1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * NVIDIA Tegra XUSB device mode controller
4 *
5 * Copyright (c) 2013-2022, NVIDIA CORPORATION. All rights reserved.
6 * Copyright (c) 2015, Google Inc.
7 */
8
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmapool.h>
14 #include <linux/interrupt.h>
15 #include <linux/iopoll.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/phy/phy.h>
20 #include <linux/phy/tegra/xusb.h>
21 #include <linux/pm_domain.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/reset.h>
26 #include <linux/usb/ch9.h>
27 #include <linux/usb/gadget.h>
28 #include <linux/usb/otg.h>
29 #include <linux/usb/role.h>
30 #include <linux/usb/phy.h>
31 #include <linux/workqueue.h>
32
33 /* XUSB_DEV registers */
34 #define DB 0x004
35 #define DB_TARGET_MASK GENMASK(15, 8)
36 #define DB_TARGET(x) (((x) << 8) & DB_TARGET_MASK)
37 #define DB_STREAMID_MASK GENMASK(31, 16)
38 #define DB_STREAMID(x) (((x) << 16) & DB_STREAMID_MASK)
39 #define ERSTSZ 0x008
40 #define ERSTSZ_ERSTXSZ_SHIFT(x) ((x) * 16)
41 #define ERSTSZ_ERSTXSZ_MASK GENMASK(15, 0)
42 #define ERSTXBALO(x) (0x010 + 8 * (x))
43 #define ERSTXBAHI(x) (0x014 + 8 * (x))
44 #define ERDPLO 0x020
45 #define ERDPLO_EHB BIT(3)
46 #define ERDPHI 0x024
47 #define EREPLO 0x028
48 #define EREPLO_ECS BIT(0)
49 #define EREPLO_SEGI BIT(1)
50 #define EREPHI 0x02c
51 #define CTRL 0x030
52 #define CTRL_RUN BIT(0)
53 #define CTRL_LSE BIT(1)
54 #define CTRL_IE BIT(4)
55 #define CTRL_SMI_EVT BIT(5)
56 #define CTRL_SMI_DSE BIT(6)
57 #define CTRL_EWE BIT(7)
58 #define CTRL_DEVADDR_MASK GENMASK(30, 24)
59 #define CTRL_DEVADDR(x) (((x) << 24) & CTRL_DEVADDR_MASK)
60 #define CTRL_ENABLE BIT(31)
61 #define ST 0x034
62 #define ST_RC BIT(0)
63 #define ST_IP BIT(4)
64 #define RT_IMOD 0x038
65 #define RT_IMOD_IMODI_MASK GENMASK(15, 0)
66 #define RT_IMOD_IMODI(x) ((x) & RT_IMOD_IMODI_MASK)
67 #define RT_IMOD_IMODC_MASK GENMASK(31, 16)
68 #define RT_IMOD_IMODC(x) (((x) << 16) & RT_IMOD_IMODC_MASK)
69 #define PORTSC 0x03c
70 #define PORTSC_CCS BIT(0)
71 #define PORTSC_PED BIT(1)
72 #define PORTSC_PR BIT(4)
73 #define PORTSC_PLS_SHIFT 5
74 #define PORTSC_PLS_MASK GENMASK(8, 5)
75 #define PORTSC_PLS_U0 0x0
76 #define PORTSC_PLS_U2 0x2
77 #define PORTSC_PLS_U3 0x3
78 #define PORTSC_PLS_DISABLED 0x4
79 #define PORTSC_PLS_RXDETECT 0x5
80 #define PORTSC_PLS_INACTIVE 0x6
81 #define PORTSC_PLS_RESUME 0xf
82 #define PORTSC_PLS(x) (((x) << PORTSC_PLS_SHIFT) & PORTSC_PLS_MASK)
83 #define PORTSC_PS_SHIFT 10
84 #define PORTSC_PS_MASK GENMASK(13, 10)
85 #define PORTSC_PS_UNDEFINED 0x0
86 #define PORTSC_PS_FS 0x1
87 #define PORTSC_PS_LS 0x2
88 #define PORTSC_PS_HS 0x3
89 #define PORTSC_PS_SS 0x4
90 #define PORTSC_LWS BIT(16)
91 #define PORTSC_CSC BIT(17)
92 #define PORTSC_WRC BIT(19)
93 #define PORTSC_PRC BIT(21)
94 #define PORTSC_PLC BIT(22)
95 #define PORTSC_CEC BIT(23)
96 #define PORTSC_WPR BIT(30)
97 #define PORTSC_CHANGE_MASK (PORTSC_CSC | PORTSC_WRC | PORTSC_PRC | \
98 PORTSC_PLC | PORTSC_CEC)
99 #define ECPLO 0x040
100 #define ECPHI 0x044
101 #define MFINDEX 0x048
102 #define MFINDEX_FRAME_SHIFT 3
103 #define MFINDEX_FRAME_MASK GENMASK(13, 3)
104 #define PORTPM 0x04c
105 #define PORTPM_L1S_MASK GENMASK(1, 0)
106 #define PORTPM_L1S_DROP 0x0
107 #define PORTPM_L1S_ACCEPT 0x1
108 #define PORTPM_L1S_NYET 0x2
109 #define PORTPM_L1S_STALL 0x3
110 #define PORTPM_L1S(x) ((x) & PORTPM_L1S_MASK)
111 #define PORTPM_RWE BIT(3)
112 #define PORTPM_U2TIMEOUT_MASK GENMASK(15, 8)
113 #define PORTPM_U1TIMEOUT_MASK GENMASK(23, 16)
114 #define PORTPM_FLA BIT(24)
115 #define PORTPM_VBA BIT(25)
116 #define PORTPM_WOC BIT(26)
117 #define PORTPM_WOD BIT(27)
118 #define PORTPM_U1E BIT(28)
119 #define PORTPM_U2E BIT(29)
120 #define PORTPM_FRWE BIT(30)
121 #define PORTPM_PNG_CYA BIT(31)
122 #define EP_HALT 0x050
123 #define EP_PAUSE 0x054
124 #define EP_RELOAD 0x058
125 #define EP_STCHG 0x05c
126 #define DEVNOTIF_LO 0x064
127 #define DEVNOTIF_LO_TRIG BIT(0)
128 #define DEVNOTIF_LO_TYPE_MASK GENMASK(7, 4)
129 #define DEVNOTIF_LO_TYPE(x) (((x) << 4) & DEVNOTIF_LO_TYPE_MASK)
130 #define DEVNOTIF_LO_TYPE_FUNCTION_WAKE 0x1
131 #define DEVNOTIF_HI 0x068
132 #define PORTHALT 0x06c
133 #define PORTHALT_HALT_LTSSM BIT(0)
134 #define PORTHALT_HALT_REJECT BIT(1)
135 #define PORTHALT_STCHG_REQ BIT(20)
136 #define PORTHALT_STCHG_INTR_EN BIT(24)
137 #define PORT_TM 0x070
138 #define EP_THREAD_ACTIVE 0x074
139 #define EP_STOPPED 0x078
140 #define HSFSPI_COUNT0 0x100
141 #define HSFSPI_COUNT13 0x134
142 #define HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK GENMASK(29, 0)
143 #define HSFSPI_COUNT13_U2_RESUME_K_DURATION(x) ((x) & \
144 HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK)
145 #define BLCG 0x840
146 #define SSPX_CORE_CNT0 0x610
147 #define SSPX_CORE_CNT0_PING_TBURST_MASK GENMASK(7, 0)
148 #define SSPX_CORE_CNT0_PING_TBURST(x) ((x) & SSPX_CORE_CNT0_PING_TBURST_MASK)
149 #define SSPX_CORE_CNT30 0x688
150 #define SSPX_CORE_CNT30_LMPITP_TIMER_MASK GENMASK(19, 0)
151 #define SSPX_CORE_CNT30_LMPITP_TIMER(x) ((x) & \
152 SSPX_CORE_CNT30_LMPITP_TIMER_MASK)
153 #define SSPX_CORE_CNT32 0x690
154 #define SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK GENMASK(7, 0)
155 #define SSPX_CORE_CNT32_POLL_TBURST_MAX(x) ((x) & \
156 SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK)
157 #define SSPX_CORE_CNT56 0x6fc
158 #define SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK GENMASK(19, 0)
159 #define SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(x) ((x) & \
160 SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK)
161 #define SSPX_CORE_CNT57 0x700
162 #define SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK GENMASK(19, 0)
163 #define SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(x) ((x) & \
164 SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK)
165 #define SSPX_CORE_CNT65 0x720
166 #define SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK GENMASK(19, 0)
167 #define SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(x) ((x) & \
168 SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK)
169 #define SSPX_CORE_CNT66 0x724
170 #define SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK GENMASK(19, 0)
171 #define SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(x) ((x) & \
172 SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK)
173 #define SSPX_CORE_CNT67 0x728
174 #define SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK GENMASK(19, 0)
175 #define SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(x) ((x) & \
176 SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK)
177 #define SSPX_CORE_CNT72 0x73c
178 #define SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK GENMASK(19, 0)
179 #define SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(x) ((x) & \
180 SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK)
181 #define SSPX_CORE_PADCTL4 0x750
182 #define SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK GENMASK(19, 0)
183 #define SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(x) ((x) & \
184 SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK)
185 #define BLCG_DFPCI BIT(0)
186 #define BLCG_UFPCI BIT(1)
187 #define BLCG_FE BIT(2)
188 #define BLCG_COREPLL_PWRDN BIT(8)
189 #define BLCG_IOPLL_0_PWRDN BIT(9)
190 #define BLCG_IOPLL_1_PWRDN BIT(10)
191 #define BLCG_IOPLL_2_PWRDN BIT(11)
192 #define BLCG_ALL 0x1ff
193 #define CFG_DEV_SSPI_XFER 0x858
194 #define CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK GENMASK(31, 0)
195 #define CFG_DEV_SSPI_XFER_ACKTIMEOUT(x) ((x) & \
196 CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK)
197 #define CFG_DEV_FE 0x85c
198 #define CFG_DEV_FE_PORTREGSEL_MASK GENMASK(1, 0)
199 #define CFG_DEV_FE_PORTREGSEL_SS_PI 1
200 #define CFG_DEV_FE_PORTREGSEL_HSFS_PI 2
201 #define CFG_DEV_FE_PORTREGSEL(x) ((x) & CFG_DEV_FE_PORTREGSEL_MASK)
202 #define CFG_DEV_FE_INFINITE_SS_RETRY BIT(29)
203
204 /* FPCI registers */
205 #define XUSB_DEV_CFG_1 0x004
206 #define XUSB_DEV_CFG_1_IO_SPACE_EN BIT(0)
207 #define XUSB_DEV_CFG_1_MEMORY_SPACE_EN BIT(1)
208 #define XUSB_DEV_CFG_1_BUS_MASTER_EN BIT(2)
209 #define XUSB_DEV_CFG_4 0x010
210 #define XUSB_DEV_CFG_4_BASE_ADDR_MASK GENMASK(31, 15)
211 #define XUSB_DEV_CFG_5 0x014
212
213 /* IPFS registers */
214 #define XUSB_DEV_CONFIGURATION_0 0x180
215 #define XUSB_DEV_CONFIGURATION_0_EN_FPCI BIT(0)
216 #define XUSB_DEV_INTR_MASK_0 0x188
217 #define XUSB_DEV_INTR_MASK_0_IP_INT_MASK BIT(16)
218
219 struct tegra_xudc_ep_context {
220 __le32 info0;
221 __le32 info1;
222 __le32 deq_lo;
223 __le32 deq_hi;
224 __le32 tx_info;
225 __le32 rsvd[11];
226 };
227
228 #define EP_STATE_DISABLED 0
229 #define EP_STATE_RUNNING 1
230 #define EP_STATE_HALTED 2
231 #define EP_STATE_STOPPED 3
232 #define EP_STATE_ERROR 4
233
234 #define EP_TYPE_INVALID 0
235 #define EP_TYPE_ISOCH_OUT 1
236 #define EP_TYPE_BULK_OUT 2
237 #define EP_TYPE_INTERRUPT_OUT 3
238 #define EP_TYPE_CONTROL 4
239 #define EP_TYPE_ISCOH_IN 5
240 #define EP_TYPE_BULK_IN 6
241 #define EP_TYPE_INTERRUPT_IN 7
242
243 #define BUILD_EP_CONTEXT_RW(name, member, shift, mask) \
244 static inline u32 ep_ctx_read_##name(struct tegra_xudc_ep_context *ctx) \
245 { \
246 return (le32_to_cpu(ctx->member) >> (shift)) & (mask); \
247 } \
248 static inline void \
249 ep_ctx_write_##name(struct tegra_xudc_ep_context *ctx, u32 val) \
250 { \
251 u32 tmp; \
252 \
253 tmp = le32_to_cpu(ctx->member) & ~((mask) << (shift)); \
254 tmp |= (val & (mask)) << (shift); \
255 ctx->member = cpu_to_le32(tmp); \
256 }
257
258 BUILD_EP_CONTEXT_RW(state, info0, 0, 0x7)
259 BUILD_EP_CONTEXT_RW(mult, info0, 8, 0x3)
260 BUILD_EP_CONTEXT_RW(max_pstreams, info0, 10, 0x1f)
261 BUILD_EP_CONTEXT_RW(lsa, info0, 15, 0x1)
262 BUILD_EP_CONTEXT_RW(interval, info0, 16, 0xff)
263 BUILD_EP_CONTEXT_RW(cerr, info1, 1, 0x3)
264 BUILD_EP_CONTEXT_RW(type, info1, 3, 0x7)
265 BUILD_EP_CONTEXT_RW(hid, info1, 7, 0x1)
266 BUILD_EP_CONTEXT_RW(max_burst_size, info1, 8, 0xff)
267 BUILD_EP_CONTEXT_RW(max_packet_size, info1, 16, 0xffff)
268 BUILD_EP_CONTEXT_RW(dcs, deq_lo, 0, 0x1)
269 BUILD_EP_CONTEXT_RW(deq_lo, deq_lo, 4, 0xfffffff)
270 BUILD_EP_CONTEXT_RW(deq_hi, deq_hi, 0, 0xffffffff)
271 BUILD_EP_CONTEXT_RW(avg_trb_len, tx_info, 0, 0xffff)
272 BUILD_EP_CONTEXT_RW(max_esit_payload, tx_info, 16, 0xffff)
273 BUILD_EP_CONTEXT_RW(edtla, rsvd[0], 0, 0xffffff)
274 BUILD_EP_CONTEXT_RW(rsvd, rsvd[0], 24, 0x1)
275 BUILD_EP_CONTEXT_RW(partial_td, rsvd[0], 25, 0x1)
276 BUILD_EP_CONTEXT_RW(splitxstate, rsvd[0], 26, 0x1)
277 BUILD_EP_CONTEXT_RW(seq_num, rsvd[0], 27, 0x1f)
278 BUILD_EP_CONTEXT_RW(cerrcnt, rsvd[1], 18, 0x3)
279 BUILD_EP_CONTEXT_RW(data_offset, rsvd[2], 0, 0x1ffff)
280 BUILD_EP_CONTEXT_RW(numtrbs, rsvd[2], 22, 0x1f)
281 BUILD_EP_CONTEXT_RW(devaddr, rsvd[6], 0, 0x7f)
282
ep_ctx_read_deq_ptr(struct tegra_xudc_ep_context * ctx)283 static inline u64 ep_ctx_read_deq_ptr(struct tegra_xudc_ep_context *ctx)
284 {
285 return ((u64)ep_ctx_read_deq_hi(ctx) << 32) |
286 (ep_ctx_read_deq_lo(ctx) << 4);
287 }
288
289 static inline void
ep_ctx_write_deq_ptr(struct tegra_xudc_ep_context * ctx,u64 addr)290 ep_ctx_write_deq_ptr(struct tegra_xudc_ep_context *ctx, u64 addr)
291 {
292 ep_ctx_write_deq_lo(ctx, lower_32_bits(addr) >> 4);
293 ep_ctx_write_deq_hi(ctx, upper_32_bits(addr));
294 }
295
296 struct tegra_xudc_trb {
297 __le32 data_lo;
298 __le32 data_hi;
299 __le32 status;
300 __le32 control;
301 };
302
303 #define TRB_TYPE_RSVD 0
304 #define TRB_TYPE_NORMAL 1
305 #define TRB_TYPE_SETUP_STAGE 2
306 #define TRB_TYPE_DATA_STAGE 3
307 #define TRB_TYPE_STATUS_STAGE 4
308 #define TRB_TYPE_ISOCH 5
309 #define TRB_TYPE_LINK 6
310 #define TRB_TYPE_TRANSFER_EVENT 32
311 #define TRB_TYPE_PORT_STATUS_CHANGE_EVENT 34
312 #define TRB_TYPE_STREAM 48
313 #define TRB_TYPE_SETUP_PACKET_EVENT 63
314
315 #define TRB_CMPL_CODE_INVALID 0
316 #define TRB_CMPL_CODE_SUCCESS 1
317 #define TRB_CMPL_CODE_DATA_BUFFER_ERR 2
318 #define TRB_CMPL_CODE_BABBLE_DETECTED_ERR 3
319 #define TRB_CMPL_CODE_USB_TRANS_ERR 4
320 #define TRB_CMPL_CODE_TRB_ERR 5
321 #define TRB_CMPL_CODE_STALL 6
322 #define TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR 10
323 #define TRB_CMPL_CODE_SHORT_PACKET 13
324 #define TRB_CMPL_CODE_RING_UNDERRUN 14
325 #define TRB_CMPL_CODE_RING_OVERRUN 15
326 #define TRB_CMPL_CODE_EVENT_RING_FULL_ERR 21
327 #define TRB_CMPL_CODE_STOPPED 26
328 #define TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN 31
329 #define TRB_CMPL_CODE_STREAM_NUMP_ERROR 219
330 #define TRB_CMPL_CODE_PRIME_PIPE_RECEIVED 220
331 #define TRB_CMPL_CODE_HOST_REJECTED 221
332 #define TRB_CMPL_CODE_CTRL_DIR_ERR 222
333 #define TRB_CMPL_CODE_CTRL_SEQNUM_ERR 223
334
335 #define BUILD_TRB_RW(name, member, shift, mask) \
336 static inline u32 trb_read_##name(struct tegra_xudc_trb *trb) \
337 { \
338 return (le32_to_cpu(trb->member) >> (shift)) & (mask); \
339 } \
340 static inline void \
341 trb_write_##name(struct tegra_xudc_trb *trb, u32 val) \
342 { \
343 u32 tmp; \
344 \
345 tmp = le32_to_cpu(trb->member) & ~((mask) << (shift)); \
346 tmp |= (val & (mask)) << (shift); \
347 trb->member = cpu_to_le32(tmp); \
348 }
349
350 BUILD_TRB_RW(data_lo, data_lo, 0, 0xffffffff)
351 BUILD_TRB_RW(data_hi, data_hi, 0, 0xffffffff)
352 BUILD_TRB_RW(seq_num, status, 0, 0xffff)
353 BUILD_TRB_RW(transfer_len, status, 0, 0xffffff)
354 BUILD_TRB_RW(td_size, status, 17, 0x1f)
355 BUILD_TRB_RW(cmpl_code, status, 24, 0xff)
356 BUILD_TRB_RW(cycle, control, 0, 0x1)
357 BUILD_TRB_RW(toggle_cycle, control, 1, 0x1)
358 BUILD_TRB_RW(isp, control, 2, 0x1)
359 BUILD_TRB_RW(chain, control, 4, 0x1)
360 BUILD_TRB_RW(ioc, control, 5, 0x1)
361 BUILD_TRB_RW(type, control, 10, 0x3f)
362 BUILD_TRB_RW(stream_id, control, 16, 0xffff)
363 BUILD_TRB_RW(endpoint_id, control, 16, 0x1f)
364 BUILD_TRB_RW(tlbpc, control, 16, 0xf)
365 BUILD_TRB_RW(data_stage_dir, control, 16, 0x1)
366 BUILD_TRB_RW(frame_id, control, 20, 0x7ff)
367 BUILD_TRB_RW(sia, control, 31, 0x1)
368
trb_read_data_ptr(struct tegra_xudc_trb * trb)369 static inline u64 trb_read_data_ptr(struct tegra_xudc_trb *trb)
370 {
371 return ((u64)trb_read_data_hi(trb) << 32) |
372 trb_read_data_lo(trb);
373 }
374
trb_write_data_ptr(struct tegra_xudc_trb * trb,u64 addr)375 static inline void trb_write_data_ptr(struct tegra_xudc_trb *trb, u64 addr)
376 {
377 trb_write_data_lo(trb, lower_32_bits(addr));
378 trb_write_data_hi(trb, upper_32_bits(addr));
379 }
380
381 struct tegra_xudc_request {
382 struct usb_request usb_req;
383
384 size_t buf_queued;
385 unsigned int trbs_queued;
386 unsigned int trbs_needed;
387 bool need_zlp;
388
389 struct tegra_xudc_trb *first_trb;
390 struct tegra_xudc_trb *last_trb;
391
392 struct list_head list;
393 };
394
395 struct tegra_xudc_ep {
396 struct tegra_xudc *xudc;
397 struct usb_ep usb_ep;
398 unsigned int index;
399 char name[8];
400
401 struct tegra_xudc_ep_context *context;
402
403 #define XUDC_TRANSFER_RING_SIZE 64
404 struct tegra_xudc_trb *transfer_ring;
405 dma_addr_t transfer_ring_phys;
406
407 unsigned int enq_ptr;
408 unsigned int deq_ptr;
409 bool pcs;
410 bool ring_full;
411 bool stream_rejected;
412
413 struct list_head queue;
414 const struct usb_endpoint_descriptor *desc;
415 const struct usb_ss_ep_comp_descriptor *comp_desc;
416 };
417
418 struct tegra_xudc_sel_timing {
419 __u8 u1sel;
420 __u8 u1pel;
421 __le16 u2sel;
422 __le16 u2pel;
423 };
424
425 enum tegra_xudc_setup_state {
426 WAIT_FOR_SETUP,
427 DATA_STAGE_XFER,
428 DATA_STAGE_RECV,
429 STATUS_STAGE_XFER,
430 STATUS_STAGE_RECV,
431 };
432
433 struct tegra_xudc_setup_packet {
434 struct usb_ctrlrequest ctrl_req;
435 unsigned int seq_num;
436 };
437
438 struct tegra_xudc_save_regs {
439 u32 ctrl;
440 u32 portpm;
441 };
442
443 struct tegra_xudc {
444 struct device *dev;
445 const struct tegra_xudc_soc *soc;
446 struct tegra_xusb_padctl *padctl;
447
448 spinlock_t lock;
449
450 struct usb_gadget gadget;
451 struct usb_gadget_driver *driver;
452
453 #define XUDC_NR_EVENT_RINGS 2
454 #define XUDC_EVENT_RING_SIZE 4096
455 struct tegra_xudc_trb *event_ring[XUDC_NR_EVENT_RINGS];
456 dma_addr_t event_ring_phys[XUDC_NR_EVENT_RINGS];
457 unsigned int event_ring_index;
458 unsigned int event_ring_deq_ptr;
459 bool ccs;
460
461 #define XUDC_NR_EPS 32
462 struct tegra_xudc_ep ep[XUDC_NR_EPS];
463 struct tegra_xudc_ep_context *ep_context;
464 dma_addr_t ep_context_phys;
465
466 struct device *genpd_dev_device;
467 struct device *genpd_dev_ss;
468 struct device_link *genpd_dl_device;
469 struct device_link *genpd_dl_ss;
470
471 struct dma_pool *transfer_ring_pool;
472
473 bool queued_setup_packet;
474 struct tegra_xudc_setup_packet setup_packet;
475 enum tegra_xudc_setup_state setup_state;
476 u16 setup_seq_num;
477
478 u16 dev_addr;
479 u16 isoch_delay;
480 struct tegra_xudc_sel_timing sel_timing;
481 u8 test_mode_pattern;
482 u16 status_buf;
483 struct tegra_xudc_request *ep0_req;
484
485 bool pullup;
486
487 unsigned int nr_enabled_eps;
488 unsigned int nr_isoch_eps;
489
490 unsigned int device_state;
491 unsigned int resume_state;
492
493 int irq;
494
495 void __iomem *base;
496 resource_size_t phys_base;
497 void __iomem *ipfs;
498 void __iomem *fpci;
499
500 struct regulator_bulk_data *supplies;
501
502 struct clk_bulk_data *clks;
503
504 bool device_mode;
505 struct work_struct usb_role_sw_work;
506
507 struct phy **usb3_phy;
508 struct phy *curr_usb3_phy;
509 struct phy **utmi_phy;
510 struct phy *curr_utmi_phy;
511
512 struct tegra_xudc_save_regs saved_regs;
513 bool suspended;
514 bool powergated;
515
516 struct usb_phy **usbphy;
517 struct usb_phy *curr_usbphy;
518 struct notifier_block vbus_nb;
519
520 struct completion disconnect_complete;
521
522 bool selfpowered;
523
524 #define TOGGLE_VBUS_WAIT_MS 100
525 struct delayed_work plc_reset_work;
526 bool wait_csc;
527
528 struct delayed_work port_reset_war_work;
529 bool wait_for_sec_prc;
530 };
531
532 #define XUDC_TRB_MAX_BUFFER_SIZE 65536
533 #define XUDC_MAX_ISOCH_EPS 4
534 #define XUDC_INTERRUPT_MODERATION_US 0
535
536 static struct usb_endpoint_descriptor tegra_xudc_ep0_desc = {
537 .bLength = USB_DT_ENDPOINT_SIZE,
538 .bDescriptorType = USB_DT_ENDPOINT,
539 .bEndpointAddress = 0,
540 .bmAttributes = USB_ENDPOINT_XFER_CONTROL,
541 .wMaxPacketSize = cpu_to_le16(64),
542 };
543
544 struct tegra_xudc_soc {
545 const char * const *supply_names;
546 unsigned int num_supplies;
547 const char * const *clock_names;
548 unsigned int num_clks;
549 unsigned int num_phys;
550 bool u1_enable;
551 bool u2_enable;
552 bool lpm_enable;
553 bool invalid_seq_num;
554 bool pls_quirk;
555 bool port_reset_quirk;
556 bool port_speed_quirk;
557 bool has_ipfs;
558 };
559
fpci_readl(struct tegra_xudc * xudc,unsigned int offset)560 static inline u32 fpci_readl(struct tegra_xudc *xudc, unsigned int offset)
561 {
562 return readl(xudc->fpci + offset);
563 }
564
fpci_writel(struct tegra_xudc * xudc,u32 val,unsigned int offset)565 static inline void fpci_writel(struct tegra_xudc *xudc, u32 val,
566 unsigned int offset)
567 {
568 writel(val, xudc->fpci + offset);
569 }
570
ipfs_readl(struct tegra_xudc * xudc,unsigned int offset)571 static inline u32 ipfs_readl(struct tegra_xudc *xudc, unsigned int offset)
572 {
573 return readl(xudc->ipfs + offset);
574 }
575
ipfs_writel(struct tegra_xudc * xudc,u32 val,unsigned int offset)576 static inline void ipfs_writel(struct tegra_xudc *xudc, u32 val,
577 unsigned int offset)
578 {
579 writel(val, xudc->ipfs + offset);
580 }
581
xudc_readl(struct tegra_xudc * xudc,unsigned int offset)582 static inline u32 xudc_readl(struct tegra_xudc *xudc, unsigned int offset)
583 {
584 return readl(xudc->base + offset);
585 }
586
xudc_writel(struct tegra_xudc * xudc,u32 val,unsigned int offset)587 static inline void xudc_writel(struct tegra_xudc *xudc, u32 val,
588 unsigned int offset)
589 {
590 writel(val, xudc->base + offset);
591 }
592
xudc_readl_poll(struct tegra_xudc * xudc,unsigned int offset,u32 mask,u32 val)593 static inline int xudc_readl_poll(struct tegra_xudc *xudc,
594 unsigned int offset, u32 mask, u32 val)
595 {
596 u32 regval;
597
598 return readl_poll_timeout_atomic(xudc->base + offset, regval,
599 (regval & mask) == val, 1, 100);
600 }
601
to_xudc(struct usb_gadget * gadget)602 static inline struct tegra_xudc *to_xudc(struct usb_gadget *gadget)
603 {
604 return container_of(gadget, struct tegra_xudc, gadget);
605 }
606
to_xudc_ep(struct usb_ep * ep)607 static inline struct tegra_xudc_ep *to_xudc_ep(struct usb_ep *ep)
608 {
609 return container_of(ep, struct tegra_xudc_ep, usb_ep);
610 }
611
to_xudc_req(struct usb_request * req)612 static inline struct tegra_xudc_request *to_xudc_req(struct usb_request *req)
613 {
614 return container_of(req, struct tegra_xudc_request, usb_req);
615 }
616
dump_trb(struct tegra_xudc * xudc,const char * type,struct tegra_xudc_trb * trb)617 static inline void dump_trb(struct tegra_xudc *xudc, const char *type,
618 struct tegra_xudc_trb *trb)
619 {
620 dev_dbg(xudc->dev,
621 "%s: %p, lo = %#x, hi = %#x, status = %#x, control = %#x\n",
622 type, trb, trb->data_lo, trb->data_hi, trb->status,
623 trb->control);
624 }
625
tegra_xudc_limit_port_speed(struct tegra_xudc * xudc)626 static void tegra_xudc_limit_port_speed(struct tegra_xudc *xudc)
627 {
628 u32 val;
629
630 /* limit port speed to gen 1 */
631 val = xudc_readl(xudc, SSPX_CORE_CNT56);
632 val &= ~(SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK);
633 val |= SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(0x260);
634 xudc_writel(xudc, val, SSPX_CORE_CNT56);
635
636 val = xudc_readl(xudc, SSPX_CORE_CNT57);
637 val &= ~(SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK);
638 val |= SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(0x6D6);
639 xudc_writel(xudc, val, SSPX_CORE_CNT57);
640
641 val = xudc_readl(xudc, SSPX_CORE_CNT65);
642 val &= ~(SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK);
643 val |= SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(0x4B0);
644 xudc_writel(xudc, val, SSPX_CORE_CNT66);
645
646 val = xudc_readl(xudc, SSPX_CORE_CNT66);
647 val &= ~(SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK);
648 val |= SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(0x4B0);
649 xudc_writel(xudc, val, SSPX_CORE_CNT66);
650
651 val = xudc_readl(xudc, SSPX_CORE_CNT67);
652 val &= ~(SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK);
653 val |= SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(0x4B0);
654 xudc_writel(xudc, val, SSPX_CORE_CNT67);
655
656 val = xudc_readl(xudc, SSPX_CORE_CNT72);
657 val &= ~(SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK);
658 val |= SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(0x10);
659 xudc_writel(xudc, val, SSPX_CORE_CNT72);
660 }
661
tegra_xudc_restore_port_speed(struct tegra_xudc * xudc)662 static void tegra_xudc_restore_port_speed(struct tegra_xudc *xudc)
663 {
664 u32 val;
665
666 /* restore port speed to gen2 */
667 val = xudc_readl(xudc, SSPX_CORE_CNT56);
668 val &= ~(SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK);
669 val |= SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(0x438);
670 xudc_writel(xudc, val, SSPX_CORE_CNT56);
671
672 val = xudc_readl(xudc, SSPX_CORE_CNT57);
673 val &= ~(SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK);
674 val |= SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(0x528);
675 xudc_writel(xudc, val, SSPX_CORE_CNT57);
676
677 val = xudc_readl(xudc, SSPX_CORE_CNT65);
678 val &= ~(SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK);
679 val |= SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(0xE10);
680 xudc_writel(xudc, val, SSPX_CORE_CNT66);
681
682 val = xudc_readl(xudc, SSPX_CORE_CNT66);
683 val &= ~(SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK);
684 val |= SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(0x348);
685 xudc_writel(xudc, val, SSPX_CORE_CNT66);
686
687 val = xudc_readl(xudc, SSPX_CORE_CNT67);
688 val &= ~(SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK);
689 val |= SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(0x5a0);
690 xudc_writel(xudc, val, SSPX_CORE_CNT67);
691
692 val = xudc_readl(xudc, SSPX_CORE_CNT72);
693 val &= ~(SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK);
694 val |= SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(0x1c21);
695 xudc_writel(xudc, val, SSPX_CORE_CNT72);
696 }
697
tegra_xudc_device_mode_on(struct tegra_xudc * xudc)698 static void tegra_xudc_device_mode_on(struct tegra_xudc *xudc)
699 {
700 int err;
701
702 pm_runtime_get_sync(xudc->dev);
703
704 tegra_phy_xusb_utmi_pad_power_on(xudc->curr_utmi_phy);
705
706 err = phy_power_on(xudc->curr_utmi_phy);
707 if (err < 0)
708 dev_err(xudc->dev, "UTMI power on failed: %d\n", err);
709
710 err = phy_power_on(xudc->curr_usb3_phy);
711 if (err < 0)
712 dev_err(xudc->dev, "USB3 PHY power on failed: %d\n", err);
713
714 dev_dbg(xudc->dev, "device mode on\n");
715
716 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG,
717 USB_ROLE_DEVICE);
718 }
719
tegra_xudc_device_mode_off(struct tegra_xudc * xudc)720 static void tegra_xudc_device_mode_off(struct tegra_xudc *xudc)
721 {
722 bool connected = false;
723 u32 pls, val;
724 int err;
725
726 dev_dbg(xudc->dev, "device mode off\n");
727
728 connected = !!(xudc_readl(xudc, PORTSC) & PORTSC_CCS);
729
730 reinit_completion(&xudc->disconnect_complete);
731
732 if (xudc->soc->port_speed_quirk)
733 tegra_xudc_restore_port_speed(xudc);
734
735 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, USB_ROLE_NONE);
736
737 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >>
738 PORTSC_PLS_SHIFT;
739
740 /* Direct link to U0 if disconnected in RESUME or U2. */
741 if (xudc->soc->pls_quirk && xudc->gadget.speed == USB_SPEED_SUPER &&
742 (pls == PORTSC_PLS_RESUME || pls == PORTSC_PLS_U2)) {
743 val = xudc_readl(xudc, PORTPM);
744 val |= PORTPM_FRWE;
745 xudc_writel(xudc, val, PORTPM);
746
747 val = xudc_readl(xudc, PORTSC);
748 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
749 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0);
750 xudc_writel(xudc, val, PORTSC);
751 }
752
753 /* Wait for disconnect event. */
754 if (connected)
755 wait_for_completion(&xudc->disconnect_complete);
756
757 /* Make sure interrupt handler has completed before powergating. */
758 synchronize_irq(xudc->irq);
759
760 tegra_phy_xusb_utmi_pad_power_down(xudc->curr_utmi_phy);
761
762 err = phy_power_off(xudc->curr_utmi_phy);
763 if (err < 0)
764 dev_err(xudc->dev, "UTMI PHY power off failed: %d\n", err);
765
766 err = phy_power_off(xudc->curr_usb3_phy);
767 if (err < 0)
768 dev_err(xudc->dev, "USB3 PHY power off failed: %d\n", err);
769
770 pm_runtime_put(xudc->dev);
771 }
772
tegra_xudc_usb_role_sw_work(struct work_struct * work)773 static void tegra_xudc_usb_role_sw_work(struct work_struct *work)
774 {
775 struct tegra_xudc *xudc = container_of(work, struct tegra_xudc,
776 usb_role_sw_work);
777
778 if (xudc->device_mode)
779 tegra_xudc_device_mode_on(xudc);
780 else
781 tegra_xudc_device_mode_off(xudc);
782 }
783
tegra_xudc_get_phy_index(struct tegra_xudc * xudc,struct usb_phy * usbphy)784 static int tegra_xudc_get_phy_index(struct tegra_xudc *xudc,
785 struct usb_phy *usbphy)
786 {
787 unsigned int i;
788
789 for (i = 0; i < xudc->soc->num_phys; i++) {
790 if (xudc->usbphy[i] && usbphy == xudc->usbphy[i])
791 return i;
792 }
793
794 dev_info(xudc->dev, "phy index could not be found for shared USB PHY");
795 return -1;
796 }
797
tegra_xudc_update_data_role(struct tegra_xudc * xudc,struct usb_phy * usbphy)798 static void tegra_xudc_update_data_role(struct tegra_xudc *xudc,
799 struct usb_phy *usbphy)
800 {
801 int phy_index;
802
803 if ((xudc->device_mode && usbphy->last_event == USB_EVENT_VBUS) ||
804 (!xudc->device_mode && usbphy->last_event != USB_EVENT_VBUS)) {
805 dev_dbg(xudc->dev, "Same role(%d) received. Ignore",
806 xudc->device_mode);
807 return;
808 }
809
810 xudc->device_mode = (usbphy->last_event == USB_EVENT_VBUS) ? true :
811 false;
812
813 phy_index = tegra_xudc_get_phy_index(xudc, usbphy);
814 dev_dbg(xudc->dev, "%s(): current phy index is %d\n", __func__,
815 phy_index);
816
817 if (!xudc->suspended && phy_index != -1) {
818 xudc->curr_utmi_phy = xudc->utmi_phy[phy_index];
819 xudc->curr_usb3_phy = xudc->usb3_phy[phy_index];
820 xudc->curr_usbphy = usbphy;
821 schedule_work(&xudc->usb_role_sw_work);
822 }
823 }
824
tegra_xudc_vbus_notify(struct notifier_block * nb,unsigned long action,void * data)825 static int tegra_xudc_vbus_notify(struct notifier_block *nb,
826 unsigned long action, void *data)
827 {
828 struct tegra_xudc *xudc = container_of(nb, struct tegra_xudc,
829 vbus_nb);
830 struct usb_phy *usbphy = (struct usb_phy *)data;
831
832 dev_dbg(xudc->dev, "%s(): event is %d\n", __func__, usbphy->last_event);
833
834 tegra_xudc_update_data_role(xudc, usbphy);
835
836 return NOTIFY_OK;
837 }
838
tegra_xudc_plc_reset_work(struct work_struct * work)839 static void tegra_xudc_plc_reset_work(struct work_struct *work)
840 {
841 struct delayed_work *dwork = to_delayed_work(work);
842 struct tegra_xudc *xudc = container_of(dwork, struct tegra_xudc,
843 plc_reset_work);
844 unsigned long flags;
845
846 spin_lock_irqsave(&xudc->lock, flags);
847
848 if (xudc->wait_csc) {
849 u32 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >>
850 PORTSC_PLS_SHIFT;
851
852 if (pls == PORTSC_PLS_INACTIVE) {
853 dev_info(xudc->dev, "PLS = Inactive. Toggle VBUS\n");
854 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG,
855 USB_ROLE_NONE);
856 phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG,
857 USB_ROLE_DEVICE);
858
859 xudc->wait_csc = false;
860 }
861 }
862
863 spin_unlock_irqrestore(&xudc->lock, flags);
864 }
865
tegra_xudc_port_reset_war_work(struct work_struct * work)866 static void tegra_xudc_port_reset_war_work(struct work_struct *work)
867 {
868 struct delayed_work *dwork = to_delayed_work(work);
869 struct tegra_xudc *xudc =
870 container_of(dwork, struct tegra_xudc, port_reset_war_work);
871 unsigned long flags;
872 u32 pls;
873 int ret;
874
875 spin_lock_irqsave(&xudc->lock, flags);
876
877 if (xudc->device_mode && xudc->wait_for_sec_prc) {
878 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >>
879 PORTSC_PLS_SHIFT;
880 dev_dbg(xudc->dev, "pls = %x\n", pls);
881
882 if (pls == PORTSC_PLS_DISABLED) {
883 dev_dbg(xudc->dev, "toggle vbus\n");
884 /* PRC doesn't complete in 100ms, toggle the vbus */
885 ret = tegra_phy_xusb_utmi_port_reset(
886 xudc->curr_utmi_phy);
887 if (ret == 1)
888 xudc->wait_for_sec_prc = 0;
889 }
890 }
891
892 spin_unlock_irqrestore(&xudc->lock, flags);
893 }
894
trb_virt_to_phys(struct tegra_xudc_ep * ep,struct tegra_xudc_trb * trb)895 static dma_addr_t trb_virt_to_phys(struct tegra_xudc_ep *ep,
896 struct tegra_xudc_trb *trb)
897 {
898 unsigned int index;
899
900 index = trb - ep->transfer_ring;
901
902 if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE))
903 return 0;
904
905 return (ep->transfer_ring_phys + index * sizeof(*trb));
906 }
907
trb_phys_to_virt(struct tegra_xudc_ep * ep,dma_addr_t addr)908 static struct tegra_xudc_trb *trb_phys_to_virt(struct tegra_xudc_ep *ep,
909 dma_addr_t addr)
910 {
911 struct tegra_xudc_trb *trb;
912 unsigned int index;
913
914 index = (addr - ep->transfer_ring_phys) / sizeof(*trb);
915
916 if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE))
917 return NULL;
918
919 trb = &ep->transfer_ring[index];
920
921 return trb;
922 }
923
ep_reload(struct tegra_xudc * xudc,unsigned int ep)924 static void ep_reload(struct tegra_xudc *xudc, unsigned int ep)
925 {
926 xudc_writel(xudc, BIT(ep), EP_RELOAD);
927 xudc_readl_poll(xudc, EP_RELOAD, BIT(ep), 0);
928 }
929
ep_pause(struct tegra_xudc * xudc,unsigned int ep)930 static void ep_pause(struct tegra_xudc *xudc, unsigned int ep)
931 {
932 u32 val;
933
934 val = xudc_readl(xudc, EP_PAUSE);
935 if (val & BIT(ep))
936 return;
937 val |= BIT(ep);
938
939 xudc_writel(xudc, val, EP_PAUSE);
940
941 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
942
943 xudc_writel(xudc, BIT(ep), EP_STCHG);
944 }
945
ep_unpause(struct tegra_xudc * xudc,unsigned int ep)946 static void ep_unpause(struct tegra_xudc *xudc, unsigned int ep)
947 {
948 u32 val;
949
950 val = xudc_readl(xudc, EP_PAUSE);
951 if (!(val & BIT(ep)))
952 return;
953 val &= ~BIT(ep);
954
955 xudc_writel(xudc, val, EP_PAUSE);
956
957 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
958
959 xudc_writel(xudc, BIT(ep), EP_STCHG);
960 }
961
ep_unpause_all(struct tegra_xudc * xudc)962 static void ep_unpause_all(struct tegra_xudc *xudc)
963 {
964 u32 val;
965
966 val = xudc_readl(xudc, EP_PAUSE);
967
968 xudc_writel(xudc, 0, EP_PAUSE);
969
970 xudc_readl_poll(xudc, EP_STCHG, val, val);
971
972 xudc_writel(xudc, val, EP_STCHG);
973 }
974
ep_halt(struct tegra_xudc * xudc,unsigned int ep)975 static void ep_halt(struct tegra_xudc *xudc, unsigned int ep)
976 {
977 u32 val;
978
979 val = xudc_readl(xudc, EP_HALT);
980 if (val & BIT(ep))
981 return;
982 val |= BIT(ep);
983 xudc_writel(xudc, val, EP_HALT);
984
985 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
986
987 xudc_writel(xudc, BIT(ep), EP_STCHG);
988 }
989
ep_unhalt(struct tegra_xudc * xudc,unsigned int ep)990 static void ep_unhalt(struct tegra_xudc *xudc, unsigned int ep)
991 {
992 u32 val;
993
994 val = xudc_readl(xudc, EP_HALT);
995 if (!(val & BIT(ep)))
996 return;
997 val &= ~BIT(ep);
998 xudc_writel(xudc, val, EP_HALT);
999
1000 xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
1001
1002 xudc_writel(xudc, BIT(ep), EP_STCHG);
1003 }
1004
ep_unhalt_all(struct tegra_xudc * xudc)1005 static void ep_unhalt_all(struct tegra_xudc *xudc)
1006 {
1007 u32 val;
1008
1009 val = xudc_readl(xudc, EP_HALT);
1010 if (!val)
1011 return;
1012 xudc_writel(xudc, 0, EP_HALT);
1013
1014 xudc_readl_poll(xudc, EP_STCHG, val, val);
1015
1016 xudc_writel(xudc, val, EP_STCHG);
1017 }
1018
ep_wait_for_stopped(struct tegra_xudc * xudc,unsigned int ep)1019 static void ep_wait_for_stopped(struct tegra_xudc *xudc, unsigned int ep)
1020 {
1021 xudc_readl_poll(xudc, EP_STOPPED, BIT(ep), BIT(ep));
1022 xudc_writel(xudc, BIT(ep), EP_STOPPED);
1023 }
1024
ep_wait_for_inactive(struct tegra_xudc * xudc,unsigned int ep)1025 static void ep_wait_for_inactive(struct tegra_xudc *xudc, unsigned int ep)
1026 {
1027 xudc_readl_poll(xudc, EP_THREAD_ACTIVE, BIT(ep), 0);
1028 }
1029
tegra_xudc_req_done(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req,int status)1030 static void tegra_xudc_req_done(struct tegra_xudc_ep *ep,
1031 struct tegra_xudc_request *req, int status)
1032 {
1033 struct tegra_xudc *xudc = ep->xudc;
1034
1035 dev_dbg(xudc->dev, "completing request %p on EP %u with status %d\n",
1036 req, ep->index, status);
1037
1038 if (likely(req->usb_req.status == -EINPROGRESS))
1039 req->usb_req.status = status;
1040
1041 list_del_init(&req->list);
1042
1043 if (usb_endpoint_xfer_control(ep->desc)) {
1044 usb_gadget_unmap_request(&xudc->gadget, &req->usb_req,
1045 (xudc->setup_state ==
1046 DATA_STAGE_XFER));
1047 } else {
1048 usb_gadget_unmap_request(&xudc->gadget, &req->usb_req,
1049 usb_endpoint_dir_in(ep->desc));
1050 }
1051
1052 spin_unlock(&xudc->lock);
1053 usb_gadget_giveback_request(&ep->usb_ep, &req->usb_req);
1054 spin_lock(&xudc->lock);
1055 }
1056
tegra_xudc_ep_nuke(struct tegra_xudc_ep * ep,int status)1057 static void tegra_xudc_ep_nuke(struct tegra_xudc_ep *ep, int status)
1058 {
1059 struct tegra_xudc_request *req;
1060
1061 while (!list_empty(&ep->queue)) {
1062 req = list_first_entry(&ep->queue, struct tegra_xudc_request,
1063 list);
1064 tegra_xudc_req_done(ep, req, status);
1065 }
1066 }
1067
ep_available_trbs(struct tegra_xudc_ep * ep)1068 static unsigned int ep_available_trbs(struct tegra_xudc_ep *ep)
1069 {
1070 if (ep->ring_full)
1071 return 0;
1072
1073 if (ep->deq_ptr > ep->enq_ptr)
1074 return ep->deq_ptr - ep->enq_ptr - 1;
1075
1076 return XUDC_TRANSFER_RING_SIZE - (ep->enq_ptr - ep->deq_ptr) - 2;
1077 }
1078
tegra_xudc_queue_one_trb(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req,struct tegra_xudc_trb * trb,bool ioc)1079 static void tegra_xudc_queue_one_trb(struct tegra_xudc_ep *ep,
1080 struct tegra_xudc_request *req,
1081 struct tegra_xudc_trb *trb,
1082 bool ioc)
1083 {
1084 struct tegra_xudc *xudc = ep->xudc;
1085 dma_addr_t buf_addr;
1086 size_t len;
1087
1088 len = min_t(size_t, XUDC_TRB_MAX_BUFFER_SIZE, req->usb_req.length -
1089 req->buf_queued);
1090 if (len > 0)
1091 buf_addr = req->usb_req.dma + req->buf_queued;
1092 else
1093 buf_addr = 0;
1094
1095 trb_write_data_ptr(trb, buf_addr);
1096
1097 trb_write_transfer_len(trb, len);
1098 trb_write_td_size(trb, req->trbs_needed - req->trbs_queued - 1);
1099
1100 if (req->trbs_queued == req->trbs_needed - 1 ||
1101 (req->need_zlp && req->trbs_queued == req->trbs_needed - 2))
1102 trb_write_chain(trb, 0);
1103 else
1104 trb_write_chain(trb, 1);
1105
1106 trb_write_ioc(trb, ioc);
1107
1108 if (usb_endpoint_dir_out(ep->desc) ||
1109 (usb_endpoint_xfer_control(ep->desc) &&
1110 (xudc->setup_state == DATA_STAGE_RECV)))
1111 trb_write_isp(trb, 1);
1112 else
1113 trb_write_isp(trb, 0);
1114
1115 if (usb_endpoint_xfer_control(ep->desc)) {
1116 if (xudc->setup_state == DATA_STAGE_XFER ||
1117 xudc->setup_state == DATA_STAGE_RECV)
1118 trb_write_type(trb, TRB_TYPE_DATA_STAGE);
1119 else
1120 trb_write_type(trb, TRB_TYPE_STATUS_STAGE);
1121
1122 if (xudc->setup_state == DATA_STAGE_XFER ||
1123 xudc->setup_state == STATUS_STAGE_XFER)
1124 trb_write_data_stage_dir(trb, 1);
1125 else
1126 trb_write_data_stage_dir(trb, 0);
1127 } else if (usb_endpoint_xfer_isoc(ep->desc)) {
1128 trb_write_type(trb, TRB_TYPE_ISOCH);
1129 trb_write_sia(trb, 1);
1130 trb_write_frame_id(trb, 0);
1131 trb_write_tlbpc(trb, 0);
1132 } else if (usb_ss_max_streams(ep->comp_desc)) {
1133 trb_write_type(trb, TRB_TYPE_STREAM);
1134 trb_write_stream_id(trb, req->usb_req.stream_id);
1135 } else {
1136 trb_write_type(trb, TRB_TYPE_NORMAL);
1137 trb_write_stream_id(trb, 0);
1138 }
1139
1140 trb_write_cycle(trb, ep->pcs);
1141
1142 req->trbs_queued++;
1143 req->buf_queued += len;
1144
1145 dump_trb(xudc, "TRANSFER", trb);
1146 }
1147
tegra_xudc_queue_trbs(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req)1148 static unsigned int tegra_xudc_queue_trbs(struct tegra_xudc_ep *ep,
1149 struct tegra_xudc_request *req)
1150 {
1151 unsigned int i, count, available;
1152 bool wait_td = false;
1153
1154 available = ep_available_trbs(ep);
1155 count = req->trbs_needed - req->trbs_queued;
1156 if (available < count) {
1157 count = available;
1158 ep->ring_full = true;
1159 }
1160
1161 /*
1162 * To generate zero-length packet on USB bus, SW needs schedule a
1163 * standalone zero-length TD. According to HW's behavior, SW needs
1164 * to schedule TDs in different ways for different endpoint types.
1165 *
1166 * For control endpoint:
1167 * - Data stage TD (IOC = 1, CH = 0)
1168 * - Ring doorbell and wait transfer event
1169 * - Data stage TD for ZLP (IOC = 1, CH = 0)
1170 * - Ring doorbell
1171 *
1172 * For bulk and interrupt endpoints:
1173 * - Normal transfer TD (IOC = 0, CH = 0)
1174 * - Normal transfer TD for ZLP (IOC = 1, CH = 0)
1175 * - Ring doorbell
1176 */
1177
1178 if (req->need_zlp && usb_endpoint_xfer_control(ep->desc) && count > 1)
1179 wait_td = true;
1180
1181 if (!req->first_trb)
1182 req->first_trb = &ep->transfer_ring[ep->enq_ptr];
1183
1184 for (i = 0; i < count; i++) {
1185 struct tegra_xudc_trb *trb = &ep->transfer_ring[ep->enq_ptr];
1186 bool ioc = false;
1187
1188 if ((i == count - 1) || (wait_td && i == count - 2))
1189 ioc = true;
1190
1191 tegra_xudc_queue_one_trb(ep, req, trb, ioc);
1192 req->last_trb = trb;
1193
1194 ep->enq_ptr++;
1195 if (ep->enq_ptr == XUDC_TRANSFER_RING_SIZE - 1) {
1196 trb = &ep->transfer_ring[ep->enq_ptr];
1197 trb_write_cycle(trb, ep->pcs);
1198 ep->pcs = !ep->pcs;
1199 ep->enq_ptr = 0;
1200 }
1201
1202 if (ioc)
1203 break;
1204 }
1205
1206 return count;
1207 }
1208
tegra_xudc_ep_ring_doorbell(struct tegra_xudc_ep * ep)1209 static void tegra_xudc_ep_ring_doorbell(struct tegra_xudc_ep *ep)
1210 {
1211 struct tegra_xudc *xudc = ep->xudc;
1212 u32 val;
1213
1214 if (list_empty(&ep->queue))
1215 return;
1216
1217 val = DB_TARGET(ep->index);
1218 if (usb_endpoint_xfer_control(ep->desc)) {
1219 val |= DB_STREAMID(xudc->setup_seq_num);
1220 } else if (usb_ss_max_streams(ep->comp_desc) > 0) {
1221 struct tegra_xudc_request *req;
1222
1223 /* Don't ring doorbell if the stream has been rejected. */
1224 if (ep->stream_rejected)
1225 return;
1226
1227 req = list_first_entry(&ep->queue, struct tegra_xudc_request,
1228 list);
1229 val |= DB_STREAMID(req->usb_req.stream_id);
1230 }
1231
1232 dev_dbg(xudc->dev, "ring doorbell: %#x\n", val);
1233 xudc_writel(xudc, val, DB);
1234 }
1235
tegra_xudc_ep_kick_queue(struct tegra_xudc_ep * ep)1236 static void tegra_xudc_ep_kick_queue(struct tegra_xudc_ep *ep)
1237 {
1238 struct tegra_xudc_request *req;
1239 bool trbs_queued = false;
1240
1241 list_for_each_entry(req, &ep->queue, list) {
1242 if (ep->ring_full)
1243 break;
1244
1245 if (tegra_xudc_queue_trbs(ep, req) > 0)
1246 trbs_queued = true;
1247 }
1248
1249 if (trbs_queued)
1250 tegra_xudc_ep_ring_doorbell(ep);
1251 }
1252
1253 static int
__tegra_xudc_ep_queue(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req)1254 __tegra_xudc_ep_queue(struct tegra_xudc_ep *ep, struct tegra_xudc_request *req)
1255 {
1256 struct tegra_xudc *xudc = ep->xudc;
1257 int err;
1258
1259 if (usb_endpoint_xfer_control(ep->desc) && !list_empty(&ep->queue)) {
1260 dev_err(xudc->dev, "control EP has pending transfers\n");
1261 return -EINVAL;
1262 }
1263
1264 if (usb_endpoint_xfer_control(ep->desc)) {
1265 err = usb_gadget_map_request(&xudc->gadget, &req->usb_req,
1266 (xudc->setup_state ==
1267 DATA_STAGE_XFER));
1268 } else {
1269 err = usb_gadget_map_request(&xudc->gadget, &req->usb_req,
1270 usb_endpoint_dir_in(ep->desc));
1271 }
1272
1273 if (err < 0) {
1274 dev_err(xudc->dev, "failed to map request: %d\n", err);
1275 return err;
1276 }
1277
1278 req->first_trb = NULL;
1279 req->last_trb = NULL;
1280 req->buf_queued = 0;
1281 req->trbs_queued = 0;
1282 req->need_zlp = false;
1283 req->trbs_needed = DIV_ROUND_UP(req->usb_req.length,
1284 XUDC_TRB_MAX_BUFFER_SIZE);
1285 if (req->usb_req.length == 0)
1286 req->trbs_needed++;
1287
1288 if (!usb_endpoint_xfer_isoc(ep->desc) &&
1289 req->usb_req.zero && req->usb_req.length &&
1290 ((req->usb_req.length % ep->usb_ep.maxpacket) == 0)) {
1291 req->trbs_needed++;
1292 req->need_zlp = true;
1293 }
1294
1295 req->usb_req.status = -EINPROGRESS;
1296 req->usb_req.actual = 0;
1297
1298 list_add_tail(&req->list, &ep->queue);
1299
1300 tegra_xudc_ep_kick_queue(ep);
1301
1302 return 0;
1303 }
1304
1305 static int
tegra_xudc_ep_queue(struct usb_ep * usb_ep,struct usb_request * usb_req,gfp_t gfp)1306 tegra_xudc_ep_queue(struct usb_ep *usb_ep, struct usb_request *usb_req,
1307 gfp_t gfp)
1308 {
1309 struct tegra_xudc_request *req;
1310 struct tegra_xudc_ep *ep;
1311 struct tegra_xudc *xudc;
1312 unsigned long flags;
1313 int ret;
1314
1315 if (!usb_ep || !usb_req)
1316 return -EINVAL;
1317
1318 ep = to_xudc_ep(usb_ep);
1319 req = to_xudc_req(usb_req);
1320 xudc = ep->xudc;
1321
1322 spin_lock_irqsave(&xudc->lock, flags);
1323 if (xudc->powergated || !ep->desc) {
1324 ret = -ESHUTDOWN;
1325 goto unlock;
1326 }
1327
1328 ret = __tegra_xudc_ep_queue(ep, req);
1329 unlock:
1330 spin_unlock_irqrestore(&xudc->lock, flags);
1331
1332 return ret;
1333 }
1334
squeeze_transfer_ring(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req)1335 static void squeeze_transfer_ring(struct tegra_xudc_ep *ep,
1336 struct tegra_xudc_request *req)
1337 {
1338 struct tegra_xudc_trb *trb = req->first_trb;
1339 bool pcs_enq = trb_read_cycle(trb);
1340 bool pcs;
1341
1342 /*
1343 * Clear out all the TRBs part of or after the cancelled request,
1344 * and must correct trb cycle bit to the last un-enqueued state.
1345 */
1346 while (trb != &ep->transfer_ring[ep->enq_ptr]) {
1347 pcs = trb_read_cycle(trb);
1348 memset(trb, 0, sizeof(*trb));
1349 trb_write_cycle(trb, !pcs);
1350 trb++;
1351
1352 if (trb_read_type(trb) == TRB_TYPE_LINK)
1353 trb = ep->transfer_ring;
1354 }
1355
1356 /* Requests will be re-queued at the start of the cancelled request. */
1357 ep->enq_ptr = req->first_trb - ep->transfer_ring;
1358 /*
1359 * Retrieve the correct cycle bit state from the first trb of
1360 * the cancelled request.
1361 */
1362 ep->pcs = pcs_enq;
1363 ep->ring_full = false;
1364 list_for_each_entry_continue(req, &ep->queue, list) {
1365 req->usb_req.status = -EINPROGRESS;
1366 req->usb_req.actual = 0;
1367
1368 req->first_trb = NULL;
1369 req->last_trb = NULL;
1370 req->buf_queued = 0;
1371 req->trbs_queued = 0;
1372 }
1373 }
1374
1375 /*
1376 * Determine if the given TRB is in the range [first trb, last trb] for the
1377 * given request.
1378 */
trb_in_request(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req,struct tegra_xudc_trb * trb)1379 static bool trb_in_request(struct tegra_xudc_ep *ep,
1380 struct tegra_xudc_request *req,
1381 struct tegra_xudc_trb *trb)
1382 {
1383 dev_dbg(ep->xudc->dev, "%s: request %p -> %p; trb %p\n", __func__,
1384 req->first_trb, req->last_trb, trb);
1385
1386 if (trb >= req->first_trb && (trb <= req->last_trb ||
1387 req->last_trb < req->first_trb))
1388 return true;
1389
1390 if (trb < req->first_trb && trb <= req->last_trb &&
1391 req->last_trb < req->first_trb)
1392 return true;
1393
1394 return false;
1395 }
1396
1397 /*
1398 * Determine if the given TRB is in the range [EP enqueue pointer, first TRB)
1399 * for the given endpoint and request.
1400 */
trb_before_request(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req,struct tegra_xudc_trb * trb)1401 static bool trb_before_request(struct tegra_xudc_ep *ep,
1402 struct tegra_xudc_request *req,
1403 struct tegra_xudc_trb *trb)
1404 {
1405 struct tegra_xudc_trb *enq_trb = &ep->transfer_ring[ep->enq_ptr];
1406
1407 dev_dbg(ep->xudc->dev, "%s: request %p -> %p; enq ptr: %p; trb %p\n",
1408 __func__, req->first_trb, req->last_trb, enq_trb, trb);
1409
1410 if (trb < req->first_trb && (enq_trb <= trb ||
1411 req->first_trb < enq_trb))
1412 return true;
1413
1414 if (trb > req->first_trb && req->first_trb < enq_trb && enq_trb <= trb)
1415 return true;
1416
1417 return false;
1418 }
1419
1420 static int
__tegra_xudc_ep_dequeue(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req)1421 __tegra_xudc_ep_dequeue(struct tegra_xudc_ep *ep,
1422 struct tegra_xudc_request *req)
1423 {
1424 struct tegra_xudc *xudc = ep->xudc;
1425 struct tegra_xudc_request *r = NULL, *iter;
1426 struct tegra_xudc_trb *deq_trb;
1427 bool busy, kick_queue = false;
1428 int ret = 0;
1429
1430 /* Make sure the request is actually queued to this endpoint. */
1431 list_for_each_entry(iter, &ep->queue, list) {
1432 if (iter != req)
1433 continue;
1434 r = iter;
1435 break;
1436 }
1437
1438 if (!r)
1439 return -EINVAL;
1440
1441 /* Request hasn't been queued in the transfer ring yet. */
1442 if (!req->trbs_queued) {
1443 tegra_xudc_req_done(ep, req, -ECONNRESET);
1444 return 0;
1445 }
1446
1447 /* Halt DMA for this endpoint. */
1448 if (ep_ctx_read_state(ep->context) == EP_STATE_RUNNING) {
1449 ep_pause(xudc, ep->index);
1450 ep_wait_for_inactive(xudc, ep->index);
1451 }
1452
1453 deq_trb = trb_phys_to_virt(ep, ep_ctx_read_deq_ptr(ep->context));
1454 /* Is the hardware processing the TRB at the dequeue pointer? */
1455 busy = (trb_read_cycle(deq_trb) == ep_ctx_read_dcs(ep->context));
1456
1457 if (trb_in_request(ep, req, deq_trb) && busy) {
1458 /*
1459 * Request has been partially completed or it hasn't
1460 * started processing yet.
1461 */
1462 dma_addr_t deq_ptr;
1463
1464 squeeze_transfer_ring(ep, req);
1465
1466 req->usb_req.actual = ep_ctx_read_edtla(ep->context);
1467 tegra_xudc_req_done(ep, req, -ECONNRESET);
1468 kick_queue = true;
1469
1470 /* EDTLA is > 0: request has been partially completed */
1471 if (req->usb_req.actual > 0) {
1472 /*
1473 * Abort the pending transfer and update the dequeue
1474 * pointer
1475 */
1476 ep_ctx_write_edtla(ep->context, 0);
1477 ep_ctx_write_partial_td(ep->context, 0);
1478 ep_ctx_write_data_offset(ep->context, 0);
1479
1480 deq_ptr = trb_virt_to_phys(ep,
1481 &ep->transfer_ring[ep->enq_ptr]);
1482
1483 if (dma_mapping_error(xudc->dev, deq_ptr)) {
1484 ret = -EINVAL;
1485 } else {
1486 ep_ctx_write_deq_ptr(ep->context, deq_ptr);
1487 ep_ctx_write_dcs(ep->context, ep->pcs);
1488 ep_reload(xudc, ep->index);
1489 }
1490 }
1491 } else if (trb_before_request(ep, req, deq_trb) && busy) {
1492 /* Request hasn't started processing yet. */
1493 squeeze_transfer_ring(ep, req);
1494
1495 tegra_xudc_req_done(ep, req, -ECONNRESET);
1496 kick_queue = true;
1497 } else {
1498 /*
1499 * Request has completed, but we haven't processed the
1500 * completion event yet.
1501 */
1502 tegra_xudc_req_done(ep, req, -ECONNRESET);
1503 ret = -EINVAL;
1504 }
1505
1506 /* Resume the endpoint. */
1507 ep_unpause(xudc, ep->index);
1508
1509 if (kick_queue)
1510 tegra_xudc_ep_kick_queue(ep);
1511
1512 return ret;
1513 }
1514
1515 static int
tegra_xudc_ep_dequeue(struct usb_ep * usb_ep,struct usb_request * usb_req)1516 tegra_xudc_ep_dequeue(struct usb_ep *usb_ep, struct usb_request *usb_req)
1517 {
1518 struct tegra_xudc_request *req;
1519 struct tegra_xudc_ep *ep;
1520 struct tegra_xudc *xudc;
1521 unsigned long flags;
1522 int ret;
1523
1524 if (!usb_ep || !usb_req)
1525 return -EINVAL;
1526
1527 ep = to_xudc_ep(usb_ep);
1528 req = to_xudc_req(usb_req);
1529 xudc = ep->xudc;
1530
1531 spin_lock_irqsave(&xudc->lock, flags);
1532
1533 if (xudc->powergated || !ep->desc) {
1534 ret = -ESHUTDOWN;
1535 goto unlock;
1536 }
1537
1538 ret = __tegra_xudc_ep_dequeue(ep, req);
1539 unlock:
1540 spin_unlock_irqrestore(&xudc->lock, flags);
1541
1542 return ret;
1543 }
1544
__tegra_xudc_ep_set_halt(struct tegra_xudc_ep * ep,bool halt)1545 static int __tegra_xudc_ep_set_halt(struct tegra_xudc_ep *ep, bool halt)
1546 {
1547 struct tegra_xudc *xudc = ep->xudc;
1548
1549 if (!ep->desc)
1550 return -EINVAL;
1551
1552 if (usb_endpoint_xfer_isoc(ep->desc)) {
1553 dev_err(xudc->dev, "can't halt isochronous EP\n");
1554 return -ENOTSUPP;
1555 }
1556
1557 if (!!(xudc_readl(xudc, EP_HALT) & BIT(ep->index)) == halt) {
1558 dev_dbg(xudc->dev, "EP %u already %s\n", ep->index,
1559 halt ? "halted" : "not halted");
1560 return 0;
1561 }
1562
1563 if (halt) {
1564 ep_halt(xudc, ep->index);
1565 } else {
1566 ep_ctx_write_state(ep->context, EP_STATE_DISABLED);
1567
1568 ep_reload(xudc, ep->index);
1569
1570 ep_ctx_write_state(ep->context, EP_STATE_RUNNING);
1571 ep_ctx_write_rsvd(ep->context, 0);
1572 ep_ctx_write_partial_td(ep->context, 0);
1573 ep_ctx_write_splitxstate(ep->context, 0);
1574 ep_ctx_write_seq_num(ep->context, 0);
1575
1576 ep_reload(xudc, ep->index);
1577 ep_unpause(xudc, ep->index);
1578 ep_unhalt(xudc, ep->index);
1579
1580 tegra_xudc_ep_ring_doorbell(ep);
1581 }
1582
1583 return 0;
1584 }
1585
tegra_xudc_ep_set_halt(struct usb_ep * usb_ep,int value)1586 static int tegra_xudc_ep_set_halt(struct usb_ep *usb_ep, int value)
1587 {
1588 struct tegra_xudc_ep *ep;
1589 struct tegra_xudc *xudc;
1590 unsigned long flags;
1591 int ret;
1592
1593 if (!usb_ep)
1594 return -EINVAL;
1595
1596 ep = to_xudc_ep(usb_ep);
1597 xudc = ep->xudc;
1598
1599 spin_lock_irqsave(&xudc->lock, flags);
1600 if (xudc->powergated) {
1601 ret = -ESHUTDOWN;
1602 goto unlock;
1603 }
1604
1605 if (value && usb_endpoint_dir_in(ep->desc) &&
1606 !list_empty(&ep->queue)) {
1607 dev_err(xudc->dev, "can't halt EP with requests pending\n");
1608 ret = -EAGAIN;
1609 goto unlock;
1610 }
1611
1612 ret = __tegra_xudc_ep_set_halt(ep, value);
1613 unlock:
1614 spin_unlock_irqrestore(&xudc->lock, flags);
1615
1616 return ret;
1617 }
1618
tegra_xudc_ep_context_setup(struct tegra_xudc_ep * ep)1619 static void tegra_xudc_ep_context_setup(struct tegra_xudc_ep *ep)
1620 {
1621 const struct usb_endpoint_descriptor *desc = ep->desc;
1622 const struct usb_ss_ep_comp_descriptor *comp_desc = ep->comp_desc;
1623 struct tegra_xudc *xudc = ep->xudc;
1624 u16 maxpacket, maxburst = 0, esit = 0;
1625 u32 val;
1626
1627 maxpacket = usb_endpoint_maxp(desc);
1628 if (xudc->gadget.speed == USB_SPEED_SUPER) {
1629 if (!usb_endpoint_xfer_control(desc))
1630 maxburst = comp_desc->bMaxBurst;
1631
1632 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc))
1633 esit = le16_to_cpu(comp_desc->wBytesPerInterval);
1634 } else if ((xudc->gadget.speed < USB_SPEED_SUPER) &&
1635 (usb_endpoint_xfer_int(desc) ||
1636 usb_endpoint_xfer_isoc(desc))) {
1637 if (xudc->gadget.speed == USB_SPEED_HIGH) {
1638 maxburst = usb_endpoint_maxp_mult(desc) - 1;
1639 if (maxburst == 0x3) {
1640 dev_warn(xudc->dev,
1641 "invalid endpoint maxburst\n");
1642 maxburst = 0x2;
1643 }
1644 }
1645 esit = maxpacket * (maxburst + 1);
1646 }
1647
1648 memset(ep->context, 0, sizeof(*ep->context));
1649
1650 ep_ctx_write_state(ep->context, EP_STATE_RUNNING);
1651 ep_ctx_write_interval(ep->context, desc->bInterval);
1652 if (xudc->gadget.speed == USB_SPEED_SUPER) {
1653 if (usb_endpoint_xfer_isoc(desc)) {
1654 ep_ctx_write_mult(ep->context,
1655 comp_desc->bmAttributes & 0x3);
1656 }
1657
1658 if (usb_endpoint_xfer_bulk(desc)) {
1659 ep_ctx_write_max_pstreams(ep->context,
1660 comp_desc->bmAttributes &
1661 0x1f);
1662 ep_ctx_write_lsa(ep->context, 1);
1663 }
1664 }
1665
1666 if (!usb_endpoint_xfer_control(desc) && usb_endpoint_dir_out(desc))
1667 val = usb_endpoint_type(desc);
1668 else
1669 val = usb_endpoint_type(desc) + EP_TYPE_CONTROL;
1670
1671 ep_ctx_write_type(ep->context, val);
1672 ep_ctx_write_cerr(ep->context, 0x3);
1673 ep_ctx_write_max_packet_size(ep->context, maxpacket);
1674 ep_ctx_write_max_burst_size(ep->context, maxburst);
1675
1676 ep_ctx_write_deq_ptr(ep->context, ep->transfer_ring_phys);
1677 ep_ctx_write_dcs(ep->context, ep->pcs);
1678
1679 /* Select a reasonable average TRB length based on endpoint type. */
1680 switch (usb_endpoint_type(desc)) {
1681 case USB_ENDPOINT_XFER_CONTROL:
1682 val = 8;
1683 break;
1684 case USB_ENDPOINT_XFER_INT:
1685 val = 1024;
1686 break;
1687 case USB_ENDPOINT_XFER_BULK:
1688 case USB_ENDPOINT_XFER_ISOC:
1689 default:
1690 val = 3072;
1691 break;
1692 }
1693
1694 ep_ctx_write_avg_trb_len(ep->context, val);
1695 ep_ctx_write_max_esit_payload(ep->context, esit);
1696
1697 ep_ctx_write_cerrcnt(ep->context, 0x3);
1698 }
1699
setup_link_trb(struct tegra_xudc_ep * ep,struct tegra_xudc_trb * trb)1700 static void setup_link_trb(struct tegra_xudc_ep *ep,
1701 struct tegra_xudc_trb *trb)
1702 {
1703 trb_write_data_ptr(trb, ep->transfer_ring_phys);
1704 trb_write_type(trb, TRB_TYPE_LINK);
1705 trb_write_toggle_cycle(trb, 1);
1706 }
1707
__tegra_xudc_ep_disable(struct tegra_xudc_ep * ep)1708 static int __tegra_xudc_ep_disable(struct tegra_xudc_ep *ep)
1709 {
1710 struct tegra_xudc *xudc = ep->xudc;
1711
1712 if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) {
1713 dev_err(xudc->dev, "endpoint %u already disabled\n",
1714 ep->index);
1715 return -EINVAL;
1716 }
1717
1718 ep_ctx_write_state(ep->context, EP_STATE_DISABLED);
1719
1720 ep_reload(xudc, ep->index);
1721
1722 tegra_xudc_ep_nuke(ep, -ESHUTDOWN);
1723
1724 xudc->nr_enabled_eps--;
1725 if (usb_endpoint_xfer_isoc(ep->desc))
1726 xudc->nr_isoch_eps--;
1727
1728 ep->desc = NULL;
1729 ep->comp_desc = NULL;
1730
1731 memset(ep->context, 0, sizeof(*ep->context));
1732
1733 ep_unpause(xudc, ep->index);
1734 ep_unhalt(xudc, ep->index);
1735 if (xudc_readl(xudc, EP_STOPPED) & BIT(ep->index))
1736 xudc_writel(xudc, BIT(ep->index), EP_STOPPED);
1737
1738 /*
1739 * If this is the last endpoint disabled in a de-configure request,
1740 * switch back to address state.
1741 */
1742 if ((xudc->device_state == USB_STATE_CONFIGURED) &&
1743 (xudc->nr_enabled_eps == 1)) {
1744 u32 val;
1745
1746 xudc->device_state = USB_STATE_ADDRESS;
1747 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
1748
1749 val = xudc_readl(xudc, CTRL);
1750 val &= ~CTRL_RUN;
1751 xudc_writel(xudc, val, CTRL);
1752 }
1753
1754 dev_info(xudc->dev, "ep %u disabled\n", ep->index);
1755
1756 return 0;
1757 }
1758
tegra_xudc_ep_disable(struct usb_ep * usb_ep)1759 static int tegra_xudc_ep_disable(struct usb_ep *usb_ep)
1760 {
1761 struct tegra_xudc_ep *ep;
1762 struct tegra_xudc *xudc;
1763 unsigned long flags;
1764 int ret;
1765
1766 if (!usb_ep)
1767 return -EINVAL;
1768
1769 ep = to_xudc_ep(usb_ep);
1770 xudc = ep->xudc;
1771
1772 spin_lock_irqsave(&xudc->lock, flags);
1773 if (xudc->powergated) {
1774 ret = -ESHUTDOWN;
1775 goto unlock;
1776 }
1777
1778 ret = __tegra_xudc_ep_disable(ep);
1779 unlock:
1780 spin_unlock_irqrestore(&xudc->lock, flags);
1781
1782 return ret;
1783 }
1784
__tegra_xudc_ep_enable(struct tegra_xudc_ep * ep,const struct usb_endpoint_descriptor * desc)1785 static int __tegra_xudc_ep_enable(struct tegra_xudc_ep *ep,
1786 const struct usb_endpoint_descriptor *desc)
1787 {
1788 struct tegra_xudc *xudc = ep->xudc;
1789 unsigned int i;
1790 u32 val;
1791
1792 if (xudc->gadget.speed == USB_SPEED_SUPER &&
1793 !usb_endpoint_xfer_control(desc) && !ep->usb_ep.comp_desc)
1794 return -EINVAL;
1795
1796 /* Disable the EP if it is not disabled */
1797 if (ep_ctx_read_state(ep->context) != EP_STATE_DISABLED)
1798 __tegra_xudc_ep_disable(ep);
1799
1800 ep->desc = desc;
1801 ep->comp_desc = ep->usb_ep.comp_desc;
1802
1803 if (usb_endpoint_xfer_isoc(desc)) {
1804 if (xudc->nr_isoch_eps > XUDC_MAX_ISOCH_EPS) {
1805 dev_err(xudc->dev, "too many isochronous endpoints\n");
1806 return -EBUSY;
1807 }
1808 xudc->nr_isoch_eps++;
1809 }
1810
1811 memset(ep->transfer_ring, 0, XUDC_TRANSFER_RING_SIZE *
1812 sizeof(*ep->transfer_ring));
1813 setup_link_trb(ep, &ep->transfer_ring[XUDC_TRANSFER_RING_SIZE - 1]);
1814
1815 ep->enq_ptr = 0;
1816 ep->deq_ptr = 0;
1817 ep->pcs = true;
1818 ep->ring_full = false;
1819 xudc->nr_enabled_eps++;
1820
1821 tegra_xudc_ep_context_setup(ep);
1822
1823 /*
1824 * No need to reload and un-halt EP0. This will be done automatically
1825 * once a valid SETUP packet is received.
1826 */
1827 if (usb_endpoint_xfer_control(desc))
1828 goto out;
1829
1830 /*
1831 * Transition to configured state once the first non-control
1832 * endpoint is enabled.
1833 */
1834 if (xudc->device_state == USB_STATE_ADDRESS) {
1835 val = xudc_readl(xudc, CTRL);
1836 val |= CTRL_RUN;
1837 xudc_writel(xudc, val, CTRL);
1838
1839 xudc->device_state = USB_STATE_CONFIGURED;
1840 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
1841 }
1842
1843 if (usb_endpoint_xfer_isoc(desc)) {
1844 /*
1845 * Pause all bulk endpoints when enabling an isoch endpoint
1846 * to ensure the isoch endpoint is allocated enough bandwidth.
1847 */
1848 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) {
1849 if (xudc->ep[i].desc &&
1850 usb_endpoint_xfer_bulk(xudc->ep[i].desc))
1851 ep_pause(xudc, i);
1852 }
1853 }
1854
1855 ep_reload(xudc, ep->index);
1856 ep_unpause(xudc, ep->index);
1857 ep_unhalt(xudc, ep->index);
1858
1859 if (usb_endpoint_xfer_isoc(desc)) {
1860 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) {
1861 if (xudc->ep[i].desc &&
1862 usb_endpoint_xfer_bulk(xudc->ep[i].desc))
1863 ep_unpause(xudc, i);
1864 }
1865 }
1866
1867 out:
1868 dev_info(xudc->dev, "EP %u (type: %s, dir: %s) enabled\n", ep->index,
1869 usb_ep_type_string(usb_endpoint_type(ep->desc)),
1870 usb_endpoint_dir_in(ep->desc) ? "in" : "out");
1871
1872 return 0;
1873 }
1874
tegra_xudc_ep_enable(struct usb_ep * usb_ep,const struct usb_endpoint_descriptor * desc)1875 static int tegra_xudc_ep_enable(struct usb_ep *usb_ep,
1876 const struct usb_endpoint_descriptor *desc)
1877 {
1878 struct tegra_xudc_ep *ep;
1879 struct tegra_xudc *xudc;
1880 unsigned long flags;
1881 int ret;
1882
1883 if (!usb_ep || !desc || (desc->bDescriptorType != USB_DT_ENDPOINT))
1884 return -EINVAL;
1885
1886 ep = to_xudc_ep(usb_ep);
1887 xudc = ep->xudc;
1888
1889 spin_lock_irqsave(&xudc->lock, flags);
1890 if (xudc->powergated) {
1891 ret = -ESHUTDOWN;
1892 goto unlock;
1893 }
1894
1895 ret = __tegra_xudc_ep_enable(ep, desc);
1896 unlock:
1897 spin_unlock_irqrestore(&xudc->lock, flags);
1898
1899 return ret;
1900 }
1901
1902 static struct usb_request *
tegra_xudc_ep_alloc_request(struct usb_ep * usb_ep,gfp_t gfp)1903 tegra_xudc_ep_alloc_request(struct usb_ep *usb_ep, gfp_t gfp)
1904 {
1905 struct tegra_xudc_request *req;
1906
1907 req = kzalloc(sizeof(*req), gfp);
1908 if (!req)
1909 return NULL;
1910
1911 INIT_LIST_HEAD(&req->list);
1912
1913 return &req->usb_req;
1914 }
1915
tegra_xudc_ep_free_request(struct usb_ep * usb_ep,struct usb_request * usb_req)1916 static void tegra_xudc_ep_free_request(struct usb_ep *usb_ep,
1917 struct usb_request *usb_req)
1918 {
1919 struct tegra_xudc_request *req = to_xudc_req(usb_req);
1920
1921 kfree(req);
1922 }
1923
1924 static const struct usb_ep_ops tegra_xudc_ep_ops = {
1925 .enable = tegra_xudc_ep_enable,
1926 .disable = tegra_xudc_ep_disable,
1927 .alloc_request = tegra_xudc_ep_alloc_request,
1928 .free_request = tegra_xudc_ep_free_request,
1929 .queue = tegra_xudc_ep_queue,
1930 .dequeue = tegra_xudc_ep_dequeue,
1931 .set_halt = tegra_xudc_ep_set_halt,
1932 };
1933
tegra_xudc_ep0_enable(struct usb_ep * usb_ep,const struct usb_endpoint_descriptor * desc)1934 static int tegra_xudc_ep0_enable(struct usb_ep *usb_ep,
1935 const struct usb_endpoint_descriptor *desc)
1936 {
1937 return -EBUSY;
1938 }
1939
tegra_xudc_ep0_disable(struct usb_ep * usb_ep)1940 static int tegra_xudc_ep0_disable(struct usb_ep *usb_ep)
1941 {
1942 return -EBUSY;
1943 }
1944
1945 static const struct usb_ep_ops tegra_xudc_ep0_ops = {
1946 .enable = tegra_xudc_ep0_enable,
1947 .disable = tegra_xudc_ep0_disable,
1948 .alloc_request = tegra_xudc_ep_alloc_request,
1949 .free_request = tegra_xudc_ep_free_request,
1950 .queue = tegra_xudc_ep_queue,
1951 .dequeue = tegra_xudc_ep_dequeue,
1952 .set_halt = tegra_xudc_ep_set_halt,
1953 };
1954
tegra_xudc_gadget_get_frame(struct usb_gadget * gadget)1955 static int tegra_xudc_gadget_get_frame(struct usb_gadget *gadget)
1956 {
1957 struct tegra_xudc *xudc = to_xudc(gadget);
1958 unsigned long flags;
1959 int ret;
1960
1961 spin_lock_irqsave(&xudc->lock, flags);
1962 if (xudc->powergated) {
1963 ret = -ESHUTDOWN;
1964 goto unlock;
1965 }
1966
1967 ret = (xudc_readl(xudc, MFINDEX) & MFINDEX_FRAME_MASK) >>
1968 MFINDEX_FRAME_SHIFT;
1969 unlock:
1970 spin_unlock_irqrestore(&xudc->lock, flags);
1971
1972 return ret;
1973 }
1974
tegra_xudc_resume_device_state(struct tegra_xudc * xudc)1975 static void tegra_xudc_resume_device_state(struct tegra_xudc *xudc)
1976 {
1977 unsigned int i;
1978 u32 val;
1979
1980 ep_unpause_all(xudc);
1981
1982 /* Direct link to U0. */
1983 val = xudc_readl(xudc, PORTSC);
1984 if (((val & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT) != PORTSC_PLS_U0) {
1985 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
1986 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0);
1987 xudc_writel(xudc, val, PORTSC);
1988 }
1989
1990 if (xudc->device_state == USB_STATE_SUSPENDED) {
1991 xudc->device_state = xudc->resume_state;
1992 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
1993 xudc->resume_state = 0;
1994 }
1995
1996 /*
1997 * Doorbells may be dropped if they are sent too soon (< ~200ns)
1998 * after unpausing the endpoint. Wait for 500ns just to be safe.
1999 */
2000 ndelay(500);
2001 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++)
2002 tegra_xudc_ep_ring_doorbell(&xudc->ep[i]);
2003 }
2004
tegra_xudc_gadget_wakeup(struct usb_gadget * gadget)2005 static int tegra_xudc_gadget_wakeup(struct usb_gadget *gadget)
2006 {
2007 struct tegra_xudc *xudc = to_xudc(gadget);
2008 unsigned long flags;
2009 int ret = 0;
2010 u32 val;
2011
2012 spin_lock_irqsave(&xudc->lock, flags);
2013
2014 if (xudc->powergated) {
2015 ret = -ESHUTDOWN;
2016 goto unlock;
2017 }
2018 val = xudc_readl(xudc, PORTPM);
2019 dev_dbg(xudc->dev, "%s: PORTPM=%#x, speed=%x\n", __func__,
2020 val, gadget->speed);
2021
2022 if (((xudc->gadget.speed <= USB_SPEED_HIGH) &&
2023 (val & PORTPM_RWE)) ||
2024 ((xudc->gadget.speed == USB_SPEED_SUPER) &&
2025 (val & PORTPM_FRWE))) {
2026 tegra_xudc_resume_device_state(xudc);
2027
2028 /* Send Device Notification packet. */
2029 if (xudc->gadget.speed == USB_SPEED_SUPER) {
2030 val = DEVNOTIF_LO_TYPE(DEVNOTIF_LO_TYPE_FUNCTION_WAKE)
2031 | DEVNOTIF_LO_TRIG;
2032 xudc_writel(xudc, 0, DEVNOTIF_HI);
2033 xudc_writel(xudc, val, DEVNOTIF_LO);
2034 }
2035 }
2036
2037 unlock:
2038 dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret);
2039 spin_unlock_irqrestore(&xudc->lock, flags);
2040
2041 return ret;
2042 }
2043
tegra_xudc_gadget_pullup(struct usb_gadget * gadget,int is_on)2044 static int tegra_xudc_gadget_pullup(struct usb_gadget *gadget, int is_on)
2045 {
2046 struct tegra_xudc *xudc = to_xudc(gadget);
2047 unsigned long flags;
2048 u32 val;
2049
2050 pm_runtime_get_sync(xudc->dev);
2051
2052 spin_lock_irqsave(&xudc->lock, flags);
2053
2054 if (is_on != xudc->pullup) {
2055 val = xudc_readl(xudc, CTRL);
2056 if (is_on)
2057 val |= CTRL_ENABLE;
2058 else
2059 val &= ~CTRL_ENABLE;
2060 xudc_writel(xudc, val, CTRL);
2061 }
2062
2063 xudc->pullup = is_on;
2064 dev_dbg(xudc->dev, "%s: pullup:%d", __func__, is_on);
2065
2066 spin_unlock_irqrestore(&xudc->lock, flags);
2067
2068 pm_runtime_put(xudc->dev);
2069
2070 return 0;
2071 }
2072
tegra_xudc_gadget_start(struct usb_gadget * gadget,struct usb_gadget_driver * driver)2073 static int tegra_xudc_gadget_start(struct usb_gadget *gadget,
2074 struct usb_gadget_driver *driver)
2075 {
2076 struct tegra_xudc *xudc = to_xudc(gadget);
2077 unsigned long flags;
2078 u32 val;
2079 int ret;
2080 unsigned int i;
2081
2082 if (!driver)
2083 return -EINVAL;
2084
2085 pm_runtime_get_sync(xudc->dev);
2086
2087 spin_lock_irqsave(&xudc->lock, flags);
2088
2089 if (xudc->driver) {
2090 ret = -EBUSY;
2091 goto unlock;
2092 }
2093
2094 xudc->setup_state = WAIT_FOR_SETUP;
2095 xudc->device_state = USB_STATE_DEFAULT;
2096 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2097
2098 ret = __tegra_xudc_ep_enable(&xudc->ep[0], &tegra_xudc_ep0_desc);
2099 if (ret < 0)
2100 goto unlock;
2101
2102 val = xudc_readl(xudc, CTRL);
2103 val |= CTRL_IE | CTRL_LSE;
2104 xudc_writel(xudc, val, CTRL);
2105
2106 val = xudc_readl(xudc, PORTHALT);
2107 val |= PORTHALT_STCHG_INTR_EN;
2108 xudc_writel(xudc, val, PORTHALT);
2109
2110 if (xudc->pullup) {
2111 val = xudc_readl(xudc, CTRL);
2112 val |= CTRL_ENABLE;
2113 xudc_writel(xudc, val, CTRL);
2114 }
2115
2116 for (i = 0; i < xudc->soc->num_phys; i++)
2117 if (xudc->usbphy[i])
2118 otg_set_peripheral(xudc->usbphy[i]->otg, gadget);
2119
2120 xudc->driver = driver;
2121 unlock:
2122 dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret);
2123 spin_unlock_irqrestore(&xudc->lock, flags);
2124
2125 pm_runtime_put(xudc->dev);
2126
2127 return ret;
2128 }
2129
tegra_xudc_gadget_stop(struct usb_gadget * gadget)2130 static int tegra_xudc_gadget_stop(struct usb_gadget *gadget)
2131 {
2132 struct tegra_xudc *xudc = to_xudc(gadget);
2133 unsigned long flags;
2134 u32 val;
2135 unsigned int i;
2136
2137 pm_runtime_get_sync(xudc->dev);
2138
2139 spin_lock_irqsave(&xudc->lock, flags);
2140
2141 for (i = 0; i < xudc->soc->num_phys; i++)
2142 if (xudc->usbphy[i])
2143 otg_set_peripheral(xudc->usbphy[i]->otg, NULL);
2144
2145 val = xudc_readl(xudc, CTRL);
2146 val &= ~(CTRL_IE | CTRL_ENABLE);
2147 xudc_writel(xudc, val, CTRL);
2148
2149 __tegra_xudc_ep_disable(&xudc->ep[0]);
2150
2151 xudc->driver = NULL;
2152 dev_dbg(xudc->dev, "Gadget stopped");
2153
2154 spin_unlock_irqrestore(&xudc->lock, flags);
2155
2156 pm_runtime_put(xudc->dev);
2157
2158 return 0;
2159 }
2160
tegra_xudc_gadget_vbus_draw(struct usb_gadget * gadget,unsigned int m_a)2161 static int tegra_xudc_gadget_vbus_draw(struct usb_gadget *gadget,
2162 unsigned int m_a)
2163 {
2164 struct tegra_xudc *xudc = to_xudc(gadget);
2165
2166 dev_dbg(xudc->dev, "%s: %u mA\n", __func__, m_a);
2167
2168 if (xudc->curr_usbphy && xudc->curr_usbphy->chg_type == SDP_TYPE)
2169 return usb_phy_set_power(xudc->curr_usbphy, m_a);
2170
2171 return 0;
2172 }
2173
tegra_xudc_set_selfpowered(struct usb_gadget * gadget,int is_on)2174 static int tegra_xudc_set_selfpowered(struct usb_gadget *gadget, int is_on)
2175 {
2176 struct tegra_xudc *xudc = to_xudc(gadget);
2177
2178 dev_dbg(xudc->dev, "%s: %d\n", __func__, is_on);
2179 xudc->selfpowered = !!is_on;
2180
2181 return 0;
2182 }
2183
2184 static const struct usb_gadget_ops tegra_xudc_gadget_ops = {
2185 .get_frame = tegra_xudc_gadget_get_frame,
2186 .wakeup = tegra_xudc_gadget_wakeup,
2187 .pullup = tegra_xudc_gadget_pullup,
2188 .udc_start = tegra_xudc_gadget_start,
2189 .udc_stop = tegra_xudc_gadget_stop,
2190 .vbus_draw = tegra_xudc_gadget_vbus_draw,
2191 .set_selfpowered = tegra_xudc_set_selfpowered,
2192 };
2193
no_op_complete(struct usb_ep * ep,struct usb_request * req)2194 static void no_op_complete(struct usb_ep *ep, struct usb_request *req)
2195 {
2196 }
2197
2198 static int
tegra_xudc_ep0_queue_status(struct tegra_xudc * xudc,void (* cmpl)(struct usb_ep *,struct usb_request *))2199 tegra_xudc_ep0_queue_status(struct tegra_xudc *xudc,
2200 void (*cmpl)(struct usb_ep *, struct usb_request *))
2201 {
2202 xudc->ep0_req->usb_req.buf = NULL;
2203 xudc->ep0_req->usb_req.dma = 0;
2204 xudc->ep0_req->usb_req.length = 0;
2205 xudc->ep0_req->usb_req.complete = cmpl;
2206 xudc->ep0_req->usb_req.context = xudc;
2207
2208 return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req);
2209 }
2210
2211 static int
tegra_xudc_ep0_queue_data(struct tegra_xudc * xudc,void * buf,size_t len,void (* cmpl)(struct usb_ep *,struct usb_request *))2212 tegra_xudc_ep0_queue_data(struct tegra_xudc *xudc, void *buf, size_t len,
2213 void (*cmpl)(struct usb_ep *, struct usb_request *))
2214 {
2215 xudc->ep0_req->usb_req.buf = buf;
2216 xudc->ep0_req->usb_req.length = len;
2217 xudc->ep0_req->usb_req.complete = cmpl;
2218 xudc->ep0_req->usb_req.context = xudc;
2219
2220 return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req);
2221 }
2222
tegra_xudc_ep0_req_done(struct tegra_xudc * xudc)2223 static void tegra_xudc_ep0_req_done(struct tegra_xudc *xudc)
2224 {
2225 switch (xudc->setup_state) {
2226 case DATA_STAGE_XFER:
2227 xudc->setup_state = STATUS_STAGE_RECV;
2228 tegra_xudc_ep0_queue_status(xudc, no_op_complete);
2229 break;
2230 case DATA_STAGE_RECV:
2231 xudc->setup_state = STATUS_STAGE_XFER;
2232 tegra_xudc_ep0_queue_status(xudc, no_op_complete);
2233 break;
2234 default:
2235 xudc->setup_state = WAIT_FOR_SETUP;
2236 break;
2237 }
2238 }
2239
tegra_xudc_ep0_delegate_req(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2240 static int tegra_xudc_ep0_delegate_req(struct tegra_xudc *xudc,
2241 struct usb_ctrlrequest *ctrl)
2242 {
2243 int ret;
2244
2245 spin_unlock(&xudc->lock);
2246 ret = xudc->driver->setup(&xudc->gadget, ctrl);
2247 spin_lock(&xudc->lock);
2248
2249 return ret;
2250 }
2251
set_feature_complete(struct usb_ep * ep,struct usb_request * req)2252 static void set_feature_complete(struct usb_ep *ep, struct usb_request *req)
2253 {
2254 struct tegra_xudc *xudc = req->context;
2255
2256 if (xudc->test_mode_pattern) {
2257 xudc_writel(xudc, xudc->test_mode_pattern, PORT_TM);
2258 xudc->test_mode_pattern = 0;
2259 }
2260 }
2261
tegra_xudc_ep0_set_feature(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2262 static int tegra_xudc_ep0_set_feature(struct tegra_xudc *xudc,
2263 struct usb_ctrlrequest *ctrl)
2264 {
2265 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
2266 u32 feature = le16_to_cpu(ctrl->wValue);
2267 u32 index = le16_to_cpu(ctrl->wIndex);
2268 u32 val, ep;
2269 int ret;
2270
2271 if (le16_to_cpu(ctrl->wLength) != 0)
2272 return -EINVAL;
2273
2274 switch (ctrl->bRequestType & USB_RECIP_MASK) {
2275 case USB_RECIP_DEVICE:
2276 switch (feature) {
2277 case USB_DEVICE_REMOTE_WAKEUP:
2278 if ((xudc->gadget.speed == USB_SPEED_SUPER) ||
2279 (xudc->device_state == USB_STATE_DEFAULT))
2280 return -EINVAL;
2281
2282 val = xudc_readl(xudc, PORTPM);
2283 if (set)
2284 val |= PORTPM_RWE;
2285 else
2286 val &= ~PORTPM_RWE;
2287
2288 xudc_writel(xudc, val, PORTPM);
2289 break;
2290 case USB_DEVICE_U1_ENABLE:
2291 case USB_DEVICE_U2_ENABLE:
2292 if ((xudc->device_state != USB_STATE_CONFIGURED) ||
2293 (xudc->gadget.speed != USB_SPEED_SUPER))
2294 return -EINVAL;
2295
2296 val = xudc_readl(xudc, PORTPM);
2297 if ((feature == USB_DEVICE_U1_ENABLE) &&
2298 xudc->soc->u1_enable) {
2299 if (set)
2300 val |= PORTPM_U1E;
2301 else
2302 val &= ~PORTPM_U1E;
2303 }
2304
2305 if ((feature == USB_DEVICE_U2_ENABLE) &&
2306 xudc->soc->u2_enable) {
2307 if (set)
2308 val |= PORTPM_U2E;
2309 else
2310 val &= ~PORTPM_U2E;
2311 }
2312
2313 xudc_writel(xudc, val, PORTPM);
2314 break;
2315 case USB_DEVICE_TEST_MODE:
2316 if (xudc->gadget.speed != USB_SPEED_HIGH)
2317 return -EINVAL;
2318
2319 if (!set)
2320 return -EINVAL;
2321
2322 xudc->test_mode_pattern = index >> 8;
2323 break;
2324 default:
2325 return -EINVAL;
2326 }
2327
2328 break;
2329 case USB_RECIP_INTERFACE:
2330 if (xudc->device_state != USB_STATE_CONFIGURED)
2331 return -EINVAL;
2332
2333 switch (feature) {
2334 case USB_INTRF_FUNC_SUSPEND:
2335 if (set) {
2336 val = xudc_readl(xudc, PORTPM);
2337
2338 if (index & USB_INTRF_FUNC_SUSPEND_RW)
2339 val |= PORTPM_FRWE;
2340 else
2341 val &= ~PORTPM_FRWE;
2342
2343 xudc_writel(xudc, val, PORTPM);
2344 }
2345
2346 return tegra_xudc_ep0_delegate_req(xudc, ctrl);
2347 default:
2348 return -EINVAL;
2349 }
2350
2351 break;
2352 case USB_RECIP_ENDPOINT:
2353 ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 +
2354 ((index & USB_DIR_IN) ? 1 : 0);
2355
2356 if ((xudc->device_state == USB_STATE_DEFAULT) ||
2357 ((xudc->device_state == USB_STATE_ADDRESS) &&
2358 (index != 0)))
2359 return -EINVAL;
2360
2361 ret = __tegra_xudc_ep_set_halt(&xudc->ep[ep], set);
2362 if (ret < 0)
2363 return ret;
2364 break;
2365 default:
2366 return -EINVAL;
2367 }
2368
2369 return tegra_xudc_ep0_queue_status(xudc, set_feature_complete);
2370 }
2371
tegra_xudc_ep0_get_status(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2372 static int tegra_xudc_ep0_get_status(struct tegra_xudc *xudc,
2373 struct usb_ctrlrequest *ctrl)
2374 {
2375 struct tegra_xudc_ep_context *ep_ctx;
2376 u32 val, ep, index = le16_to_cpu(ctrl->wIndex);
2377 u16 status = 0;
2378
2379 if (!(ctrl->bRequestType & USB_DIR_IN))
2380 return -EINVAL;
2381
2382 if ((le16_to_cpu(ctrl->wValue) != 0) ||
2383 (le16_to_cpu(ctrl->wLength) != 2))
2384 return -EINVAL;
2385
2386 switch (ctrl->bRequestType & USB_RECIP_MASK) {
2387 case USB_RECIP_DEVICE:
2388 val = xudc_readl(xudc, PORTPM);
2389
2390 if (xudc->selfpowered)
2391 status |= BIT(USB_DEVICE_SELF_POWERED);
2392
2393 if ((xudc->gadget.speed < USB_SPEED_SUPER) &&
2394 (val & PORTPM_RWE))
2395 status |= BIT(USB_DEVICE_REMOTE_WAKEUP);
2396
2397 if (xudc->gadget.speed == USB_SPEED_SUPER) {
2398 if (val & PORTPM_U1E)
2399 status |= BIT(USB_DEV_STAT_U1_ENABLED);
2400 if (val & PORTPM_U2E)
2401 status |= BIT(USB_DEV_STAT_U2_ENABLED);
2402 }
2403 break;
2404 case USB_RECIP_INTERFACE:
2405 if (xudc->gadget.speed == USB_SPEED_SUPER) {
2406 status |= USB_INTRF_STAT_FUNC_RW_CAP;
2407 val = xudc_readl(xudc, PORTPM);
2408 if (val & PORTPM_FRWE)
2409 status |= USB_INTRF_STAT_FUNC_RW;
2410 }
2411 break;
2412 case USB_RECIP_ENDPOINT:
2413 ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 +
2414 ((index & USB_DIR_IN) ? 1 : 0);
2415 ep_ctx = &xudc->ep_context[ep];
2416
2417 if ((xudc->device_state != USB_STATE_CONFIGURED) &&
2418 ((xudc->device_state != USB_STATE_ADDRESS) || (ep != 0)))
2419 return -EINVAL;
2420
2421 if (ep_ctx_read_state(ep_ctx) == EP_STATE_DISABLED)
2422 return -EINVAL;
2423
2424 if (xudc_readl(xudc, EP_HALT) & BIT(ep))
2425 status |= BIT(USB_ENDPOINT_HALT);
2426 break;
2427 default:
2428 return -EINVAL;
2429 }
2430
2431 xudc->status_buf = cpu_to_le16(status);
2432 return tegra_xudc_ep0_queue_data(xudc, &xudc->status_buf,
2433 sizeof(xudc->status_buf),
2434 no_op_complete);
2435 }
2436
set_sel_complete(struct usb_ep * ep,struct usb_request * req)2437 static void set_sel_complete(struct usb_ep *ep, struct usb_request *req)
2438 {
2439 /* Nothing to do with SEL values */
2440 }
2441
tegra_xudc_ep0_set_sel(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2442 static int tegra_xudc_ep0_set_sel(struct tegra_xudc *xudc,
2443 struct usb_ctrlrequest *ctrl)
2444 {
2445 if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE |
2446 USB_TYPE_STANDARD))
2447 return -EINVAL;
2448
2449 if (xudc->device_state == USB_STATE_DEFAULT)
2450 return -EINVAL;
2451
2452 if ((le16_to_cpu(ctrl->wIndex) != 0) ||
2453 (le16_to_cpu(ctrl->wValue) != 0) ||
2454 (le16_to_cpu(ctrl->wLength) != 6))
2455 return -EINVAL;
2456
2457 return tegra_xudc_ep0_queue_data(xudc, &xudc->sel_timing,
2458 sizeof(xudc->sel_timing),
2459 set_sel_complete);
2460 }
2461
set_isoch_delay_complete(struct usb_ep * ep,struct usb_request * req)2462 static void set_isoch_delay_complete(struct usb_ep *ep, struct usb_request *req)
2463 {
2464 /* Nothing to do with isoch delay */
2465 }
2466
tegra_xudc_ep0_set_isoch_delay(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2467 static int tegra_xudc_ep0_set_isoch_delay(struct tegra_xudc *xudc,
2468 struct usb_ctrlrequest *ctrl)
2469 {
2470 u32 delay = le16_to_cpu(ctrl->wValue);
2471
2472 if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE |
2473 USB_TYPE_STANDARD))
2474 return -EINVAL;
2475
2476 if ((delay > 65535) || (le16_to_cpu(ctrl->wIndex) != 0) ||
2477 (le16_to_cpu(ctrl->wLength) != 0))
2478 return -EINVAL;
2479
2480 xudc->isoch_delay = delay;
2481
2482 return tegra_xudc_ep0_queue_status(xudc, set_isoch_delay_complete);
2483 }
2484
set_address_complete(struct usb_ep * ep,struct usb_request * req)2485 static void set_address_complete(struct usb_ep *ep, struct usb_request *req)
2486 {
2487 struct tegra_xudc *xudc = req->context;
2488
2489 if ((xudc->device_state == USB_STATE_DEFAULT) &&
2490 (xudc->dev_addr != 0)) {
2491 xudc->device_state = USB_STATE_ADDRESS;
2492 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2493 } else if ((xudc->device_state == USB_STATE_ADDRESS) &&
2494 (xudc->dev_addr == 0)) {
2495 xudc->device_state = USB_STATE_DEFAULT;
2496 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2497 }
2498 }
2499
tegra_xudc_ep0_set_address(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2500 static int tegra_xudc_ep0_set_address(struct tegra_xudc *xudc,
2501 struct usb_ctrlrequest *ctrl)
2502 {
2503 struct tegra_xudc_ep *ep0 = &xudc->ep[0];
2504 u32 val, addr = le16_to_cpu(ctrl->wValue);
2505
2506 if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE |
2507 USB_TYPE_STANDARD))
2508 return -EINVAL;
2509
2510 if ((addr > 127) || (le16_to_cpu(ctrl->wIndex) != 0) ||
2511 (le16_to_cpu(ctrl->wLength) != 0))
2512 return -EINVAL;
2513
2514 if (xudc->device_state == USB_STATE_CONFIGURED)
2515 return -EINVAL;
2516
2517 dev_dbg(xudc->dev, "set address: %u\n", addr);
2518
2519 xudc->dev_addr = addr;
2520 val = xudc_readl(xudc, CTRL);
2521 val &= ~(CTRL_DEVADDR_MASK);
2522 val |= CTRL_DEVADDR(addr);
2523 xudc_writel(xudc, val, CTRL);
2524
2525 ep_ctx_write_devaddr(ep0->context, addr);
2526
2527 return tegra_xudc_ep0_queue_status(xudc, set_address_complete);
2528 }
2529
tegra_xudc_ep0_standard_req(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2530 static int tegra_xudc_ep0_standard_req(struct tegra_xudc *xudc,
2531 struct usb_ctrlrequest *ctrl)
2532 {
2533 int ret;
2534
2535 switch (ctrl->bRequest) {
2536 case USB_REQ_GET_STATUS:
2537 dev_dbg(xudc->dev, "USB_REQ_GET_STATUS\n");
2538 ret = tegra_xudc_ep0_get_status(xudc, ctrl);
2539 break;
2540 case USB_REQ_SET_ADDRESS:
2541 dev_dbg(xudc->dev, "USB_REQ_SET_ADDRESS\n");
2542 ret = tegra_xudc_ep0_set_address(xudc, ctrl);
2543 break;
2544 case USB_REQ_SET_SEL:
2545 dev_dbg(xudc->dev, "USB_REQ_SET_SEL\n");
2546 ret = tegra_xudc_ep0_set_sel(xudc, ctrl);
2547 break;
2548 case USB_REQ_SET_ISOCH_DELAY:
2549 dev_dbg(xudc->dev, "USB_REQ_SET_ISOCH_DELAY\n");
2550 ret = tegra_xudc_ep0_set_isoch_delay(xudc, ctrl);
2551 break;
2552 case USB_REQ_CLEAR_FEATURE:
2553 case USB_REQ_SET_FEATURE:
2554 dev_dbg(xudc->dev, "USB_REQ_CLEAR/SET_FEATURE\n");
2555 ret = tegra_xudc_ep0_set_feature(xudc, ctrl);
2556 break;
2557 case USB_REQ_SET_CONFIGURATION:
2558 dev_dbg(xudc->dev, "USB_REQ_SET_CONFIGURATION\n");
2559 /*
2560 * In theory we need to clear RUN bit before status stage of
2561 * deconfig request sent, but this seems to be causing problems.
2562 * Clear RUN once all endpoints are disabled instead.
2563 */
2564 fallthrough;
2565 default:
2566 ret = tegra_xudc_ep0_delegate_req(xudc, ctrl);
2567 break;
2568 }
2569
2570 return ret;
2571 }
2572
tegra_xudc_handle_ep0_setup_packet(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl,u16 seq_num)2573 static void tegra_xudc_handle_ep0_setup_packet(struct tegra_xudc *xudc,
2574 struct usb_ctrlrequest *ctrl,
2575 u16 seq_num)
2576 {
2577 int ret;
2578
2579 xudc->setup_seq_num = seq_num;
2580
2581 /* Ensure EP0 is unhalted. */
2582 ep_unhalt(xudc, 0);
2583
2584 /*
2585 * On Tegra210, setup packets with sequence numbers 0xfffe or 0xffff
2586 * are invalid. Halt EP0 until we get a valid packet.
2587 */
2588 if (xudc->soc->invalid_seq_num &&
2589 (seq_num == 0xfffe || seq_num == 0xffff)) {
2590 dev_warn(xudc->dev, "invalid sequence number detected\n");
2591 ep_halt(xudc, 0);
2592 return;
2593 }
2594
2595 if (ctrl->wLength)
2596 xudc->setup_state = (ctrl->bRequestType & USB_DIR_IN) ?
2597 DATA_STAGE_XFER : DATA_STAGE_RECV;
2598 else
2599 xudc->setup_state = STATUS_STAGE_XFER;
2600
2601 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD)
2602 ret = tegra_xudc_ep0_standard_req(xudc, ctrl);
2603 else
2604 ret = tegra_xudc_ep0_delegate_req(xudc, ctrl);
2605
2606 if (ret < 0) {
2607 dev_warn(xudc->dev, "setup request failed: %d\n", ret);
2608 xudc->setup_state = WAIT_FOR_SETUP;
2609 ep_halt(xudc, 0);
2610 }
2611 }
2612
tegra_xudc_handle_ep0_event(struct tegra_xudc * xudc,struct tegra_xudc_trb * event)2613 static void tegra_xudc_handle_ep0_event(struct tegra_xudc *xudc,
2614 struct tegra_xudc_trb *event)
2615 {
2616 struct usb_ctrlrequest *ctrl = (struct usb_ctrlrequest *)event;
2617 u16 seq_num = trb_read_seq_num(event);
2618
2619 if (xudc->setup_state != WAIT_FOR_SETUP) {
2620 /*
2621 * The controller is in the process of handling another
2622 * setup request. Queue subsequent requests and handle
2623 * the last one once the controller reports a sequence
2624 * number error.
2625 */
2626 memcpy(&xudc->setup_packet.ctrl_req, ctrl, sizeof(*ctrl));
2627 xudc->setup_packet.seq_num = seq_num;
2628 xudc->queued_setup_packet = true;
2629 } else {
2630 tegra_xudc_handle_ep0_setup_packet(xudc, ctrl, seq_num);
2631 }
2632 }
2633
2634 static struct tegra_xudc_request *
trb_to_request(struct tegra_xudc_ep * ep,struct tegra_xudc_trb * trb)2635 trb_to_request(struct tegra_xudc_ep *ep, struct tegra_xudc_trb *trb)
2636 {
2637 struct tegra_xudc_request *req;
2638
2639 list_for_each_entry(req, &ep->queue, list) {
2640 if (!req->trbs_queued)
2641 break;
2642
2643 if (trb_in_request(ep, req, trb))
2644 return req;
2645 }
2646
2647 return NULL;
2648 }
2649
tegra_xudc_handle_transfer_completion(struct tegra_xudc * xudc,struct tegra_xudc_ep * ep,struct tegra_xudc_trb * event)2650 static void tegra_xudc_handle_transfer_completion(struct tegra_xudc *xudc,
2651 struct tegra_xudc_ep *ep,
2652 struct tegra_xudc_trb *event)
2653 {
2654 struct tegra_xudc_request *req;
2655 struct tegra_xudc_trb *trb;
2656 bool short_packet;
2657
2658 short_packet = (trb_read_cmpl_code(event) ==
2659 TRB_CMPL_CODE_SHORT_PACKET);
2660
2661 trb = trb_phys_to_virt(ep, trb_read_data_ptr(event));
2662 req = trb_to_request(ep, trb);
2663
2664 /*
2665 * TDs are complete on short packet or when the completed TRB is the
2666 * last TRB in the TD (the CHAIN bit is unset).
2667 */
2668 if (req && (short_packet || (!trb_read_chain(trb) &&
2669 (req->trbs_needed == req->trbs_queued)))) {
2670 struct tegra_xudc_trb *last = req->last_trb;
2671 unsigned int residual;
2672
2673 residual = trb_read_transfer_len(event);
2674 req->usb_req.actual = req->usb_req.length - residual;
2675
2676 dev_dbg(xudc->dev, "bytes transferred %u / %u\n",
2677 req->usb_req.actual, req->usb_req.length);
2678
2679 tegra_xudc_req_done(ep, req, 0);
2680
2681 if (ep->desc && usb_endpoint_xfer_control(ep->desc))
2682 tegra_xudc_ep0_req_done(xudc);
2683
2684 /*
2685 * Advance the dequeue pointer past the end of the current TD
2686 * on short packet completion.
2687 */
2688 if (short_packet) {
2689 ep->deq_ptr = (last - ep->transfer_ring) + 1;
2690 if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1)
2691 ep->deq_ptr = 0;
2692 }
2693 } else if (!req) {
2694 dev_warn(xudc->dev, "transfer event on dequeued request\n");
2695 }
2696
2697 if (ep->desc)
2698 tegra_xudc_ep_kick_queue(ep);
2699 }
2700
tegra_xudc_handle_transfer_event(struct tegra_xudc * xudc,struct tegra_xudc_trb * event)2701 static void tegra_xudc_handle_transfer_event(struct tegra_xudc *xudc,
2702 struct tegra_xudc_trb *event)
2703 {
2704 unsigned int ep_index = trb_read_endpoint_id(event);
2705 struct tegra_xudc_ep *ep = &xudc->ep[ep_index];
2706 struct tegra_xudc_trb *trb;
2707 u16 comp_code;
2708
2709 if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) {
2710 dev_warn(xudc->dev, "transfer event on disabled EP %u\n",
2711 ep_index);
2712 return;
2713 }
2714
2715 /* Update transfer ring dequeue pointer. */
2716 trb = trb_phys_to_virt(ep, trb_read_data_ptr(event));
2717 comp_code = trb_read_cmpl_code(event);
2718 if (comp_code != TRB_CMPL_CODE_BABBLE_DETECTED_ERR) {
2719 ep->deq_ptr = (trb - ep->transfer_ring) + 1;
2720
2721 if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1)
2722 ep->deq_ptr = 0;
2723 ep->ring_full = false;
2724 }
2725
2726 switch (comp_code) {
2727 case TRB_CMPL_CODE_SUCCESS:
2728 case TRB_CMPL_CODE_SHORT_PACKET:
2729 tegra_xudc_handle_transfer_completion(xudc, ep, event);
2730 break;
2731 case TRB_CMPL_CODE_HOST_REJECTED:
2732 dev_info(xudc->dev, "stream rejected on EP %u\n", ep_index);
2733
2734 ep->stream_rejected = true;
2735 break;
2736 case TRB_CMPL_CODE_PRIME_PIPE_RECEIVED:
2737 dev_info(xudc->dev, "prime pipe received on EP %u\n", ep_index);
2738
2739 if (ep->stream_rejected) {
2740 ep->stream_rejected = false;
2741 /*
2742 * An EP is stopped when a stream is rejected. Wait
2743 * for the EP to report that it is stopped and then
2744 * un-stop it.
2745 */
2746 ep_wait_for_stopped(xudc, ep_index);
2747 }
2748 tegra_xudc_ep_ring_doorbell(ep);
2749 break;
2750 case TRB_CMPL_CODE_BABBLE_DETECTED_ERR:
2751 /*
2752 * Wait for the EP to be stopped so the controller stops
2753 * processing doorbells.
2754 */
2755 ep_wait_for_stopped(xudc, ep_index);
2756 ep->enq_ptr = ep->deq_ptr;
2757 tegra_xudc_ep_nuke(ep, -EIO);
2758 fallthrough;
2759 case TRB_CMPL_CODE_STREAM_NUMP_ERROR:
2760 case TRB_CMPL_CODE_CTRL_DIR_ERR:
2761 case TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR:
2762 case TRB_CMPL_CODE_RING_UNDERRUN:
2763 case TRB_CMPL_CODE_RING_OVERRUN:
2764 case TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN:
2765 case TRB_CMPL_CODE_USB_TRANS_ERR:
2766 case TRB_CMPL_CODE_TRB_ERR:
2767 dev_err(xudc->dev, "completion error %#x on EP %u\n",
2768 comp_code, ep_index);
2769
2770 ep_halt(xudc, ep_index);
2771 break;
2772 case TRB_CMPL_CODE_CTRL_SEQNUM_ERR:
2773 dev_info(xudc->dev, "sequence number error\n");
2774
2775 /*
2776 * Kill any queued control request and skip to the last
2777 * setup packet we received.
2778 */
2779 tegra_xudc_ep_nuke(ep, -EINVAL);
2780 xudc->setup_state = WAIT_FOR_SETUP;
2781 if (!xudc->queued_setup_packet)
2782 break;
2783
2784 tegra_xudc_handle_ep0_setup_packet(xudc,
2785 &xudc->setup_packet.ctrl_req,
2786 xudc->setup_packet.seq_num);
2787 xudc->queued_setup_packet = false;
2788 break;
2789 case TRB_CMPL_CODE_STOPPED:
2790 dev_dbg(xudc->dev, "stop completion code on EP %u\n",
2791 ep_index);
2792
2793 /* Disconnected. */
2794 tegra_xudc_ep_nuke(ep, -ECONNREFUSED);
2795 break;
2796 default:
2797 dev_dbg(xudc->dev, "completion event %#x on EP %u\n",
2798 comp_code, ep_index);
2799 break;
2800 }
2801 }
2802
tegra_xudc_reset(struct tegra_xudc * xudc)2803 static void tegra_xudc_reset(struct tegra_xudc *xudc)
2804 {
2805 struct tegra_xudc_ep *ep0 = &xudc->ep[0];
2806 dma_addr_t deq_ptr;
2807 unsigned int i;
2808
2809 xudc->setup_state = WAIT_FOR_SETUP;
2810 xudc->device_state = USB_STATE_DEFAULT;
2811 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2812
2813 ep_unpause_all(xudc);
2814
2815 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++)
2816 tegra_xudc_ep_nuke(&xudc->ep[i], -ESHUTDOWN);
2817
2818 /*
2819 * Reset sequence number and dequeue pointer to flush the transfer
2820 * ring.
2821 */
2822 ep0->deq_ptr = ep0->enq_ptr;
2823 ep0->ring_full = false;
2824
2825 xudc->setup_seq_num = 0;
2826 xudc->queued_setup_packet = false;
2827
2828 ep_ctx_write_rsvd(ep0->context, 0);
2829 ep_ctx_write_partial_td(ep0->context, 0);
2830 ep_ctx_write_splitxstate(ep0->context, 0);
2831 ep_ctx_write_seq_num(ep0->context, 0);
2832
2833 deq_ptr = trb_virt_to_phys(ep0, &ep0->transfer_ring[ep0->deq_ptr]);
2834
2835 if (!dma_mapping_error(xudc->dev, deq_ptr)) {
2836 ep_ctx_write_deq_ptr(ep0->context, deq_ptr);
2837 ep_ctx_write_dcs(ep0->context, ep0->pcs);
2838 }
2839
2840 ep_unhalt_all(xudc);
2841 ep_reload(xudc, 0);
2842 ep_unpause(xudc, 0);
2843 }
2844
tegra_xudc_port_connect(struct tegra_xudc * xudc)2845 static void tegra_xudc_port_connect(struct tegra_xudc *xudc)
2846 {
2847 struct tegra_xudc_ep *ep0 = &xudc->ep[0];
2848 u16 maxpacket;
2849 u32 val;
2850
2851 val = (xudc_readl(xudc, PORTSC) & PORTSC_PS_MASK) >> PORTSC_PS_SHIFT;
2852 switch (val) {
2853 case PORTSC_PS_LS:
2854 xudc->gadget.speed = USB_SPEED_LOW;
2855 break;
2856 case PORTSC_PS_FS:
2857 xudc->gadget.speed = USB_SPEED_FULL;
2858 break;
2859 case PORTSC_PS_HS:
2860 xudc->gadget.speed = USB_SPEED_HIGH;
2861 break;
2862 case PORTSC_PS_SS:
2863 xudc->gadget.speed = USB_SPEED_SUPER;
2864 break;
2865 default:
2866 xudc->gadget.speed = USB_SPEED_UNKNOWN;
2867 break;
2868 }
2869
2870 xudc->device_state = USB_STATE_DEFAULT;
2871 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2872
2873 xudc->setup_state = WAIT_FOR_SETUP;
2874
2875 if (xudc->gadget.speed == USB_SPEED_SUPER)
2876 maxpacket = 512;
2877 else
2878 maxpacket = 64;
2879
2880 ep_ctx_write_max_packet_size(ep0->context, maxpacket);
2881 tegra_xudc_ep0_desc.wMaxPacketSize = cpu_to_le16(maxpacket);
2882 usb_ep_set_maxpacket_limit(&ep0->usb_ep, maxpacket);
2883
2884 if (!xudc->soc->u1_enable) {
2885 val = xudc_readl(xudc, PORTPM);
2886 val &= ~(PORTPM_U1TIMEOUT_MASK);
2887 xudc_writel(xudc, val, PORTPM);
2888 }
2889
2890 if (!xudc->soc->u2_enable) {
2891 val = xudc_readl(xudc, PORTPM);
2892 val &= ~(PORTPM_U2TIMEOUT_MASK);
2893 xudc_writel(xudc, val, PORTPM);
2894 }
2895
2896 if (xudc->gadget.speed <= USB_SPEED_HIGH) {
2897 val = xudc_readl(xudc, PORTPM);
2898 val &= ~(PORTPM_L1S_MASK);
2899 if (xudc->soc->lpm_enable)
2900 val |= PORTPM_L1S(PORTPM_L1S_ACCEPT);
2901 else
2902 val |= PORTPM_L1S(PORTPM_L1S_NYET);
2903 xudc_writel(xudc, val, PORTPM);
2904 }
2905
2906 val = xudc_readl(xudc, ST);
2907 if (val & ST_RC)
2908 xudc_writel(xudc, ST_RC, ST);
2909 }
2910
tegra_xudc_port_disconnect(struct tegra_xudc * xudc)2911 static void tegra_xudc_port_disconnect(struct tegra_xudc *xudc)
2912 {
2913 tegra_xudc_reset(xudc);
2914
2915 if (xudc->driver && xudc->driver->disconnect) {
2916 spin_unlock(&xudc->lock);
2917 xudc->driver->disconnect(&xudc->gadget);
2918 spin_lock(&xudc->lock);
2919 }
2920
2921 xudc->device_state = USB_STATE_NOTATTACHED;
2922 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2923
2924 complete(&xudc->disconnect_complete);
2925 }
2926
tegra_xudc_port_reset(struct tegra_xudc * xudc)2927 static void tegra_xudc_port_reset(struct tegra_xudc *xudc)
2928 {
2929 tegra_xudc_reset(xudc);
2930
2931 if (xudc->driver) {
2932 spin_unlock(&xudc->lock);
2933 usb_gadget_udc_reset(&xudc->gadget, xudc->driver);
2934 spin_lock(&xudc->lock);
2935 }
2936
2937 tegra_xudc_port_connect(xudc);
2938 }
2939
tegra_xudc_port_suspend(struct tegra_xudc * xudc)2940 static void tegra_xudc_port_suspend(struct tegra_xudc *xudc)
2941 {
2942 dev_dbg(xudc->dev, "port suspend\n");
2943
2944 xudc->resume_state = xudc->device_state;
2945 xudc->device_state = USB_STATE_SUSPENDED;
2946 usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2947
2948 if (xudc->driver->suspend) {
2949 spin_unlock(&xudc->lock);
2950 xudc->driver->suspend(&xudc->gadget);
2951 spin_lock(&xudc->lock);
2952 }
2953 }
2954
tegra_xudc_port_resume(struct tegra_xudc * xudc)2955 static void tegra_xudc_port_resume(struct tegra_xudc *xudc)
2956 {
2957 dev_dbg(xudc->dev, "port resume\n");
2958
2959 tegra_xudc_resume_device_state(xudc);
2960
2961 if (xudc->driver->resume) {
2962 spin_unlock(&xudc->lock);
2963 xudc->driver->resume(&xudc->gadget);
2964 spin_lock(&xudc->lock);
2965 }
2966 }
2967
clear_port_change(struct tegra_xudc * xudc,u32 flag)2968 static inline void clear_port_change(struct tegra_xudc *xudc, u32 flag)
2969 {
2970 u32 val;
2971
2972 val = xudc_readl(xudc, PORTSC);
2973 val &= ~PORTSC_CHANGE_MASK;
2974 val |= flag;
2975 xudc_writel(xudc, val, PORTSC);
2976 }
2977
__tegra_xudc_handle_port_status(struct tegra_xudc * xudc)2978 static void __tegra_xudc_handle_port_status(struct tegra_xudc *xudc)
2979 {
2980 u32 portsc, porthalt;
2981
2982 porthalt = xudc_readl(xudc, PORTHALT);
2983 if ((porthalt & PORTHALT_STCHG_REQ) &&
2984 (porthalt & PORTHALT_HALT_LTSSM)) {
2985 dev_dbg(xudc->dev, "STCHG_REQ, PORTHALT = %#x\n", porthalt);
2986 porthalt &= ~PORTHALT_HALT_LTSSM;
2987 xudc_writel(xudc, porthalt, PORTHALT);
2988 }
2989
2990 portsc = xudc_readl(xudc, PORTSC);
2991 if ((portsc & PORTSC_PRC) && (portsc & PORTSC_PR)) {
2992 dev_dbg(xudc->dev, "PRC, PR, PORTSC = %#x\n", portsc);
2993 clear_port_change(xudc, PORTSC_PRC | PORTSC_PED);
2994 #define TOGGLE_VBUS_WAIT_MS 100
2995 if (xudc->soc->port_reset_quirk) {
2996 schedule_delayed_work(&xudc->port_reset_war_work,
2997 msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS));
2998 xudc->wait_for_sec_prc = 1;
2999 }
3000 }
3001
3002 if ((portsc & PORTSC_PRC) && !(portsc & PORTSC_PR)) {
3003 dev_dbg(xudc->dev, "PRC, Not PR, PORTSC = %#x\n", portsc);
3004 clear_port_change(xudc, PORTSC_PRC | PORTSC_PED);
3005 tegra_xudc_port_reset(xudc);
3006 cancel_delayed_work(&xudc->port_reset_war_work);
3007 xudc->wait_for_sec_prc = 0;
3008 }
3009
3010 portsc = xudc_readl(xudc, PORTSC);
3011 if (portsc & PORTSC_WRC) {
3012 dev_dbg(xudc->dev, "WRC, PORTSC = %#x\n", portsc);
3013 clear_port_change(xudc, PORTSC_WRC | PORTSC_PED);
3014 if (!(xudc_readl(xudc, PORTSC) & PORTSC_WPR))
3015 tegra_xudc_port_reset(xudc);
3016 }
3017
3018 portsc = xudc_readl(xudc, PORTSC);
3019 if (portsc & PORTSC_CSC) {
3020 dev_dbg(xudc->dev, "CSC, PORTSC = %#x\n", portsc);
3021 clear_port_change(xudc, PORTSC_CSC);
3022
3023 if (portsc & PORTSC_CCS)
3024 tegra_xudc_port_connect(xudc);
3025 else
3026 tegra_xudc_port_disconnect(xudc);
3027
3028 if (xudc->wait_csc) {
3029 cancel_delayed_work(&xudc->plc_reset_work);
3030 xudc->wait_csc = false;
3031 }
3032 }
3033
3034 portsc = xudc_readl(xudc, PORTSC);
3035 if (portsc & PORTSC_PLC) {
3036 u32 pls = (portsc & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT;
3037
3038 dev_dbg(xudc->dev, "PLC, PORTSC = %#x\n", portsc);
3039 clear_port_change(xudc, PORTSC_PLC);
3040 switch (pls) {
3041 case PORTSC_PLS_U3:
3042 tegra_xudc_port_suspend(xudc);
3043 break;
3044 case PORTSC_PLS_U0:
3045 if (xudc->gadget.speed < USB_SPEED_SUPER)
3046 tegra_xudc_port_resume(xudc);
3047 break;
3048 case PORTSC_PLS_RESUME:
3049 if (xudc->gadget.speed == USB_SPEED_SUPER)
3050 tegra_xudc_port_resume(xudc);
3051 break;
3052 case PORTSC_PLS_INACTIVE:
3053 schedule_delayed_work(&xudc->plc_reset_work,
3054 msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS));
3055 xudc->wait_csc = true;
3056 break;
3057 default:
3058 break;
3059 }
3060 }
3061
3062 if (portsc & PORTSC_CEC) {
3063 dev_warn(xudc->dev, "CEC, PORTSC = %#x\n", portsc);
3064 clear_port_change(xudc, PORTSC_CEC);
3065 }
3066
3067 dev_dbg(xudc->dev, "PORTSC = %#x\n", xudc_readl(xudc, PORTSC));
3068 }
3069
tegra_xudc_handle_port_status(struct tegra_xudc * xudc)3070 static void tegra_xudc_handle_port_status(struct tegra_xudc *xudc)
3071 {
3072 while ((xudc_readl(xudc, PORTSC) & PORTSC_CHANGE_MASK) ||
3073 (xudc_readl(xudc, PORTHALT) & PORTHALT_STCHG_REQ))
3074 __tegra_xudc_handle_port_status(xudc);
3075 }
3076
tegra_xudc_handle_event(struct tegra_xudc * xudc,struct tegra_xudc_trb * event)3077 static void tegra_xudc_handle_event(struct tegra_xudc *xudc,
3078 struct tegra_xudc_trb *event)
3079 {
3080 u32 type = trb_read_type(event);
3081
3082 dump_trb(xudc, "EVENT", event);
3083
3084 switch (type) {
3085 case TRB_TYPE_PORT_STATUS_CHANGE_EVENT:
3086 tegra_xudc_handle_port_status(xudc);
3087 break;
3088 case TRB_TYPE_TRANSFER_EVENT:
3089 tegra_xudc_handle_transfer_event(xudc, event);
3090 break;
3091 case TRB_TYPE_SETUP_PACKET_EVENT:
3092 tegra_xudc_handle_ep0_event(xudc, event);
3093 break;
3094 default:
3095 dev_info(xudc->dev, "Unrecognized TRB type = %#x\n", type);
3096 break;
3097 }
3098 }
3099
tegra_xudc_process_event_ring(struct tegra_xudc * xudc)3100 static void tegra_xudc_process_event_ring(struct tegra_xudc *xudc)
3101 {
3102 struct tegra_xudc_trb *event;
3103 dma_addr_t erdp;
3104
3105 while (true) {
3106 event = xudc->event_ring[xudc->event_ring_index] +
3107 xudc->event_ring_deq_ptr;
3108
3109 if (trb_read_cycle(event) != xudc->ccs)
3110 break;
3111
3112 tegra_xudc_handle_event(xudc, event);
3113
3114 xudc->event_ring_deq_ptr++;
3115 if (xudc->event_ring_deq_ptr == XUDC_EVENT_RING_SIZE) {
3116 xudc->event_ring_deq_ptr = 0;
3117 xudc->event_ring_index++;
3118 }
3119
3120 if (xudc->event_ring_index == XUDC_NR_EVENT_RINGS) {
3121 xudc->event_ring_index = 0;
3122 xudc->ccs = !xudc->ccs;
3123 }
3124 }
3125
3126 erdp = xudc->event_ring_phys[xudc->event_ring_index] +
3127 xudc->event_ring_deq_ptr * sizeof(*event);
3128
3129 xudc_writel(xudc, upper_32_bits(erdp), ERDPHI);
3130 xudc_writel(xudc, lower_32_bits(erdp) | ERDPLO_EHB, ERDPLO);
3131 }
3132
tegra_xudc_irq(int irq,void * data)3133 static irqreturn_t tegra_xudc_irq(int irq, void *data)
3134 {
3135 struct tegra_xudc *xudc = data;
3136 unsigned long flags;
3137 u32 val;
3138
3139 val = xudc_readl(xudc, ST);
3140 if (!(val & ST_IP))
3141 return IRQ_NONE;
3142 xudc_writel(xudc, ST_IP, ST);
3143
3144 spin_lock_irqsave(&xudc->lock, flags);
3145 tegra_xudc_process_event_ring(xudc);
3146 spin_unlock_irqrestore(&xudc->lock, flags);
3147
3148 return IRQ_HANDLED;
3149 }
3150
tegra_xudc_alloc_ep(struct tegra_xudc * xudc,unsigned int index)3151 static int tegra_xudc_alloc_ep(struct tegra_xudc *xudc, unsigned int index)
3152 {
3153 struct tegra_xudc_ep *ep = &xudc->ep[index];
3154
3155 ep->xudc = xudc;
3156 ep->index = index;
3157 ep->context = &xudc->ep_context[index];
3158 INIT_LIST_HEAD(&ep->queue);
3159
3160 /*
3161 * EP1 would be the input endpoint corresponding to EP0, but since
3162 * EP0 is bi-directional, EP1 is unused.
3163 */
3164 if (index == 1)
3165 return 0;
3166
3167 ep->transfer_ring = dma_pool_alloc(xudc->transfer_ring_pool,
3168 GFP_KERNEL,
3169 &ep->transfer_ring_phys);
3170 if (!ep->transfer_ring)
3171 return -ENOMEM;
3172
3173 if (index) {
3174 snprintf(ep->name, sizeof(ep->name), "ep%u%s", index / 2,
3175 (index % 2 == 0) ? "out" : "in");
3176 ep->usb_ep.name = ep->name;
3177 usb_ep_set_maxpacket_limit(&ep->usb_ep, 1024);
3178 ep->usb_ep.max_streams = 16;
3179 ep->usb_ep.ops = &tegra_xudc_ep_ops;
3180 ep->usb_ep.caps.type_bulk = true;
3181 ep->usb_ep.caps.type_int = true;
3182 if (index & 1)
3183 ep->usb_ep.caps.dir_in = true;
3184 else
3185 ep->usb_ep.caps.dir_out = true;
3186 list_add_tail(&ep->usb_ep.ep_list, &xudc->gadget.ep_list);
3187 } else {
3188 strscpy(ep->name, "ep0", 3);
3189 ep->usb_ep.name = ep->name;
3190 usb_ep_set_maxpacket_limit(&ep->usb_ep, 512);
3191 ep->usb_ep.ops = &tegra_xudc_ep0_ops;
3192 ep->usb_ep.caps.type_control = true;
3193 ep->usb_ep.caps.dir_in = true;
3194 ep->usb_ep.caps.dir_out = true;
3195 }
3196
3197 return 0;
3198 }
3199
tegra_xudc_free_ep(struct tegra_xudc * xudc,unsigned int index)3200 static void tegra_xudc_free_ep(struct tegra_xudc *xudc, unsigned int index)
3201 {
3202 struct tegra_xudc_ep *ep = &xudc->ep[index];
3203
3204 /*
3205 * EP1 would be the input endpoint corresponding to EP0, but since
3206 * EP0 is bi-directional, EP1 is unused.
3207 */
3208 if (index == 1)
3209 return;
3210
3211 dma_pool_free(xudc->transfer_ring_pool, ep->transfer_ring,
3212 ep->transfer_ring_phys);
3213 }
3214
tegra_xudc_alloc_eps(struct tegra_xudc * xudc)3215 static int tegra_xudc_alloc_eps(struct tegra_xudc *xudc)
3216 {
3217 struct usb_request *req;
3218 unsigned int i;
3219 int err;
3220
3221 xudc->ep_context =
3222 dma_alloc_coherent(xudc->dev, XUDC_NR_EPS *
3223 sizeof(*xudc->ep_context),
3224 &xudc->ep_context_phys, GFP_KERNEL);
3225 if (!xudc->ep_context)
3226 return -ENOMEM;
3227
3228 xudc->transfer_ring_pool =
3229 dmam_pool_create(dev_name(xudc->dev), xudc->dev,
3230 XUDC_TRANSFER_RING_SIZE *
3231 sizeof(struct tegra_xudc_trb),
3232 sizeof(struct tegra_xudc_trb), 0);
3233 if (!xudc->transfer_ring_pool) {
3234 err = -ENOMEM;
3235 goto free_ep_context;
3236 }
3237
3238 INIT_LIST_HEAD(&xudc->gadget.ep_list);
3239 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) {
3240 err = tegra_xudc_alloc_ep(xudc, i);
3241 if (err < 0)
3242 goto free_eps;
3243 }
3244
3245 req = tegra_xudc_ep_alloc_request(&xudc->ep[0].usb_ep, GFP_KERNEL);
3246 if (!req) {
3247 err = -ENOMEM;
3248 goto free_eps;
3249 }
3250 xudc->ep0_req = to_xudc_req(req);
3251
3252 return 0;
3253
3254 free_eps:
3255 for (; i > 0; i--)
3256 tegra_xudc_free_ep(xudc, i - 1);
3257 free_ep_context:
3258 dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context),
3259 xudc->ep_context, xudc->ep_context_phys);
3260 return err;
3261 }
3262
tegra_xudc_init_eps(struct tegra_xudc * xudc)3263 static void tegra_xudc_init_eps(struct tegra_xudc *xudc)
3264 {
3265 xudc_writel(xudc, lower_32_bits(xudc->ep_context_phys), ECPLO);
3266 xudc_writel(xudc, upper_32_bits(xudc->ep_context_phys), ECPHI);
3267 }
3268
tegra_xudc_free_eps(struct tegra_xudc * xudc)3269 static void tegra_xudc_free_eps(struct tegra_xudc *xudc)
3270 {
3271 unsigned int i;
3272
3273 tegra_xudc_ep_free_request(&xudc->ep[0].usb_ep,
3274 &xudc->ep0_req->usb_req);
3275
3276 for (i = 0; i < ARRAY_SIZE(xudc->ep); i++)
3277 tegra_xudc_free_ep(xudc, i);
3278
3279 dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context),
3280 xudc->ep_context, xudc->ep_context_phys);
3281 }
3282
tegra_xudc_alloc_event_ring(struct tegra_xudc * xudc)3283 static int tegra_xudc_alloc_event_ring(struct tegra_xudc *xudc)
3284 {
3285 unsigned int i;
3286
3287 for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) {
3288 xudc->event_ring[i] =
3289 dma_alloc_coherent(xudc->dev, XUDC_EVENT_RING_SIZE *
3290 sizeof(*xudc->event_ring[i]),
3291 &xudc->event_ring_phys[i],
3292 GFP_KERNEL);
3293 if (!xudc->event_ring[i])
3294 goto free_dma;
3295 }
3296
3297 return 0;
3298
3299 free_dma:
3300 for (; i > 0; i--) {
3301 dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE *
3302 sizeof(*xudc->event_ring[i - 1]),
3303 xudc->event_ring[i - 1],
3304 xudc->event_ring_phys[i - 1]);
3305 }
3306 return -ENOMEM;
3307 }
3308
tegra_xudc_init_event_ring(struct tegra_xudc * xudc)3309 static void tegra_xudc_init_event_ring(struct tegra_xudc *xudc)
3310 {
3311 unsigned int i;
3312 u32 val;
3313
3314 for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) {
3315 memset(xudc->event_ring[i], 0, XUDC_EVENT_RING_SIZE *
3316 sizeof(*xudc->event_ring[i]));
3317
3318 val = xudc_readl(xudc, ERSTSZ);
3319 val &= ~(ERSTSZ_ERSTXSZ_MASK << ERSTSZ_ERSTXSZ_SHIFT(i));
3320 val |= XUDC_EVENT_RING_SIZE << ERSTSZ_ERSTXSZ_SHIFT(i);
3321 xudc_writel(xudc, val, ERSTSZ);
3322
3323 xudc_writel(xudc, lower_32_bits(xudc->event_ring_phys[i]),
3324 ERSTXBALO(i));
3325 xudc_writel(xudc, upper_32_bits(xudc->event_ring_phys[i]),
3326 ERSTXBAHI(i));
3327 }
3328
3329 val = lower_32_bits(xudc->event_ring_phys[0]);
3330 xudc_writel(xudc, val, ERDPLO);
3331 val |= EREPLO_ECS;
3332 xudc_writel(xudc, val, EREPLO);
3333
3334 val = upper_32_bits(xudc->event_ring_phys[0]);
3335 xudc_writel(xudc, val, ERDPHI);
3336 xudc_writel(xudc, val, EREPHI);
3337
3338 xudc->ccs = true;
3339 xudc->event_ring_index = 0;
3340 xudc->event_ring_deq_ptr = 0;
3341 }
3342
tegra_xudc_free_event_ring(struct tegra_xudc * xudc)3343 static void tegra_xudc_free_event_ring(struct tegra_xudc *xudc)
3344 {
3345 unsigned int i;
3346
3347 for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) {
3348 dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE *
3349 sizeof(*xudc->event_ring[i]),
3350 xudc->event_ring[i],
3351 xudc->event_ring_phys[i]);
3352 }
3353 }
3354
tegra_xudc_fpci_ipfs_init(struct tegra_xudc * xudc)3355 static void tegra_xudc_fpci_ipfs_init(struct tegra_xudc *xudc)
3356 {
3357 u32 val;
3358
3359 if (xudc->soc->has_ipfs) {
3360 val = ipfs_readl(xudc, XUSB_DEV_CONFIGURATION_0);
3361 val |= XUSB_DEV_CONFIGURATION_0_EN_FPCI;
3362 ipfs_writel(xudc, val, XUSB_DEV_CONFIGURATION_0);
3363 usleep_range(10, 15);
3364 }
3365
3366 /* Enable bus master */
3367 val = XUSB_DEV_CFG_1_IO_SPACE_EN | XUSB_DEV_CFG_1_MEMORY_SPACE_EN |
3368 XUSB_DEV_CFG_1_BUS_MASTER_EN;
3369 fpci_writel(xudc, val, XUSB_DEV_CFG_1);
3370
3371 /* Program BAR0 space */
3372 val = fpci_readl(xudc, XUSB_DEV_CFG_4);
3373 val &= ~(XUSB_DEV_CFG_4_BASE_ADDR_MASK);
3374 val |= xudc->phys_base & (XUSB_DEV_CFG_4_BASE_ADDR_MASK);
3375
3376 fpci_writel(xudc, val, XUSB_DEV_CFG_4);
3377 fpci_writel(xudc, upper_32_bits(xudc->phys_base), XUSB_DEV_CFG_5);
3378
3379 usleep_range(100, 200);
3380
3381 if (xudc->soc->has_ipfs) {
3382 /* Enable interrupt assertion */
3383 val = ipfs_readl(xudc, XUSB_DEV_INTR_MASK_0);
3384 val |= XUSB_DEV_INTR_MASK_0_IP_INT_MASK;
3385 ipfs_writel(xudc, val, XUSB_DEV_INTR_MASK_0);
3386 }
3387 }
3388
tegra_xudc_device_params_init(struct tegra_xudc * xudc)3389 static void tegra_xudc_device_params_init(struct tegra_xudc *xudc)
3390 {
3391 u32 val, imod;
3392
3393 if (xudc->soc->has_ipfs) {
3394 val = xudc_readl(xudc, BLCG);
3395 val |= BLCG_ALL;
3396 val &= ~(BLCG_DFPCI | BLCG_UFPCI | BLCG_FE |
3397 BLCG_COREPLL_PWRDN);
3398 val |= BLCG_IOPLL_0_PWRDN;
3399 val |= BLCG_IOPLL_1_PWRDN;
3400 val |= BLCG_IOPLL_2_PWRDN;
3401
3402 xudc_writel(xudc, val, BLCG);
3403 }
3404
3405 if (xudc->soc->port_speed_quirk)
3406 tegra_xudc_limit_port_speed(xudc);
3407
3408 /* Set a reasonable U3 exit timer value. */
3409 val = xudc_readl(xudc, SSPX_CORE_PADCTL4);
3410 val &= ~(SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK);
3411 val |= SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(0x5dc0);
3412 xudc_writel(xudc, val, SSPX_CORE_PADCTL4);
3413
3414 /* Default ping LFPS tBurst is too large. */
3415 val = xudc_readl(xudc, SSPX_CORE_CNT0);
3416 val &= ~(SSPX_CORE_CNT0_PING_TBURST_MASK);
3417 val |= SSPX_CORE_CNT0_PING_TBURST(0xa);
3418 xudc_writel(xudc, val, SSPX_CORE_CNT0);
3419
3420 /* Default tPortConfiguration timeout is too small. */
3421 val = xudc_readl(xudc, SSPX_CORE_CNT30);
3422 val &= ~(SSPX_CORE_CNT30_LMPITP_TIMER_MASK);
3423 val |= SSPX_CORE_CNT30_LMPITP_TIMER(0x978);
3424 xudc_writel(xudc, val, SSPX_CORE_CNT30);
3425
3426 if (xudc->soc->lpm_enable) {
3427 /* Set L1 resume duration to 95 us. */
3428 val = xudc_readl(xudc, HSFSPI_COUNT13);
3429 val &= ~(HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK);
3430 val |= HSFSPI_COUNT13_U2_RESUME_K_DURATION(0x2c88);
3431 xudc_writel(xudc, val, HSFSPI_COUNT13);
3432 }
3433
3434 /*
3435 * Compliance suite appears to be violating polling LFPS tBurst max
3436 * of 1.4us. Send 1.45us instead.
3437 */
3438 val = xudc_readl(xudc, SSPX_CORE_CNT32);
3439 val &= ~(SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK);
3440 val |= SSPX_CORE_CNT32_POLL_TBURST_MAX(0xb0);
3441 xudc_writel(xudc, val, SSPX_CORE_CNT32);
3442
3443 /* Direct HS/FS port instance to RxDetect. */
3444 val = xudc_readl(xudc, CFG_DEV_FE);
3445 val &= ~(CFG_DEV_FE_PORTREGSEL_MASK);
3446 val |= CFG_DEV_FE_PORTREGSEL(CFG_DEV_FE_PORTREGSEL_HSFS_PI);
3447 xudc_writel(xudc, val, CFG_DEV_FE);
3448
3449 val = xudc_readl(xudc, PORTSC);
3450 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
3451 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT);
3452 xudc_writel(xudc, val, PORTSC);
3453
3454 /* Direct SS port instance to RxDetect. */
3455 val = xudc_readl(xudc, CFG_DEV_FE);
3456 val &= ~(CFG_DEV_FE_PORTREGSEL_MASK);
3457 val |= CFG_DEV_FE_PORTREGSEL_SS_PI & CFG_DEV_FE_PORTREGSEL_MASK;
3458 xudc_writel(xudc, val, CFG_DEV_FE);
3459
3460 val = xudc_readl(xudc, PORTSC);
3461 val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
3462 val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT);
3463 xudc_writel(xudc, val, PORTSC);
3464
3465 /* Restore port instance. */
3466 val = xudc_readl(xudc, CFG_DEV_FE);
3467 val &= ~(CFG_DEV_FE_PORTREGSEL_MASK);
3468 xudc_writel(xudc, val, CFG_DEV_FE);
3469
3470 /*
3471 * Enable INFINITE_SS_RETRY to prevent device from entering
3472 * Disabled.Error when attached to buggy SuperSpeed hubs.
3473 */
3474 val = xudc_readl(xudc, CFG_DEV_FE);
3475 val |= CFG_DEV_FE_INFINITE_SS_RETRY;
3476 xudc_writel(xudc, val, CFG_DEV_FE);
3477
3478 /* Set interrupt moderation. */
3479 imod = XUDC_INTERRUPT_MODERATION_US * 4;
3480 val = xudc_readl(xudc, RT_IMOD);
3481 val &= ~((RT_IMOD_IMODI_MASK) | (RT_IMOD_IMODC_MASK));
3482 val |= (RT_IMOD_IMODI(imod) | RT_IMOD_IMODC(imod));
3483 xudc_writel(xudc, val, RT_IMOD);
3484
3485 /* increase SSPI transaction timeout from 32us to 512us */
3486 val = xudc_readl(xudc, CFG_DEV_SSPI_XFER);
3487 val &= ~(CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK);
3488 val |= CFG_DEV_SSPI_XFER_ACKTIMEOUT(0xf000);
3489 xudc_writel(xudc, val, CFG_DEV_SSPI_XFER);
3490 }
3491
tegra_xudc_phy_get(struct tegra_xudc * xudc)3492 static int tegra_xudc_phy_get(struct tegra_xudc *xudc)
3493 {
3494 int err = 0, usb3;
3495 unsigned int i;
3496
3497 xudc->utmi_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys,
3498 sizeof(*xudc->utmi_phy), GFP_KERNEL);
3499 if (!xudc->utmi_phy)
3500 return -ENOMEM;
3501
3502 xudc->usb3_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys,
3503 sizeof(*xudc->usb3_phy), GFP_KERNEL);
3504 if (!xudc->usb3_phy)
3505 return -ENOMEM;
3506
3507 xudc->usbphy = devm_kcalloc(xudc->dev, xudc->soc->num_phys,
3508 sizeof(*xudc->usbphy), GFP_KERNEL);
3509 if (!xudc->usbphy)
3510 return -ENOMEM;
3511
3512 xudc->vbus_nb.notifier_call = tegra_xudc_vbus_notify;
3513
3514 for (i = 0; i < xudc->soc->num_phys; i++) {
3515 char phy_name[] = "usb.-.";
3516
3517 /* Get USB2 phy */
3518 snprintf(phy_name, sizeof(phy_name), "usb2-%d", i);
3519 xudc->utmi_phy[i] = devm_phy_optional_get(xudc->dev, phy_name);
3520 if (IS_ERR(xudc->utmi_phy[i])) {
3521 err = PTR_ERR(xudc->utmi_phy[i]);
3522 dev_err_probe(xudc->dev, err,
3523 "failed to get usb2-%d PHY\n", i);
3524 goto clean_up;
3525 } else if (xudc->utmi_phy[i]) {
3526 /* Get usb-phy, if utmi phy is available */
3527 xudc->usbphy[i] = devm_usb_get_phy_by_node(xudc->dev,
3528 xudc->utmi_phy[i]->dev.of_node,
3529 NULL);
3530 if (IS_ERR(xudc->usbphy[i])) {
3531 err = PTR_ERR(xudc->usbphy[i]);
3532 dev_err_probe(xudc->dev, err,
3533 "failed to get usbphy-%d\n", i);
3534 goto clean_up;
3535 }
3536 } else if (!xudc->utmi_phy[i]) {
3537 /* if utmi phy is not available, ignore USB3 phy get */
3538 continue;
3539 }
3540
3541 /* Get USB3 phy */
3542 usb3 = tegra_xusb_padctl_get_usb3_companion(xudc->padctl, i);
3543 if (usb3 < 0)
3544 continue;
3545
3546 snprintf(phy_name, sizeof(phy_name), "usb3-%d", usb3);
3547 xudc->usb3_phy[i] = devm_phy_optional_get(xudc->dev, phy_name);
3548 if (IS_ERR(xudc->usb3_phy[i])) {
3549 err = PTR_ERR(xudc->usb3_phy[i]);
3550 dev_err_probe(xudc->dev, err,
3551 "failed to get usb3-%d PHY\n", usb3);
3552 goto clean_up;
3553 } else if (xudc->usb3_phy[i])
3554 dev_dbg(xudc->dev, "usb3-%d PHY registered", usb3);
3555 }
3556
3557 return err;
3558
3559 clean_up:
3560 for (i = 0; i < xudc->soc->num_phys; i++) {
3561 xudc->usb3_phy[i] = NULL;
3562 xudc->utmi_phy[i] = NULL;
3563 xudc->usbphy[i] = NULL;
3564 }
3565
3566 return err;
3567 }
3568
tegra_xudc_phy_exit(struct tegra_xudc * xudc)3569 static void tegra_xudc_phy_exit(struct tegra_xudc *xudc)
3570 {
3571 unsigned int i;
3572
3573 for (i = 0; i < xudc->soc->num_phys; i++) {
3574 phy_exit(xudc->usb3_phy[i]);
3575 phy_exit(xudc->utmi_phy[i]);
3576 }
3577 }
3578
tegra_xudc_phy_init(struct tegra_xudc * xudc)3579 static int tegra_xudc_phy_init(struct tegra_xudc *xudc)
3580 {
3581 int err;
3582 unsigned int i;
3583
3584 for (i = 0; i < xudc->soc->num_phys; i++) {
3585 err = phy_init(xudc->utmi_phy[i]);
3586 if (err < 0) {
3587 dev_err(xudc->dev, "UTMI PHY #%u initialization failed: %d\n", i, err);
3588 goto exit_phy;
3589 }
3590
3591 err = phy_init(xudc->usb3_phy[i]);
3592 if (err < 0) {
3593 dev_err(xudc->dev, "USB3 PHY #%u initialization failed: %d\n", i, err);
3594 goto exit_phy;
3595 }
3596 }
3597 return 0;
3598
3599 exit_phy:
3600 tegra_xudc_phy_exit(xudc);
3601 return err;
3602 }
3603
3604 static const char * const tegra210_xudc_supply_names[] = {
3605 "hvdd-usb",
3606 "avddio-usb",
3607 };
3608
3609 static const char * const tegra210_xudc_clock_names[] = {
3610 "dev",
3611 "ss",
3612 "ss_src",
3613 "hs_src",
3614 "fs_src",
3615 };
3616
3617 static const char * const tegra186_xudc_clock_names[] = {
3618 "dev",
3619 "ss",
3620 "ss_src",
3621 "fs_src",
3622 };
3623
3624 static struct tegra_xudc_soc tegra210_xudc_soc_data = {
3625 .supply_names = tegra210_xudc_supply_names,
3626 .num_supplies = ARRAY_SIZE(tegra210_xudc_supply_names),
3627 .clock_names = tegra210_xudc_clock_names,
3628 .num_clks = ARRAY_SIZE(tegra210_xudc_clock_names),
3629 .num_phys = 4,
3630 .u1_enable = false,
3631 .u2_enable = true,
3632 .lpm_enable = false,
3633 .invalid_seq_num = true,
3634 .pls_quirk = true,
3635 .port_reset_quirk = true,
3636 .port_speed_quirk = false,
3637 .has_ipfs = true,
3638 };
3639
3640 static struct tegra_xudc_soc tegra186_xudc_soc_data = {
3641 .clock_names = tegra186_xudc_clock_names,
3642 .num_clks = ARRAY_SIZE(tegra186_xudc_clock_names),
3643 .num_phys = 4,
3644 .u1_enable = true,
3645 .u2_enable = true,
3646 .lpm_enable = false,
3647 .invalid_seq_num = false,
3648 .pls_quirk = false,
3649 .port_reset_quirk = false,
3650 .port_speed_quirk = false,
3651 .has_ipfs = false,
3652 };
3653
3654 static struct tegra_xudc_soc tegra194_xudc_soc_data = {
3655 .clock_names = tegra186_xudc_clock_names,
3656 .num_clks = ARRAY_SIZE(tegra186_xudc_clock_names),
3657 .num_phys = 4,
3658 .u1_enable = true,
3659 .u2_enable = true,
3660 .lpm_enable = true,
3661 .invalid_seq_num = false,
3662 .pls_quirk = false,
3663 .port_reset_quirk = false,
3664 .port_speed_quirk = true,
3665 .has_ipfs = false,
3666 };
3667
3668 static struct tegra_xudc_soc tegra234_xudc_soc_data = {
3669 .clock_names = tegra186_xudc_clock_names,
3670 .num_clks = ARRAY_SIZE(tegra186_xudc_clock_names),
3671 .num_phys = 4,
3672 .u1_enable = true,
3673 .u2_enable = true,
3674 .lpm_enable = true,
3675 .invalid_seq_num = false,
3676 .pls_quirk = false,
3677 .port_reset_quirk = false,
3678 .has_ipfs = false,
3679 };
3680
3681 static const struct of_device_id tegra_xudc_of_match[] = {
3682 {
3683 .compatible = "nvidia,tegra210-xudc",
3684 .data = &tegra210_xudc_soc_data
3685 },
3686 {
3687 .compatible = "nvidia,tegra186-xudc",
3688 .data = &tegra186_xudc_soc_data
3689 },
3690 {
3691 .compatible = "nvidia,tegra194-xudc",
3692 .data = &tegra194_xudc_soc_data
3693 },
3694 {
3695 .compatible = "nvidia,tegra234-xudc",
3696 .data = &tegra234_xudc_soc_data
3697 },
3698 { }
3699 };
3700 MODULE_DEVICE_TABLE(of, tegra_xudc_of_match);
3701
tegra_xudc_powerdomain_remove(struct tegra_xudc * xudc)3702 static void tegra_xudc_powerdomain_remove(struct tegra_xudc *xudc)
3703 {
3704 if (xudc->genpd_dl_ss)
3705 device_link_del(xudc->genpd_dl_ss);
3706 if (xudc->genpd_dl_device)
3707 device_link_del(xudc->genpd_dl_device);
3708 if (xudc->genpd_dev_ss)
3709 dev_pm_domain_detach(xudc->genpd_dev_ss, true);
3710 if (xudc->genpd_dev_device)
3711 dev_pm_domain_detach(xudc->genpd_dev_device, true);
3712 }
3713
tegra_xudc_powerdomain_init(struct tegra_xudc * xudc)3714 static int tegra_xudc_powerdomain_init(struct tegra_xudc *xudc)
3715 {
3716 struct device *dev = xudc->dev;
3717 int err;
3718
3719 xudc->genpd_dev_device = dev_pm_domain_attach_by_name(dev, "dev");
3720 if (IS_ERR(xudc->genpd_dev_device)) {
3721 err = PTR_ERR(xudc->genpd_dev_device);
3722 dev_err(dev, "failed to get device power domain: %d\n", err);
3723 return err;
3724 }
3725
3726 xudc->genpd_dev_ss = dev_pm_domain_attach_by_name(dev, "ss");
3727 if (IS_ERR(xudc->genpd_dev_ss)) {
3728 err = PTR_ERR(xudc->genpd_dev_ss);
3729 dev_err(dev, "failed to get SuperSpeed power domain: %d\n", err);
3730 return err;
3731 }
3732
3733 xudc->genpd_dl_device = device_link_add(dev, xudc->genpd_dev_device,
3734 DL_FLAG_PM_RUNTIME |
3735 DL_FLAG_STATELESS);
3736 if (!xudc->genpd_dl_device) {
3737 dev_err(dev, "failed to add USB device link\n");
3738 return -ENODEV;
3739 }
3740
3741 xudc->genpd_dl_ss = device_link_add(dev, xudc->genpd_dev_ss,
3742 DL_FLAG_PM_RUNTIME |
3743 DL_FLAG_STATELESS);
3744 if (!xudc->genpd_dl_ss) {
3745 dev_err(dev, "failed to add SuperSpeed device link\n");
3746 return -ENODEV;
3747 }
3748
3749 return 0;
3750 }
3751
tegra_xudc_probe(struct platform_device * pdev)3752 static int tegra_xudc_probe(struct platform_device *pdev)
3753 {
3754 struct tegra_xudc *xudc;
3755 struct resource *res;
3756 unsigned int i;
3757 int err;
3758
3759 xudc = devm_kzalloc(&pdev->dev, sizeof(*xudc), GFP_KERNEL);
3760 if (!xudc)
3761 return -ENOMEM;
3762
3763 xudc->dev = &pdev->dev;
3764 platform_set_drvdata(pdev, xudc);
3765
3766 xudc->soc = of_device_get_match_data(&pdev->dev);
3767 if (!xudc->soc)
3768 return -ENODEV;
3769
3770 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3771 xudc->base = devm_ioremap_resource(&pdev->dev, res);
3772 if (IS_ERR(xudc->base))
3773 return PTR_ERR(xudc->base);
3774 xudc->phys_base = res->start;
3775
3776 xudc->fpci = devm_platform_ioremap_resource_byname(pdev, "fpci");
3777 if (IS_ERR(xudc->fpci))
3778 return PTR_ERR(xudc->fpci);
3779
3780 if (xudc->soc->has_ipfs) {
3781 xudc->ipfs = devm_platform_ioremap_resource_byname(pdev, "ipfs");
3782 if (IS_ERR(xudc->ipfs))
3783 return PTR_ERR(xudc->ipfs);
3784 }
3785
3786 xudc->irq = platform_get_irq(pdev, 0);
3787 if (xudc->irq < 0)
3788 return xudc->irq;
3789
3790 err = devm_request_irq(&pdev->dev, xudc->irq, tegra_xudc_irq, 0,
3791 dev_name(&pdev->dev), xudc);
3792 if (err < 0) {
3793 dev_err(xudc->dev, "failed to claim IRQ#%u: %d\n", xudc->irq,
3794 err);
3795 return err;
3796 }
3797
3798 xudc->clks = devm_kcalloc(&pdev->dev, xudc->soc->num_clks, sizeof(*xudc->clks),
3799 GFP_KERNEL);
3800 if (!xudc->clks)
3801 return -ENOMEM;
3802
3803 for (i = 0; i < xudc->soc->num_clks; i++)
3804 xudc->clks[i].id = xudc->soc->clock_names[i];
3805
3806 err = devm_clk_bulk_get(&pdev->dev, xudc->soc->num_clks, xudc->clks);
3807 if (err) {
3808 dev_err_probe(xudc->dev, err, "failed to request clocks\n");
3809 return err;
3810 }
3811
3812 xudc->supplies = devm_kcalloc(&pdev->dev, xudc->soc->num_supplies,
3813 sizeof(*xudc->supplies), GFP_KERNEL);
3814 if (!xudc->supplies)
3815 return -ENOMEM;
3816
3817 for (i = 0; i < xudc->soc->num_supplies; i++)
3818 xudc->supplies[i].supply = xudc->soc->supply_names[i];
3819
3820 err = devm_regulator_bulk_get(&pdev->dev, xudc->soc->num_supplies,
3821 xudc->supplies);
3822 if (err) {
3823 dev_err_probe(xudc->dev, err, "failed to request regulators\n");
3824 return err;
3825 }
3826
3827 xudc->padctl = tegra_xusb_padctl_get(&pdev->dev);
3828 if (IS_ERR(xudc->padctl))
3829 return PTR_ERR(xudc->padctl);
3830
3831 err = regulator_bulk_enable(xudc->soc->num_supplies, xudc->supplies);
3832 if (err) {
3833 dev_err(xudc->dev, "failed to enable regulators: %d\n", err);
3834 goto put_padctl;
3835 }
3836
3837 err = tegra_xudc_phy_get(xudc);
3838 if (err)
3839 goto disable_regulator;
3840
3841 err = tegra_xudc_powerdomain_init(xudc);
3842 if (err)
3843 goto put_powerdomains;
3844
3845 err = tegra_xudc_phy_init(xudc);
3846 if (err)
3847 goto put_powerdomains;
3848
3849 err = tegra_xudc_alloc_event_ring(xudc);
3850 if (err)
3851 goto disable_phy;
3852
3853 err = tegra_xudc_alloc_eps(xudc);
3854 if (err)
3855 goto free_event_ring;
3856
3857 spin_lock_init(&xudc->lock);
3858
3859 init_completion(&xudc->disconnect_complete);
3860
3861 INIT_WORK(&xudc->usb_role_sw_work, tegra_xudc_usb_role_sw_work);
3862
3863 INIT_DELAYED_WORK(&xudc->plc_reset_work, tegra_xudc_plc_reset_work);
3864
3865 INIT_DELAYED_WORK(&xudc->port_reset_war_work,
3866 tegra_xudc_port_reset_war_work);
3867
3868 pm_runtime_enable(&pdev->dev);
3869
3870 xudc->gadget.ops = &tegra_xudc_gadget_ops;
3871 xudc->gadget.ep0 = &xudc->ep[0].usb_ep;
3872 xudc->gadget.name = "tegra-xudc";
3873 xudc->gadget.max_speed = USB_SPEED_SUPER;
3874
3875 err = usb_add_gadget_udc(&pdev->dev, &xudc->gadget);
3876 if (err) {
3877 dev_err(&pdev->dev, "failed to add USB gadget: %d\n", err);
3878 goto free_eps;
3879 }
3880
3881 for (i = 0; i < xudc->soc->num_phys; i++) {
3882 if (!xudc->usbphy[i])
3883 continue;
3884
3885 usb_register_notifier(xudc->usbphy[i], &xudc->vbus_nb);
3886 tegra_xudc_update_data_role(xudc, xudc->usbphy[i]);
3887 }
3888
3889 return 0;
3890
3891 free_eps:
3892 pm_runtime_disable(&pdev->dev);
3893 tegra_xudc_free_eps(xudc);
3894 free_event_ring:
3895 tegra_xudc_free_event_ring(xudc);
3896 disable_phy:
3897 tegra_xudc_phy_exit(xudc);
3898 put_powerdomains:
3899 tegra_xudc_powerdomain_remove(xudc);
3900 disable_regulator:
3901 regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies);
3902 put_padctl:
3903 tegra_xusb_padctl_put(xudc->padctl);
3904
3905 return err;
3906 }
3907
tegra_xudc_remove(struct platform_device * pdev)3908 static void tegra_xudc_remove(struct platform_device *pdev)
3909 {
3910 struct tegra_xudc *xudc = platform_get_drvdata(pdev);
3911 unsigned int i;
3912
3913 pm_runtime_get_sync(xudc->dev);
3914
3915 cancel_delayed_work_sync(&xudc->plc_reset_work);
3916 cancel_work_sync(&xudc->usb_role_sw_work);
3917
3918 usb_del_gadget_udc(&xudc->gadget);
3919
3920 tegra_xudc_free_eps(xudc);
3921 tegra_xudc_free_event_ring(xudc);
3922
3923 tegra_xudc_powerdomain_remove(xudc);
3924
3925 regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies);
3926
3927 for (i = 0; i < xudc->soc->num_phys; i++) {
3928 phy_power_off(xudc->utmi_phy[i]);
3929 phy_power_off(xudc->usb3_phy[i]);
3930 }
3931
3932 tegra_xudc_phy_exit(xudc);
3933
3934 pm_runtime_disable(xudc->dev);
3935 pm_runtime_put(xudc->dev);
3936
3937 tegra_xusb_padctl_put(xudc->padctl);
3938 }
3939
tegra_xudc_powergate(struct tegra_xudc * xudc)3940 static int __maybe_unused tegra_xudc_powergate(struct tegra_xudc *xudc)
3941 {
3942 unsigned long flags;
3943
3944 dev_dbg(xudc->dev, "entering ELPG\n");
3945
3946 spin_lock_irqsave(&xudc->lock, flags);
3947
3948 xudc->powergated = true;
3949 xudc->saved_regs.ctrl = xudc_readl(xudc, CTRL);
3950 xudc->saved_regs.portpm = xudc_readl(xudc, PORTPM);
3951 xudc_writel(xudc, 0, CTRL);
3952
3953 spin_unlock_irqrestore(&xudc->lock, flags);
3954
3955 clk_bulk_disable_unprepare(xudc->soc->num_clks, xudc->clks);
3956
3957 regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies);
3958
3959 dev_dbg(xudc->dev, "entering ELPG done\n");
3960 return 0;
3961 }
3962
tegra_xudc_unpowergate(struct tegra_xudc * xudc)3963 static int __maybe_unused tegra_xudc_unpowergate(struct tegra_xudc *xudc)
3964 {
3965 unsigned long flags;
3966 int err;
3967
3968 dev_dbg(xudc->dev, "exiting ELPG\n");
3969
3970 err = regulator_bulk_enable(xudc->soc->num_supplies,
3971 xudc->supplies);
3972 if (err < 0)
3973 return err;
3974
3975 err = clk_bulk_prepare_enable(xudc->soc->num_clks, xudc->clks);
3976 if (err < 0)
3977 return err;
3978
3979 tegra_xudc_fpci_ipfs_init(xudc);
3980
3981 tegra_xudc_device_params_init(xudc);
3982
3983 tegra_xudc_init_event_ring(xudc);
3984
3985 tegra_xudc_init_eps(xudc);
3986
3987 xudc_writel(xudc, xudc->saved_regs.portpm, PORTPM);
3988 xudc_writel(xudc, xudc->saved_regs.ctrl, CTRL);
3989
3990 spin_lock_irqsave(&xudc->lock, flags);
3991 xudc->powergated = false;
3992 spin_unlock_irqrestore(&xudc->lock, flags);
3993
3994 dev_dbg(xudc->dev, "exiting ELPG done\n");
3995 return 0;
3996 }
3997
tegra_xudc_suspend(struct device * dev)3998 static int __maybe_unused tegra_xudc_suspend(struct device *dev)
3999 {
4000 struct tegra_xudc *xudc = dev_get_drvdata(dev);
4001 unsigned long flags;
4002
4003 spin_lock_irqsave(&xudc->lock, flags);
4004 xudc->suspended = true;
4005 spin_unlock_irqrestore(&xudc->lock, flags);
4006
4007 flush_work(&xudc->usb_role_sw_work);
4008
4009 if (!pm_runtime_status_suspended(dev)) {
4010 /* Forcibly disconnect before powergating. */
4011 tegra_xudc_device_mode_off(xudc);
4012 tegra_xudc_powergate(xudc);
4013 }
4014
4015 pm_runtime_disable(dev);
4016
4017 return 0;
4018 }
4019
tegra_xudc_resume(struct device * dev)4020 static int __maybe_unused tegra_xudc_resume(struct device *dev)
4021 {
4022 struct tegra_xudc *xudc = dev_get_drvdata(dev);
4023 unsigned long flags;
4024 int err;
4025
4026 err = tegra_xudc_unpowergate(xudc);
4027 if (err < 0)
4028 return err;
4029
4030 spin_lock_irqsave(&xudc->lock, flags);
4031 xudc->suspended = false;
4032 spin_unlock_irqrestore(&xudc->lock, flags);
4033
4034 schedule_work(&xudc->usb_role_sw_work);
4035
4036 pm_runtime_enable(dev);
4037
4038 return 0;
4039 }
4040
tegra_xudc_runtime_suspend(struct device * dev)4041 static int __maybe_unused tegra_xudc_runtime_suspend(struct device *dev)
4042 {
4043 struct tegra_xudc *xudc = dev_get_drvdata(dev);
4044
4045 return tegra_xudc_powergate(xudc);
4046 }
4047
tegra_xudc_runtime_resume(struct device * dev)4048 static int __maybe_unused tegra_xudc_runtime_resume(struct device *dev)
4049 {
4050 struct tegra_xudc *xudc = dev_get_drvdata(dev);
4051
4052 return tegra_xudc_unpowergate(xudc);
4053 }
4054
4055 static const struct dev_pm_ops tegra_xudc_pm_ops = {
4056 SET_SYSTEM_SLEEP_PM_OPS(tegra_xudc_suspend, tegra_xudc_resume)
4057 SET_RUNTIME_PM_OPS(tegra_xudc_runtime_suspend,
4058 tegra_xudc_runtime_resume, NULL)
4059 };
4060
4061 static struct platform_driver tegra_xudc_driver = {
4062 .probe = tegra_xudc_probe,
4063 .remove_new = tegra_xudc_remove,
4064 .driver = {
4065 .name = "tegra-xudc",
4066 .pm = &tegra_xudc_pm_ops,
4067 .of_match_table = tegra_xudc_of_match,
4068 },
4069 };
4070 module_platform_driver(tegra_xudc_driver);
4071
4072 MODULE_DESCRIPTION("NVIDIA Tegra XUSB Device Controller");
4073 MODULE_AUTHOR("Andrew Bresticker <abrestic@chromium.org>");
4074 MODULE_AUTHOR("Hui Fu <hfu@nvidia.com>");
4075 MODULE_AUTHOR("Nagarjuna Kristam <nkristam@nvidia.com>");
4076 MODULE_LICENSE("GPL v2");
4077