* use mode from card config */
4354 hc->io_mode = m->io_mode;
4355 switch (hc->io_mode) {
4356 case HFC_IO_MODE_PLXSD:
4357 test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip);
4358 hc->slots = 128; /* required */
4359 hc->HFC_outb = HFC_outb_pcimem;
4360 hc->HFC_inb = HFC_inb_pcimem;
4361 hc->HFC_inw = HFC_inw_pcimem;
4362 hc->HFC_wait = HFC_wait_pcimem;
4363 hc->read_fifo = read_fifo_pcimem;
4364 hc->write_fifo = write_fifo_pcimem;
4365 hc->plx_origmembase = hc->pci_dev->resource[0].start;
4366 /* MEMBASE 1 is PLX PCI Bridge */
4367
4368 if (!hc->plx_origmembase) {
4369 printk(KERN_WARNING
4370 "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4371 pci_disable_device(hc->pci_dev);
4372 return -EIO;
4373 }
4374
4375 hc->plx_membase = ioremap(hc->plx_origmembase, 0x80);
4376 if (!hc->plx_membase) {
4377 printk(KERN_WARNING
4378 "HFC-multi: failed to remap plx address space. "
4379 "(internal error)\n");
4380 pci_disable_device(hc->pci_dev);
4381 return -EIO;
4382 }
4383 printk(KERN_INFO
4384 "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4385 (u_long)hc->plx_membase, hc->plx_origmembase);
4386
4387 hc->pci_origmembase = hc->pci_dev->resource[2].start;
4388 /* MEMBASE 1 is PLX PCI Bridge */
4389 if (!hc->pci_origmembase) {
4390 printk(KERN_WARNING
4391 "HFC-multi: No IO-Memory for PCI card found\n");
4392 pci_disable_device(hc->pci_dev);
4393 return -EIO;
4394 }
4395
4396 hc->pci_membase = ioremap(hc->pci_origmembase, 0x400);
4397 if (!hc->pci_membase) {
4398 printk(KERN_WARNING "HFC-multi: failed to remap io "
4399 "address space. (internal error)\n");
4400 pci_disable_device(hc->pci_dev);
4401 return -EIO;
4402 }
4403
4404 printk(KERN_INFO
4405 "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4406 "leds-type %d\n",
4407 hc->id, (u_long)hc->pci_membase, hc->pci_origmembase,
4408 hc->pci_dev->irq, HZ, hc->leds);
4409 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4410 break;
4411 case HFC_IO_MODE_PCIMEM:
4412 hc->HFC_outb = HFC_outb_pcimem;
4413 hc->HFC_inb = HFC_inb_pcimem;
4414 hc->HFC_inw = HFC_inw_pcimem;
4415 hc->HFC_wait = HFC_wait_pcimem;
4416 hc->read_fifo = read_fifo_pcimem;
4417 hc->write_fifo = write_fifo_pcimem;
4418 hc->pci_origmembase = hc->pci_dev->resource[1].start;
4419 if (!hc->pci_origmembase) {
4420 printk(KERN_WARNING
4421 "HFC-multi: No IO-Memory for PCI card found\n");
4422 pci_disable_device(hc->pci_dev);
4423 return -EIO;
4424 }
4425
4426 hc->pci_membase = ioremap(hc->pci_origmembase, 256);
4427 if (!hc->pci_membase) {
4428 printk(KERN_WARNING
4429 "HFC-multi: failed to remap io address space. "
4430 "(internal error)\n");
4431 pci_disable_device(hc->pci_dev);
4432 return -EIO;
4433 }
4434 printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ "
4435 "%d HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase,
4436 hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds);
4437 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4438 break;
4439 case HFC_IO_MODE_REGIO:
4440 hc->HFC_outb = HFC_outb_regio;
4441 hc->HFC_inb = HFC_inb_regio;
4442 hc->HFC_inw = HFC_inw_regio;
4443 hc->HFC_wait = HFC_wait_regio;
4444 hc->read_fifo = read_fifo_regio;
4445 hc->write_fifo = write_fifo_regio;
4446 hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start;
4447 if (!hc->pci_iobase) {
4448 printk(KERN_WARNING
4449 "HFC-multi: No IO for PCI card found\n");
4450 pci_disable_device(hc->pci_dev);
4451 return -EIO;
4452 }
4453
4454 if (!request_region(hc->pci_iobase, 8, "hfcmulti")) {
4455 printk(KERN_WARNING "HFC-multi: failed to request "
4456 "address space at 0x%08lx (internal error)\n",
4457 hc->pci_iobase);
4458 pci_disable_device(hc->pci_dev);
4459 return -EIO;
4460 }
4461
4462 printk(KERN_INFO
4463 "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4464 m->vendor_name, m->card_name, (u_int) hc->pci_iobase,
4465 hc->pci_dev->irq, HZ, hc->leds);
4466 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO);
4467 break;
4468 default:
4469 printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4470 pci_disable_device(hc->pci_dev);
4471 return -EIO;
4472 }
4473
4474 pci_set_drvdata(hc->pci_dev, hc);
4475
4476 /* At this point the needed PCI config is done */
4477 /* fifos are still not enabled */
4478 return 0;
4479 }
4480
4481
4482 /*
4483 * remove port
4484 */
4485
4486 static void
release_port(struct hfc_multi * hc,struct dchannel * dch)4487 release_port(struct hfc_multi *hc, struct dchannel *dch)
4488 {
4489 int pt, ci, i = 0;
4490 u_long flags;
4491 struct bchannel *pb;
4492
4493 ci = dch->slot;
4494 pt = hc->chan[ci].port;
4495
4496 if (debug & DEBUG_HFCMULTI_INIT)
4497 printk(KERN_DEBUG "%s: entered for port %d\n",
4498 __func__, pt + 1);
4499
4500 if (pt >= hc->ports) {
4501 printk(KERN_WARNING "%s: ERROR port out of range (%d).\n",
4502 __func__, pt + 1);
4503 return;
4504 }
4505
4506 if (debug & DEBUG_HFCMULTI_INIT)
4507 printk(KERN_DEBUG "%s: releasing port=%d\n",
4508 __func__, pt + 1);
4509
4510 if (dch->dev.D.protocol == ISDN_P_TE_S0)
4511 l1_event(dch->l1, CLOSE_CHANNEL);
4512
4513 hc->chan[ci].dch = NULL;
4514
4515 if (hc->created[pt]) {
4516 hc->created[pt] = 0;
4517 mISDN_unregister_device(&dch->dev);
4518 }
4519
4520 spin_lock_irqsave(&hc->lock, flags);
4521
4522 if (dch->timer.function) {
4523 del_timer(&dch->timer);
4524 dch->timer.function = NULL;
4525 }
4526
4527 if (hc->ctype == HFC_TYPE_E1) { /* E1 */
4528 /* remove sync */
4529 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4530 hc->syncronized = 0;
4531 plxsd_checksync(hc, 1);
4532 }
4533 /* free channels */
4534 for (i = 0; i <= 31; i++) {
4535 if (!((1 << i) & hc->bmask[pt])) /* skip unused chan */
4536 continue;
4537 if (hc->chan[i].bch) {
4538 if (debug & DEBUG_HFCMULTI_INIT)
4539 printk(KERN_DEBUG
4540 "%s: free port %d channel %d\n",
4541 __func__, hc->chan[i].port + 1, i);
4542 pb = hc->chan[i].bch;
4543 hc->chan[i].bch = NULL;
4544 spin_unlock_irqrestore(&hc->lock, flags);
4545 mISDN_freebchannel(pb);
4546 kfree(pb);
4547 kfree(hc->chan[i].coeff);
4548 spin_lock_irqsave(&hc->lock, flags);
4549 }
4550 }
4551 } else {
4552 /* remove sync */
4553 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4554 hc->syncronized &=
4555 ~(1 << hc->chan[ci].port);
4556 plxsd_checksync(hc, 1);
4557 }
4558 /* free channels */
4559 if (hc->chan[ci - 2].bch) {
4560 if (debug & DEBUG_HFCMULTI_INIT)
4561 printk(KERN_DEBUG
4562 "%s: free port %d channel %d\n",
4563 __func__, hc->chan[ci - 2].port + 1,
4564 ci - 2);
4565 pb = hc->chan[ci - 2].bch;
4566 hc->chan[ci - 2].bch = NULL;
4567 spin_unlock_irqrestore(&hc->lock, flags);
4568 mISDN_freebchannel(pb);
4569 kfree(pb);
4570 kfree(hc->chan[ci - 2].coeff);
4571 spin_lock_irqsave(&hc->lock, flags);
4572 }
4573 if (hc->chan[ci - 1].bch) {
4574 if (debug & DEBUG_HFCMULTI_INIT)
4575 printk(KERN_DEBUG
4576 "%s: free port %d channel %d\n",
4577 __func__, hc->chan[ci - 1].port + 1,
4578 ci - 1);
4579 pb = hc->chan[ci - 1].bch;
4580 hc->chan[ci - 1].bch = NULL;
4581 spin_unlock_irqrestore(&hc->lock, flags);
4582 mISDN_freebchannel(pb);
4583 kfree(pb);
4584 kfree(hc->chan[ci - 1].coeff);
4585 spin_lock_irqsave(&hc->lock, flags);
4586 }
4587 }
4588
4589 spin_unlock_irqrestore(&hc->lock, flags);
4590
4591 if (debug & DEBUG_HFCMULTI_INIT)
4592 printk(KERN_DEBUG "%s: free port %d channel D(%d)\n", __func__,
4593 pt+1, ci);
4594 mISDN_freedchannel(dch);
4595 kfree(dch);
4596
4597 if (debug & DEBUG_HFCMULTI_INIT)
4598 printk(KERN_DEBUG "%s: done!\n", __func__);
4599 }
4600
4601 static void
release_card(struct hfc_multi * hc)4602 release_card(struct hfc_multi *hc)
4603 {
4604 u_long flags;
4605 int ch;
4606
4607 if (debug & DEBUG_HFCMULTI_INIT)
4608 printk(KERN_DEBUG "%s: release card (%d) entered\n",
4609 __func__, hc->id);
4610
4611 /* unregister clock source */
4612 if (hc->iclock)
4613 mISDN_unregister_clock(hc->iclock);
4614
4615 /* disable and free irq */
4616 spin_lock_irqsave(&hc->lock, flags);
4617 disable_hwirq(hc);
4618 spin_unlock_irqrestore(&hc->lock, flags);
4619 udelay(1000);
4620 if (hc->irq) {
4621 if (debug & DEBUG_HFCMULTI_INIT)
4622 printk(KERN_DEBUG "%s: free irq %d (hc=%p)\n",
4623 __func__, hc->irq, hc);
4624 free_irq(hc->irq, hc);
4625 hc->irq = 0;
4626
4627 }
4628
4629 /* disable D-channels & B-channels */
4630 if (debug & DEBUG_HFCMULTI_INIT)
4631 printk(KERN_DEBUG "%s: disable all channels (d and b)\n",
4632 __func__);
4633 for (ch = 0; ch <= 31; ch++) {
4634 if (hc->chan[ch].dch)
4635 release_port(hc, hc->chan[ch].dch);
4636 }
4637
4638 /* dimm leds */
4639 if (hc->leds)
4640 hfcmulti_leds(hc);
4641
4642 /* release hardware */
4643 release_io_hfcmulti(hc);
4644
4645 if (debug & DEBUG_HFCMULTI_INIT)
4646 printk(KERN_DEBUG "%s: remove instance from list\n",
4647 __func__);
4648 list_del(&hc->list);
4649
4650 if (debug & DEBUG_HFCMULTI_INIT)
4651 printk(KERN_DEBUG "%s: delete instance\n", __func__);
4652 if (hc == syncmaster)
4653 syncmaster = NULL;
4654 kfree(hc);
4655 if (debug & DEBUG_HFCMULTI_INIT)
4656 printk(KERN_DEBUG "%s: card successfully removed\n",
4657 __func__);
4658 }
4659
4660 static void
init_e1_port_hw(struct hfc_multi * hc,struct hm_map * m)4661 init_e1_port_hw(struct hfc_multi *hc, struct hm_map *m)
4662 {
4663 /* set optical line type */
4664 if (port[Port_cnt] & 0x001) {
4665 if (!m->opticalsupport) {
4666 printk(KERN_INFO
4667 "This board has no optical "
4668 "support\n");
4669 } else {
4670 if (debug & DEBUG_HFCMULTI_INIT)
4671 printk(KERN_DEBUG
4672 "%s: PORT set optical "
4673 "interfacs: card(%d) "
4674 "port(%d)\n",
4675 __func__,
4676 HFC_cnt + 1, 1);
4677 test_and_set_bit(HFC_CFG_OPTICAL,
4678 &hc->chan[hc->dnum[0]].cfg);
4679 }
4680 }
4681 /* set LOS report */
4682 if (port[Port_cnt] & 0x004) {
4683 if (debug & DEBUG_HFCMULTI_INIT)
4684 printk(KERN_DEBUG "%s: PORT set "
4685 "LOS report: card(%d) port(%d)\n",
4686 __func__, HFC_cnt + 1, 1);
4687 test_and_set_bit(HFC_CFG_REPORT_LOS,
4688 &hc->chan[hc->dnum[0]].cfg);
4689 }
4690 /* set AIS report */
4691 if (port[Port_cnt] & 0x008) {
4692 if (debug & DEBUG_HFCMULTI_INIT)
4693 printk(KERN_DEBUG "%s: PORT set "
4694 "AIS report: card(%d) port(%d)\n",
4695 __func__, HFC_cnt + 1, 1);
4696 test_and_set_bit(HFC_CFG_REPORT_AIS,
4697 &hc->chan[hc->dnum[0]].cfg);
4698 }
4699 /* set SLIP report */
4700 if (port[Port_cnt] & 0x010) {
4701 if (debug & DEBUG_HFCMULTI_INIT)
4702 printk(KERN_DEBUG
4703 "%s: PORT set SLIP report: "
4704 "card(%d) port(%d)\n",
4705 __func__, HFC_cnt + 1, 1);
4706 test_and_set_bit(HFC_CFG_REPORT_SLIP,
4707 &hc->chan[hc->dnum[0]].cfg);
4708 }
4709 /* set RDI report */
4710 if (port[Port_cnt] & 0x020) {
4711 if (debug & DEBUG_HFCMULTI_INIT)
4712 printk(KERN_DEBUG
4713 "%s: PORT set RDI report: "
4714 "card(%d) port(%d)\n",
4715 __func__, HFC_cnt + 1, 1);
4716 test_and_set_bit(HFC_CFG_REPORT_RDI,
4717 &hc->chan[hc->dnum[0]].cfg);
4718 }
4719 /* set CRC-4 Mode */
4720 if (!(port[Port_cnt] & 0x100)) {
4721 if (debug & DEBUG_HFCMULTI_INIT)
4722 printk(KERN_DEBUG "%s: PORT turn on CRC4 report:"
4723 " card(%d) port(%d)\n",
4724 __func__, HFC_cnt + 1, 1);
4725 test_and_set_bit(HFC_CFG_CRC4,
4726 &hc->chan[hc->dnum[0]].cfg);
4727 } else {
4728 if (debug & DEBUG_HFCMULTI_INIT)
4729 printk(KERN_DEBUG "%s: PORT turn off CRC4"
4730 " report: card(%d) port(%d)\n",
4731 __func__, HFC_cnt + 1, 1);
4732 }
4733 /* set forced clock */
4734 if (port[Port_cnt] & 0x0200) {
4735 if (debug & DEBUG_HFCMULTI_INIT)
4736 printk(KERN_DEBUG "%s: PORT force getting clock from "
4737 "E1: card(%d) port(%d)\n",
4738 __func__, HFC_cnt + 1, 1);
4739 test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip);
4740 } else
4741 if (port[Port_cnt] & 0x0400) {
4742 if (debug & DEBUG_HFCMULTI_INIT)
4743 printk(KERN_DEBUG "%s: PORT force putting clock to "
4744 "E1: card(%d) port(%d)\n",
4745 __func__, HFC_cnt + 1, 1);
4746 test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip);
4747 }
4748 /* set JATT PLL */
4749 if (port[Port_cnt] & 0x0800) {
4750 if (debug & DEBUG_HFCMULTI_INIT)
4751 printk(KERN_DEBUG "%s: PORT disable JATT PLL on "
4752 "E1: card(%d) port(%d)\n",
4753 __func__, HFC_cnt + 1, 1);
4754 test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip);
4755 }
4756 /* set elastic jitter buffer */
4757 if (port[Port_cnt] & 0x3000) {
4758 hc->chan[hc->dnum[0]].jitter = (port[Port_cnt]>>12) & 0x3;
4759 if (debug & DEBUG_HFCMULTI_INIT)
4760 printk(KERN_DEBUG
4761 "%s: PORT set elastic "
4762 "buffer to %d: card(%d) port(%d)\n",
4763 __func__, hc->chan[hc->dnum[0]].jitter,
4764 HFC_cnt + 1, 1);
4765 } else
4766 hc->chan[hc->dnum[0]].jitter = 2; /* default */
4767 }
4768
4769 static int
init_e1_port(struct hfc_multi * hc,struct hm_map * m,int pt)4770 init_e1_port(struct hfc_multi *hc, struct hm_map *m, int pt)
4771 {
4772 struct dchannel *dch;
4773 struct bchannel *bch;
4774 int ch, ret = 0;
4775 char name[MISDN_MAX_IDLEN];
4776 int bcount = 0;
4777
4778 dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4779 if (!dch)
4780 return -ENOMEM;
4781 dch->debug = debug;
4782 mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4783 dch->hw = hc;
4784 dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1);
4785 dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4786 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4787 dch->dev.D.send = handle_dmsg;
4788 dch->dev.D.ctrl = hfcm_dctrl;
4789 dch->slot = hc->dnum[pt];
4790 hc->chan[hc->dnum[pt]].dch = dch;
4791 hc->chan[hc->dnum[pt]].port = pt;
4792 hc->chan[hc->dnum[pt]].nt_timer = -1;
4793 for (ch = 1; ch <= 31; ch++) {
4794 if (!((1 << ch) & hc->bmask[pt])) /* skip unused channel */
4795 continue;
4796 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4797 if (!bch) {
4798 printk(KERN_ERR "%s: no memory for bchannel\n",
4799 __func__);
4800 ret = -ENOMEM;
4801 goto free_chan;
4802 }
4803 hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL);
4804 if (!hc->chan[ch].coeff) {
4805 printk(KERN_ERR "%s: no memory for coeffs\n",
4806 __func__);
4807 ret = -ENOMEM;
4808 kfree(bch);
4809 goto free_chan;
4810 }
4811 bch->nr = ch;
4812 bch->slot = ch;
4813 bch->debug = debug;
4814 mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1);
4815 bch->hw = hc;
4816 bch->ch.send = handle_bmsg;
4817 bch->ch.ctrl = hfcm_bctrl;
4818 bch->ch.nr = ch;
4819 list_add(&bch->ch.list, &dch->dev.bchannels);
4820 hc->chan[ch].bch = bch;
4821 hc->chan[ch].port = pt;
4822 set_channelmap(bch->nr, dch->dev.channelmap);
4823 bcount++;
4824 }
4825 dch->dev.nrbchan = bcount;
4826 if (pt == 0)
4827 init_e1_port_hw(hc, m);
4828 if (hc->ports > 1)
4829 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d-%d",
4830 HFC_cnt + 1, pt+1);
4831 else
4832 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1);
4833 ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4834 if (ret)
4835 goto free_chan;
4836 hc->created[pt] = 1;
4837 return ret;
4838 free_chan:
4839 release_port(hc, dch);
4840 return ret;
4841 }
4842
4843 static int
init_multi_port(struct hfc_multi * hc,int pt)4844 init_multi_port(struct hfc_multi *hc, int pt)
4845 {
4846 struct dchannel *dch;
4847 struct bchannel *bch;
4848 int ch, i, ret = 0;
4849 char name[MISDN_MAX_IDLEN];
4850
4851 dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4852 if (!dch)
4853 return -ENOMEM;
4854 dch->debug = debug;
4855 mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4856 dch->hw = hc;
4857 dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
4858 dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4859 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4860 dch->dev.D.send = handle_dmsg;
4861 dch->dev.D.ctrl = hfcm_dctrl;
4862 dch->dev.nrbchan = 2;
4863 i = pt << 2;
4864 dch->slot = i + 2;
4865 hc->chan[i + 2].dch = dch;
4866 hc->chan[i + 2].port = pt;
4867 hc->chan[i + 2].nt_timer = -1;
4868 for (ch = 0; ch < dch->dev.nrbchan; ch++) {
4869 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4870 if (!bch) {
4871 printk(KERN_ERR "%s: no memory for bchannel\n",
4872 __func__);
4873 ret = -ENOMEM;
4874 goto free_chan;
4875 }
4876 hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL);
4877 if (!hc->chan[i + ch].coeff) {
4878 printk(KERN_ERR "%s: no memory for coeffs\n",
4879 __func__);
4880 ret = -ENOMEM;
4881 kfree(bch);
4882 goto free_chan;
4883 }
4884 bch->nr = ch + 1;
4885 bch->slot = i + ch;
4886 bch->debug = debug;
4887 mISDN_initbchannel(bch, MAX_DATA_MEM, poll >> 1);
4888 bch->hw = hc;
4889 bch->ch.send = handle_bmsg;
4890 bch->ch.ctrl = hfcm_bctrl;
4891 bch->ch.nr = ch + 1;
4892 list_add(&bch->ch.list, &dch->dev.bchannels);
4893 hc->chan[i + ch].bch = bch;
4894 hc->chan[i + ch].port = pt;
4895 set_channelmap(bch->nr, dch->dev.channelmap);
4896 }
4897 /* set master clock */
4898 if (port[Port_cnt] & 0x001) {
4899 if (debug & DEBUG_HFCMULTI_INIT)
4900 printk(KERN_DEBUG
4901 "%s: PROTOCOL set master clock: "
4902 "card(%d) port(%d)\n",
4903 __func__, HFC_cnt + 1, pt + 1);
4904 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
4905 printk(KERN_ERR "Error: Master clock "
4906 "for port(%d) of card(%d) is only"
4907 " possible with TE-mode\n",
4908 pt + 1, HFC_cnt + 1);
4909 ret = -EINVAL;
4910 goto free_chan;
4911 }
4912 if (hc->masterclk >= 0) {
4913 printk(KERN_ERR "Error: Master clock "
4914 "for port(%d) of card(%d) already "
4915 "defined for port(%d)\n",
4916 pt + 1, HFC_cnt + 1, hc->masterclk + 1);
4917 ret = -EINVAL;
4918 goto free_chan;
4919 }
4920 hc->masterclk = pt;
4921 }
4922 /* set transmitter line to non capacitive */
4923 if (port[Port_cnt] & 0x002) {
4924 if (debug & DEBUG_HFCMULTI_INIT)
4925 printk(KERN_DEBUG
4926 "%s: PROTOCOL set non capacitive "
4927 "transmitter: card(%d) port(%d)\n",
4928 __func__, HFC_cnt + 1, pt + 1);
4929 test_and_set_bit(HFC_CFG_NONCAP_TX,
4930 &hc->chan[i + 2].cfg);
4931 }
4932 /* disable E-channel */
4933 if (port[Port_cnt] & 0x004) {
4934 if (debug & DEBUG_HFCMULTI_INIT)
4935 printk(KERN_DEBUG
4936 "%s: PROTOCOL disable E-channel: "
4937 "card(%d) port(%d)\n",
4938 __func__, HFC_cnt + 1, pt + 1);
4939 test_and_set_bit(HFC_CFG_DIS_ECHANNEL,
4940 &hc->chan[i + 2].cfg);
4941 }
4942 if (hc->ctype == HFC_TYPE_XHFC) {
4943 snprintf(name, MISDN_MAX_IDLEN - 1, "xhfc.%d-%d",
4944 HFC_cnt + 1, pt + 1);
4945 ret = mISDN_register_device(&dch->dev, NULL, name);
4946 } else {
4947 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d-%d",
4948 hc->ctype, HFC_cnt + 1, pt + 1);
4949 ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4950 }
4951 if (ret)
4952 goto free_chan;
4953 hc->created[pt] = 1;
4954 return ret;
4955 free_chan:
4956 release_port(hc, dch);
4957 return ret;
4958 }
4959
4960 static int
hfcmulti_init(struct hm_map * m,struct pci_dev * pdev,const struct pci_device_id * ent)4961 hfcmulti_init(struct hm_map *m, struct pci_dev *pdev,
4962 const struct pci_device_id *ent)
4963 {
4964 int ret_err = 0;
4965 int pt;
4966 struct hfc_multi *hc;
4967 u_long flags;
4968 u_char dips = 0, pmj = 0; /* dip settings, port mode Jumpers */
4969 int i, ch;
4970 u_int maskcheck;
4971
4972 if (HFC_cnt >= MAX_CARDS) {
4973 printk(KERN_ERR "too many cards (max=%d).\n",
4974 MAX_CARDS);
4975 return -EINVAL;
4976 }
4977 if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) {
4978 printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but "
4979 "type[%d] %d was supplied as module parameter\n",
4980 m->vendor_name, m->card_name, m->type, HFC_cnt,
4981 type[HFC_cnt] & 0xff);
4982 printk(KERN_WARNING "HFC-MULTI: Load module without parameters "
4983 "first, to see cards and their types.");
4984 return -EINVAL;
4985 }
4986 if (debug & DEBUG_HFCMULTI_INIT)
4987 printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n",
4988 __func__, m->vendor_name, m->card_name, m->type,
4989 type[HFC_cnt]);
4990
4991 /* allocate card+fifo structure */
4992 hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL);
4993 if (!hc) {
4994 printk(KERN_ERR "No kmem for HFC-Multi card\n");
4995 return -ENOMEM;
4996 }
4997 spin_lock_init(&hc->lock);
4998 hc->mtyp = m;
4999 hc->ctype = m->type;
5000 hc->ports = m->ports;
5001 hc->id = HFC_cnt;
5002 hc->pcm = pcm[HFC_cnt];
5003 hc->io_mode = iomode[HFC_cnt];
5004 if (hc->ctype == HFC_TYPE_E1 && dmask[E1_cnt]) {
5005 /* fragment card */
5006 pt = 0;
5007 maskcheck = 0;
5008 for (ch = 0; ch <= 31; ch++) {
5009 if (!((1 << ch) & dmask[E1_cnt]))
5010 continue;
5011 hc->dnum[pt] = ch;
5012 hc->bmask[pt] = bmask[bmask_cnt++];
5013 if ((maskcheck & hc->bmask[pt])
5014 || (dmask[E1_cnt] & hc->bmask[pt])) {
5015 printk(KERN_INFO
5016 "HFC-E1 #%d has overlapping B-channels on fragment #%d\n",
5017 E1_cnt + 1, pt);
5018 kfree(hc);
5019 return -EINVAL;
5020 }
5021 maskcheck |= hc->bmask[pt];
5022 printk(KERN_INFO
5023 "HFC-E1 #%d uses D-channel on slot %d and a B-channel map of 0x%08x\n",
5024 E1_cnt + 1, ch, hc->bmask[pt]);
5025 pt++;
5026 }
5027 hc->ports = pt;
5028 }
5029 if (hc->ctype == HFC_TYPE_E1 && !dmask[E1_cnt]) {
5030 /* default card layout */
5031 hc->dnum[0] = 16;
5032 hc->bmask[0] = 0xfffefffe;
5033 hc->ports = 1;
5034 }
5035
5036 /* set chip specific features */
5037 hc->masterclk = -1;
5038 if (type[HFC_cnt] & 0x100) {
5039 test_and_set_bit(HFC_CHIP_ULAW, &hc->chip);
5040 hc->silence = 0xff; /* ulaw silence */
5041 } else
5042 hc->silence = 0x2a; /* alaw silence */
5043 if ((poll >> 1) > sizeof(hc->silence_data)) {
5044 printk(KERN_ERR "HFCMULTI error: silence_data too small, "
5045 "please fix\n");
5046 kfree(hc);
5047 return -EINVAL;
5048 }
5049 for (i = 0; i < (poll >> 1); i++)
5050 hc->silence_data[i] = hc->silence;
5051
5052 if (hc->ctype != HFC_TYPE_XHFC) {
5053 if (!(type[HFC_cnt] & 0x200))
5054 test_and_set_bit(HFC_CHIP_DTMF, &hc->chip);
5055 test_and_set_bit(HFC_CHIP_CONF, &hc->chip);
5056 }
5057
5058 if (type[HFC_cnt] & 0x800)
5059 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5060 if (type[HFC_cnt] & 0x1000) {
5061 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
5062 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5063 }
5064 if (type[HFC_cnt] & 0x4000)
5065 test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip);
5066 if (type[HFC_cnt] & 0x8000)
5067 test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip);
5068 hc->slots = 32;
5069 if (type[HFC_cnt] & 0x10000)
5070 hc->slots = 64;
5071 if (type[HFC_cnt] & 0x20000)
5072 hc->slots = 128;
5073 if (type[HFC_cnt] & 0x80000) {
5074 test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip);
5075 hc->wdcount = 0;
5076 hc->wdbyte = V_GPIO_OUT2;
5077 printk(KERN_NOTICE "Watchdog enabled\n");
5078 }
5079
5080 if (pdev && ent)
5081 /* setup pci, hc->slots may change due to PLXSD */
5082 ret_err = setup_pci(hc, pdev, ent);
5083 else
5084 #ifdef CONFIG_MISDN_HFCMULTI_8xx
5085 ret_err = setup_embedded(hc, m);
5086 #else
5087 {
5088 printk(KERN_WARNING "Embedded IO Mode not selected\n");
5089 ret_err = -EIO;
5090 }
5091 #endif
5092 if (ret_err) {
5093 if (hc == syncmaster)
5094 syncmaster = NULL;
5095 kfree(hc);
5096 return ret_err;
5097 }
5098
5099 hc->HFC_outb_nodebug = hc->HFC_outb;
5100 hc->HFC_inb_nodebug = hc->HFC_inb;
5101 hc->HFC_inw_nodebug = hc->HFC_inw;
5102 hc->HFC_wait_nodebug = hc->HFC_wait;
5103 #ifdef HFC_REGISTER_DEBUG
5104 hc->HFC_outb = HFC_outb_debug;
5105 hc->HFC_inb = HFC_inb_debug;
5106 hc->HFC_inw = HFC_inw_debug;
5107 hc->HFC_wait = HFC_wait_debug;
5108 #endif
5109 /* create channels */
5110 for (pt = 0; pt < hc->ports; pt++) {
5111 if (Port_cnt >= MAX_PORTS) {
5112 printk(KERN_ERR "too many ports (max=%d).\n",
5113 MAX_PORTS);
5114 ret_err = -EINVAL;
5115 goto free_card;
5116 }
5117 if (hc->ctype == HFC_TYPE_E1)
5118 ret_err = init_e1_port(hc, m, pt);
5119 else
5120 ret_err = init_multi_port(hc, pt);
5121 if (debug & DEBUG_HFCMULTI_INIT)
5122 printk(KERN_DEBUG
5123 "%s: Registering D-channel, card(%d) port(%d) "
5124 "result %d\n",
5125 __func__, HFC_cnt + 1, pt + 1, ret_err);
5126
5127 if (ret_err) {
5128 while (pt) { /* release already registered ports */
5129 pt--;
5130 if (hc->ctype == HFC_TYPE_E1)
5131 release_port(hc,
5132 hc->chan[hc->dnum[pt]].dch);
5133 else
5134 release_port(hc,
5135 hc->chan[(pt << 2) + 2].dch);
5136 }
5137 goto free_card;
5138 }
5139 if (hc->ctype != HFC_TYPE_E1)
5140 Port_cnt++; /* for each S0 port */
5141 }
5142 if (hc->ctype == HFC_TYPE_E1) {
5143 Port_cnt++; /* for each E1 port */
5144 E1_cnt++;
5145 }
5146
5147 /* disp switches */
5148 switch (m->dip_type) {
5149 case DIP_4S:
5150 /*
5151 * Get DIP setting for beroNet 1S/2S/4S cards
5152 * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
5153 * GPI 19/23 (R_GPI_IN2))
5154 */
5155 dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) |
5156 ((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) |
5157 (~HFC_inb(hc, R_GPI_IN2) & 0x08);
5158
5159 /* Port mode (TE/NT) jumpers */
5160 pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4) & 0xf);
5161
5162 if (test_bit(HFC_CHIP_B410P, &hc->chip))
5163 pmj = ~pmj & 0xf;
5164
5165 printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n",
5166 m->vendor_name, m->card_name, dips, pmj);
5167 break;
5168 case DIP_8S:
5169 /*
5170 * Get DIP Setting for beroNet 8S0+ cards
5171 * Enable PCI auxbridge function
5172 */
5173 HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
5174 /* prepare access to auxport */
5175 outw(0x4000, hc->pci_iobase + 4);
5176 /*
5177 * some dummy reads are required to
5178 * read valid DIP switch data
5179 */
5180 dips = inb(hc->pci_iobase);
5181 dips = inb(hc->pci_iobase);
5182 dips = inb(hc->pci_iobase);
5183 dips = ~inb(hc->pci_iobase) & 0x3F;
5184 outw(0x0, hc->pci_iobase + 4);
5185 /* disable PCI auxbridge function */
5186 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
5187 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5188 m->vendor_name, m->card_name, dips);
5189 break;
5190 case DIP_E1:
5191 /*
5192 * get DIP Setting for beroNet E1 cards
5193 * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
5194 */
5195 dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0) >> 4;
5196 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5197 m->vendor_name, m->card_name, dips);
5198 break;
5199 }
5200
5201 /* add to list */
5202 spin_lock_irqsave(&HFClock, flags);
5203 list_add_tail(&hc->list, &HFClist);
5204 spin_unlock_irqrestore(&HFClock, flags);
5205
5206 /* use as clock source */
5207 if (clock == HFC_cnt + 1)
5208 hc->iclock = mISDN_register_clock("HFCMulti", 0, clockctl, hc);
5209
5210 /* initialize hardware */
5211 hc->irq = (m->irq) ? : hc->pci_dev->irq;
5212 ret_err = init_card(hc);
5213 if (ret_err) {
5214 printk(KERN_ERR "init card returns %d\n", ret_err);
5215 release_card(hc);
5216 return ret_err;
5217 }
5218
5219 /* start IRQ and return */
5220 spin_lock_irqsave(&hc->lock, flags);
5221 enable_hwirq(hc);
5222 spin_unlock_irqrestore(&hc->lock, flags);
5223 return 0;
5224
5225 free_card:
5226 release_io_hfcmulti(hc);
5227 if (hc == syncmaster)
5228 syncmaster = NULL;
5229 kfree(hc);
5230 return ret_err;
5231 }
5232
hfc_remove_pci(struct pci_dev * pdev)5233 static void hfc_remove_pci(struct pci_dev *pdev)
5234 {
5235 struct hfc_multi *card = pci_get_drvdata(pdev);
5236 u_long flags;
5237
5238 if (debug)
5239 printk(KERN_INFO "removing hfc_multi card vendor:%x "
5240 "device:%x subvendor:%x subdevice:%x\n",
5241 pdev->vendor, pdev->device,
5242 pdev->subsystem_vendor, pdev->subsystem_device);
5243
5244 if (card) {
5245 spin_lock_irqsave(&HFClock, flags);
5246 release_card(card);
5247 spin_unlock_irqrestore(&HFClock, flags);
5248 } else {
5249 if (debug)
5250 printk(KERN_DEBUG "%s: drvdata already removed\n",
5251 __func__);
5252 }
5253 }
5254
5255 #define VENDOR_CCD "Cologne Chip AG"
5256 #define VENDOR_BN "beroNet GmbH"
5257 #define VENDOR_DIG "Digium Inc."
5258 #define VENDOR_JH "Junghanns.NET GmbH"
5259 #define VENDOR_PRIM "PrimuX"
5260
5261 static const struct hm_map hfcm_map[] = {
5262 /*0*/ {VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0, 0},
5263 /*1*/ {VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5264 /*2*/ {VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5265 /*3*/ {VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5266 /*4*/ {VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0, 0},
5267 /*5*/ {VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0, 0},
5268 /*6*/ {VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5269 /*7*/ {VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0, 0},
5270 /*8*/ {VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO, 0},
5271 /*9*/ {VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0, 0},
5272 /*10*/ {VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0, 0},
5273 /*11*/ {VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0, 0},
5274
5275 /*12*/ {VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0, 0},
5276 /*13*/ {VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S,
5277 HFC_IO_MODE_REGIO, 0},
5278 /*14*/ {VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0, 0},
5279 /*15*/ {VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0, 0},
5280
5281 /*16*/ {VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0, 0},
5282 /*17*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5283 /*18*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5284
5285 /*19*/ {VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5286 /*20*/ {VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0, 0},
5287 /*21*/ {VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5288 /*22*/ {VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5289
5290 /*23*/ {VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0, 0},
5291 /*24*/ {VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0, 0},
5292 /*25*/ {VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0, 0},
5293
5294 /*26*/ {VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5295 HFC_IO_MODE_PLXSD, 0},
5296 /*27*/ {VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5297 HFC_IO_MODE_PLXSD, 0},
5298 /*28*/ {VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0, 0},
5299 /*29*/ {VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0, 0},
5300 /*30*/ {VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0, 0},
5301 /*31*/ {VENDOR_CCD, "XHFC-4S Speech Design", 5, 4, 0, 0, 0, 0,
5302 HFC_IO_MODE_EMBSD, XHFC_IRQ},
5303 /*32*/ {VENDOR_JH, "HFC-8S (junghanns)", 8, 8, 1, 0, 0, 0, 0, 0},
5304 /*33*/ {VENDOR_BN, "HFC-2S Beronet Card PCIe", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5305 /*34*/ {VENDOR_BN, "HFC-4S Beronet Card PCIe", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5306 };
5307
5308 #undef H
5309 #define H(x) ((unsigned long)&hfcm_map[x])
5310 static const struct pci_device_id hfmultipci_ids[] = {
5311
5312 /* Cards with HFC-4S Chip */
5313 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5314 PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */
5315 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5316 PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */
5317 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5318 PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */
5319 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5320 PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */
5321 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5322 PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */
5323 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5324 PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */
5325 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5326 PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */
5327 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5328 PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */
5329 { PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S,
5330 PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)},
5331 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5332 PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */
5333 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5334 PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)},
5335 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5336 PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */
5337 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5338 PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */
5339 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5340 PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */
5341 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5342 0xb761, 0, 0, H(33)}, /* BN2S PCIe */
5343 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5344 0xb762, 0, 0, H(34)}, /* BN4S PCIe */
5345
5346 /* Cards with HFC-8S Chip */
5347 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5348 PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */
5349 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5350 PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */
5351 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5352 PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */
5353 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5354 PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */
5355 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5356 PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST */
5357 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5358 PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST */
5359 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5360 PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */
5361 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5362 PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */
5363 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5364 PCI_SUBDEVICE_ID_CCD_JH8S, 0, 0, H(32)}, /* Junganns 8S */
5365
5366
5367 /* Cards with HFC-E1 Chip */
5368 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5369 PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */
5370 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5371 PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */
5372 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5373 PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */
5374 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5375 PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */
5376
5377 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5378 PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */
5379 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5380 PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */
5381 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5382 PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */
5383
5384 { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5385 PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */
5386 { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5387 PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */
5388
5389 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5390 PCI_SUBDEVICE_ID_CCD_JHSE1, 0, 0, H(25)}, /* Junghanns E1 */
5391
5392 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC4S), 0 },
5393 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC8S), 0 },
5394 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFCE1), 0 },
5395 {0, }
5396 };
5397 #undef H
5398
5399 MODULE_DEVICE_TABLE(pci, hfmultipci_ids);
5400
5401 static int
hfcmulti_probe(struct pci_dev * pdev,const struct pci_device_id * ent)5402 hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5403 {
5404 struct hm_map *m = (struct hm_map *)ent->driver_data;
5405 int ret;
5406
5407 if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && (
5408 ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
5409 ent->device == PCI_DEVICE_ID_CCD_HFC8S ||
5410 ent->device == PCI_DEVICE_ID_CCD_HFCE1)) {
5411 printk(KERN_ERR
5412 "Unknown HFC multiport controller (vendor:%04x device:%04x "
5413 "subvendor:%04x subdevice:%04x)\n", pdev->vendor,
5414 pdev->device, pdev->subsystem_vendor,
5415 pdev->subsystem_device);
5416 printk(KERN_ERR
5417 "Please contact the driver maintainer for support.\n");
5418 return -ENODEV;
5419 }
5420 ret = hfcmulti_init(m, pdev, ent);
5421 if (ret)
5422 return ret;
5423 HFC_cnt++;
5424 printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5425 return 0;
5426 }
5427
5428 static struct pci_driver hfcmultipci_driver = {
5429 .name = "hfc_multi",
5430 .probe = hfcmulti_probe,
5431 .remove = hfc_remove_pci,
5432 .id_table = hfmultipci_ids,
5433 };
5434
5435 static void __exit
HFCmulti_cleanup(void)5436 HFCmulti_cleanup(void)
5437 {
5438 struct hfc_multi *card, *next;
5439
5440 /* get rid of all devices of this driver */
5441 list_for_each_entry_safe(card, next, &HFClist, list)
5442 release_card(card);
5443 pci_unregister_driver(&hfcmultipci_driver);
5444 }
5445
5446 static int __init
HFCmulti_init(void)5447 HFCmulti_init(void)
5448 {
5449 int err;
5450 int i, xhfc = 0;
5451 struct hm_map m;
5452
5453 printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION);
5454
5455 #ifdef IRQ_DEBUG
5456 printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__);
5457 #endif
5458
5459 if (debug & DEBUG_HFCMULTI_INIT)
5460 printk(KERN_DEBUG "%s: init entered\n", __func__);
5461
5462 switch (poll) {
5463 case 0:
5464 poll_timer = 6;
5465 poll = 128;
5466 break;
5467 case 8:
5468 poll_timer = 2;
5469 break;
5470 case 16:
5471 poll_timer = 3;
5472 break;
5473 case 32:
5474 poll_timer = 4;
5475 break;
5476 case 64:
5477 poll_timer = 5;
5478 break;
5479 case 128:
5480 poll_timer = 6;
5481 break;
5482 case 256:
5483 poll_timer = 7;
5484 break;
5485 default:
5486 printk(KERN_ERR
5487 "%s: Wrong poll value (%d).\n", __func__, poll);
5488 err = -EINVAL;
5489 return err;
5490
5491 }
5492
5493 if (!clock)
5494 clock = 1;
5495
5496 /* Register the embedded devices.
5497 * This should be done before the PCI cards registration */
5498 switch (hwid) {
5499 case HWID_MINIP4:
5500 xhfc = 1;
5501 m = hfcm_map[31];
5502 break;
5503 case HWID_MINIP8:
5504 xhfc = 2;
5505 m = hfcm_map[31];
5506 break;
5507 case HWID_MINIP16:
5508 xhfc = 4;
5509 m = hfcm_map[31];
5510 break;
5511 default:
5512 xhfc = 0;
5513 }
5514
5515 for (i = 0; i < xhfc; ++i) {
5516 err = hfcmulti_init(&m, NULL, NULL);
5517 if (err) {
5518 printk(KERN_ERR "error registering embedded driver: "
5519 "%x\n", err);
5520 return err;
5521 }
5522 HFC_cnt++;
5523 printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5524 }
5525
5526 /* Register the PCI cards */
5527 err = pci_register_driver(&hfcmultipci_driver);
5528 if (err < 0) {
5529 printk(KERN_ERR "error registering pci driver: %x\n", err);
5530 return err;
5531 }
5532
5533 return 0;
5534 }
5535
5536
5537 module_init(HFCmulti_init);
5538 module_exit(HFCmulti_cleanup);
5539