1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for Atmel AT32 and AT91 SPI Controllers
4 *
5 * Copyright (C) 2006 Atmel Corporation
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20
21 #include <linux/io.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/pm_runtime.h>
25 #include <trace/events/spi.h>
26
27 /* SPI register offsets */
28 #define SPI_CR 0x0000
29 #define SPI_MR 0x0004
30 #define SPI_RDR 0x0008
31 #define SPI_TDR 0x000c
32 #define SPI_SR 0x0010
33 #define SPI_IER 0x0014
34 #define SPI_IDR 0x0018
35 #define SPI_IMR 0x001c
36 #define SPI_CSR0 0x0030
37 #define SPI_CSR1 0x0034
38 #define SPI_CSR2 0x0038
39 #define SPI_CSR3 0x003c
40 #define SPI_FMR 0x0040
41 #define SPI_FLR 0x0044
42 #define SPI_VERSION 0x00fc
43 #define SPI_RPR 0x0100
44 #define SPI_RCR 0x0104
45 #define SPI_TPR 0x0108
46 #define SPI_TCR 0x010c
47 #define SPI_RNPR 0x0110
48 #define SPI_RNCR 0x0114
49 #define SPI_TNPR 0x0118
50 #define SPI_TNCR 0x011c
51 #define SPI_PTCR 0x0120
52 #define SPI_PTSR 0x0124
53
54 /* Bitfields in CR */
55 #define SPI_SPIEN_OFFSET 0
56 #define SPI_SPIEN_SIZE 1
57 #define SPI_SPIDIS_OFFSET 1
58 #define SPI_SPIDIS_SIZE 1
59 #define SPI_SWRST_OFFSET 7
60 #define SPI_SWRST_SIZE 1
61 #define SPI_LASTXFER_OFFSET 24
62 #define SPI_LASTXFER_SIZE 1
63 #define SPI_TXFCLR_OFFSET 16
64 #define SPI_TXFCLR_SIZE 1
65 #define SPI_RXFCLR_OFFSET 17
66 #define SPI_RXFCLR_SIZE 1
67 #define SPI_FIFOEN_OFFSET 30
68 #define SPI_FIFOEN_SIZE 1
69 #define SPI_FIFODIS_OFFSET 31
70 #define SPI_FIFODIS_SIZE 1
71
72 /* Bitfields in MR */
73 #define SPI_MSTR_OFFSET 0
74 #define SPI_MSTR_SIZE 1
75 #define SPI_PS_OFFSET 1
76 #define SPI_PS_SIZE 1
77 #define SPI_PCSDEC_OFFSET 2
78 #define SPI_PCSDEC_SIZE 1
79 #define SPI_FDIV_OFFSET 3
80 #define SPI_FDIV_SIZE 1
81 #define SPI_MODFDIS_OFFSET 4
82 #define SPI_MODFDIS_SIZE 1
83 #define SPI_WDRBT_OFFSET 5
84 #define SPI_WDRBT_SIZE 1
85 #define SPI_LLB_OFFSET 7
86 #define SPI_LLB_SIZE 1
87 #define SPI_PCS_OFFSET 16
88 #define SPI_PCS_SIZE 4
89 #define SPI_DLYBCS_OFFSET 24
90 #define SPI_DLYBCS_SIZE 8
91
92 /* Bitfields in RDR */
93 #define SPI_RD_OFFSET 0
94 #define SPI_RD_SIZE 16
95
96 /* Bitfields in TDR */
97 #define SPI_TD_OFFSET 0
98 #define SPI_TD_SIZE 16
99
100 /* Bitfields in SR */
101 #define SPI_RDRF_OFFSET 0
102 #define SPI_RDRF_SIZE 1
103 #define SPI_TDRE_OFFSET 1
104 #define SPI_TDRE_SIZE 1
105 #define SPI_MODF_OFFSET 2
106 #define SPI_MODF_SIZE 1
107 #define SPI_OVRES_OFFSET 3
108 #define SPI_OVRES_SIZE 1
109 #define SPI_ENDRX_OFFSET 4
110 #define SPI_ENDRX_SIZE 1
111 #define SPI_ENDTX_OFFSET 5
112 #define SPI_ENDTX_SIZE 1
113 #define SPI_RXBUFF_OFFSET 6
114 #define SPI_RXBUFF_SIZE 1
115 #define SPI_TXBUFE_OFFSET 7
116 #define SPI_TXBUFE_SIZE 1
117 #define SPI_NSSR_OFFSET 8
118 #define SPI_NSSR_SIZE 1
119 #define SPI_TXEMPTY_OFFSET 9
120 #define SPI_TXEMPTY_SIZE 1
121 #define SPI_SPIENS_OFFSET 16
122 #define SPI_SPIENS_SIZE 1
123 #define SPI_TXFEF_OFFSET 24
124 #define SPI_TXFEF_SIZE 1
125 #define SPI_TXFFF_OFFSET 25
126 #define SPI_TXFFF_SIZE 1
127 #define SPI_TXFTHF_OFFSET 26
128 #define SPI_TXFTHF_SIZE 1
129 #define SPI_RXFEF_OFFSET 27
130 #define SPI_RXFEF_SIZE 1
131 #define SPI_RXFFF_OFFSET 28
132 #define SPI_RXFFF_SIZE 1
133 #define SPI_RXFTHF_OFFSET 29
134 #define SPI_RXFTHF_SIZE 1
135 #define SPI_TXFPTEF_OFFSET 30
136 #define SPI_TXFPTEF_SIZE 1
137 #define SPI_RXFPTEF_OFFSET 31
138 #define SPI_RXFPTEF_SIZE 1
139
140 /* Bitfields in CSR0 */
141 #define SPI_CPOL_OFFSET 0
142 #define SPI_CPOL_SIZE 1
143 #define SPI_NCPHA_OFFSET 1
144 #define SPI_NCPHA_SIZE 1
145 #define SPI_CSAAT_OFFSET 3
146 #define SPI_CSAAT_SIZE 1
147 #define SPI_BITS_OFFSET 4
148 #define SPI_BITS_SIZE 4
149 #define SPI_SCBR_OFFSET 8
150 #define SPI_SCBR_SIZE 8
151 #define SPI_DLYBS_OFFSET 16
152 #define SPI_DLYBS_SIZE 8
153 #define SPI_DLYBCT_OFFSET 24
154 #define SPI_DLYBCT_SIZE 8
155
156 /* Bitfields in RCR */
157 #define SPI_RXCTR_OFFSET 0
158 #define SPI_RXCTR_SIZE 16
159
160 /* Bitfields in TCR */
161 #define SPI_TXCTR_OFFSET 0
162 #define SPI_TXCTR_SIZE 16
163
164 /* Bitfields in RNCR */
165 #define SPI_RXNCR_OFFSET 0
166 #define SPI_RXNCR_SIZE 16
167
168 /* Bitfields in TNCR */
169 #define SPI_TXNCR_OFFSET 0
170 #define SPI_TXNCR_SIZE 16
171
172 /* Bitfields in PTCR */
173 #define SPI_RXTEN_OFFSET 0
174 #define SPI_RXTEN_SIZE 1
175 #define SPI_RXTDIS_OFFSET 1
176 #define SPI_RXTDIS_SIZE 1
177 #define SPI_TXTEN_OFFSET 8
178 #define SPI_TXTEN_SIZE 1
179 #define SPI_TXTDIS_OFFSET 9
180 #define SPI_TXTDIS_SIZE 1
181
182 /* Bitfields in FMR */
183 #define SPI_TXRDYM_OFFSET 0
184 #define SPI_TXRDYM_SIZE 2
185 #define SPI_RXRDYM_OFFSET 4
186 #define SPI_RXRDYM_SIZE 2
187 #define SPI_TXFTHRES_OFFSET 16
188 #define SPI_TXFTHRES_SIZE 6
189 #define SPI_RXFTHRES_OFFSET 24
190 #define SPI_RXFTHRES_SIZE 6
191
192 /* Bitfields in FLR */
193 #define SPI_TXFL_OFFSET 0
194 #define SPI_TXFL_SIZE 6
195 #define SPI_RXFL_OFFSET 16
196 #define SPI_RXFL_SIZE 6
197
198 /* Constants for BITS */
199 #define SPI_BITS_8_BPT 0
200 #define SPI_BITS_9_BPT 1
201 #define SPI_BITS_10_BPT 2
202 #define SPI_BITS_11_BPT 3
203 #define SPI_BITS_12_BPT 4
204 #define SPI_BITS_13_BPT 5
205 #define SPI_BITS_14_BPT 6
206 #define SPI_BITS_15_BPT 7
207 #define SPI_BITS_16_BPT 8
208 #define SPI_ONE_DATA 0
209 #define SPI_TWO_DATA 1
210 #define SPI_FOUR_DATA 2
211
212 /* Bit manipulation macros */
213 #define SPI_BIT(name) \
214 (1 << SPI_##name##_OFFSET)
215 #define SPI_BF(name, value) \
216 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
217 #define SPI_BFEXT(name, value) \
218 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
219 #define SPI_BFINS(name, value, old) \
220 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
221 | SPI_BF(name, value))
222
223 /* Register access macros */
224 #define spi_readl(port, reg) \
225 readl_relaxed((port)->regs + SPI_##reg)
226 #define spi_writel(port, reg, value) \
227 writel_relaxed((value), (port)->regs + SPI_##reg)
228 #define spi_writew(port, reg, value) \
229 writew_relaxed((value), (port)->regs + SPI_##reg)
230
231 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
232 * cache operations; better heuristics consider wordsize and bitrate.
233 */
234 #define DMA_MIN_BYTES 16
235
236 #define SPI_DMA_MIN_TIMEOUT (msecs_to_jiffies(1000))
237 #define SPI_DMA_TIMEOUT_PER_10K (msecs_to_jiffies(4))
238
239 #define AUTOSUSPEND_TIMEOUT 2000
240
241 struct atmel_spi_caps {
242 bool is_spi2;
243 bool has_wdrbt;
244 bool has_dma_support;
245 bool has_pdc_support;
246 };
247
248 /*
249 * The core SPI transfer engine just talks to a register bank to set up
250 * DMA transfers; transfer queue progress is driven by IRQs. The clock
251 * framework provides the base clock, subdivided for each spi_device.
252 */
253 struct atmel_spi {
254 spinlock_t lock;
255 unsigned long flags;
256
257 phys_addr_t phybase;
258 void __iomem *regs;
259 int irq;
260 struct clk *clk;
261 struct platform_device *pdev;
262 unsigned long spi_clk;
263
264 struct spi_transfer *current_transfer;
265 int current_remaining_bytes;
266 int done_status;
267 dma_addr_t dma_addr_rx_bbuf;
268 dma_addr_t dma_addr_tx_bbuf;
269 void *addr_rx_bbuf;
270 void *addr_tx_bbuf;
271
272 struct completion xfer_completion;
273
274 struct atmel_spi_caps caps;
275
276 bool use_dma;
277 bool use_pdc;
278
279 bool keep_cs;
280
281 u32 fifo_size;
282 u8 native_cs_free;
283 u8 native_cs_for_gpio;
284 };
285
286 /* Controller-specific per-slave state */
287 struct atmel_spi_device {
288 u32 csr;
289 };
290
291 #define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
292 #define INVALID_DMA_ADDRESS 0xffffffff
293
294 /*
295 * Version 2 of the SPI controller has
296 * - CR.LASTXFER
297 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
298 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
299 * - SPI_CSRx.CSAAT
300 * - SPI_CSRx.SBCR allows faster clocking
301 */
atmel_spi_is_v2(struct atmel_spi * as)302 static bool atmel_spi_is_v2(struct atmel_spi *as)
303 {
304 return as->caps.is_spi2;
305 }
306
307 /*
308 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
309 * they assume that spi slave device state will not change on deselect, so
310 * that automagic deselection is OK. ("NPCSx rises if no data is to be
311 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
312 * controllers have CSAAT and friends.
313 *
314 * Even controller newer than ar91rm9200, using GPIOs can make sens as
315 * it lets us support active-high chipselects despite the controller's
316 * belief that only active-low devices/systems exists.
317 *
318 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
319 * right when driven with GPIO. ("Mode Fault does not allow more than one
320 * Master on Chip Select 0.") No workaround exists for that ... so for
321 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
322 * and (c) will trigger that first erratum in some cases.
323 */
324
cs_activate(struct atmel_spi * as,struct spi_device * spi)325 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
326 {
327 struct atmel_spi_device *asd = spi->controller_state;
328 int chip_select;
329 u32 mr;
330
331 if (spi_get_csgpiod(spi, 0))
332 chip_select = as->native_cs_for_gpio;
333 else
334 chip_select = spi_get_chipselect(spi, 0);
335
336 if (atmel_spi_is_v2(as)) {
337 spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
338 /* For the low SPI version, there is a issue that PDC transfer
339 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
340 */
341 spi_writel(as, CSR0, asd->csr);
342 if (as->caps.has_wdrbt) {
343 spi_writel(as, MR,
344 SPI_BF(PCS, ~(0x01 << chip_select))
345 | SPI_BIT(WDRBT)
346 | SPI_BIT(MODFDIS)
347 | SPI_BIT(MSTR));
348 } else {
349 spi_writel(as, MR,
350 SPI_BF(PCS, ~(0x01 << chip_select))
351 | SPI_BIT(MODFDIS)
352 | SPI_BIT(MSTR));
353 }
354
355 mr = spi_readl(as, MR);
356 } else {
357 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
358 int i;
359 u32 csr;
360
361 /* Make sure clock polarity is correct */
362 for (i = 0; i < spi->controller->num_chipselect; i++) {
363 csr = spi_readl(as, CSR0 + 4 * i);
364 if ((csr ^ cpol) & SPI_BIT(CPOL))
365 spi_writel(as, CSR0 + 4 * i,
366 csr ^ SPI_BIT(CPOL));
367 }
368
369 mr = spi_readl(as, MR);
370 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
371 spi_writel(as, MR, mr);
372 }
373
374 dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
375 }
376
cs_deactivate(struct atmel_spi * as,struct spi_device * spi)377 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
378 {
379 int chip_select;
380 u32 mr;
381
382 if (spi_get_csgpiod(spi, 0))
383 chip_select = as->native_cs_for_gpio;
384 else
385 chip_select = spi_get_chipselect(spi, 0);
386
387 /* only deactivate *this* device; sometimes transfers to
388 * another device may be active when this routine is called.
389 */
390 mr = spi_readl(as, MR);
391 if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
392 mr = SPI_BFINS(PCS, 0xf, mr);
393 spi_writel(as, MR, mr);
394 }
395
396 dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
397
398 if (!spi_get_csgpiod(spi, 0))
399 spi_writel(as, CR, SPI_BIT(LASTXFER));
400 }
401
atmel_spi_lock(struct atmel_spi * as)402 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
403 {
404 spin_lock_irqsave(&as->lock, as->flags);
405 }
406
atmel_spi_unlock(struct atmel_spi * as)407 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
408 {
409 spin_unlock_irqrestore(&as->lock, as->flags);
410 }
411
atmel_spi_is_vmalloc_xfer(struct spi_transfer * xfer)412 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
413 {
414 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
415 }
416
atmel_spi_use_dma(struct atmel_spi * as,struct spi_transfer * xfer)417 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
418 struct spi_transfer *xfer)
419 {
420 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
421 }
422
atmel_spi_can_dma(struct spi_controller * host,struct spi_device * spi,struct spi_transfer * xfer)423 static bool atmel_spi_can_dma(struct spi_controller *host,
424 struct spi_device *spi,
425 struct spi_transfer *xfer)
426 {
427 struct atmel_spi *as = spi_controller_get_devdata(host);
428
429 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
430 return atmel_spi_use_dma(as, xfer) &&
431 !atmel_spi_is_vmalloc_xfer(xfer);
432 else
433 return atmel_spi_use_dma(as, xfer);
434
435 }
436
atmel_spi_dma_slave_config(struct atmel_spi * as,u8 bits_per_word)437 static int atmel_spi_dma_slave_config(struct atmel_spi *as, u8 bits_per_word)
438 {
439 struct spi_controller *host = platform_get_drvdata(as->pdev);
440 struct dma_slave_config slave_config;
441 int err = 0;
442
443 if (bits_per_word > 8) {
444 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
445 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
446 } else {
447 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
448 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
449 }
450
451 slave_config.dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
452 slave_config.src_addr = (dma_addr_t)as->phybase + SPI_RDR;
453 slave_config.src_maxburst = 1;
454 slave_config.dst_maxburst = 1;
455 slave_config.device_fc = false;
456
457 /*
458 * This driver uses fixed peripheral select mode (PS bit set to '0' in
459 * the Mode Register).
460 * So according to the datasheet, when FIFOs are available (and
461 * enabled), the Transmit FIFO operates in Multiple Data Mode.
462 * In this mode, up to 2 data, not 4, can be written into the Transmit
463 * Data Register in a single access.
464 * However, the first data has to be written into the lowest 16 bits and
465 * the second data into the highest 16 bits of the Transmit
466 * Data Register. For 8bit data (the most frequent case), it would
467 * require to rework tx_buf so each data would actually fit 16 bits.
468 * So we'd rather write only one data at the time. Hence the transmit
469 * path works the same whether FIFOs are available (and enabled) or not.
470 */
471 if (dmaengine_slave_config(host->dma_tx, &slave_config)) {
472 dev_err(&as->pdev->dev,
473 "failed to configure tx dma channel\n");
474 err = -EINVAL;
475 }
476
477 /*
478 * This driver configures the spi controller for host mode (MSTR bit
479 * set to '1' in the Mode Register).
480 * So according to the datasheet, when FIFOs are available (and
481 * enabled), the Receive FIFO operates in Single Data Mode.
482 * So the receive path works the same whether FIFOs are available (and
483 * enabled) or not.
484 */
485 if (dmaengine_slave_config(host->dma_rx, &slave_config)) {
486 dev_err(&as->pdev->dev,
487 "failed to configure rx dma channel\n");
488 err = -EINVAL;
489 }
490
491 return err;
492 }
493
atmel_spi_configure_dma(struct spi_controller * host,struct atmel_spi * as)494 static int atmel_spi_configure_dma(struct spi_controller *host,
495 struct atmel_spi *as)
496 {
497 struct device *dev = &as->pdev->dev;
498 int err;
499
500 host->dma_tx = dma_request_chan(dev, "tx");
501 if (IS_ERR(host->dma_tx)) {
502 err = PTR_ERR(host->dma_tx);
503 dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
504 goto error_clear;
505 }
506
507 host->dma_rx = dma_request_chan(dev, "rx");
508 if (IS_ERR(host->dma_rx)) {
509 err = PTR_ERR(host->dma_rx);
510 /*
511 * No reason to check EPROBE_DEFER here since we have already
512 * requested tx channel.
513 */
514 dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
515 goto error;
516 }
517
518 err = atmel_spi_dma_slave_config(as, 8);
519 if (err)
520 goto error;
521
522 dev_info(&as->pdev->dev,
523 "Using %s (tx) and %s (rx) for DMA transfers\n",
524 dma_chan_name(host->dma_tx),
525 dma_chan_name(host->dma_rx));
526
527 return 0;
528 error:
529 if (!IS_ERR(host->dma_rx))
530 dma_release_channel(host->dma_rx);
531 if (!IS_ERR(host->dma_tx))
532 dma_release_channel(host->dma_tx);
533 error_clear:
534 host->dma_tx = host->dma_rx = NULL;
535 return err;
536 }
537
atmel_spi_stop_dma(struct spi_controller * host)538 static void atmel_spi_stop_dma(struct spi_controller *host)
539 {
540 if (host->dma_rx)
541 dmaengine_terminate_all(host->dma_rx);
542 if (host->dma_tx)
543 dmaengine_terminate_all(host->dma_tx);
544 }
545
atmel_spi_release_dma(struct spi_controller * host)546 static void atmel_spi_release_dma(struct spi_controller *host)
547 {
548 if (host->dma_rx) {
549 dma_release_channel(host->dma_rx);
550 host->dma_rx = NULL;
551 }
552 if (host->dma_tx) {
553 dma_release_channel(host->dma_tx);
554 host->dma_tx = NULL;
555 }
556 }
557
558 /* This function is called by the DMA driver from tasklet context */
dma_callback(void * data)559 static void dma_callback(void *data)
560 {
561 struct spi_controller *host = data;
562 struct atmel_spi *as = spi_controller_get_devdata(host);
563
564 if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
565 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
566 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
567 as->current_transfer->len);
568 }
569 complete(&as->xfer_completion);
570 }
571
572 /*
573 * Next transfer using PIO without FIFO.
574 */
atmel_spi_next_xfer_single(struct spi_controller * host,struct spi_transfer * xfer)575 static void atmel_spi_next_xfer_single(struct spi_controller *host,
576 struct spi_transfer *xfer)
577 {
578 struct atmel_spi *as = spi_controller_get_devdata(host);
579 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
580
581 dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_pio\n");
582
583 /* Make sure data is not remaining in RDR */
584 spi_readl(as, RDR);
585 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
586 spi_readl(as, RDR);
587 cpu_relax();
588 }
589
590 if (xfer->bits_per_word > 8)
591 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
592 else
593 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
594
595 dev_dbg(host->dev.parent,
596 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
597 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
598 xfer->bits_per_word);
599
600 /* Enable relevant interrupts */
601 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
602 }
603
604 /*
605 * Next transfer using PIO with FIFO.
606 */
atmel_spi_next_xfer_fifo(struct spi_controller * host,struct spi_transfer * xfer)607 static void atmel_spi_next_xfer_fifo(struct spi_controller *host,
608 struct spi_transfer *xfer)
609 {
610 struct atmel_spi *as = spi_controller_get_devdata(host);
611 u32 current_remaining_data, num_data;
612 u32 offset = xfer->len - as->current_remaining_bytes;
613 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
614 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset);
615 u16 td0, td1;
616 u32 fifomr;
617
618 dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_fifo\n");
619
620 /* Compute the number of data to transfer in the current iteration */
621 current_remaining_data = ((xfer->bits_per_word > 8) ?
622 ((u32)as->current_remaining_bytes >> 1) :
623 (u32)as->current_remaining_bytes);
624 num_data = min(current_remaining_data, as->fifo_size);
625
626 /* Flush RX and TX FIFOs */
627 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
628 while (spi_readl(as, FLR))
629 cpu_relax();
630
631 /* Set RX FIFO Threshold to the number of data to transfer */
632 fifomr = spi_readl(as, FMR);
633 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
634
635 /* Clear FIFO flags in the Status Register, especially RXFTHF */
636 (void)spi_readl(as, SR);
637
638 /* Fill TX FIFO */
639 while (num_data >= 2) {
640 if (xfer->bits_per_word > 8) {
641 td0 = *words++;
642 td1 = *words++;
643 } else {
644 td0 = *bytes++;
645 td1 = *bytes++;
646 }
647
648 spi_writel(as, TDR, (td1 << 16) | td0);
649 num_data -= 2;
650 }
651
652 if (num_data) {
653 if (xfer->bits_per_word > 8)
654 td0 = *words++;
655 else
656 td0 = *bytes++;
657
658 spi_writew(as, TDR, td0);
659 num_data--;
660 }
661
662 dev_dbg(host->dev.parent,
663 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
664 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
665 xfer->bits_per_word);
666
667 /*
668 * Enable RX FIFO Threshold Flag interrupt to be notified about
669 * transfer completion.
670 */
671 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
672 }
673
674 /*
675 * Next transfer using PIO.
676 */
atmel_spi_next_xfer_pio(struct spi_controller * host,struct spi_transfer * xfer)677 static void atmel_spi_next_xfer_pio(struct spi_controller *host,
678 struct spi_transfer *xfer)
679 {
680 struct atmel_spi *as = spi_controller_get_devdata(host);
681
682 if (as->fifo_size)
683 atmel_spi_next_xfer_fifo(host, xfer);
684 else
685 atmel_spi_next_xfer_single(host, xfer);
686 }
687
688 /*
689 * Submit next transfer for DMA.
690 */
atmel_spi_next_xfer_dma_submit(struct spi_controller * host,struct spi_transfer * xfer,u32 * plen)691 static int atmel_spi_next_xfer_dma_submit(struct spi_controller *host,
692 struct spi_transfer *xfer,
693 u32 *plen)
694 {
695 struct atmel_spi *as = spi_controller_get_devdata(host);
696 struct dma_chan *rxchan = host->dma_rx;
697 struct dma_chan *txchan = host->dma_tx;
698 struct dma_async_tx_descriptor *rxdesc;
699 struct dma_async_tx_descriptor *txdesc;
700 dma_cookie_t cookie;
701
702 dev_vdbg(host->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
703
704 /* Check that the channels are available */
705 if (!rxchan || !txchan)
706 return -ENODEV;
707
708
709 *plen = xfer->len;
710
711 if (atmel_spi_dma_slave_config(as, xfer->bits_per_word))
712 goto err_exit;
713
714 /* Send both scatterlists */
715 if (atmel_spi_is_vmalloc_xfer(xfer) &&
716 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
717 rxdesc = dmaengine_prep_slave_single(rxchan,
718 as->dma_addr_rx_bbuf,
719 xfer->len,
720 DMA_DEV_TO_MEM,
721 DMA_PREP_INTERRUPT |
722 DMA_CTRL_ACK);
723 } else {
724 rxdesc = dmaengine_prep_slave_sg(rxchan,
725 xfer->rx_sg.sgl,
726 xfer->rx_sg.nents,
727 DMA_DEV_TO_MEM,
728 DMA_PREP_INTERRUPT |
729 DMA_CTRL_ACK);
730 }
731 if (!rxdesc)
732 goto err_dma;
733
734 if (atmel_spi_is_vmalloc_xfer(xfer) &&
735 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
736 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
737 txdesc = dmaengine_prep_slave_single(txchan,
738 as->dma_addr_tx_bbuf,
739 xfer->len, DMA_MEM_TO_DEV,
740 DMA_PREP_INTERRUPT |
741 DMA_CTRL_ACK);
742 } else {
743 txdesc = dmaengine_prep_slave_sg(txchan,
744 xfer->tx_sg.sgl,
745 xfer->tx_sg.nents,
746 DMA_MEM_TO_DEV,
747 DMA_PREP_INTERRUPT |
748 DMA_CTRL_ACK);
749 }
750 if (!txdesc)
751 goto err_dma;
752
753 dev_dbg(host->dev.parent,
754 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
755 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
756 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
757
758 /* Enable relevant interrupts */
759 spi_writel(as, IER, SPI_BIT(OVRES));
760
761 /* Put the callback on the RX transfer only, that should finish last */
762 rxdesc->callback = dma_callback;
763 rxdesc->callback_param = host;
764
765 /* Submit and fire RX and TX with TX last so we're ready to read! */
766 cookie = rxdesc->tx_submit(rxdesc);
767 if (dma_submit_error(cookie))
768 goto err_dma;
769 cookie = txdesc->tx_submit(txdesc);
770 if (dma_submit_error(cookie))
771 goto err_dma;
772 rxchan->device->device_issue_pending(rxchan);
773 txchan->device->device_issue_pending(txchan);
774
775 return 0;
776
777 err_dma:
778 spi_writel(as, IDR, SPI_BIT(OVRES));
779 atmel_spi_stop_dma(host);
780 err_exit:
781 return -ENOMEM;
782 }
783
atmel_spi_next_xfer_data(struct spi_controller * host,struct spi_transfer * xfer,dma_addr_t * tx_dma,dma_addr_t * rx_dma,u32 * plen)784 static void atmel_spi_next_xfer_data(struct spi_controller *host,
785 struct spi_transfer *xfer,
786 dma_addr_t *tx_dma,
787 dma_addr_t *rx_dma,
788 u32 *plen)
789 {
790 *rx_dma = xfer->rx_dma + xfer->len - *plen;
791 *tx_dma = xfer->tx_dma + xfer->len - *plen;
792 if (*plen > host->max_dma_len)
793 *plen = host->max_dma_len;
794 }
795
atmel_spi_set_xfer_speed(struct atmel_spi * as,struct spi_device * spi,struct spi_transfer * xfer)796 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
797 struct spi_device *spi,
798 struct spi_transfer *xfer)
799 {
800 u32 scbr, csr;
801 unsigned long bus_hz;
802 int chip_select;
803
804 if (spi_get_csgpiod(spi, 0))
805 chip_select = as->native_cs_for_gpio;
806 else
807 chip_select = spi_get_chipselect(spi, 0);
808
809 /* v1 chips start out at half the peripheral bus speed. */
810 bus_hz = as->spi_clk;
811 if (!atmel_spi_is_v2(as))
812 bus_hz /= 2;
813
814 /*
815 * Calculate the lowest divider that satisfies the
816 * constraint, assuming div32/fdiv/mbz == 0.
817 */
818 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
819
820 /*
821 * If the resulting divider doesn't fit into the
822 * register bitfield, we can't satisfy the constraint.
823 */
824 if (scbr >= (1 << SPI_SCBR_SIZE)) {
825 dev_err(&spi->dev,
826 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
827 xfer->speed_hz, scbr, bus_hz/255);
828 return -EINVAL;
829 }
830 if (scbr == 0) {
831 dev_err(&spi->dev,
832 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
833 xfer->speed_hz, scbr, bus_hz);
834 return -EINVAL;
835 }
836 csr = spi_readl(as, CSR0 + 4 * chip_select);
837 csr = SPI_BFINS(SCBR, scbr, csr);
838 spi_writel(as, CSR0 + 4 * chip_select, csr);
839 xfer->effective_speed_hz = bus_hz / scbr;
840
841 return 0;
842 }
843
844 /*
845 * Submit next transfer for PDC.
846 * lock is held, spi irq is blocked
847 */
atmel_spi_pdc_next_xfer(struct spi_controller * host,struct spi_transfer * xfer)848 static void atmel_spi_pdc_next_xfer(struct spi_controller *host,
849 struct spi_transfer *xfer)
850 {
851 struct atmel_spi *as = spi_controller_get_devdata(host);
852 u32 len;
853 dma_addr_t tx_dma, rx_dma;
854
855 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
856
857 len = as->current_remaining_bytes;
858 atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
859 as->current_remaining_bytes -= len;
860
861 spi_writel(as, RPR, rx_dma);
862 spi_writel(as, TPR, tx_dma);
863
864 if (xfer->bits_per_word > 8)
865 len >>= 1;
866 spi_writel(as, RCR, len);
867 spi_writel(as, TCR, len);
868
869 dev_dbg(&host->dev,
870 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
871 xfer, xfer->len, xfer->tx_buf,
872 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
873 (unsigned long long)xfer->rx_dma);
874
875 if (as->current_remaining_bytes) {
876 len = as->current_remaining_bytes;
877 atmel_spi_next_xfer_data(host, xfer, &tx_dma, &rx_dma, &len);
878 as->current_remaining_bytes -= len;
879
880 spi_writel(as, RNPR, rx_dma);
881 spi_writel(as, TNPR, tx_dma);
882
883 if (xfer->bits_per_word > 8)
884 len >>= 1;
885 spi_writel(as, RNCR, len);
886 spi_writel(as, TNCR, len);
887
888 dev_dbg(&host->dev,
889 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
890 xfer, xfer->len, xfer->tx_buf,
891 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
892 (unsigned long long)xfer->rx_dma);
893 }
894
895 /* REVISIT: We're waiting for RXBUFF before we start the next
896 * transfer because we need to handle some difficult timing
897 * issues otherwise. If we wait for TXBUFE in one transfer and
898 * then starts waiting for RXBUFF in the next, it's difficult
899 * to tell the difference between the RXBUFF interrupt we're
900 * actually waiting for and the RXBUFF interrupt of the
901 * previous transfer.
902 *
903 * It should be doable, though. Just not now...
904 */
905 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
906 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
907 }
908
909 /*
910 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
911 * - The buffer is either valid for CPU access, else NULL
912 * - If the buffer is valid, so is its DMA address
913 *
914 * This driver manages the dma address unless message->is_dma_mapped.
915 */
916 static int
atmel_spi_dma_map_xfer(struct atmel_spi * as,struct spi_transfer * xfer)917 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
918 {
919 struct device *dev = &as->pdev->dev;
920
921 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
922 if (xfer->tx_buf) {
923 /* tx_buf is a const void* where we need a void * for the dma
924 * mapping */
925 void *nonconst_tx = (void *)xfer->tx_buf;
926
927 xfer->tx_dma = dma_map_single(dev,
928 nonconst_tx, xfer->len,
929 DMA_TO_DEVICE);
930 if (dma_mapping_error(dev, xfer->tx_dma))
931 return -ENOMEM;
932 }
933 if (xfer->rx_buf) {
934 xfer->rx_dma = dma_map_single(dev,
935 xfer->rx_buf, xfer->len,
936 DMA_FROM_DEVICE);
937 if (dma_mapping_error(dev, xfer->rx_dma)) {
938 if (xfer->tx_buf)
939 dma_unmap_single(dev,
940 xfer->tx_dma, xfer->len,
941 DMA_TO_DEVICE);
942 return -ENOMEM;
943 }
944 }
945 return 0;
946 }
947
atmel_spi_dma_unmap_xfer(struct spi_controller * host,struct spi_transfer * xfer)948 static void atmel_spi_dma_unmap_xfer(struct spi_controller *host,
949 struct spi_transfer *xfer)
950 {
951 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
952 dma_unmap_single(host->dev.parent, xfer->tx_dma,
953 xfer->len, DMA_TO_DEVICE);
954 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
955 dma_unmap_single(host->dev.parent, xfer->rx_dma,
956 xfer->len, DMA_FROM_DEVICE);
957 }
958
atmel_spi_disable_pdc_transfer(struct atmel_spi * as)959 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
960 {
961 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
962 }
963
964 static void
atmel_spi_pump_single_data(struct atmel_spi * as,struct spi_transfer * xfer)965 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
966 {
967 u8 *rxp;
968 u16 *rxp16;
969 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
970
971 if (xfer->bits_per_word > 8) {
972 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
973 *rxp16 = spi_readl(as, RDR);
974 } else {
975 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
976 *rxp = spi_readl(as, RDR);
977 }
978 if (xfer->bits_per_word > 8) {
979 if (as->current_remaining_bytes > 2)
980 as->current_remaining_bytes -= 2;
981 else
982 as->current_remaining_bytes = 0;
983 } else {
984 as->current_remaining_bytes--;
985 }
986 }
987
988 static void
atmel_spi_pump_fifo_data(struct atmel_spi * as,struct spi_transfer * xfer)989 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
990 {
991 u32 fifolr = spi_readl(as, FLR);
992 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
993 u32 offset = xfer->len - as->current_remaining_bytes;
994 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
995 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset);
996 u16 rd; /* RD field is the lowest 16 bits of RDR */
997
998 /* Update the number of remaining bytes to transfer */
999 num_bytes = ((xfer->bits_per_word > 8) ?
1000 (num_data << 1) :
1001 num_data);
1002
1003 if (as->current_remaining_bytes > num_bytes)
1004 as->current_remaining_bytes -= num_bytes;
1005 else
1006 as->current_remaining_bytes = 0;
1007
1008 /* Handle odd number of bytes when data are more than 8bit width */
1009 if (xfer->bits_per_word > 8)
1010 as->current_remaining_bytes &= ~0x1;
1011
1012 /* Read data */
1013 while (num_data) {
1014 rd = spi_readl(as, RDR);
1015 if (xfer->bits_per_word > 8)
1016 *words++ = rd;
1017 else
1018 *bytes++ = rd;
1019 num_data--;
1020 }
1021 }
1022
1023 /* Called from IRQ
1024 *
1025 * Must update "current_remaining_bytes" to keep track of data
1026 * to transfer.
1027 */
1028 static void
atmel_spi_pump_pio_data(struct atmel_spi * as,struct spi_transfer * xfer)1029 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1030 {
1031 if (as->fifo_size)
1032 atmel_spi_pump_fifo_data(as, xfer);
1033 else
1034 atmel_spi_pump_single_data(as, xfer);
1035 }
1036
1037 /* Interrupt
1038 *
1039 */
1040 static irqreturn_t
atmel_spi_pio_interrupt(int irq,void * dev_id)1041 atmel_spi_pio_interrupt(int irq, void *dev_id)
1042 {
1043 struct spi_controller *host = dev_id;
1044 struct atmel_spi *as = spi_controller_get_devdata(host);
1045 u32 status, pending, imr;
1046 struct spi_transfer *xfer;
1047 int ret = IRQ_NONE;
1048
1049 imr = spi_readl(as, IMR);
1050 status = spi_readl(as, SR);
1051 pending = status & imr;
1052
1053 if (pending & SPI_BIT(OVRES)) {
1054 ret = IRQ_HANDLED;
1055 spi_writel(as, IDR, SPI_BIT(OVRES));
1056 dev_warn(host->dev.parent, "overrun\n");
1057
1058 /*
1059 * When we get an overrun, we disregard the current
1060 * transfer. Data will not be copied back from any
1061 * bounce buffer and msg->actual_len will not be
1062 * updated with the last xfer.
1063 *
1064 * We will also not process any remaning transfers in
1065 * the message.
1066 */
1067 as->done_status = -EIO;
1068 smp_wmb();
1069
1070 /* Clear any overrun happening while cleaning up */
1071 spi_readl(as, SR);
1072
1073 complete(&as->xfer_completion);
1074
1075 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1076 atmel_spi_lock(as);
1077
1078 if (as->current_remaining_bytes) {
1079 ret = IRQ_HANDLED;
1080 xfer = as->current_transfer;
1081 atmel_spi_pump_pio_data(as, xfer);
1082 if (!as->current_remaining_bytes)
1083 spi_writel(as, IDR, pending);
1084
1085 complete(&as->xfer_completion);
1086 }
1087
1088 atmel_spi_unlock(as);
1089 } else {
1090 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1091 ret = IRQ_HANDLED;
1092 spi_writel(as, IDR, pending);
1093 }
1094
1095 return ret;
1096 }
1097
1098 static irqreturn_t
atmel_spi_pdc_interrupt(int irq,void * dev_id)1099 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1100 {
1101 struct spi_controller *host = dev_id;
1102 struct atmel_spi *as = spi_controller_get_devdata(host);
1103 u32 status, pending, imr;
1104 int ret = IRQ_NONE;
1105
1106 imr = spi_readl(as, IMR);
1107 status = spi_readl(as, SR);
1108 pending = status & imr;
1109
1110 if (pending & SPI_BIT(OVRES)) {
1111
1112 ret = IRQ_HANDLED;
1113
1114 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1115 | SPI_BIT(OVRES)));
1116
1117 /* Clear any overrun happening while cleaning up */
1118 spi_readl(as, SR);
1119
1120 as->done_status = -EIO;
1121
1122 complete(&as->xfer_completion);
1123
1124 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1125 ret = IRQ_HANDLED;
1126
1127 spi_writel(as, IDR, pending);
1128
1129 complete(&as->xfer_completion);
1130 }
1131
1132 return ret;
1133 }
1134
atmel_word_delay_csr(struct spi_device * spi,struct atmel_spi * as)1135 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1136 {
1137 struct spi_delay *delay = &spi->word_delay;
1138 u32 value = delay->value;
1139
1140 switch (delay->unit) {
1141 case SPI_DELAY_UNIT_NSECS:
1142 value /= 1000;
1143 break;
1144 case SPI_DELAY_UNIT_USECS:
1145 break;
1146 default:
1147 return -EINVAL;
1148 }
1149
1150 return (as->spi_clk / 1000000 * value) >> 5;
1151 }
1152
initialize_native_cs_for_gpio(struct atmel_spi * as)1153 static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1154 {
1155 int i;
1156 struct spi_controller *host = platform_get_drvdata(as->pdev);
1157
1158 if (!as->native_cs_free)
1159 return; /* already initialized */
1160
1161 if (!host->cs_gpiods)
1162 return; /* No CS GPIO */
1163
1164 /*
1165 * On the first version of the controller (AT91RM9200), CS0
1166 * can't be used associated with GPIO
1167 */
1168 if (atmel_spi_is_v2(as))
1169 i = 0;
1170 else
1171 i = 1;
1172
1173 for (; i < 4; i++)
1174 if (host->cs_gpiods[i])
1175 as->native_cs_free |= BIT(i);
1176
1177 if (as->native_cs_free)
1178 as->native_cs_for_gpio = ffs(as->native_cs_free);
1179 }
1180
atmel_spi_setup(struct spi_device * spi)1181 static int atmel_spi_setup(struct spi_device *spi)
1182 {
1183 struct atmel_spi *as;
1184 struct atmel_spi_device *asd;
1185 u32 csr;
1186 unsigned int bits = spi->bits_per_word;
1187 int chip_select;
1188 int word_delay_csr;
1189
1190 as = spi_controller_get_devdata(spi->controller);
1191
1192 /* see notes above re chipselect */
1193 if (!spi_get_csgpiod(spi, 0) && (spi->mode & SPI_CS_HIGH)) {
1194 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1195 return -EINVAL;
1196 }
1197
1198 /* Setup() is called during spi_register_controller(aka
1199 * spi_register_master) but after all membmers of the cs_gpiod
1200 * array have been filled, so we can looked for which native
1201 * CS will be free for using with GPIO
1202 */
1203 initialize_native_cs_for_gpio(as);
1204
1205 if (spi_get_csgpiod(spi, 0) && as->native_cs_free) {
1206 dev_err(&spi->dev,
1207 "No native CS available to support this GPIO CS\n");
1208 return -EBUSY;
1209 }
1210
1211 if (spi_get_csgpiod(spi, 0))
1212 chip_select = as->native_cs_for_gpio;
1213 else
1214 chip_select = spi_get_chipselect(spi, 0);
1215
1216 csr = SPI_BF(BITS, bits - 8);
1217 if (spi->mode & SPI_CPOL)
1218 csr |= SPI_BIT(CPOL);
1219 if (!(spi->mode & SPI_CPHA))
1220 csr |= SPI_BIT(NCPHA);
1221
1222 if (!spi_get_csgpiod(spi, 0))
1223 csr |= SPI_BIT(CSAAT);
1224 csr |= SPI_BF(DLYBS, 0);
1225
1226 word_delay_csr = atmel_word_delay_csr(spi, as);
1227 if (word_delay_csr < 0)
1228 return word_delay_csr;
1229
1230 /* DLYBCT adds delays between words. This is useful for slow devices
1231 * that need a bit of time to setup the next transfer.
1232 */
1233 csr |= SPI_BF(DLYBCT, word_delay_csr);
1234
1235 asd = spi->controller_state;
1236 if (!asd) {
1237 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1238 if (!asd)
1239 return -ENOMEM;
1240
1241 spi->controller_state = asd;
1242 }
1243
1244 asd->csr = csr;
1245
1246 dev_dbg(&spi->dev,
1247 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1248 bits, spi->mode, spi_get_chipselect(spi, 0), csr);
1249
1250 if (!atmel_spi_is_v2(as))
1251 spi_writel(as, CSR0 + 4 * chip_select, csr);
1252
1253 return 0;
1254 }
1255
atmel_spi_set_cs(struct spi_device * spi,bool enable)1256 static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
1257 {
1258 struct atmel_spi *as = spi_controller_get_devdata(spi->controller);
1259 /* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
1260 * since we already have routines for activate/deactivate translate
1261 * high/low to active/inactive
1262 */
1263 enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
1264
1265 if (enable) {
1266 cs_activate(as, spi);
1267 } else {
1268 cs_deactivate(as, spi);
1269 }
1270
1271 }
1272
atmel_spi_one_transfer(struct spi_controller * host,struct spi_device * spi,struct spi_transfer * xfer)1273 static int atmel_spi_one_transfer(struct spi_controller *host,
1274 struct spi_device *spi,
1275 struct spi_transfer *xfer)
1276 {
1277 struct atmel_spi *as;
1278 u8 bits;
1279 u32 len;
1280 struct atmel_spi_device *asd;
1281 int timeout;
1282 int ret;
1283 unsigned int dma_timeout;
1284 long ret_timeout;
1285
1286 as = spi_controller_get_devdata(host);
1287
1288 asd = spi->controller_state;
1289 bits = (asd->csr >> 4) & 0xf;
1290 if (bits != xfer->bits_per_word - 8) {
1291 dev_dbg(&spi->dev,
1292 "you can't yet change bits_per_word in transfers\n");
1293 return -ENOPROTOOPT;
1294 }
1295
1296 /*
1297 * DMA map early, for performance (empties dcache ASAP) and
1298 * better fault reporting.
1299 */
1300 if ((!host->cur_msg->is_dma_mapped)
1301 && as->use_pdc) {
1302 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1303 return -ENOMEM;
1304 }
1305
1306 atmel_spi_set_xfer_speed(as, spi, xfer);
1307
1308 as->done_status = 0;
1309 as->current_transfer = xfer;
1310 as->current_remaining_bytes = xfer->len;
1311 while (as->current_remaining_bytes) {
1312 reinit_completion(&as->xfer_completion);
1313
1314 if (as->use_pdc) {
1315 atmel_spi_lock(as);
1316 atmel_spi_pdc_next_xfer(host, xfer);
1317 atmel_spi_unlock(as);
1318 } else if (atmel_spi_use_dma(as, xfer)) {
1319 len = as->current_remaining_bytes;
1320 ret = atmel_spi_next_xfer_dma_submit(host,
1321 xfer, &len);
1322 if (ret) {
1323 dev_err(&spi->dev,
1324 "unable to use DMA, fallback to PIO\n");
1325 as->done_status = ret;
1326 break;
1327 } else {
1328 as->current_remaining_bytes -= len;
1329 if (as->current_remaining_bytes < 0)
1330 as->current_remaining_bytes = 0;
1331 }
1332 } else {
1333 atmel_spi_lock(as);
1334 atmel_spi_next_xfer_pio(host, xfer);
1335 atmel_spi_unlock(as);
1336 }
1337
1338 dma_timeout = msecs_to_jiffies(spi_controller_xfer_timeout(host, xfer));
1339 ret_timeout = wait_for_completion_interruptible_timeout(&as->xfer_completion,
1340 dma_timeout);
1341 if (ret_timeout <= 0) {
1342 dev_err(&spi->dev, "spi transfer %s\n",
1343 !ret_timeout ? "timeout" : "canceled");
1344 as->done_status = ret_timeout < 0 ? ret_timeout : -EIO;
1345 }
1346
1347 if (as->done_status)
1348 break;
1349 }
1350
1351 if (as->done_status) {
1352 if (as->use_pdc) {
1353 dev_warn(host->dev.parent,
1354 "overrun (%u/%u remaining)\n",
1355 spi_readl(as, TCR), spi_readl(as, RCR));
1356
1357 /*
1358 * Clean up DMA registers and make sure the data
1359 * registers are empty.
1360 */
1361 spi_writel(as, RNCR, 0);
1362 spi_writel(as, TNCR, 0);
1363 spi_writel(as, RCR, 0);
1364 spi_writel(as, TCR, 0);
1365 for (timeout = 1000; timeout; timeout--)
1366 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1367 break;
1368 if (!timeout)
1369 dev_warn(host->dev.parent,
1370 "timeout waiting for TXEMPTY");
1371 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1372 spi_readl(as, RDR);
1373
1374 /* Clear any overrun happening while cleaning up */
1375 spi_readl(as, SR);
1376
1377 } else if (atmel_spi_use_dma(as, xfer)) {
1378 atmel_spi_stop_dma(host);
1379 }
1380 }
1381
1382 if (!host->cur_msg->is_dma_mapped
1383 && as->use_pdc)
1384 atmel_spi_dma_unmap_xfer(host, xfer);
1385
1386 if (as->use_pdc)
1387 atmel_spi_disable_pdc_transfer(as);
1388
1389 return as->done_status;
1390 }
1391
atmel_spi_cleanup(struct spi_device * spi)1392 static void atmel_spi_cleanup(struct spi_device *spi)
1393 {
1394 struct atmel_spi_device *asd = spi->controller_state;
1395
1396 if (!asd)
1397 return;
1398
1399 spi->controller_state = NULL;
1400 kfree(asd);
1401 }
1402
atmel_get_version(struct atmel_spi * as)1403 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1404 {
1405 return spi_readl(as, VERSION) & 0x00000fff;
1406 }
1407
atmel_get_caps(struct atmel_spi * as)1408 static void atmel_get_caps(struct atmel_spi *as)
1409 {
1410 unsigned int version;
1411
1412 version = atmel_get_version(as);
1413
1414 as->caps.is_spi2 = version > 0x121;
1415 as->caps.has_wdrbt = version >= 0x210;
1416 as->caps.has_dma_support = version >= 0x212;
1417 as->caps.has_pdc_support = version < 0x212;
1418 }
1419
atmel_spi_init(struct atmel_spi * as)1420 static void atmel_spi_init(struct atmel_spi *as)
1421 {
1422 spi_writel(as, CR, SPI_BIT(SWRST));
1423 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1424
1425 /* It is recommended to enable FIFOs first thing after reset */
1426 if (as->fifo_size)
1427 spi_writel(as, CR, SPI_BIT(FIFOEN));
1428
1429 if (as->caps.has_wdrbt) {
1430 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1431 | SPI_BIT(MSTR));
1432 } else {
1433 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1434 }
1435
1436 if (as->use_pdc)
1437 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1438 spi_writel(as, CR, SPI_BIT(SPIEN));
1439 }
1440
atmel_spi_probe(struct platform_device * pdev)1441 static int atmel_spi_probe(struct platform_device *pdev)
1442 {
1443 struct resource *regs;
1444 int irq;
1445 struct clk *clk;
1446 int ret;
1447 struct spi_controller *host;
1448 struct atmel_spi *as;
1449
1450 /* Select default pin state */
1451 pinctrl_pm_select_default_state(&pdev->dev);
1452
1453 irq = platform_get_irq(pdev, 0);
1454 if (irq < 0)
1455 return irq;
1456
1457 clk = devm_clk_get(&pdev->dev, "spi_clk");
1458 if (IS_ERR(clk))
1459 return PTR_ERR(clk);
1460
1461 /* setup spi core then atmel-specific driver state */
1462 host = spi_alloc_host(&pdev->dev, sizeof(*as));
1463 if (!host)
1464 return -ENOMEM;
1465
1466 /* the spi->mode bits understood by this driver: */
1467 host->use_gpio_descriptors = true;
1468 host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1469 host->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1470 host->dev.of_node = pdev->dev.of_node;
1471 host->bus_num = pdev->id;
1472 host->num_chipselect = 4;
1473 host->setup = atmel_spi_setup;
1474 host->flags = (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX |
1475 SPI_CONTROLLER_GPIO_SS);
1476 host->transfer_one = atmel_spi_one_transfer;
1477 host->set_cs = atmel_spi_set_cs;
1478 host->cleanup = atmel_spi_cleanup;
1479 host->auto_runtime_pm = true;
1480 host->max_dma_len = SPI_MAX_DMA_XFER;
1481 host->can_dma = atmel_spi_can_dma;
1482 platform_set_drvdata(pdev, host);
1483
1484 as = spi_controller_get_devdata(host);
1485
1486 spin_lock_init(&as->lock);
1487
1488 as->pdev = pdev;
1489 as->regs = devm_platform_get_and_ioremap_resource(pdev, 0, ®s);
1490 if (IS_ERR(as->regs)) {
1491 ret = PTR_ERR(as->regs);
1492 goto out_unmap_regs;
1493 }
1494 as->phybase = regs->start;
1495 as->irq = irq;
1496 as->clk = clk;
1497
1498 init_completion(&as->xfer_completion);
1499
1500 atmel_get_caps(as);
1501
1502 as->use_dma = false;
1503 as->use_pdc = false;
1504 if (as->caps.has_dma_support) {
1505 ret = atmel_spi_configure_dma(host, as);
1506 if (ret == 0) {
1507 as->use_dma = true;
1508 } else if (ret == -EPROBE_DEFER) {
1509 goto out_unmap_regs;
1510 }
1511 } else if (as->caps.has_pdc_support) {
1512 as->use_pdc = true;
1513 }
1514
1515 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1516 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1517 SPI_MAX_DMA_XFER,
1518 &as->dma_addr_rx_bbuf,
1519 GFP_KERNEL | GFP_DMA);
1520 if (!as->addr_rx_bbuf) {
1521 as->use_dma = false;
1522 } else {
1523 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1524 SPI_MAX_DMA_XFER,
1525 &as->dma_addr_tx_bbuf,
1526 GFP_KERNEL | GFP_DMA);
1527 if (!as->addr_tx_bbuf) {
1528 as->use_dma = false;
1529 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1530 as->addr_rx_bbuf,
1531 as->dma_addr_rx_bbuf);
1532 }
1533 }
1534 if (!as->use_dma)
1535 dev_info(host->dev.parent,
1536 " can not allocate dma coherent memory\n");
1537 }
1538
1539 if (as->caps.has_dma_support && !as->use_dma)
1540 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1541
1542 if (as->use_pdc) {
1543 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1544 0, dev_name(&pdev->dev), host);
1545 } else {
1546 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1547 0, dev_name(&pdev->dev), host);
1548 }
1549 if (ret)
1550 goto out_unmap_regs;
1551
1552 /* Initialize the hardware */
1553 ret = clk_prepare_enable(clk);
1554 if (ret)
1555 goto out_free_irq;
1556
1557 as->spi_clk = clk_get_rate(clk);
1558
1559 as->fifo_size = 0;
1560 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1561 &as->fifo_size)) {
1562 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1563 }
1564
1565 atmel_spi_init(as);
1566
1567 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1568 pm_runtime_use_autosuspend(&pdev->dev);
1569 pm_runtime_set_active(&pdev->dev);
1570 pm_runtime_enable(&pdev->dev);
1571
1572 ret = devm_spi_register_controller(&pdev->dev, host);
1573 if (ret)
1574 goto out_free_dma;
1575
1576 /* go! */
1577 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1578 atmel_get_version(as), (unsigned long)regs->start,
1579 irq);
1580
1581 return 0;
1582
1583 out_free_dma:
1584 pm_runtime_disable(&pdev->dev);
1585 pm_runtime_set_suspended(&pdev->dev);
1586
1587 if (as->use_dma)
1588 atmel_spi_release_dma(host);
1589
1590 spi_writel(as, CR, SPI_BIT(SWRST));
1591 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1592 clk_disable_unprepare(clk);
1593 out_free_irq:
1594 out_unmap_regs:
1595 spi_controller_put(host);
1596 return ret;
1597 }
1598
atmel_spi_remove(struct platform_device * pdev)1599 static void atmel_spi_remove(struct platform_device *pdev)
1600 {
1601 struct spi_controller *host = platform_get_drvdata(pdev);
1602 struct atmel_spi *as = spi_controller_get_devdata(host);
1603
1604 pm_runtime_get_sync(&pdev->dev);
1605
1606 /* reset the hardware and block queue progress */
1607 if (as->use_dma) {
1608 atmel_spi_stop_dma(host);
1609 atmel_spi_release_dma(host);
1610 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1611 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1612 as->addr_tx_bbuf,
1613 as->dma_addr_tx_bbuf);
1614 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1615 as->addr_rx_bbuf,
1616 as->dma_addr_rx_bbuf);
1617 }
1618 }
1619
1620 spin_lock_irq(&as->lock);
1621 spi_writel(as, CR, SPI_BIT(SWRST));
1622 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1623 spi_readl(as, SR);
1624 spin_unlock_irq(&as->lock);
1625
1626 clk_disable_unprepare(as->clk);
1627
1628 pm_runtime_put_noidle(&pdev->dev);
1629 pm_runtime_disable(&pdev->dev);
1630 }
1631
atmel_spi_runtime_suspend(struct device * dev)1632 static int atmel_spi_runtime_suspend(struct device *dev)
1633 {
1634 struct spi_controller *host = dev_get_drvdata(dev);
1635 struct atmel_spi *as = spi_controller_get_devdata(host);
1636
1637 clk_disable_unprepare(as->clk);
1638 pinctrl_pm_select_sleep_state(dev);
1639
1640 return 0;
1641 }
1642
atmel_spi_runtime_resume(struct device * dev)1643 static int atmel_spi_runtime_resume(struct device *dev)
1644 {
1645 struct spi_controller *host = dev_get_drvdata(dev);
1646 struct atmel_spi *as = spi_controller_get_devdata(host);
1647
1648 pinctrl_pm_select_default_state(dev);
1649
1650 return clk_prepare_enable(as->clk);
1651 }
1652
atmel_spi_suspend(struct device * dev)1653 static int atmel_spi_suspend(struct device *dev)
1654 {
1655 struct spi_controller *host = dev_get_drvdata(dev);
1656 int ret;
1657
1658 /* Stop the queue running */
1659 ret = spi_controller_suspend(host);
1660 if (ret)
1661 return ret;
1662
1663 if (!pm_runtime_suspended(dev))
1664 atmel_spi_runtime_suspend(dev);
1665
1666 return 0;
1667 }
1668
atmel_spi_resume(struct device * dev)1669 static int atmel_spi_resume(struct device *dev)
1670 {
1671 struct spi_controller *host = dev_get_drvdata(dev);
1672 struct atmel_spi *as = spi_controller_get_devdata(host);
1673 int ret;
1674
1675 ret = clk_prepare_enable(as->clk);
1676 if (ret)
1677 return ret;
1678
1679 atmel_spi_init(as);
1680
1681 clk_disable_unprepare(as->clk);
1682
1683 if (!pm_runtime_suspended(dev)) {
1684 ret = atmel_spi_runtime_resume(dev);
1685 if (ret)
1686 return ret;
1687 }
1688
1689 /* Start the queue running */
1690 return spi_controller_resume(host);
1691 }
1692
1693 static const struct dev_pm_ops atmel_spi_pm_ops = {
1694 SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1695 RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1696 atmel_spi_runtime_resume, NULL)
1697 };
1698
1699 static const struct of_device_id atmel_spi_dt_ids[] = {
1700 { .compatible = "atmel,at91rm9200-spi" },
1701 { /* sentinel */ }
1702 };
1703
1704 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1705
1706 static struct platform_driver atmel_spi_driver = {
1707 .driver = {
1708 .name = "atmel_spi",
1709 .pm = pm_ptr(&atmel_spi_pm_ops),
1710 .of_match_table = atmel_spi_dt_ids,
1711 },
1712 .probe = atmel_spi_probe,
1713 .remove_new = atmel_spi_remove,
1714 };
1715 module_platform_driver(atmel_spi_driver);
1716
1717 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1718 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1719 MODULE_LICENSE("GPL");
1720 MODULE_ALIAS("platform:atmel_spi");
1721