1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23 #include "pp_debug.h"
24 #include <linux/delay.h>
25 #include <linux/module.h>
26 #include <linux/pci.h>
27 #include <linux/slab.h>
28 #include <asm/div64.h>
29 #if IS_ENABLED(CONFIG_X86_64)
30 #include <asm/intel-family.h>
31 #endif
32 #include <drm/amdgpu_drm.h>
33 #include "ppatomctrl.h"
34 #include "atombios.h"
35 #include "pptable_v1_0.h"
36 #include "pppcielanes.h"
37 #include "amd_pcie_helpers.h"
38 #include "hardwaremanager.h"
39 #include "process_pptables_v1_0.h"
40 #include "cgs_common.h"
41
42 #include "smu7_common.h"
43
44 #include "hwmgr.h"
45 #include "smu7_hwmgr.h"
46 #include "smu_ucode_xfer_vi.h"
47 #include "smu7_powertune.h"
48 #include "smu7_dyn_defaults.h"
49 #include "smu7_thermal.h"
50 #include "smu7_clockpowergating.h"
51 #include "processpptables.h"
52 #include "pp_thermal.h"
53 #include "smu7_baco.h"
54 #include "smu7_smumgr.h"
55 #include "polaris10_smumgr.h"
56
57 #include "ivsrcid/ivsrcid_vislands30.h"
58
59 #define MC_CG_ARB_FREQ_F0 0x0a
60 #define MC_CG_ARB_FREQ_F1 0x0b
61 #define MC_CG_ARB_FREQ_F2 0x0c
62 #define MC_CG_ARB_FREQ_F3 0x0d
63
64 #define MC_CG_SEQ_DRAMCONF_S0 0x05
65 #define MC_CG_SEQ_DRAMCONF_S1 0x06
66 #define MC_CG_SEQ_YCLK_SUSPEND 0x04
67 #define MC_CG_SEQ_YCLK_RESUME 0x0a
68
69 #define SMC_CG_IND_START 0xc0030000
70 #define SMC_CG_IND_END 0xc0040000
71
72 #define MEM_FREQ_LOW_LATENCY 25000
73 #define MEM_FREQ_HIGH_LATENCY 80000
74
75 #define MEM_LATENCY_HIGH 45
76 #define MEM_LATENCY_LOW 35
77 #define MEM_LATENCY_ERR 0xFFFF
78
79 #define MC_SEQ_MISC0_GDDR5_SHIFT 28
80 #define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000
81 #define MC_SEQ_MISC0_GDDR5_VALUE 5
82
83 #define PCIE_BUS_CLK 10000
84 #define TCLK (PCIE_BUS_CLK / 10)
85
86 static struct profile_mode_setting smu7_profiling[7] = {
87 {0, 0, 0, 0, 0, 0, 0, 0},
88 {1, 0, 100, 30, 1, 0, 100, 10},
89 {1, 10, 0, 30, 0, 0, 0, 0},
90 {0, 0, 0, 0, 1, 10, 16, 31},
91 {1, 0, 11, 50, 1, 0, 100, 10},
92 {1, 0, 5, 30, 0, 0, 0, 0},
93 {0, 0, 0, 0, 0, 0, 0, 0},
94 };
95
96 #define PPSMC_MSG_SetVBITimeout_VEGAM ((uint16_t) 0x310)
97
98 #define ixPWR_SVI2_PLANE1_LOAD 0xC0200280
99 #define PWR_SVI2_PLANE1_LOAD__PSI1_MASK 0x00000020L
100 #define PWR_SVI2_PLANE1_LOAD__PSI0_EN_MASK 0x00000040L
101 #define PWR_SVI2_PLANE1_LOAD__PSI1__SHIFT 0x00000005
102 #define PWR_SVI2_PLANE1_LOAD__PSI0_EN__SHIFT 0x00000006
103
104 #define STRAP_EVV_REVISION_MSB 2211
105 #define STRAP_EVV_REVISION_LSB 2208
106
107 /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */
108 enum DPM_EVENT_SRC {
109 DPM_EVENT_SRC_ANALOG = 0,
110 DPM_EVENT_SRC_EXTERNAL = 1,
111 DPM_EVENT_SRC_DIGITAL = 2,
112 DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3,
113 DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4
114 };
115
116 #define ixDIDT_SQ_EDC_CTRL 0x0013
117 #define ixDIDT_SQ_EDC_THRESHOLD 0x0014
118 #define ixDIDT_SQ_EDC_STALL_PATTERN_1_2 0x0015
119 #define ixDIDT_SQ_EDC_STALL_PATTERN_3_4 0x0016
120 #define ixDIDT_SQ_EDC_STALL_PATTERN_5_6 0x0017
121 #define ixDIDT_SQ_EDC_STALL_PATTERN_7 0x0018
122
123 #define ixDIDT_TD_EDC_CTRL 0x0053
124 #define ixDIDT_TD_EDC_THRESHOLD 0x0054
125 #define ixDIDT_TD_EDC_STALL_PATTERN_1_2 0x0055
126 #define ixDIDT_TD_EDC_STALL_PATTERN_3_4 0x0056
127 #define ixDIDT_TD_EDC_STALL_PATTERN_5_6 0x0057
128 #define ixDIDT_TD_EDC_STALL_PATTERN_7 0x0058
129
130 #define ixDIDT_TCP_EDC_CTRL 0x0073
131 #define ixDIDT_TCP_EDC_THRESHOLD 0x0074
132 #define ixDIDT_TCP_EDC_STALL_PATTERN_1_2 0x0075
133 #define ixDIDT_TCP_EDC_STALL_PATTERN_3_4 0x0076
134 #define ixDIDT_TCP_EDC_STALL_PATTERN_5_6 0x0077
135 #define ixDIDT_TCP_EDC_STALL_PATTERN_7 0x0078
136
137 #define ixDIDT_DB_EDC_CTRL 0x0033
138 #define ixDIDT_DB_EDC_THRESHOLD 0x0034
139 #define ixDIDT_DB_EDC_STALL_PATTERN_1_2 0x0035
140 #define ixDIDT_DB_EDC_STALL_PATTERN_3_4 0x0036
141 #define ixDIDT_DB_EDC_STALL_PATTERN_5_6 0x0037
142 #define ixDIDT_DB_EDC_STALL_PATTERN_7 0x0038
143
144 uint32_t DIDTEDCConfig_P12[] = {
145 ixDIDT_SQ_EDC_STALL_PATTERN_1_2,
146 ixDIDT_SQ_EDC_STALL_PATTERN_3_4,
147 ixDIDT_SQ_EDC_STALL_PATTERN_5_6,
148 ixDIDT_SQ_EDC_STALL_PATTERN_7,
149 ixDIDT_SQ_EDC_THRESHOLD,
150 ixDIDT_SQ_EDC_CTRL,
151 ixDIDT_TD_EDC_STALL_PATTERN_1_2,
152 ixDIDT_TD_EDC_STALL_PATTERN_3_4,
153 ixDIDT_TD_EDC_STALL_PATTERN_5_6,
154 ixDIDT_TD_EDC_STALL_PATTERN_7,
155 ixDIDT_TD_EDC_THRESHOLD,
156 ixDIDT_TD_EDC_CTRL,
157 ixDIDT_TCP_EDC_STALL_PATTERN_1_2,
158 ixDIDT_TCP_EDC_STALL_PATTERN_3_4,
159 ixDIDT_TCP_EDC_STALL_PATTERN_5_6,
160 ixDIDT_TCP_EDC_STALL_PATTERN_7,
161 ixDIDT_TCP_EDC_THRESHOLD,
162 ixDIDT_TCP_EDC_CTRL,
163 ixDIDT_DB_EDC_STALL_PATTERN_1_2,
164 ixDIDT_DB_EDC_STALL_PATTERN_3_4,
165 ixDIDT_DB_EDC_STALL_PATTERN_5_6,
166 ixDIDT_DB_EDC_STALL_PATTERN_7,
167 ixDIDT_DB_EDC_THRESHOLD,
168 ixDIDT_DB_EDC_CTRL,
169 0xFFFFFFFF // End of list
170 };
171
172 static const unsigned long PhwVIslands_Magic = (unsigned long)(PHM_VIslands_Magic);
173 static int smu7_force_clock_level(struct pp_hwmgr *hwmgr,
174 enum pp_clock_type type, uint32_t mask);
175 static int smu7_notify_has_display(struct pp_hwmgr *hwmgr);
176
cast_phw_smu7_power_state(struct pp_hw_power_state * hw_ps)177 static struct smu7_power_state *cast_phw_smu7_power_state(
178 struct pp_hw_power_state *hw_ps)
179 {
180 PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic),
181 "Invalid Powerstate Type!",
182 return NULL);
183
184 return (struct smu7_power_state *)hw_ps;
185 }
186
cast_const_phw_smu7_power_state(const struct pp_hw_power_state * hw_ps)187 static const struct smu7_power_state *cast_const_phw_smu7_power_state(
188 const struct pp_hw_power_state *hw_ps)
189 {
190 PP_ASSERT_WITH_CODE((PhwVIslands_Magic == hw_ps->magic),
191 "Invalid Powerstate Type!",
192 return NULL);
193
194 return (const struct smu7_power_state *)hw_ps;
195 }
196
197 /**
198 * smu7_get_mc_microcode_version - Find the MC microcode version and store it in the HwMgr struct
199 *
200 * @hwmgr: the address of the powerplay hardware manager.
201 * Return: always 0
202 */
smu7_get_mc_microcode_version(struct pp_hwmgr * hwmgr)203 static int smu7_get_mc_microcode_version(struct pp_hwmgr *hwmgr)
204 {
205 cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F);
206
207 hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
208
209 return 0;
210 }
211
smu7_get_current_pcie_speed(struct pp_hwmgr * hwmgr)212 static uint16_t smu7_get_current_pcie_speed(struct pp_hwmgr *hwmgr)
213 {
214 uint32_t speedCntl = 0;
215
216 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
217 speedCntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE,
218 ixPCIE_LC_SPEED_CNTL);
219 return((uint16_t)PHM_GET_FIELD(speedCntl,
220 PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE));
221 }
222
smu7_get_current_pcie_lane_number(struct pp_hwmgr * hwmgr)223 static int smu7_get_current_pcie_lane_number(struct pp_hwmgr *hwmgr)
224 {
225 uint32_t link_width;
226
227 /* mmPCIE_PORT_INDEX rename as mmPCIE_INDEX */
228 link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
229 PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD);
230
231 PP_ASSERT_WITH_CODE((7 >= link_width),
232 "Invalid PCIe lane width!", return 0);
233
234 return decode_pcie_lane_width(link_width);
235 }
236
237 /**
238 * smu7_enable_smc_voltage_controller - Enable voltage control
239 *
240 * @hwmgr: the address of the powerplay hardware manager.
241 * Return: always PP_Result_OK
242 */
smu7_enable_smc_voltage_controller(struct pp_hwmgr * hwmgr)243 static int smu7_enable_smc_voltage_controller(struct pp_hwmgr *hwmgr)
244 {
245 if (hwmgr->chip_id >= CHIP_POLARIS10 &&
246 hwmgr->chip_id <= CHIP_VEGAM) {
247 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
248 CGS_IND_REG__SMC, PWR_SVI2_PLANE1_LOAD, PSI1, 0);
249 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
250 CGS_IND_REG__SMC, PWR_SVI2_PLANE1_LOAD, PSI0_EN, 0);
251 }
252
253 if (hwmgr->feature_mask & PP_SMC_VOLTAGE_CONTROL_MASK)
254 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Enable, NULL);
255
256 return 0;
257 }
258
259 /**
260 * smu7_voltage_control - Checks if we want to support voltage control
261 *
262 * @hwmgr: the address of the powerplay hardware manager.
263 */
smu7_voltage_control(const struct pp_hwmgr * hwmgr)264 static bool smu7_voltage_control(const struct pp_hwmgr *hwmgr)
265 {
266 const struct smu7_hwmgr *data =
267 (const struct smu7_hwmgr *)(hwmgr->backend);
268
269 return (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control);
270 }
271
272 /**
273 * smu7_enable_voltage_control - Enable voltage control
274 *
275 * @hwmgr: the address of the powerplay hardware manager.
276 * Return: always 0
277 */
smu7_enable_voltage_control(struct pp_hwmgr * hwmgr)278 static int smu7_enable_voltage_control(struct pp_hwmgr *hwmgr)
279 {
280 /* enable voltage control */
281 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
282 GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1);
283
284 return 0;
285 }
286
phm_get_svi2_voltage_table_v0(pp_atomctrl_voltage_table * voltage_table,struct phm_clock_voltage_dependency_table * voltage_dependency_table)287 static int phm_get_svi2_voltage_table_v0(pp_atomctrl_voltage_table *voltage_table,
288 struct phm_clock_voltage_dependency_table *voltage_dependency_table
289 )
290 {
291 uint32_t i;
292
293 PP_ASSERT_WITH_CODE((NULL != voltage_table),
294 "Voltage Dependency Table empty.", return -EINVAL;);
295
296 voltage_table->mask_low = 0;
297 voltage_table->phase_delay = 0;
298 voltage_table->count = voltage_dependency_table->count;
299
300 for (i = 0; i < voltage_dependency_table->count; i++) {
301 voltage_table->entries[i].value =
302 voltage_dependency_table->entries[i].v;
303 voltage_table->entries[i].smio_low = 0;
304 }
305
306 return 0;
307 }
308
309
310 /**
311 * smu7_construct_voltage_tables - Create Voltage Tables.
312 *
313 * @hwmgr: the address of the powerplay hardware manager.
314 * Return: always 0
315 */
smu7_construct_voltage_tables(struct pp_hwmgr * hwmgr)316 static int smu7_construct_voltage_tables(struct pp_hwmgr *hwmgr)
317 {
318 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
319 struct phm_ppt_v1_information *table_info =
320 (struct phm_ppt_v1_information *)hwmgr->pptable;
321 int result = 0;
322 uint32_t tmp;
323
324 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
325 result = atomctrl_get_voltage_table_v3(hwmgr,
326 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT,
327 &(data->mvdd_voltage_table));
328 PP_ASSERT_WITH_CODE((0 == result),
329 "Failed to retrieve MVDD table.",
330 return result);
331 } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
332 if (hwmgr->pp_table_version == PP_TABLE_V1)
333 result = phm_get_svi2_mvdd_voltage_table(&(data->mvdd_voltage_table),
334 table_info->vdd_dep_on_mclk);
335 else if (hwmgr->pp_table_version == PP_TABLE_V0)
336 result = phm_get_svi2_voltage_table_v0(&(data->mvdd_voltage_table),
337 hwmgr->dyn_state.mvdd_dependency_on_mclk);
338
339 PP_ASSERT_WITH_CODE((0 == result),
340 "Failed to retrieve SVI2 MVDD table from dependency table.",
341 return result;);
342 }
343
344 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
345 result = atomctrl_get_voltage_table_v3(hwmgr,
346 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT,
347 &(data->vddci_voltage_table));
348 PP_ASSERT_WITH_CODE((0 == result),
349 "Failed to retrieve VDDCI table.",
350 return result);
351 } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
352 if (hwmgr->pp_table_version == PP_TABLE_V1)
353 result = phm_get_svi2_vddci_voltage_table(&(data->vddci_voltage_table),
354 table_info->vdd_dep_on_mclk);
355 else if (hwmgr->pp_table_version == PP_TABLE_V0)
356 result = phm_get_svi2_voltage_table_v0(&(data->vddci_voltage_table),
357 hwmgr->dyn_state.vddci_dependency_on_mclk);
358 PP_ASSERT_WITH_CODE((0 == result),
359 "Failed to retrieve SVI2 VDDCI table from dependency table.",
360 return result);
361 }
362
363 if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
364 /* VDDGFX has only SVI2 voltage control */
365 result = phm_get_svi2_vdd_voltage_table(&(data->vddgfx_voltage_table),
366 table_info->vddgfx_lookup_table);
367 PP_ASSERT_WITH_CODE((0 == result),
368 "Failed to retrieve SVI2 VDDGFX table from lookup table.", return result;);
369 }
370
371
372 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) {
373 result = atomctrl_get_voltage_table_v3(hwmgr,
374 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT,
375 &data->vddc_voltage_table);
376 PP_ASSERT_WITH_CODE((0 == result),
377 "Failed to retrieve VDDC table.", return result;);
378 } else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
379
380 if (hwmgr->pp_table_version == PP_TABLE_V0)
381 result = phm_get_svi2_voltage_table_v0(&data->vddc_voltage_table,
382 hwmgr->dyn_state.vddc_dependency_on_mclk);
383 else if (hwmgr->pp_table_version == PP_TABLE_V1)
384 result = phm_get_svi2_vdd_voltage_table(&(data->vddc_voltage_table),
385 table_info->vddc_lookup_table);
386
387 PP_ASSERT_WITH_CODE((0 == result),
388 "Failed to retrieve SVI2 VDDC table from dependency table.", return result;);
389 }
390
391 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDC);
392 PP_ASSERT_WITH_CODE(
393 (data->vddc_voltage_table.count <= tmp),
394 "Too many voltage values for VDDC. Trimming to fit state table.",
395 phm_trim_voltage_table_to_fit_state_table(tmp,
396 &(data->vddc_voltage_table)));
397
398 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX);
399 PP_ASSERT_WITH_CODE(
400 (data->vddgfx_voltage_table.count <= tmp),
401 "Too many voltage values for VDDC. Trimming to fit state table.",
402 phm_trim_voltage_table_to_fit_state_table(tmp,
403 &(data->vddgfx_voltage_table)));
404
405 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDCI);
406 PP_ASSERT_WITH_CODE(
407 (data->vddci_voltage_table.count <= tmp),
408 "Too many voltage values for VDDCI. Trimming to fit state table.",
409 phm_trim_voltage_table_to_fit_state_table(tmp,
410 &(data->vddci_voltage_table)));
411
412 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_MVDD);
413 PP_ASSERT_WITH_CODE(
414 (data->mvdd_voltage_table.count <= tmp),
415 "Too many voltage values for MVDD. Trimming to fit state table.",
416 phm_trim_voltage_table_to_fit_state_table(tmp,
417 &(data->mvdd_voltage_table)));
418
419 return 0;
420 }
421
422 /**
423 * smu7_program_static_screen_threshold_parameters - Programs static screed detection parameters
424 *
425 * @hwmgr: the address of the powerplay hardware manager.
426 * Return: always 0
427 */
smu7_program_static_screen_threshold_parameters(struct pp_hwmgr * hwmgr)428 static int smu7_program_static_screen_threshold_parameters(
429 struct pp_hwmgr *hwmgr)
430 {
431 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
432
433 /* Set static screen threshold unit */
434 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
435 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT,
436 data->static_screen_threshold_unit);
437 /* Set static screen threshold */
438 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
439 CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD,
440 data->static_screen_threshold);
441
442 return 0;
443 }
444
445 /**
446 * smu7_enable_display_gap - Setup display gap for glitch free memory clock switching.
447 *
448 * @hwmgr: the address of the powerplay hardware manager.
449 * Return: always 0
450 */
smu7_enable_display_gap(struct pp_hwmgr * hwmgr)451 static int smu7_enable_display_gap(struct pp_hwmgr *hwmgr)
452 {
453 uint32_t display_gap =
454 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
455 ixCG_DISPLAY_GAP_CNTL);
456
457 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
458 DISP_GAP, DISPLAY_GAP_IGNORE);
459
460 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL,
461 DISP_GAP_MCHG, DISPLAY_GAP_VBLANK);
462
463 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
464 ixCG_DISPLAY_GAP_CNTL, display_gap);
465
466 return 0;
467 }
468
469 /**
470 * smu7_program_voting_clients - Programs activity state transition voting clients
471 *
472 * @hwmgr: the address of the powerplay hardware manager.
473 * Return: always 0
474 */
smu7_program_voting_clients(struct pp_hwmgr * hwmgr)475 static int smu7_program_voting_clients(struct pp_hwmgr *hwmgr)
476 {
477 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
478 int i;
479
480 /* Clear reset for voting clients before enabling DPM */
481 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
482 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0);
483 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
484 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0);
485
486 for (i = 0; i < 8; i++)
487 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
488 ixCG_FREQ_TRAN_VOTING_0 + i * 4,
489 data->voting_rights_clients[i]);
490 return 0;
491 }
492
smu7_clear_voting_clients(struct pp_hwmgr * hwmgr)493 static int smu7_clear_voting_clients(struct pp_hwmgr *hwmgr)
494 {
495 int i;
496
497 /* Reset voting clients before disabling DPM */
498 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
499 SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 1);
500 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
501 SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 1);
502
503 for (i = 0; i < 8; i++)
504 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
505 ixCG_FREQ_TRAN_VOTING_0 + i * 4, 0);
506
507 return 0;
508 }
509
510 /* Copy one arb setting to another and then switch the active set.
511 * arb_src and arb_dest is one of the MC_CG_ARB_FREQ_Fx constants.
512 */
smu7_copy_and_switch_arb_sets(struct pp_hwmgr * hwmgr,uint32_t arb_src,uint32_t arb_dest)513 static int smu7_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr,
514 uint32_t arb_src, uint32_t arb_dest)
515 {
516 uint32_t mc_arb_dram_timing;
517 uint32_t mc_arb_dram_timing2;
518 uint32_t burst_time;
519 uint32_t mc_cg_config;
520
521 switch (arb_src) {
522 case MC_CG_ARB_FREQ_F0:
523 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
524 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
525 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
526 break;
527 case MC_CG_ARB_FREQ_F1:
528 mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1);
529 mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1);
530 burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1);
531 break;
532 default:
533 return -EINVAL;
534 }
535
536 switch (arb_dest) {
537 case MC_CG_ARB_FREQ_F0:
538 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing);
539 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2);
540 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time);
541 break;
542 case MC_CG_ARB_FREQ_F1:
543 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing);
544 cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2);
545 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time);
546 break;
547 default:
548 return -EINVAL;
549 }
550
551 mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG);
552 mc_cg_config |= 0x0000000F;
553 cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config);
554 PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arb_dest);
555
556 return 0;
557 }
558
smu7_reset_to_default(struct pp_hwmgr * hwmgr)559 static int smu7_reset_to_default(struct pp_hwmgr *hwmgr)
560 {
561 return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ResetToDefaults, NULL);
562 }
563
564 /**
565 * smu7_initial_switch_from_arbf0_to_f1 - Initial switch from ARB F0->F1
566 *
567 * @hwmgr: the address of the powerplay hardware manager.
568 * Return: always 0
569 * This function is to be called from the SetPowerState table.
570 */
smu7_initial_switch_from_arbf0_to_f1(struct pp_hwmgr * hwmgr)571 static int smu7_initial_switch_from_arbf0_to_f1(struct pp_hwmgr *hwmgr)
572 {
573 return smu7_copy_and_switch_arb_sets(hwmgr,
574 MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1);
575 }
576
smu7_force_switch_to_arbf0(struct pp_hwmgr * hwmgr)577 static int smu7_force_switch_to_arbf0(struct pp_hwmgr *hwmgr)
578 {
579 uint32_t tmp;
580
581 tmp = (cgs_read_ind_register(hwmgr->device,
582 CGS_IND_REG__SMC, ixSMC_SCRATCH9) &
583 0x0000ff00) >> 8;
584
585 if (tmp == MC_CG_ARB_FREQ_F0)
586 return 0;
587
588 return smu7_copy_and_switch_arb_sets(hwmgr,
589 tmp, MC_CG_ARB_FREQ_F0);
590 }
591
smu7_override_pcie_speed(struct pp_hwmgr * hwmgr)592 static uint16_t smu7_override_pcie_speed(struct pp_hwmgr *hwmgr)
593 {
594 struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev);
595 uint16_t pcie_gen = 0;
596
597 if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN4 &&
598 adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN4)
599 pcie_gen = 3;
600 else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3 &&
601 adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN3)
602 pcie_gen = 2;
603 else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN2 &&
604 adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN2)
605 pcie_gen = 1;
606 else if (adev->pm.pcie_gen_mask & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN1 &&
607 adev->pm.pcie_gen_mask & CAIL_ASIC_PCIE_LINK_SPEED_SUPPORT_GEN1)
608 pcie_gen = 0;
609
610 return pcie_gen;
611 }
612
smu7_override_pcie_width(struct pp_hwmgr * hwmgr)613 static uint16_t smu7_override_pcie_width(struct pp_hwmgr *hwmgr)
614 {
615 struct amdgpu_device *adev = (struct amdgpu_device *)(hwmgr->adev);
616 uint16_t pcie_width = 0;
617
618 if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X16)
619 pcie_width = 16;
620 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X12)
621 pcie_width = 12;
622 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X8)
623 pcie_width = 8;
624 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X4)
625 pcie_width = 4;
626 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X2)
627 pcie_width = 2;
628 else if (adev->pm.pcie_mlw_mask & CAIL_PCIE_LINK_WIDTH_SUPPORT_X1)
629 pcie_width = 1;
630
631 return pcie_width;
632 }
633
smu7_setup_default_pcie_table(struct pp_hwmgr * hwmgr)634 static int smu7_setup_default_pcie_table(struct pp_hwmgr *hwmgr)
635 {
636 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
637
638 struct phm_ppt_v1_information *table_info =
639 (struct phm_ppt_v1_information *)(hwmgr->pptable);
640 struct phm_ppt_v1_pcie_table *pcie_table = NULL;
641
642 uint32_t i, max_entry;
643 uint32_t tmp;
644
645 PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels ||
646 data->use_pcie_power_saving_levels), "No pcie performance levels!",
647 return -EINVAL);
648
649 if (table_info != NULL)
650 pcie_table = table_info->pcie_table;
651
652 if (data->use_pcie_performance_levels &&
653 !data->use_pcie_power_saving_levels) {
654 data->pcie_gen_power_saving = data->pcie_gen_performance;
655 data->pcie_lane_power_saving = data->pcie_lane_performance;
656 } else if (!data->use_pcie_performance_levels &&
657 data->use_pcie_power_saving_levels) {
658 data->pcie_gen_performance = data->pcie_gen_power_saving;
659 data->pcie_lane_performance = data->pcie_lane_power_saving;
660 }
661 tmp = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_LINK);
662 phm_reset_single_dpm_table(&data->dpm_table.pcie_speed_table,
663 tmp,
664 MAX_REGULAR_DPM_NUMBER);
665
666 if (pcie_table != NULL) {
667 /* max_entry is used to make sure we reserve one PCIE level
668 * for boot level (fix for A+A PSPP issue).
669 * If PCIE table from PPTable have ULV entry + 8 entries,
670 * then ignore the last entry.*/
671 max_entry = (tmp < pcie_table->count) ? tmp : pcie_table->count;
672 for (i = 1; i < max_entry; i++) {
673 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i - 1,
674 get_pcie_gen_support(data->pcie_gen_cap,
675 pcie_table->entries[i].gen_speed),
676 get_pcie_lane_support(data->pcie_lane_cap,
677 pcie_table->entries[i].lane_width));
678 }
679 data->dpm_table.pcie_speed_table.count = max_entry - 1;
680 smum_update_smc_table(hwmgr, SMU_BIF_TABLE);
681 } else {
682 /* Hardcode Pcie Table */
683 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0,
684 get_pcie_gen_support(data->pcie_gen_cap,
685 PP_Min_PCIEGen),
686 get_pcie_lane_support(data->pcie_lane_cap,
687 PP_Max_PCIELane));
688 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1,
689 get_pcie_gen_support(data->pcie_gen_cap,
690 PP_Min_PCIEGen),
691 get_pcie_lane_support(data->pcie_lane_cap,
692 PP_Max_PCIELane));
693 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2,
694 get_pcie_gen_support(data->pcie_gen_cap,
695 PP_Max_PCIEGen),
696 get_pcie_lane_support(data->pcie_lane_cap,
697 PP_Max_PCIELane));
698 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3,
699 get_pcie_gen_support(data->pcie_gen_cap,
700 PP_Max_PCIEGen),
701 get_pcie_lane_support(data->pcie_lane_cap,
702 PP_Max_PCIELane));
703 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4,
704 get_pcie_gen_support(data->pcie_gen_cap,
705 PP_Max_PCIEGen),
706 get_pcie_lane_support(data->pcie_lane_cap,
707 PP_Max_PCIELane));
708 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5,
709 get_pcie_gen_support(data->pcie_gen_cap,
710 PP_Max_PCIEGen),
711 get_pcie_lane_support(data->pcie_lane_cap,
712 PP_Max_PCIELane));
713
714 data->dpm_table.pcie_speed_table.count = 6;
715 }
716 /* Populate last level for boot PCIE level, but do not increment count. */
717 if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
718 for (i = 0; i <= data->dpm_table.pcie_speed_table.count; i++)
719 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, i,
720 get_pcie_gen_support(data->pcie_gen_cap,
721 PP_Max_PCIEGen),
722 data->vbios_boot_state.pcie_lane_bootup_value);
723 } else {
724 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
725 data->dpm_table.pcie_speed_table.count,
726 get_pcie_gen_support(data->pcie_gen_cap,
727 PP_Min_PCIEGen),
728 get_pcie_lane_support(data->pcie_lane_cap,
729 PP_Max_PCIELane));
730
731 if (data->pcie_dpm_key_disabled)
732 phm_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table,
733 data->dpm_table.pcie_speed_table.count,
734 smu7_override_pcie_speed(hwmgr), smu7_override_pcie_width(hwmgr));
735 }
736 return 0;
737 }
738
smu7_reset_dpm_tables(struct pp_hwmgr * hwmgr)739 static int smu7_reset_dpm_tables(struct pp_hwmgr *hwmgr)
740 {
741 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
742
743 memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table));
744
745 phm_reset_single_dpm_table(
746 &data->dpm_table.sclk_table,
747 smum_get_mac_definition(hwmgr,
748 SMU_MAX_LEVELS_GRAPHICS),
749 MAX_REGULAR_DPM_NUMBER);
750 phm_reset_single_dpm_table(
751 &data->dpm_table.mclk_table,
752 smum_get_mac_definition(hwmgr,
753 SMU_MAX_LEVELS_MEMORY), MAX_REGULAR_DPM_NUMBER);
754
755 phm_reset_single_dpm_table(
756 &data->dpm_table.vddc_table,
757 smum_get_mac_definition(hwmgr,
758 SMU_MAX_LEVELS_VDDC),
759 MAX_REGULAR_DPM_NUMBER);
760 phm_reset_single_dpm_table(
761 &data->dpm_table.vddci_table,
762 smum_get_mac_definition(hwmgr,
763 SMU_MAX_LEVELS_VDDCI), MAX_REGULAR_DPM_NUMBER);
764
765 phm_reset_single_dpm_table(
766 &data->dpm_table.mvdd_table,
767 smum_get_mac_definition(hwmgr,
768 SMU_MAX_LEVELS_MVDD),
769 MAX_REGULAR_DPM_NUMBER);
770 return 0;
771 }
772 /*
773 * This function is to initialize all DPM state tables
774 * for SMU7 based on the dependency table.
775 * Dynamic state patching function will then trim these
776 * state tables to the allowed range based
777 * on the power policy or external client requests,
778 * such as UVD request, etc.
779 */
780
smu7_setup_dpm_tables_v0(struct pp_hwmgr * hwmgr)781 static int smu7_setup_dpm_tables_v0(struct pp_hwmgr *hwmgr)
782 {
783 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
784 struct phm_clock_voltage_dependency_table *allowed_vdd_sclk_table =
785 hwmgr->dyn_state.vddc_dependency_on_sclk;
786 struct phm_clock_voltage_dependency_table *allowed_vdd_mclk_table =
787 hwmgr->dyn_state.vddc_dependency_on_mclk;
788 struct phm_cac_leakage_table *std_voltage_table =
789 hwmgr->dyn_state.cac_leakage_table;
790 uint32_t i;
791
792 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL,
793 "SCLK dependency table is missing. This table is mandatory", return -EINVAL);
794 PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1,
795 "SCLK dependency table has to have is missing. This table is mandatory", return -EINVAL);
796
797 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
798 "MCLK dependency table is missing. This table is mandatory", return -EINVAL);
799 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1,
800 "VMCLK dependency table has to have is missing. This table is mandatory", return -EINVAL);
801
802
803 /* Initialize Sclk DPM table based on allow Sclk values*/
804 data->dpm_table.sclk_table.count = 0;
805
806 for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
807 if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value !=
808 allowed_vdd_sclk_table->entries[i].clk) {
809 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
810 allowed_vdd_sclk_table->entries[i].clk;
811 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = (i == 0) ? 1 : 0;
812 data->dpm_table.sclk_table.count++;
813 }
814 }
815
816 PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL,
817 "MCLK dependency table is missing. This table is mandatory", return -EINVAL);
818 /* Initialize Mclk DPM table based on allow Mclk values */
819 data->dpm_table.mclk_table.count = 0;
820 for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
821 if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value !=
822 allowed_vdd_mclk_table->entries[i].clk) {
823 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
824 allowed_vdd_mclk_table->entries[i].clk;
825 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = (i == 0) ? 1 : 0;
826 data->dpm_table.mclk_table.count++;
827 }
828 }
829
830 /* Initialize Vddc DPM table based on allow Vddc values. And populate corresponding std values. */
831 for (i = 0; i < allowed_vdd_sclk_table->count; i++) {
832 data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
833 data->dpm_table.vddc_table.dpm_levels[i].param1 = std_voltage_table->entries[i].Leakage;
834 /* param1 is for corresponding std voltage */
835 data->dpm_table.vddc_table.dpm_levels[i].enabled = true;
836 }
837
838 data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count;
839 allowed_vdd_mclk_table = hwmgr->dyn_state.vddci_dependency_on_mclk;
840
841 if (NULL != allowed_vdd_mclk_table) {
842 /* Initialize Vddci DPM table based on allow Mclk values */
843 for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
844 data->dpm_table.vddci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
845 data->dpm_table.vddci_table.dpm_levels[i].enabled = true;
846 }
847 data->dpm_table.vddci_table.count = allowed_vdd_mclk_table->count;
848 }
849
850 allowed_vdd_mclk_table = hwmgr->dyn_state.mvdd_dependency_on_mclk;
851
852 if (NULL != allowed_vdd_mclk_table) {
853 /*
854 * Initialize MVDD DPM table based on allow Mclk
855 * values
856 */
857 for (i = 0; i < allowed_vdd_mclk_table->count; i++) {
858 data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v;
859 data->dpm_table.mvdd_table.dpm_levels[i].enabled = true;
860 }
861 data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count;
862 }
863
864 return 0;
865 }
866
smu7_setup_dpm_tables_v1(struct pp_hwmgr * hwmgr)867 static int smu7_setup_dpm_tables_v1(struct pp_hwmgr *hwmgr)
868 {
869 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
870 struct phm_ppt_v1_information *table_info =
871 (struct phm_ppt_v1_information *)(hwmgr->pptable);
872 uint32_t i;
873
874 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
875 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
876
877 if (table_info == NULL)
878 return -EINVAL;
879
880 dep_sclk_table = table_info->vdd_dep_on_sclk;
881 dep_mclk_table = table_info->vdd_dep_on_mclk;
882
883 PP_ASSERT_WITH_CODE(dep_sclk_table != NULL,
884 "SCLK dependency table is missing.",
885 return -EINVAL);
886 PP_ASSERT_WITH_CODE(dep_sclk_table->count >= 1,
887 "SCLK dependency table count is 0.",
888 return -EINVAL);
889
890 PP_ASSERT_WITH_CODE(dep_mclk_table != NULL,
891 "MCLK dependency table is missing.",
892 return -EINVAL);
893 PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1,
894 "MCLK dependency table count is 0",
895 return -EINVAL);
896
897 /* Initialize Sclk DPM table based on allow Sclk values */
898 data->dpm_table.sclk_table.count = 0;
899 for (i = 0; i < dep_sclk_table->count; i++) {
900 if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count - 1].value !=
901 dep_sclk_table->entries[i].clk) {
902
903 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value =
904 dep_sclk_table->entries[i].clk;
905
906 data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled =
907 i == 0;
908 data->dpm_table.sclk_table.count++;
909 }
910 }
911 if (hwmgr->platform_descriptor.overdriveLimit.engineClock == 0)
912 hwmgr->platform_descriptor.overdriveLimit.engineClock = dep_sclk_table->entries[i-1].clk;
913 /* Initialize Mclk DPM table based on allow Mclk values */
914 data->dpm_table.mclk_table.count = 0;
915 for (i = 0; i < dep_mclk_table->count; i++) {
916 if (i == 0 || data->dpm_table.mclk_table.dpm_levels
917 [data->dpm_table.mclk_table.count - 1].value !=
918 dep_mclk_table->entries[i].clk) {
919 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value =
920 dep_mclk_table->entries[i].clk;
921 data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled =
922 i == 0;
923 data->dpm_table.mclk_table.count++;
924 }
925 }
926
927 if (hwmgr->platform_descriptor.overdriveLimit.memoryClock == 0)
928 hwmgr->platform_descriptor.overdriveLimit.memoryClock = dep_mclk_table->entries[i-1].clk;
929 return 0;
930 }
931
smu7_odn_initial_default_setting(struct pp_hwmgr * hwmgr)932 static int smu7_odn_initial_default_setting(struct pp_hwmgr *hwmgr)
933 {
934 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
935 struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
936 struct phm_ppt_v1_information *table_info =
937 (struct phm_ppt_v1_information *)(hwmgr->pptable);
938 uint32_t i;
939
940 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
941 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
942 struct phm_odn_performance_level *entries;
943
944 if (table_info == NULL)
945 return -EINVAL;
946
947 dep_sclk_table = table_info->vdd_dep_on_sclk;
948 dep_mclk_table = table_info->vdd_dep_on_mclk;
949
950 odn_table->odn_core_clock_dpm_levels.num_of_pl =
951 data->golden_dpm_table.sclk_table.count;
952 entries = odn_table->odn_core_clock_dpm_levels.entries;
953 for (i = 0; i < data->golden_dpm_table.sclk_table.count; i++) {
954 entries[i].clock = data->golden_dpm_table.sclk_table.dpm_levels[i].value;
955 entries[i].enabled = true;
956 entries[i].vddc = dep_sclk_table->entries[i].vddc;
957 }
958
959 smu_get_voltage_dependency_table_ppt_v1(dep_sclk_table,
960 (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk));
961
962 odn_table->odn_memory_clock_dpm_levels.num_of_pl =
963 data->golden_dpm_table.mclk_table.count;
964 entries = odn_table->odn_memory_clock_dpm_levels.entries;
965 for (i = 0; i < data->golden_dpm_table.mclk_table.count; i++) {
966 entries[i].clock = data->golden_dpm_table.mclk_table.dpm_levels[i].value;
967 entries[i].enabled = true;
968 entries[i].vddc = dep_mclk_table->entries[i].vddc;
969 }
970
971 smu_get_voltage_dependency_table_ppt_v1(dep_mclk_table,
972 (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk));
973
974 return 0;
975 }
976
smu7_setup_voltage_range_from_vbios(struct pp_hwmgr * hwmgr)977 static void smu7_setup_voltage_range_from_vbios(struct pp_hwmgr *hwmgr)
978 {
979 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
980 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table;
981 struct phm_ppt_v1_information *table_info =
982 (struct phm_ppt_v1_information *)(hwmgr->pptable);
983 uint32_t min_vddc = 0;
984 uint32_t max_vddc = 0;
985
986 if (!table_info)
987 return;
988
989 dep_sclk_table = table_info->vdd_dep_on_sclk;
990
991 atomctrl_get_voltage_range(hwmgr, &max_vddc, &min_vddc);
992
993 if (min_vddc == 0 || min_vddc > 2000
994 || min_vddc > dep_sclk_table->entries[0].vddc)
995 min_vddc = dep_sclk_table->entries[0].vddc;
996
997 if (max_vddc == 0 || max_vddc > 2000
998 || max_vddc < dep_sclk_table->entries[dep_sclk_table->count-1].vddc)
999 max_vddc = dep_sclk_table->entries[dep_sclk_table->count-1].vddc;
1000
1001 data->odn_dpm_table.min_vddc = min_vddc;
1002 data->odn_dpm_table.max_vddc = max_vddc;
1003 }
1004
smu7_check_dpm_table_updated(struct pp_hwmgr * hwmgr)1005 static void smu7_check_dpm_table_updated(struct pp_hwmgr *hwmgr)
1006 {
1007 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1008 struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
1009 struct phm_ppt_v1_information *table_info =
1010 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1011 uint32_t i;
1012
1013 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table;
1014 struct phm_ppt_v1_clock_voltage_dependency_table *odn_dep_table;
1015
1016 if (table_info == NULL)
1017 return;
1018
1019 for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1020 if (odn_table->odn_core_clock_dpm_levels.entries[i].clock !=
1021 data->dpm_table.sclk_table.dpm_levels[i].value) {
1022 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
1023 break;
1024 }
1025 }
1026
1027 for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
1028 if (odn_table->odn_memory_clock_dpm_levels.entries[i].clock !=
1029 data->dpm_table.mclk_table.dpm_levels[i].value) {
1030 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
1031 break;
1032 }
1033 }
1034
1035 dep_table = table_info->vdd_dep_on_mclk;
1036 odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_mclk);
1037
1038 for (i = 0; i < dep_table->count; i++) {
1039 if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
1040 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_MCLK;
1041 return;
1042 }
1043 }
1044
1045 dep_table = table_info->vdd_dep_on_sclk;
1046 odn_dep_table = (struct phm_ppt_v1_clock_voltage_dependency_table *)&(odn_table->vdd_dependency_on_sclk);
1047 for (i = 0; i < dep_table->count; i++) {
1048 if (dep_table->entries[i].vddc != odn_dep_table->entries[i].vddc) {
1049 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC | DPMTABLE_OD_UPDATE_SCLK;
1050 return;
1051 }
1052 }
1053 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
1054 data->need_update_smu7_dpm_table &= ~DPMTABLE_OD_UPDATE_VDDC;
1055 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_OD_UPDATE_MCLK;
1056 }
1057 }
1058
smu7_setup_default_dpm_tables(struct pp_hwmgr * hwmgr)1059 static int smu7_setup_default_dpm_tables(struct pp_hwmgr *hwmgr)
1060 {
1061 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1062
1063 smu7_reset_dpm_tables(hwmgr);
1064
1065 if (hwmgr->pp_table_version == PP_TABLE_V1)
1066 smu7_setup_dpm_tables_v1(hwmgr);
1067 else if (hwmgr->pp_table_version == PP_TABLE_V0)
1068 smu7_setup_dpm_tables_v0(hwmgr);
1069
1070 smu7_setup_default_pcie_table(hwmgr);
1071
1072 /* save a copy of the default DPM table */
1073 memcpy(&(data->golden_dpm_table), &(data->dpm_table),
1074 sizeof(struct smu7_dpm_table));
1075
1076 /* initialize ODN table */
1077 if (hwmgr->od_enabled) {
1078 if (data->odn_dpm_table.max_vddc) {
1079 smu7_check_dpm_table_updated(hwmgr);
1080 } else {
1081 smu7_setup_voltage_range_from_vbios(hwmgr);
1082 smu7_odn_initial_default_setting(hwmgr);
1083 }
1084 }
1085 return 0;
1086 }
1087
smu7_enable_vrhot_gpio_interrupt(struct pp_hwmgr * hwmgr)1088 static int smu7_enable_vrhot_gpio_interrupt(struct pp_hwmgr *hwmgr)
1089 {
1090
1091 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1092 PHM_PlatformCaps_RegulatorHot))
1093 return smum_send_msg_to_smc(hwmgr,
1094 PPSMC_MSG_EnableVRHotGPIOInterrupt,
1095 NULL);
1096
1097 return 0;
1098 }
1099
smu7_enable_sclk_control(struct pp_hwmgr * hwmgr)1100 static int smu7_enable_sclk_control(struct pp_hwmgr *hwmgr)
1101 {
1102 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
1103 SCLK_PWRMGT_OFF, 0);
1104 return 0;
1105 }
1106
smu7_enable_ulv(struct pp_hwmgr * hwmgr)1107 static int smu7_enable_ulv(struct pp_hwmgr *hwmgr)
1108 {
1109 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1110
1111 if (data->ulv_supported)
1112 return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableULV, NULL);
1113
1114 return 0;
1115 }
1116
smu7_disable_ulv(struct pp_hwmgr * hwmgr)1117 static int smu7_disable_ulv(struct pp_hwmgr *hwmgr)
1118 {
1119 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1120
1121 if (data->ulv_supported)
1122 return smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableULV, NULL);
1123
1124 return 0;
1125 }
1126
smu7_enable_deep_sleep_master_switch(struct pp_hwmgr * hwmgr)1127 static int smu7_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
1128 {
1129 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1130 PHM_PlatformCaps_SclkDeepSleep)) {
1131 if (smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MASTER_DeepSleep_ON, NULL))
1132 PP_ASSERT_WITH_CODE(false,
1133 "Attempt to enable Master Deep Sleep switch failed!",
1134 return -EINVAL);
1135 } else {
1136 if (smum_send_msg_to_smc(hwmgr,
1137 PPSMC_MSG_MASTER_DeepSleep_OFF,
1138 NULL)) {
1139 PP_ASSERT_WITH_CODE(false,
1140 "Attempt to disable Master Deep Sleep switch failed!",
1141 return -EINVAL);
1142 }
1143 }
1144
1145 return 0;
1146 }
1147
smu7_disable_deep_sleep_master_switch(struct pp_hwmgr * hwmgr)1148 static int smu7_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr)
1149 {
1150 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1151 PHM_PlatformCaps_SclkDeepSleep)) {
1152 if (smum_send_msg_to_smc(hwmgr,
1153 PPSMC_MSG_MASTER_DeepSleep_OFF,
1154 NULL)) {
1155 PP_ASSERT_WITH_CODE(false,
1156 "Attempt to disable Master Deep Sleep switch failed!",
1157 return -EINVAL);
1158 }
1159 }
1160
1161 return 0;
1162 }
1163
smu7_disable_sclk_vce_handshake(struct pp_hwmgr * hwmgr)1164 static int smu7_disable_sclk_vce_handshake(struct pp_hwmgr *hwmgr)
1165 {
1166 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1167 uint32_t soft_register_value = 0;
1168 uint32_t handshake_disables_offset = data->soft_regs_start
1169 + smum_get_offsetof(hwmgr,
1170 SMU_SoftRegisters, HandshakeDisables);
1171
1172 soft_register_value = cgs_read_ind_register(hwmgr->device,
1173 CGS_IND_REG__SMC, handshake_disables_offset);
1174 soft_register_value |= SMU7_VCE_SCLK_HANDSHAKE_DISABLE;
1175 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1176 handshake_disables_offset, soft_register_value);
1177 return 0;
1178 }
1179
smu7_disable_handshake_uvd(struct pp_hwmgr * hwmgr)1180 static int smu7_disable_handshake_uvd(struct pp_hwmgr *hwmgr)
1181 {
1182 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1183 uint32_t soft_register_value = 0;
1184 uint32_t handshake_disables_offset = data->soft_regs_start
1185 + smum_get_offsetof(hwmgr,
1186 SMU_SoftRegisters, HandshakeDisables);
1187
1188 soft_register_value = cgs_read_ind_register(hwmgr->device,
1189 CGS_IND_REG__SMC, handshake_disables_offset);
1190 soft_register_value |= smum_get_mac_definition(hwmgr,
1191 SMU_UVD_MCLK_HANDSHAKE_DISABLE);
1192 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1193 handshake_disables_offset, soft_register_value);
1194 return 0;
1195 }
1196
smu7_enable_sclk_mclk_dpm(struct pp_hwmgr * hwmgr)1197 static int smu7_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
1198 {
1199 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1200
1201 /* enable SCLK dpm */
1202 if (!data->sclk_dpm_key_disabled) {
1203 if (hwmgr->chip_id >= CHIP_POLARIS10 &&
1204 hwmgr->chip_id <= CHIP_VEGAM)
1205 smu7_disable_sclk_vce_handshake(hwmgr);
1206
1207 PP_ASSERT_WITH_CODE(
1208 (0 == smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Enable, NULL)),
1209 "Failed to enable SCLK DPM during DPM Start Function!",
1210 return -EINVAL);
1211 }
1212
1213 /* enable MCLK dpm */
1214 if (0 == data->mclk_dpm_key_disabled) {
1215 if (!(hwmgr->feature_mask & PP_UVD_HANDSHAKE_MASK))
1216 smu7_disable_handshake_uvd(hwmgr);
1217
1218 PP_ASSERT_WITH_CODE(
1219 (0 == smum_send_msg_to_smc(hwmgr,
1220 PPSMC_MSG_MCLKDPM_Enable,
1221 NULL)),
1222 "Failed to enable MCLK DPM during DPM Start Function!",
1223 return -EINVAL);
1224
1225 if ((hwmgr->chip_family == AMDGPU_FAMILY_CI) ||
1226 (hwmgr->chip_id == CHIP_POLARIS10) ||
1227 (hwmgr->chip_id == CHIP_POLARIS11) ||
1228 (hwmgr->chip_id == CHIP_POLARIS12) ||
1229 (hwmgr->chip_id == CHIP_TONGA) ||
1230 (hwmgr->chip_id == CHIP_TOPAZ))
1231 PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1);
1232
1233
1234 if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
1235 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x5);
1236 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x5);
1237 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x100005);
1238 udelay(10);
1239 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d30, 0x400005);
1240 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d3c, 0x400005);
1241 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, 0xc0400d80, 0x500005);
1242 } else {
1243 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x5);
1244 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x5);
1245 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x100005);
1246 udelay(10);
1247 if (hwmgr->chip_id == CHIP_VEGAM) {
1248 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400009);
1249 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400009);
1250 } else {
1251 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400005);
1252 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400005);
1253 }
1254 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x500005);
1255 }
1256 }
1257
1258 return 0;
1259 }
1260
smu7_start_dpm(struct pp_hwmgr * hwmgr)1261 static int smu7_start_dpm(struct pp_hwmgr *hwmgr)
1262 {
1263 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1264
1265 /*enable general power management */
1266
1267 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1268 GLOBAL_PWRMGT_EN, 1);
1269
1270 /* enable sclk deep sleep */
1271
1272 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
1273 DYNAMIC_PM_EN, 1);
1274
1275 /* prepare for PCIE DPM */
1276
1277 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1278 data->soft_regs_start +
1279 smum_get_offsetof(hwmgr, SMU_SoftRegisters,
1280 VoltageChangeTimeout), 0x1000);
1281 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE,
1282 SWRST_COMMAND_1, RESETLC, 0x0);
1283
1284 if (hwmgr->chip_family == AMDGPU_FAMILY_CI)
1285 cgs_write_register(hwmgr->device, 0x1488,
1286 (cgs_read_register(hwmgr->device, 0x1488) & ~0x1));
1287
1288 if (smu7_enable_sclk_mclk_dpm(hwmgr)) {
1289 pr_err("Failed to enable Sclk DPM and Mclk DPM!");
1290 return -EINVAL;
1291 }
1292
1293 /* enable PCIE dpm */
1294 if (0 == data->pcie_dpm_key_disabled) {
1295 PP_ASSERT_WITH_CODE(
1296 (0 == smum_send_msg_to_smc(hwmgr,
1297 PPSMC_MSG_PCIeDPM_Enable,
1298 NULL)),
1299 "Failed to enable pcie DPM during DPM Start Function!",
1300 return -EINVAL);
1301 } else {
1302 PP_ASSERT_WITH_CODE(
1303 (0 == smum_send_msg_to_smc(hwmgr,
1304 PPSMC_MSG_PCIeDPM_Disable,
1305 NULL)),
1306 "Failed to disable pcie DPM during DPM Start Function!",
1307 return -EINVAL);
1308 }
1309
1310 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1311 PHM_PlatformCaps_Falcon_QuickTransition)) {
1312 PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc(hwmgr,
1313 PPSMC_MSG_EnableACDCGPIOInterrupt,
1314 NULL)),
1315 "Failed to enable AC DC GPIO Interrupt!",
1316 );
1317 }
1318
1319 return 0;
1320 }
1321
smu7_disable_sclk_mclk_dpm(struct pp_hwmgr * hwmgr)1322 static int smu7_disable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
1323 {
1324 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1325
1326 /* disable SCLK dpm */
1327 if (!data->sclk_dpm_key_disabled) {
1328 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1329 "Trying to disable SCLK DPM when DPM is disabled",
1330 return 0);
1331 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DPM_Disable, NULL);
1332 }
1333
1334 /* disable MCLK dpm */
1335 if (!data->mclk_dpm_key_disabled) {
1336 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1337 "Trying to disable MCLK DPM when DPM is disabled",
1338 return 0);
1339 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_Disable, NULL);
1340 }
1341
1342 return 0;
1343 }
1344
smu7_stop_dpm(struct pp_hwmgr * hwmgr)1345 static int smu7_stop_dpm(struct pp_hwmgr *hwmgr)
1346 {
1347 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1348
1349 /* disable general power management */
1350 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1351 GLOBAL_PWRMGT_EN, 0);
1352 /* disable sclk deep sleep */
1353 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL,
1354 DYNAMIC_PM_EN, 0);
1355
1356 /* disable PCIE dpm */
1357 if (!data->pcie_dpm_key_disabled) {
1358 PP_ASSERT_WITH_CODE(
1359 (smum_send_msg_to_smc(hwmgr,
1360 PPSMC_MSG_PCIeDPM_Disable,
1361 NULL) == 0),
1362 "Failed to disable pcie DPM during DPM Stop Function!",
1363 return -EINVAL);
1364 }
1365
1366 smu7_disable_sclk_mclk_dpm(hwmgr);
1367
1368 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
1369 "Trying to disable voltage DPM when DPM is disabled",
1370 return 0);
1371
1372 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_Voltage_Cntl_Disable, NULL);
1373
1374 return 0;
1375 }
1376
smu7_set_dpm_event_sources(struct pp_hwmgr * hwmgr,uint32_t sources)1377 static void smu7_set_dpm_event_sources(struct pp_hwmgr *hwmgr, uint32_t sources)
1378 {
1379 bool protection;
1380 enum DPM_EVENT_SRC src;
1381
1382 switch (sources) {
1383 default:
1384 pr_err("Unknown throttling event sources.");
1385 fallthrough;
1386 case 0:
1387 protection = false;
1388 /* src is unused */
1389 break;
1390 case (1 << PHM_AutoThrottleSource_Thermal):
1391 protection = true;
1392 src = DPM_EVENT_SRC_DIGITAL;
1393 break;
1394 case (1 << PHM_AutoThrottleSource_External):
1395 protection = true;
1396 src = DPM_EVENT_SRC_EXTERNAL;
1397 break;
1398 case (1 << PHM_AutoThrottleSource_External) |
1399 (1 << PHM_AutoThrottleSource_Thermal):
1400 protection = true;
1401 src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL;
1402 break;
1403 }
1404 /* Order matters - don't enable thermal protection for the wrong source. */
1405 if (protection) {
1406 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL,
1407 DPM_EVENT_SRC, src);
1408 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1409 THERMAL_PROTECTION_DIS,
1410 !phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1411 PHM_PlatformCaps_ThermalController));
1412 } else
1413 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT,
1414 THERMAL_PROTECTION_DIS, 1);
1415 }
1416
smu7_enable_auto_throttle_source(struct pp_hwmgr * hwmgr,PHM_AutoThrottleSource source)1417 static int smu7_enable_auto_throttle_source(struct pp_hwmgr *hwmgr,
1418 PHM_AutoThrottleSource source)
1419 {
1420 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1421
1422 if (!(data->active_auto_throttle_sources & (1 << source))) {
1423 data->active_auto_throttle_sources |= 1 << source;
1424 smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
1425 }
1426 return 0;
1427 }
1428
smu7_enable_thermal_auto_throttle(struct pp_hwmgr * hwmgr)1429 static int smu7_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
1430 {
1431 return smu7_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
1432 }
1433
smu7_disable_auto_throttle_source(struct pp_hwmgr * hwmgr,PHM_AutoThrottleSource source)1434 static int smu7_disable_auto_throttle_source(struct pp_hwmgr *hwmgr,
1435 PHM_AutoThrottleSource source)
1436 {
1437 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1438
1439 if (data->active_auto_throttle_sources & (1 << source)) {
1440 data->active_auto_throttle_sources &= ~(1 << source);
1441 smu7_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources);
1442 }
1443 return 0;
1444 }
1445
smu7_disable_thermal_auto_throttle(struct pp_hwmgr * hwmgr)1446 static int smu7_disable_thermal_auto_throttle(struct pp_hwmgr *hwmgr)
1447 {
1448 return smu7_disable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal);
1449 }
1450
smu7_pcie_performance_request(struct pp_hwmgr * hwmgr)1451 static int smu7_pcie_performance_request(struct pp_hwmgr *hwmgr)
1452 {
1453 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1454 data->pcie_performance_request = true;
1455
1456 return 0;
1457 }
1458
smu7_program_edc_didt_registers(struct pp_hwmgr * hwmgr,uint32_t * cac_config_regs,AtomCtrl_EDCLeakgeTable * edc_leakage_table)1459 static int smu7_program_edc_didt_registers(struct pp_hwmgr *hwmgr,
1460 uint32_t *cac_config_regs,
1461 AtomCtrl_EDCLeakgeTable *edc_leakage_table)
1462 {
1463 uint32_t data, i = 0;
1464
1465 while (cac_config_regs[i] != 0xFFFFFFFF) {
1466 data = edc_leakage_table->DIDT_REG[i];
1467 cgs_write_ind_register(hwmgr->device,
1468 CGS_IND_REG__DIDT,
1469 cac_config_regs[i],
1470 data);
1471 i++;
1472 }
1473
1474 return 0;
1475 }
1476
smu7_populate_edc_leakage_registers(struct pp_hwmgr * hwmgr)1477 static int smu7_populate_edc_leakage_registers(struct pp_hwmgr *hwmgr)
1478 {
1479 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1480 int ret = 0;
1481
1482 if (!data->disable_edc_leakage_controller &&
1483 data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset &&
1484 data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset) {
1485 ret = smu7_program_edc_didt_registers(hwmgr,
1486 DIDTEDCConfig_P12,
1487 &data->edc_leakage_table);
1488 if (ret)
1489 return ret;
1490
1491 ret = smum_send_msg_to_smc(hwmgr,
1492 (PPSMC_Msg)PPSMC_MSG_EnableEDCController,
1493 NULL);
1494 } else {
1495 ret = smum_send_msg_to_smc(hwmgr,
1496 (PPSMC_Msg)PPSMC_MSG_DisableEDCController,
1497 NULL);
1498 }
1499
1500 return ret;
1501 }
1502
smu7_populate_umdpstate_clocks(struct pp_hwmgr * hwmgr)1503 static void smu7_populate_umdpstate_clocks(struct pp_hwmgr *hwmgr)
1504 {
1505 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1506 struct smu7_dpm_table *golden_dpm_table = &data->golden_dpm_table;
1507 int32_t tmp_sclk, count, percentage;
1508
1509 if (golden_dpm_table->mclk_table.count == 1) {
1510 percentage = 70;
1511 hwmgr->pstate_mclk = golden_dpm_table->mclk_table.dpm_levels[0].value;
1512 } else {
1513 percentage = 100 * golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value /
1514 golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
1515 hwmgr->pstate_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 2].value;
1516 }
1517
1518 tmp_sclk = hwmgr->pstate_mclk * percentage / 100;
1519
1520 if (hwmgr->pp_table_version == PP_TABLE_V0) {
1521 struct phm_clock_voltage_dependency_table *vddc_dependency_on_sclk =
1522 hwmgr->dyn_state.vddc_dependency_on_sclk;
1523
1524 for (count = vddc_dependency_on_sclk->count - 1; count >= 0; count--) {
1525 if (tmp_sclk >= vddc_dependency_on_sclk->entries[count].clk) {
1526 hwmgr->pstate_sclk = vddc_dependency_on_sclk->entries[count].clk;
1527 break;
1528 }
1529 }
1530 if (count < 0)
1531 hwmgr->pstate_sclk = vddc_dependency_on_sclk->entries[0].clk;
1532
1533 hwmgr->pstate_sclk_peak =
1534 vddc_dependency_on_sclk->entries[vddc_dependency_on_sclk->count - 1].clk;
1535 } else if (hwmgr->pp_table_version == PP_TABLE_V1) {
1536 struct phm_ppt_v1_information *table_info =
1537 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1538 struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_on_sclk =
1539 table_info->vdd_dep_on_sclk;
1540
1541 for (count = vdd_dep_on_sclk->count - 1; count >= 0; count--) {
1542 if (tmp_sclk >= vdd_dep_on_sclk->entries[count].clk) {
1543 hwmgr->pstate_sclk = vdd_dep_on_sclk->entries[count].clk;
1544 break;
1545 }
1546 }
1547 if (count < 0)
1548 hwmgr->pstate_sclk = vdd_dep_on_sclk->entries[0].clk;
1549
1550 hwmgr->pstate_sclk_peak =
1551 vdd_dep_on_sclk->entries[vdd_dep_on_sclk->count - 1].clk;
1552 }
1553
1554 hwmgr->pstate_mclk_peak =
1555 golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
1556
1557 /* make sure the output is in Mhz */
1558 hwmgr->pstate_sclk /= 100;
1559 hwmgr->pstate_mclk /= 100;
1560 hwmgr->pstate_sclk_peak /= 100;
1561 hwmgr->pstate_mclk_peak /= 100;
1562 }
1563
smu7_enable_dpm_tasks(struct pp_hwmgr * hwmgr)1564 static int smu7_enable_dpm_tasks(struct pp_hwmgr *hwmgr)
1565 {
1566 int tmp_result = 0;
1567 int result = 0;
1568
1569 if (smu7_voltage_control(hwmgr)) {
1570 tmp_result = smu7_enable_voltage_control(hwmgr);
1571 PP_ASSERT_WITH_CODE(tmp_result == 0,
1572 "Failed to enable voltage control!",
1573 result = tmp_result);
1574
1575 tmp_result = smu7_construct_voltage_tables(hwmgr);
1576 PP_ASSERT_WITH_CODE((0 == tmp_result),
1577 "Failed to construct voltage tables!",
1578 result = tmp_result);
1579 }
1580 smum_initialize_mc_reg_table(hwmgr);
1581
1582 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1583 PHM_PlatformCaps_EngineSpreadSpectrumSupport))
1584 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1585 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 1);
1586
1587 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1588 PHM_PlatformCaps_ThermalController))
1589 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1590 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 0);
1591
1592 tmp_result = smu7_program_static_screen_threshold_parameters(hwmgr);
1593 PP_ASSERT_WITH_CODE((0 == tmp_result),
1594 "Failed to program static screen threshold parameters!",
1595 result = tmp_result);
1596
1597 tmp_result = smu7_enable_display_gap(hwmgr);
1598 PP_ASSERT_WITH_CODE((0 == tmp_result),
1599 "Failed to enable display gap!", result = tmp_result);
1600
1601 tmp_result = smu7_program_voting_clients(hwmgr);
1602 PP_ASSERT_WITH_CODE((0 == tmp_result),
1603 "Failed to program voting clients!", result = tmp_result);
1604
1605 tmp_result = smum_process_firmware_header(hwmgr);
1606 PP_ASSERT_WITH_CODE((0 == tmp_result),
1607 "Failed to process firmware header!", result = tmp_result);
1608
1609 if (hwmgr->chip_id != CHIP_VEGAM) {
1610 tmp_result = smu7_initial_switch_from_arbf0_to_f1(hwmgr);
1611 PP_ASSERT_WITH_CODE((0 == tmp_result),
1612 "Failed to initialize switch from ArbF0 to F1!",
1613 result = tmp_result);
1614 }
1615
1616 result = smu7_setup_default_dpm_tables(hwmgr);
1617 PP_ASSERT_WITH_CODE(0 == result,
1618 "Failed to setup default DPM tables!", return result);
1619
1620 tmp_result = smum_init_smc_table(hwmgr);
1621 PP_ASSERT_WITH_CODE((0 == tmp_result),
1622 "Failed to initialize SMC table!", result = tmp_result);
1623
1624 tmp_result = smu7_enable_vrhot_gpio_interrupt(hwmgr);
1625 PP_ASSERT_WITH_CODE((0 == tmp_result),
1626 "Failed to enable VR hot GPIO interrupt!", result = tmp_result);
1627
1628 if (hwmgr->chip_id >= CHIP_POLARIS10 &&
1629 hwmgr->chip_id <= CHIP_VEGAM) {
1630 tmp_result = smu7_notify_has_display(hwmgr);
1631 PP_ASSERT_WITH_CODE((0 == tmp_result),
1632 "Failed to enable display setting!", result = tmp_result);
1633 } else {
1634 smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_NoDisplay, NULL);
1635 }
1636
1637 if (hwmgr->chip_id >= CHIP_POLARIS10 &&
1638 hwmgr->chip_id <= CHIP_VEGAM) {
1639 tmp_result = smu7_populate_edc_leakage_registers(hwmgr);
1640 PP_ASSERT_WITH_CODE((0 == tmp_result),
1641 "Failed to populate edc leakage registers!", result = tmp_result);
1642 }
1643
1644 tmp_result = smu7_enable_sclk_control(hwmgr);
1645 PP_ASSERT_WITH_CODE((0 == tmp_result),
1646 "Failed to enable SCLK control!", result = tmp_result);
1647
1648 tmp_result = smu7_enable_smc_voltage_controller(hwmgr);
1649 PP_ASSERT_WITH_CODE((0 == tmp_result),
1650 "Failed to enable voltage control!", result = tmp_result);
1651
1652 tmp_result = smu7_enable_ulv(hwmgr);
1653 PP_ASSERT_WITH_CODE((0 == tmp_result),
1654 "Failed to enable ULV!", result = tmp_result);
1655
1656 tmp_result = smu7_enable_deep_sleep_master_switch(hwmgr);
1657 PP_ASSERT_WITH_CODE((0 == tmp_result),
1658 "Failed to enable deep sleep master switch!", result = tmp_result);
1659
1660 tmp_result = smu7_enable_didt_config(hwmgr);
1661 PP_ASSERT_WITH_CODE((tmp_result == 0),
1662 "Failed to enable deep sleep master switch!", result = tmp_result);
1663
1664 tmp_result = smu7_start_dpm(hwmgr);
1665 PP_ASSERT_WITH_CODE((0 == tmp_result),
1666 "Failed to start DPM!", result = tmp_result);
1667
1668 tmp_result = smu7_enable_smc_cac(hwmgr);
1669 PP_ASSERT_WITH_CODE((0 == tmp_result),
1670 "Failed to enable SMC CAC!", result = tmp_result);
1671
1672 tmp_result = smu7_enable_power_containment(hwmgr);
1673 PP_ASSERT_WITH_CODE((0 == tmp_result),
1674 "Failed to enable power containment!", result = tmp_result);
1675
1676 tmp_result = smu7_power_control_set_level(hwmgr);
1677 PP_ASSERT_WITH_CODE((0 == tmp_result),
1678 "Failed to power control set level!", result = tmp_result);
1679
1680 tmp_result = smu7_enable_thermal_auto_throttle(hwmgr);
1681 PP_ASSERT_WITH_CODE((0 == tmp_result),
1682 "Failed to enable thermal auto throttle!", result = tmp_result);
1683
1684 tmp_result = smu7_pcie_performance_request(hwmgr);
1685 PP_ASSERT_WITH_CODE((0 == tmp_result),
1686 "pcie performance request failed!", result = tmp_result);
1687
1688 smu7_populate_umdpstate_clocks(hwmgr);
1689
1690 return 0;
1691 }
1692
smu7_avfs_control(struct pp_hwmgr * hwmgr,bool enable)1693 static int smu7_avfs_control(struct pp_hwmgr *hwmgr, bool enable)
1694 {
1695 if (!hwmgr->avfs_supported)
1696 return 0;
1697
1698 if (enable) {
1699 if (!PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
1700 CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) {
1701 PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(
1702 hwmgr, PPSMC_MSG_EnableAvfs, NULL),
1703 "Failed to enable AVFS!",
1704 return -EINVAL);
1705 }
1706 } else if (PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
1707 CGS_IND_REG__SMC, FEATURE_STATUS, AVS_ON)) {
1708 PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(
1709 hwmgr, PPSMC_MSG_DisableAvfs, NULL),
1710 "Failed to disable AVFS!",
1711 return -EINVAL);
1712 }
1713
1714 return 0;
1715 }
1716
smu7_update_avfs(struct pp_hwmgr * hwmgr)1717 static int smu7_update_avfs(struct pp_hwmgr *hwmgr)
1718 {
1719 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1720
1721 if (!hwmgr->avfs_supported)
1722 return 0;
1723
1724 if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_VDDC) {
1725 smu7_avfs_control(hwmgr, false);
1726 } else if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
1727 smu7_avfs_control(hwmgr, false);
1728 smu7_avfs_control(hwmgr, true);
1729 } else {
1730 smu7_avfs_control(hwmgr, true);
1731 }
1732
1733 return 0;
1734 }
1735
smu7_disable_dpm_tasks(struct pp_hwmgr * hwmgr)1736 static int smu7_disable_dpm_tasks(struct pp_hwmgr *hwmgr)
1737 {
1738 int tmp_result, result = 0;
1739
1740 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1741 PHM_PlatformCaps_ThermalController))
1742 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1743 GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 1);
1744
1745 tmp_result = smu7_disable_power_containment(hwmgr);
1746 PP_ASSERT_WITH_CODE((tmp_result == 0),
1747 "Failed to disable power containment!", result = tmp_result);
1748
1749 tmp_result = smu7_disable_smc_cac(hwmgr);
1750 PP_ASSERT_WITH_CODE((tmp_result == 0),
1751 "Failed to disable SMC CAC!", result = tmp_result);
1752
1753 tmp_result = smu7_disable_didt_config(hwmgr);
1754 PP_ASSERT_WITH_CODE((tmp_result == 0),
1755 "Failed to disable DIDT!", result = tmp_result);
1756
1757 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1758 CG_SPLL_SPREAD_SPECTRUM, SSEN, 0);
1759 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1760 GENERAL_PWRMGT, DYN_SPREAD_SPECTRUM_EN, 0);
1761
1762 tmp_result = smu7_disable_thermal_auto_throttle(hwmgr);
1763 PP_ASSERT_WITH_CODE((tmp_result == 0),
1764 "Failed to disable thermal auto throttle!", result = tmp_result);
1765
1766 tmp_result = smu7_avfs_control(hwmgr, false);
1767 PP_ASSERT_WITH_CODE((tmp_result == 0),
1768 "Failed to disable AVFS!", result = tmp_result);
1769
1770 tmp_result = smu7_stop_dpm(hwmgr);
1771 PP_ASSERT_WITH_CODE((tmp_result == 0),
1772 "Failed to stop DPM!", result = tmp_result);
1773
1774 tmp_result = smu7_disable_deep_sleep_master_switch(hwmgr);
1775 PP_ASSERT_WITH_CODE((tmp_result == 0),
1776 "Failed to disable deep sleep master switch!", result = tmp_result);
1777
1778 tmp_result = smu7_disable_ulv(hwmgr);
1779 PP_ASSERT_WITH_CODE((tmp_result == 0),
1780 "Failed to disable ULV!", result = tmp_result);
1781
1782 tmp_result = smu7_clear_voting_clients(hwmgr);
1783 PP_ASSERT_WITH_CODE((tmp_result == 0),
1784 "Failed to clear voting clients!", result = tmp_result);
1785
1786 tmp_result = smu7_reset_to_default(hwmgr);
1787 PP_ASSERT_WITH_CODE((tmp_result == 0),
1788 "Failed to reset to default!", result = tmp_result);
1789
1790 tmp_result = smum_stop_smc(hwmgr);
1791 PP_ASSERT_WITH_CODE((tmp_result == 0),
1792 "Failed to stop smc!", result = tmp_result);
1793
1794 tmp_result = smu7_force_switch_to_arbf0(hwmgr);
1795 PP_ASSERT_WITH_CODE((tmp_result == 0),
1796 "Failed to force to switch arbf0!", result = tmp_result);
1797
1798 return result;
1799 }
1800
smu7_init_dpm_defaults(struct pp_hwmgr * hwmgr)1801 static void smu7_init_dpm_defaults(struct pp_hwmgr *hwmgr)
1802 {
1803 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1804 struct phm_ppt_v1_information *table_info =
1805 (struct phm_ppt_v1_information *)(hwmgr->pptable);
1806 struct amdgpu_device *adev = hwmgr->adev;
1807 uint8_t tmp1, tmp2;
1808 uint16_t tmp3 = 0;
1809
1810 data->dll_default_on = false;
1811 data->mclk_dpm0_activity_target = 0xa;
1812 data->vddc_vddgfx_delta = 300;
1813 data->static_screen_threshold = SMU7_STATICSCREENTHRESHOLD_DFLT;
1814 data->static_screen_threshold_unit = SMU7_STATICSCREENTHRESHOLDUNIT_DFLT;
1815 data->voting_rights_clients[0] = SMU7_VOTINGRIGHTSCLIENTS_DFLT0;
1816 data->voting_rights_clients[1] = SMU7_VOTINGRIGHTSCLIENTS_DFLT1;
1817 data->voting_rights_clients[2] = SMU7_VOTINGRIGHTSCLIENTS_DFLT2;
1818 data->voting_rights_clients[3] = SMU7_VOTINGRIGHTSCLIENTS_DFLT3;
1819 data->voting_rights_clients[4] = SMU7_VOTINGRIGHTSCLIENTS_DFLT4;
1820 data->voting_rights_clients[5] = SMU7_VOTINGRIGHTSCLIENTS_DFLT5;
1821 data->voting_rights_clients[6] = SMU7_VOTINGRIGHTSCLIENTS_DFLT6;
1822 data->voting_rights_clients[7] = SMU7_VOTINGRIGHTSCLIENTS_DFLT7;
1823
1824 data->mclk_dpm_key_disabled = hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true;
1825 data->sclk_dpm_key_disabled = hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true;
1826 data->pcie_dpm_key_disabled =
1827 !amdgpu_device_pcie_dynamic_switching_supported() ||
1828 !(hwmgr->feature_mask & PP_PCIE_DPM_MASK);
1829 /* need to set voltage control types before EVV patching */
1830 data->voltage_control = SMU7_VOLTAGE_CONTROL_NONE;
1831 data->vddci_control = SMU7_VOLTAGE_CONTROL_NONE;
1832 data->mvdd_control = SMU7_VOLTAGE_CONTROL_NONE;
1833 data->enable_tdc_limit_feature = true;
1834 data->enable_pkg_pwr_tracking_feature = true;
1835 data->force_pcie_gen = PP_PCIEGenInvalid;
1836 data->ulv_supported = hwmgr->feature_mask & PP_ULV_MASK ? true : false;
1837 data->current_profile_setting.bupdate_sclk = 1;
1838 data->current_profile_setting.sclk_up_hyst = 0;
1839 data->current_profile_setting.sclk_down_hyst = 100;
1840 data->current_profile_setting.sclk_activity = SMU7_SCLK_TARGETACTIVITY_DFLT;
1841 data->current_profile_setting.bupdate_mclk = 1;
1842 if (hwmgr->chip_id >= CHIP_POLARIS10) {
1843 if (adev->gmc.vram_width == 256) {
1844 data->current_profile_setting.mclk_up_hyst = 10;
1845 data->current_profile_setting.mclk_down_hyst = 60;
1846 data->current_profile_setting.mclk_activity = 25;
1847 } else if (adev->gmc.vram_width == 128) {
1848 data->current_profile_setting.mclk_up_hyst = 5;
1849 data->current_profile_setting.mclk_down_hyst = 16;
1850 data->current_profile_setting.mclk_activity = 20;
1851 } else if (adev->gmc.vram_width == 64) {
1852 data->current_profile_setting.mclk_up_hyst = 3;
1853 data->current_profile_setting.mclk_down_hyst = 16;
1854 data->current_profile_setting.mclk_activity = 20;
1855 }
1856 } else {
1857 data->current_profile_setting.mclk_up_hyst = 0;
1858 data->current_profile_setting.mclk_down_hyst = 100;
1859 data->current_profile_setting.mclk_activity = SMU7_MCLK_TARGETACTIVITY_DFLT;
1860 }
1861 hwmgr->workload_mask = 1 << hwmgr->workload_prority[PP_SMC_POWER_PROFILE_FULLSCREEN3D];
1862 hwmgr->power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
1863 hwmgr->default_power_profile_mode = PP_SMC_POWER_PROFILE_FULLSCREEN3D;
1864
1865 if (hwmgr->chip_id == CHIP_HAWAII) {
1866 data->thermal_temp_setting.temperature_low = 94500;
1867 data->thermal_temp_setting.temperature_high = 95000;
1868 data->thermal_temp_setting.temperature_shutdown = 104000;
1869 } else {
1870 data->thermal_temp_setting.temperature_low = 99500;
1871 data->thermal_temp_setting.temperature_high = 100000;
1872 data->thermal_temp_setting.temperature_shutdown = 104000;
1873 }
1874
1875 data->fast_watermark_threshold = 100;
1876 if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1877 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2))
1878 data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1879 else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1880 VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT))
1881 data->voltage_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1882
1883 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1884 PHM_PlatformCaps_ControlVDDGFX)) {
1885 if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1886 VOLTAGE_TYPE_VDDGFX, VOLTAGE_OBJ_SVID2)) {
1887 data->vdd_gfx_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1888 }
1889 }
1890
1891 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1892 PHM_PlatformCaps_EnableMVDDControl)) {
1893 if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1894 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT))
1895 data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1896 else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1897 VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2))
1898 data->mvdd_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1899 }
1900
1901 if (SMU7_VOLTAGE_CONTROL_NONE == data->vdd_gfx_control)
1902 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1903 PHM_PlatformCaps_ControlVDDGFX);
1904
1905 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1906 PHM_PlatformCaps_ControlVDDCI)) {
1907 if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1908 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT))
1909 data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_GPIO;
1910 else if (atomctrl_is_voltage_controlled_by_gpio_v3(hwmgr,
1911 VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2))
1912 data->vddci_control = SMU7_VOLTAGE_CONTROL_BY_SVID2;
1913 }
1914
1915 if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE)
1916 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1917 PHM_PlatformCaps_EnableMVDDControl);
1918
1919 if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE)
1920 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1921 PHM_PlatformCaps_ControlVDDCI);
1922
1923 data->vddc_phase_shed_control = 1;
1924 if ((hwmgr->chip_id == CHIP_POLARIS12) ||
1925 ASICID_IS_P20(adev->pdev->device, adev->pdev->revision) ||
1926 ASICID_IS_P21(adev->pdev->device, adev->pdev->revision) ||
1927 ASICID_IS_P30(adev->pdev->device, adev->pdev->revision) ||
1928 ASICID_IS_P31(adev->pdev->device, adev->pdev->revision)) {
1929 if (data->voltage_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
1930 atomctrl_get_svi2_info(hwmgr, VOLTAGE_TYPE_VDDC, &tmp1, &tmp2,
1931 &tmp3);
1932 tmp3 = (tmp3 >> 5) & 0x3;
1933 data->vddc_phase_shed_control = ((tmp3 << 1) | (tmp3 >> 1)) & 0x3;
1934 }
1935 } else if (hwmgr->chip_family == AMDGPU_FAMILY_CI) {
1936 data->vddc_phase_shed_control = 1;
1937 }
1938
1939 if ((hwmgr->pp_table_version != PP_TABLE_V0) && (hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK)
1940 && (table_info->cac_dtp_table->usClockStretchAmount != 0))
1941 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1942 PHM_PlatformCaps_ClockStretcher);
1943
1944 data->pcie_gen_performance.max = PP_PCIEGen1;
1945 data->pcie_gen_performance.min = PP_PCIEGen3;
1946 data->pcie_gen_power_saving.max = PP_PCIEGen1;
1947 data->pcie_gen_power_saving.min = PP_PCIEGen3;
1948 data->pcie_lane_performance.max = 0;
1949 data->pcie_lane_performance.min = 16;
1950 data->pcie_lane_power_saving.max = 0;
1951 data->pcie_lane_power_saving.min = 16;
1952
1953
1954 if (adev->pg_flags & AMD_PG_SUPPORT_UVD)
1955 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1956 PHM_PlatformCaps_UVDPowerGating);
1957 if (adev->pg_flags & AMD_PG_SUPPORT_VCE)
1958 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1959 PHM_PlatformCaps_VCEPowerGating);
1960
1961 data->disable_edc_leakage_controller = true;
1962 if (((adev->asic_type == CHIP_POLARIS10) && hwmgr->is_kicker) ||
1963 ((adev->asic_type == CHIP_POLARIS11) && hwmgr->is_kicker) ||
1964 (adev->asic_type == CHIP_POLARIS12) ||
1965 (adev->asic_type == CHIP_VEGAM))
1966 data->disable_edc_leakage_controller = false;
1967
1968 if (!atomctrl_is_asic_internal_ss_supported(hwmgr)) {
1969 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1970 PHM_PlatformCaps_MemorySpreadSpectrumSupport);
1971 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1972 PHM_PlatformCaps_EngineSpreadSpectrumSupport);
1973 }
1974
1975 if ((adev->pdev->device == 0x699F) &&
1976 (adev->pdev->revision == 0xCF)) {
1977 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1978 PHM_PlatformCaps_PowerContainment);
1979 data->enable_tdc_limit_feature = false;
1980 data->enable_pkg_pwr_tracking_feature = false;
1981 data->disable_edc_leakage_controller = true;
1982 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1983 PHM_PlatformCaps_ClockStretcher);
1984 }
1985 }
1986
smu7_calculate_ro_range(struct pp_hwmgr * hwmgr)1987 static int smu7_calculate_ro_range(struct pp_hwmgr *hwmgr)
1988 {
1989 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1990 struct amdgpu_device *adev = hwmgr->adev;
1991 uint32_t asicrev1, evv_revision, max = 0, min = 0;
1992
1993 atomctrl_read_efuse(hwmgr, STRAP_EVV_REVISION_LSB, STRAP_EVV_REVISION_MSB,
1994 &evv_revision);
1995
1996 atomctrl_read_efuse(hwmgr, 568, 579, &asicrev1);
1997
1998 if (ASICID_IS_P20(adev->pdev->device, adev->pdev->revision) ||
1999 ASICID_IS_P30(adev->pdev->device, adev->pdev->revision)) {
2000 min = 1200;
2001 max = 2500;
2002 } else if (ASICID_IS_P21(adev->pdev->device, adev->pdev->revision) ||
2003 ASICID_IS_P31(adev->pdev->device, adev->pdev->revision)) {
2004 min = 900;
2005 max = 2100;
2006 } else if (hwmgr->chip_id == CHIP_POLARIS10) {
2007 if (adev->pdev->subsystem_vendor == 0x106B) {
2008 min = 1000;
2009 max = 2300;
2010 } else {
2011 if (evv_revision == 0) {
2012 min = 1000;
2013 max = 2300;
2014 } else if (evv_revision == 1) {
2015 if (asicrev1 == 326) {
2016 min = 1200;
2017 max = 2500;
2018 /* TODO: PATCH RO in VBIOS */
2019 } else {
2020 min = 1200;
2021 max = 2000;
2022 }
2023 } else if (evv_revision == 2) {
2024 min = 1200;
2025 max = 2500;
2026 }
2027 }
2028 } else {
2029 min = 1100;
2030 max = 2100;
2031 }
2032
2033 data->ro_range_minimum = min;
2034 data->ro_range_maximum = max;
2035
2036 /* TODO: PATCH RO in VBIOS here */
2037
2038 return 0;
2039 }
2040
2041 /**
2042 * smu7_get_evv_voltages - Get Leakage VDDC based on leakage ID.
2043 *
2044 * @hwmgr: the address of the powerplay hardware manager.
2045 * Return: always 0
2046 */
smu7_get_evv_voltages(struct pp_hwmgr * hwmgr)2047 static int smu7_get_evv_voltages(struct pp_hwmgr *hwmgr)
2048 {
2049 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2050 uint16_t vv_id;
2051 uint16_t vddc = 0;
2052 uint16_t vddgfx = 0;
2053 uint16_t i, j;
2054 uint32_t sclk = 0;
2055 struct phm_ppt_v1_information *table_info =
2056 (struct phm_ppt_v1_information *)hwmgr->pptable;
2057 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = NULL;
2058
2059 if (hwmgr->chip_id == CHIP_POLARIS10 ||
2060 hwmgr->chip_id == CHIP_POLARIS11 ||
2061 hwmgr->chip_id == CHIP_POLARIS12)
2062 smu7_calculate_ro_range(hwmgr);
2063
2064 for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) {
2065 vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
2066
2067 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2068 if ((hwmgr->pp_table_version == PP_TABLE_V1)
2069 && !phm_get_sclk_for_voltage_evv(hwmgr,
2070 table_info->vddgfx_lookup_table, vv_id, &sclk)) {
2071 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2072 PHM_PlatformCaps_ClockStretcher)) {
2073 sclk_table = table_info->vdd_dep_on_sclk;
2074
2075 for (j = 1; j < sclk_table->count; j++) {
2076 if (sclk_table->entries[j].clk == sclk &&
2077 sclk_table->entries[j].cks_enable == 0) {
2078 sclk += 5000;
2079 break;
2080 }
2081 }
2082 }
2083 if (0 == atomctrl_get_voltage_evv_on_sclk
2084 (hwmgr, VOLTAGE_TYPE_VDDGFX, sclk,
2085 vv_id, &vddgfx)) {
2086 /* need to make sure vddgfx is less than 2v or else, it could burn the ASIC. */
2087 PP_ASSERT_WITH_CODE((vddgfx < 2000 && vddgfx != 0), "Invalid VDDGFX value!", return -EINVAL);
2088
2089 /* the voltage should not be zero nor equal to leakage ID */
2090 if (vddgfx != 0 && vddgfx != vv_id) {
2091 data->vddcgfx_leakage.actual_voltage[data->vddcgfx_leakage.count] = vddgfx;
2092 data->vddcgfx_leakage.leakage_id[data->vddcgfx_leakage.count] = vv_id;
2093 data->vddcgfx_leakage.count++;
2094 }
2095 } else {
2096 pr_info("Error retrieving EVV voltage value!\n");
2097 }
2098 }
2099 } else {
2100 if ((hwmgr->pp_table_version == PP_TABLE_V0)
2101 || !phm_get_sclk_for_voltage_evv(hwmgr,
2102 table_info->vddc_lookup_table, vv_id, &sclk)) {
2103 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2104 PHM_PlatformCaps_ClockStretcher)) {
2105 if (table_info == NULL)
2106 return -EINVAL;
2107 sclk_table = table_info->vdd_dep_on_sclk;
2108
2109 for (j = 1; j < sclk_table->count; j++) {
2110 if (sclk_table->entries[j].clk == sclk &&
2111 sclk_table->entries[j].cks_enable == 0) {
2112 sclk += 5000;
2113 break;
2114 }
2115 }
2116 }
2117
2118 if (phm_get_voltage_evv_on_sclk(hwmgr,
2119 VOLTAGE_TYPE_VDDC,
2120 sclk, vv_id, &vddc) == 0) {
2121 if (vddc >= 2000 || vddc == 0)
2122 return -EINVAL;
2123 } else {
2124 pr_debug("failed to retrieving EVV voltage!\n");
2125 continue;
2126 }
2127
2128 /* the voltage should not be zero nor equal to leakage ID */
2129 if (vddc != 0 && vddc != vv_id) {
2130 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc);
2131 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id;
2132 data->vddc_leakage.count++;
2133 }
2134 }
2135 }
2136 }
2137
2138 return 0;
2139 }
2140
2141 /**
2142 * smu7_patch_ppt_v1_with_vdd_leakage - Change virtual leakage voltage to actual value.
2143 *
2144 * @hwmgr: the address of the powerplay hardware manager.
2145 * @voltage: pointer to changing voltage
2146 * @leakage_table: pointer to leakage table
2147 */
smu7_patch_ppt_v1_with_vdd_leakage(struct pp_hwmgr * hwmgr,uint16_t * voltage,struct smu7_leakage_voltage * leakage_table)2148 static void smu7_patch_ppt_v1_with_vdd_leakage(struct pp_hwmgr *hwmgr,
2149 uint16_t *voltage, struct smu7_leakage_voltage *leakage_table)
2150 {
2151 uint32_t index;
2152
2153 /* search for leakage voltage ID 0xff01 ~ 0xff08 */
2154 for (index = 0; index < leakage_table->count; index++) {
2155 /* if this voltage matches a leakage voltage ID */
2156 /* patch with actual leakage voltage */
2157 if (leakage_table->leakage_id[index] == *voltage) {
2158 *voltage = leakage_table->actual_voltage[index];
2159 break;
2160 }
2161 }
2162
2163 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
2164 pr_info("Voltage value looks like a Leakage ID but it's not patched\n");
2165 }
2166
2167 /**
2168 * smu7_patch_lookup_table_with_leakage - Patch voltage lookup table by EVV leakages.
2169 *
2170 * @hwmgr: the address of the powerplay hardware manager.
2171 * @lookup_table: pointer to voltage lookup table
2172 * @leakage_table: pointer to leakage table
2173 * Return: always 0
2174 */
smu7_patch_lookup_table_with_leakage(struct pp_hwmgr * hwmgr,phm_ppt_v1_voltage_lookup_table * lookup_table,struct smu7_leakage_voltage * leakage_table)2175 static int smu7_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr,
2176 phm_ppt_v1_voltage_lookup_table *lookup_table,
2177 struct smu7_leakage_voltage *leakage_table)
2178 {
2179 uint32_t i;
2180
2181 for (i = 0; i < lookup_table->count; i++)
2182 smu7_patch_ppt_v1_with_vdd_leakage(hwmgr,
2183 &lookup_table->entries[i].us_vdd, leakage_table);
2184
2185 return 0;
2186 }
2187
smu7_patch_clock_voltage_limits_with_vddc_leakage(struct pp_hwmgr * hwmgr,struct smu7_leakage_voltage * leakage_table,uint16_t * vddc)2188 static int smu7_patch_clock_voltage_limits_with_vddc_leakage(
2189 struct pp_hwmgr *hwmgr, struct smu7_leakage_voltage *leakage_table,
2190 uint16_t *vddc)
2191 {
2192 struct phm_ppt_v1_information *table_info =
2193 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2194 smu7_patch_ppt_v1_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table);
2195 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc =
2196 table_info->max_clock_voltage_on_dc.vddc;
2197 return 0;
2198 }
2199
smu7_patch_voltage_dependency_tables_with_lookup_table(struct pp_hwmgr * hwmgr)2200 static int smu7_patch_voltage_dependency_tables_with_lookup_table(
2201 struct pp_hwmgr *hwmgr)
2202 {
2203 uint8_t entry_id;
2204 uint8_t voltage_id;
2205 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2206 struct phm_ppt_v1_information *table_info =
2207 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2208
2209 struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
2210 table_info->vdd_dep_on_sclk;
2211 struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table =
2212 table_info->vdd_dep_on_mclk;
2213 struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
2214 table_info->mm_dep_table;
2215
2216 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2217 for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
2218 voltage_id = sclk_table->entries[entry_id].vddInd;
2219 sclk_table->entries[entry_id].vddgfx =
2220 table_info->vddgfx_lookup_table->entries[voltage_id].us_vdd;
2221 }
2222 } else {
2223 for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
2224 voltage_id = sclk_table->entries[entry_id].vddInd;
2225 sclk_table->entries[entry_id].vddc =
2226 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
2227 }
2228 }
2229
2230 for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
2231 voltage_id = mclk_table->entries[entry_id].vddInd;
2232 mclk_table->entries[entry_id].vddc =
2233 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
2234 }
2235
2236 for (entry_id = 0; entry_id < mm_table->count; ++entry_id) {
2237 voltage_id = mm_table->entries[entry_id].vddcInd;
2238 mm_table->entries[entry_id].vddc =
2239 table_info->vddc_lookup_table->entries[voltage_id].us_vdd;
2240 }
2241
2242 return 0;
2243
2244 }
2245
phm_add_voltage(struct pp_hwmgr * hwmgr,phm_ppt_v1_voltage_lookup_table * look_up_table,phm_ppt_v1_voltage_lookup_record * record)2246 static int phm_add_voltage(struct pp_hwmgr *hwmgr,
2247 phm_ppt_v1_voltage_lookup_table *look_up_table,
2248 phm_ppt_v1_voltage_lookup_record *record)
2249 {
2250 uint32_t i;
2251
2252 PP_ASSERT_WITH_CODE((NULL != look_up_table),
2253 "Lookup Table empty.", return -EINVAL);
2254 PP_ASSERT_WITH_CODE((0 != look_up_table->count),
2255 "Lookup Table empty.", return -EINVAL);
2256
2257 i = smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_VDDGFX);
2258 PP_ASSERT_WITH_CODE((i >= look_up_table->count),
2259 "Lookup Table is full.", return -EINVAL);
2260
2261 /* This is to avoid entering duplicate calculated records. */
2262 for (i = 0; i < look_up_table->count; i++) {
2263 if (look_up_table->entries[i].us_vdd == record->us_vdd) {
2264 if (look_up_table->entries[i].us_calculated == 1)
2265 return 0;
2266 break;
2267 }
2268 }
2269
2270 look_up_table->entries[i].us_calculated = 1;
2271 look_up_table->entries[i].us_vdd = record->us_vdd;
2272 look_up_table->entries[i].us_cac_low = record->us_cac_low;
2273 look_up_table->entries[i].us_cac_mid = record->us_cac_mid;
2274 look_up_table->entries[i].us_cac_high = record->us_cac_high;
2275 /* Only increment the count when we're appending, not replacing duplicate entry. */
2276 if (i == look_up_table->count)
2277 look_up_table->count++;
2278
2279 return 0;
2280 }
2281
2282
smu7_calc_voltage_dependency_tables(struct pp_hwmgr * hwmgr)2283 static int smu7_calc_voltage_dependency_tables(struct pp_hwmgr *hwmgr)
2284 {
2285 uint8_t entry_id;
2286 struct phm_ppt_v1_voltage_lookup_record v_record;
2287 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2288 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2289
2290 phm_ppt_v1_clock_voltage_dependency_table *sclk_table = pptable_info->vdd_dep_on_sclk;
2291 phm_ppt_v1_clock_voltage_dependency_table *mclk_table = pptable_info->vdd_dep_on_mclk;
2292
2293 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2294 for (entry_id = 0; entry_id < sclk_table->count; ++entry_id) {
2295 if (sclk_table->entries[entry_id].vdd_offset & (1 << 15))
2296 v_record.us_vdd = sclk_table->entries[entry_id].vddgfx +
2297 sclk_table->entries[entry_id].vdd_offset - 0xFFFF;
2298 else
2299 v_record.us_vdd = sclk_table->entries[entry_id].vddgfx +
2300 sclk_table->entries[entry_id].vdd_offset;
2301
2302 sclk_table->entries[entry_id].vddc =
2303 v_record.us_cac_low = v_record.us_cac_mid =
2304 v_record.us_cac_high = v_record.us_vdd;
2305
2306 phm_add_voltage(hwmgr, pptable_info->vddc_lookup_table, &v_record);
2307 }
2308
2309 for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) {
2310 if (mclk_table->entries[entry_id].vdd_offset & (1 << 15))
2311 v_record.us_vdd = mclk_table->entries[entry_id].vddc +
2312 mclk_table->entries[entry_id].vdd_offset - 0xFFFF;
2313 else
2314 v_record.us_vdd = mclk_table->entries[entry_id].vddc +
2315 mclk_table->entries[entry_id].vdd_offset;
2316
2317 mclk_table->entries[entry_id].vddgfx = v_record.us_cac_low =
2318 v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
2319 phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
2320 }
2321 }
2322 return 0;
2323 }
2324
smu7_calc_mm_voltage_dependency_table(struct pp_hwmgr * hwmgr)2325 static int smu7_calc_mm_voltage_dependency_table(struct pp_hwmgr *hwmgr)
2326 {
2327 uint8_t entry_id;
2328 struct phm_ppt_v1_voltage_lookup_record v_record;
2329 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2330 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
2331 phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = pptable_info->mm_dep_table;
2332
2333 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2334 for (entry_id = 0; entry_id < mm_table->count; entry_id++) {
2335 if (mm_table->entries[entry_id].vddgfx_offset & (1 << 15))
2336 v_record.us_vdd = mm_table->entries[entry_id].vddc +
2337 mm_table->entries[entry_id].vddgfx_offset - 0xFFFF;
2338 else
2339 v_record.us_vdd = mm_table->entries[entry_id].vddc +
2340 mm_table->entries[entry_id].vddgfx_offset;
2341
2342 /* Add the calculated VDDGFX to the VDDGFX lookup table */
2343 mm_table->entries[entry_id].vddgfx = v_record.us_cac_low =
2344 v_record.us_cac_mid = v_record.us_cac_high = v_record.us_vdd;
2345 phm_add_voltage(hwmgr, pptable_info->vddgfx_lookup_table, &v_record);
2346 }
2347 }
2348 return 0;
2349 }
2350
smu7_sort_lookup_table(struct pp_hwmgr * hwmgr,struct phm_ppt_v1_voltage_lookup_table * lookup_table)2351 static int smu7_sort_lookup_table(struct pp_hwmgr *hwmgr,
2352 struct phm_ppt_v1_voltage_lookup_table *lookup_table)
2353 {
2354 uint32_t table_size, i, j;
2355 table_size = lookup_table->count;
2356
2357 PP_ASSERT_WITH_CODE(0 != lookup_table->count,
2358 "Lookup table is empty", return -EINVAL);
2359
2360 /* Sorting voltages */
2361 for (i = 0; i < table_size - 1; i++) {
2362 for (j = i + 1; j > 0; j--) {
2363 if (lookup_table->entries[j].us_vdd <
2364 lookup_table->entries[j - 1].us_vdd) {
2365 swap(lookup_table->entries[j - 1],
2366 lookup_table->entries[j]);
2367 }
2368 }
2369 }
2370
2371 return 0;
2372 }
2373
smu7_complete_dependency_tables(struct pp_hwmgr * hwmgr)2374 static int smu7_complete_dependency_tables(struct pp_hwmgr *hwmgr)
2375 {
2376 int result = 0;
2377 int tmp_result;
2378 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2379 struct phm_ppt_v1_information *table_info =
2380 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2381
2382 if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
2383 tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr,
2384 table_info->vddgfx_lookup_table, &(data->vddcgfx_leakage));
2385 if (tmp_result != 0)
2386 result = tmp_result;
2387
2388 smu7_patch_ppt_v1_with_vdd_leakage(hwmgr,
2389 &table_info->max_clock_voltage_on_dc.vddgfx, &(data->vddcgfx_leakage));
2390 } else {
2391
2392 tmp_result = smu7_patch_lookup_table_with_leakage(hwmgr,
2393 table_info->vddc_lookup_table, &(data->vddc_leakage));
2394 if (tmp_result)
2395 result = tmp_result;
2396
2397 tmp_result = smu7_patch_clock_voltage_limits_with_vddc_leakage(hwmgr,
2398 &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc);
2399 if (tmp_result)
2400 result = tmp_result;
2401 }
2402
2403 tmp_result = smu7_patch_voltage_dependency_tables_with_lookup_table(hwmgr);
2404 if (tmp_result)
2405 result = tmp_result;
2406
2407 tmp_result = smu7_calc_voltage_dependency_tables(hwmgr);
2408 if (tmp_result)
2409 result = tmp_result;
2410
2411 tmp_result = smu7_calc_mm_voltage_dependency_table(hwmgr);
2412 if (tmp_result)
2413 result = tmp_result;
2414
2415 tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddgfx_lookup_table);
2416 if (tmp_result)
2417 result = tmp_result;
2418
2419 tmp_result = smu7_sort_lookup_table(hwmgr, table_info->vddc_lookup_table);
2420 if (tmp_result)
2421 result = tmp_result;
2422
2423 return result;
2424 }
2425
smu7_find_highest_vddc(struct pp_hwmgr * hwmgr)2426 static int smu7_find_highest_vddc(struct pp_hwmgr *hwmgr)
2427 {
2428 struct phm_ppt_v1_information *table_info =
2429 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2430 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
2431 table_info->vdd_dep_on_sclk;
2432 struct phm_ppt_v1_voltage_lookup_table *lookup_table =
2433 table_info->vddc_lookup_table;
2434 uint16_t highest_voltage;
2435 uint32_t i;
2436
2437 highest_voltage = allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
2438
2439 for (i = 0; i < lookup_table->count; i++) {
2440 if (lookup_table->entries[i].us_vdd < ATOM_VIRTUAL_VOLTAGE_ID0 &&
2441 lookup_table->entries[i].us_vdd > highest_voltage)
2442 highest_voltage = lookup_table->entries[i].us_vdd;
2443 }
2444
2445 return highest_voltage;
2446 }
2447
smu7_set_private_data_based_on_pptable_v1(struct pp_hwmgr * hwmgr)2448 static int smu7_set_private_data_based_on_pptable_v1(struct pp_hwmgr *hwmgr)
2449 {
2450 struct phm_ppt_v1_information *table_info =
2451 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2452
2453 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table =
2454 table_info->vdd_dep_on_sclk;
2455 struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table =
2456 table_info->vdd_dep_on_mclk;
2457
2458 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table != NULL,
2459 "VDD dependency on SCLK table is missing.",
2460 return -EINVAL);
2461 PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1,
2462 "VDD dependency on SCLK table has to have is missing.",
2463 return -EINVAL);
2464
2465 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table != NULL,
2466 "VDD dependency on MCLK table is missing",
2467 return -EINVAL);
2468 PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1,
2469 "VDD dependency on MCLK table has to have is missing.",
2470 return -EINVAL);
2471
2472 table_info->max_clock_voltage_on_ac.sclk =
2473 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk;
2474 table_info->max_clock_voltage_on_ac.mclk =
2475 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk;
2476 if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM)
2477 table_info->max_clock_voltage_on_ac.vddc =
2478 smu7_find_highest_vddc(hwmgr);
2479 else
2480 table_info->max_clock_voltage_on_ac.vddc =
2481 allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc;
2482 table_info->max_clock_voltage_on_ac.vddci =
2483 allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci;
2484
2485 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = table_info->max_clock_voltage_on_ac.sclk;
2486 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = table_info->max_clock_voltage_on_ac.mclk;
2487 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = table_info->max_clock_voltage_on_ac.vddc;
2488 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = table_info->max_clock_voltage_on_ac.vddci;
2489
2490 return 0;
2491 }
2492
smu7_patch_voltage_workaround(struct pp_hwmgr * hwmgr)2493 static int smu7_patch_voltage_workaround(struct pp_hwmgr *hwmgr)
2494 {
2495 struct phm_ppt_v1_information *table_info =
2496 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2497 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
2498 struct phm_ppt_v1_voltage_lookup_table *lookup_table;
2499 uint32_t i;
2500 uint32_t hw_revision, sub_vendor_id, sub_sys_id;
2501 struct amdgpu_device *adev = hwmgr->adev;
2502
2503 if (table_info != NULL) {
2504 dep_mclk_table = table_info->vdd_dep_on_mclk;
2505 lookup_table = table_info->vddc_lookup_table;
2506 } else
2507 return 0;
2508
2509 hw_revision = adev->pdev->revision;
2510 sub_sys_id = adev->pdev->subsystem_device;
2511 sub_vendor_id = adev->pdev->subsystem_vendor;
2512
2513 if (adev->pdev->device == 0x67DF && hw_revision == 0xC7 &&
2514 ((sub_sys_id == 0xb37 && sub_vendor_id == 0x1002) ||
2515 (sub_sys_id == 0x4a8 && sub_vendor_id == 0x1043) ||
2516 (sub_sys_id == 0x9480 && sub_vendor_id == 0x1682))) {
2517
2518 PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device,
2519 CGS_IND_REG__SMC,
2520 PWR_CKS_CNTL,
2521 CKS_STRETCH_AMOUNT,
2522 0x3);
2523
2524 if (lookup_table->entries[dep_mclk_table->entries[dep_mclk_table->count-1].vddInd].us_vdd >= 1000)
2525 return 0;
2526
2527 for (i = 0; i < lookup_table->count; i++) {
2528 if (lookup_table->entries[i].us_vdd < 0xff01 && lookup_table->entries[i].us_vdd >= 1000) {
2529 dep_mclk_table->entries[dep_mclk_table->count-1].vddInd = (uint8_t) i;
2530 return 0;
2531 }
2532 }
2533 }
2534 return 0;
2535 }
2536
smu7_thermal_parameter_init(struct pp_hwmgr * hwmgr)2537 static int smu7_thermal_parameter_init(struct pp_hwmgr *hwmgr)
2538 {
2539 struct pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
2540 uint32_t temp_reg;
2541 struct phm_ppt_v1_information *table_info =
2542 (struct phm_ppt_v1_information *)(hwmgr->pptable);
2543
2544
2545 if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) {
2546 temp_reg = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL);
2547 switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) {
2548 case 0:
2549 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1);
2550 break;
2551 case 1:
2552 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2);
2553 break;
2554 case 2:
2555 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW, 0x1);
2556 break;
2557 case 3:
2558 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1);
2559 break;
2560 case 4:
2561 temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1);
2562 break;
2563 default:
2564 break;
2565 }
2566 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL, temp_reg);
2567 }
2568
2569 if (table_info == NULL)
2570 return 0;
2571
2572 if (table_info->cac_dtp_table->usDefaultTargetOperatingTemp != 0 &&
2573 hwmgr->thermal_controller.advanceFanControlParameters.ucFanControlMode) {
2574 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMinLimit =
2575 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;
2576
2577 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMMaxLimit =
2578 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
2579
2580 hwmgr->thermal_controller.advanceFanControlParameters.usFanPWMStep = 1;
2581
2582 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMaxLimit = 100;
2583
2584 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMMinLimit =
2585 (uint16_t)hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit;
2586
2587 hwmgr->thermal_controller.advanceFanControlParameters.usFanRPMStep = 1;
2588
2589 table_info->cac_dtp_table->usDefaultTargetOperatingTemp = (table_info->cac_dtp_table->usDefaultTargetOperatingTemp >= 50) ?
2590 (table_info->cac_dtp_table->usDefaultTargetOperatingTemp - 50) : 0;
2591
2592 table_info->cac_dtp_table->usOperatingTempMaxLimit = table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
2593 table_info->cac_dtp_table->usOperatingTempStep = 1;
2594 table_info->cac_dtp_table->usOperatingTempHyst = 1;
2595
2596 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM =
2597 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanPWM;
2598
2599 hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM =
2600 hwmgr->thermal_controller.advanceFanControlParameters.usDefaultMaxFanRPM;
2601
2602 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMinLimit =
2603 table_info->cac_dtp_table->usOperatingTempMinLimit;
2604
2605 hwmgr->dyn_state.cac_dtp_table->usOperatingTempMaxLimit =
2606 table_info->cac_dtp_table->usOperatingTempMaxLimit;
2607
2608 hwmgr->dyn_state.cac_dtp_table->usDefaultTargetOperatingTemp =
2609 table_info->cac_dtp_table->usDefaultTargetOperatingTemp;
2610
2611 hwmgr->dyn_state.cac_dtp_table->usOperatingTempStep =
2612 table_info->cac_dtp_table->usOperatingTempStep;
2613
2614 hwmgr->dyn_state.cac_dtp_table->usTargetOperatingTemp =
2615 table_info->cac_dtp_table->usTargetOperatingTemp;
2616 if (hwmgr->feature_mask & PP_OD_FUZZY_FAN_CONTROL_MASK)
2617 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2618 PHM_PlatformCaps_ODFuzzyFanControlSupport);
2619 }
2620
2621 return 0;
2622 }
2623
2624 /**
2625 * smu7_patch_ppt_v0_with_vdd_leakage - Change virtual leakage voltage to actual value.
2626 *
2627 * @hwmgr: the address of the powerplay hardware manager.
2628 * @voltage: pointer to changing voltage
2629 * @leakage_table: pointer to leakage table
2630 */
smu7_patch_ppt_v0_with_vdd_leakage(struct pp_hwmgr * hwmgr,uint32_t * voltage,struct smu7_leakage_voltage * leakage_table)2631 static void smu7_patch_ppt_v0_with_vdd_leakage(struct pp_hwmgr *hwmgr,
2632 uint32_t *voltage, struct smu7_leakage_voltage *leakage_table)
2633 {
2634 uint32_t index;
2635
2636 /* search for leakage voltage ID 0xff01 ~ 0xff08 */
2637 for (index = 0; index < leakage_table->count; index++) {
2638 /* if this voltage matches a leakage voltage ID */
2639 /* patch with actual leakage voltage */
2640 if (leakage_table->leakage_id[index] == *voltage) {
2641 *voltage = leakage_table->actual_voltage[index];
2642 break;
2643 }
2644 }
2645
2646 if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0)
2647 pr_info("Voltage value looks like a Leakage ID but it's not patched\n");
2648 }
2649
2650
smu7_patch_vddc(struct pp_hwmgr * hwmgr,struct phm_clock_voltage_dependency_table * tab)2651 static int smu7_patch_vddc(struct pp_hwmgr *hwmgr,
2652 struct phm_clock_voltage_dependency_table *tab)
2653 {
2654 uint16_t i;
2655 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2656
2657 if (tab)
2658 for (i = 0; i < tab->count; i++)
2659 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2660 &data->vddc_leakage);
2661
2662 return 0;
2663 }
2664
smu7_patch_vddci(struct pp_hwmgr * hwmgr,struct phm_clock_voltage_dependency_table * tab)2665 static int smu7_patch_vddci(struct pp_hwmgr *hwmgr,
2666 struct phm_clock_voltage_dependency_table *tab)
2667 {
2668 uint16_t i;
2669 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2670
2671 if (tab)
2672 for (i = 0; i < tab->count; i++)
2673 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2674 &data->vddci_leakage);
2675
2676 return 0;
2677 }
2678
smu7_patch_vce_vddc(struct pp_hwmgr * hwmgr,struct phm_vce_clock_voltage_dependency_table * tab)2679 static int smu7_patch_vce_vddc(struct pp_hwmgr *hwmgr,
2680 struct phm_vce_clock_voltage_dependency_table *tab)
2681 {
2682 uint16_t i;
2683 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2684
2685 if (tab)
2686 for (i = 0; i < tab->count; i++)
2687 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2688 &data->vddc_leakage);
2689
2690 return 0;
2691 }
2692
2693
smu7_patch_uvd_vddc(struct pp_hwmgr * hwmgr,struct phm_uvd_clock_voltage_dependency_table * tab)2694 static int smu7_patch_uvd_vddc(struct pp_hwmgr *hwmgr,
2695 struct phm_uvd_clock_voltage_dependency_table *tab)
2696 {
2697 uint16_t i;
2698 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2699
2700 if (tab)
2701 for (i = 0; i < tab->count; i++)
2702 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2703 &data->vddc_leakage);
2704
2705 return 0;
2706 }
2707
smu7_patch_vddc_shed_limit(struct pp_hwmgr * hwmgr,struct phm_phase_shedding_limits_table * tab)2708 static int smu7_patch_vddc_shed_limit(struct pp_hwmgr *hwmgr,
2709 struct phm_phase_shedding_limits_table *tab)
2710 {
2711 uint16_t i;
2712 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2713
2714 if (tab)
2715 for (i = 0; i < tab->count; i++)
2716 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].Voltage,
2717 &data->vddc_leakage);
2718
2719 return 0;
2720 }
2721
smu7_patch_samu_vddc(struct pp_hwmgr * hwmgr,struct phm_samu_clock_voltage_dependency_table * tab)2722 static int smu7_patch_samu_vddc(struct pp_hwmgr *hwmgr,
2723 struct phm_samu_clock_voltage_dependency_table *tab)
2724 {
2725 uint16_t i;
2726 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2727
2728 if (tab)
2729 for (i = 0; i < tab->count; i++)
2730 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2731 &data->vddc_leakage);
2732
2733 return 0;
2734 }
2735
smu7_patch_acp_vddc(struct pp_hwmgr * hwmgr,struct phm_acp_clock_voltage_dependency_table * tab)2736 static int smu7_patch_acp_vddc(struct pp_hwmgr *hwmgr,
2737 struct phm_acp_clock_voltage_dependency_table *tab)
2738 {
2739 uint16_t i;
2740 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2741
2742 if (tab)
2743 for (i = 0; i < tab->count; i++)
2744 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &tab->entries[i].v,
2745 &data->vddc_leakage);
2746
2747 return 0;
2748 }
2749
smu7_patch_limits_vddc(struct pp_hwmgr * hwmgr,struct phm_clock_and_voltage_limits * tab)2750 static int smu7_patch_limits_vddc(struct pp_hwmgr *hwmgr,
2751 struct phm_clock_and_voltage_limits *tab)
2752 {
2753 uint32_t vddc, vddci;
2754 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2755
2756 if (tab) {
2757 vddc = tab->vddc;
2758 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc,
2759 &data->vddc_leakage);
2760 tab->vddc = vddc;
2761 vddci = tab->vddci;
2762 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddci,
2763 &data->vddci_leakage);
2764 tab->vddci = vddci;
2765 }
2766
2767 return 0;
2768 }
2769
smu7_patch_cac_vddc(struct pp_hwmgr * hwmgr,struct phm_cac_leakage_table * tab)2770 static int smu7_patch_cac_vddc(struct pp_hwmgr *hwmgr, struct phm_cac_leakage_table *tab)
2771 {
2772 uint32_t i;
2773 uint32_t vddc;
2774 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2775
2776 if (tab) {
2777 for (i = 0; i < tab->count; i++) {
2778 vddc = (uint32_t)(tab->entries[i].Vddc);
2779 smu7_patch_ppt_v0_with_vdd_leakage(hwmgr, &vddc, &data->vddc_leakage);
2780 tab->entries[i].Vddc = (uint16_t)vddc;
2781 }
2782 }
2783
2784 return 0;
2785 }
2786
smu7_patch_dependency_tables_with_leakage(struct pp_hwmgr * hwmgr)2787 static int smu7_patch_dependency_tables_with_leakage(struct pp_hwmgr *hwmgr)
2788 {
2789 int tmp;
2790
2791 tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_sclk);
2792 if (tmp)
2793 return -EINVAL;
2794
2795 tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_mclk);
2796 if (tmp)
2797 return -EINVAL;
2798
2799 tmp = smu7_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
2800 if (tmp)
2801 return -EINVAL;
2802
2803 tmp = smu7_patch_vddci(hwmgr, hwmgr->dyn_state.vddci_dependency_on_mclk);
2804 if (tmp)
2805 return -EINVAL;
2806
2807 tmp = smu7_patch_vce_vddc(hwmgr, hwmgr->dyn_state.vce_clock_voltage_dependency_table);
2808 if (tmp)
2809 return -EINVAL;
2810
2811 tmp = smu7_patch_uvd_vddc(hwmgr, hwmgr->dyn_state.uvd_clock_voltage_dependency_table);
2812 if (tmp)
2813 return -EINVAL;
2814
2815 tmp = smu7_patch_samu_vddc(hwmgr, hwmgr->dyn_state.samu_clock_voltage_dependency_table);
2816 if (tmp)
2817 return -EINVAL;
2818
2819 tmp = smu7_patch_acp_vddc(hwmgr, hwmgr->dyn_state.acp_clock_voltage_dependency_table);
2820 if (tmp)
2821 return -EINVAL;
2822
2823 tmp = smu7_patch_vddc_shed_limit(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table);
2824 if (tmp)
2825 return -EINVAL;
2826
2827 tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_ac);
2828 if (tmp)
2829 return -EINVAL;
2830
2831 tmp = smu7_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_dc);
2832 if (tmp)
2833 return -EINVAL;
2834
2835 tmp = smu7_patch_cac_vddc(hwmgr, hwmgr->dyn_state.cac_leakage_table);
2836 if (tmp)
2837 return -EINVAL;
2838
2839 return 0;
2840 }
2841
2842
smu7_set_private_data_based_on_pptable_v0(struct pp_hwmgr * hwmgr)2843 static int smu7_set_private_data_based_on_pptable_v0(struct pp_hwmgr *hwmgr)
2844 {
2845 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2846
2847 struct phm_clock_voltage_dependency_table *allowed_sclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_sclk;
2848 struct phm_clock_voltage_dependency_table *allowed_mclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_mclk;
2849 struct phm_clock_voltage_dependency_table *allowed_mclk_vddci_table = hwmgr->dyn_state.vddci_dependency_on_mclk;
2850
2851 PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table != NULL,
2852 "VDDC dependency on SCLK table is missing. This table is mandatory",
2853 return -EINVAL);
2854 PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table->count >= 1,
2855 "VDDC dependency on SCLK table has to have is missing. This table is mandatory",
2856 return -EINVAL);
2857
2858 PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table != NULL,
2859 "VDDC dependency on MCLK table is missing. This table is mandatory",
2860 return -EINVAL);
2861 PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table->count >= 1,
2862 "VDD dependency on MCLK table has to have is missing. This table is mandatory",
2863 return -EINVAL);
2864
2865 data->min_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[0].v;
2866 data->max_vddc_in_pptable = (uint16_t)allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
2867
2868 hwmgr->dyn_state.max_clock_voltage_on_ac.sclk =
2869 allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].clk;
2870 hwmgr->dyn_state.max_clock_voltage_on_ac.mclk =
2871 allowed_mclk_vddc_table->entries[allowed_mclk_vddc_table->count - 1].clk;
2872 hwmgr->dyn_state.max_clock_voltage_on_ac.vddc =
2873 allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v;
2874
2875 if (allowed_mclk_vddci_table != NULL && allowed_mclk_vddci_table->count >= 1) {
2876 data->min_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[0].v;
2877 data->max_vddci_in_pptable = (uint16_t)allowed_mclk_vddci_table->entries[allowed_mclk_vddci_table->count - 1].v;
2878 }
2879
2880 if (hwmgr->dyn_state.vddci_dependency_on_mclk != NULL && hwmgr->dyn_state.vddci_dependency_on_mclk->count >= 1)
2881 hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = hwmgr->dyn_state.vddci_dependency_on_mclk->entries[hwmgr->dyn_state.vddci_dependency_on_mclk->count - 1].v;
2882
2883 return 0;
2884 }
2885
smu7_hwmgr_backend_fini(struct pp_hwmgr * hwmgr)2886 static int smu7_hwmgr_backend_fini(struct pp_hwmgr *hwmgr)
2887 {
2888 kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl);
2889 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL;
2890 kfree(hwmgr->backend);
2891 hwmgr->backend = NULL;
2892
2893 return 0;
2894 }
2895
smu7_get_elb_voltages(struct pp_hwmgr * hwmgr)2896 static int smu7_get_elb_voltages(struct pp_hwmgr *hwmgr)
2897 {
2898 uint16_t virtual_voltage_id, vddc, vddci, efuse_voltage_id;
2899 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2900 int i;
2901
2902 if (atomctrl_get_leakage_id_from_efuse(hwmgr, &efuse_voltage_id) == 0) {
2903 for (i = 0; i < SMU7_MAX_LEAKAGE_COUNT; i++) {
2904 virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i;
2905 if (atomctrl_get_leakage_vddc_base_on_leakage(hwmgr, &vddc, &vddci,
2906 virtual_voltage_id,
2907 efuse_voltage_id) == 0) {
2908 if (vddc != 0 && vddc != virtual_voltage_id) {
2909 data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = vddc;
2910 data->vddc_leakage.leakage_id[data->vddc_leakage.count] = virtual_voltage_id;
2911 data->vddc_leakage.count++;
2912 }
2913 if (vddci != 0 && vddci != virtual_voltage_id) {
2914 data->vddci_leakage.actual_voltage[data->vddci_leakage.count] = vddci;
2915 data->vddci_leakage.leakage_id[data->vddci_leakage.count] = virtual_voltage_id;
2916 data->vddci_leakage.count++;
2917 }
2918 }
2919 }
2920 }
2921 return 0;
2922 }
2923
2924 #define LEAKAGE_ID_MSB 463
2925 #define LEAKAGE_ID_LSB 454
2926
smu7_update_edc_leakage_table(struct pp_hwmgr * hwmgr)2927 static int smu7_update_edc_leakage_table(struct pp_hwmgr *hwmgr)
2928 {
2929 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2930 uint32_t efuse;
2931 uint16_t offset;
2932 int ret = 0;
2933
2934 if (data->disable_edc_leakage_controller)
2935 return 0;
2936
2937 ret = atomctrl_get_edc_hilo_leakage_offset_table(hwmgr,
2938 &data->edc_hilo_leakage_offset_from_vbios);
2939 if (ret)
2940 return ret;
2941
2942 if (data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset &&
2943 data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset) {
2944 atomctrl_read_efuse(hwmgr, LEAKAGE_ID_LSB, LEAKAGE_ID_MSB, &efuse);
2945 if (efuse < data->edc_hilo_leakage_offset_from_vbios.usHiLoLeakageThreshold)
2946 offset = data->edc_hilo_leakage_offset_from_vbios.usEdcDidtLoDpm7TableOffset;
2947 else
2948 offset = data->edc_hilo_leakage_offset_from_vbios.usEdcDidtHiDpm7TableOffset;
2949
2950 ret = atomctrl_get_edc_leakage_table(hwmgr,
2951 &data->edc_leakage_table,
2952 offset);
2953 if (ret)
2954 return ret;
2955 }
2956
2957 return ret;
2958 }
2959
smu7_hwmgr_backend_init(struct pp_hwmgr * hwmgr)2960 static int smu7_hwmgr_backend_init(struct pp_hwmgr *hwmgr)
2961 {
2962 struct smu7_hwmgr *data;
2963 int result = 0;
2964
2965 data = kzalloc(sizeof(struct smu7_hwmgr), GFP_KERNEL);
2966 if (data == NULL)
2967 return -ENOMEM;
2968
2969 hwmgr->backend = data;
2970 smu7_patch_voltage_workaround(hwmgr);
2971 smu7_init_dpm_defaults(hwmgr);
2972
2973 /* Get leakage voltage based on leakage ID. */
2974 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2975 PHM_PlatformCaps_EVV)) {
2976 result = smu7_get_evv_voltages(hwmgr);
2977 if (result) {
2978 pr_info("Get EVV Voltage Failed. Abort Driver loading!\n");
2979 return -EINVAL;
2980 }
2981 } else {
2982 smu7_get_elb_voltages(hwmgr);
2983 }
2984
2985 if (hwmgr->pp_table_version == PP_TABLE_V1) {
2986 smu7_complete_dependency_tables(hwmgr);
2987 smu7_set_private_data_based_on_pptable_v1(hwmgr);
2988 } else if (hwmgr->pp_table_version == PP_TABLE_V0) {
2989 smu7_patch_dependency_tables_with_leakage(hwmgr);
2990 smu7_set_private_data_based_on_pptable_v0(hwmgr);
2991 }
2992
2993 /* Initalize Dynamic State Adjustment Rule Settings */
2994 result = phm_initializa_dynamic_state_adjustment_rule_settings(hwmgr);
2995
2996 if (0 == result) {
2997 struct amdgpu_device *adev = hwmgr->adev;
2998
2999 data->is_tlu_enabled = false;
3000
3001 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels =
3002 SMU7_MAX_HARDWARE_POWERLEVELS;
3003 hwmgr->platform_descriptor.hardwarePerformanceLevels = 2;
3004 hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50;
3005
3006 data->pcie_gen_cap = adev->pm.pcie_gen_mask;
3007 if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3)
3008 data->pcie_spc_cap = 20;
3009 else
3010 data->pcie_spc_cap = 16;
3011 data->pcie_lane_cap = adev->pm.pcie_mlw_mask;
3012
3013 hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */
3014 /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */
3015 hwmgr->platform_descriptor.clockStep.engineClock = 500;
3016 hwmgr->platform_descriptor.clockStep.memoryClock = 500;
3017 smu7_thermal_parameter_init(hwmgr);
3018 } else {
3019 /* Ignore return value in here, we are cleaning up a mess. */
3020 smu7_hwmgr_backend_fini(hwmgr);
3021 }
3022
3023 result = smu7_update_edc_leakage_table(hwmgr);
3024 if (result)
3025 return result;
3026
3027 return 0;
3028 }
3029
smu7_force_dpm_highest(struct pp_hwmgr * hwmgr)3030 static int smu7_force_dpm_highest(struct pp_hwmgr *hwmgr)
3031 {
3032 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3033 uint32_t level, tmp;
3034
3035 if (!data->pcie_dpm_key_disabled) {
3036 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3037 level = 0;
3038 tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask;
3039 while (tmp >>= 1)
3040 level++;
3041
3042 if (level)
3043 smum_send_msg_to_smc_with_parameter(hwmgr,
3044 PPSMC_MSG_PCIeDPM_ForceLevel, level,
3045 NULL);
3046 }
3047 }
3048
3049 if (!data->sclk_dpm_key_disabled) {
3050 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3051 level = 0;
3052 tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
3053 while (tmp >>= 1)
3054 level++;
3055
3056 if (level)
3057 smum_send_msg_to_smc_with_parameter(hwmgr,
3058 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3059 (1 << level),
3060 NULL);
3061 }
3062 }
3063
3064 if (!data->mclk_dpm_key_disabled) {
3065 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3066 level = 0;
3067 tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask;
3068 while (tmp >>= 1)
3069 level++;
3070
3071 if (level)
3072 smum_send_msg_to_smc_with_parameter(hwmgr,
3073 PPSMC_MSG_MCLKDPM_SetEnabledMask,
3074 (1 << level),
3075 NULL);
3076 }
3077 }
3078
3079 return 0;
3080 }
3081
smu7_upload_dpm_level_enable_mask(struct pp_hwmgr * hwmgr)3082 static int smu7_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr)
3083 {
3084 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3085
3086 if (hwmgr->pp_table_version == PP_TABLE_V1)
3087 phm_apply_dal_min_voltage_request(hwmgr);
3088 /* TO DO for v0 iceland and Ci*/
3089
3090 if (!data->sclk_dpm_key_disabled) {
3091 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask)
3092 smum_send_msg_to_smc_with_parameter(hwmgr,
3093 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3094 data->dpm_level_enable_mask.sclk_dpm_enable_mask,
3095 NULL);
3096 }
3097
3098 if (!data->mclk_dpm_key_disabled) {
3099 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask)
3100 smum_send_msg_to_smc_with_parameter(hwmgr,
3101 PPSMC_MSG_MCLKDPM_SetEnabledMask,
3102 data->dpm_level_enable_mask.mclk_dpm_enable_mask,
3103 NULL);
3104 }
3105
3106 return 0;
3107 }
3108
smu7_unforce_dpm_levels(struct pp_hwmgr * hwmgr)3109 static int smu7_unforce_dpm_levels(struct pp_hwmgr *hwmgr)
3110 {
3111 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3112
3113 if (!smum_is_dpm_running(hwmgr))
3114 return -EINVAL;
3115
3116 if (!data->pcie_dpm_key_disabled) {
3117 smum_send_msg_to_smc(hwmgr,
3118 PPSMC_MSG_PCIeDPM_UnForceLevel,
3119 NULL);
3120 }
3121
3122 return smu7_upload_dpm_level_enable_mask(hwmgr);
3123 }
3124
smu7_force_dpm_lowest(struct pp_hwmgr * hwmgr)3125 static int smu7_force_dpm_lowest(struct pp_hwmgr *hwmgr)
3126 {
3127 struct smu7_hwmgr *data =
3128 (struct smu7_hwmgr *)(hwmgr->backend);
3129 uint32_t level;
3130
3131 if (!data->sclk_dpm_key_disabled)
3132 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
3133 level = phm_get_lowest_enabled_level(hwmgr,
3134 data->dpm_level_enable_mask.sclk_dpm_enable_mask);
3135 smum_send_msg_to_smc_with_parameter(hwmgr,
3136 PPSMC_MSG_SCLKDPM_SetEnabledMask,
3137 (1 << level),
3138 NULL);
3139
3140 }
3141
3142 if (!data->mclk_dpm_key_disabled) {
3143 if (data->dpm_level_enable_mask.mclk_dpm_enable_mask) {
3144 level = phm_get_lowest_enabled_level(hwmgr,
3145 data->dpm_level_enable_mask.mclk_dpm_enable_mask);
3146 smum_send_msg_to_smc_with_parameter(hwmgr,
3147 PPSMC_MSG_MCLKDPM_SetEnabledMask,
3148 (1 << level),
3149 NULL);
3150 }
3151 }
3152
3153 if (!data->pcie_dpm_key_disabled) {
3154 if (data->dpm_level_enable_mask.pcie_dpm_enable_mask) {
3155 level = phm_get_lowest_enabled_level(hwmgr,
3156 data->dpm_level_enable_mask.pcie_dpm_enable_mask);
3157 smum_send_msg_to_smc_with_parameter(hwmgr,
3158 PPSMC_MSG_PCIeDPM_ForceLevel,
3159 (level),
3160 NULL);
3161 }
3162 }
3163
3164 return 0;
3165 }
3166
smu7_get_profiling_clk(struct pp_hwmgr * hwmgr,enum amd_dpm_forced_level level,uint32_t * sclk_mask,uint32_t * mclk_mask,uint32_t * pcie_mask)3167 static int smu7_get_profiling_clk(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level,
3168 uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *pcie_mask)
3169 {
3170 uint32_t percentage;
3171 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3172 struct smu7_dpm_table *golden_dpm_table = &data->golden_dpm_table;
3173 int32_t tmp_mclk;
3174 int32_t tmp_sclk;
3175 int32_t count;
3176
3177 if (golden_dpm_table->mclk_table.count < 1)
3178 return -EINVAL;
3179
3180 percentage = 100 * golden_dpm_table->sclk_table.dpm_levels[golden_dpm_table->sclk_table.count - 1].value /
3181 golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
3182
3183 if (golden_dpm_table->mclk_table.count == 1) {
3184 percentage = 70;
3185 tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 1].value;
3186 *mclk_mask = golden_dpm_table->mclk_table.count - 1;
3187 } else {
3188 tmp_mclk = golden_dpm_table->mclk_table.dpm_levels[golden_dpm_table->mclk_table.count - 2].value;
3189 *mclk_mask = golden_dpm_table->mclk_table.count - 2;
3190 }
3191
3192 tmp_sclk = tmp_mclk * percentage / 100;
3193
3194 if (hwmgr->pp_table_version == PP_TABLE_V0) {
3195 for (count = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1;
3196 count >= 0; count--) {
3197 if (tmp_sclk >= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk) {
3198 *sclk_mask = count;
3199 break;
3200 }
3201 }
3202 if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK)
3203 *sclk_mask = 0;
3204
3205 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3206 *sclk_mask = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1;
3207 } else if (hwmgr->pp_table_version == PP_TABLE_V1) {
3208 struct phm_ppt_v1_information *table_info =
3209 (struct phm_ppt_v1_information *)(hwmgr->pptable);
3210
3211 for (count = table_info->vdd_dep_on_sclk->count-1; count >= 0; count--) {
3212 if (tmp_sclk >= table_info->vdd_dep_on_sclk->entries[count].clk) {
3213 *sclk_mask = count;
3214 break;
3215 }
3216 }
3217 if (count < 0 || level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK)
3218 *sclk_mask = 0;
3219
3220 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3221 *sclk_mask = table_info->vdd_dep_on_sclk->count - 1;
3222 }
3223
3224 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK)
3225 *mclk_mask = 0;
3226 else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3227 *mclk_mask = golden_dpm_table->mclk_table.count - 1;
3228
3229 *pcie_mask = data->dpm_table.pcie_speed_table.count - 1;
3230
3231 return 0;
3232 }
3233
smu7_force_dpm_level(struct pp_hwmgr * hwmgr,enum amd_dpm_forced_level level)3234 static int smu7_force_dpm_level(struct pp_hwmgr *hwmgr,
3235 enum amd_dpm_forced_level level)
3236 {
3237 int ret = 0;
3238 uint32_t sclk_mask = 0;
3239 uint32_t mclk_mask = 0;
3240 uint32_t pcie_mask = 0;
3241
3242 switch (level) {
3243 case AMD_DPM_FORCED_LEVEL_HIGH:
3244 ret = smu7_force_dpm_highest(hwmgr);
3245 break;
3246 case AMD_DPM_FORCED_LEVEL_LOW:
3247 ret = smu7_force_dpm_lowest(hwmgr);
3248 break;
3249 case AMD_DPM_FORCED_LEVEL_AUTO:
3250 ret = smu7_unforce_dpm_levels(hwmgr);
3251 break;
3252 case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD:
3253 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK:
3254 case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK:
3255 case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK:
3256 ret = smu7_get_profiling_clk(hwmgr, level, &sclk_mask, &mclk_mask, &pcie_mask);
3257 if (ret)
3258 return ret;
3259 smu7_force_clock_level(hwmgr, PP_SCLK, 1<<sclk_mask);
3260 smu7_force_clock_level(hwmgr, PP_MCLK, 1<<mclk_mask);
3261 smu7_force_clock_level(hwmgr, PP_PCIE, 1<<pcie_mask);
3262 break;
3263 case AMD_DPM_FORCED_LEVEL_MANUAL:
3264 case AMD_DPM_FORCED_LEVEL_PROFILE_EXIT:
3265 default:
3266 break;
3267 }
3268
3269 if (!ret) {
3270 if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3271 smu7_fan_ctrl_set_fan_speed_pwm(hwmgr, 255);
3272 else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK)
3273 smu7_fan_ctrl_reset_fan_speed_to_default(hwmgr);
3274 }
3275 return ret;
3276 }
3277
smu7_get_power_state_size(struct pp_hwmgr * hwmgr)3278 static int smu7_get_power_state_size(struct pp_hwmgr *hwmgr)
3279 {
3280 return sizeof(struct smu7_power_state);
3281 }
3282
smu7_vblank_too_short(struct pp_hwmgr * hwmgr,uint32_t vblank_time_us)3283 static int smu7_vblank_too_short(struct pp_hwmgr *hwmgr,
3284 uint32_t vblank_time_us)
3285 {
3286 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3287 uint32_t switch_limit_us;
3288
3289 switch (hwmgr->chip_id) {
3290 case CHIP_POLARIS10:
3291 case CHIP_POLARIS11:
3292 case CHIP_POLARIS12:
3293 if (hwmgr->is_kicker || (hwmgr->chip_id == CHIP_POLARIS12))
3294 switch_limit_us = data->is_memory_gddr5 ? 450 : 150;
3295 else
3296 switch_limit_us = data->is_memory_gddr5 ? 200 : 150;
3297 break;
3298 case CHIP_VEGAM:
3299 switch_limit_us = 30;
3300 break;
3301 default:
3302 switch_limit_us = data->is_memory_gddr5 ? 450 : 150;
3303 break;
3304 }
3305
3306 if (vblank_time_us < switch_limit_us)
3307 return true;
3308 else
3309 return false;
3310 }
3311
smu7_apply_state_adjust_rules(struct pp_hwmgr * hwmgr,struct pp_power_state * request_ps,const struct pp_power_state * current_ps)3312 static int smu7_apply_state_adjust_rules(struct pp_hwmgr *hwmgr,
3313 struct pp_power_state *request_ps,
3314 const struct pp_power_state *current_ps)
3315 {
3316 struct amdgpu_device *adev = hwmgr->adev;
3317 struct smu7_power_state *smu7_ps =
3318 cast_phw_smu7_power_state(&request_ps->hardware);
3319 uint32_t sclk;
3320 uint32_t mclk;
3321 struct PP_Clocks minimum_clocks = {0};
3322 bool disable_mclk_switching;
3323 bool disable_mclk_switching_for_frame_lock;
3324 bool disable_mclk_switching_for_display;
3325 const struct phm_clock_and_voltage_limits *max_limits;
3326 uint32_t i;
3327 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3328 struct phm_ppt_v1_information *table_info =
3329 (struct phm_ppt_v1_information *)(hwmgr->pptable);
3330 int32_t count;
3331 int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0;
3332 uint32_t latency;
3333 bool latency_allowed = false;
3334
3335 data->battery_state = (PP_StateUILabel_Battery ==
3336 request_ps->classification.ui_label);
3337 data->mclk_ignore_signal = false;
3338
3339 max_limits = adev->pm.ac_power ?
3340 &(hwmgr->dyn_state.max_clock_voltage_on_ac) :
3341 &(hwmgr->dyn_state.max_clock_voltage_on_dc);
3342
3343 /* Cap clock DPM tables at DC MAX if it is in DC. */
3344 if (!adev->pm.ac_power) {
3345 for (i = 0; i < smu7_ps->performance_level_count; i++) {
3346 if (smu7_ps->performance_levels[i].memory_clock > max_limits->mclk)
3347 smu7_ps->performance_levels[i].memory_clock = max_limits->mclk;
3348 if (smu7_ps->performance_levels[i].engine_clock > max_limits->sclk)
3349 smu7_ps->performance_levels[i].engine_clock = max_limits->sclk;
3350 }
3351 }
3352
3353 minimum_clocks.engineClock = hwmgr->display_config->min_core_set_clock;
3354 minimum_clocks.memoryClock = hwmgr->display_config->min_mem_set_clock;
3355
3356 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3357 PHM_PlatformCaps_StablePState)) {
3358 max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac);
3359 stable_pstate_sclk = (max_limits->sclk * 75) / 100;
3360
3361 for (count = table_info->vdd_dep_on_sclk->count - 1;
3362 count >= 0; count--) {
3363 if (stable_pstate_sclk >=
3364 table_info->vdd_dep_on_sclk->entries[count].clk) {
3365 stable_pstate_sclk =
3366 table_info->vdd_dep_on_sclk->entries[count].clk;
3367 break;
3368 }
3369 }
3370
3371 if (count < 0)
3372 stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk;
3373
3374 stable_pstate_mclk = max_limits->mclk;
3375
3376 minimum_clocks.engineClock = stable_pstate_sclk;
3377 minimum_clocks.memoryClock = stable_pstate_mclk;
3378 }
3379
3380 disable_mclk_switching_for_frame_lock = phm_cap_enabled(
3381 hwmgr->platform_descriptor.platformCaps,
3382 PHM_PlatformCaps_DisableMclkSwitchingForFrameLock);
3383
3384 disable_mclk_switching_for_display = ((1 < hwmgr->display_config->num_display) &&
3385 !hwmgr->display_config->multi_monitor_in_sync) ||
3386 (hwmgr->display_config->num_display &&
3387 smu7_vblank_too_short(hwmgr, hwmgr->display_config->min_vblank_time));
3388
3389 disable_mclk_switching = disable_mclk_switching_for_frame_lock ||
3390 disable_mclk_switching_for_display;
3391
3392 if (hwmgr->display_config->num_display == 0) {
3393 if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM)
3394 data->mclk_ignore_signal = true;
3395 else
3396 disable_mclk_switching = false;
3397 }
3398
3399 sclk = smu7_ps->performance_levels[0].engine_clock;
3400 mclk = smu7_ps->performance_levels[0].memory_clock;
3401
3402 if (disable_mclk_switching &&
3403 (!(hwmgr->chip_id >= CHIP_POLARIS10 &&
3404 hwmgr->chip_id <= CHIP_VEGAM)))
3405 mclk = smu7_ps->performance_levels
3406 [smu7_ps->performance_level_count - 1].memory_clock;
3407
3408 if (sclk < minimum_clocks.engineClock)
3409 sclk = (minimum_clocks.engineClock > max_limits->sclk) ?
3410 max_limits->sclk : minimum_clocks.engineClock;
3411
3412 if (mclk < minimum_clocks.memoryClock)
3413 mclk = (minimum_clocks.memoryClock > max_limits->mclk) ?
3414 max_limits->mclk : minimum_clocks.memoryClock;
3415
3416 smu7_ps->performance_levels[0].engine_clock = sclk;
3417 smu7_ps->performance_levels[0].memory_clock = mclk;
3418
3419 smu7_ps->performance_levels[1].engine_clock =
3420 (smu7_ps->performance_levels[1].engine_clock >=
3421 smu7_ps->performance_levels[0].engine_clock) ?
3422 smu7_ps->performance_levels[1].engine_clock :
3423 smu7_ps->performance_levels[0].engine_clock;
3424
3425 if (disable_mclk_switching) {
3426 if (mclk < smu7_ps->performance_levels[1].memory_clock)
3427 mclk = smu7_ps->performance_levels[1].memory_clock;
3428
3429 if (hwmgr->chip_id >= CHIP_POLARIS10 && hwmgr->chip_id <= CHIP_VEGAM) {
3430 if (disable_mclk_switching_for_display) {
3431 /* Find the lowest MCLK frequency that is within
3432 * the tolerable latency defined in DAL
3433 */
3434 latency = hwmgr->display_config->dce_tolerable_mclk_in_active_latency;
3435 for (i = 0; i < data->mclk_latency_table.count; i++) {
3436 if (data->mclk_latency_table.entries[i].latency <= latency) {
3437 latency_allowed = true;
3438
3439 if ((data->mclk_latency_table.entries[i].frequency >=
3440 smu7_ps->performance_levels[0].memory_clock) &&
3441 (data->mclk_latency_table.entries[i].frequency <=
3442 smu7_ps->performance_levels[1].memory_clock)) {
3443 mclk = data->mclk_latency_table.entries[i].frequency;
3444 break;
3445 }
3446 }
3447 }
3448 if ((i >= data->mclk_latency_table.count - 1) && !latency_allowed) {
3449 data->mclk_ignore_signal = true;
3450 } else {
3451 data->mclk_ignore_signal = false;
3452 }
3453 }
3454
3455 if (disable_mclk_switching_for_frame_lock)
3456 mclk = smu7_ps->performance_levels[1].memory_clock;
3457 }
3458
3459 smu7_ps->performance_levels[0].memory_clock = mclk;
3460
3461 if (!(hwmgr->chip_id >= CHIP_POLARIS10 &&
3462 hwmgr->chip_id <= CHIP_VEGAM))
3463 smu7_ps->performance_levels[1].memory_clock = mclk;
3464 } else {
3465 if (smu7_ps->performance_levels[1].memory_clock <
3466 smu7_ps->performance_levels[0].memory_clock)
3467 smu7_ps->performance_levels[1].memory_clock =
3468 smu7_ps->performance_levels[0].memory_clock;
3469 }
3470
3471 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
3472 PHM_PlatformCaps_StablePState)) {
3473 for (i = 0; i < smu7_ps->performance_level_count; i++) {
3474 smu7_ps->performance_levels[i].engine_clock = stable_pstate_sclk;
3475 smu7_ps->performance_levels[i].memory_clock = stable_pstate_mclk;
3476 smu7_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max;
3477 smu7_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max;
3478 }
3479 }
3480 return 0;
3481 }
3482
3483
smu7_dpm_get_mclk(struct pp_hwmgr * hwmgr,bool low)3484 static uint32_t smu7_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low)
3485 {
3486 struct pp_power_state *ps;
3487 struct smu7_power_state *smu7_ps;
3488
3489 if (hwmgr == NULL)
3490 return -EINVAL;
3491
3492 ps = hwmgr->request_ps;
3493
3494 if (ps == NULL)
3495 return -EINVAL;
3496
3497 smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
3498
3499 if (low)
3500 return smu7_ps->performance_levels[0].memory_clock;
3501 else
3502 return smu7_ps->performance_levels
3503 [smu7_ps->performance_level_count-1].memory_clock;
3504 }
3505
smu7_dpm_get_sclk(struct pp_hwmgr * hwmgr,bool low)3506 static uint32_t smu7_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low)
3507 {
3508 struct pp_power_state *ps;
3509 struct smu7_power_state *smu7_ps;
3510
3511 if (hwmgr == NULL)
3512 return -EINVAL;
3513
3514 ps = hwmgr->request_ps;
3515
3516 if (ps == NULL)
3517 return -EINVAL;
3518
3519 smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
3520
3521 if (low)
3522 return smu7_ps->performance_levels[0].engine_clock;
3523 else
3524 return smu7_ps->performance_levels
3525 [smu7_ps->performance_level_count-1].engine_clock;
3526 }
3527
smu7_dpm_patch_boot_state(struct pp_hwmgr * hwmgr,struct pp_hw_power_state * hw_ps)3528 static int smu7_dpm_patch_boot_state(struct pp_hwmgr *hwmgr,
3529 struct pp_hw_power_state *hw_ps)
3530 {
3531 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3532 struct smu7_power_state *ps = (struct smu7_power_state *)hw_ps;
3533 ATOM_FIRMWARE_INFO_V2_2 *fw_info;
3534 uint16_t size;
3535 uint8_t frev, crev;
3536 int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
3537
3538 /* First retrieve the Boot clocks and VDDC from the firmware info table.
3539 * We assume here that fw_info is unchanged if this call fails.
3540 */
3541 fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)smu_atom_get_data_table(hwmgr->adev, index,
3542 &size, &frev, &crev);
3543 if (!fw_info)
3544 /* During a test, there is no firmware info table. */
3545 return 0;
3546
3547 /* Patch the state. */
3548 data->vbios_boot_state.sclk_bootup_value =
3549 le32_to_cpu(fw_info->ulDefaultEngineClock);
3550 data->vbios_boot_state.mclk_bootup_value =
3551 le32_to_cpu(fw_info->ulDefaultMemoryClock);
3552 data->vbios_boot_state.mvdd_bootup_value =
3553 le16_to_cpu(fw_info->usBootUpMVDDCVoltage);
3554 data->vbios_boot_state.vddc_bootup_value =
3555 le16_to_cpu(fw_info->usBootUpVDDCVoltage);
3556 data->vbios_boot_state.vddci_bootup_value =
3557 le16_to_cpu(fw_info->usBootUpVDDCIVoltage);
3558 data->vbios_boot_state.pcie_gen_bootup_value =
3559 smu7_get_current_pcie_speed(hwmgr);
3560
3561 data->vbios_boot_state.pcie_lane_bootup_value =
3562 (uint16_t)smu7_get_current_pcie_lane_number(hwmgr);
3563
3564 /* set boot power state */
3565 ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value;
3566 ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value;
3567 ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value;
3568 ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value;
3569
3570 return 0;
3571 }
3572
smu7_get_number_of_powerplay_table_entries(struct pp_hwmgr * hwmgr)3573 static int smu7_get_number_of_powerplay_table_entries(struct pp_hwmgr *hwmgr)
3574 {
3575 int result;
3576 unsigned long ret = 0;
3577
3578 if (hwmgr->pp_table_version == PP_TABLE_V0) {
3579 result = pp_tables_get_num_of_entries(hwmgr, &ret);
3580 return result ? 0 : ret;
3581 } else if (hwmgr->pp_table_version == PP_TABLE_V1) {
3582 result = get_number_of_powerplay_table_entries_v1_0(hwmgr);
3583 return result;
3584 }
3585 return 0;
3586 }
3587
smu7_get_pp_table_entry_callback_func_v1(struct pp_hwmgr * hwmgr,void * state,struct pp_power_state * power_state,void * pp_table,uint32_t classification_flag)3588 static int smu7_get_pp_table_entry_callback_func_v1(struct pp_hwmgr *hwmgr,
3589 void *state, struct pp_power_state *power_state,
3590 void *pp_table, uint32_t classification_flag)
3591 {
3592 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3593 struct smu7_power_state *smu7_power_state =
3594 (struct smu7_power_state *)(&(power_state->hardware));
3595 struct smu7_performance_level *performance_level;
3596 ATOM_Tonga_State *state_entry = (ATOM_Tonga_State *)state;
3597 ATOM_Tonga_POWERPLAYTABLE *powerplay_table =
3598 (ATOM_Tonga_POWERPLAYTABLE *)pp_table;
3599 PPTable_Generic_SubTable_Header *sclk_dep_table =
3600 (PPTable_Generic_SubTable_Header *)
3601 (((unsigned long)powerplay_table) +
3602 le16_to_cpu(powerplay_table->usSclkDependencyTableOffset));
3603
3604 ATOM_Tonga_MCLK_Dependency_Table *mclk_dep_table =
3605 (ATOM_Tonga_MCLK_Dependency_Table *)
3606 (((unsigned long)powerplay_table) +
3607 le16_to_cpu(powerplay_table->usMclkDependencyTableOffset));
3608
3609 /* The following fields are not initialized here: id orderedList allStatesList */
3610 power_state->classification.ui_label =
3611 (le16_to_cpu(state_entry->usClassification) &
3612 ATOM_PPLIB_CLASSIFICATION_UI_MASK) >>
3613 ATOM_PPLIB_CLASSIFICATION_UI_SHIFT;
3614 power_state->classification.flags = classification_flag;
3615 /* NOTE: There is a classification2 flag in BIOS that is not being used right now */
3616
3617 power_state->classification.temporary_state = false;
3618 power_state->classification.to_be_deleted = false;
3619
3620 power_state->validation.disallowOnDC =
3621 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3622 ATOM_Tonga_DISALLOW_ON_DC));
3623
3624 power_state->pcie.lanes = 0;
3625
3626 power_state->display.disableFrameModulation = false;
3627 power_state->display.limitRefreshrate = false;
3628 power_state->display.enableVariBright =
3629 (0 != (le32_to_cpu(state_entry->ulCapsAndSettings) &
3630 ATOM_Tonga_ENABLE_VARIBRIGHT));
3631
3632 power_state->validation.supportedPowerLevels = 0;
3633 power_state->uvd_clocks.VCLK = 0;
3634 power_state->uvd_clocks.DCLK = 0;
3635 power_state->temperatures.min = 0;
3636 power_state->temperatures.max = 0;
3637
3638 performance_level = &(smu7_power_state->performance_levels
3639 [smu7_power_state->performance_level_count++]);
3640
3641 PP_ASSERT_WITH_CODE(
3642 (smu7_power_state->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)),
3643 "Performance levels exceeds SMC limit!",
3644 return -EINVAL);
3645
3646 PP_ASSERT_WITH_CODE(
3647 (smu7_power_state->performance_level_count <
3648 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3649 "Performance levels exceeds Driver limit!",
3650 return -EINVAL);
3651
3652 /* Performance levels are arranged from low to high. */
3653 performance_level->memory_clock = mclk_dep_table->entries
3654 [state_entry->ucMemoryClockIndexLow].ulMclk;
3655 if (sclk_dep_table->ucRevId == 0)
3656 performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
3657 [state_entry->ucEngineClockIndexLow].ulSclk;
3658 else if (sclk_dep_table->ucRevId == 1)
3659 performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
3660 [state_entry->ucEngineClockIndexLow].ulSclk;
3661 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3662 state_entry->ucPCIEGenLow);
3663 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3664 state_entry->ucPCIELaneLow);
3665
3666 performance_level = &(smu7_power_state->performance_levels
3667 [smu7_power_state->performance_level_count++]);
3668 performance_level->memory_clock = mclk_dep_table->entries
3669 [state_entry->ucMemoryClockIndexHigh].ulMclk;
3670
3671 if (sclk_dep_table->ucRevId == 0)
3672 performance_level->engine_clock = ((ATOM_Tonga_SCLK_Dependency_Table *)sclk_dep_table)->entries
3673 [state_entry->ucEngineClockIndexHigh].ulSclk;
3674 else if (sclk_dep_table->ucRevId == 1)
3675 performance_level->engine_clock = ((ATOM_Polaris_SCLK_Dependency_Table *)sclk_dep_table)->entries
3676 [state_entry->ucEngineClockIndexHigh].ulSclk;
3677
3678 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap,
3679 state_entry->ucPCIEGenHigh);
3680 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap,
3681 state_entry->ucPCIELaneHigh);
3682
3683 return 0;
3684 }
3685
smu7_get_pp_table_entry_v1(struct pp_hwmgr * hwmgr,unsigned long entry_index,struct pp_power_state * state)3686 static int smu7_get_pp_table_entry_v1(struct pp_hwmgr *hwmgr,
3687 unsigned long entry_index, struct pp_power_state *state)
3688 {
3689 int result;
3690 struct smu7_power_state *ps;
3691 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3692 struct phm_ppt_v1_information *table_info =
3693 (struct phm_ppt_v1_information *)(hwmgr->pptable);
3694 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
3695 table_info->vdd_dep_on_mclk;
3696
3697 state->hardware.magic = PHM_VIslands_Magic;
3698
3699 ps = (struct smu7_power_state *)(&state->hardware);
3700
3701 result = get_powerplay_table_entry_v1_0(hwmgr, entry_index, state,
3702 smu7_get_pp_table_entry_callback_func_v1);
3703
3704 /* This is the earliest time we have all the dependency table and the VBIOS boot state
3705 * as PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot state
3706 * if there is only one VDDCI/MCLK level, check if it's the same as VBIOS boot state
3707 */
3708 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
3709 if (dep_mclk_table->entries[0].clk !=
3710 data->vbios_boot_state.mclk_bootup_value)
3711 pr_debug("Single MCLK entry VDDCI/MCLK dependency table "
3712 "does not match VBIOS boot MCLK level");
3713 if (dep_mclk_table->entries[0].vddci !=
3714 data->vbios_boot_state.vddci_bootup_value)
3715 pr_debug("Single VDDCI entry VDDCI/MCLK dependency table "
3716 "does not match VBIOS boot VDDCI level");
3717 }
3718
3719 /* set DC compatible flag if this state supports DC */
3720 if (!state->validation.disallowOnDC)
3721 ps->dc_compatible = true;
3722
3723 if (state->classification.flags & PP_StateClassificationFlag_ACPI)
3724 data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
3725
3726 ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3727 ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3728
3729 if (!result) {
3730 uint32_t i;
3731
3732 switch (state->classification.ui_label) {
3733 case PP_StateUILabel_Performance:
3734 data->use_pcie_performance_levels = true;
3735 for (i = 0; i < ps->performance_level_count; i++) {
3736 if (data->pcie_gen_performance.max <
3737 ps->performance_levels[i].pcie_gen)
3738 data->pcie_gen_performance.max =
3739 ps->performance_levels[i].pcie_gen;
3740
3741 if (data->pcie_gen_performance.min >
3742 ps->performance_levels[i].pcie_gen)
3743 data->pcie_gen_performance.min =
3744 ps->performance_levels[i].pcie_gen;
3745
3746 if (data->pcie_lane_performance.max <
3747 ps->performance_levels[i].pcie_lane)
3748 data->pcie_lane_performance.max =
3749 ps->performance_levels[i].pcie_lane;
3750 if (data->pcie_lane_performance.min >
3751 ps->performance_levels[i].pcie_lane)
3752 data->pcie_lane_performance.min =
3753 ps->performance_levels[i].pcie_lane;
3754 }
3755 break;
3756 case PP_StateUILabel_Battery:
3757 data->use_pcie_power_saving_levels = true;
3758
3759 for (i = 0; i < ps->performance_level_count; i++) {
3760 if (data->pcie_gen_power_saving.max <
3761 ps->performance_levels[i].pcie_gen)
3762 data->pcie_gen_power_saving.max =
3763 ps->performance_levels[i].pcie_gen;
3764
3765 if (data->pcie_gen_power_saving.min >
3766 ps->performance_levels[i].pcie_gen)
3767 data->pcie_gen_power_saving.min =
3768 ps->performance_levels[i].pcie_gen;
3769
3770 if (data->pcie_lane_power_saving.max <
3771 ps->performance_levels[i].pcie_lane)
3772 data->pcie_lane_power_saving.max =
3773 ps->performance_levels[i].pcie_lane;
3774
3775 if (data->pcie_lane_power_saving.min >
3776 ps->performance_levels[i].pcie_lane)
3777 data->pcie_lane_power_saving.min =
3778 ps->performance_levels[i].pcie_lane;
3779 }
3780 break;
3781 default:
3782 break;
3783 }
3784 }
3785 return 0;
3786 }
3787
smu7_get_pp_table_entry_callback_func_v0(struct pp_hwmgr * hwmgr,struct pp_hw_power_state * power_state,unsigned int index,const void * clock_info)3788 static int smu7_get_pp_table_entry_callback_func_v0(struct pp_hwmgr *hwmgr,
3789 struct pp_hw_power_state *power_state,
3790 unsigned int index, const void *clock_info)
3791 {
3792 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3793 struct smu7_power_state *ps = cast_phw_smu7_power_state(power_state);
3794 const ATOM_PPLIB_CI_CLOCK_INFO *visland_clk_info = clock_info;
3795 struct smu7_performance_level *performance_level;
3796 uint32_t engine_clock, memory_clock;
3797 uint16_t pcie_gen_from_bios;
3798
3799 engine_clock = visland_clk_info->ucEngineClockHigh << 16 | visland_clk_info->usEngineClockLow;
3800 memory_clock = visland_clk_info->ucMemoryClockHigh << 16 | visland_clk_info->usMemoryClockLow;
3801
3802 if (!(data->mc_micro_code_feature & DISABLE_MC_LOADMICROCODE) && memory_clock > data->highest_mclk)
3803 data->highest_mclk = memory_clock;
3804
3805 PP_ASSERT_WITH_CODE(
3806 (ps->performance_level_count < smum_get_mac_definition(hwmgr, SMU_MAX_LEVELS_GRAPHICS)),
3807 "Performance levels exceeds SMC limit!",
3808 return -EINVAL);
3809
3810 PP_ASSERT_WITH_CODE(
3811 (ps->performance_level_count <
3812 hwmgr->platform_descriptor.hardwareActivityPerformanceLevels),
3813 "Performance levels exceeds Driver limit, Skip!",
3814 return 0);
3815
3816 performance_level = &(ps->performance_levels
3817 [ps->performance_level_count++]);
3818
3819 /* Performance levels are arranged from low to high. */
3820 performance_level->memory_clock = memory_clock;
3821 performance_level->engine_clock = engine_clock;
3822
3823 pcie_gen_from_bios = visland_clk_info->ucPCIEGen;
3824
3825 performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, pcie_gen_from_bios);
3826 performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, visland_clk_info->usPCIELane);
3827
3828 return 0;
3829 }
3830
smu7_get_pp_table_entry_v0(struct pp_hwmgr * hwmgr,unsigned long entry_index,struct pp_power_state * state)3831 static int smu7_get_pp_table_entry_v0(struct pp_hwmgr *hwmgr,
3832 unsigned long entry_index, struct pp_power_state *state)
3833 {
3834 int result;
3835 struct smu7_power_state *ps;
3836 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3837 struct phm_clock_voltage_dependency_table *dep_mclk_table =
3838 hwmgr->dyn_state.vddci_dependency_on_mclk;
3839
3840 memset(&state->hardware, 0x00, sizeof(struct pp_hw_power_state));
3841
3842 state->hardware.magic = PHM_VIslands_Magic;
3843
3844 ps = (struct smu7_power_state *)(&state->hardware);
3845
3846 result = pp_tables_get_entry(hwmgr, entry_index, state,
3847 smu7_get_pp_table_entry_callback_func_v0);
3848
3849 /*
3850 * This is the earliest time we have all the dependency table
3851 * and the VBIOS boot state as
3852 * PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot
3853 * state if there is only one VDDCI/MCLK level, check if it's
3854 * the same as VBIOS boot state
3855 */
3856 if (dep_mclk_table != NULL && dep_mclk_table->count == 1) {
3857 if (dep_mclk_table->entries[0].clk !=
3858 data->vbios_boot_state.mclk_bootup_value)
3859 pr_debug("Single MCLK entry VDDCI/MCLK dependency table "
3860 "does not match VBIOS boot MCLK level");
3861 if (dep_mclk_table->entries[0].v !=
3862 data->vbios_boot_state.vddci_bootup_value)
3863 pr_debug("Single VDDCI entry VDDCI/MCLK dependency table "
3864 "does not match VBIOS boot VDDCI level");
3865 }
3866
3867 /* set DC compatible flag if this state supports DC */
3868 if (!state->validation.disallowOnDC)
3869 ps->dc_compatible = true;
3870
3871 if (state->classification.flags & PP_StateClassificationFlag_ACPI)
3872 data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen;
3873
3874 ps->uvd_clks.vclk = state->uvd_clocks.VCLK;
3875 ps->uvd_clks.dclk = state->uvd_clocks.DCLK;
3876
3877 if (!result) {
3878 uint32_t i;
3879
3880 switch (state->classification.ui_label) {
3881 case PP_StateUILabel_Performance:
3882 data->use_pcie_performance_levels = true;
3883
3884 for (i = 0; i < ps->performance_level_count; i++) {
3885 if (data->pcie_gen_performance.max <
3886 ps->performance_levels[i].pcie_gen)
3887 data->pcie_gen_performance.max =
3888 ps->performance_levels[i].pcie_gen;
3889
3890 if (data->pcie_gen_performance.min >
3891 ps->performance_levels[i].pcie_gen)
3892 data->pcie_gen_performance.min =
3893 ps->performance_levels[i].pcie_gen;
3894
3895 if (data->pcie_lane_performance.max <
3896 ps->performance_levels[i].pcie_lane)
3897 data->pcie_lane_performance.max =
3898 ps->performance_levels[i].pcie_lane;
3899
3900 if (data->pcie_lane_performance.min >
3901 ps->performance_levels[i].pcie_lane)
3902 data->pcie_lane_performance.min =
3903 ps->performance_levels[i].pcie_lane;
3904 }
3905 break;
3906 case PP_StateUILabel_Battery:
3907 data->use_pcie_power_saving_levels = true;
3908
3909 for (i = 0; i < ps->performance_level_count; i++) {
3910 if (data->pcie_gen_power_saving.max <
3911 ps->performance_levels[i].pcie_gen)
3912 data->pcie_gen_power_saving.max =
3913 ps->performance_levels[i].pcie_gen;
3914
3915 if (data->pcie_gen_power_saving.min >
3916 ps->performance_levels[i].pcie_gen)
3917 data->pcie_gen_power_saving.min =
3918 ps->performance_levels[i].pcie_gen;
3919
3920 if (data->pcie_lane_power_saving.max <
3921 ps->performance_levels[i].pcie_lane)
3922 data->pcie_lane_power_saving.max =
3923 ps->performance_levels[i].pcie_lane;
3924
3925 if (data->pcie_lane_power_saving.min >
3926 ps->performance_levels[i].pcie_lane)
3927 data->pcie_lane_power_saving.min =
3928 ps->performance_levels[i].pcie_lane;
3929 }
3930 break;
3931 default:
3932 break;
3933 }
3934 }
3935 return 0;
3936 }
3937
smu7_get_pp_table_entry(struct pp_hwmgr * hwmgr,unsigned long entry_index,struct pp_power_state * state)3938 static int smu7_get_pp_table_entry(struct pp_hwmgr *hwmgr,
3939 unsigned long entry_index, struct pp_power_state *state)
3940 {
3941 if (hwmgr->pp_table_version == PP_TABLE_V0)
3942 return smu7_get_pp_table_entry_v0(hwmgr, entry_index, state);
3943 else if (hwmgr->pp_table_version == PP_TABLE_V1)
3944 return smu7_get_pp_table_entry_v1(hwmgr, entry_index, state);
3945
3946 return 0;
3947 }
3948
smu7_get_gpu_power(struct pp_hwmgr * hwmgr,u32 * query)3949 static int smu7_get_gpu_power(struct pp_hwmgr *hwmgr, u32 *query)
3950 {
3951 struct amdgpu_device *adev = hwmgr->adev;
3952 int i;
3953 u32 tmp = 0;
3954
3955 if (!query)
3956 return -EINVAL;
3957
3958 /*
3959 * PPSMC_MSG_GetCurrPkgPwr is not supported on:
3960 * - Hawaii
3961 * - Bonaire
3962 * - Fiji
3963 * - Tonga
3964 */
3965 if ((adev->asic_type != CHIP_HAWAII) &&
3966 (adev->asic_type != CHIP_BONAIRE) &&
3967 (adev->asic_type != CHIP_FIJI) &&
3968 (adev->asic_type != CHIP_TONGA)) {
3969 smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetCurrPkgPwr, 0, &tmp);
3970 *query = tmp;
3971
3972 if (tmp != 0)
3973 return 0;
3974 }
3975
3976 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PmStatusLogStart, NULL);
3977 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
3978 ixSMU_PM_STATUS_95, 0);
3979
3980 for (i = 0; i < 10; i++) {
3981 msleep(500);
3982 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PmStatusLogSample, NULL);
3983 tmp = cgs_read_ind_register(hwmgr->device,
3984 CGS_IND_REG__SMC,
3985 ixSMU_PM_STATUS_95);
3986 if (tmp != 0)
3987 break;
3988 }
3989 *query = tmp;
3990
3991 return 0;
3992 }
3993
smu7_read_sensor(struct pp_hwmgr * hwmgr,int idx,void * value,int * size)3994 static int smu7_read_sensor(struct pp_hwmgr *hwmgr, int idx,
3995 void *value, int *size)
3996 {
3997 uint32_t sclk, mclk, activity_percent;
3998 uint32_t offset, val_vid;
3999 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4000
4001 /* size must be at least 4 bytes for all sensors */
4002 if (*size < 4)
4003 return -EINVAL;
4004
4005 switch (idx) {
4006 case AMDGPU_PP_SENSOR_GFX_SCLK:
4007 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency, &sclk);
4008 *((uint32_t *)value) = sclk;
4009 *size = 4;
4010 return 0;
4011 case AMDGPU_PP_SENSOR_GFX_MCLK:
4012 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency, &mclk);
4013 *((uint32_t *)value) = mclk;
4014 *size = 4;
4015 return 0;
4016 case AMDGPU_PP_SENSOR_GPU_LOAD:
4017 case AMDGPU_PP_SENSOR_MEM_LOAD:
4018 offset = data->soft_regs_start + smum_get_offsetof(hwmgr,
4019 SMU_SoftRegisters,
4020 (idx == AMDGPU_PP_SENSOR_GPU_LOAD) ?
4021 AverageGraphicsActivity :
4022 AverageMemoryActivity);
4023
4024 activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset);
4025 activity_percent += 0x80;
4026 activity_percent >>= 8;
4027 *((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent;
4028 *size = 4;
4029 return 0;
4030 case AMDGPU_PP_SENSOR_GPU_TEMP:
4031 *((uint32_t *)value) = smu7_thermal_get_temperature(hwmgr);
4032 *size = 4;
4033 return 0;
4034 case AMDGPU_PP_SENSOR_UVD_POWER:
4035 *((uint32_t *)value) = data->uvd_power_gated ? 0 : 1;
4036 *size = 4;
4037 return 0;
4038 case AMDGPU_PP_SENSOR_VCE_POWER:
4039 *((uint32_t *)value) = data->vce_power_gated ? 0 : 1;
4040 *size = 4;
4041 return 0;
4042 case AMDGPU_PP_SENSOR_GPU_INPUT_POWER:
4043 return smu7_get_gpu_power(hwmgr, (uint32_t *)value);
4044 case AMDGPU_PP_SENSOR_VDDGFX:
4045 if ((data->vr_config & VRCONF_VDDGFX_MASK) ==
4046 (VR_SVI2_PLANE_2 << VRCONF_VDDGFX_SHIFT))
4047 val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device,
4048 CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE2_VID);
4049 else
4050 val_vid = PHM_READ_INDIRECT_FIELD(hwmgr->device,
4051 CGS_IND_REG__SMC, PWR_SVI2_STATUS, PLANE1_VID);
4052
4053 *((uint32_t *)value) = (uint32_t)convert_to_vddc(val_vid);
4054 return 0;
4055 default:
4056 return -EOPNOTSUPP;
4057 }
4058 }
4059
smu7_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr * hwmgr,const void * input)4060 static int smu7_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input)
4061 {
4062 const struct phm_set_power_state_input *states =
4063 (const struct phm_set_power_state_input *)input;
4064 const struct smu7_power_state *smu7_ps =
4065 cast_const_phw_smu7_power_state(states->pnew_state);
4066 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4067 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4068 uint32_t sclk = smu7_ps->performance_levels
4069 [smu7_ps->performance_level_count - 1].engine_clock;
4070 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4071 uint32_t mclk = smu7_ps->performance_levels
4072 [smu7_ps->performance_level_count - 1].memory_clock;
4073 struct PP_Clocks min_clocks = {0};
4074 uint32_t i;
4075
4076 for (i = 0; i < sclk_table->count; i++) {
4077 if (sclk == sclk_table->dpm_levels[i].value)
4078 break;
4079 }
4080
4081 if (i >= sclk_table->count) {
4082 if (sclk > sclk_table->dpm_levels[i-1].value) {
4083 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK;
4084 sclk_table->dpm_levels[i-1].value = sclk;
4085 }
4086 } else {
4087 /* TODO: Check SCLK in DAL's minimum clocks
4088 * in case DeepSleep divider update is required.
4089 */
4090 if (data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR &&
4091 (min_clocks.engineClockInSR >= SMU7_MINIMUM_ENGINE_CLOCK ||
4092 data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK))
4093 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK;
4094 }
4095
4096 for (i = 0; i < mclk_table->count; i++) {
4097 if (mclk == mclk_table->dpm_levels[i].value)
4098 break;
4099 }
4100
4101 if (i >= mclk_table->count) {
4102 if (mclk > mclk_table->dpm_levels[i-1].value) {
4103 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK;
4104 mclk_table->dpm_levels[i-1].value = mclk;
4105 }
4106 }
4107
4108 if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
4109 data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK;
4110
4111 return 0;
4112 }
4113
smu7_get_maximum_link_speed(struct pp_hwmgr * hwmgr,const struct smu7_power_state * smu7_ps)4114 static uint16_t smu7_get_maximum_link_speed(struct pp_hwmgr *hwmgr,
4115 const struct smu7_power_state *smu7_ps)
4116 {
4117 uint32_t i;
4118 uint32_t sclk, max_sclk = 0;
4119 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4120 struct smu7_dpm_table *dpm_table = &data->dpm_table;
4121
4122 for (i = 0; i < smu7_ps->performance_level_count; i++) {
4123 sclk = smu7_ps->performance_levels[i].engine_clock;
4124 if (max_sclk < sclk)
4125 max_sclk = sclk;
4126 }
4127
4128 for (i = 0; i < dpm_table->sclk_table.count; i++) {
4129 if (dpm_table->sclk_table.dpm_levels[i].value == max_sclk)
4130 return (uint16_t) ((i >= dpm_table->pcie_speed_table.count) ?
4131 dpm_table->pcie_speed_table.dpm_levels
4132 [dpm_table->pcie_speed_table.count - 1].value :
4133 dpm_table->pcie_speed_table.dpm_levels[i].value);
4134 }
4135
4136 return 0;
4137 }
4138
smu7_request_link_speed_change_before_state_change(struct pp_hwmgr * hwmgr,const void * input)4139 static int smu7_request_link_speed_change_before_state_change(
4140 struct pp_hwmgr *hwmgr, const void *input)
4141 {
4142 const struct phm_set_power_state_input *states =
4143 (const struct phm_set_power_state_input *)input;
4144 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4145 const struct smu7_power_state *smu7_nps =
4146 cast_const_phw_smu7_power_state(states->pnew_state);
4147 const struct smu7_power_state *polaris10_cps =
4148 cast_const_phw_smu7_power_state(states->pcurrent_state);
4149
4150 uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_nps);
4151 uint16_t current_link_speed;
4152
4153 if (data->force_pcie_gen == PP_PCIEGenInvalid)
4154 current_link_speed = smu7_get_maximum_link_speed(hwmgr, polaris10_cps);
4155 else
4156 current_link_speed = data->force_pcie_gen;
4157
4158 data->force_pcie_gen = PP_PCIEGenInvalid;
4159 data->pspp_notify_required = false;
4160
4161 if (target_link_speed > current_link_speed) {
4162 switch (target_link_speed) {
4163 #ifdef CONFIG_ACPI
4164 case PP_PCIEGen3:
4165 if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN3, false))
4166 break;
4167 data->force_pcie_gen = PP_PCIEGen2;
4168 if (current_link_speed == PP_PCIEGen2)
4169 break;
4170 fallthrough;
4171 case PP_PCIEGen2:
4172 if (0 == amdgpu_acpi_pcie_performance_request(hwmgr->adev, PCIE_PERF_REQ_GEN2, false))
4173 break;
4174 fallthrough;
4175 #endif
4176 default:
4177 data->force_pcie_gen = smu7_get_current_pcie_speed(hwmgr);
4178 break;
4179 }
4180 } else {
4181 if (target_link_speed < current_link_speed)
4182 data->pspp_notify_required = true;
4183 }
4184
4185 return 0;
4186 }
4187
smu7_freeze_sclk_mclk_dpm(struct pp_hwmgr * hwmgr)4188 static int smu7_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4189 {
4190 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4191
4192 if (0 == data->need_update_smu7_dpm_table)
4193 return 0;
4194
4195 if ((0 == data->sclk_dpm_key_disabled) &&
4196 (data->need_update_smu7_dpm_table &
4197 (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK))) {
4198 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
4199 "Trying to freeze SCLK DPM when DPM is disabled",
4200 );
4201 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
4202 PPSMC_MSG_SCLKDPM_FreezeLevel,
4203 NULL),
4204 "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!",
4205 return -EINVAL);
4206 }
4207
4208 if ((0 == data->mclk_dpm_key_disabled) &&
4209 !data->mclk_ignore_signal &&
4210 (data->need_update_smu7_dpm_table &
4211 DPMTABLE_OD_UPDATE_MCLK)) {
4212 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
4213 "Trying to freeze MCLK DPM when DPM is disabled",
4214 );
4215 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
4216 PPSMC_MSG_MCLKDPM_FreezeLevel,
4217 NULL),
4218 "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!",
4219 return -EINVAL);
4220 }
4221
4222 return 0;
4223 }
4224
smu7_populate_and_upload_sclk_mclk_dpm_levels(struct pp_hwmgr * hwmgr,const void * input)4225 static int smu7_populate_and_upload_sclk_mclk_dpm_levels(
4226 struct pp_hwmgr *hwmgr, const void *input)
4227 {
4228 int result = 0;
4229 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4230 struct smu7_dpm_table *dpm_table = &data->dpm_table;
4231 uint32_t count;
4232 struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
4233 struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels);
4234 struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels);
4235
4236 if (0 == data->need_update_smu7_dpm_table)
4237 return 0;
4238
4239 if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) {
4240 for (count = 0; count < dpm_table->sclk_table.count; count++) {
4241 dpm_table->sclk_table.dpm_levels[count].enabled = odn_sclk_table->entries[count].enabled;
4242 dpm_table->sclk_table.dpm_levels[count].value = odn_sclk_table->entries[count].clock;
4243 }
4244 }
4245
4246 if (hwmgr->od_enabled && data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) {
4247 for (count = 0; count < dpm_table->mclk_table.count; count++) {
4248 dpm_table->mclk_table.dpm_levels[count].enabled = odn_mclk_table->entries[count].enabled;
4249 dpm_table->mclk_table.dpm_levels[count].value = odn_mclk_table->entries[count].clock;
4250 }
4251 }
4252
4253 if (data->need_update_smu7_dpm_table &
4254 (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK)) {
4255 result = smum_populate_all_graphic_levels(hwmgr);
4256 PP_ASSERT_WITH_CODE((0 == result),
4257 "Failed to populate SCLK during PopulateNewDPMClocksStates Function!",
4258 return result);
4259 }
4260
4261 if (data->need_update_smu7_dpm_table &
4262 (DPMTABLE_OD_UPDATE_MCLK | DPMTABLE_UPDATE_MCLK)) {
4263 /*populate MCLK dpm table to SMU7 */
4264 result = smum_populate_all_memory_levels(hwmgr);
4265 PP_ASSERT_WITH_CODE((0 == result),
4266 "Failed to populate MCLK during PopulateNewDPMClocksStates Function!",
4267 return result);
4268 }
4269
4270 return result;
4271 }
4272
smu7_trim_single_dpm_states(struct pp_hwmgr * hwmgr,struct smu7_single_dpm_table * dpm_table,uint32_t low_limit,uint32_t high_limit)4273 static int smu7_trim_single_dpm_states(struct pp_hwmgr *hwmgr,
4274 struct smu7_single_dpm_table *dpm_table,
4275 uint32_t low_limit, uint32_t high_limit)
4276 {
4277 uint32_t i;
4278
4279 /* force the trim if mclk_switching is disabled to prevent flicker */
4280 bool force_trim = (low_limit == high_limit);
4281 for (i = 0; i < dpm_table->count; i++) {
4282 /*skip the trim if od is enabled*/
4283 if ((!hwmgr->od_enabled || force_trim)
4284 && (dpm_table->dpm_levels[i].value < low_limit
4285 || dpm_table->dpm_levels[i].value > high_limit))
4286 dpm_table->dpm_levels[i].enabled = false;
4287 else
4288 dpm_table->dpm_levels[i].enabled = true;
4289 }
4290
4291 return 0;
4292 }
4293
smu7_trim_dpm_states(struct pp_hwmgr * hwmgr,const struct smu7_power_state * smu7_ps)4294 static int smu7_trim_dpm_states(struct pp_hwmgr *hwmgr,
4295 const struct smu7_power_state *smu7_ps)
4296 {
4297 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4298 uint32_t high_limit_count;
4299
4300 PP_ASSERT_WITH_CODE((smu7_ps->performance_level_count >= 1),
4301 "power state did not have any performance level",
4302 return -EINVAL);
4303
4304 high_limit_count = (1 == smu7_ps->performance_level_count) ? 0 : 1;
4305
4306 smu7_trim_single_dpm_states(hwmgr,
4307 &(data->dpm_table.sclk_table),
4308 smu7_ps->performance_levels[0].engine_clock,
4309 smu7_ps->performance_levels[high_limit_count].engine_clock);
4310
4311 smu7_trim_single_dpm_states(hwmgr,
4312 &(data->dpm_table.mclk_table),
4313 smu7_ps->performance_levels[0].memory_clock,
4314 smu7_ps->performance_levels[high_limit_count].memory_clock);
4315
4316 return 0;
4317 }
4318
smu7_generate_dpm_level_enable_mask(struct pp_hwmgr * hwmgr,const void * input)4319 static int smu7_generate_dpm_level_enable_mask(
4320 struct pp_hwmgr *hwmgr, const void *input)
4321 {
4322 int result = 0;
4323 const struct phm_set_power_state_input *states =
4324 (const struct phm_set_power_state_input *)input;
4325 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4326 const struct smu7_power_state *smu7_ps =
4327 cast_const_phw_smu7_power_state(states->pnew_state);
4328
4329
4330 result = smu7_trim_dpm_states(hwmgr, smu7_ps);
4331 if (result)
4332 return result;
4333
4334 data->dpm_level_enable_mask.sclk_dpm_enable_mask =
4335 phm_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table);
4336 data->dpm_level_enable_mask.mclk_dpm_enable_mask =
4337 phm_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table);
4338 data->dpm_level_enable_mask.pcie_dpm_enable_mask =
4339 phm_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table);
4340
4341 return 0;
4342 }
4343
smu7_unfreeze_sclk_mclk_dpm(struct pp_hwmgr * hwmgr)4344 static int smu7_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr)
4345 {
4346 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4347
4348 if (0 == data->need_update_smu7_dpm_table)
4349 return 0;
4350
4351 if ((0 == data->sclk_dpm_key_disabled) &&
4352 (data->need_update_smu7_dpm_table &
4353 (DPMTABLE_OD_UPDATE_SCLK | DPMTABLE_UPDATE_SCLK))) {
4354
4355 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
4356 "Trying to Unfreeze SCLK DPM when DPM is disabled",
4357 );
4358 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
4359 PPSMC_MSG_SCLKDPM_UnfreezeLevel,
4360 NULL),
4361 "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!",
4362 return -EINVAL);
4363 }
4364
4365 if ((0 == data->mclk_dpm_key_disabled) &&
4366 !data->mclk_ignore_signal &&
4367 (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) {
4368
4369 PP_ASSERT_WITH_CODE(true == smum_is_dpm_running(hwmgr),
4370 "Trying to Unfreeze MCLK DPM when DPM is disabled",
4371 );
4372 PP_ASSERT_WITH_CODE(0 == smum_send_msg_to_smc(hwmgr,
4373 PPSMC_MSG_MCLKDPM_UnfreezeLevel,
4374 NULL),
4375 "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!",
4376 return -EINVAL);
4377 }
4378
4379 data->need_update_smu7_dpm_table &= DPMTABLE_OD_UPDATE_VDDC;
4380
4381 return 0;
4382 }
4383
smu7_notify_link_speed_change_after_state_change(struct pp_hwmgr * hwmgr,const void * input)4384 static int smu7_notify_link_speed_change_after_state_change(
4385 struct pp_hwmgr *hwmgr, const void *input)
4386 {
4387 const struct phm_set_power_state_input *states =
4388 (const struct phm_set_power_state_input *)input;
4389 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4390 const struct smu7_power_state *smu7_ps =
4391 cast_const_phw_smu7_power_state(states->pnew_state);
4392 uint16_t target_link_speed = smu7_get_maximum_link_speed(hwmgr, smu7_ps);
4393 uint8_t request;
4394
4395 if (data->pspp_notify_required) {
4396 if (target_link_speed == PP_PCIEGen3)
4397 request = PCIE_PERF_REQ_GEN3;
4398 else if (target_link_speed == PP_PCIEGen2)
4399 request = PCIE_PERF_REQ_GEN2;
4400 else
4401 request = PCIE_PERF_REQ_GEN1;
4402
4403 if (request == PCIE_PERF_REQ_GEN1 &&
4404 smu7_get_current_pcie_speed(hwmgr) > 0)
4405 return 0;
4406
4407 #ifdef CONFIG_ACPI
4408 if (amdgpu_acpi_pcie_performance_request(hwmgr->adev, request, false)) {
4409 if (PP_PCIEGen2 == target_link_speed)
4410 pr_info("PSPP request to switch to Gen2 from Gen3 Failed!");
4411 else
4412 pr_info("PSPP request to switch to Gen1 from Gen2 Failed!");
4413 }
4414 #endif
4415 }
4416
4417 return 0;
4418 }
4419
smu7_notify_no_display(struct pp_hwmgr * hwmgr)4420 static int smu7_notify_no_display(struct pp_hwmgr *hwmgr)
4421 {
4422 return (smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_NoDisplay, NULL) == 0) ? 0 : -EINVAL;
4423 }
4424
smu7_notify_has_display(struct pp_hwmgr * hwmgr)4425 static int smu7_notify_has_display(struct pp_hwmgr *hwmgr)
4426 {
4427 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4428
4429 if (hwmgr->feature_mask & PP_VBI_TIME_SUPPORT_MASK) {
4430 if (hwmgr->chip_id == CHIP_VEGAM)
4431 smum_send_msg_to_smc_with_parameter(hwmgr,
4432 (PPSMC_Msg)PPSMC_MSG_SetVBITimeout_VEGAM, data->frame_time_x2,
4433 NULL);
4434 else
4435 smum_send_msg_to_smc_with_parameter(hwmgr,
4436 (PPSMC_Msg)PPSMC_MSG_SetVBITimeout, data->frame_time_x2,
4437 NULL);
4438 data->last_sent_vbi_timeout = data->frame_time_x2;
4439 }
4440
4441 return (smum_send_msg_to_smc(hwmgr, (PPSMC_Msg)PPSMC_HasDisplay, NULL) == 0) ? 0 : -EINVAL;
4442 }
4443
smu7_notify_smc_display(struct pp_hwmgr * hwmgr)4444 static int smu7_notify_smc_display(struct pp_hwmgr *hwmgr)
4445 {
4446 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4447 int result = 0;
4448
4449 if (data->mclk_ignore_signal)
4450 result = smu7_notify_no_display(hwmgr);
4451 else
4452 result = smu7_notify_has_display(hwmgr);
4453
4454 return result;
4455 }
4456
smu7_set_power_state_tasks(struct pp_hwmgr * hwmgr,const void * input)4457 static int smu7_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input)
4458 {
4459 int tmp_result, result = 0;
4460 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4461
4462 tmp_result = smu7_find_dpm_states_clocks_in_dpm_table(hwmgr, input);
4463 PP_ASSERT_WITH_CODE((0 == tmp_result),
4464 "Failed to find DPM states clocks in DPM table!",
4465 result = tmp_result);
4466
4467 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4468 PHM_PlatformCaps_PCIEPerformanceRequest)) {
4469 tmp_result =
4470 smu7_request_link_speed_change_before_state_change(hwmgr, input);
4471 PP_ASSERT_WITH_CODE((0 == tmp_result),
4472 "Failed to request link speed change before state change!",
4473 result = tmp_result);
4474 }
4475
4476 tmp_result = smu7_freeze_sclk_mclk_dpm(hwmgr);
4477 PP_ASSERT_WITH_CODE((0 == tmp_result),
4478 "Failed to freeze SCLK MCLK DPM!", result = tmp_result);
4479
4480 tmp_result = smu7_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input);
4481 PP_ASSERT_WITH_CODE((0 == tmp_result),
4482 "Failed to populate and upload SCLK MCLK DPM levels!",
4483 result = tmp_result);
4484
4485 /*
4486 * If a custom pp table is loaded, set DPMTABLE_OD_UPDATE_VDDC flag.
4487 * That effectively disables AVFS feature.
4488 */
4489 if (hwmgr->hardcode_pp_table != NULL)
4490 data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_VDDC;
4491
4492 tmp_result = smu7_update_avfs(hwmgr);
4493 PP_ASSERT_WITH_CODE((0 == tmp_result),
4494 "Failed to update avfs voltages!",
4495 result = tmp_result);
4496
4497 tmp_result = smu7_generate_dpm_level_enable_mask(hwmgr, input);
4498 PP_ASSERT_WITH_CODE((0 == tmp_result),
4499 "Failed to generate DPM level enabled mask!",
4500 result = tmp_result);
4501
4502 tmp_result = smum_update_sclk_threshold(hwmgr);
4503 PP_ASSERT_WITH_CODE((0 == tmp_result),
4504 "Failed to update SCLK threshold!",
4505 result = tmp_result);
4506
4507 tmp_result = smu7_unfreeze_sclk_mclk_dpm(hwmgr);
4508 PP_ASSERT_WITH_CODE((0 == tmp_result),
4509 "Failed to unfreeze SCLK MCLK DPM!",
4510 result = tmp_result);
4511
4512 tmp_result = smu7_upload_dpm_level_enable_mask(hwmgr);
4513 PP_ASSERT_WITH_CODE((0 == tmp_result),
4514 "Failed to upload DPM level enabled mask!",
4515 result = tmp_result);
4516
4517 tmp_result = smu7_notify_smc_display(hwmgr);
4518 PP_ASSERT_WITH_CODE((0 == tmp_result),
4519 "Failed to notify smc display settings!",
4520 result = tmp_result);
4521
4522 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
4523 PHM_PlatformCaps_PCIEPerformanceRequest)) {
4524 tmp_result =
4525 smu7_notify_link_speed_change_after_state_change(hwmgr, input);
4526 PP_ASSERT_WITH_CODE((0 == tmp_result),
4527 "Failed to notify link speed change after state change!",
4528 result = tmp_result);
4529 }
4530 data->apply_optimized_settings = false;
4531 return result;
4532 }
4533
smu7_set_max_fan_pwm_output(struct pp_hwmgr * hwmgr,uint16_t us_max_fan_pwm)4534 static int smu7_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm)
4535 {
4536 hwmgr->thermal_controller.
4537 advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm;
4538
4539 return smum_send_msg_to_smc_with_parameter(hwmgr,
4540 PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm,
4541 NULL);
4542 }
4543
4544 static int
smu7_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr * hwmgr)4545 smu7_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr)
4546 {
4547 return 0;
4548 }
4549
4550 /**
4551 * smu7_program_display_gap - Programs the display gap
4552 *
4553 * @hwmgr: the address of the powerplay hardware manager.
4554 * Return: always OK
4555 */
smu7_program_display_gap(struct pp_hwmgr * hwmgr)4556 static int smu7_program_display_gap(struct pp_hwmgr *hwmgr)
4557 {
4558 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4559 uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL);
4560 uint32_t display_gap2;
4561 uint32_t pre_vbi_time_in_us;
4562 uint32_t frame_time_in_us;
4563 uint32_t ref_clock, refresh_rate;
4564
4565 display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (hwmgr->display_config->num_display > 0) ? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE);
4566 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap);
4567
4568 ref_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
4569 refresh_rate = hwmgr->display_config->vrefresh;
4570
4571 if (0 == refresh_rate)
4572 refresh_rate = 60;
4573
4574 frame_time_in_us = 1000000 / refresh_rate;
4575
4576 pre_vbi_time_in_us = frame_time_in_us - 200 - hwmgr->display_config->min_vblank_time;
4577
4578 data->frame_time_x2 = frame_time_in_us * 2 / 100;
4579
4580 if (data->frame_time_x2 < 280) {
4581 pr_debug("%s: enforce minimal VBITimeout: %d -> 280\n", __func__, data->frame_time_x2);
4582 data->frame_time_x2 = 280;
4583 }
4584
4585 display_gap2 = pre_vbi_time_in_us * (ref_clock / 100);
4586
4587 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2);
4588
4589 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4590 data->soft_regs_start + smum_get_offsetof(hwmgr,
4591 SMU_SoftRegisters,
4592 PreVBlankGap), 0x64);
4593
4594 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
4595 data->soft_regs_start + smum_get_offsetof(hwmgr,
4596 SMU_SoftRegisters,
4597 VBlankTimeout),
4598 (frame_time_in_us - pre_vbi_time_in_us));
4599
4600 return 0;
4601 }
4602
smu7_display_configuration_changed_task(struct pp_hwmgr * hwmgr)4603 static int smu7_display_configuration_changed_task(struct pp_hwmgr *hwmgr)
4604 {
4605 return smu7_program_display_gap(hwmgr);
4606 }
4607
4608 /**
4609 * smu7_set_max_fan_rpm_output - Set maximum target operating fan output RPM
4610 *
4611 * @hwmgr: the address of the powerplay hardware manager.
4612 * @us_max_fan_rpm: max operating fan RPM value.
4613 * Return: The response that came from the SMC.
4614 */
smu7_set_max_fan_rpm_output(struct pp_hwmgr * hwmgr,uint16_t us_max_fan_rpm)4615 static int smu7_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_rpm)
4616 {
4617 hwmgr->thermal_controller.
4618 advanceFanControlParameters.usMaxFanRPM = us_max_fan_rpm;
4619
4620 return smum_send_msg_to_smc_with_parameter(hwmgr,
4621 PPSMC_MSG_SetFanRpmMax, us_max_fan_rpm,
4622 NULL);
4623 }
4624
4625 static const struct amdgpu_irq_src_funcs smu7_irq_funcs = {
4626 .process = phm_irq_process,
4627 };
4628
smu7_register_irq_handlers(struct pp_hwmgr * hwmgr)4629 static int smu7_register_irq_handlers(struct pp_hwmgr *hwmgr)
4630 {
4631 struct amdgpu_irq_src *source =
4632 kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
4633
4634 if (!source)
4635 return -ENOMEM;
4636
4637 source->funcs = &smu7_irq_funcs;
4638
4639 amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
4640 AMDGPU_IRQ_CLIENTID_LEGACY,
4641 VISLANDS30_IV_SRCID_CG_TSS_THERMAL_LOW_TO_HIGH,
4642 source);
4643 amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
4644 AMDGPU_IRQ_CLIENTID_LEGACY,
4645 VISLANDS30_IV_SRCID_CG_TSS_THERMAL_HIGH_TO_LOW,
4646 source);
4647
4648 /* Register CTF(GPIO_19) interrupt */
4649 amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
4650 AMDGPU_IRQ_CLIENTID_LEGACY,
4651 VISLANDS30_IV_SRCID_GPIO_19,
4652 source);
4653
4654 return 0;
4655 }
4656
4657 static bool
smu7_check_smc_update_required_for_display_configuration(struct pp_hwmgr * hwmgr)4658 smu7_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr)
4659 {
4660 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4661 bool is_update_required = false;
4662
4663 if (data->display_timing.num_existing_displays != hwmgr->display_config->num_display)
4664 is_update_required = true;
4665
4666 if (data->display_timing.vrefresh != hwmgr->display_config->vrefresh)
4667 is_update_required = true;
4668
4669 if (hwmgr->chip_id >= CHIP_POLARIS10 &&
4670 hwmgr->chip_id <= CHIP_VEGAM &&
4671 data->last_sent_vbi_timeout != data->frame_time_x2)
4672 is_update_required = true;
4673
4674 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) {
4675 if (data->display_timing.min_clock_in_sr != hwmgr->display_config->min_core_set_clock_in_sr &&
4676 (data->display_timing.min_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK ||
4677 hwmgr->display_config->min_core_set_clock_in_sr >= SMU7_MINIMUM_ENGINE_CLOCK))
4678 is_update_required = true;
4679 }
4680 return is_update_required;
4681 }
4682
smu7_are_power_levels_equal(const struct smu7_performance_level * pl1,const struct smu7_performance_level * pl2)4683 static inline bool smu7_are_power_levels_equal(const struct smu7_performance_level *pl1,
4684 const struct smu7_performance_level *pl2)
4685 {
4686 return ((pl1->memory_clock == pl2->memory_clock) &&
4687 (pl1->engine_clock == pl2->engine_clock) &&
4688 (pl1->pcie_gen == pl2->pcie_gen) &&
4689 (pl1->pcie_lane == pl2->pcie_lane));
4690 }
4691
smu7_check_states_equal(struct pp_hwmgr * hwmgr,const struct pp_hw_power_state * pstate1,const struct pp_hw_power_state * pstate2,bool * equal)4692 static int smu7_check_states_equal(struct pp_hwmgr *hwmgr,
4693 const struct pp_hw_power_state *pstate1,
4694 const struct pp_hw_power_state *pstate2, bool *equal)
4695 {
4696 const struct smu7_power_state *psa;
4697 const struct smu7_power_state *psb;
4698 int i;
4699 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4700
4701 if (pstate1 == NULL || pstate2 == NULL || equal == NULL)
4702 return -EINVAL;
4703
4704 psa = cast_const_phw_smu7_power_state(pstate1);
4705 psb = cast_const_phw_smu7_power_state(pstate2);
4706 /* If the two states don't even have the same number of performance levels they cannot be the same state. */
4707 if (psa->performance_level_count != psb->performance_level_count) {
4708 *equal = false;
4709 return 0;
4710 }
4711
4712 for (i = 0; i < psa->performance_level_count; i++) {
4713 if (!smu7_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) {
4714 /* If we have found even one performance level pair that is different the states are different. */
4715 *equal = false;
4716 return 0;
4717 }
4718 }
4719
4720 /* If all performance levels are the same try to use the UVD clocks to break the tie.*/
4721 *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk));
4722 *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk));
4723 *equal &= (psa->sclk_threshold == psb->sclk_threshold);
4724 /* For OD call, set value based on flag */
4725 *equal &= !(data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK |
4726 DPMTABLE_OD_UPDATE_MCLK |
4727 DPMTABLE_OD_UPDATE_VDDC));
4728
4729 return 0;
4730 }
4731
smu7_check_mc_firmware(struct pp_hwmgr * hwmgr)4732 static int smu7_check_mc_firmware(struct pp_hwmgr *hwmgr)
4733 {
4734 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4735
4736 uint32_t tmp;
4737
4738 /* Read MC indirect register offset 0x9F bits [3:0] to see
4739 * if VBIOS has already loaded a full version of MC ucode
4740 * or not.
4741 */
4742
4743 smu7_get_mc_microcode_version(hwmgr);
4744
4745 data->need_long_memory_training = false;
4746
4747 cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX,
4748 ixMC_IO_DEBUG_UP_13);
4749 tmp = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA);
4750
4751 if (tmp & (1 << 23)) {
4752 data->mem_latency_high = MEM_LATENCY_HIGH;
4753 data->mem_latency_low = MEM_LATENCY_LOW;
4754 if ((hwmgr->chip_id == CHIP_POLARIS10) ||
4755 (hwmgr->chip_id == CHIP_POLARIS11) ||
4756 (hwmgr->chip_id == CHIP_POLARIS12))
4757 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableFFC, NULL);
4758 } else {
4759 data->mem_latency_high = 330;
4760 data->mem_latency_low = 330;
4761 if ((hwmgr->chip_id == CHIP_POLARIS10) ||
4762 (hwmgr->chip_id == CHIP_POLARIS11) ||
4763 (hwmgr->chip_id == CHIP_POLARIS12))
4764 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_DisableFFC, NULL);
4765 }
4766
4767 return 0;
4768 }
4769
smu7_read_clock_registers(struct pp_hwmgr * hwmgr)4770 static int smu7_read_clock_registers(struct pp_hwmgr *hwmgr)
4771 {
4772 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4773
4774 data->clock_registers.vCG_SPLL_FUNC_CNTL =
4775 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL);
4776 data->clock_registers.vCG_SPLL_FUNC_CNTL_2 =
4777 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2);
4778 data->clock_registers.vCG_SPLL_FUNC_CNTL_3 =
4779 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3);
4780 data->clock_registers.vCG_SPLL_FUNC_CNTL_4 =
4781 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4);
4782 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM =
4783 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM);
4784 data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 =
4785 cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2);
4786 data->clock_registers.vDLL_CNTL =
4787 cgs_read_register(hwmgr->device, mmDLL_CNTL);
4788 data->clock_registers.vMCLK_PWRMGT_CNTL =
4789 cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL);
4790 data->clock_registers.vMPLL_AD_FUNC_CNTL =
4791 cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL);
4792 data->clock_registers.vMPLL_DQ_FUNC_CNTL =
4793 cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL);
4794 data->clock_registers.vMPLL_FUNC_CNTL =
4795 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL);
4796 data->clock_registers.vMPLL_FUNC_CNTL_1 =
4797 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1);
4798 data->clock_registers.vMPLL_FUNC_CNTL_2 =
4799 cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2);
4800 data->clock_registers.vMPLL_SS1 =
4801 cgs_read_register(hwmgr->device, mmMPLL_SS1);
4802 data->clock_registers.vMPLL_SS2 =
4803 cgs_read_register(hwmgr->device, mmMPLL_SS2);
4804 return 0;
4805
4806 }
4807
4808 /**
4809 * smu7_get_memory_type - Find out if memory is GDDR5.
4810 *
4811 * @hwmgr: the address of the powerplay hardware manager.
4812 * Return: always 0
4813 */
smu7_get_memory_type(struct pp_hwmgr * hwmgr)4814 static int smu7_get_memory_type(struct pp_hwmgr *hwmgr)
4815 {
4816 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4817 struct amdgpu_device *adev = hwmgr->adev;
4818
4819 data->is_memory_gddr5 = (adev->gmc.vram_type == AMDGPU_VRAM_TYPE_GDDR5);
4820
4821 return 0;
4822 }
4823
4824 /**
4825 * smu7_enable_acpi_power_management - Enables Dynamic Power Management by SMC
4826 *
4827 * @hwmgr: the address of the powerplay hardware manager.
4828 * Return: always 0
4829 */
smu7_enable_acpi_power_management(struct pp_hwmgr * hwmgr)4830 static int smu7_enable_acpi_power_management(struct pp_hwmgr *hwmgr)
4831 {
4832 PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
4833 GENERAL_PWRMGT, STATIC_PM_EN, 1);
4834
4835 return 0;
4836 }
4837
4838 /**
4839 * smu7_init_power_gate_state - Initialize PowerGating States for different engines
4840 *
4841 * @hwmgr: the address of the powerplay hardware manager.
4842 * Return: always 0
4843 */
smu7_init_power_gate_state(struct pp_hwmgr * hwmgr)4844 static int smu7_init_power_gate_state(struct pp_hwmgr *hwmgr)
4845 {
4846 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4847
4848 data->uvd_power_gated = false;
4849 data->vce_power_gated = false;
4850
4851 return 0;
4852 }
4853
smu7_init_sclk_threshold(struct pp_hwmgr * hwmgr)4854 static int smu7_init_sclk_threshold(struct pp_hwmgr *hwmgr)
4855 {
4856 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4857
4858 data->low_sclk_interrupt_threshold = 0;
4859 return 0;
4860 }
4861
smu7_setup_asic_task(struct pp_hwmgr * hwmgr)4862 static int smu7_setup_asic_task(struct pp_hwmgr *hwmgr)
4863 {
4864 int tmp_result, result = 0;
4865
4866 smu7_check_mc_firmware(hwmgr);
4867
4868 tmp_result = smu7_read_clock_registers(hwmgr);
4869 PP_ASSERT_WITH_CODE((0 == tmp_result),
4870 "Failed to read clock registers!", result = tmp_result);
4871
4872 tmp_result = smu7_get_memory_type(hwmgr);
4873 PP_ASSERT_WITH_CODE((0 == tmp_result),
4874 "Failed to get memory type!", result = tmp_result);
4875
4876 tmp_result = smu7_enable_acpi_power_management(hwmgr);
4877 PP_ASSERT_WITH_CODE((0 == tmp_result),
4878 "Failed to enable ACPI power management!", result = tmp_result);
4879
4880 tmp_result = smu7_init_power_gate_state(hwmgr);
4881 PP_ASSERT_WITH_CODE((0 == tmp_result),
4882 "Failed to init power gate state!", result = tmp_result);
4883
4884 tmp_result = smu7_get_mc_microcode_version(hwmgr);
4885 PP_ASSERT_WITH_CODE((0 == tmp_result),
4886 "Failed to get MC microcode version!", result = tmp_result);
4887
4888 tmp_result = smu7_init_sclk_threshold(hwmgr);
4889 PP_ASSERT_WITH_CODE((0 == tmp_result),
4890 "Failed to init sclk threshold!", result = tmp_result);
4891
4892 return result;
4893 }
4894
smu7_force_clock_level(struct pp_hwmgr * hwmgr,enum pp_clock_type type,uint32_t mask)4895 static int smu7_force_clock_level(struct pp_hwmgr *hwmgr,
4896 enum pp_clock_type type, uint32_t mask)
4897 {
4898 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4899
4900 if (mask == 0)
4901 return -EINVAL;
4902
4903 switch (type) {
4904 case PP_SCLK:
4905 if (!data->sclk_dpm_key_disabled)
4906 smum_send_msg_to_smc_with_parameter(hwmgr,
4907 PPSMC_MSG_SCLKDPM_SetEnabledMask,
4908 data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask,
4909 NULL);
4910 break;
4911 case PP_MCLK:
4912 if (!data->mclk_dpm_key_disabled)
4913 smum_send_msg_to_smc_with_parameter(hwmgr,
4914 PPSMC_MSG_MCLKDPM_SetEnabledMask,
4915 data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask,
4916 NULL);
4917 break;
4918 case PP_PCIE:
4919 {
4920 uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask;
4921
4922 if (!data->pcie_dpm_key_disabled) {
4923 if (fls(tmp) != ffs(tmp))
4924 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_PCIeDPM_UnForceLevel,
4925 NULL);
4926 else
4927 smum_send_msg_to_smc_with_parameter(hwmgr,
4928 PPSMC_MSG_PCIeDPM_ForceLevel,
4929 fls(tmp) - 1,
4930 NULL);
4931 }
4932 break;
4933 }
4934 default:
4935 break;
4936 }
4937
4938 return 0;
4939 }
4940
smu7_print_clock_levels(struct pp_hwmgr * hwmgr,enum pp_clock_type type,char * buf)4941 static int smu7_print_clock_levels(struct pp_hwmgr *hwmgr,
4942 enum pp_clock_type type, char *buf)
4943 {
4944 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
4945 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
4946 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
4947 struct smu7_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table);
4948 struct smu7_odn_dpm_table *odn_table = &(data->odn_dpm_table);
4949 struct phm_odn_clock_levels *odn_sclk_table = &(odn_table->odn_core_clock_dpm_levels);
4950 struct phm_odn_clock_levels *odn_mclk_table = &(odn_table->odn_memory_clock_dpm_levels);
4951 int size = 0;
4952 uint32_t i, now, clock, pcie_speed;
4953
4954 switch (type) {
4955 case PP_SCLK:
4956 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetSclkFrequency, &clock);
4957
4958 for (i = 0; i < sclk_table->count; i++) {
4959 if (clock > sclk_table->dpm_levels[i].value)
4960 continue;
4961 break;
4962 }
4963 now = i;
4964
4965 for (i = 0; i < sclk_table->count; i++)
4966 size += sprintf(buf + size, "%d: %uMhz %s\n",
4967 i, sclk_table->dpm_levels[i].value / 100,
4968 (i == now) ? "*" : "");
4969 break;
4970 case PP_MCLK:
4971 smum_send_msg_to_smc(hwmgr, PPSMC_MSG_API_GetMclkFrequency, &clock);
4972
4973 for (i = 0; i < mclk_table->count; i++) {
4974 if (clock > mclk_table->dpm_levels[i].value)
4975 continue;
4976 break;
4977 }
4978 now = i;
4979
4980 for (i = 0; i < mclk_table->count; i++)
4981 size += sprintf(buf + size, "%d: %uMhz %s\n",
4982 i, mclk_table->dpm_levels[i].value / 100,
4983 (i == now) ? "*" : "");
4984 break;
4985 case PP_PCIE:
4986 pcie_speed = smu7_get_current_pcie_speed(hwmgr);
4987 for (i = 0; i < pcie_table->count; i++) {
4988 if (pcie_speed != pcie_table->dpm_levels[i].value)
4989 continue;
4990 break;
4991 }
4992 now = i;
4993
4994 for (i = 0; i < pcie_table->count; i++)
4995 size += sprintf(buf + size, "%d: %s %s\n", i,
4996 (pcie_table->dpm_levels[i].value == 0) ? "2.5GT/s, x8" :
4997 (pcie_table->dpm_levels[i].value == 1) ? "5.0GT/s, x16" :
4998 (pcie_table->dpm_levels[i].value == 2) ? "8.0GT/s, x16" : "",
4999 (i == now) ? "*" : "");
5000 break;
5001 case OD_SCLK:
5002 if (hwmgr->od_enabled) {
5003 size += sprintf(buf + size, "%s:\n", "OD_SCLK");
5004 for (i = 0; i < odn_sclk_table->num_of_pl; i++)
5005 size += sprintf(buf + size, "%d: %10uMHz %10umV\n",
5006 i, odn_sclk_table->entries[i].clock/100,
5007 odn_sclk_table->entries[i].vddc);
5008 }
5009 break;
5010 case OD_MCLK:
5011 if (hwmgr->od_enabled) {
5012 size += sprintf(buf + size, "%s:\n", "OD_MCLK");
5013 for (i = 0; i < odn_mclk_table->num_of_pl; i++)
5014 size += sprintf(buf + size, "%d: %10uMHz %10umV\n",
5015 i, odn_mclk_table->entries[i].clock/100,
5016 odn_mclk_table->entries[i].vddc);
5017 }
5018 break;
5019 case OD_RANGE:
5020 if (hwmgr->od_enabled) {
5021 size += sprintf(buf + size, "%s:\n", "OD_RANGE");
5022 size += sprintf(buf + size, "SCLK: %7uMHz %10uMHz\n",
5023 data->golden_dpm_table.sclk_table.dpm_levels[0].value/100,
5024 hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
5025 size += sprintf(buf + size, "MCLK: %7uMHz %10uMHz\n",
5026 data->golden_dpm_table.mclk_table.dpm_levels[0].value/100,
5027 hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
5028 size += sprintf(buf + size, "VDDC: %7umV %11umV\n",
5029 data->odn_dpm_table.min_vddc,
5030 data->odn_dpm_table.max_vddc);
5031 }
5032 break;
5033 default:
5034 break;
5035 }
5036 return size;
5037 }
5038
smu7_set_fan_control_mode(struct pp_hwmgr * hwmgr,uint32_t mode)5039 static void smu7_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode)
5040 {
5041 switch (mode) {
5042 case AMD_FAN_CTRL_NONE:
5043 smu7_fan_ctrl_set_fan_speed_pwm(hwmgr, 255);
5044 break;
5045 case AMD_FAN_CTRL_MANUAL:
5046 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
5047 PHM_PlatformCaps_MicrocodeFanControl))
5048 smu7_fan_ctrl_stop_smc_fan_control(hwmgr);
5049 break;
5050 case AMD_FAN_CTRL_AUTO:
5051 if (!smu7_fan_ctrl_set_static_mode(hwmgr, mode))
5052 smu7_fan_ctrl_start_smc_fan_control(hwmgr);
5053 break;
5054 default:
5055 break;
5056 }
5057 }
5058
smu7_get_fan_control_mode(struct pp_hwmgr * hwmgr)5059 static uint32_t smu7_get_fan_control_mode(struct pp_hwmgr *hwmgr)
5060 {
5061 return hwmgr->fan_ctrl_enabled ? AMD_FAN_CTRL_AUTO : AMD_FAN_CTRL_MANUAL;
5062 }
5063
smu7_get_sclk_od(struct pp_hwmgr * hwmgr)5064 static int smu7_get_sclk_od(struct pp_hwmgr *hwmgr)
5065 {
5066 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5067 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
5068 struct smu7_single_dpm_table *golden_sclk_table =
5069 &(data->golden_dpm_table.sclk_table);
5070 int value = sclk_table->dpm_levels[sclk_table->count - 1].value;
5071 int golden_value = golden_sclk_table->dpm_levels
5072 [golden_sclk_table->count - 1].value;
5073
5074 value -= golden_value;
5075 value = DIV_ROUND_UP(value * 100, golden_value);
5076
5077 return value;
5078 }
5079
smu7_set_sclk_od(struct pp_hwmgr * hwmgr,uint32_t value)5080 static int smu7_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
5081 {
5082 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5083 struct smu7_single_dpm_table *golden_sclk_table =
5084 &(data->golden_dpm_table.sclk_table);
5085 struct pp_power_state *ps;
5086 struct smu7_power_state *smu7_ps;
5087
5088 if (value > 20)
5089 value = 20;
5090
5091 ps = hwmgr->request_ps;
5092
5093 if (ps == NULL)
5094 return -EINVAL;
5095
5096 smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
5097
5098 smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].engine_clock =
5099 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value *
5100 value / 100 +
5101 golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value;
5102
5103 return 0;
5104 }
5105
smu7_get_mclk_od(struct pp_hwmgr * hwmgr)5106 static int smu7_get_mclk_od(struct pp_hwmgr *hwmgr)
5107 {
5108 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5109 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
5110 struct smu7_single_dpm_table *golden_mclk_table =
5111 &(data->golden_dpm_table.mclk_table);
5112 int value = mclk_table->dpm_levels[mclk_table->count - 1].value;
5113 int golden_value = golden_mclk_table->dpm_levels
5114 [golden_mclk_table->count - 1].value;
5115
5116 value -= golden_value;
5117 value = DIV_ROUND_UP(value * 100, golden_value);
5118
5119 return value;
5120 }
5121
smu7_set_mclk_od(struct pp_hwmgr * hwmgr,uint32_t value)5122 static int smu7_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value)
5123 {
5124 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5125 struct smu7_single_dpm_table *golden_mclk_table =
5126 &(data->golden_dpm_table.mclk_table);
5127 struct pp_power_state *ps;
5128 struct smu7_power_state *smu7_ps;
5129
5130 if (value > 20)
5131 value = 20;
5132
5133 ps = hwmgr->request_ps;
5134
5135 if (ps == NULL)
5136 return -EINVAL;
5137
5138 smu7_ps = cast_phw_smu7_power_state(&ps->hardware);
5139
5140 smu7_ps->performance_levels[smu7_ps->performance_level_count - 1].memory_clock =
5141 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value *
5142 value / 100 +
5143 golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value;
5144
5145 return 0;
5146 }
5147
5148
smu7_get_sclks(struct pp_hwmgr * hwmgr,struct amd_pp_clocks * clocks)5149 static int smu7_get_sclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks)
5150 {
5151 struct phm_ppt_v1_information *table_info =
5152 (struct phm_ppt_v1_information *)hwmgr->pptable;
5153 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table = NULL;
5154 struct phm_clock_voltage_dependency_table *sclk_table;
5155 int i;
5156
5157 if (hwmgr->pp_table_version == PP_TABLE_V1) {
5158 if (table_info == NULL || table_info->vdd_dep_on_sclk == NULL)
5159 return -EINVAL;
5160 dep_sclk_table = table_info->vdd_dep_on_sclk;
5161 for (i = 0; i < dep_sclk_table->count; i++)
5162 clocks->clock[i] = dep_sclk_table->entries[i].clk * 10;
5163 clocks->count = dep_sclk_table->count;
5164 } else if (hwmgr->pp_table_version == PP_TABLE_V0) {
5165 sclk_table = hwmgr->dyn_state.vddc_dependency_on_sclk;
5166 for (i = 0; i < sclk_table->count; i++)
5167 clocks->clock[i] = sclk_table->entries[i].clk * 10;
5168 clocks->count = sclk_table->count;
5169 }
5170
5171 return 0;
5172 }
5173
smu7_get_mem_latency(struct pp_hwmgr * hwmgr,uint32_t clk)5174 static uint32_t smu7_get_mem_latency(struct pp_hwmgr *hwmgr, uint32_t clk)
5175 {
5176 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5177
5178 if (clk >= MEM_FREQ_LOW_LATENCY && clk < MEM_FREQ_HIGH_LATENCY)
5179 return data->mem_latency_high;
5180 else if (clk >= MEM_FREQ_HIGH_LATENCY)
5181 return data->mem_latency_low;
5182 else
5183 return MEM_LATENCY_ERR;
5184 }
5185
smu7_get_mclks(struct pp_hwmgr * hwmgr,struct amd_pp_clocks * clocks)5186 static int smu7_get_mclks(struct pp_hwmgr *hwmgr, struct amd_pp_clocks *clocks)
5187 {
5188 struct phm_ppt_v1_information *table_info =
5189 (struct phm_ppt_v1_information *)hwmgr->pptable;
5190 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table;
5191 int i;
5192 struct phm_clock_voltage_dependency_table *mclk_table;
5193
5194 if (hwmgr->pp_table_version == PP_TABLE_V1) {
5195 if (table_info == NULL)
5196 return -EINVAL;
5197 dep_mclk_table = table_info->vdd_dep_on_mclk;
5198 for (i = 0; i < dep_mclk_table->count; i++) {
5199 clocks->clock[i] = dep_mclk_table->entries[i].clk * 10;
5200 clocks->latency[i] = smu7_get_mem_latency(hwmgr,
5201 dep_mclk_table->entries[i].clk);
5202 }
5203 clocks->count = dep_mclk_table->count;
5204 } else if (hwmgr->pp_table_version == PP_TABLE_V0) {
5205 mclk_table = hwmgr->dyn_state.vddc_dependency_on_mclk;
5206 for (i = 0; i < mclk_table->count; i++)
5207 clocks->clock[i] = mclk_table->entries[i].clk * 10;
5208 clocks->count = mclk_table->count;
5209 }
5210 return 0;
5211 }
5212
smu7_get_clock_by_type(struct pp_hwmgr * hwmgr,enum amd_pp_clock_type type,struct amd_pp_clocks * clocks)5213 static int smu7_get_clock_by_type(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type,
5214 struct amd_pp_clocks *clocks)
5215 {
5216 switch (type) {
5217 case amd_pp_sys_clock:
5218 smu7_get_sclks(hwmgr, clocks);
5219 break;
5220 case amd_pp_mem_clock:
5221 smu7_get_mclks(hwmgr, clocks);
5222 break;
5223 default:
5224 return -EINVAL;
5225 }
5226
5227 return 0;
5228 }
5229
smu7_get_sclks_with_latency(struct pp_hwmgr * hwmgr,struct pp_clock_levels_with_latency * clocks)5230 static int smu7_get_sclks_with_latency(struct pp_hwmgr *hwmgr,
5231 struct pp_clock_levels_with_latency *clocks)
5232 {
5233 struct phm_ppt_v1_information *table_info =
5234 (struct phm_ppt_v1_information *)hwmgr->pptable;
5235 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
5236 table_info->vdd_dep_on_sclk;
5237 int i;
5238
5239 clocks->num_levels = 0;
5240 for (i = 0; i < dep_sclk_table->count; i++) {
5241 if (dep_sclk_table->entries[i].clk) {
5242 clocks->data[clocks->num_levels].clocks_in_khz =
5243 dep_sclk_table->entries[i].clk * 10;
5244 clocks->num_levels++;
5245 }
5246 }
5247
5248 return 0;
5249 }
5250
smu7_get_mclks_with_latency(struct pp_hwmgr * hwmgr,struct pp_clock_levels_with_latency * clocks)5251 static int smu7_get_mclks_with_latency(struct pp_hwmgr *hwmgr,
5252 struct pp_clock_levels_with_latency *clocks)
5253 {
5254 struct phm_ppt_v1_information *table_info =
5255 (struct phm_ppt_v1_information *)hwmgr->pptable;
5256 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
5257 table_info->vdd_dep_on_mclk;
5258 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5259 int i;
5260
5261 clocks->num_levels = 0;
5262 data->mclk_latency_table.count = 0;
5263 for (i = 0; i < dep_mclk_table->count; i++) {
5264 if (dep_mclk_table->entries[i].clk) {
5265 clocks->data[clocks->num_levels].clocks_in_khz =
5266 dep_mclk_table->entries[i].clk * 10;
5267 data->mclk_latency_table.entries[data->mclk_latency_table.count].frequency =
5268 dep_mclk_table->entries[i].clk;
5269 clocks->data[clocks->num_levels].latency_in_us =
5270 data->mclk_latency_table.entries[data->mclk_latency_table.count].latency =
5271 smu7_get_mem_latency(hwmgr, dep_mclk_table->entries[i].clk);
5272 clocks->num_levels++;
5273 data->mclk_latency_table.count++;
5274 }
5275 }
5276
5277 return 0;
5278 }
5279
smu7_get_clock_by_type_with_latency(struct pp_hwmgr * hwmgr,enum amd_pp_clock_type type,struct pp_clock_levels_with_latency * clocks)5280 static int smu7_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr,
5281 enum amd_pp_clock_type type,
5282 struct pp_clock_levels_with_latency *clocks)
5283 {
5284 if (!(hwmgr->chip_id >= CHIP_POLARIS10 &&
5285 hwmgr->chip_id <= CHIP_VEGAM))
5286 return -EINVAL;
5287
5288 switch (type) {
5289 case amd_pp_sys_clock:
5290 smu7_get_sclks_with_latency(hwmgr, clocks);
5291 break;
5292 case amd_pp_mem_clock:
5293 smu7_get_mclks_with_latency(hwmgr, clocks);
5294 break;
5295 default:
5296 return -EINVAL;
5297 }
5298
5299 return 0;
5300 }
5301
smu7_set_watermarks_for_clocks_ranges(struct pp_hwmgr * hwmgr,void * clock_range)5302 static int smu7_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr,
5303 void *clock_range)
5304 {
5305 struct phm_ppt_v1_information *table_info =
5306 (struct phm_ppt_v1_information *)hwmgr->pptable;
5307 struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table =
5308 table_info->vdd_dep_on_mclk;
5309 struct phm_ppt_v1_clock_voltage_dependency_table *dep_sclk_table =
5310 table_info->vdd_dep_on_sclk;
5311 struct polaris10_smumgr *smu_data =
5312 (struct polaris10_smumgr *)(hwmgr->smu_backend);
5313 SMU74_Discrete_DpmTable *table = &(smu_data->smc_state_table);
5314 struct dm_pp_wm_sets_with_clock_ranges *watermarks =
5315 (struct dm_pp_wm_sets_with_clock_ranges *)clock_range;
5316 uint32_t i, j, k;
5317 bool valid_entry;
5318
5319 if (!(hwmgr->chip_id >= CHIP_POLARIS10 &&
5320 hwmgr->chip_id <= CHIP_VEGAM))
5321 return -EINVAL;
5322
5323 for (i = 0; i < dep_mclk_table->count; i++) {
5324 for (j = 0; j < dep_sclk_table->count; j++) {
5325 valid_entry = false;
5326 for (k = 0; k < watermarks->num_wm_sets; k++) {
5327 if (dep_sclk_table->entries[i].clk >= watermarks->wm_clk_ranges[k].wm_min_eng_clk_in_khz / 10 &&
5328 dep_sclk_table->entries[i].clk < watermarks->wm_clk_ranges[k].wm_max_eng_clk_in_khz / 10 &&
5329 dep_mclk_table->entries[i].clk >= watermarks->wm_clk_ranges[k].wm_min_mem_clk_in_khz / 10 &&
5330 dep_mclk_table->entries[i].clk < watermarks->wm_clk_ranges[k].wm_max_mem_clk_in_khz / 10) {
5331 valid_entry = true;
5332 table->DisplayWatermark[i][j] = watermarks->wm_clk_ranges[k].wm_set_id;
5333 break;
5334 }
5335 }
5336 PP_ASSERT_WITH_CODE(valid_entry,
5337 "Clock is not in range of specified clock range for watermark from DAL! Using highest water mark set.",
5338 table->DisplayWatermark[i][j] = watermarks->wm_clk_ranges[k - 1].wm_set_id);
5339 }
5340 }
5341
5342 return smu7_copy_bytes_to_smc(hwmgr,
5343 smu_data->smu7_data.dpm_table_start + offsetof(SMU74_Discrete_DpmTable, DisplayWatermark),
5344 (uint8_t *)table->DisplayWatermark,
5345 sizeof(uint8_t) * SMU74_MAX_LEVELS_MEMORY * SMU74_MAX_LEVELS_GRAPHICS,
5346 SMC_RAM_END);
5347 }
5348
smu7_notify_cac_buffer_info(struct pp_hwmgr * hwmgr,uint32_t virtual_addr_low,uint32_t virtual_addr_hi,uint32_t mc_addr_low,uint32_t mc_addr_hi,uint32_t size)5349 static int smu7_notify_cac_buffer_info(struct pp_hwmgr *hwmgr,
5350 uint32_t virtual_addr_low,
5351 uint32_t virtual_addr_hi,
5352 uint32_t mc_addr_low,
5353 uint32_t mc_addr_hi,
5354 uint32_t size)
5355 {
5356 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5357
5358 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5359 data->soft_regs_start +
5360 smum_get_offsetof(hwmgr,
5361 SMU_SoftRegisters, DRAM_LOG_ADDR_H),
5362 mc_addr_hi);
5363
5364 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5365 data->soft_regs_start +
5366 smum_get_offsetof(hwmgr,
5367 SMU_SoftRegisters, DRAM_LOG_ADDR_L),
5368 mc_addr_low);
5369
5370 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5371 data->soft_regs_start +
5372 smum_get_offsetof(hwmgr,
5373 SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_H),
5374 virtual_addr_hi);
5375
5376 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5377 data->soft_regs_start +
5378 smum_get_offsetof(hwmgr,
5379 SMU_SoftRegisters, DRAM_LOG_PHY_ADDR_L),
5380 virtual_addr_low);
5381
5382 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
5383 data->soft_regs_start +
5384 smum_get_offsetof(hwmgr,
5385 SMU_SoftRegisters, DRAM_LOG_BUFF_SIZE),
5386 size);
5387 return 0;
5388 }
5389
smu7_get_max_high_clocks(struct pp_hwmgr * hwmgr,struct amd_pp_simple_clock_info * clocks)5390 static int smu7_get_max_high_clocks(struct pp_hwmgr *hwmgr,
5391 struct amd_pp_simple_clock_info *clocks)
5392 {
5393 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5394 struct smu7_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table);
5395 struct smu7_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table);
5396
5397 if (clocks == NULL)
5398 return -EINVAL;
5399
5400 clocks->memory_max_clock = mclk_table->count > 1 ?
5401 mclk_table->dpm_levels[mclk_table->count-1].value :
5402 mclk_table->dpm_levels[0].value;
5403 clocks->engine_max_clock = sclk_table->count > 1 ?
5404 sclk_table->dpm_levels[sclk_table->count-1].value :
5405 sclk_table->dpm_levels[0].value;
5406 return 0;
5407 }
5408
smu7_get_thermal_temperature_range(struct pp_hwmgr * hwmgr,struct PP_TemperatureRange * thermal_data)5409 static int smu7_get_thermal_temperature_range(struct pp_hwmgr *hwmgr,
5410 struct PP_TemperatureRange *thermal_data)
5411 {
5412 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5413 struct phm_ppt_v1_information *table_info =
5414 (struct phm_ppt_v1_information *)hwmgr->pptable;
5415
5416 memcpy(thermal_data, &SMU7ThermalPolicy[0], sizeof(struct PP_TemperatureRange));
5417
5418 if (hwmgr->pp_table_version == PP_TABLE_V1)
5419 thermal_data->max = table_info->cac_dtp_table->usSoftwareShutdownTemp *
5420 PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5421 else if (hwmgr->pp_table_version == PP_TABLE_V0)
5422 thermal_data->max = data->thermal_temp_setting.temperature_shutdown *
5423 PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
5424
5425 thermal_data->sw_ctf_threshold = thermal_data->max;
5426
5427 return 0;
5428 }
5429
smu7_check_clk_voltage_valid(struct pp_hwmgr * hwmgr,enum PP_OD_DPM_TABLE_COMMAND type,uint32_t clk,uint32_t voltage)5430 static bool smu7_check_clk_voltage_valid(struct pp_hwmgr *hwmgr,
5431 enum PP_OD_DPM_TABLE_COMMAND type,
5432 uint32_t clk,
5433 uint32_t voltage)
5434 {
5435 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5436
5437 if (voltage < data->odn_dpm_table.min_vddc || voltage > data->odn_dpm_table.max_vddc) {
5438 pr_info("OD voltage is out of range [%d - %d] mV\n",
5439 data->odn_dpm_table.min_vddc,
5440 data->odn_dpm_table.max_vddc);
5441 return false;
5442 }
5443
5444 if (type == PP_OD_EDIT_SCLK_VDDC_TABLE) {
5445 if (data->golden_dpm_table.sclk_table.dpm_levels[0].value > clk ||
5446 hwmgr->platform_descriptor.overdriveLimit.engineClock < clk) {
5447 pr_info("OD engine clock is out of range [%d - %d] MHz\n",
5448 data->golden_dpm_table.sclk_table.dpm_levels[0].value/100,
5449 hwmgr->platform_descriptor.overdriveLimit.engineClock/100);
5450 return false;
5451 }
5452 } else if (type == PP_OD_EDIT_MCLK_VDDC_TABLE) {
5453 if (data->golden_dpm_table.mclk_table.dpm_levels[0].value > clk ||
5454 hwmgr->platform_descriptor.overdriveLimit.memoryClock < clk) {
5455 pr_info("OD memory clock is out of range [%d - %d] MHz\n",
5456 data->golden_dpm_table.mclk_table.dpm_levels[0].value/100,
5457 hwmgr->platform_descriptor.overdriveLimit.memoryClock/100);
5458 return false;
5459 }
5460 } else {
5461 return false;
5462 }
5463
5464 return true;
5465 }
5466
smu7_odn_edit_dpm_table(struct pp_hwmgr * hwmgr,enum PP_OD_DPM_TABLE_COMMAND type,long * input,uint32_t size)5467 static int smu7_odn_edit_dpm_table(struct pp_hwmgr *hwmgr,
5468 enum PP_OD_DPM_TABLE_COMMAND type,
5469 long *input, uint32_t size)
5470 {
5471 uint32_t i;
5472 struct phm_odn_clock_levels *podn_dpm_table_in_backend = NULL;
5473 struct smu7_odn_clock_voltage_dependency_table *podn_vdd_dep_in_backend = NULL;
5474 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5475
5476 uint32_t input_clk;
5477 uint32_t input_vol;
5478 uint32_t input_level;
5479
5480 PP_ASSERT_WITH_CODE(input, "NULL user input for clock and voltage",
5481 return -EINVAL);
5482
5483 if (!hwmgr->od_enabled) {
5484 pr_info("OverDrive feature not enabled\n");
5485 return -EINVAL;
5486 }
5487
5488 if (PP_OD_EDIT_SCLK_VDDC_TABLE == type) {
5489 podn_dpm_table_in_backend = &data->odn_dpm_table.odn_core_clock_dpm_levels;
5490 podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_sclk;
5491 PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend),
5492 "Failed to get ODN SCLK and Voltage tables",
5493 return -EINVAL);
5494 } else if (PP_OD_EDIT_MCLK_VDDC_TABLE == type) {
5495 podn_dpm_table_in_backend = &data->odn_dpm_table.odn_memory_clock_dpm_levels;
5496 podn_vdd_dep_in_backend = &data->odn_dpm_table.vdd_dependency_on_mclk;
5497
5498 PP_ASSERT_WITH_CODE((podn_dpm_table_in_backend && podn_vdd_dep_in_backend),
5499 "Failed to get ODN MCLK and Voltage tables",
5500 return -EINVAL);
5501 } else if (PP_OD_RESTORE_DEFAULT_TABLE == type) {
5502 smu7_odn_initial_default_setting(hwmgr);
5503 return 0;
5504 } else if (PP_OD_COMMIT_DPM_TABLE == type) {
5505 smu7_check_dpm_table_updated(hwmgr);
5506 return 0;
5507 } else {
5508 return -EINVAL;
5509 }
5510
5511 for (i = 0; i < size; i += 3) {
5512 if (i + 3 > size || input[i] >= podn_dpm_table_in_backend->num_of_pl) {
5513 pr_info("invalid clock voltage input \n");
5514 return 0;
5515 }
5516 input_level = input[i];
5517 input_clk = input[i+1] * 100;
5518 input_vol = input[i+2];
5519
5520 if (smu7_check_clk_voltage_valid(hwmgr, type, input_clk, input_vol)) {
5521 podn_dpm_table_in_backend->entries[input_level].clock = input_clk;
5522 podn_vdd_dep_in_backend->entries[input_level].clk = input_clk;
5523 podn_dpm_table_in_backend->entries[input_level].vddc = input_vol;
5524 podn_vdd_dep_in_backend->entries[input_level].vddc = input_vol;
5525 podn_vdd_dep_in_backend->entries[input_level].vddgfx = input_vol;
5526 } else {
5527 return -EINVAL;
5528 }
5529 }
5530
5531 return 0;
5532 }
5533
smu7_get_power_profile_mode(struct pp_hwmgr * hwmgr,char * buf)5534 static int smu7_get_power_profile_mode(struct pp_hwmgr *hwmgr, char *buf)
5535 {
5536 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5537 uint32_t i, size = 0;
5538 uint32_t len;
5539
5540 static const char *title[8] = {"NUM",
5541 "MODE_NAME",
5542 "SCLK_UP_HYST",
5543 "SCLK_DOWN_HYST",
5544 "SCLK_ACTIVE_LEVEL",
5545 "MCLK_UP_HYST",
5546 "MCLK_DOWN_HYST",
5547 "MCLK_ACTIVE_LEVEL"};
5548
5549 if (!buf)
5550 return -EINVAL;
5551
5552 phm_get_sysfs_buf(&buf, &size);
5553
5554 size += sysfs_emit_at(buf, size, "%s %16s %16s %16s %16s %16s %16s %16s\n",
5555 title[0], title[1], title[2], title[3],
5556 title[4], title[5], title[6], title[7]);
5557
5558 len = ARRAY_SIZE(smu7_profiling);
5559
5560 for (i = 0; i < len; i++) {
5561 if (i == hwmgr->power_profile_mode) {
5562 size += sysfs_emit_at(buf, size, "%3d %14s %s: %8d %16d %16d %16d %16d %16d\n",
5563 i, amdgpu_pp_profile_name[i], "*",
5564 data->current_profile_setting.sclk_up_hyst,
5565 data->current_profile_setting.sclk_down_hyst,
5566 data->current_profile_setting.sclk_activity,
5567 data->current_profile_setting.mclk_up_hyst,
5568 data->current_profile_setting.mclk_down_hyst,
5569 data->current_profile_setting.mclk_activity);
5570 continue;
5571 }
5572 if (smu7_profiling[i].bupdate_sclk)
5573 size += sysfs_emit_at(buf, size, "%3d %16s: %8d %16d %16d ",
5574 i, amdgpu_pp_profile_name[i], smu7_profiling[i].sclk_up_hyst,
5575 smu7_profiling[i].sclk_down_hyst,
5576 smu7_profiling[i].sclk_activity);
5577 else
5578 size += sysfs_emit_at(buf, size, "%3d %16s: %8s %16s %16s ",
5579 i, amdgpu_pp_profile_name[i], "-", "-", "-");
5580
5581 if (smu7_profiling[i].bupdate_mclk)
5582 size += sysfs_emit_at(buf, size, "%16d %16d %16d\n",
5583 smu7_profiling[i].mclk_up_hyst,
5584 smu7_profiling[i].mclk_down_hyst,
5585 smu7_profiling[i].mclk_activity);
5586 else
5587 size += sysfs_emit_at(buf, size, "%16s %16s %16s\n",
5588 "-", "-", "-");
5589 }
5590
5591 return size;
5592 }
5593
smu7_patch_compute_profile_mode(struct pp_hwmgr * hwmgr,enum PP_SMC_POWER_PROFILE requst)5594 static void smu7_patch_compute_profile_mode(struct pp_hwmgr *hwmgr,
5595 enum PP_SMC_POWER_PROFILE requst)
5596 {
5597 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5598 uint32_t tmp, level;
5599
5600 if (requst == PP_SMC_POWER_PROFILE_COMPUTE) {
5601 if (data->dpm_level_enable_mask.sclk_dpm_enable_mask) {
5602 level = 0;
5603 tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask;
5604 while (tmp >>= 1)
5605 level++;
5606 if (level > 0)
5607 smu7_force_clock_level(hwmgr, PP_SCLK, 3 << (level-1));
5608 }
5609 } else if (hwmgr->power_profile_mode == PP_SMC_POWER_PROFILE_COMPUTE) {
5610 smu7_force_clock_level(hwmgr, PP_SCLK, data->dpm_level_enable_mask.sclk_dpm_enable_mask);
5611 }
5612 }
5613
smu7_set_power_profile_mode(struct pp_hwmgr * hwmgr,long * input,uint32_t size)5614 static int smu7_set_power_profile_mode(struct pp_hwmgr *hwmgr, long *input, uint32_t size)
5615 {
5616 struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
5617 struct profile_mode_setting tmp;
5618 enum PP_SMC_POWER_PROFILE mode;
5619
5620 if (input == NULL)
5621 return -EINVAL;
5622
5623 mode = input[size];
5624 switch (mode) {
5625 case PP_SMC_POWER_PROFILE_CUSTOM:
5626 if (size < 8 && size != 0)
5627 return -EINVAL;
5628 /* If only CUSTOM is passed in, use the saved values. Check
5629 * that we actually have a CUSTOM profile by ensuring that
5630 * the "use sclk" or the "use mclk" bits are set
5631 */
5632 tmp = smu7_profiling[PP_SMC_POWER_PROFILE_CUSTOM];
5633 if (size == 0) {
5634 if (tmp.bupdate_sclk == 0 && tmp.bupdate_mclk == 0)
5635 return -EINVAL;
5636 } else {
5637 tmp.bupdate_sclk = input[0];
5638 tmp.sclk_up_hyst = input[1];
5639 tmp.sclk_down_hyst = input[2];
5640 tmp.sclk_activity = input[3];
5641 tmp.bupdate_mclk = input[4];
5642 tmp.mclk_up_hyst = input[5];
5643 tmp.mclk_down_hyst = input[6];
5644 tmp.mclk_activity = input[7];
5645 smu7_profiling[PP_SMC_POWER_PROFILE_CUSTOM] = tmp;
5646 }
5647 if (!smum_update_dpm_settings(hwmgr, &tmp)) {
5648 memcpy(&data->current_profile_setting, &tmp, sizeof(struct profile_mode_setting));
5649 hwmgr->power_profile_mode = mode;
5650 }
5651 break;
5652 case PP_SMC_POWER_PROFILE_FULLSCREEN3D:
5653 case PP_SMC_POWER_PROFILE_POWERSAVING:
5654 case PP_SMC_POWER_PROFILE_VIDEO:
5655 case PP_SMC_POWER_PROFILE_VR:
5656 case PP_SMC_POWER_PROFILE_COMPUTE:
5657 if (mode == hwmgr->power_profile_mode)
5658 return 0;
5659
5660 memcpy(&tmp, &smu7_profiling[mode], sizeof(struct profile_mode_setting));
5661 if (!smum_update_dpm_settings(hwmgr, &tmp)) {
5662 if (tmp.bupdate_sclk) {
5663 data->current_profile_setting.bupdate_sclk = tmp.bupdate_sclk;
5664 data->current_profile_setting.sclk_up_hyst = tmp.sclk_up_hyst;
5665 data->current_profile_setting.sclk_down_hyst = tmp.sclk_down_hyst;
5666 data->current_profile_setting.sclk_activity = tmp.sclk_activity;
5667 }
5668 if (tmp.bupdate_mclk) {
5669 data->current_profile_setting.bupdate_mclk = tmp.bupdate_mclk;
5670 data->current_profile_setting.mclk_up_hyst = tmp.mclk_up_hyst;
5671 data->current_profile_setting.mclk_down_hyst = tmp.mclk_down_hyst;
5672 data->current_profile_setting.mclk_activity = tmp.mclk_activity;
5673 }
5674 smu7_patch_compute_profile_mode(hwmgr, mode);
5675 hwmgr->power_profile_mode = mode;
5676 }
5677 break;
5678 default:
5679 return -EINVAL;
5680 }
5681
5682 return 0;
5683 }
5684
smu7_get_performance_level(struct pp_hwmgr * hwmgr,const struct pp_hw_power_state * state,PHM_PerformanceLevelDesignation designation,uint32_t index,PHM_PerformanceLevel * level)5685 static int smu7_get_performance_level(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *state,
5686 PHM_PerformanceLevelDesignation designation, uint32_t index,
5687 PHM_PerformanceLevel *level)
5688 {
5689 const struct smu7_power_state *ps;
5690 uint32_t i;
5691
5692 if (level == NULL || hwmgr == NULL || state == NULL)
5693 return -EINVAL;
5694
5695 ps = cast_const_phw_smu7_power_state(state);
5696
5697 i = index > ps->performance_level_count - 1 ?
5698 ps->performance_level_count - 1 : index;
5699
5700 level->coreClock = ps->performance_levels[i].engine_clock;
5701 level->memory_clock = ps->performance_levels[i].memory_clock;
5702
5703 return 0;
5704 }
5705
smu7_power_off_asic(struct pp_hwmgr * hwmgr)5706 static int smu7_power_off_asic(struct pp_hwmgr *hwmgr)
5707 {
5708 int result;
5709
5710 result = smu7_disable_dpm_tasks(hwmgr);
5711 PP_ASSERT_WITH_CODE((0 == result),
5712 "[disable_dpm_tasks] Failed to disable DPM!",
5713 );
5714
5715 return result;
5716 }
5717
5718 static const struct pp_hwmgr_func smu7_hwmgr_funcs = {
5719 .backend_init = &smu7_hwmgr_backend_init,
5720 .backend_fini = &smu7_hwmgr_backend_fini,
5721 .asic_setup = &smu7_setup_asic_task,
5722 .dynamic_state_management_enable = &smu7_enable_dpm_tasks,
5723 .apply_state_adjust_rules = smu7_apply_state_adjust_rules,
5724 .force_dpm_level = &smu7_force_dpm_level,
5725 .power_state_set = smu7_set_power_state_tasks,
5726 .get_power_state_size = smu7_get_power_state_size,
5727 .get_mclk = smu7_dpm_get_mclk,
5728 .get_sclk = smu7_dpm_get_sclk,
5729 .patch_boot_state = smu7_dpm_patch_boot_state,
5730 .get_pp_table_entry = smu7_get_pp_table_entry,
5731 .get_num_of_pp_table_entries = smu7_get_number_of_powerplay_table_entries,
5732 .powerdown_uvd = smu7_powerdown_uvd,
5733 .powergate_uvd = smu7_powergate_uvd,
5734 .powergate_vce = smu7_powergate_vce,
5735 .disable_clock_power_gating = smu7_disable_clock_power_gating,
5736 .update_clock_gatings = smu7_update_clock_gatings,
5737 .notify_smc_display_config_after_ps_adjustment = smu7_notify_smc_display_config_after_ps_adjustment,
5738 .display_config_changed = smu7_display_configuration_changed_task,
5739 .set_max_fan_pwm_output = smu7_set_max_fan_pwm_output,
5740 .set_max_fan_rpm_output = smu7_set_max_fan_rpm_output,
5741 .stop_thermal_controller = smu7_thermal_stop_thermal_controller,
5742 .get_fan_speed_info = smu7_fan_ctrl_get_fan_speed_info,
5743 .get_fan_speed_pwm = smu7_fan_ctrl_get_fan_speed_pwm,
5744 .set_fan_speed_pwm = smu7_fan_ctrl_set_fan_speed_pwm,
5745 .reset_fan_speed_to_default = smu7_fan_ctrl_reset_fan_speed_to_default,
5746 .get_fan_speed_rpm = smu7_fan_ctrl_get_fan_speed_rpm,
5747 .set_fan_speed_rpm = smu7_fan_ctrl_set_fan_speed_rpm,
5748 .uninitialize_thermal_controller = smu7_thermal_ctrl_uninitialize_thermal_controller,
5749 .register_irq_handlers = smu7_register_irq_handlers,
5750 .check_smc_update_required_for_display_configuration = smu7_check_smc_update_required_for_display_configuration,
5751 .check_states_equal = smu7_check_states_equal,
5752 .set_fan_control_mode = smu7_set_fan_control_mode,
5753 .get_fan_control_mode = smu7_get_fan_control_mode,
5754 .force_clock_level = smu7_force_clock_level,
5755 .print_clock_levels = smu7_print_clock_levels,
5756 .powergate_gfx = smu7_powergate_gfx,
5757 .get_sclk_od = smu7_get_sclk_od,
5758 .set_sclk_od = smu7_set_sclk_od,
5759 .get_mclk_od = smu7_get_mclk_od,
5760 .set_mclk_od = smu7_set_mclk_od,
5761 .get_clock_by_type = smu7_get_clock_by_type,
5762 .get_clock_by_type_with_latency = smu7_get_clock_by_type_with_latency,
5763 .set_watermarks_for_clocks_ranges = smu7_set_watermarks_for_clocks_ranges,
5764 .read_sensor = smu7_read_sensor,
5765 .dynamic_state_management_disable = smu7_disable_dpm_tasks,
5766 .avfs_control = smu7_avfs_control,
5767 .disable_smc_firmware_ctf = smu7_thermal_disable_alert,
5768 .start_thermal_controller = smu7_start_thermal_controller,
5769 .notify_cac_buffer_info = smu7_notify_cac_buffer_info,
5770 .get_max_high_clocks = smu7_get_max_high_clocks,
5771 .get_thermal_temperature_range = smu7_get_thermal_temperature_range,
5772 .odn_edit_dpm_table = smu7_odn_edit_dpm_table,
5773 .set_power_limit = smu7_set_power_limit,
5774 .get_power_profile_mode = smu7_get_power_profile_mode,
5775 .set_power_profile_mode = smu7_set_power_profile_mode,
5776 .get_performance_level = smu7_get_performance_level,
5777 .get_asic_baco_capability = smu7_baco_get_capability,
5778 .get_asic_baco_state = smu7_baco_get_state,
5779 .set_asic_baco_state = smu7_baco_set_state,
5780 .power_off_asic = smu7_power_off_asic,
5781 };
5782
smu7_get_sleep_divider_id_from_clock(uint32_t clock,uint32_t clock_insr)5783 uint8_t smu7_get_sleep_divider_id_from_clock(uint32_t clock,
5784 uint32_t clock_insr)
5785 {
5786 uint8_t i;
5787 uint32_t temp;
5788 uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK);
5789
5790 PP_ASSERT_WITH_CODE((clock >= min), "Engine clock can't satisfy stutter requirement!", return 0);
5791 for (i = SMU7_MAX_DEEPSLEEP_DIVIDER_ID; ; i--) {
5792 temp = clock >> i;
5793
5794 if (temp >= min || i == 0)
5795 break;
5796 }
5797 return i;
5798 }
5799
smu7_init_function_pointers(struct pp_hwmgr * hwmgr)5800 int smu7_init_function_pointers(struct pp_hwmgr *hwmgr)
5801 {
5802 hwmgr->hwmgr_func = &smu7_hwmgr_funcs;
5803 if (hwmgr->pp_table_version == PP_TABLE_V0)
5804 hwmgr->pptable_func = &pptable_funcs;
5805 else if (hwmgr->pp_table_version == PP_TABLE_V1)
5806 hwmgr->pptable_func = &pptable_v1_0_funcs;
5807
5808 return 0;
5809 }
5810