1 /*
2 * drivers/video/imsttfb.c -- frame buffer device for IMS TwinTurbo
3 *
4 * This file is derived from the powermac console "imstt" driver:
5 * Copyright (C) 1997 Sigurdur Asgeirsson
6 * With additional hacking by Jeffrey Kuskin (jsk@mojave.stanford.edu)
7 * Modified by Danilo Beuche 1998
8 * Some register values added by Damien Doligez, INRIA Rocquencourt
9 * Various cleanups by Paul Mundt (lethal@chaoticdreams.org)
10 *
11 * This file was written by Ryan Nielsen (ran@krazynet.com)
12 * Most of the frame buffer device stuff was copied from atyfb.c
13 *
14 * This file is subject to the terms and conditions of the GNU General Public
15 * License. See the file COPYING in the main directory of this archive for
16 * more details.
17 */
18
19 #include <linux/aperture.h>
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/mm.h>
25 #include <linux/vmalloc.h>
26 #include <linux/delay.h>
27 #include <linux/interrupt.h>
28 #include <linux/fb.h>
29 #include <linux/init.h>
30 #include <linux/pci.h>
31 #include <asm/io.h>
32 #include <linux/uaccess.h>
33
34 #if defined(CONFIG_PPC_PMAC)
35 #include <linux/nvram.h>
36 #include "macmodes.h"
37 #endif
38
39 #ifndef __powerpc__
40 #define eieio() /* Enforce In-order Execution of I/O */
41 #endif
42
43 /* TwinTurbo (Cosmo) registers */
44 enum {
45 S1SA = 0, /* 0x00 */
46 S2SA = 1, /* 0x04 */
47 SP = 2, /* 0x08 */
48 DSA = 3, /* 0x0C */
49 CNT = 4, /* 0x10 */
50 DP_OCTL = 5, /* 0x14 */
51 CLR = 6, /* 0x18 */
52 BI = 8, /* 0x20 */
53 MBC = 9, /* 0x24 */
54 BLTCTL = 10, /* 0x28 */
55
56 /* Scan Timing Generator Registers */
57 HES = 12, /* 0x30 */
58 HEB = 13, /* 0x34 */
59 HSB = 14, /* 0x38 */
60 HT = 15, /* 0x3C */
61 VES = 16, /* 0x40 */
62 VEB = 17, /* 0x44 */
63 VSB = 18, /* 0x48 */
64 VT = 19, /* 0x4C */
65 HCIV = 20, /* 0x50 */
66 VCIV = 21, /* 0x54 */
67 TCDR = 22, /* 0x58 */
68 VIL = 23, /* 0x5C */
69 STGCTL = 24, /* 0x60 */
70
71 /* Screen Refresh Generator Registers */
72 SSR = 25, /* 0x64 */
73 HRIR = 26, /* 0x68 */
74 SPR = 27, /* 0x6C */
75 CMR = 28, /* 0x70 */
76 SRGCTL = 29, /* 0x74 */
77
78 /* RAM Refresh Generator Registers */
79 RRCIV = 30, /* 0x78 */
80 RRSC = 31, /* 0x7C */
81 RRCR = 34, /* 0x88 */
82
83 /* System Registers */
84 GIOE = 32, /* 0x80 */
85 GIO = 33, /* 0x84 */
86 SCR = 35, /* 0x8C */
87 SSTATUS = 36, /* 0x90 */
88 PRC = 37, /* 0x94 */
89
90 #if 0
91 /* PCI Registers */
92 DVID = 0x00000000L,
93 SC = 0x00000004L,
94 CCR = 0x00000008L,
95 OG = 0x0000000CL,
96 BARM = 0x00000010L,
97 BARER = 0x00000030L,
98 #endif
99 };
100
101 /* IBM 624 RAMDAC Direct Registers */
102 enum {
103 PADDRW = 0x00,
104 PDATA = 0x04,
105 PPMASK = 0x08,
106 PADDRR = 0x0c,
107 PIDXLO = 0x10,
108 PIDXHI = 0x14,
109 PIDXDATA= 0x18,
110 PIDXCTL = 0x1c
111 };
112
113 /* IBM 624 RAMDAC Indirect Registers */
114 enum {
115 CLKCTL = 0x02, /* (0x01) Miscellaneous Clock Control */
116 SYNCCTL = 0x03, /* (0x00) Sync Control */
117 HSYNCPOS = 0x04, /* (0x00) Horizontal Sync Position */
118 PWRMNGMT = 0x05, /* (0x00) Power Management */
119 DACOP = 0x06, /* (0x02) DAC Operation */
120 PALETCTL = 0x07, /* (0x00) Palette Control */
121 SYSCLKCTL = 0x08, /* (0x01) System Clock Control */
122 PIXFMT = 0x0a, /* () Pixel Format [bpp >> 3 + 2] */
123 BPP8 = 0x0b, /* () 8 Bits/Pixel Control */
124 BPP16 = 0x0c, /* () 16 Bits/Pixel Control [bit 1=1 for 565] */
125 BPP24 = 0x0d, /* () 24 Bits/Pixel Control */
126 BPP32 = 0x0e, /* () 32 Bits/Pixel Control */
127 PIXCTL1 = 0x10, /* (0x05) Pixel PLL Control 1 */
128 PIXCTL2 = 0x11, /* (0x00) Pixel PLL Control 2 */
129 SYSCLKN = 0x15, /* () System Clock N (System PLL Reference Divider) */
130 SYSCLKM = 0x16, /* () System Clock M (System PLL VCO Divider) */
131 SYSCLKP = 0x17, /* () System Clock P */
132 SYSCLKC = 0x18, /* () System Clock C */
133 /*
134 * Dot clock rate is 20MHz * (m + 1) / ((n + 1) * (p ? 2 * p : 1)
135 * c is charge pump bias which depends on the VCO frequency
136 */
137 PIXM0 = 0x20, /* () Pixel M 0 */
138 PIXN0 = 0x21, /* () Pixel N 0 */
139 PIXP0 = 0x22, /* () Pixel P 0 */
140 PIXC0 = 0x23, /* () Pixel C 0 */
141 CURSCTL = 0x30, /* (0x00) Cursor Control */
142 CURSXLO = 0x31, /* () Cursor X position, low 8 bits */
143 CURSXHI = 0x32, /* () Cursor X position, high 8 bits */
144 CURSYLO = 0x33, /* () Cursor Y position, low 8 bits */
145 CURSYHI = 0x34, /* () Cursor Y position, high 8 bits */
146 CURSHOTX = 0x35, /* () Cursor Hot Spot X */
147 CURSHOTY = 0x36, /* () Cursor Hot Spot Y */
148 CURSACCTL = 0x37, /* () Advanced Cursor Control Enable */
149 CURSACATTR = 0x38, /* () Advanced Cursor Attribute */
150 CURS1R = 0x40, /* () Cursor 1 Red */
151 CURS1G = 0x41, /* () Cursor 1 Green */
152 CURS1B = 0x42, /* () Cursor 1 Blue */
153 CURS2R = 0x43, /* () Cursor 2 Red */
154 CURS2G = 0x44, /* () Cursor 2 Green */
155 CURS2B = 0x45, /* () Cursor 2 Blue */
156 CURS3R = 0x46, /* () Cursor 3 Red */
157 CURS3G = 0x47, /* () Cursor 3 Green */
158 CURS3B = 0x48, /* () Cursor 3 Blue */
159 BORDR = 0x60, /* () Border Color Red */
160 BORDG = 0x61, /* () Border Color Green */
161 BORDB = 0x62, /* () Border Color Blue */
162 MISCTL1 = 0x70, /* (0x00) Miscellaneous Control 1 */
163 MISCTL2 = 0x71, /* (0x00) Miscellaneous Control 2 */
164 MISCTL3 = 0x72, /* (0x00) Miscellaneous Control 3 */
165 KEYCTL = 0x78 /* (0x00) Key Control/DB Operation */
166 };
167
168 /* TI TVP 3030 RAMDAC Direct Registers */
169 enum {
170 TVPADDRW = 0x00, /* 0 Palette/Cursor RAM Write Address/Index */
171 TVPPDATA = 0x04, /* 1 Palette Data RAM Data */
172 TVPPMASK = 0x08, /* 2 Pixel Read-Mask */
173 TVPPADRR = 0x0c, /* 3 Palette/Cursor RAM Read Address */
174 TVPCADRW = 0x10, /* 4 Cursor/Overscan Color Write Address */
175 TVPCDATA = 0x14, /* 5 Cursor/Overscan Color Data */
176 /* 6 reserved */
177 TVPCADRR = 0x1c, /* 7 Cursor/Overscan Color Read Address */
178 /* 8 reserved */
179 TVPDCCTL = 0x24, /* 9 Direct Cursor Control */
180 TVPIDATA = 0x28, /* 10 Index Data */
181 TVPCRDAT = 0x2c, /* 11 Cursor RAM Data */
182 TVPCXPOL = 0x30, /* 12 Cursor-Position X LSB */
183 TVPCXPOH = 0x34, /* 13 Cursor-Position X MSB */
184 TVPCYPOL = 0x38, /* 14 Cursor-Position Y LSB */
185 TVPCYPOH = 0x3c, /* 15 Cursor-Position Y MSB */
186 };
187
188 /* TI TVP 3030 RAMDAC Indirect Registers */
189 enum {
190 TVPIRREV = 0x01, /* Silicon Revision [RO] */
191 TVPIRICC = 0x06, /* Indirect Cursor Control (0x00) */
192 TVPIRBRC = 0x07, /* Byte Router Control (0xe4) */
193 TVPIRLAC = 0x0f, /* Latch Control (0x06) */
194 TVPIRTCC = 0x18, /* True Color Control (0x80) */
195 TVPIRMXC = 0x19, /* Multiplex Control (0x98) */
196 TVPIRCLS = 0x1a, /* Clock Selection (0x07) */
197 TVPIRPPG = 0x1c, /* Palette Page (0x00) */
198 TVPIRGEC = 0x1d, /* General Control (0x00) */
199 TVPIRMIC = 0x1e, /* Miscellaneous Control (0x00) */
200 TVPIRPLA = 0x2c, /* PLL Address */
201 TVPIRPPD = 0x2d, /* Pixel Clock PLL Data */
202 TVPIRMPD = 0x2e, /* Memory Clock PLL Data */
203 TVPIRLPD = 0x2f, /* Loop Clock PLL Data */
204 TVPIRCKL = 0x30, /* Color-Key Overlay Low */
205 TVPIRCKH = 0x31, /* Color-Key Overlay High */
206 TVPIRCRL = 0x32, /* Color-Key Red Low */
207 TVPIRCRH = 0x33, /* Color-Key Red High */
208 TVPIRCGL = 0x34, /* Color-Key Green Low */
209 TVPIRCGH = 0x35, /* Color-Key Green High */
210 TVPIRCBL = 0x36, /* Color-Key Blue Low */
211 TVPIRCBH = 0x37, /* Color-Key Blue High */
212 TVPIRCKC = 0x38, /* Color-Key Control (0x00) */
213 TVPIRMLC = 0x39, /* MCLK/Loop Clock Control (0x18) */
214 TVPIRSEN = 0x3a, /* Sense Test (0x00) */
215 TVPIRTMD = 0x3b, /* Test Mode Data */
216 TVPIRRML = 0x3c, /* CRC Remainder LSB [RO] */
217 TVPIRRMM = 0x3d, /* CRC Remainder MSB [RO] */
218 TVPIRRMS = 0x3e, /* CRC Bit Select [WO] */
219 TVPIRDID = 0x3f, /* Device ID [RO] (0x30) */
220 TVPIRRES = 0xff /* Software Reset [WO] */
221 };
222
223 struct initvalues {
224 __u8 addr, value;
225 };
226
227 static struct initvalues ibm_initregs[] = {
228 { CLKCTL, 0x21 },
229 { SYNCCTL, 0x00 },
230 { HSYNCPOS, 0x00 },
231 { PWRMNGMT, 0x00 },
232 { DACOP, 0x02 },
233 { PALETCTL, 0x00 },
234 { SYSCLKCTL, 0x01 },
235
236 /*
237 * Note that colors in X are correct only if all video data is
238 * passed through the palette in the DAC. That is, "indirect
239 * color" must be configured. This is the case for the IBM DAC
240 * used in the 2MB and 4MB cards, at least.
241 */
242 { BPP8, 0x00 },
243 { BPP16, 0x01 },
244 { BPP24, 0x00 },
245 { BPP32, 0x00 },
246
247 { PIXCTL1, 0x05 },
248 { PIXCTL2, 0x00 },
249 { SYSCLKN, 0x08 },
250 { SYSCLKM, 0x4f },
251 { SYSCLKP, 0x00 },
252 { SYSCLKC, 0x00 },
253 { CURSCTL, 0x00 },
254 { CURSACCTL, 0x01 },
255 { CURSACATTR, 0xa8 },
256 { CURS1R, 0xff },
257 { CURS1G, 0xff },
258 { CURS1B, 0xff },
259 { CURS2R, 0xff },
260 { CURS2G, 0xff },
261 { CURS2B, 0xff },
262 { CURS3R, 0xff },
263 { CURS3G, 0xff },
264 { CURS3B, 0xff },
265 { BORDR, 0xff },
266 { BORDG, 0xff },
267 { BORDB, 0xff },
268 { MISCTL1, 0x01 },
269 { MISCTL2, 0x45 },
270 { MISCTL3, 0x00 },
271 { KEYCTL, 0x00 }
272 };
273
274 static struct initvalues tvp_initregs[] = {
275 { TVPIRICC, 0x00 },
276 { TVPIRBRC, 0xe4 },
277 { TVPIRLAC, 0x06 },
278 { TVPIRTCC, 0x80 },
279 { TVPIRMXC, 0x4d },
280 { TVPIRCLS, 0x05 },
281 { TVPIRPPG, 0x00 },
282 { TVPIRGEC, 0x00 },
283 { TVPIRMIC, 0x08 },
284 { TVPIRCKL, 0xff },
285 { TVPIRCKH, 0xff },
286 { TVPIRCRL, 0xff },
287 { TVPIRCRH, 0xff },
288 { TVPIRCGL, 0xff },
289 { TVPIRCGH, 0xff },
290 { TVPIRCBL, 0xff },
291 { TVPIRCBH, 0xff },
292 { TVPIRCKC, 0x00 },
293 { TVPIRPLA, 0x00 },
294 { TVPIRPPD, 0xc0 },
295 { TVPIRPPD, 0xd5 },
296 { TVPIRPPD, 0xea },
297 { TVPIRPLA, 0x00 },
298 { TVPIRMPD, 0xb9 },
299 { TVPIRMPD, 0x3a },
300 { TVPIRMPD, 0xb1 },
301 { TVPIRPLA, 0x00 },
302 { TVPIRLPD, 0xc1 },
303 { TVPIRLPD, 0x3d },
304 { TVPIRLPD, 0xf3 },
305 };
306
307 struct imstt_regvals {
308 __u32 pitch;
309 __u16 hes, heb, hsb, ht, ves, veb, vsb, vt, vil;
310 __u8 pclk_m, pclk_n, pclk_p;
311 /* Values of the tvp which change depending on colormode x resolution */
312 __u8 mlc[3]; /* Memory Loop Config 0x39 */
313 __u8 lckl_p[3]; /* P value of LCKL PLL */
314 };
315
316 struct imstt_par {
317 struct imstt_regvals init;
318 __u32 __iomem *dc_regs;
319 unsigned long cmap_regs_phys;
320 __u8 *cmap_regs;
321 __u32 ramdac;
322 __u32 palette[16];
323 };
324
325 enum {
326 IBM = 0,
327 TVP = 1
328 };
329
330 #define INIT_BPP 8
331 #define INIT_XRES 640
332 #define INIT_YRES 480
333
334 static int inverse = 0;
335 static char fontname[40] __initdata = { 0 };
336 #if defined(CONFIG_PPC_PMAC)
337 static signed char init_vmode = -1, init_cmode = -1;
338 #endif
339
340 static struct imstt_regvals tvp_reg_init_2 = {
341 512,
342 0x0002, 0x0006, 0x0026, 0x0028, 0x0003, 0x0016, 0x0196, 0x0197, 0x0196,
343 0xec, 0x2a, 0xf3,
344 { 0x3c, 0x3b, 0x39 }, { 0xf3, 0xf3, 0xf3 }
345 };
346
347 static struct imstt_regvals tvp_reg_init_6 = {
348 640,
349 0x0004, 0x0009, 0x0031, 0x0036, 0x0003, 0x002a, 0x020a, 0x020d, 0x020a,
350 0xef, 0x2e, 0xb2,
351 { 0x39, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
352 };
353
354 static struct imstt_regvals tvp_reg_init_12 = {
355 800,
356 0x0005, 0x000e, 0x0040, 0x0042, 0x0003, 0x018, 0x270, 0x271, 0x270,
357 0xf6, 0x2e, 0xf2,
358 { 0x3a, 0x39, 0x38 }, { 0xf3, 0xf3, 0xf3 }
359 };
360
361 static struct imstt_regvals tvp_reg_init_13 = {
362 832,
363 0x0004, 0x0011, 0x0045, 0x0048, 0x0003, 0x002a, 0x029a, 0x029b, 0x0000,
364 0xfe, 0x3e, 0xf1,
365 { 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
366 };
367
368 static struct imstt_regvals tvp_reg_init_17 = {
369 1024,
370 0x0006, 0x0210, 0x0250, 0x0053, 0x1003, 0x0021, 0x0321, 0x0324, 0x0000,
371 0xfc, 0x3a, 0xf1,
372 { 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
373 };
374
375 static struct imstt_regvals tvp_reg_init_18 = {
376 1152,
377 0x0009, 0x0011, 0x059, 0x5b, 0x0003, 0x0031, 0x0397, 0x039a, 0x0000,
378 0xfd, 0x3a, 0xf1,
379 { 0x39, 0x38, 0x38 }, { 0xf3, 0xf3, 0xf2 }
380 };
381
382 static struct imstt_regvals tvp_reg_init_19 = {
383 1280,
384 0x0009, 0x0016, 0x0066, 0x0069, 0x0003, 0x0027, 0x03e7, 0x03e8, 0x03e7,
385 0xf7, 0x36, 0xf0,
386 { 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
387 };
388
389 static struct imstt_regvals tvp_reg_init_20 = {
390 1280,
391 0x0009, 0x0018, 0x0068, 0x006a, 0x0003, 0x0029, 0x0429, 0x042a, 0x0000,
392 0xf0, 0x2d, 0xf0,
393 { 0x38, 0x38, 0x38 }, { 0xf3, 0xf2, 0xf1 }
394 };
395
396 /*
397 * PCI driver prototypes
398 */
399 static int imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
400 static void imsttfb_remove(struct pci_dev *pdev);
401
402 /*
403 * Register access
404 */
read_reg_le32(volatile u32 __iomem * base,int regindex)405 static inline u32 read_reg_le32(volatile u32 __iomem *base, int regindex)
406 {
407 #ifdef __powerpc__
408 return in_le32(base + regindex);
409 #else
410 return readl(base + regindex);
411 #endif
412 }
413
write_reg_le32(volatile u32 __iomem * base,int regindex,u32 val)414 static inline void write_reg_le32(volatile u32 __iomem *base, int regindex, u32 val)
415 {
416 #ifdef __powerpc__
417 out_le32(base + regindex, val);
418 #else
419 writel(val, base + regindex);
420 #endif
421 }
422
423 static __u32
getclkMHz(struct imstt_par * par)424 getclkMHz(struct imstt_par *par)
425 {
426 __u32 clk_m, clk_n, clk_p;
427
428 clk_m = par->init.pclk_m;
429 clk_n = par->init.pclk_n;
430 clk_p = par->init.pclk_p;
431
432 return 20 * (clk_m + 1) / ((clk_n + 1) * (clk_p ? 2 * clk_p : 1));
433 }
434
435 static void
setclkMHz(struct imstt_par * par,__u32 MHz)436 setclkMHz(struct imstt_par *par, __u32 MHz)
437 {
438 __u32 clk_m, clk_n, x, stage, spilled;
439
440 clk_m = clk_n = 0;
441 stage = spilled = 0;
442 for (;;) {
443 switch (stage) {
444 case 0:
445 clk_m++;
446 break;
447 case 1:
448 clk_n++;
449 break;
450 }
451 x = 20 * (clk_m + 1) / (clk_n + 1);
452 if (x == MHz)
453 break;
454 if (x > MHz) {
455 spilled = 1;
456 stage = 1;
457 } else if (spilled && x < MHz) {
458 stage = 0;
459 }
460 }
461
462 par->init.pclk_m = clk_m;
463 par->init.pclk_n = clk_n;
464 par->init.pclk_p = 0;
465 }
466
467 static struct imstt_regvals *
compute_imstt_regvals_ibm(struct imstt_par * par,int xres,int yres)468 compute_imstt_regvals_ibm(struct imstt_par *par, int xres, int yres)
469 {
470 struct imstt_regvals *init = &par->init;
471 __u32 MHz, hes, heb, veb, htp, vtp;
472
473 switch (xres) {
474 case 640:
475 hes = 0x0008; heb = 0x0012; veb = 0x002a; htp = 10; vtp = 2;
476 MHz = 30 /* .25 */ ;
477 break;
478 case 832:
479 hes = 0x0005; heb = 0x0020; veb = 0x0028; htp = 8; vtp = 3;
480 MHz = 57 /* .27_ */ ;
481 break;
482 case 1024:
483 hes = 0x000a; heb = 0x001c; veb = 0x0020; htp = 8; vtp = 3;
484 MHz = 80;
485 break;
486 case 1152:
487 hes = 0x0012; heb = 0x0022; veb = 0x0031; htp = 4; vtp = 3;
488 MHz = 101 /* .6_ */ ;
489 break;
490 case 1280:
491 hes = 0x0012; heb = 0x002f; veb = 0x0029; htp = 4; vtp = 1;
492 MHz = yres == 960 ? 126 : 135;
493 break;
494 case 1600:
495 hes = 0x0018; heb = 0x0040; veb = 0x002a; htp = 4; vtp = 3;
496 MHz = 200;
497 break;
498 default:
499 return NULL;
500 }
501
502 setclkMHz(par, MHz);
503
504 init->hes = hes;
505 init->heb = heb;
506 init->hsb = init->heb + (xres >> 3);
507 init->ht = init->hsb + htp;
508 init->ves = 0x0003;
509 init->veb = veb;
510 init->vsb = init->veb + yres;
511 init->vt = init->vsb + vtp;
512 init->vil = init->vsb;
513
514 init->pitch = xres;
515 return init;
516 }
517
518 static struct imstt_regvals *
compute_imstt_regvals_tvp(struct imstt_par * par,int xres,int yres)519 compute_imstt_regvals_tvp(struct imstt_par *par, int xres, int yres)
520 {
521 struct imstt_regvals *init;
522
523 switch (xres) {
524 case 512:
525 init = &tvp_reg_init_2;
526 break;
527 case 640:
528 init = &tvp_reg_init_6;
529 break;
530 case 800:
531 init = &tvp_reg_init_12;
532 break;
533 case 832:
534 init = &tvp_reg_init_13;
535 break;
536 case 1024:
537 init = &tvp_reg_init_17;
538 break;
539 case 1152:
540 init = &tvp_reg_init_18;
541 break;
542 case 1280:
543 init = yres == 960 ? &tvp_reg_init_19 : &tvp_reg_init_20;
544 break;
545 default:
546 return NULL;
547 }
548 par->init = *init;
549 return init;
550 }
551
552 static struct imstt_regvals *
compute_imstt_regvals(struct imstt_par * par,u_int xres,u_int yres)553 compute_imstt_regvals (struct imstt_par *par, u_int xres, u_int yres)
554 {
555 if (par->ramdac == IBM)
556 return compute_imstt_regvals_ibm(par, xres, yres);
557 else
558 return compute_imstt_regvals_tvp(par, xres, yres);
559 }
560
561 static void
set_imstt_regvals_ibm(struct imstt_par * par,u_int bpp)562 set_imstt_regvals_ibm (struct imstt_par *par, u_int bpp)
563 {
564 struct imstt_regvals *init = &par->init;
565 __u8 pformat = (bpp >> 3) + 2;
566
567 par->cmap_regs[PIDXHI] = 0; eieio();
568 par->cmap_regs[PIDXLO] = PIXM0; eieio();
569 par->cmap_regs[PIDXDATA] = init->pclk_m;eieio();
570 par->cmap_regs[PIDXLO] = PIXN0; eieio();
571 par->cmap_regs[PIDXDATA] = init->pclk_n;eieio();
572 par->cmap_regs[PIDXLO] = PIXP0; eieio();
573 par->cmap_regs[PIDXDATA] = init->pclk_p;eieio();
574 par->cmap_regs[PIDXLO] = PIXC0; eieio();
575 par->cmap_regs[PIDXDATA] = 0x02; eieio();
576
577 par->cmap_regs[PIDXLO] = PIXFMT; eieio();
578 par->cmap_regs[PIDXDATA] = pformat; eieio();
579 }
580
581 static void
set_imstt_regvals_tvp(struct imstt_par * par,u_int bpp)582 set_imstt_regvals_tvp (struct imstt_par *par, u_int bpp)
583 {
584 struct imstt_regvals *init = &par->init;
585 __u8 tcc, mxc, lckl_n, mic;
586 __u8 mlc, lckl_p;
587
588 switch (bpp) {
589 default:
590 case 8:
591 tcc = 0x80;
592 mxc = 0x4d;
593 lckl_n = 0xc1;
594 mlc = init->mlc[0];
595 lckl_p = init->lckl_p[0];
596 break;
597 case 16:
598 tcc = 0x44;
599 mxc = 0x55;
600 lckl_n = 0xe1;
601 mlc = init->mlc[1];
602 lckl_p = init->lckl_p[1];
603 break;
604 case 24:
605 tcc = 0x5e;
606 mxc = 0x5d;
607 lckl_n = 0xf1;
608 mlc = init->mlc[2];
609 lckl_p = init->lckl_p[2];
610 break;
611 case 32:
612 tcc = 0x46;
613 mxc = 0x5d;
614 lckl_n = 0xf1;
615 mlc = init->mlc[2];
616 lckl_p = init->lckl_p[2];
617 break;
618 }
619 mic = 0x08;
620
621 par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
622 par->cmap_regs[TVPIDATA] = 0x00; eieio();
623 par->cmap_regs[TVPADDRW] = TVPIRPPD; eieio();
624 par->cmap_regs[TVPIDATA] = init->pclk_m; eieio();
625 par->cmap_regs[TVPADDRW] = TVPIRPPD; eieio();
626 par->cmap_regs[TVPIDATA] = init->pclk_n; eieio();
627 par->cmap_regs[TVPADDRW] = TVPIRPPD; eieio();
628 par->cmap_regs[TVPIDATA] = init->pclk_p; eieio();
629
630 par->cmap_regs[TVPADDRW] = TVPIRTCC; eieio();
631 par->cmap_regs[TVPIDATA] = tcc; eieio();
632 par->cmap_regs[TVPADDRW] = TVPIRMXC; eieio();
633 par->cmap_regs[TVPIDATA] = mxc; eieio();
634 par->cmap_regs[TVPADDRW] = TVPIRMIC; eieio();
635 par->cmap_regs[TVPIDATA] = mic; eieio();
636
637 par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
638 par->cmap_regs[TVPIDATA] = 0x00; eieio();
639 par->cmap_regs[TVPADDRW] = TVPIRLPD; eieio();
640 par->cmap_regs[TVPIDATA] = lckl_n; eieio();
641
642 par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
643 par->cmap_regs[TVPIDATA] = 0x15; eieio();
644 par->cmap_regs[TVPADDRW] = TVPIRMLC; eieio();
645 par->cmap_regs[TVPIDATA] = mlc; eieio();
646
647 par->cmap_regs[TVPADDRW] = TVPIRPLA; eieio();
648 par->cmap_regs[TVPIDATA] = 0x2a; eieio();
649 par->cmap_regs[TVPADDRW] = TVPIRLPD; eieio();
650 par->cmap_regs[TVPIDATA] = lckl_p; eieio();
651 }
652
653 static void
set_imstt_regvals(struct fb_info * info,u_int bpp)654 set_imstt_regvals (struct fb_info *info, u_int bpp)
655 {
656 struct imstt_par *par = info->par;
657 struct imstt_regvals *init = &par->init;
658 __u32 ctl, pitch, byteswap, scr;
659
660 if (par->ramdac == IBM)
661 set_imstt_regvals_ibm(par, bpp);
662 else
663 set_imstt_regvals_tvp(par, bpp);
664
665 /*
666 * From what I (jsk) can gather poking around with MacsBug,
667 * bits 8 and 9 in the SCR register control endianness
668 * correction (byte swapping). These bits must be set according
669 * to the color depth as follows:
670 * Color depth Bit 9 Bit 8
671 * ========== ===== =====
672 * 8bpp 0 0
673 * 16bpp 0 1
674 * 32bpp 1 1
675 */
676 switch (bpp) {
677 default:
678 case 8:
679 ctl = 0x17b1;
680 pitch = init->pitch >> 2;
681 byteswap = 0x000;
682 break;
683 case 16:
684 ctl = 0x17b3;
685 pitch = init->pitch >> 1;
686 byteswap = 0x100;
687 break;
688 case 24:
689 ctl = 0x17b9;
690 pitch = init->pitch - (init->pitch >> 2);
691 byteswap = 0x200;
692 break;
693 case 32:
694 ctl = 0x17b5;
695 pitch = init->pitch;
696 byteswap = 0x300;
697 break;
698 }
699 if (par->ramdac == TVP)
700 ctl -= 0x30;
701
702 write_reg_le32(par->dc_regs, HES, init->hes);
703 write_reg_le32(par->dc_regs, HEB, init->heb);
704 write_reg_le32(par->dc_regs, HSB, init->hsb);
705 write_reg_le32(par->dc_regs, HT, init->ht);
706 write_reg_le32(par->dc_regs, VES, init->ves);
707 write_reg_le32(par->dc_regs, VEB, init->veb);
708 write_reg_le32(par->dc_regs, VSB, init->vsb);
709 write_reg_le32(par->dc_regs, VT, init->vt);
710 write_reg_le32(par->dc_regs, VIL, init->vil);
711 write_reg_le32(par->dc_regs, HCIV, 1);
712 write_reg_le32(par->dc_regs, VCIV, 1);
713 write_reg_le32(par->dc_regs, TCDR, 4);
714 write_reg_le32(par->dc_regs, RRCIV, 1);
715 write_reg_le32(par->dc_regs, RRSC, 0x980);
716 write_reg_le32(par->dc_regs, RRCR, 0x11);
717
718 if (par->ramdac == IBM) {
719 write_reg_le32(par->dc_regs, HRIR, 0x0100);
720 write_reg_le32(par->dc_regs, CMR, 0x00ff);
721 write_reg_le32(par->dc_regs, SRGCTL, 0x0073);
722 } else {
723 write_reg_le32(par->dc_regs, HRIR, 0x0200);
724 write_reg_le32(par->dc_regs, CMR, 0x01ff);
725 write_reg_le32(par->dc_regs, SRGCTL, 0x0003);
726 }
727
728 switch (info->fix.smem_len) {
729 case 0x200000:
730 scr = 0x059d | byteswap;
731 break;
732 /* case 0x400000:
733 case 0x800000: */
734 default:
735 pitch >>= 1;
736 scr = 0x150dd | byteswap;
737 break;
738 }
739
740 write_reg_le32(par->dc_regs, SCR, scr);
741 write_reg_le32(par->dc_regs, SPR, pitch);
742 write_reg_le32(par->dc_regs, STGCTL, ctl);
743 }
744
745 static inline void
set_offset(struct fb_var_screeninfo * var,struct fb_info * info)746 set_offset (struct fb_var_screeninfo *var, struct fb_info *info)
747 {
748 struct imstt_par *par = info->par;
749 __u32 off = var->yoffset * (info->fix.line_length >> 3)
750 + ((var->xoffset * (info->var.bits_per_pixel >> 3)) >> 3);
751 write_reg_le32(par->dc_regs, SSR, off);
752 }
753
754 static inline void
set_555(struct imstt_par * par)755 set_555 (struct imstt_par *par)
756 {
757 if (par->ramdac == IBM) {
758 par->cmap_regs[PIDXHI] = 0; eieio();
759 par->cmap_regs[PIDXLO] = BPP16; eieio();
760 par->cmap_regs[PIDXDATA] = 0x01; eieio();
761 } else {
762 par->cmap_regs[TVPADDRW] = TVPIRTCC; eieio();
763 par->cmap_regs[TVPIDATA] = 0x44; eieio();
764 }
765 }
766
767 static inline void
set_565(struct imstt_par * par)768 set_565 (struct imstt_par *par)
769 {
770 if (par->ramdac == IBM) {
771 par->cmap_regs[PIDXHI] = 0; eieio();
772 par->cmap_regs[PIDXLO] = BPP16; eieio();
773 par->cmap_regs[PIDXDATA] = 0x03; eieio();
774 } else {
775 par->cmap_regs[TVPADDRW] = TVPIRTCC; eieio();
776 par->cmap_regs[TVPIDATA] = 0x45; eieio();
777 }
778 }
779
780 static int
imsttfb_check_var(struct fb_var_screeninfo * var,struct fb_info * info)781 imsttfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
782 {
783 if ((var->bits_per_pixel != 8 && var->bits_per_pixel != 16
784 && var->bits_per_pixel != 24 && var->bits_per_pixel != 32)
785 || var->xres_virtual < var->xres || var->yres_virtual < var->yres
786 || var->nonstd
787 || (var->vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
788 return -EINVAL;
789
790 if ((var->xres * var->yres) * (var->bits_per_pixel >> 3) > info->fix.smem_len
791 || (var->xres_virtual * var->yres_virtual) * (var->bits_per_pixel >> 3) > info->fix.smem_len)
792 return -EINVAL;
793
794 switch (var->bits_per_pixel) {
795 case 8:
796 var->red.offset = 0;
797 var->red.length = 8;
798 var->green.offset = 0;
799 var->green.length = 8;
800 var->blue.offset = 0;
801 var->blue.length = 8;
802 var->transp.offset = 0;
803 var->transp.length = 0;
804 break;
805 case 16: /* RGB 555 or 565 */
806 if (var->green.length != 6)
807 var->red.offset = 10;
808 var->red.length = 5;
809 var->green.offset = 5;
810 if (var->green.length != 6)
811 var->green.length = 5;
812 var->blue.offset = 0;
813 var->blue.length = 5;
814 var->transp.offset = 0;
815 var->transp.length = 0;
816 break;
817 case 24: /* RGB 888 */
818 var->red.offset = 16;
819 var->red.length = 8;
820 var->green.offset = 8;
821 var->green.length = 8;
822 var->blue.offset = 0;
823 var->blue.length = 8;
824 var->transp.offset = 0;
825 var->transp.length = 0;
826 break;
827 case 32: /* RGBA 8888 */
828 var->red.offset = 16;
829 var->red.length = 8;
830 var->green.offset = 8;
831 var->green.length = 8;
832 var->blue.offset = 0;
833 var->blue.length = 8;
834 var->transp.offset = 24;
835 var->transp.length = 8;
836 break;
837 }
838
839 if (var->yres == var->yres_virtual) {
840 __u32 vram = (info->fix.smem_len - (PAGE_SIZE << 2));
841 var->yres_virtual = ((vram << 3) / var->bits_per_pixel) / var->xres_virtual;
842 if (var->yres_virtual < var->yres)
843 var->yres_virtual = var->yres;
844 }
845
846 var->red.msb_right = 0;
847 var->green.msb_right = 0;
848 var->blue.msb_right = 0;
849 var->transp.msb_right = 0;
850 var->height = -1;
851 var->width = -1;
852 var->vmode = FB_VMODE_NONINTERLACED;
853 var->left_margin = var->right_margin = 16;
854 var->upper_margin = var->lower_margin = 16;
855 var->hsync_len = var->vsync_len = 8;
856 return 0;
857 }
858
859 static int
imsttfb_set_par(struct fb_info * info)860 imsttfb_set_par(struct fb_info *info)
861 {
862 struct imstt_par *par = info->par;
863
864 if (!compute_imstt_regvals(par, info->var.xres, info->var.yres))
865 return -EINVAL;
866
867 if (info->var.green.length == 6)
868 set_565(par);
869 else
870 set_555(par);
871 set_imstt_regvals(info, info->var.bits_per_pixel);
872 info->var.pixclock = 1000000 / getclkMHz(par);
873 return 0;
874 }
875
876 static int
imsttfb_setcolreg(u_int regno,u_int red,u_int green,u_int blue,u_int transp,struct fb_info * info)877 imsttfb_setcolreg (u_int regno, u_int red, u_int green, u_int blue,
878 u_int transp, struct fb_info *info)
879 {
880 struct imstt_par *par = info->par;
881 u_int bpp = info->var.bits_per_pixel;
882
883 if (regno > 255)
884 return 1;
885
886 red >>= 8;
887 green >>= 8;
888 blue >>= 8;
889
890 /* PADDRW/PDATA are the same as TVPPADDRW/TVPPDATA */
891 if (0 && bpp == 16) /* screws up X */
892 par->cmap_regs[PADDRW] = regno << 3;
893 else
894 par->cmap_regs[PADDRW] = regno;
895 eieio();
896
897 par->cmap_regs[PDATA] = red; eieio();
898 par->cmap_regs[PDATA] = green; eieio();
899 par->cmap_regs[PDATA] = blue; eieio();
900
901 if (regno < 16)
902 switch (bpp) {
903 case 16:
904 par->palette[regno] =
905 (regno << (info->var.green.length ==
906 5 ? 10 : 11)) | (regno << 5) | regno;
907 break;
908 case 24:
909 par->palette[regno] =
910 (regno << 16) | (regno << 8) | regno;
911 break;
912 case 32: {
913 int i = (regno << 8) | regno;
914 par->palette[regno] = (i << 16) |i;
915 break;
916 }
917 }
918 return 0;
919 }
920
921 static int
imsttfb_pan_display(struct fb_var_screeninfo * var,struct fb_info * info)922 imsttfb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
923 {
924 if (var->xoffset + info->var.xres > info->var.xres_virtual
925 || var->yoffset + info->var.yres > info->var.yres_virtual)
926 return -EINVAL;
927
928 info->var.xoffset = var->xoffset;
929 info->var.yoffset = var->yoffset;
930 set_offset(var, info);
931 return 0;
932 }
933
934 static int
imsttfb_blank(int blank,struct fb_info * info)935 imsttfb_blank(int blank, struct fb_info *info)
936 {
937 struct imstt_par *par = info->par;
938 __u32 ctrl;
939
940 ctrl = read_reg_le32(par->dc_regs, STGCTL);
941 if (blank > 0) {
942 switch (blank) {
943 case FB_BLANK_NORMAL:
944 case FB_BLANK_POWERDOWN:
945 ctrl &= ~0x00000380;
946 if (par->ramdac == IBM) {
947 par->cmap_regs[PIDXHI] = 0; eieio();
948 par->cmap_regs[PIDXLO] = MISCTL2; eieio();
949 par->cmap_regs[PIDXDATA] = 0x55; eieio();
950 par->cmap_regs[PIDXLO] = MISCTL1; eieio();
951 par->cmap_regs[PIDXDATA] = 0x11; eieio();
952 par->cmap_regs[PIDXLO] = SYNCCTL; eieio();
953 par->cmap_regs[PIDXDATA] = 0x0f; eieio();
954 par->cmap_regs[PIDXLO] = PWRMNGMT; eieio();
955 par->cmap_regs[PIDXDATA] = 0x1f; eieio();
956 par->cmap_regs[PIDXLO] = CLKCTL; eieio();
957 par->cmap_regs[PIDXDATA] = 0xc0;
958 }
959 break;
960 case FB_BLANK_VSYNC_SUSPEND:
961 ctrl &= ~0x00000020;
962 break;
963 case FB_BLANK_HSYNC_SUSPEND:
964 ctrl &= ~0x00000010;
965 break;
966 }
967 } else {
968 if (par->ramdac == IBM) {
969 ctrl |= 0x000017b0;
970 par->cmap_regs[PIDXHI] = 0; eieio();
971 par->cmap_regs[PIDXLO] = CLKCTL; eieio();
972 par->cmap_regs[PIDXDATA] = 0x01; eieio();
973 par->cmap_regs[PIDXLO] = PWRMNGMT; eieio();
974 par->cmap_regs[PIDXDATA] = 0x00; eieio();
975 par->cmap_regs[PIDXLO] = SYNCCTL; eieio();
976 par->cmap_regs[PIDXDATA] = 0x00; eieio();
977 par->cmap_regs[PIDXLO] = MISCTL1; eieio();
978 par->cmap_regs[PIDXDATA] = 0x01; eieio();
979 par->cmap_regs[PIDXLO] = MISCTL2; eieio();
980 par->cmap_regs[PIDXDATA] = 0x45; eieio();
981 } else
982 ctrl |= 0x00001780;
983 }
984 write_reg_le32(par->dc_regs, STGCTL, ctrl);
985 return 0;
986 }
987
988 static void
imsttfb_fillrect(struct fb_info * info,const struct fb_fillrect * rect)989 imsttfb_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
990 {
991 struct imstt_par *par = info->par;
992 __u32 Bpp, line_pitch, bgc, dx, dy, width, height;
993
994 bgc = rect->color;
995 bgc |= (bgc << 8);
996 bgc |= (bgc << 16);
997
998 Bpp = info->var.bits_per_pixel >> 3,
999 line_pitch = info->fix.line_length;
1000
1001 dy = rect->dy * line_pitch;
1002 dx = rect->dx * Bpp;
1003 height = rect->height;
1004 height--;
1005 width = rect->width * Bpp;
1006 width--;
1007
1008 if (rect->rop == ROP_COPY) {
1009 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1010 write_reg_le32(par->dc_regs, DSA, dy + dx);
1011 write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
1012 write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
1013 write_reg_le32(par->dc_regs, BI, 0xffffffff);
1014 write_reg_le32(par->dc_regs, MBC, 0xffffffff);
1015 write_reg_le32(par->dc_regs, CLR, bgc);
1016 write_reg_le32(par->dc_regs, BLTCTL, 0x840); /* 0x200000 */
1017 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1018 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1019 } else {
1020 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1021 write_reg_le32(par->dc_regs, DSA, dy + dx);
1022 write_reg_le32(par->dc_regs, S1SA, dy + dx);
1023 write_reg_le32(par->dc_regs, CNT, (height << 16) | width);
1024 write_reg_le32(par->dc_regs, DP_OCTL, line_pitch);
1025 write_reg_le32(par->dc_regs, SP, line_pitch);
1026 write_reg_le32(par->dc_regs, BLTCTL, 0x40005);
1027 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1028 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1029 }
1030 }
1031
1032 static void
imsttfb_copyarea(struct fb_info * info,const struct fb_copyarea * area)1033 imsttfb_copyarea(struct fb_info *info, const struct fb_copyarea *area)
1034 {
1035 struct imstt_par *par = info->par;
1036 __u32 Bpp, line_pitch, fb_offset_old, fb_offset_new, sp, dp_octl;
1037 __u32 cnt, bltctl, sx, sy, dx, dy, height, width;
1038
1039 Bpp = info->var.bits_per_pixel >> 3,
1040
1041 sx = area->sx * Bpp;
1042 sy = area->sy;
1043 dx = area->dx * Bpp;
1044 dy = area->dy;
1045 height = area->height;
1046 height--;
1047 width = area->width * Bpp;
1048 width--;
1049
1050 line_pitch = info->fix.line_length;
1051 bltctl = 0x05;
1052 sp = line_pitch << 16;
1053 cnt = height << 16;
1054
1055 if (sy < dy) {
1056 sy += height;
1057 dy += height;
1058 sp |= -(line_pitch) & 0xffff;
1059 dp_octl = -(line_pitch) & 0xffff;
1060 } else {
1061 sp |= line_pitch;
1062 dp_octl = line_pitch;
1063 }
1064 if (sx < dx) {
1065 sx += width;
1066 dx += width;
1067 bltctl |= 0x80;
1068 cnt |= -(width) & 0xffff;
1069 } else {
1070 cnt |= width;
1071 }
1072 fb_offset_old = sy * line_pitch + sx;
1073 fb_offset_new = dy * line_pitch + dx;
1074
1075 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1076 write_reg_le32(par->dc_regs, S1SA, fb_offset_old);
1077 write_reg_le32(par->dc_regs, SP, sp);
1078 write_reg_le32(par->dc_regs, DSA, fb_offset_new);
1079 write_reg_le32(par->dc_regs, CNT, cnt);
1080 write_reg_le32(par->dc_regs, DP_OCTL, dp_octl);
1081 write_reg_le32(par->dc_regs, BLTCTL, bltctl);
1082 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x80);
1083 while(read_reg_le32(par->dc_regs, SSTATUS) & 0x40);
1084 }
1085
1086 #if 0
1087 static int
1088 imsttfb_load_cursor_image(struct imstt_par *par, int width, int height, __u8 fgc)
1089 {
1090 u_int x, y;
1091
1092 if (width > 32 || height > 32)
1093 return -EINVAL;
1094
1095 if (par->ramdac == IBM) {
1096 par->cmap_regs[PIDXHI] = 1; eieio();
1097 for (x = 0; x < 0x100; x++) {
1098 par->cmap_regs[PIDXLO] = x; eieio();
1099 par->cmap_regs[PIDXDATA] = 0x00; eieio();
1100 }
1101 par->cmap_regs[PIDXHI] = 1; eieio();
1102 for (y = 0; y < height; y++)
1103 for (x = 0; x < width >> 2; x++) {
1104 par->cmap_regs[PIDXLO] = x + y * 8; eieio();
1105 par->cmap_regs[PIDXDATA] = 0xff; eieio();
1106 }
1107 par->cmap_regs[PIDXHI] = 0; eieio();
1108 par->cmap_regs[PIDXLO] = CURS1R; eieio();
1109 par->cmap_regs[PIDXDATA] = fgc; eieio();
1110 par->cmap_regs[PIDXLO] = CURS1G; eieio();
1111 par->cmap_regs[PIDXDATA] = fgc; eieio();
1112 par->cmap_regs[PIDXLO] = CURS1B; eieio();
1113 par->cmap_regs[PIDXDATA] = fgc; eieio();
1114 par->cmap_regs[PIDXLO] = CURS2R; eieio();
1115 par->cmap_regs[PIDXDATA] = fgc; eieio();
1116 par->cmap_regs[PIDXLO] = CURS2G; eieio();
1117 par->cmap_regs[PIDXDATA] = fgc; eieio();
1118 par->cmap_regs[PIDXLO] = CURS2B; eieio();
1119 par->cmap_regs[PIDXDATA] = fgc; eieio();
1120 par->cmap_regs[PIDXLO] = CURS3R; eieio();
1121 par->cmap_regs[PIDXDATA] = fgc; eieio();
1122 par->cmap_regs[PIDXLO] = CURS3G; eieio();
1123 par->cmap_regs[PIDXDATA] = fgc; eieio();
1124 par->cmap_regs[PIDXLO] = CURS3B; eieio();
1125 par->cmap_regs[PIDXDATA] = fgc; eieio();
1126 } else {
1127 par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
1128 par->cmap_regs[TVPIDATA] &= 0x03; eieio();
1129 par->cmap_regs[TVPADDRW] = 0; eieio();
1130 for (x = 0; x < 0x200; x++) {
1131 par->cmap_regs[TVPCRDAT] = 0x00; eieio();
1132 }
1133 for (x = 0; x < 0x200; x++) {
1134 par->cmap_regs[TVPCRDAT] = 0xff; eieio();
1135 }
1136 par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
1137 par->cmap_regs[TVPIDATA] &= 0x03; eieio();
1138 for (y = 0; y < height; y++)
1139 for (x = 0; x < width >> 3; x++) {
1140 par->cmap_regs[TVPADDRW] = x + y * 8; eieio();
1141 par->cmap_regs[TVPCRDAT] = 0xff; eieio();
1142 }
1143 par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
1144 par->cmap_regs[TVPIDATA] |= 0x08; eieio();
1145 for (y = 0; y < height; y++)
1146 for (x = 0; x < width >> 3; x++) {
1147 par->cmap_regs[TVPADDRW] = x + y * 8; eieio();
1148 par->cmap_regs[TVPCRDAT] = 0xff; eieio();
1149 }
1150 par->cmap_regs[TVPCADRW] = 0x00; eieio();
1151 for (x = 0; x < 12; x++) {
1152 par->cmap_regs[TVPCDATA] = fgc;
1153 eieio();
1154 }
1155 }
1156 return 1;
1157 }
1158
1159 static void
1160 imstt_set_cursor(struct imstt_par *par, struct fb_image *d, int on)
1161 {
1162 if (par->ramdac == IBM) {
1163 par->cmap_regs[PIDXHI] = 0; eieio();
1164 if (!on) {
1165 par->cmap_regs[PIDXLO] = CURSCTL; eieio();
1166 par->cmap_regs[PIDXDATA] = 0x00; eieio();
1167 } else {
1168 par->cmap_regs[PIDXLO] = CURSXHI; eieio();
1169 par->cmap_regs[PIDXDATA] = d->dx >> 8; eieio();
1170 par->cmap_regs[PIDXLO] = CURSXLO; eieio();
1171 par->cmap_regs[PIDXDATA] = d->dx & 0xff;eieio();
1172 par->cmap_regs[PIDXLO] = CURSYHI; eieio();
1173 par->cmap_regs[PIDXDATA] = d->dy >> 8; eieio();
1174 par->cmap_regs[PIDXLO] = CURSYLO; eieio();
1175 par->cmap_regs[PIDXDATA] = d->dy & 0xff;eieio();
1176 par->cmap_regs[PIDXLO] = CURSCTL; eieio();
1177 par->cmap_regs[PIDXDATA] = 0x02; eieio();
1178 }
1179 } else {
1180 if (!on) {
1181 par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
1182 par->cmap_regs[TVPIDATA] = 0x00; eieio();
1183 } else {
1184 __u16 x = d->dx + 0x40, y = d->dy + 0x40;
1185
1186 par->cmap_regs[TVPCXPOH] = x >> 8; eieio();
1187 par->cmap_regs[TVPCXPOL] = x & 0xff; eieio();
1188 par->cmap_regs[TVPCYPOH] = y >> 8; eieio();
1189 par->cmap_regs[TVPCYPOL] = y & 0xff; eieio();
1190 par->cmap_regs[TVPADDRW] = TVPIRICC; eieio();
1191 par->cmap_regs[TVPIDATA] = 0x02; eieio();
1192 }
1193 }
1194 }
1195
1196 static int
1197 imsttfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
1198 {
1199 struct imstt_par *par = info->par;
1200 u32 flags = cursor->set, fg, bg, xx, yy;
1201
1202 if (cursor->dest == NULL && cursor->rop == ROP_XOR)
1203 return 1;
1204
1205 imstt_set_cursor(info, cursor, 0);
1206
1207 if (flags & FB_CUR_SETPOS) {
1208 xx = cursor->image.dx - info->var.xoffset;
1209 yy = cursor->image.dy - info->var.yoffset;
1210 }
1211
1212 if (flags & FB_CUR_SETSIZE) {
1213 }
1214
1215 if (flags & (FB_CUR_SETSHAPE | FB_CUR_SETCMAP)) {
1216 int fg_idx = cursor->image.fg_color;
1217 int width = (cursor->image.width+7)/8;
1218 u8 *dat = (u8 *) cursor->image.data;
1219 u8 *dst = (u8 *) cursor->dest;
1220 u8 *msk = (u8 *) cursor->mask;
1221
1222 switch (cursor->rop) {
1223 case ROP_XOR:
1224 for (i = 0; i < cursor->image.height; i++) {
1225 for (j = 0; j < width; j++) {
1226 d_idx = i * MAX_CURS/8 + j;
1227 data[d_idx] = byte_rev[dat[s_idx] ^
1228 dst[s_idx]];
1229 mask[d_idx] = byte_rev[msk[s_idx]];
1230 s_idx++;
1231 }
1232 }
1233 break;
1234 case ROP_COPY:
1235 default:
1236 for (i = 0; i < cursor->image.height; i++) {
1237 for (j = 0; j < width; j++) {
1238 d_idx = i * MAX_CURS/8 + j;
1239 data[d_idx] = byte_rev[dat[s_idx]];
1240 mask[d_idx] = byte_rev[msk[s_idx]];
1241 s_idx++;
1242 }
1243 }
1244 break;
1245 }
1246
1247 fg = ((info->cmap.red[fg_idx] & 0xf8) << 7) |
1248 ((info->cmap.green[fg_idx] & 0xf8) << 2) |
1249 ((info->cmap.blue[fg_idx] & 0xf8) >> 3) | 1 << 15;
1250
1251 imsttfb_load_cursor_image(par, xx, yy, fgc);
1252 }
1253 if (cursor->enable)
1254 imstt_set_cursor(info, cursor, 1);
1255 return 0;
1256 }
1257 #endif
1258
1259 #define FBIMSTT_SETREG 0x545401
1260 #define FBIMSTT_GETREG 0x545402
1261 #define FBIMSTT_SETCMAPREG 0x545403
1262 #define FBIMSTT_GETCMAPREG 0x545404
1263 #define FBIMSTT_SETIDXREG 0x545405
1264 #define FBIMSTT_GETIDXREG 0x545406
1265
1266 static int
imsttfb_ioctl(struct fb_info * info,u_int cmd,u_long arg)1267 imsttfb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
1268 {
1269 struct imstt_par *par = info->par;
1270 void __user *argp = (void __user *)arg;
1271 __u32 reg[2];
1272 __u8 idx[2];
1273
1274 switch (cmd) {
1275 case FBIMSTT_SETREG:
1276 if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1277 return -EFAULT;
1278 write_reg_le32(par->dc_regs, reg[0], reg[1]);
1279 return 0;
1280 case FBIMSTT_GETREG:
1281 if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1282 return -EFAULT;
1283 reg[1] = read_reg_le32(par->dc_regs, reg[0]);
1284 if (copy_to_user((void __user *)(arg + 4), ®[1], 4))
1285 return -EFAULT;
1286 return 0;
1287 case FBIMSTT_SETCMAPREG:
1288 if (copy_from_user(reg, argp, 8) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1289 return -EFAULT;
1290 write_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0], reg[1]);
1291 return 0;
1292 case FBIMSTT_GETCMAPREG:
1293 if (copy_from_user(reg, argp, 4) || reg[0] > (0x1000 - sizeof(reg[0])) / sizeof(reg[0]))
1294 return -EFAULT;
1295 reg[1] = read_reg_le32(((u_int __iomem *)par->cmap_regs), reg[0]);
1296 if (copy_to_user((void __user *)(arg + 4), ®[1], 4))
1297 return -EFAULT;
1298 return 0;
1299 case FBIMSTT_SETIDXREG:
1300 if (copy_from_user(idx, argp, 2))
1301 return -EFAULT;
1302 par->cmap_regs[PIDXHI] = 0; eieio();
1303 par->cmap_regs[PIDXLO] = idx[0]; eieio();
1304 par->cmap_regs[PIDXDATA] = idx[1]; eieio();
1305 return 0;
1306 case FBIMSTT_GETIDXREG:
1307 if (copy_from_user(idx, argp, 1))
1308 return -EFAULT;
1309 par->cmap_regs[PIDXHI] = 0; eieio();
1310 par->cmap_regs[PIDXLO] = idx[0]; eieio();
1311 idx[1] = par->cmap_regs[PIDXDATA];
1312 if (copy_to_user((void __user *)(arg + 1), &idx[1], 1))
1313 return -EFAULT;
1314 return 0;
1315 default:
1316 return -ENOIOCTLCMD;
1317 }
1318 }
1319
1320 static const struct pci_device_id imsttfb_pci_tbl[] = {
1321 { PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT128,
1322 PCI_ANY_ID, PCI_ANY_ID, 0, 0, IBM },
1323 { PCI_VENDOR_ID_IMS, PCI_DEVICE_ID_IMS_TT3D,
1324 PCI_ANY_ID, PCI_ANY_ID, 0, 0, TVP },
1325 { 0, }
1326 };
1327
1328 MODULE_DEVICE_TABLE(pci, imsttfb_pci_tbl);
1329
1330 static struct pci_driver imsttfb_pci_driver = {
1331 .name = "imsttfb",
1332 .id_table = imsttfb_pci_tbl,
1333 .probe = imsttfb_probe,
1334 .remove = imsttfb_remove,
1335 };
1336
1337 static const struct fb_ops imsttfb_ops = {
1338 .owner = THIS_MODULE,
1339 .fb_check_var = imsttfb_check_var,
1340 .fb_set_par = imsttfb_set_par,
1341 .fb_setcolreg = imsttfb_setcolreg,
1342 .fb_pan_display = imsttfb_pan_display,
1343 .fb_blank = imsttfb_blank,
1344 .fb_fillrect = imsttfb_fillrect,
1345 .fb_copyarea = imsttfb_copyarea,
1346 .fb_imageblit = cfb_imageblit,
1347 .fb_ioctl = imsttfb_ioctl,
1348 };
1349
init_imstt(struct fb_info * info)1350 static int init_imstt(struct fb_info *info)
1351 {
1352 struct imstt_par *par = info->par;
1353 __u32 i, tmp, *ip, *end;
1354
1355 tmp = read_reg_le32(par->dc_regs, PRC);
1356 if (par->ramdac == IBM)
1357 info->fix.smem_len = (tmp & 0x0004) ? 0x400000 : 0x200000;
1358 else
1359 info->fix.smem_len = 0x800000;
1360
1361 ip = (__u32 *)info->screen_base;
1362 end = (__u32 *)(info->screen_base + info->fix.smem_len);
1363 while (ip < end)
1364 *ip++ = 0;
1365
1366 /* initialize the card */
1367 tmp = read_reg_le32(par->dc_regs, STGCTL);
1368 write_reg_le32(par->dc_regs, STGCTL, tmp & ~0x1);
1369 write_reg_le32(par->dc_regs, SSR, 0);
1370
1371 /* set default values for DAC registers */
1372 if (par->ramdac == IBM) {
1373 par->cmap_regs[PPMASK] = 0xff;
1374 eieio();
1375 par->cmap_regs[PIDXHI] = 0;
1376 eieio();
1377 for (i = 0; i < ARRAY_SIZE(ibm_initregs); i++) {
1378 par->cmap_regs[PIDXLO] = ibm_initregs[i].addr;
1379 eieio();
1380 par->cmap_regs[PIDXDATA] = ibm_initregs[i].value;
1381 eieio();
1382 }
1383 } else {
1384 for (i = 0; i < ARRAY_SIZE(tvp_initregs); i++) {
1385 par->cmap_regs[TVPADDRW] = tvp_initregs[i].addr;
1386 eieio();
1387 par->cmap_regs[TVPIDATA] = tvp_initregs[i].value;
1388 eieio();
1389 }
1390 }
1391
1392 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
1393 if (IS_REACHABLE(CONFIG_NVRAM) && machine_is(powermac)) {
1394 int vmode = init_vmode, cmode = init_cmode;
1395
1396 if (vmode == -1) {
1397 vmode = nvram_read_byte(NV_VMODE);
1398 if (vmode <= 0 || vmode > VMODE_MAX)
1399 vmode = VMODE_640_480_67;
1400 }
1401 if (cmode == -1) {
1402 cmode = nvram_read_byte(NV_CMODE);
1403 if (cmode < CMODE_8 || cmode > CMODE_32)
1404 cmode = CMODE_8;
1405 }
1406 if (mac_vmode_to_var(vmode, cmode, &info->var)) {
1407 info->var.xres = info->var.xres_virtual = INIT_XRES;
1408 info->var.yres = info->var.yres_virtual = INIT_YRES;
1409 info->var.bits_per_pixel = INIT_BPP;
1410 }
1411 } else
1412 #endif
1413 {
1414 info->var.xres = info->var.xres_virtual = INIT_XRES;
1415 info->var.yres = info->var.yres_virtual = INIT_YRES;
1416 info->var.bits_per_pixel = INIT_BPP;
1417 }
1418
1419 if ((info->var.xres * info->var.yres) * (info->var.bits_per_pixel >> 3) > info->fix.smem_len
1420 || !(compute_imstt_regvals(par, info->var.xres, info->var.yres))) {
1421 printk("imsttfb: %ux%ux%u not supported\n", info->var.xres, info->var.yres, info->var.bits_per_pixel);
1422 framebuffer_release(info);
1423 return -ENODEV;
1424 }
1425
1426 sprintf(info->fix.id, "IMS TT (%s)", par->ramdac == IBM ? "IBM" : "TVP");
1427 info->fix.mmio_len = 0x1000;
1428 info->fix.accel = FB_ACCEL_IMS_TWINTURBO;
1429 info->fix.type = FB_TYPE_PACKED_PIXELS;
1430 info->fix.visual = info->var.bits_per_pixel == 8 ? FB_VISUAL_PSEUDOCOLOR
1431 : FB_VISUAL_DIRECTCOLOR;
1432 info->fix.line_length = info->var.xres * (info->var.bits_per_pixel >> 3);
1433 info->fix.xpanstep = 8;
1434 info->fix.ypanstep = 1;
1435 info->fix.ywrapstep = 0;
1436
1437 info->var.accel_flags = FB_ACCELF_TEXT;
1438
1439 // if (par->ramdac == IBM)
1440 // imstt_cursor_init(info);
1441 if (info->var.green.length == 6)
1442 set_565(par);
1443 else
1444 set_555(par);
1445 set_imstt_regvals(info, info->var.bits_per_pixel);
1446
1447 info->var.pixclock = 1000000 / getclkMHz(par);
1448
1449 info->fbops = &imsttfb_ops;
1450 info->flags = FBINFO_HWACCEL_COPYAREA |
1451 FBINFO_HWACCEL_FILLRECT |
1452 FBINFO_HWACCEL_YPAN;
1453
1454 if (fb_alloc_cmap(&info->cmap, 0, 0)) {
1455 framebuffer_release(info);
1456 return -ENODEV;
1457 }
1458
1459 if (register_framebuffer(info) < 0) {
1460 fb_dealloc_cmap(&info->cmap);
1461 framebuffer_release(info);
1462 return -ENODEV;
1463 }
1464
1465 tmp = (read_reg_le32(par->dc_regs, SSTATUS) & 0x0f00) >> 8;
1466 fb_info(info, "%s frame buffer; %uMB vram; chip version %u\n",
1467 info->fix.id, info->fix.smem_len >> 20, tmp);
1468 return 0;
1469 }
1470
imsttfb_probe(struct pci_dev * pdev,const struct pci_device_id * ent)1471 static int imsttfb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1472 {
1473 unsigned long addr, size;
1474 struct imstt_par *par;
1475 struct fb_info *info;
1476 struct device_node *dp;
1477 int ret;
1478
1479 ret = aperture_remove_conflicting_pci_devices(pdev, "imsttfb");
1480 if (ret)
1481 return ret;
1482 ret = -ENOMEM;
1483
1484 dp = pci_device_to_OF_node(pdev);
1485 if(dp)
1486 printk(KERN_INFO "%s: OF name %pOFn\n",__func__, dp);
1487 else if (IS_ENABLED(CONFIG_OF))
1488 printk(KERN_ERR "imsttfb: no OF node for pci device\n");
1489
1490 info = framebuffer_alloc(sizeof(struct imstt_par), &pdev->dev);
1491 if (!info)
1492 return -ENOMEM;
1493
1494 par = info->par;
1495
1496 addr = pci_resource_start (pdev, 0);
1497 size = pci_resource_len (pdev, 0);
1498
1499 if (!request_mem_region(addr, size, "imsttfb")) {
1500 printk(KERN_ERR "imsttfb: Can't reserve memory region\n");
1501 framebuffer_release(info);
1502 return -ENODEV;
1503 }
1504
1505 switch (pdev->device) {
1506 case PCI_DEVICE_ID_IMS_TT128: /* IMS,tt128mbA */
1507 par->ramdac = IBM;
1508 if (of_node_name_eq(dp, "IMS,tt128mb8") ||
1509 of_node_name_eq(dp, "IMS,tt128mb8A"))
1510 par->ramdac = TVP;
1511 break;
1512 case PCI_DEVICE_ID_IMS_TT3D: /* IMS,tt3d */
1513 par->ramdac = TVP;
1514 break;
1515 default:
1516 printk(KERN_INFO "imsttfb: Device 0x%x unknown, "
1517 "contact maintainer.\n", pdev->device);
1518 ret = -ENODEV;
1519 goto error;
1520 }
1521
1522 info->fix.smem_start = addr;
1523 info->screen_base = (__u8 *)ioremap(addr, par->ramdac == IBM ?
1524 0x400000 : 0x800000);
1525 if (!info->screen_base)
1526 goto error;
1527 info->fix.mmio_start = addr + 0x800000;
1528 par->dc_regs = ioremap(addr + 0x800000, 0x1000);
1529 if (!par->dc_regs)
1530 goto error;
1531 par->cmap_regs_phys = addr + 0x840000;
1532 par->cmap_regs = (__u8 *)ioremap(addr + 0x840000, 0x1000);
1533 if (!par->cmap_regs)
1534 goto error;
1535 info->pseudo_palette = par->palette;
1536 ret = init_imstt(info);
1537 if (ret)
1538 goto error;
1539
1540 pci_set_drvdata(pdev, info);
1541 return ret;
1542
1543 error:
1544 if (par->dc_regs)
1545 iounmap(par->dc_regs);
1546 if (info->screen_base)
1547 iounmap(info->screen_base);
1548 release_mem_region(addr, size);
1549 framebuffer_release(info);
1550 return ret;
1551 }
1552
imsttfb_remove(struct pci_dev * pdev)1553 static void imsttfb_remove(struct pci_dev *pdev)
1554 {
1555 struct fb_info *info = pci_get_drvdata(pdev);
1556 struct imstt_par *par = info->par;
1557 int size = pci_resource_len(pdev, 0);
1558
1559 unregister_framebuffer(info);
1560 iounmap(par->cmap_regs);
1561 iounmap(par->dc_regs);
1562 iounmap(info->screen_base);
1563 release_mem_region(info->fix.smem_start, size);
1564 framebuffer_release(info);
1565 }
1566
1567 #ifndef MODULE
1568 static int __init
imsttfb_setup(char * options)1569 imsttfb_setup(char *options)
1570 {
1571 char *this_opt;
1572
1573 if (!options || !*options)
1574 return 0;
1575
1576 while ((this_opt = strsep(&options, ",")) != NULL) {
1577 if (!strncmp(this_opt, "font:", 5)) {
1578 char *p;
1579 int i;
1580
1581 p = this_opt + 5;
1582 for (i = 0; i < sizeof(fontname) - 1; i++)
1583 if (!*p || *p == ' ' || *p == ',')
1584 break;
1585 memcpy(fontname, this_opt + 5, i);
1586 fontname[i] = 0;
1587 } else if (!strncmp(this_opt, "inverse", 7)) {
1588 inverse = 1;
1589 fb_invert_cmaps();
1590 }
1591 #if defined(CONFIG_PPC_PMAC)
1592 else if (!strncmp(this_opt, "vmode:", 6)) {
1593 int vmode = simple_strtoul(this_opt+6, NULL, 0);
1594 if (vmode > 0 && vmode <= VMODE_MAX)
1595 init_vmode = vmode;
1596 } else if (!strncmp(this_opt, "cmode:", 6)) {
1597 int cmode = simple_strtoul(this_opt+6, NULL, 0);
1598 switch (cmode) {
1599 case CMODE_8:
1600 case 8:
1601 init_cmode = CMODE_8;
1602 break;
1603 case CMODE_16:
1604 case 15:
1605 case 16:
1606 init_cmode = CMODE_16;
1607 break;
1608 case CMODE_32:
1609 case 24:
1610 case 32:
1611 init_cmode = CMODE_32;
1612 break;
1613 }
1614 }
1615 #endif
1616 }
1617 return 0;
1618 }
1619
1620 #endif /* MODULE */
1621
imsttfb_init(void)1622 static int __init imsttfb_init(void)
1623 {
1624 #ifndef MODULE
1625 char *option = NULL;
1626 #endif
1627
1628 if (fb_modesetting_disabled("imsttfb"))
1629 return -ENODEV;
1630
1631 #ifndef MODULE
1632 if (fb_get_options("imsttfb", &option))
1633 return -ENODEV;
1634
1635 imsttfb_setup(option);
1636 #endif
1637 return pci_register_driver(&imsttfb_pci_driver);
1638 }
1639
imsttfb_exit(void)1640 static void __exit imsttfb_exit(void)
1641 {
1642 pci_unregister_driver(&imsttfb_pci_driver);
1643 }
1644
1645 MODULE_LICENSE("GPL");
1646
1647 module_init(imsttfb_init);
1648 module_exit(imsttfb_exit);
1649
1650