1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2005-2014, 2018-2023 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/etherdevice.h>
11 #include <linux/pci.h>
12 #include <linux/firmware.h>
13 
14 #include "iwl-drv.h"
15 #include "iwl-modparams.h"
16 #include "iwl-nvm-parse.h"
17 #include "iwl-prph.h"
18 #include "iwl-io.h"
19 #include "iwl-csr.h"
20 #include "fw/acpi.h"
21 #include "fw/api/nvm-reg.h"
22 #include "fw/api/commands.h"
23 #include "fw/api/cmdhdr.h"
24 #include "fw/img.h"
25 #include "mei/iwl-mei.h"
26 
27 /* NVM offsets (in words) definitions */
28 enum nvm_offsets {
29 	/* NVM HW-Section offset (in words) definitions */
30 	SUBSYSTEM_ID = 0x0A,
31 	HW_ADDR = 0x15,
32 
33 	/* NVM SW-Section offset (in words) definitions */
34 	NVM_SW_SECTION = 0x1C0,
35 	NVM_VERSION = 0,
36 	RADIO_CFG = 1,
37 	SKU = 2,
38 	N_HW_ADDRS = 3,
39 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
40 
41 	/* NVM calibration section offset (in words) definitions */
42 	NVM_CALIB_SECTION = 0x2B8,
43 	XTAL_CALIB = 0x316 - NVM_CALIB_SECTION,
44 
45 	/* NVM REGULATORY -Section offset (in words) definitions */
46 	NVM_CHANNELS_SDP = 0,
47 };
48 
49 enum ext_nvm_offsets {
50 	/* NVM HW-Section offset (in words) definitions */
51 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
52 
53 	/* NVM SW-Section offset (in words) definitions */
54 	NVM_VERSION_EXT_NVM = 0,
55 	N_HW_ADDRS_FAMILY_8000 = 3,
56 
57 	/* NVM PHY_SKU-Section offset (in words) definitions */
58 	RADIO_CFG_FAMILY_EXT_NVM = 0,
59 	SKU_FAMILY_8000 = 2,
60 
61 	/* NVM REGULATORY -Section offset (in words) definitions */
62 	NVM_CHANNELS_EXTENDED = 0,
63 	NVM_LAR_OFFSET_OLD = 0x4C7,
64 	NVM_LAR_OFFSET = 0x507,
65 	NVM_LAR_ENABLED = 0x7,
66 };
67 
68 /* SKU Capabilities (actual values from NVM definition) */
69 enum nvm_sku_bits {
70 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
71 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
72 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
73 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
74 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
75 };
76 
77 /*
78  * These are the channel numbers in the order that they are stored in the NVM
79  */
80 static const u16 iwl_nvm_channels[] = {
81 	/* 2.4 GHz */
82 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
83 	/* 5 GHz */
84 	36, 40, 44, 48, 52, 56, 60, 64,
85 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
86 	149, 153, 157, 161, 165
87 };
88 
89 static const u16 iwl_ext_nvm_channels[] = {
90 	/* 2.4 GHz */
91 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
92 	/* 5 GHz */
93 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
94 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
95 	149, 153, 157, 161, 165, 169, 173, 177, 181
96 };
97 
98 static const u16 iwl_uhb_nvm_channels[] = {
99 	/* 2.4 GHz */
100 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
101 	/* 5 GHz */
102 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
103 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
104 	149, 153, 157, 161, 165, 169, 173, 177, 181,
105 	/* 6-7 GHz */
106 	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
107 	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
108 	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
109 	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
110 };
111 
112 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
113 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
114 #define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
115 #define NUM_2GHZ_CHANNELS		14
116 #define NUM_5GHZ_CHANNELS		37
117 #define FIRST_2GHZ_HT_MINUS		5
118 #define LAST_2GHZ_HT_PLUS		9
119 #define N_HW_ADDR_MASK			0xF
120 
121 /* rate data (static) */
122 static struct ieee80211_rate iwl_cfg80211_rates[] = {
123 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
124 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
125 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
126 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
127 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
128 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
129 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
130 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
131 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
132 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
133 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
134 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
135 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
136 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
137 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
138 };
139 #define RATES_24_OFFS	0
140 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
141 #define RATES_52_OFFS	4
142 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
143 
144 /**
145  * enum iwl_nvm_channel_flags - channel flags in NVM
146  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
147  * @NVM_CHANNEL_IBSS: usable as an IBSS channel
148  * @NVM_CHANNEL_ACTIVE: active scanning allowed
149  * @NVM_CHANNEL_RADAR: radar detection required
150  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
151  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
152  *	on same channel on 2.4 or same UNII band on 5.2
153  * @NVM_CHANNEL_UNIFORM: uniform spreading required
154  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
155  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
156  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
157  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
158  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
159  */
160 enum iwl_nvm_channel_flags {
161 	NVM_CHANNEL_VALID		= BIT(0),
162 	NVM_CHANNEL_IBSS		= BIT(1),
163 	NVM_CHANNEL_ACTIVE		= BIT(3),
164 	NVM_CHANNEL_RADAR		= BIT(4),
165 	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
166 	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
167 	NVM_CHANNEL_UNIFORM		= BIT(7),
168 	NVM_CHANNEL_20MHZ		= BIT(8),
169 	NVM_CHANNEL_40MHZ		= BIT(9),
170 	NVM_CHANNEL_80MHZ		= BIT(10),
171 	NVM_CHANNEL_160MHZ		= BIT(11),
172 	NVM_CHANNEL_DC_HIGH		= BIT(12),
173 };
174 
175 /**
176  * enum iwl_reg_capa_flags_v1 - global flags applied for the whole regulatory
177  * domain.
178  * @REG_CAPA_V1_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
179  *	2.4Ghz band is allowed.
180  * @REG_CAPA_V1_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
181  *	5Ghz band is allowed.
182  * @REG_CAPA_V1_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
183  *	for this regulatory domain (valid only in 5Ghz).
184  * @REG_CAPA_V1_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
185  *	for this regulatory domain (valid only in 5Ghz).
186  * @REG_CAPA_V1_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
187  * @REG_CAPA_V1_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
188  * @REG_CAPA_V1_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
189  *	for this regulatory domain (valid only in 5Ghz).
190  * @REG_CAPA_V1_DC_HIGH_ENABLED: DC HIGH allowed.
191  * @REG_CAPA_V1_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
192  */
193 enum iwl_reg_capa_flags_v1 {
194 	REG_CAPA_V1_BF_CCD_LOW_BAND	= BIT(0),
195 	REG_CAPA_V1_BF_CCD_HIGH_BAND	= BIT(1),
196 	REG_CAPA_V1_160MHZ_ALLOWED	= BIT(2),
197 	REG_CAPA_V1_80MHZ_ALLOWED	= BIT(3),
198 	REG_CAPA_V1_MCS_8_ALLOWED	= BIT(4),
199 	REG_CAPA_V1_MCS_9_ALLOWED	= BIT(5),
200 	REG_CAPA_V1_40MHZ_FORBIDDEN	= BIT(7),
201 	REG_CAPA_V1_DC_HIGH_ENABLED	= BIT(9),
202 	REG_CAPA_V1_11AX_DISABLED	= BIT(10),
203 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_1 */
204 
205 /**
206  * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
207  * domain (version 2).
208  * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
209  *	disabled.
210  * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
211  *	2.4Ghz band is allowed.
212  * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
213  *	5Ghz band is allowed.
214  * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
215  *	for this regulatory domain (valid only in 5Ghz).
216  * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
217  *	for this regulatory domain (valid only in 5Ghz).
218  * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
219  * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
220  * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
221  *	126, 122) are disabled.
222  * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
223  *	for this regulatory domain (uvalid only in 5Ghz).
224  * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
225  */
226 enum iwl_reg_capa_flags_v2 {
227 	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
228 	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
229 	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
230 	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
231 	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
232 	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
233 	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
234 	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
235 	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
236 	REG_CAPA_V2_11AX_DISABLED	= BIT(10),
237 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_2 */
238 
239 /**
240  * enum iwl_reg_capa_flags_v4 - global flags applied for the whole regulatory
241  * domain.
242  * @REG_CAPA_V4_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
243  *	for this regulatory domain (valid only in 5Ghz).
244  * @REG_CAPA_V4_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
245  *	for this regulatory domain (valid only in 5Ghz).
246  * @REG_CAPA_V4_MCS_12_ALLOWED: 11ac with MCS 12 is allowed.
247  * @REG_CAPA_V4_MCS_13_ALLOWED: 11ac with MCS 13 is allowed.
248  * @REG_CAPA_V4_11BE_DISABLED: 11be is forbidden for this regulatory domain.
249  * @REG_CAPA_V4_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
250  * @REG_CAPA_V4_320MHZ_ALLOWED: 11be channel with a width of 320Mhz is allowed
251  *	for this regulatory domain (valid only in 5GHz).
252  */
253 enum iwl_reg_capa_flags_v4 {
254 	REG_CAPA_V4_160MHZ_ALLOWED		= BIT(3),
255 	REG_CAPA_V4_80MHZ_ALLOWED		= BIT(4),
256 	REG_CAPA_V4_MCS_12_ALLOWED		= BIT(5),
257 	REG_CAPA_V4_MCS_13_ALLOWED		= BIT(6),
258 	REG_CAPA_V4_11BE_DISABLED		= BIT(8),
259 	REG_CAPA_V4_11AX_DISABLED		= BIT(13),
260 	REG_CAPA_V4_320MHZ_ALLOWED		= BIT(16),
261 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_4 */
262 
263 /*
264 * API v2 for reg_capa_flags is relevant from version 6 and onwards of the
265 * MCC update command response.
266 */
267 #define REG_CAPA_V2_RESP_VER	6
268 
269 /* API v4 for reg_capa_flags is relevant from version 8 and onwards of the
270  * MCC update command response.
271  */
272 #define REG_CAPA_V4_RESP_VER	8
273 
274 /**
275  * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
276  * handling the different APIs of reg_capa_flags.
277  *
278  * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
279  *	for this regulatory domain.
280  * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
281  *	for this regulatory domain (valid only in 5 and 6 Ghz).
282  * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
283  *	for this regulatory domain (valid only in 5 and 6 Ghz).
284  * @allow_320mhz: 11be channel with a width of 320Mhz is allowed
285  *	for this regulatory domain (valid only in 6 Ghz).
286  * @disable_11ax: 11ax is forbidden for this regulatory domain.
287  * @disable_11be: 11be is forbidden for this regulatory domain.
288  */
289 struct iwl_reg_capa {
290 	bool allow_40mhz;
291 	bool allow_80mhz;
292 	bool allow_160mhz;
293 	bool allow_320mhz;
294 	bool disable_11ax;
295 	bool disable_11be;
296 };
297 
iwl_nvm_print_channel_flags(struct device * dev,u32 level,int chan,u32 flags)298 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
299 					       int chan, u32 flags)
300 {
301 #define CHECK_AND_PRINT_I(x)	\
302 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
303 
304 	if (!(flags & NVM_CHANNEL_VALID)) {
305 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
306 			      chan, flags);
307 		return;
308 	}
309 
310 	/* Note: already can print up to 101 characters, 110 is the limit! */
311 	IWL_DEBUG_DEV(dev, level,
312 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s\n",
313 		      chan, flags,
314 		      CHECK_AND_PRINT_I(VALID),
315 		      CHECK_AND_PRINT_I(IBSS),
316 		      CHECK_AND_PRINT_I(ACTIVE),
317 		      CHECK_AND_PRINT_I(RADAR),
318 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
319 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
320 		      CHECK_AND_PRINT_I(UNIFORM),
321 		      CHECK_AND_PRINT_I(20MHZ),
322 		      CHECK_AND_PRINT_I(40MHZ),
323 		      CHECK_AND_PRINT_I(80MHZ),
324 		      CHECK_AND_PRINT_I(160MHZ),
325 		      CHECK_AND_PRINT_I(DC_HIGH));
326 #undef CHECK_AND_PRINT_I
327 }
328 
iwl_get_channel_flags(u8 ch_num,int ch_idx,enum nl80211_band band,u32 nvm_flags,const struct iwl_cfg * cfg)329 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
330 				 u32 nvm_flags, const struct iwl_cfg *cfg)
331 {
332 	u32 flags = IEEE80211_CHAN_NO_HT40;
333 
334 	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
335 		if (ch_num <= LAST_2GHZ_HT_PLUS)
336 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
337 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
338 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
339 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
340 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
341 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
342 		else
343 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
344 	}
345 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
346 		flags |= IEEE80211_CHAN_NO_80MHZ;
347 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
348 		flags |= IEEE80211_CHAN_NO_160MHZ;
349 
350 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
351 		flags |= IEEE80211_CHAN_NO_IR;
352 
353 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
354 		flags |= IEEE80211_CHAN_NO_IR;
355 
356 	if (nvm_flags & NVM_CHANNEL_RADAR)
357 		flags |= IEEE80211_CHAN_RADAR;
358 
359 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
360 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
361 
362 	/* Set the GO concurrent flag only in case that NO_IR is set.
363 	 * Otherwise it is meaningless
364 	 */
365 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
366 	    (flags & IEEE80211_CHAN_NO_IR))
367 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
368 
369 	return flags;
370 }
371 
iwl_nl80211_band_from_channel_idx(int ch_idx)372 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
373 {
374 	if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
375 		return NL80211_BAND_6GHZ;
376 	}
377 
378 	if (ch_idx >= NUM_2GHZ_CHANNELS)
379 		return NL80211_BAND_5GHZ;
380 	return NL80211_BAND_2GHZ;
381 }
382 
iwl_init_channel_map(struct device * dev,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const void * const nvm_ch_flags,u32 sbands_flags,bool v4)383 static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
384 				struct iwl_nvm_data *data,
385 				const void * const nvm_ch_flags,
386 				u32 sbands_flags, bool v4)
387 {
388 	int ch_idx;
389 	int n_channels = 0;
390 	struct ieee80211_channel *channel;
391 	u32 ch_flags;
392 	int num_of_ch;
393 	const u16 *nvm_chan;
394 
395 	if (cfg->uhb_supported) {
396 		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
397 		nvm_chan = iwl_uhb_nvm_channels;
398 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
399 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
400 		nvm_chan = iwl_ext_nvm_channels;
401 	} else {
402 		num_of_ch = IWL_NVM_NUM_CHANNELS;
403 		nvm_chan = iwl_nvm_channels;
404 	}
405 
406 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
407 		enum nl80211_band band =
408 			iwl_nl80211_band_from_channel_idx(ch_idx);
409 
410 		if (v4)
411 			ch_flags =
412 				__le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx);
413 		else
414 			ch_flags =
415 				__le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx);
416 
417 		if (band == NL80211_BAND_5GHZ &&
418 		    !data->sku_cap_band_52ghz_enable)
419 			continue;
420 
421 		/* workaround to disable wide channels in 5GHz */
422 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
423 		    band == NL80211_BAND_5GHZ) {
424 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
425 				     NVM_CHANNEL_80MHZ |
426 				     NVM_CHANNEL_160MHZ);
427 		}
428 
429 		if (ch_flags & NVM_CHANNEL_160MHZ)
430 			data->vht160_supported = true;
431 
432 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
433 		    !(ch_flags & NVM_CHANNEL_VALID)) {
434 			/*
435 			 * Channels might become valid later if lar is
436 			 * supported, hence we still want to add them to
437 			 * the list of supported channels to cfg80211.
438 			 */
439 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
440 						    nvm_chan[ch_idx], ch_flags);
441 			continue;
442 		}
443 
444 		channel = &data->channels[n_channels];
445 		n_channels++;
446 
447 		channel->hw_value = nvm_chan[ch_idx];
448 		channel->band = band;
449 		channel->center_freq =
450 			ieee80211_channel_to_frequency(
451 				channel->hw_value, channel->band);
452 
453 		/* Initialize regulatory-based run-time data */
454 
455 		/*
456 		 * Default value - highest tx power value.  max_power
457 		 * is not used in mvm, and is used for backwards compatibility
458 		 */
459 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
460 
461 		/* don't put limitations in case we're using LAR */
462 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
463 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
464 							       ch_idx, band,
465 							       ch_flags, cfg);
466 		else
467 			channel->flags = 0;
468 
469 		/* TODO: Don't put limitations on UHB devices as we still don't
470 		 * have NVM for them
471 		 */
472 		if (cfg->uhb_supported)
473 			channel->flags = 0;
474 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
475 					    channel->hw_value, ch_flags);
476 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
477 				 channel->hw_value, channel->max_power);
478 	}
479 
480 	return n_channels;
481 }
482 
iwl_init_vht_hw_capab(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_sta_vht_cap * vht_cap,u8 tx_chains,u8 rx_chains)483 static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
484 				  struct iwl_nvm_data *data,
485 				  struct ieee80211_sta_vht_cap *vht_cap,
486 				  u8 tx_chains, u8 rx_chains)
487 {
488 	const struct iwl_cfg *cfg = trans->cfg;
489 	int num_rx_ants = num_of_ant(rx_chains);
490 	int num_tx_ants = num_of_ant(tx_chains);
491 
492 	vht_cap->vht_supported = true;
493 
494 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
495 		       IEEE80211_VHT_CAP_RXSTBC_1 |
496 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
497 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
498 		       IEEE80211_VHT_MAX_AMPDU_1024K <<
499 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
500 
501 	if (!trans->cfg->ht_params->stbc)
502 		vht_cap->cap &= ~IEEE80211_VHT_CAP_RXSTBC_MASK;
503 
504 	if (data->vht160_supported)
505 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
506 				IEEE80211_VHT_CAP_SHORT_GI_160;
507 
508 	if (cfg->vht_mu_mimo_supported)
509 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
510 
511 	if (cfg->ht_params->ldpc)
512 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
513 
514 	if (data->sku_cap_mimo_disabled) {
515 		num_rx_ants = 1;
516 		num_tx_ants = 1;
517 	}
518 
519 	if (trans->cfg->ht_params->stbc && num_tx_ants > 1)
520 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
521 	else
522 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
523 
524 	switch (iwlwifi_mod_params.amsdu_size) {
525 	case IWL_AMSDU_DEF:
526 		if (trans->trans_cfg->mq_rx_supported)
527 			vht_cap->cap |=
528 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
529 		else
530 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
531 		break;
532 	case IWL_AMSDU_2K:
533 		if (trans->trans_cfg->mq_rx_supported)
534 			vht_cap->cap |=
535 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
536 		else
537 			WARN(1, "RB size of 2K is not supported by this device\n");
538 		break;
539 	case IWL_AMSDU_4K:
540 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
541 		break;
542 	case IWL_AMSDU_8K:
543 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
544 		break;
545 	case IWL_AMSDU_12K:
546 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
547 		break;
548 	default:
549 		break;
550 	}
551 
552 	vht_cap->vht_mcs.rx_mcs_map =
553 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
554 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
555 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
556 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
557 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
558 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
559 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
560 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
561 
562 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
563 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
564 		/* this works because NOT_SUPPORTED == 3 */
565 		vht_cap->vht_mcs.rx_mcs_map |=
566 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
567 	}
568 
569 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
570 
571 	vht_cap->vht_mcs.tx_highest |=
572 		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
573 }
574 
575 static const u8 iwl_vendor_caps[] = {
576 	0xdd,			/* vendor element */
577 	0x06,			/* length */
578 	0x00, 0x17, 0x35,	/* Intel OUI */
579 	0x08,			/* type (Intel Capabilities) */
580 	/* followed by 16 bits of capabilities */
581 #define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE	BIT(0)
582 	IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE,
583 	0x00
584 };
585 
586 static const struct ieee80211_sband_iftype_data iwl_he_eht_capa[] = {
587 	{
588 		.types_mask = BIT(NL80211_IFTYPE_STATION),
589 		.he_cap = {
590 			.has_he = true,
591 			.he_cap_elem = {
592 				.mac_cap_info[0] =
593 					IEEE80211_HE_MAC_CAP0_HTC_HE,
594 				.mac_cap_info[1] =
595 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
596 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
597 				.mac_cap_info[2] =
598 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
599 				.mac_cap_info[3] =
600 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
601 					IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
602 				.mac_cap_info[4] =
603 					IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
604 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
605 				.mac_cap_info[5] =
606 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
607 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
608 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
609 					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
610 					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
611 				.phy_cap_info[1] =
612 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
613 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
614 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
615 				.phy_cap_info[2] =
616 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
617 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
618 				.phy_cap_info[3] =
619 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
620 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
621 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
622 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
623 				.phy_cap_info[4] =
624 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
625 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
626 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
627 				.phy_cap_info[6] =
628 					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
629 					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
630 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
631 				.phy_cap_info[7] =
632 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
633 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
634 				.phy_cap_info[8] =
635 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
636 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
637 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
638 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
639 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
640 				.phy_cap_info[9] =
641 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
642 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
643 					(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED <<
644 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS),
645 				.phy_cap_info[10] =
646 					IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
647 			},
648 			/*
649 			 * Set default Tx/Rx HE MCS NSS Support field.
650 			 * Indicate support for up to 2 spatial streams and all
651 			 * MCS, without any special cases
652 			 */
653 			.he_mcs_nss_supp = {
654 				.rx_mcs_80 = cpu_to_le16(0xfffa),
655 				.tx_mcs_80 = cpu_to_le16(0xfffa),
656 				.rx_mcs_160 = cpu_to_le16(0xfffa),
657 				.tx_mcs_160 = cpu_to_le16(0xfffa),
658 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
659 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
660 			},
661 			/*
662 			 * Set default PPE thresholds, with PPET16 set to 0,
663 			 * PPET8 set to 7
664 			 */
665 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
666 		},
667 		.eht_cap = {
668 			.has_eht = true,
669 			.eht_cap_elem = {
670 				.mac_cap_info[0] =
671 					IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
672 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
673 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
674 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
675 				.phy_cap_info[0] =
676 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
677 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
678 					IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
679 					IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
680 					IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
681 				.phy_cap_info[1] =
682 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK  |
683 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK,
684 				.phy_cap_info[3] =
685 					IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
686 					IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
687 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
688 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
689 					IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
690 					IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
691 					IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
692 
693 				.phy_cap_info[4] =
694 					IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
695 					IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
696 					IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI,
697 				.phy_cap_info[5] =
698 					IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
699 					IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
700 					IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP |
701 					IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
702 				.phy_cap_info[6] =
703 					IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
704 					IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP,
705 				.phy_cap_info[8] =
706 					IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA |
707 					IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA,
708 			},
709 
710 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
711 			 * Rx - note we don't set the only_20mhz, but due to this
712 			 * being a union, it gets set correctly anyway.
713 			 */
714 			.eht_mcs_nss_supp = {
715 				.bw._80 = {
716 					.rx_tx_mcs9_max_nss = 0x22,
717 					.rx_tx_mcs11_max_nss = 0x22,
718 					.rx_tx_mcs13_max_nss = 0x22,
719 				},
720 				.bw._160 = {
721 					.rx_tx_mcs9_max_nss = 0x22,
722 					.rx_tx_mcs11_max_nss = 0x22,
723 					.rx_tx_mcs13_max_nss = 0x22,
724 				},
725 				.bw._320 = {
726 					.rx_tx_mcs9_max_nss = 0x22,
727 					.rx_tx_mcs11_max_nss = 0x22,
728 					.rx_tx_mcs13_max_nss = 0x22,
729 				},
730 			},
731 
732 			/*
733 			 * PPE thresholds for NSS = 2, and RU index bitmap set
734 			 * to 0xc.
735 			 */
736 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
737 		},
738 	},
739 	{
740 		.types_mask = BIT(NL80211_IFTYPE_AP),
741 		.he_cap = {
742 			.has_he = true,
743 			.he_cap_elem = {
744 				.mac_cap_info[0] =
745 					IEEE80211_HE_MAC_CAP0_HTC_HE,
746 				.mac_cap_info[1] =
747 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
748 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
749 				.mac_cap_info[3] =
750 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
751 				.phy_cap_info[1] =
752 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
753 				.phy_cap_info[2] =
754 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
755 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
756 				.phy_cap_info[3] =
757 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
758 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
759 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
760 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
761 				.phy_cap_info[6] =
762 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
763 				.phy_cap_info[7] =
764 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
765 				.phy_cap_info[8] =
766 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
767 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
768 				.phy_cap_info[9] =
769 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED
770 					<< IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS,
771 			},
772 			/*
773 			 * Set default Tx/Rx HE MCS NSS Support field.
774 			 * Indicate support for up to 2 spatial streams and all
775 			 * MCS, without any special cases
776 			 */
777 			.he_mcs_nss_supp = {
778 				.rx_mcs_80 = cpu_to_le16(0xfffa),
779 				.tx_mcs_80 = cpu_to_le16(0xfffa),
780 				.rx_mcs_160 = cpu_to_le16(0xfffa),
781 				.tx_mcs_160 = cpu_to_le16(0xfffa),
782 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
783 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
784 			},
785 			/*
786 			 * Set default PPE thresholds, with PPET16 set to 0,
787 			 * PPET8 set to 7
788 			 */
789 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
790 		},
791 		.eht_cap = {
792 			.has_eht = true,
793 			.eht_cap_elem = {
794 				.mac_cap_info[0] =
795 					IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
796 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
797 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
798 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
799 				.phy_cap_info[0] =
800 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
801 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI,
802 				.phy_cap_info[5] =
803 					IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT,
804 			},
805 
806 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
807 			 * Rx - note we don't set the only_20mhz, but due to this
808 			 * being a union, it gets set correctly anyway.
809 			 */
810 			.eht_mcs_nss_supp = {
811 				.bw._80 = {
812 					.rx_tx_mcs9_max_nss = 0x22,
813 					.rx_tx_mcs11_max_nss = 0x22,
814 					.rx_tx_mcs13_max_nss = 0x22,
815 				},
816 				.bw._160 = {
817 					.rx_tx_mcs9_max_nss = 0x22,
818 					.rx_tx_mcs11_max_nss = 0x22,
819 					.rx_tx_mcs13_max_nss = 0x22,
820 				},
821 				.bw._320 = {
822 					.rx_tx_mcs9_max_nss = 0x22,
823 					.rx_tx_mcs11_max_nss = 0x22,
824 					.rx_tx_mcs13_max_nss = 0x22,
825 				},
826 			},
827 
828 			/*
829 			 * PPE thresholds for NSS = 2, and RU index bitmap set
830 			 * to 0xc.
831 			 */
832 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
833 		},
834 	},
835 };
836 
iwl_init_he_6ghz_capa(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,u8 tx_chains,u8 rx_chains)837 static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
838 				  struct iwl_nvm_data *data,
839 				  struct ieee80211_supported_band *sband,
840 				  u8 tx_chains, u8 rx_chains)
841 {
842 	struct ieee80211_sta_ht_cap ht_cap;
843 	struct ieee80211_sta_vht_cap vht_cap = {};
844 	struct ieee80211_sband_iftype_data *iftype_data;
845 	u16 he_6ghz_capa = 0;
846 	u32 exp;
847 	int i;
848 
849 	if (sband->band != NL80211_BAND_6GHZ)
850 		return;
851 
852 	/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
853 	iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
854 			     tx_chains, rx_chains);
855 	WARN_ON(!ht_cap.ht_supported);
856 	iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
857 	WARN_ON(!vht_cap.vht_supported);
858 
859 	he_6ghz_capa |=
860 		u16_encode_bits(ht_cap.ampdu_density,
861 				IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
862 	exp = u32_get_bits(vht_cap.cap,
863 			   IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
864 	he_6ghz_capa |=
865 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
866 	exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
867 	he_6ghz_capa |=
868 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
869 	/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
870 	if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
871 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
872 	if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
873 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
874 
875 	IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
876 
877 	/* we know it's writable - we set it before ourselves */
878 	iftype_data = (void *)(uintptr_t)sband->iftype_data;
879 	for (i = 0; i < sband->n_iftype_data; i++)
880 		iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
881 }
882 
883 static void
iwl_nvm_fixup_sband_iftd(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,struct ieee80211_sband_iftype_data * iftype_data,u8 tx_chains,u8 rx_chains,const struct iwl_fw * fw)884 iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
885 			 struct iwl_nvm_data *data,
886 			 struct ieee80211_supported_band *sband,
887 			 struct ieee80211_sband_iftype_data *iftype_data,
888 			 u8 tx_chains, u8 rx_chains,
889 			 const struct iwl_fw *fw)
890 {
891 	bool is_ap = iftype_data->types_mask & BIT(NL80211_IFTYPE_AP);
892 	bool no_320;
893 
894 	no_320 = !trans->trans_cfg->integrated &&
895 		 trans->pcie_link_speed < PCI_EXP_LNKSTA_CLS_8_0GB;
896 
897 	if (!data->sku_cap_11be_enable || iwlwifi_mod_params.disable_11be)
898 		iftype_data->eht_cap.has_eht = false;
899 
900 	/* Advertise an A-MPDU exponent extension based on
901 	 * operating band
902 	 */
903 	if (sband->band == NL80211_BAND_6GHZ && iftype_data->eht_cap.has_eht)
904 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
905 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2;
906 	else if (sband->band != NL80211_BAND_2GHZ)
907 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
908 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
909 	else
910 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
911 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
912 
913 	switch (sband->band) {
914 	case NL80211_BAND_2GHZ:
915 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
916 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
917 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] |=
918 			u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454,
919 				       IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK);
920 		break;
921 	case NL80211_BAND_6GHZ:
922 		if (!no_320) {
923 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[0] |=
924 				IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
925 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[1] |=
926 				IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK;
927 		}
928 		fallthrough;
929 	case NL80211_BAND_5GHZ:
930 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
931 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
932 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
933 		break;
934 	default:
935 		WARN_ON(1);
936 		break;
937 	}
938 
939 	if ((tx_chains & rx_chains) == ANT_AB) {
940 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
941 			IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
942 		iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
943 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
944 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
945 		if (!is_ap) {
946 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
947 				IEEE80211_HE_PHY_CAP7_MAX_NC_2;
948 
949 			if (iftype_data->eht_cap.has_eht) {
950 				/*
951 				 * Set the number of sounding dimensions for each
952 				 * bandwidth to 1 to indicate the maximal supported
953 				 * value of TXVECTOR parameter NUM_STS of 2
954 				 */
955 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] |= 0x49;
956 
957 				/*
958 				 * Set the MAX NC to 1 to indicate sounding feedback of
959 				 * 2 supported by the beamfomee.
960 				 */
961 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] |= 0x10;
962 			}
963 		}
964 	} else {
965 		if (iftype_data->eht_cap.has_eht) {
966 			struct ieee80211_eht_mcs_nss_supp *mcs_nss =
967 				&iftype_data->eht_cap.eht_mcs_nss_supp;
968 
969 			memset(mcs_nss, 0x11, sizeof(*mcs_nss));
970 		}
971 
972 		if (!is_ap) {
973 			/* If not 2x2, we need to indicate 1x1 in the
974 			 * Midamble RX Max NSTS - but not for AP mode
975 			 */
976 			iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
977 				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
978 			iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
979 				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
980 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
981 				IEEE80211_HE_PHY_CAP7_MAX_NC_1;
982 		}
983 	}
984 
985 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210 && !is_ap)
986 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
987 			IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO;
988 
989 	switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) {
990 	case IWL_CFG_RF_TYPE_GF:
991 	case IWL_CFG_RF_TYPE_MR:
992 	case IWL_CFG_RF_TYPE_MS:
993 	case IWL_CFG_RF_TYPE_FM:
994 	case IWL_CFG_RF_TYPE_WH:
995 		iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
996 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
997 		if (!is_ap)
998 			iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
999 				IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
1000 		break;
1001 	}
1002 
1003 	if (CSR_HW_REV_TYPE(trans->hw_rev) == IWL_CFG_MAC_TYPE_GL &&
1004 	    iftype_data->eht_cap.has_eht) {
1005 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] &=
1006 			~(IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
1007 			  IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
1008 			  IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2);
1009 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[3] &=
1010 			~(IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
1011 			  IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
1012 			  IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
1013 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
1014 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
1015 			  IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK);
1016 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] &=
1017 			~(IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
1018 			  IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP);
1019 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] &=
1020 			~IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK;
1021 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[6] &=
1022 			~(IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
1023 			  IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP);
1024 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] |=
1025 			IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF;
1026 	}
1027 
1028 	if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
1029 		iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
1030 			IEEE80211_HE_MAC_CAP2_BCAST_TWT;
1031 
1032 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22000 &&
1033 	    !is_ap) {
1034 		iftype_data->vendor_elems.data = iwl_vendor_caps;
1035 		iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps);
1036 	}
1037 
1038 	if (!trans->cfg->ht_params->stbc) {
1039 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1040 			~IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ;
1041 		iftype_data->he_cap.he_cap_elem.phy_cap_info[7] &=
1042 			~IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
1043 	}
1044 }
1045 
iwl_init_he_hw_capab(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,u8 tx_chains,u8 rx_chains,const struct iwl_fw * fw)1046 static void iwl_init_he_hw_capab(struct iwl_trans *trans,
1047 				 struct iwl_nvm_data *data,
1048 				 struct ieee80211_supported_band *sband,
1049 				 u8 tx_chains, u8 rx_chains,
1050 				 const struct iwl_fw *fw)
1051 {
1052 	struct ieee80211_sband_iftype_data *iftype_data;
1053 	int i;
1054 
1055 	/* should only initialize once */
1056 	if (WARN_ON(sband->iftype_data))
1057 		return;
1058 
1059 	BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_eht_capa));
1060 	BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_eht_capa));
1061 	BUILD_BUG_ON(sizeof(data->iftd.uhb) != sizeof(iwl_he_eht_capa));
1062 
1063 	switch (sband->band) {
1064 	case NL80211_BAND_2GHZ:
1065 		iftype_data = data->iftd.low;
1066 		break;
1067 	case NL80211_BAND_5GHZ:
1068 		iftype_data = data->iftd.high;
1069 		break;
1070 	case NL80211_BAND_6GHZ:
1071 		iftype_data = data->iftd.uhb;
1072 		break;
1073 	default:
1074 		WARN_ON(1);
1075 		return;
1076 	}
1077 
1078 	memcpy(iftype_data, iwl_he_eht_capa, sizeof(iwl_he_eht_capa));
1079 
1080 	sband->iftype_data = iftype_data;
1081 	sband->n_iftype_data = ARRAY_SIZE(iwl_he_eht_capa);
1082 
1083 	for (i = 0; i < sband->n_iftype_data; i++)
1084 		iwl_nvm_fixup_sband_iftd(trans, data, sband, &iftype_data[i],
1085 					 tx_chains, rx_chains, fw);
1086 
1087 	iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
1088 }
1089 
iwl_init_sbands(struct iwl_trans * trans,struct iwl_nvm_data * data,const void * nvm_ch_flags,u8 tx_chains,u8 rx_chains,u32 sbands_flags,bool v4,const struct iwl_fw * fw)1090 static void iwl_init_sbands(struct iwl_trans *trans,
1091 			    struct iwl_nvm_data *data,
1092 			    const void *nvm_ch_flags, u8 tx_chains,
1093 			    u8 rx_chains, u32 sbands_flags, bool v4,
1094 			    const struct iwl_fw *fw)
1095 {
1096 	struct device *dev = trans->dev;
1097 	const struct iwl_cfg *cfg = trans->cfg;
1098 	int n_channels;
1099 	int n_used = 0;
1100 	struct ieee80211_supported_band *sband;
1101 
1102 	n_channels = iwl_init_channel_map(dev, cfg, data, nvm_ch_flags,
1103 					  sbands_flags, v4);
1104 	sband = &data->bands[NL80211_BAND_2GHZ];
1105 	sband->band = NL80211_BAND_2GHZ;
1106 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1107 	sband->n_bitrates = N_RATES_24;
1108 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1109 					  NL80211_BAND_2GHZ);
1110 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1111 			     tx_chains, rx_chains);
1112 
1113 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1114 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1115 				     fw);
1116 
1117 	sband = &data->bands[NL80211_BAND_5GHZ];
1118 	sband->band = NL80211_BAND_5GHZ;
1119 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1120 	sband->n_bitrates = N_RATES_52;
1121 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1122 					  NL80211_BAND_5GHZ);
1123 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1124 			     tx_chains, rx_chains);
1125 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1126 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1127 				      tx_chains, rx_chains);
1128 
1129 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1130 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1131 				     fw);
1132 
1133 	/* 6GHz band. */
1134 	sband = &data->bands[NL80211_BAND_6GHZ];
1135 	sband->band = NL80211_BAND_6GHZ;
1136 	/* use the same rates as 5GHz band */
1137 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1138 	sband->n_bitrates = N_RATES_52;
1139 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1140 					  NL80211_BAND_6GHZ);
1141 
1142 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1143 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1144 				     fw);
1145 	else
1146 		sband->n_channels = 0;
1147 	if (n_channels != n_used)
1148 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
1149 			    n_used, n_channels);
1150 }
1151 
iwl_get_sku(const struct iwl_cfg * cfg,const __le16 * nvm_sw,const __le16 * phy_sku)1152 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1153 		       const __le16 *phy_sku)
1154 {
1155 	if (cfg->nvm_type != IWL_NVM_EXT)
1156 		return le16_to_cpup(nvm_sw + SKU);
1157 
1158 	return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000));
1159 }
1160 
iwl_get_nvm_version(const struct iwl_cfg * cfg,const __le16 * nvm_sw)1161 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1162 {
1163 	if (cfg->nvm_type != IWL_NVM_EXT)
1164 		return le16_to_cpup(nvm_sw + NVM_VERSION);
1165 	else
1166 		return le32_to_cpup((const __le32 *)(nvm_sw +
1167 						     NVM_VERSION_EXT_NVM));
1168 }
1169 
iwl_get_radio_cfg(const struct iwl_cfg * cfg,const __le16 * nvm_sw,const __le16 * phy_sku)1170 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1171 			     const __le16 *phy_sku)
1172 {
1173 	if (cfg->nvm_type != IWL_NVM_EXT)
1174 		return le16_to_cpup(nvm_sw + RADIO_CFG);
1175 
1176 	return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
1177 
1178 }
1179 
iwl_get_n_hw_addrs(const struct iwl_cfg * cfg,const __le16 * nvm_sw)1180 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1181 {
1182 	int n_hw_addr;
1183 
1184 	if (cfg->nvm_type != IWL_NVM_EXT)
1185 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
1186 
1187 	n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
1188 
1189 	return n_hw_addr & N_HW_ADDR_MASK;
1190 }
1191 
iwl_set_radio_cfg(const struct iwl_cfg * cfg,struct iwl_nvm_data * data,u32 radio_cfg)1192 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
1193 			      struct iwl_nvm_data *data,
1194 			      u32 radio_cfg)
1195 {
1196 	if (cfg->nvm_type != IWL_NVM_EXT) {
1197 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
1198 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
1199 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
1200 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
1201 		return;
1202 	}
1203 
1204 	/* set the radio configuration for family 8000 */
1205 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1206 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
1207 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
1208 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
1209 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1210 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1211 }
1212 
iwl_flip_hw_address(__le32 mac_addr0,__le32 mac_addr1,u8 * dest)1213 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
1214 {
1215 	const u8 *hw_addr;
1216 
1217 	hw_addr = (const u8 *)&mac_addr0;
1218 	dest[0] = hw_addr[3];
1219 	dest[1] = hw_addr[2];
1220 	dest[2] = hw_addr[1];
1221 	dest[3] = hw_addr[0];
1222 
1223 	hw_addr = (const u8 *)&mac_addr1;
1224 	dest[4] = hw_addr[1];
1225 	dest[5] = hw_addr[0];
1226 }
1227 
iwl_set_hw_address_from_csr(struct iwl_trans * trans,struct iwl_nvm_data * data)1228 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
1229 					struct iwl_nvm_data *data)
1230 {
1231 	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
1232 						  CSR_MAC_ADDR0_STRAP(trans)));
1233 	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
1234 						  CSR_MAC_ADDR1_STRAP(trans)));
1235 
1236 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1237 	/*
1238 	 * If the OEM fused a valid address, use it instead of the one in the
1239 	 * OTP
1240 	 */
1241 	if (is_valid_ether_addr(data->hw_addr))
1242 		return;
1243 
1244 	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
1245 	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
1246 
1247 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1248 }
1249 
iwl_set_hw_address_family_8000(struct iwl_trans * trans,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const __le16 * mac_override,const __be16 * nvm_hw)1250 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
1251 					   const struct iwl_cfg *cfg,
1252 					   struct iwl_nvm_data *data,
1253 					   const __le16 *mac_override,
1254 					   const __be16 *nvm_hw)
1255 {
1256 	const u8 *hw_addr;
1257 
1258 	if (mac_override) {
1259 		static const u8 reserved_mac[] = {
1260 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1261 		};
1262 
1263 		hw_addr = (const u8 *)(mac_override +
1264 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1265 
1266 		/*
1267 		 * Store the MAC address from MAO section.
1268 		 * No byte swapping is required in MAO section
1269 		 */
1270 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1271 
1272 		/*
1273 		 * Force the use of the OTP MAC address in case of reserved MAC
1274 		 * address in the NVM, or if address is given but invalid.
1275 		 */
1276 		if (is_valid_ether_addr(data->hw_addr) &&
1277 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1278 			return;
1279 
1280 		IWL_ERR(trans,
1281 			"mac address from nvm override section is not valid\n");
1282 	}
1283 
1284 	if (nvm_hw) {
1285 		/* read the mac address from WFMP registers */
1286 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1287 						WFMP_MAC_ADDR_0));
1288 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1289 						WFMP_MAC_ADDR_1));
1290 
1291 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1292 
1293 		return;
1294 	}
1295 
1296 	IWL_ERR(trans, "mac address is not found\n");
1297 }
1298 
iwl_set_hw_address(struct iwl_trans * trans,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const __be16 * nvm_hw,const __le16 * mac_override)1299 static int iwl_set_hw_address(struct iwl_trans *trans,
1300 			      const struct iwl_cfg *cfg,
1301 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
1302 			      const __le16 *mac_override)
1303 {
1304 	if (cfg->mac_addr_from_csr) {
1305 		iwl_set_hw_address_from_csr(trans, data);
1306 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
1307 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1308 
1309 		/* The byte order is little endian 16 bit, meaning 214365 */
1310 		data->hw_addr[0] = hw_addr[1];
1311 		data->hw_addr[1] = hw_addr[0];
1312 		data->hw_addr[2] = hw_addr[3];
1313 		data->hw_addr[3] = hw_addr[2];
1314 		data->hw_addr[4] = hw_addr[5];
1315 		data->hw_addr[5] = hw_addr[4];
1316 	} else {
1317 		iwl_set_hw_address_family_8000(trans, cfg, data,
1318 					       mac_override, nvm_hw);
1319 	}
1320 
1321 	if (!is_valid_ether_addr(data->hw_addr)) {
1322 		IWL_ERR(trans, "no valid mac address was found\n");
1323 		return -EINVAL;
1324 	}
1325 
1326 	if (!trans->csme_own)
1327 		IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n",
1328 			 data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR));
1329 
1330 	return 0;
1331 }
1332 
1333 static bool
iwl_nvm_no_wide_in_5ghz(struct iwl_trans * trans,const struct iwl_cfg * cfg,const __be16 * nvm_hw)1334 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1335 			const __be16 *nvm_hw)
1336 {
1337 	/*
1338 	 * Workaround a bug in Indonesia SKUs where the regulatory in
1339 	 * some 7000-family OTPs erroneously allow wide channels in
1340 	 * 5GHz.  To check for Indonesia, we take the SKU value from
1341 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
1342 	 * 9.  In those cases, we need to force-disable wide channels
1343 	 * in 5GHz otherwise the FW will throw a sysassert when we try
1344 	 * to use them.
1345 	 */
1346 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1347 		/*
1348 		 * Unlike the other sections in the NVM, the hw
1349 		 * section uses big-endian.
1350 		 */
1351 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1352 		u8 sku = (subsystem_id & 0x1e) >> 1;
1353 
1354 		if (sku == 5 || sku == 9) {
1355 			IWL_DEBUG_EEPROM(trans->dev,
1356 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
1357 					 subsystem_id, sku);
1358 			return true;
1359 		}
1360 	}
1361 
1362 	return false;
1363 }
1364 
1365 struct iwl_nvm_data *
iwl_parse_mei_nvm_data(struct iwl_trans * trans,const struct iwl_cfg * cfg,const struct iwl_mei_nvm * mei_nvm,const struct iwl_fw * fw)1366 iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1367 		       const struct iwl_mei_nvm *mei_nvm,
1368 		       const struct iwl_fw *fw)
1369 {
1370 	struct iwl_nvm_data *data;
1371 	u32 sbands_flags = 0;
1372 	u8 rx_chains = fw->valid_rx_ant;
1373 	u8 tx_chains = fw->valid_rx_ant;
1374 
1375 	if (cfg->uhb_supported)
1376 		data = kzalloc(struct_size(data, channels,
1377 					   IWL_NVM_NUM_CHANNELS_UHB),
1378 					   GFP_KERNEL);
1379 	else
1380 		data = kzalloc(struct_size(data, channels,
1381 					   IWL_NVM_NUM_CHANNELS_EXT),
1382 					   GFP_KERNEL);
1383 	if (!data)
1384 		return NULL;
1385 
1386 	BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) !=
1387 		     IWL_NVM_NUM_CHANNELS_UHB);
1388 	data->nvm_version = mei_nvm->nvm_version;
1389 
1390 	iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg);
1391 	if (data->valid_tx_ant)
1392 		tx_chains &= data->valid_tx_ant;
1393 	if (data->valid_rx_ant)
1394 		rx_chains &= data->valid_rx_ant;
1395 
1396 	data->sku_cap_mimo_disabled = false;
1397 	data->sku_cap_band_24ghz_enable = true;
1398 	data->sku_cap_band_52ghz_enable = true;
1399 	data->sku_cap_11n_enable =
1400 		!(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL);
1401 	data->sku_cap_11ac_enable = true;
1402 	data->sku_cap_11ax_enable =
1403 		mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT;
1404 
1405 	data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT;
1406 
1407 	data->n_hw_addrs = mei_nvm->n_hw_addrs;
1408 	/* If no valid mac address was found - bail out */
1409 	if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) {
1410 		kfree(data);
1411 		return NULL;
1412 	}
1413 
1414 	if (data->lar_enabled &&
1415 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1416 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1417 
1418 	iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains,
1419 			sbands_flags, true, fw);
1420 
1421 	return data;
1422 }
1423 IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data);
1424 
1425 struct iwl_nvm_data *
iwl_parse_nvm_data(struct iwl_trans * trans,const struct iwl_cfg * cfg,const struct iwl_fw * fw,const __be16 * nvm_hw,const __le16 * nvm_sw,const __le16 * nvm_calib,const __le16 * regulatory,const __le16 * mac_override,const __le16 * phy_sku,u8 tx_chains,u8 rx_chains)1426 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1427 		   const struct iwl_fw *fw,
1428 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1429 		   const __le16 *nvm_calib, const __le16 *regulatory,
1430 		   const __le16 *mac_override, const __le16 *phy_sku,
1431 		   u8 tx_chains, u8 rx_chains)
1432 {
1433 	struct iwl_nvm_data *data;
1434 	bool lar_enabled;
1435 	u32 sku, radio_cfg;
1436 	u32 sbands_flags = 0;
1437 	u16 lar_config;
1438 	const __le16 *ch_section;
1439 
1440 	if (cfg->uhb_supported)
1441 		data = kzalloc(struct_size(data, channels,
1442 					   IWL_NVM_NUM_CHANNELS_UHB),
1443 					   GFP_KERNEL);
1444 	else if (cfg->nvm_type != IWL_NVM_EXT)
1445 		data = kzalloc(struct_size(data, channels,
1446 					   IWL_NVM_NUM_CHANNELS),
1447 					   GFP_KERNEL);
1448 	else
1449 		data = kzalloc(struct_size(data, channels,
1450 					   IWL_NVM_NUM_CHANNELS_EXT),
1451 					   GFP_KERNEL);
1452 	if (!data)
1453 		return NULL;
1454 
1455 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1456 
1457 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1458 	iwl_set_radio_cfg(cfg, data, radio_cfg);
1459 	if (data->valid_tx_ant)
1460 		tx_chains &= data->valid_tx_ant;
1461 	if (data->valid_rx_ant)
1462 		rx_chains &= data->valid_rx_ant;
1463 
1464 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1465 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1466 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1467 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1468 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1469 		data->sku_cap_11n_enable = false;
1470 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1471 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1472 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1473 
1474 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1475 
1476 	if (cfg->nvm_type != IWL_NVM_EXT) {
1477 		/* Checking for required sections */
1478 		if (!nvm_calib) {
1479 			IWL_ERR(trans,
1480 				"Can't parse empty Calib NVM sections\n");
1481 			kfree(data);
1482 			return NULL;
1483 		}
1484 
1485 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1486 			     &regulatory[NVM_CHANNELS_SDP] :
1487 			     &nvm_sw[NVM_CHANNELS];
1488 
1489 		/* in family 8000 Xtal calibration values moved to OTP */
1490 		data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
1491 		data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
1492 		lar_enabled = true;
1493 	} else {
1494 		u16 lar_offset = data->nvm_version < 0xE39 ?
1495 				 NVM_LAR_OFFSET_OLD :
1496 				 NVM_LAR_OFFSET;
1497 
1498 		lar_config = le16_to_cpup(regulatory + lar_offset);
1499 		data->lar_enabled = !!(lar_config &
1500 				       NVM_LAR_ENABLED);
1501 		lar_enabled = data->lar_enabled;
1502 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1503 	}
1504 
1505 	/* If no valid mac address was found - bail out */
1506 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1507 		kfree(data);
1508 		return NULL;
1509 	}
1510 
1511 	if (lar_enabled &&
1512 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1513 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1514 
1515 	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1516 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1517 
1518 	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1519 			sbands_flags, false, fw);
1520 	data->calib_version = 255;
1521 
1522 	return data;
1523 }
1524 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1525 
iwl_nvm_get_regdom_bw_flags(const u16 * nvm_chan,int ch_idx,u16 nvm_flags,struct iwl_reg_capa reg_capa,const struct iwl_cfg * cfg)1526 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1527 				       int ch_idx, u16 nvm_flags,
1528 				       struct iwl_reg_capa reg_capa,
1529 				       const struct iwl_cfg *cfg)
1530 {
1531 	u32 flags = NL80211_RRF_NO_HT40;
1532 
1533 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1534 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1535 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1536 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1537 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1538 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1539 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1540 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1541 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1542 		else
1543 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1544 	}
1545 
1546 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1547 		flags |= NL80211_RRF_NO_80MHZ;
1548 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1549 		flags |= NL80211_RRF_NO_160MHZ;
1550 
1551 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1552 		flags |= NL80211_RRF_NO_IR;
1553 
1554 	if (nvm_flags & NVM_CHANNEL_RADAR)
1555 		flags |= NL80211_RRF_DFS;
1556 
1557 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1558 		flags |= NL80211_RRF_NO_OUTDOOR;
1559 
1560 	/* Set the GO concurrent flag only in case that NO_IR is set.
1561 	 * Otherwise it is meaningless
1562 	 */
1563 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
1564 	    (flags & NL80211_RRF_NO_IR))
1565 		flags |= NL80211_RRF_GO_CONCURRENT;
1566 
1567 	/*
1568 	 * reg_capa is per regulatory domain so apply it for every channel
1569 	 */
1570 	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1571 		if (!reg_capa.allow_40mhz)
1572 			flags |= NL80211_RRF_NO_HT40;
1573 
1574 		if (!reg_capa.allow_80mhz)
1575 			flags |= NL80211_RRF_NO_80MHZ;
1576 
1577 		if (!reg_capa.allow_160mhz)
1578 			flags |= NL80211_RRF_NO_160MHZ;
1579 
1580 		if (!reg_capa.allow_320mhz)
1581 			flags |= NL80211_RRF_NO_320MHZ;
1582 	}
1583 
1584 	if (reg_capa.disable_11ax)
1585 		flags |= NL80211_RRF_NO_HE;
1586 
1587 	if (reg_capa.disable_11be)
1588 		flags |= NL80211_RRF_NO_EHT;
1589 
1590 	return flags;
1591 }
1592 
iwl_get_reg_capa(u32 flags,u8 resp_ver)1593 static struct iwl_reg_capa iwl_get_reg_capa(u32 flags, u8 resp_ver)
1594 {
1595 	struct iwl_reg_capa reg_capa = {};
1596 
1597 	if (resp_ver >= REG_CAPA_V4_RESP_VER) {
1598 		reg_capa.allow_40mhz = true;
1599 		reg_capa.allow_80mhz = flags & REG_CAPA_V4_80MHZ_ALLOWED;
1600 		reg_capa.allow_160mhz = flags & REG_CAPA_V4_160MHZ_ALLOWED;
1601 		reg_capa.allow_320mhz = flags & REG_CAPA_V4_320MHZ_ALLOWED;
1602 		reg_capa.disable_11ax = flags & REG_CAPA_V4_11AX_DISABLED;
1603 		reg_capa.disable_11be = flags & REG_CAPA_V4_11BE_DISABLED;
1604 	} else if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1605 		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1606 		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1607 		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1608 		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1609 	} else {
1610 		reg_capa.allow_40mhz = !(flags & REG_CAPA_V1_40MHZ_FORBIDDEN);
1611 		reg_capa.allow_80mhz = flags & REG_CAPA_V1_80MHZ_ALLOWED;
1612 		reg_capa.allow_160mhz = flags & REG_CAPA_V1_160MHZ_ALLOWED;
1613 		reg_capa.disable_11ax = flags & REG_CAPA_V1_11AX_DISABLED;
1614 	}
1615 	return reg_capa;
1616 }
1617 
1618 struct ieee80211_regdomain *
iwl_parse_nvm_mcc_info(struct device * dev,const struct iwl_cfg * cfg,int num_of_ch,__le32 * channels,u16 fw_mcc,u16 geo_info,u32 cap,u8 resp_ver)1619 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1620 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1621 		       u16 geo_info, u32 cap, u8 resp_ver)
1622 {
1623 	int ch_idx;
1624 	u16 ch_flags;
1625 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1626 	const u16 *nvm_chan;
1627 	struct ieee80211_regdomain *regd, *copy_rd;
1628 	struct ieee80211_reg_rule *rule;
1629 	enum nl80211_band band;
1630 	int center_freq, prev_center_freq = 0;
1631 	int valid_rules = 0;
1632 	bool new_rule;
1633 	int max_num_ch;
1634 	struct iwl_reg_capa reg_capa;
1635 
1636 	if (cfg->uhb_supported) {
1637 		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1638 		nvm_chan = iwl_uhb_nvm_channels;
1639 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1640 		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1641 		nvm_chan = iwl_ext_nvm_channels;
1642 	} else {
1643 		max_num_ch = IWL_NVM_NUM_CHANNELS;
1644 		nvm_chan = iwl_nvm_channels;
1645 	}
1646 
1647 	if (num_of_ch > max_num_ch) {
1648 		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
1649 			      "Num of channels (%d) is greater than expected. Truncating to %d\n",
1650 			      num_of_ch, max_num_ch);
1651 		num_of_ch = max_num_ch;
1652 	}
1653 
1654 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1655 		return ERR_PTR(-EINVAL);
1656 
1657 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1658 		      num_of_ch);
1659 
1660 	/* build a regdomain rule for every valid channel */
1661 	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1662 	if (!regd)
1663 		return ERR_PTR(-ENOMEM);
1664 
1665 	/* set alpha2 from FW. */
1666 	regd->alpha2[0] = fw_mcc >> 8;
1667 	regd->alpha2[1] = fw_mcc & 0xff;
1668 
1669 	/* parse regulatory capability flags */
1670 	reg_capa = iwl_get_reg_capa(cap, resp_ver);
1671 
1672 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1673 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1674 		band = iwl_nl80211_band_from_channel_idx(ch_idx);
1675 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1676 							     band);
1677 		new_rule = false;
1678 
1679 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1680 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1681 						    nvm_chan[ch_idx], ch_flags);
1682 			continue;
1683 		}
1684 
1685 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1686 							     ch_flags, reg_capa,
1687 							     cfg);
1688 
1689 		/* we can't continue the same rule */
1690 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1691 		    center_freq - prev_center_freq > 20) {
1692 			valid_rules++;
1693 			new_rule = true;
1694 		}
1695 
1696 		rule = &regd->reg_rules[valid_rules - 1];
1697 
1698 		if (new_rule)
1699 			rule->freq_range.start_freq_khz =
1700 						MHZ_TO_KHZ(center_freq - 10);
1701 
1702 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1703 
1704 		/* this doesn't matter - not used by FW */
1705 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1706 		rule->power_rule.max_eirp =
1707 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1708 
1709 		rule->flags = reg_rule_flags;
1710 
1711 		/* rely on auto-calculation to merge BW of contiguous chans */
1712 		rule->flags |= NL80211_RRF_AUTO_BW;
1713 		rule->freq_range.max_bandwidth_khz = 0;
1714 
1715 		prev_center_freq = center_freq;
1716 		prev_reg_rule_flags = reg_rule_flags;
1717 
1718 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1719 					    nvm_chan[ch_idx], ch_flags);
1720 
1721 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1722 		    band == NL80211_BAND_2GHZ)
1723 			continue;
1724 
1725 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1726 	}
1727 
1728 	/*
1729 	 * Certain firmware versions might report no valid channels
1730 	 * if booted in RF-kill, i.e. not all calibrations etc. are
1731 	 * running. We'll get out of this situation later when the
1732 	 * rfkill is removed and we update the regdomain again, but
1733 	 * since cfg80211 doesn't accept an empty regdomain, add a
1734 	 * dummy (unusable) rule here in this case so we can init.
1735 	 */
1736 	if (!valid_rules) {
1737 		valid_rules = 1;
1738 		rule = &regd->reg_rules[valid_rules - 1];
1739 		rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
1740 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
1741 		rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
1742 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1743 		rule->power_rule.max_eirp =
1744 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1745 	}
1746 
1747 	regd->n_reg_rules = valid_rules;
1748 
1749 	/*
1750 	 * Narrow down regdom for unused regulatory rules to prevent hole
1751 	 * between reg rules to wmm rules.
1752 	 */
1753 	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1754 			  GFP_KERNEL);
1755 	if (!copy_rd)
1756 		copy_rd = ERR_PTR(-ENOMEM);
1757 
1758 	kfree(regd);
1759 	return copy_rd;
1760 }
1761 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1762 
1763 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1764 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1765 #define MAX_NVM_FILE_LEN	16384
1766 
iwl_nvm_fixups(u32 hw_id,unsigned int section,u8 * data,unsigned int len)1767 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1768 		    unsigned int len)
1769 {
1770 #define IWL_4165_DEVICE_ID	0x5501
1771 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1772 
1773 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1774 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1775 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1776 		/* OTP 0x52 bug work around: it's a 1x1 device */
1777 		data[3] = ANT_B | (ANT_B << 4);
1778 }
1779 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1780 
1781 /*
1782  * Reads external NVM from a file into mvm->nvm_sections
1783  *
1784  * HOW TO CREATE THE NVM FILE FORMAT:
1785  * ------------------------------
1786  * 1. create hex file, format:
1787  *      3800 -> header
1788  *      0000 -> header
1789  *      5a40 -> data
1790  *
1791  *   rev - 6 bit (word1)
1792  *   len - 10 bit (word1)
1793  *   id - 4 bit (word2)
1794  *   rsv - 12 bit (word2)
1795  *
1796  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1797  *
1798  * 3. create binary file from the hex file
1799  *
1800  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1801  */
iwl_read_external_nvm(struct iwl_trans * trans,const char * nvm_file_name,struct iwl_nvm_section * nvm_sections)1802 int iwl_read_external_nvm(struct iwl_trans *trans,
1803 			  const char *nvm_file_name,
1804 			  struct iwl_nvm_section *nvm_sections)
1805 {
1806 	int ret, section_size;
1807 	u16 section_id;
1808 	const struct firmware *fw_entry;
1809 	const struct {
1810 		__le16 word1;
1811 		__le16 word2;
1812 		u8 data[];
1813 	} *file_sec;
1814 	const u8 *eof;
1815 	u8 *temp;
1816 	int max_section_size;
1817 	const __le32 *dword_buff;
1818 
1819 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1820 #define NVM_WORD2_ID(x) (x >> 12)
1821 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1822 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1823 #define NVM_HEADER_0	(0x2A504C54)
1824 #define NVM_HEADER_1	(0x4E564D2A)
1825 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1826 
1827 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1828 
1829 	/* Maximal size depends on NVM version */
1830 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1831 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1832 	else
1833 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1834 
1835 	/*
1836 	 * Obtain NVM image via request_firmware. Since we already used
1837 	 * request_firmware_nowait() for the firmware binary load and only
1838 	 * get here after that we assume the NVM request can be satisfied
1839 	 * synchronously.
1840 	 */
1841 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1842 	if (ret) {
1843 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1844 			nvm_file_name, ret);
1845 		return ret;
1846 	}
1847 
1848 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1849 		 nvm_file_name, fw_entry->size);
1850 
1851 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1852 		IWL_ERR(trans, "NVM file too large\n");
1853 		ret = -EINVAL;
1854 		goto out;
1855 	}
1856 
1857 	eof = fw_entry->data + fw_entry->size;
1858 	dword_buff = (const __le32 *)fw_entry->data;
1859 
1860 	/* some NVM file will contain a header.
1861 	 * The header is identified by 2 dwords header as follow:
1862 	 * dword[0] = 0x2A504C54
1863 	 * dword[1] = 0x4E564D2A
1864 	 *
1865 	 * This header must be skipped when providing the NVM data to the FW.
1866 	 */
1867 	if (fw_entry->size > NVM_HEADER_SIZE &&
1868 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1869 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1870 		file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE);
1871 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1872 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1873 			 le32_to_cpu(dword_buff[3]));
1874 
1875 		/* nvm file validation, dword_buff[2] holds the file version */
1876 		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1877 		    trans->hw_rev_step == SILICON_C_STEP &&
1878 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1879 			ret = -EFAULT;
1880 			goto out;
1881 		}
1882 	} else {
1883 		file_sec = (const void *)fw_entry->data;
1884 	}
1885 
1886 	while (true) {
1887 		if (file_sec->data > eof) {
1888 			IWL_ERR(trans,
1889 				"ERROR - NVM file too short for section header\n");
1890 			ret = -EINVAL;
1891 			break;
1892 		}
1893 
1894 		/* check for EOF marker */
1895 		if (!file_sec->word1 && !file_sec->word2) {
1896 			ret = 0;
1897 			break;
1898 		}
1899 
1900 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
1901 			section_size =
1902 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
1903 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
1904 		} else {
1905 			section_size = 2 * EXT_NVM_WORD2_LEN(
1906 						le16_to_cpu(file_sec->word2));
1907 			section_id = EXT_NVM_WORD1_ID(
1908 						le16_to_cpu(file_sec->word1));
1909 		}
1910 
1911 		if (section_size > max_section_size) {
1912 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
1913 				section_size);
1914 			ret = -EINVAL;
1915 			break;
1916 		}
1917 
1918 		if (!section_size) {
1919 			IWL_ERR(trans, "ERROR - section empty\n");
1920 			ret = -EINVAL;
1921 			break;
1922 		}
1923 
1924 		if (file_sec->data + section_size > eof) {
1925 			IWL_ERR(trans,
1926 				"ERROR - NVM file too short for section (%d bytes)\n",
1927 				section_size);
1928 			ret = -EINVAL;
1929 			break;
1930 		}
1931 
1932 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
1933 			 "Invalid NVM section ID %d\n", section_id)) {
1934 			ret = -EINVAL;
1935 			break;
1936 		}
1937 
1938 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
1939 		if (!temp) {
1940 			ret = -ENOMEM;
1941 			break;
1942 		}
1943 
1944 		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
1945 
1946 		kfree(nvm_sections[section_id].data);
1947 		nvm_sections[section_id].data = temp;
1948 		nvm_sections[section_id].length = section_size;
1949 
1950 		/* advance to the next section */
1951 		file_sec = (const void *)(file_sec->data + section_size);
1952 	}
1953 out:
1954 	release_firmware(fw_entry);
1955 	return ret;
1956 }
1957 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
1958 
iwl_get_nvm(struct iwl_trans * trans,const struct iwl_fw * fw)1959 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
1960 				 const struct iwl_fw *fw)
1961 {
1962 	struct iwl_nvm_get_info cmd = {};
1963 	struct iwl_nvm_data *nvm;
1964 	struct iwl_host_cmd hcmd = {
1965 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
1966 		.data = { &cmd, },
1967 		.len = { sizeof(cmd) },
1968 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
1969 	};
1970 	int  ret;
1971 	bool empty_otp;
1972 	u32 mac_flags;
1973 	u32 sbands_flags = 0;
1974 	/*
1975 	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
1976 	 * in v3, except for the channel profile part of the
1977 	 * regulatory.  So we can just access the new struct, with the
1978 	 * exception of the latter.
1979 	 */
1980 	struct iwl_nvm_get_info_rsp *rsp;
1981 	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
1982 	bool v4 = fw_has_api(&fw->ucode_capa,
1983 			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
1984 	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
1985 	void *channel_profile;
1986 
1987 	ret = iwl_trans_send_cmd(trans, &hcmd);
1988 	if (ret)
1989 		return ERR_PTR(ret);
1990 
1991 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
1992 		 "Invalid payload len in NVM response from FW %d",
1993 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
1994 		ret = -EINVAL;
1995 		goto out;
1996 	}
1997 
1998 	rsp = (void *)hcmd.resp_pkt->data;
1999 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
2000 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
2001 	if (empty_otp)
2002 		IWL_INFO(trans, "OTP is empty\n");
2003 
2004 	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
2005 	if (!nvm) {
2006 		ret = -ENOMEM;
2007 		goto out;
2008 	}
2009 
2010 	iwl_set_hw_address_from_csr(trans, nvm);
2011 	/* TODO: if platform NVM has MAC address - override it here */
2012 
2013 	if (!is_valid_ether_addr(nvm->hw_addr)) {
2014 		IWL_ERR(trans, "no valid mac address was found\n");
2015 		ret = -EINVAL;
2016 		goto err_free;
2017 	}
2018 
2019 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
2020 
2021 	/* Initialize general data */
2022 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
2023 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
2024 	if (nvm->n_hw_addrs == 0)
2025 		IWL_WARN(trans,
2026 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
2027 			 empty_otp);
2028 
2029 	/* Initialize MAC sku data */
2030 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
2031 	nvm->sku_cap_11ac_enable =
2032 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
2033 	nvm->sku_cap_11n_enable =
2034 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
2035 	nvm->sku_cap_11ax_enable =
2036 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
2037 	nvm->sku_cap_band_24ghz_enable =
2038 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
2039 	nvm->sku_cap_band_52ghz_enable =
2040 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
2041 	nvm->sku_cap_mimo_disabled =
2042 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
2043 	if (CSR_HW_RFID_TYPE(trans->hw_rf_id) == IWL_CFG_RF_TYPE_FM)
2044 		nvm->sku_cap_11be_enable = true;
2045 
2046 	/* Initialize PHY sku data */
2047 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
2048 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
2049 
2050 	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
2051 	    fw_has_capa(&fw->ucode_capa,
2052 			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
2053 		nvm->lar_enabled = true;
2054 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
2055 	}
2056 
2057 	rsp_v3 = (void *)rsp;
2058 	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
2059 			  (void *)rsp_v3->regulatory.channel_profile;
2060 
2061 	iwl_init_sbands(trans, nvm,
2062 			channel_profile,
2063 			nvm->valid_tx_ant & fw->valid_tx_ant,
2064 			nvm->valid_rx_ant & fw->valid_rx_ant,
2065 			sbands_flags, v4, fw);
2066 
2067 	iwl_free_resp(&hcmd);
2068 	return nvm;
2069 
2070 err_free:
2071 	kfree(nvm);
2072 out:
2073 	iwl_free_resp(&hcmd);
2074 	return ERR_PTR(ret);
2075 }
2076 IWL_EXPORT_SYMBOL(iwl_get_nvm);
2077